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A method to compute the optimal success probability of discrimination of N arbitrary quantum
states is presented, based on the decomposition of any N -outcome measurement into sequences of
nested two-outcome ones. In this way the optimization of the measurement operators can be carried
out in successive steps, optimizing first the binary measurements at the deepest nesting level and
then moving on to those at higher levels. We obtain an analytical expression for the maximum
success probability after the first optimization step and examine its form for the specific case of
N = 3, 4 states of a qubit. In this case, at variance with previous proposals, we are able to provide a
compact expression for the success probability of any set of states, whose numerical optimization is
straightforward; the results thus obtained highlight some lesser-known features of the discrimination
problem.

I. INTRODUCTION

The discrimination of quantum states [1] is one of the
fundamental problems in Quantum Information and a ba-
sic task for several applications in communication [2–6],
cryptography [7–9], fundamental questions [10–13], mea-
surement and control [14, 15] and algorithms [16]. Trig-
gered by the observation that non-orthogonal quantum
states cannot be perfectly discriminated, this subject has
stimulated much work, both from a theoretical and prac-
tical point of view: the seminal works of Helstrom [17],
Holevo [18] and Yuen et al. [19] formalized the problem,
obtaining a set of conditions for the optimal measure-
ment operators, which in turn provide the optimal suc-
cess probability, then solved it for sets of states symmet-
ric under a unitary transformation; more recently, ac-
knowledging that a general analytical solution is hard to
find, research focused on finding a solution for sets with
more general symmetries [20–22], computing explicitly
the optimal measurements for the most interesting sets of
states [23–27] and studying the implementation of such
measurements with available technology (see for exam-
ple [28–40] for the case of two optical coherent states,
the most relevant for optical communication). Also, the
problem of discrimination has been identified as a convex
optimization one, arguing that it can be solved efficiently
with numerical optimization methods [41].
In this article we attempt to solve the optimal discrimi-
nation of N quantum states from a different perspective,
by providing a structured expression for the N -outcome
Positive Operator Valued Measure (POVM) used to dis-
criminate the states. Indeed it can be shown [42, 43]
that any POVM comprising N elements is equivalent to
a collection of binary POVM’s, i.e., comprising two ele-
ments, as the one employed in Ref. [6]: depending on the
binary outcome of the first measurement, a second one is
applied; its binary outcome in turn affects the choice of
the third binary measurement and so on. In this way a
sequence of nested binary POVM’s can be constructed,
where the POVM applied at a given level depends on

the string of binary outcomes of the previous ones. This
result was already obtained in Ref. [42]. When applied
to state discrimination, it acquires a more operational
meaning: each binary POVM can be seen as discrimi-
nating between two subsets of the initial set of states,
identified by previous outcomes. Hence the sequence of
measurements induces a sequence of discrimination prob-
abilities, so that, if the optimization problem is solved
independently for any set of a fixed number of states, the
result can be employed in the optimization problem for
larger sets of states.
In the second part of the article, employing this decom-
position and the two-state optimal probability [17], we
obtain an expression for the success probability of dis-
crimination of any N = 3, 4 states, depending on a single
measurement operator, and solve the problem analyti-
cally for specific sets of states. Then we restrict our at-
tention to qubit states and obtain a compact expression
which can be easily optimized numerically case by case,
at variance with less compact results for N = 3 presented
in previous works based on Bloch-space geometry [25–
27]. We recover the results of those works and highlight
in particular some interesting lesser-known implications
of Ref. [26].
The article is structured as follows: in Sec. II we describe
the decomposition in terms of nested binary POVM’s and
provide a proof of its validity, similar to that of Ref. [42];
in Sec. III we apply it to state discrimination and ob-
tain an explicit expression for the case of N = 3, 4 arbi-
trary states, then discuss its optimization in some spe-
cific cases; in Sec. IV we treat the case of N = 3, 4 qubit
states, computing a compact expression which can be
optimized numerically and highlighting some results ob-
tained in this way. Eventually in Sec. V we draw some
conclusions. Detailed computations of the quantities ap-
pearing in the article are provided in the Appendices.
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II. GENERAL DECOMPOSITION OF A
N-OUTCOME MEASUREMENT INTO NESTED

BINARY ONES

In this Section we prove that any quantum measure-
ment with an arbitrary number of outcomes can be de-
composed into a sequence of nested measurements with
binary outcomes, where the previous results determine
the choice of successive measurements. We stress that
the same result was obtained in Ref. [42]. At variance
with the latter, our proof does not make use of the spec-
tral decomposition of the initial measurement operators;
we present it here in a form adapted to the main pur-
pose of the article. Let us suppose we want to perform
a quantum measurement with N possible outcomes: it
can be expressed in general as a POVM M(N) of ele-
ments Ej , one for each outcome j = 0, · · · , N − 1, sat-
isfying the positivity and completeness conditions, i.e.,

respectively Ej ≥ 0 and
∑N−1
j=0 Ej = 1, where 1 is the

identity operator on the Hilbert space of the system to
be measured. This expression can be interpreted as a
one-shot measurement with several possible results and
its practical realization may often be very hard. On the
other hand we could restrict to performing only mea-
surements with two outcomes, as described by binary
POVM’s: B ≡ M(2) = {B0, B1}. This may be useful
when limited technological capabilities or specific theo-
retical requirements constrain the number of allowed out-
comes and the complexity of our measurement. It is then
natural to ask whether this smaller set of resources is suf-
ficient to describe a general quantum measurement. We
answer positively by showing that the more general N -
outcome formalism can be broken up into several binary
steps and interpreted as a sequence of nested POVM’s
with two outcomes, trading a one-shot, multiple-outcome
measurement for a multiple-step, yes-no measurement.
The nested POVM can be expressed in terms of con-
ditional binary POVM’s B~k = {B~k,0, B~k,1}, each com-

plete by itself, to be applied only if a specific string ~k
of previous results is obtained. For example for N = 4
the nested POVM can be realized in two steps and writ-
ten compactly as the collection of three binary POVM’s:

N (4) =
{
B(2)0 ,B(2)1

}
◦
{
B(1)

}
, properly composed as fol-

lows and shown in Fig. 1. The measurement starts by ap-

plying the first-step binary POVM B(1) =
{
B

(1)
k1

}
k1=0,1

then, depending on its outcome k1, it selects B(2)k1 ={
B

(2)
k1,k2

}
k2=0,1

among the two POVM’s available in the

second-step collection
{
B(2)0 ,B(2)1

}
. Eventually the cho-

sen second-step POVM is applied, receiving an outcome
k2. The total outcome is a string of two bits, i.e., k1, k2,
whose value identifies one of four possible outcomes, as
desired. Suppose now to apply this measurement on a
state ρ of some physical system: if the first-step out-
come is k1 = 0, the resulting unnormalized evolved state

Figure 1. Schematic depiction of the nested decomposition
for N = 4, explicitly discussed in the text. Any four-outcome
measurement M(4) acting on a state ρ is equivalent to the
concatenation of two-outcome measurements: the first-step

one B(1), with result k1 = 0, 1, and the second-step ones B(2)
k1

,
which are mutually exclusive and applied only if the corre-
sponding first outcome k1 was obtained.

is

√
B

(1)
0 ρ

√
B

(1)
0 ; if then the second-step outcome is

k2 = 0, the final unnormalized state of the system is√
B

(2)
0,0

√
B

(1)
0 ρ

√
B

(1)
0

√
B

(2)
0,0 . This means that the nested

POVM has a more explicit representation as

N (4) =

{
Fk1,k2 =

∣∣∣∣√B(2)
k1,k2

√
B

(1)
k1

∣∣∣∣2
}
k1,k2=0,1

, (1)

where |X|2 = X†X is the square of the absolute value
of an operator X. In the general case, let us indicate a
sequence of b− a+ 1 bits as

k(a,b) =

{
ka, ka+1, · · · , kb, b ≥ a
∅, b < a,

(2)

and define as B(u)k(1,u−1)
=
{
B

(u)
k(1,u−1),0

, B
(u)
k(1,u−1),1

}
the

binary POVM to be performed at the u-th step if the
previous u − 1 measurements had a sequence of results
k(1,u−1). Then we can define a nested POVM N (N) of
order N = 2uF as

N (N) =
{
B(uF )
k(1,uF −1)

}
k1,··· ,kuF −1=0,1

◦ · · · ◦
{
B(1)

}
=

{
Fk(1,uF )

=

∣∣∣∣√B(uF )
k(1,uF )

· · ·
√
B

(1)
k1

∣∣∣∣2
}
, (3)

i.e., the collection of 2uF −1 binary POVM’s B(u)k(1,u−1)
, for

all previous outcomes k(1,u−1) at a given step u and all

steps u = 1, · · · , uF . We can certify that N (N) so con-
structed actually is a POVM by checking positivity and
completeness of its elements Fk(1,uF )

: the former require-
ment is trivial, while the latter follows from the fact that
each binary POVM is complete, as shown in Appendix A.

In light of the previous discussion we can now state the
main theorem:

Theorem 1. Any N -outcome POVM M(N) =

{Ej}j=0,··· ,N−1 is equivalent to a nested POVM N (Ñ),

Ñ = 2uF , as in Eq. (3), composed exclusively of binary

POVM’s B(u)k(1,u−1)
, with a total number of steps uF equal

to:
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1. log2N , if N is a power of 2;

2. dlog2Ne otherwise, where d·e is the ceiling func-
tion, equal to the smallest integer following the ar-
gument.

Proof. Consider the first case above, i.e., N = 2uF ≡
Ñ . We start by providing a binary representation of
the labels j of the initial POVM M(N), i.e., we define
Ek(1,u)

≡ Ej(k) , with j(k) =
∑uF

u=1 2u−1ku. In order to
prove the theorem we have to show that by combining
the elements of the initial N -outcome POVM M(N) one
can always define a set of binary POVM’s B(u)k(1,u−1)

, for

all k1, · · · , ku−1 = 0, 1 and u = 1, · · · , uF , such that: i)
their nested composition is a POVM of the form N (N),
Eq. (3); ii) the elements of the latter are equal to the
elements of M(N).
First of all we construct the binary elements at each step
u, by taking the sum of all the elements Ek(1,u),k(u+1,uF )

with a fixed value of the first u bits, then renormalizing
it by all previous binary elements, as in a Square Root
Measurement [3, 44]. For example define the elements of
the first-step POVM B(1) as

B
(1)
k1

=
∑

k(2,uF )

Ek1,k(2,uF )
, (4)

for each value of the outcome k1 = 0, 1. Being a sum of
positive operators, the elements so defined are themselves
positive; moreover their sum equals the sum of all the
elements of M(N), implying that they are complete. At
the second step define the elements of the two possible

POVM’s B(2)k1 as

B
(2)
k(1,2)

=

√
B

(1)
k1

−1 ∑
k(3,uF )

Ek(1,2),k(3,uF )

√
B

(1)
k1

−1
, (5)

where the inverse of an operator is to be computed only
on its support, while it is equal to 0 on its kernel, i.e.,
its pseudo-inverse. Also in this case the defined ele-
ments are positive by construction, but they are not
complete. Indeed it is easy to show, employing the def-

inition (4), that B
(2)
k1,0

+ B
(2)
k1,1

= 1k1 . Here 1k1 is the
projector on the support of the previous outcome op-

erator, B
(1)
k1

, which may have a non-trivial kernel, so
that in general it holds 1k1 ≤ 1. This problem may
be overcome easily by redefining the POVM elements

as B̃
(2)
k(1,2)

= B
(2)
k(1,2)

⊕ (1− 1k1) /2, i.e., trivially expand-

ing the support of those already defined in (5), so that

B̃
(2)
k1,0

+ B̃
(2)
k1,1

= 1k1 ⊕ (1− 1k1) = 1. This operation

is trivial because, in the construction (3) of the nested

POVM, the operators B
(2)
k(1,2)

always act after the oper-

ator B
(1)
k1

, so that the value of the former outside the
support of the latter is completely irrelevant. In other
words, completeness of the binary POVM’s is not neces-
sary for the definition of N (N) as a proper POVM; it is

sufficient to ask for weak completeness, i.e., that B(u)k(1,u−1)

is complete on the support of the operator preceding it

in the decomposition, B
(u−1)
k(1,u−1)

.

Generalizing the previous discussion, at the u-th step we
can define the elements of the 2u−1 possible POVM’s

B(u)k(1,u−1)
as

B
(u)
k(1,u)

=
√
B

(u−1)
k(1,u−1)

−1
· · ·
√
B

(1)
k1

−1
(6)

·
∑

k(u+1,uF )

Ek(1,u),k(u+1,uF )

√
B

(1)
k1

−1
· · ·
√
B

(u−1)
k(1,u−1)

−1
.

These elements are positive by construction and they

satisfy the weak completeness relation B
(u)
k(1,u−1),0

+

B
(u)
k(1,u−1),1

= 1k(1,u−1)
, which is sufficient to define the

POVM N (N), as discussed in Appendix A. Hence we are
left to show that, when combining the binary elements
Eq. (6) as in Eq. (3), the elements Fk(1,uF )

so constructed

are equal to the Ek(1,uF )
. Indeed let us evaluate Eq. (6)

for u = uF , i.e., at the last step, noting that the sum
contains only one term:

B
(uF )
k(1,uF )

=

√
B

(uF−1)
k(1,uF −1)

−1

· · ·
√
B

(1)
k1

−1

· Ek(1,uF )

√
B

(1)
k1

−1
· · ·
√
B

(uF−1)
k(1,uF −1)

−1

. (7)

Let us then successively invert the outer square roots on
the left-hand side of the equation exactly uF − 1 times,
to obtain the relation

Ek(1,uF )
=

∣∣∣∣√B(uF )
k(1,uF )

· · ·
√
B

(1)
k1

∣∣∣∣2 ≡ Fk(1,uF )
, (8)

which demonstrates that we can recover the initial
POVM with the procedure outlined above.
This completes the proof when N is an exact power of 2.
If this is not the case, it means that log2N is not an in-
teger and it suffices to consider the nested decomposition
for the next higher integer, i.e., set uF = dlog2Ne + 1,

Ñ = 2uF . Let us then trivially expand the initial N -
outcome POVM to a Ñ -outcome one as

M(Ñ) =M(N) ∪
{
Ek(1,uF )

= 0,∀j(k) > N − 1
}
, (9)

by adding Ñ − N null elements. The nested decompo-

sition N (Ñ) equivalent to M(Ñ) can be computed again
by Eqs. (3,6) and it comprises Ñ −N null elements too.
If we isolate these elements from the rest we obtain a
decomposition

N (Ñ) = N (N) ∪
{
Fk(1,uF )

= 0,∀j(k) > N − 1
}
, (10)

whereN (N) can be interpreted as a nested representation
of the initial POVM M(N).
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III. AN APPLICATION: OPTIMAL QUANTUM
STATE DISCRIMINATION

In this Section we apply the previous POVM decompo-
sition to the problem of optimal state discrimination. Let
us suppose we are given one copy of a quantum state, rep-
resented by a positive and trace-one operator ρj , chosen

at random from a set S(N) = {ρ̃j = pjρj}j=0,··· ,N−1 of N

states weighted with probability pj , so that
∑N−1
j=0 pj =

1; we have to perform a measurement to decide which
state was sent. If the states are not orthogonal, i.e.,
ρjρk 6= 0 for some values of j, k, and we are constrained
to give a conclusive answer, there exists no measurement
that can succeed with unit probability. The average suc-
cess probability of discriminating the set of states S(N)

with a N -outcome POVM M(N), as defined in Sec. II,
can be computed as

PSucc

(
S(N),M(N)

)
=
N−1∑
j=0

Tr [Ej ρ̃j ] , (11)

where each measurement outcome Ej is associated with
the detection of the respective weighted state ρ̃j . We are
particularly interested in the optimal success probability,
obtained by optimizing over all measurements:

PSucc(S(N)) = max
M(N)

PSucc

(
S(N),M(N)

)
. (12)

Following Sec. II, we can always decompose the discrim-
ination measurement into a sequence of nested binary
ones, writing the success probability as

PSucc

(
S(N),N (N)

)
=

∑
k(1,uF )

Tr
[
Fk(1,uF )

ρ̃k(1,uF )

]

=
∑

k(1,uF )

Tr

[∣∣∣∣√B(uF )
k(1,uF )

· · ·
√
B

(1)
k1

∣∣∣∣2 ρ̃k(1,uF )

]
, (13)

where we have introduced the binary representation
k(1,uF ) for the labels j of the states and measurement op-
erators and employed the definition (3) for the elements
of the nested POVM. This decomposition is interesting
because it establishes a relation between the discrimina-
tion probability of a given set of states and that of its
subsets of smaller size. Let us indeed suppose that the
first measurement is successful, i.e., that an outcome k1
occurs if one of the states ρk1,k(2,uF )

with that value of
the first bit was present. This happens with probability

pSucc(k1) =
∑
k(2,uF )

Tr
[
B

(1)
k1
ρ̃k1,k(2,uF )

]
. In this case the

possible weighted states after the measurement are

τ̃k1,k(2,uF )
=

√
B

(1)
k1
ρ̃k1,k(2,uF )

√
B

(1)
k1
/pSucc(k1), (14)

forming a set of size N/2: S(N/2)k1
={

τ̃k1,k(2,uF )

}
k2,··· ,kuF

=0,1
. Moreover the collection

of remaining measurements can be seen as a nested
POVM of order N/2:

N (N/2)
k1

=
{
B(uF )
k1,k(2,uF −1)

}
k2,··· ,kuF −1=0,1

◦ · · · ◦
{
B(2)k1

}
.

Hence we can easily rewrite the probability of discrim-
inating the set of states S(N) with the POVM N (N),
Eq. (13), as the probability of discriminating the set

S(N/2)k1
with the POVM N (N/2)

k1
if the first measurement

had an outcome k1, averaged over all values of k1 = 0, 1:

PSucc

(
S(N),N (N)

)
=

∑
k1,k(2,uF )

pSucc(k1)

·Tr

[ ∣∣∣∣√B(uF )
k1,k(2,uF )

· · ·
√
B

(2)
k1,k2

∣∣∣∣2 τ̃k1,k(2,uF )

]
=
∑
k1

pSucc(k1)PSucc

(
S(N/2)k1

,N (N/2)
k1

)
. (15)

This expression suggests a recursive optimization: if
the optimal discrimination problem is solved for any set
S(N/2) of a fixed size N/2, possibly restricting to a spe-
cific Hilbert space, e.g., qubits or continuous-variable
states, then the result can be plugged into (15) to obtain
an expression for the discrimination probability of a set of
double size, which depends on a single couple of measure-
ment operators, i.e., the first-step binary POVM B(1).
However, if a general solution for the discrimination of a
smaller set of states is not available, the problem remains

hard, since when optimizing PSucc

(
S(N/2)k1

,N (N/2)
k1

)
one

still has to take into account the dependence of the states

of S(N/2)k1
on the first-step POVM, which is itself subject

to optimization afterwards, thus making the states arbi-
trary.
Fortunately the first step of the recursion has a well-
known solution [17]:

PSucc(S(2)) = (1 + ||ρ̃0 − ρ̃1||1) /2, (16)

where ||·||1 = Tr[| · |] is the trace norm of the argument.
Then by plugging this expression into the optimization
of Eq. (15) for N = 4 states we can write:

PSucc
(
S(4)

)
= max
B(1)

∑
k1

pSucc(k1)
1 + ||τ̃k1,0 − τ̃k1,1||1

2

= max
B(1)

∑
k1

1

2

(
Tr
[
B

(1)
k1

(ρ̃k1,0 + ρ̃k1,1)
]

+

∣∣∣∣∣∣∣∣√B(1)
k1

(ρ̃k1,0 − ρ̃k1,1)

√
B

(1)
k1

∣∣∣∣∣∣∣∣
1

)
.(17)

We can write the latter equation more compactly by in-
troducing the function

FQ(A,B,C) = Tr
[
QA+

∣∣∣√QB√Q∣∣∣
+
∣∣∣√1−QC

√
1−Q

∣∣∣] , (18)
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where Q is a positive and less-than-one operator, while
the arguments A,B,C are hermitian operators, and its
maximum over Q, i.e.,

F(A,B,C) = max
1≥Q≥0

FQ(A,B,C). (19)

Setting B
(1)
0 = Q and B

(1)
1 = 1−Q, we obtain:

PSucc
(
S(4)

)
=
p1,0 + p1,1

2
+ F

(
A(4), B(4), C(4)

)
, (20)

with A(4) = (ρ̃0,0 + ρ̃0,1 − ρ̃1,0 − ρ̃1,1)/2, B(4) = (ρ̃0,0 −
ρ̃0,1)/2 and C(4) = (ρ̃1,0 − ρ̃1,1)/2. Similarly for N = 3
states we have:

PSucc
(
S(3)

)
= p1,0 + F

(
A(3), B(3), C(3)

)
, (21)

with A(3) = (ρ̃0,0 + ρ̃0,1)/2− ρ̃1,0, B(3) = B(4) as before

and C(3) = 0. Thus the optimal discrimination problem
of N = 3, 4 states has been reduced to the evaluation
of the function F , which requires an optimization over a
single operator Q.
As already discussed, if the problem of Eq. (20) were to
be solved exactly for any set of states S(4), then the re-
sult could be plugged into Eq. (15), obtaining an expres-
sion for the optimal discrimination probability of N = 8
states dependent only on the first binary POVM. Unfor-
tunately a solution of Eqs. (20,21) can be found only in
some specific cases, listed below and discussed in detail
in Appendix B. In the following we employ the positive
part of an operator X, defined as X+ = (X + |X|)/2.

Proposition 1. The value of the function F(A,B,C) of
Eq. (19) is

F (A,B,C) = Tr[(A+ |B| − |C|)+] + ||C||1 , (22)

when at least one of the following conditions holds: i)
the operators B and C have support respectively on the

positive and negative support of A; ii) B and C have
a definite sign; iii) A, B and C all commute with each
other.

Remark 1. In the first case of Proposition 1, i.e., that
the operators B and C have support respectively on the
positive and negative support of A, the expression (22)
can be simplified as

F (A,B,C) = Tr [A+] + ||B||1 + ||C||1 . (23)

Remark 2. The optimal success probability is invariant
under exchange of the states, i.e., under relabelling of the
indices k1, k2 in our case N = 3, 4. Hence it can happen
that the conditions listed in Proposition 1 are valid only
for A,B,C given by a specific ordering of the states.

The previous remark implies that, when checking
whether a set of states satisfies the conditions of Propo-
sition 1 or not, one has to consider all possible sets of
A,B,C obtainable by different orderings of the states,
not only the conventional one employed in Eqs. (20,21).
Alternatively, one can apply this symmetry under ex-
change of the states to obtain recursive relations for
F(A,B,C), e.g., for N = 3 and by exchanging (0, 0) ↔
(1, 0), it holds

F(A,B, 0) =
F(−3B −A,B −A, 0)

2
+ Tr[A+B]; (24)

then Proposition 1 holds on the right-hand side of (24)
when B′ = B − A has a definite sign, but the latter is
simply B′ = (ρ̃1,0− ρ̃0,1)/2, an expression of the operator
B for the new ordering of the states.

Remark 3. In all the cases listed in Proposition 1, with
the conventional ordering of the states of Eqs. (20,21),
the optimal success probabilities for the discrimination of
N = 3, 4 states become

PSucc
(
S(3)

)
= p1,0 + Tr

[
(ρ̃0,0 + ρ̃0,1 − 2ρ̃1,0 + |ρ̃0,0 − ρ̃0,1|)+

2

]
, (25)

PSucc
(
S(4)

)
=
p1,0 + p1,1

2
+ Tr

[
(ρ̃0,0 + ρ̃0,1 − ρ̃1,0 − ρ̃1,1 + |ρ̃0,0 − ρ̃0,1| − |ρ̃1,0 − ρ̃1,1|)+

2

]
+

∣∣∣∣∣∣∣∣ ρ̃1,0 − ρ̃1,12

∣∣∣∣∣∣∣∣
1

. (26)

IV. A NUMERICAL EXAMPLE: THE N = 3, 4
QUBIT CASE

In this Section we analyze the discrimination probabil-
ity obtained with the nested POVM decomposition in the
case of N = 3, 4 qubit states. Indeed, since Eqs. (20,21)
seem not to be solvable analytically for generic sets of
states, it is interesting to tackle the problem by choosing
the simplest possible Hilbert space for the measured sys-
tem, i.e., the qubit space H2 of dimension two. It is well

known that the density matrices ρ of this system can be
represented as a real vector ~vρ inside a three-dimensional
unit sphere (the Bloch sphere), i.e. ρ = (12 + ~vρ · ~σ)/2
where 12 is the identity operator and ~σ = (σ1, σ2, σ3) is
the vector of Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

In particular, pure states are situated on the sphere’s
surface, i.e., vρ = |~vρ| = 1 for ρ = |ψ〉〈ψ|, while the
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completely mixed state 12/2 is at the origin. More gen-
erally, any hermitian operator X on the qubit space can
be expressed in terms of four real coefficients: a scalar
cX , which represents the normalization coefficient of the
operator, and a vector ~rX , which represents the operator

in the Bloch space, i.e.

X = cX12 + ~rX · ~σ, (27)

the trace of the operator being determined by Tr[X] =

2cX , while its eigenvalues by λ
(±)
X = cX ± rX with rX =

|~rX |.
Employing the representation described above we can

hence rewrite the function FQ(A,B,C) as (see Ap-
pendix C for details)

FQ(A,B,C)
∣∣∣
H2

= 2

(
cQcA + ~rQ · ~rA +

√
(cQcB + ~rQ · ~rB)2 +

(
(rB)

2 − (cB)
2
)(

(cQ)
2 − (rQ)

2
)

+

√
((1− cQ)cC − ~rQ · ~rC)2 +

(
(rB)

2 − (cB)
2
)(

(1− cQ)
2 − (rQ)

2
))

, (28)

when B and C do not have a definite sign, or

FQ(A,B,C)
∣∣∣
H2

= 2

(
cQcA + ~rQ · ~rA + cQc|B| + ~rQ · ~r|B| + (1− cQ) c|C| − ~rQ · ~r|C|

)
= 2

(
cQcA+|B|−|C| + ~rQ · ~rA+|B|−|C| + c|C|

)
, (29)

when both B and C have a definite sign, with c|B| = ±cB ,
~r|B| = ±~rB respectively for B ≥ 0 and B ≤ 0 and similar
definitions for |C|.
For each set of N = 3, 4 qubit states to discriminate, the
operators A,B,C, i.e., their coefficients c and ~r, are fixed
and the optimization of Eqs. (28, 29) is to be carried out
only over Q, i.e., on its coefficients cQ and ~rQ under the
constraints

1 ≥ cQ ≥ 0, rQ ≤ min[cQ, 1− cQ] , (30)

that ensure the positivity of Q and the fact that it must
be smaller than one. In particular for N = 3 states C = 0

and one can show that cQ + rQ = λ
(+)
Q = 1 is optimal.

Moreover the optimal ~rQ lies on the plane of ~rA and ~rB ,
so that it can be defined in terms of its norm rQ and a sin-
gle angle φQ as ~rQ · ~rA = rQrA cosφQ. Then in this case
it is only required to optimize two parameters, namely cQ
and φQ. For N = 4 instead there are no further simpli-
fications and one has to optimize four parameters, with
constraints.
Let us now consider the case in which Eq. (29) is valid,
i.e., B and C have a definite sign. It is one of the situa-
tions considered in Proposition 1, thus the optimization
of (29) must match the expression (22). This fact is al-
ready quite clear if we express Eq. (29) directly in terms
of the initial operators; furthermore it can also be shown
by direct analytical optimization that in this case

F(A,B,C)
∣∣∣
H2

= |cA+|B|−|C||+ cA+|B|−|C| + 2cC (31)

and the optimal value of Q is rQ = 0 and cQ =
θ(cA+|B|−|C|), with θ(·) the step function, valued 1 when

its argument is positive and zero otherwise.
As for the other case, in which Eq. (28) is valid, un-
fortunately the function cannot be completely optimized
analytically. Nevertheless its numerical optimization is
straightforward and thus, together with Eqs. (20, 21), it
provides a convenient method to obtain the optimal suc-
cess probability of discrimination and the optimal mea-
surement operators for N = 3, 4 qubit states. As an
example let us consider N = 3 equiprobable pure qubit
states situated on the (x, y) plane of the Bloch sphere,
i.e., a combination of 12, σ1 and σ2; this is a simple
choice for the sake of clarity, but we stress that no addi-
tional optimization difficulties are met when considering
non-equiprobable and mixed states. Let us fix the first
state to be on the x axis, i.e., ~rρ1 = (1, 0, 0), without loss
of generality. Then we can study the optimal success
probability by varying the angles of the other two vec-
tors with respect to the first one: ~rρ2 = (cosφ2, sinφ2, 0)
and ~rρ3 = (cosφ3, sinφ3, 0). If the states are also sym-
metrically distributed at constant angles along the cir-
cumference, i.e., φ2 = φ3 = 2π/3, the result is well-

known [17]: PSucc
(
S(3)sym

)
= 2/3, which is the maxi-

mum success probability of discrimination for any three
equiprobable qubit states (because no other configuration
can achieve a lower average state-overlap than this one).
For more general states the results are shown in Fig. 2
where we plot the optimal success probability (21), com-
puted by numerical optimization of (28) over cQ, ~rQ, as
a function of the third angle φ3 and for several choices
of φ2 = 0, π/6, π/2, 2π/3, π. It can be seen that, for all
values of φ2, there is a range of values of φ3 for which
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Figure 2. Plot of PSucc
(
S(3)

)
, the optimal success prob-

ability (21) for a set of three equiprobable pure qubit
states, identified by the Bloch vectors ~rρ1 = (1, 0, 0), ~rρ2 =
(cosφ2, sinφ2, 0) and ~rρ3 = (cosφ3, sinφ3, 0), as a function of
φ3 for several values of φ2 = 0, π/6, π/2, 2π/3, π (respectively
from yellow/light-gray to black). The results are obtained
by numerical optimization of Eq. (28) over cQ, ~rQ. Observe
that, for all values of φ2, there is a range of values of φ3 where

PSucc
(
S(3)

)
attains the maximum allowed for non-orthogonal

states, i.e., the same as for symmetric states. Outside of this
range the quantity decreases, reaching a constant minimum
for φ3 ≤ φ2 (see text and Fig. 3 for an explanation). The cases
φ2 = π/6, 2π/3 are explicitly depicted in Fig. 3 for three val-
ues of φ3 identified by the labelled dotted lines.

PSucc
(
S(3)

)
is equal to the maximum value of 2/3, even

though the states are not symmetrically distributed on
the circumference. In other words there is a wide class
of states that can be discriminated with performance as
good as if they were symmetric. Outside of this range,
whose width depends on φ2, the value of PSucc

(
S(3)

)
de-

creases and it reaches a constant minimum when φ3 ≤ φ2.
These peculiarities can be explained by referring to
Refs. [25–27]. In particular Ref. [26] states that the
optimal success probability of discrimination of a set

S(N)
eq = {ρj/N}j=0,··· ,N−1 of N equiprobable qubit states

can be found by: i) considering the geometric figure de-
termined by the weighted states in the Bloch space, i.e.,
their polytope of vertices {~rρj/N}; ii) finding the poly-
tope similar to the latter and that is also maximal in
the Bloch sphere; iii) computing the ratio R between
the original and the maximal polytope. Then the op-

timal success probability is PSucc
(
S(N)
eq

)
= 1

N + R. In

light of this observation, we can explain the results of
Fig. 2 by plotting the states in the Bloch sphere and
studying the polygon formed by their vertices, as done
in Fig. 3 for two values of φ2 = π/6, 2π/3 used in Fig. 2
and φ3 = π/15, 3π/5, 7π/5, corresponding to the dot-
ted lines labelled a, b, c in Fig. 2. If the polytope de-
termined by the qubits, usually a triangle, contains the
origin, then the optimal success probability is still max-

imum, i.e., PSucc
(
S(3)⊇0

)
≡ PSucc

(
S(3)sym

)
, as in Fig. 3c.

Figure 3. Plot of the vectors of the three states ~rρ1 = (1, 0, 0)
(black fixed on x axis), ~rρ3 = (cosφ3, sinφ3, 0) (black) and
~rρ2 = (cosφ2, sinφ2, 0) (red/dark gray at the top and or-
ange/light gray at the bottom) on the (x, y) Bloch plane,
as well as the triangles formed by them (same color codes
as ~rρ2). The labels a, b, c refer respectively to values of
φ3 = π/15, 3π/5, 7π/5, also highlighted in Fig. 2, while two
values of φ2 = 2π/3, π/6 (respectively red/dark gray and or-
ange/light gray figures) are considered. By comparison with

Fig. 2 it is evident that PSucc
(
S(3)

)
is maximum when the

triangle formed by the states contains the origin (c), while it
is lower otherwise. In particular, when φ3 ≤ φ2 (a, b top, a
bottom) the largest side of the triangle formed by the states is
always ~rρ2 − ~rρ1 and this determines completely the optimal
success probability.

Indeed in this case the polytope formed by the states
is already maximal in the Bloch sphere and R = 1/3,
as for the symmetric set. On the other hand, if the
polytope does not contain the origin, the optimal success
probability is strictly lower than the maximum one, i.e.,

PSucc
(
S(3)+0

)
< PSucc

(
S(3)sym

)
, as in Fig. 3a, b. Indeed

in this second case the polytope formed by the states
is not maximal and can be expanded until its largest
side matches a diameter of the circumference, so that

R < 1/3. As for the region φ3 ≤ φ2 where PSucc
(
S(3)+0

)
is minimum and constant (as in Fig. 3a, b top and a bot-
tom), it can be explained by observing that the largest
side of the triangle determined by the states, which in
turn determines R, is always the one that connects ~rρ1
and ~rρ2 , independently of ~rρ3 . Since ~rρ2 −~rρ1 is constant
for constant φ2, R is constant too in this case.

V. CONCLUSIONS

In this article we proposed a method to compute the
optimal discrimination probability and optimal measure-
ment operators of an arbitrary set of N states. We
showed how to decompose any multiple-outcome mea-
surement into several binary-outcome steps, which could
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be of interest also in other contexts. For the discrimina-
tion problem this decomposition introduces a connection
between the success probabilities of sets of different sizes,
possibly simplifying the optimization procedure, but does
not allow to reach a general analytical solution. Never-
theless it proves to be a useful tool for quickly determin-
ing the optimal discrimination probability of N = 3, 4
qubit states, requiring just a simple numerical optimiza-
tion. Indeed with this method we were able to highlight
some interesting properties, explicitly verifying the valid-
ity and geometric insight of some previous results [25–27].
Future lines of work could focus on simplifying the opti-
mization for higher-dimensional systems and larger sets

of states or investigating different kinds of measurement
decompositions.
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Appendix A: Completeness of the nested POVM

In this appendix we show that the nested POVM de-
fined in (3) is complete, i.e., the sum of its elements is the
identity on the whole Hilbert space of the system. This
can be shown by employing the completeness of each bi-

nary POVM’s B(u)k(1,u−1)
at each step u. Indeed we can

start by summing over the last bit kuF
= 0, 1, coupling

elements that differ only for its value, i.e., Fk(1,uF −1),0

and Fk(1,uF −1),1. These are made of the same sequence of

operators apart from the most interior ones, B
(uF )
k(1,uF −1),0

and B
(uF )
k(1,uF −1),1

, which are instead two different elements

of the same binary POVM B(uF )
k(1,uF −1)

, thus satisfy a com-

pleteness relation and their sum can be simplified. The
same procedure is then applied recursively on previous
bits as follows:

∑
k1,··· ,kuF

Fk(1,uF )
=

∑
k1,··· ,kuF −1

(
Fk(1,uF −1),0 + Fk(1,uF −1),1

)
=

∑
k1,··· ,kuF −1

√
B

(1)
k1
· · ·
√
B

(uF−1)
k(1,uF −1)

(
B

(uF )
k(1,uF −1),0

+B
(uF )
k(1,uF −1),1

)√
B

(uF−1)
k(1,uF −1)

· · ·
√
B

(1)
k1

=
∑

k1,··· ,kuF −1

√
B

(1)
k1
· · ·
√
B

(uF−2)
k(1,uF −2)

B
(uF−1)
k(1,uF −1)

√
B

(uF−2)
k(1,uF −2)

· · ·
√
B

(1)
k1

=
∑

k1,··· ,kuF −2

√
B

(1)
k1
· · ·
√
B

(uF−2)
k(1,uF −2)

(
B

(uF−1)
k(1,uF −2),0

+B
(uF−1)
k(1,uF −2),1

)√
B

(uF−2)
k(1,uF −2)

· · ·
√
B

(1)
k1

= · · · =
∑
k1

√
B

(1)
k1

(
B

(2)
k1,0

+B
(2)
k1,1

)√
B

(1)
k1

= B
(1)
0 +B

(1)
1 = 1. (A1)

We note that the previous result does not change
if instead of employing complete binary POVM’s, we
relax to weak completeness, as defined in Sec. II,

i.e., that each measurement B(u)k(1,u−1)
is complete on

the support of the operator that preceeds it in the

nested decomposition, B
(u−1)
k(1,u−1)

. In this case it still

holds
√
B

(u−1)
k(1,u−1)

(
B

(u)
k(1,u−1),0

+B
(u)
k(1,u−1),1

)√
B

(u−1)
k(1,u−1)

=

B
(u−1)
k(1,u−1)

and the equalities in (A1) are unchanged.

Appendix B: Detailed study of F

In this appendix we study the function FQ(A,B,C)
appearing in Eqs. (18), and discuss its optimization in
the cases mentioned in Sec. III. The optimization of
FQ(A,B,C) is difficult because of the competing inter-
ests of the three terms composing it. Indeed each single
term of Eq. (18) is maximized by a different operator Q:
the first one is maximum when Q is the projector on the
positive support of A; the second one is maximum when
Q is the identity on the whole Hilbert space of the sys-
tem; the third one is maximum when Q is zero. Hence we
can solve the problem exactly only if the three operators
exhibit specific properties.
We start by observing that the function is subaddi-

tive in all its arguments, i.e., for any set of operators
{Aj , Bj , Cj}j=1,··· ,n it holds:

F(
∑
j

Aj ,
∑
j

Bj ,
∑
j

Cj) ≤
∑
j

F(Aj , Bj , Cj). (B1)

This follows from the subadditivity of the trace norm.
We can now state some lemmas that help demonstrate
Proposition 1. Throughout the Appendix, the notation
1X represents the projector on the support of the opera-
tor X.

Lemma 1. Let us suppose that A is positive semidefinite,
B has support inside the support of A and that C and A
have orthogonal supports. Then F(A,B,C) = Tr[A] +
||B||1 + ||C||1.

Proof. Consider the set of operators
{Aj = Aδj,1, Bj = Bδj,2, Cj = Cδj,3}j=1,2,3 and ap-

ply the subadditivity property (B1):

F(A,B,C) ≤ F(A, 0, 0) + F(0, B, 0) + F(0, 0, C)

= Tr[A] + ||B||1 + ||C||1 . (B2)

The latter inequality can be saturated under the hypothe-
ses of this lemma, by taking Q = 1A.

Lemma 2. Let us suppose that A is negative semidef-
inite, C has support inside the support of A and that
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B and A have orthogonal supports. Then F(A,B,C) =
||B||1 + ||C||1.

Proof. Consider the same set of operators of Lemma 1
and apply again the subadditivity property (B2), then
use the fact that A ≤ 0:

F(A,B,C) ≤ F(A, 0, 0) + F(0, B, 0) + F(0, 0, C) (B3)

= ||B||1 + ||C||1 .

The latter inequality can be saturated under the hypothe-
ses of this lemma, by taking Q = 1B .

Hence we can prove the first case of Proposition 1: let
A = A+ ⊕ (−A−) be the decomposition of A in terms
of its positive and negative parts, with A± ≥ 0, and
suppose that B, C have support respectively inside the
support of A+, A−. Then consider the set of operators{
Aj = (−1)j+1A(−1)j+1 , Bj = Bδj,1, Cj = Cδj,2

}
j=1,2

and apply the subadditivity property (B1), together
with Lemmas 1, 2:

F(A,B,C) ≤ F (A+, B, 0) + F (−A−, 0, C)

= Tr [A+] + ||B||1 + ||C||1 , (B4)

which is saturated by a measurement operator Q = 1A+ .
This expression is equivalent to that given in (22) under
the current hypotheses, indeed in this case it holds

(A+ |B| − |C|)+ = ((A+ + |B|)⊕ (−A− − |C|))+
= A+ + |B|, (B5)

so that (B4) becomes

F (A,B,C) = Tr [A+ + |B|] + ||C||1
= Tr [(A+ + |B| − |C|)+] + ||C||1 . (B6)

As for the second and third cases of Proposition 1, let us
first note that∣∣∣∣∣∣√QB√Q∣∣∣∣∣∣

1
≤
∣∣∣∣∣∣√QB+

√
Q
∣∣∣∣∣∣
1

+
∣∣∣∣∣∣√QB−√Q∣∣∣∣∣∣

1

= Tr[Q(B+ +B−)] = Tr[Q|B|] , (B7)

where B± are the positive and negative parts of B as
defined above for A, and analogously∣∣∣∣∣∣√1−QC

√
1−Q

∣∣∣∣∣∣
1
≤ Tr[(1−Q)|C|] . (B8)

We then have

FQ(A,B,C) ≤ Tr[Q(A+ |B| − |C|)] + ||C||1 (B9)

≤ Tr[(A+ |B| − |C|)+] + ||C||1 .(B10)

The inequality (B10), is saturated by taking Q equal to
the projector onto the support of (A+ |B| − |C|)+. The

inequalities (B7,B8) and hence (B9) are saturated in both
the second and third cases of Proposition 1, though for
different reasons:

• If B and C have a definite sign, then it holds B =
B+ or B = B−, so that Eq. (B7) is saturated and
analogously (B8);
• If A, B, C all commute with each other, then

Eqs. (B7,B8) are saturated by any operator Q
which commutes with both B and C. Eventually
the choice Q = 1(A+|B|−|C|)+ necessary to saturate
Eq. (B10) satisfies this latter condition in the case
considered.

Finally we note that the previous case of commuting op-
erators, as well as further results, can also be derived by
applying the symmetry property of the optimal success
probabilities (20, 21) to obtain recursive formulas, as dis-
cussed after Remark 2, but still a full solution cannot be
found in this way.

Appendix C: Computation of FQ in the qubit case

In this Section we derive the results (28, 29) explicitly.

As a preliminary recall that, for any three vectors ~a,~b,~c ∈
R3 and the Pauli matrices ~σ it holds:

(~a · ~σ)
(
~b · ~σ

)
=
(
~a ·~b

)
+ i
(
~a×~b

)
· ~σ, (C1)(

~a×
(
~b× ~c

))
= (~a · ~c)~b−

(
~a ·~b

)
~c. (C2)

Moreover, given a positive operator Q on H2, the coeffi-
cients c√Q, ~r√Q of its square root

√
Q can be expressed

in terms of its coefficients cQ, ~rQ as:{
cQ =

(
c√Q

)2
+
(
r√Q

)2
rQ = 2c√Qr

√
Q

↔

c√Q =

√
cQ+rQ+

√
cQ−rQ

2

r√Q =

√
cQ+rQ−

√
cQ−rQ

2 .
(C3)

with ~rQ ‖ ~r√Q. In order to evaluate FQ(A,B,C) we can
compute its first two terms, while the third one is similar
to the second one. Let us start with the product QA: it
is a generic operator with coefficients

cQA = cQcA + ~rQ · ~rA (C4)

~rQA = cQ~rA + cA~rQ + i (~rQ × ~rA) , (C5)

computed by applying Eq. (C2). Thus the first term of
FQ is simply Tr[QA] = 2cQA.
As for the product

√
QB
√
Q, its first coefficient is simple:

c√QB
√
Q = Tr[

√
QB
√
Q]/2 = cQB , easily obtained by

relabelling Eq. (C4). The vector of coefficients instead is

~r√QB
√
Q = c√QB~r

√
Q + c√Q~r

√
QB + i

(
~r√QB × ~r√Q

)
(C6)

= cB~rQ + 2
(
~r√Q · ~rB

)
~r√Q +

((
c√Q

)2 − (r√Q)2)~rB ,
where we have first computed the product between

√
QB

and
√
Q, then substituted the expression for the former

by relabelling once again the product QA and employed
(C3).
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We are interested in the absolute value of
√
QB
√
Q, i.e., the sum of the absolute value of its eigenvalues λ

(±)√
QB
√
Q

=

c√QB
√
Q ± r√QB√Q. Hence the only dependence of the final expression on (C6) is through its norm:

(
r√QB

√
Q

)2
= (cBrQ)

2
+ 4(~r√Q · ~rB)2

(
c√Q

)2
+
((
c√Q

)2 − (r√Q)2)2 (rB)
2

+ 2cB

((
c√Q

)2
+
(
r√Q

)2)
(~rQ · ~rB)

= (cQcB + ~rQ · ~rB)
2

+
(

(rB)
2 − (cB)

2
)(

(cQ)
2 − (rQ)

2
)
, (C7)

which we have simplified by employing the relations (C3).
Eventually we have to distinguish between two cases:

• If both B and C have definite sign then they can
always be taken to be positive semidefinite, up to a
relabeling 0↔ 1 of the second bits k2 of the original
states. Then we have

∣∣∣∣∣∣√QB√Q∣∣∣∣∣∣
1

= λ
(+)√
QB
√
Q

+ λ
(−)√
QB
√
Q

= 2c√QB
√
Q,∣∣∣∣∣∣√1−QC

√
1−Q

∣∣∣∣∣∣
1

= 2c√1−QC
√
1−Q; (C8)

• If instead B and C do not have a definite sign, then

it must hold λ
(+)√
QB
√
Q
≥ 0 and λ

(−)√
QB
√
Q
≤ 0 and

similar relations for C, so that∣∣∣∣∣∣√QB√Q∣∣∣∣∣∣
1

= λ
(+)√
QB
√
Q
− λ(−)√

QB
√
Q

= 2r√QB
√
Q,∣∣∣∣∣∣√1−QC

√
1−Q

∣∣∣∣∣∣
1

= 2r√1−QC
√
1−Q. (C9)

Note that the third term
∣∣∣∣√1−QC√1−Q∣∣∣∣

1
can be

expressed in terms of the coefficients of Q by observing
that c1−Q = (1− cQ) and ~r1−Q = −~rQ.
We can conclude that for B and C of non-definite sign

FQ(A,B,C) = 2(cQA + r√QB
√
Q + r√1−QC

√
1−Q),(C10)

while for B and C of definite sign

FQ(A,B,C) = 2 (cQA + cQB + cQC) , (C11)

which give respectively Eqs. (28, 29) after inserting the
values of the coefficients computed above, i.e., Eqs. (C4,
C7).
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