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ABSTRACT

We develop a three-timescale framework for modeling climate change and introduce a space-heterogeneous one-dimensional energy balance
model. This model, addressing temperature fluctuations from rising carbon dioxide levels and the super-greenhouse effect in tropical regions,
fits within the setting of stochastic reaction–diffusion equations. Our results show how both mean and variance of temperature increase,
without the system going through a bifurcation point. This study aims to advance the conceptual understanding of the extreme weather
events frequency increase due to climate change.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0223309

In recent years, the increase in the frequency and intensity of
extreme weather events has become one of the most dangerous
consequences of climate change. Despite this, understanding the
mechanisms that drive these phenomena remains uncertain. This
paper presents a framework that differentiates between climate,
weather, and an intermediate scale termed macroweather. In the
first part, we justify the presence of noise, following Hasselmann’s
approach, in the equations representing the temperature at the
macroweather scale. We also explain why a non-autonomous
term with a slower timescale, such as carbon dioxide concen-
tration, can be considered adiabatic (in thermodynamics, a gas
undergoes an adiabatic transformation during rapid expansion
or compression; although fast, the transformation is slow enough
that the gas stays in the state of statistical equilibrium and
the transformation preserves the entropy of the gas. Here, and
throughout the text, we use the term “adiabatic” to refer to a vari-
able that varies much more slowly than the timescale of the system
of which it is a part), i.e., constant, at the macroweather scale.
In the second part, we introduce a new one-dimensional energy
balance model, an elementary model that fits within our abstract
framework and assumes Earth’s temperature evolves according

to the radiation absorbed and emitted by the planet. The nov-
elty of our model lies in incorporating a parametrization of the
super-greenhouse effect, a feedback mechanism that can lead to
instability in the tropics due to Earth’s radiation. By adding addi-
tive noise to our model, we numerically investigate and explain
the observed increase in temperature fluctuations in response to
adiabatic changes in atmospheric CO2 concentration.

I. INTRODUCTION

The purpose of this paper is twofold: to describe a scheme for a
three-timescale non-autonomous dynamical system suitable for the
description of climate change and to present a new example of an
energy balance model (EBM) with spatial structure. This model fits
into our abstract framework and may contribute to a conceptual
explanation of the increased frequency of extreme events. The non-
autonomous nature of this example is crucial, making its connection
to the foundational scheme particularly interesting.

It is essential to emphasize two key aspects. First, the
three-timescale scheme is designed to motivate the structure of the
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FIG. 1. Schematic showing the effect on extreme temperatures when (a) the mean temperature increases, (b) the variance increases, and (c) when both the mean and
variance increase for a normal distribution of temperature. Reproduced from the IPCC Report on Climate Change 2001: The Scientific Basis, Ref. 1, Fig. 2.32.

proposed EBM, including the adiabatic CO2 variable, the presence of
noise, and the system’s timescale. Second, the EBM in question is a
simplified climate model, representing the lowest level of complex-
ity among climate models. As such, it can only provide qualitative
insights into climate dynamics. Therefore, we deliberately avoid
making quantitative comparisons between our model’s results and
real-world data.

From the viewpoint of climate change analysis, our goal is to
provide a simplified model that demonstrates how temperature fluc-
tuations increase with rising carbon dioxide (CO2) concentrations.
Probably, the most dramatic example of climate change today is the
increased frequency of extreme events. As pointed out by the IPCC
Report, Ref. 1, this can result from both an increase in the mean tem-
perature and an increase in the variance of temperature, as shown in
Fig. 1, not only by the increase in the mean value but also by the
increase in the variance of a climatic variable.

This phenomenon is not just speculative and can be observed
by looking at real data, as can be done in Fig. 2(a). It shows the his-
togram of the daily mean temperature recorded in August in two
different periods, from 1910 to 1940 in blue, and from 1993 to 2023
in red. In our opinion, being able to explain the joint increase in
mean value and variance is a challenging and, at the moment, a com-
pletely open question. Indeed, a classical paradigm to explain the
increase in the frequency of extreme events is given by a dynamical
system approaching a bifurcation point, a system subject to ran-
dom fluctuations, which are amplified near the bifurcation point.2–8

But the main question then is whether the Earth, nowadays, is close
to a bifurcation point or not, an issue which is speculated but not
proven. Looking to the far past, it is rather clear that bifurcations
took place connecting a moderate climate like our own today with
glacial climates. But a clear indication that now we are close to a
new bifurcation point in the direction of a warmer climate is miss-
ing. Except for certain data near the Tropics: localized in space at

that latitude, there is experimental evidence of a potential bistabil-
ity and, therefore, of the possibility of a fast transition to a warmer
climate.9 But far from the Tropics, the data are different. Therefore,
we have developed a space-dependent model that incorporates this
difference. Seen globally, as an infinite dimensional dynamical sys-
tem on the whole globe, the Tropics bistability does not add a new
bifurcation to the model.

We focus on the class of EBMs, which give an elementary, yet
useful, representation of Earth’s climate by capturing the funda-
mental mechanisms governing its behavior.7,10–15 This type of mod-
els, which describes temperature evolution, assumes that it evolves
according to the radiation balance of the budget, i.e., the differ-
ence in the radiation absorbed and emitted by the planet. Other
key factors, such as insolation, atmospheric composition, and sur-
face properties, are considered in EBMs in order to get a radiation
budget as accurate as possible.

More in detail, we work with a Budyko–Sellers one-
dimensional energy balance model (1D EBM), in which a diffusion
term modeling meridional heat transport is added as a driver of tem-
perature evolution.16 The novelty of our model consists in adding,
for the first time, a particular phenomenon that may happen at
the Tropics. Indeed, one of the key mechanisms to stabilize Earth’s
temperature is the Planck feedback. It consists of an increase in out-
going longwave radiation (OLR) as surface temperature increases,
thanks to the Stefan–Boltzmann law. But there exist cases, and our
model highlights one of them, where this feedback can fail, as in the
super-greenhouse effect (SGE).9,17,18 This phenomenon is feedback
between water vapor, surface temperature, and greenhouse effect.
Once the sea surface temperature or greenhouse gas concentration
reaches a certain level, the increase in absorbed thermal radiation
from the surface due to augmented evaporation with rising sea sur-
face temperature (SST) outweighs the concurrent elevation in OLR,
causing OLR to decline as SST increases.
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FIG. 2. (a) Daily temperature recorded in August in Modena, Italy. The blue histogram shows the values for the time period 1910–1940 (blue), and the red histogram refers
to 1993–2023 (red). Data provided by the Osservatorio Geofisico di Modena, www.ossgeo.unimore.it. (b) Observational Outgoing Longwave Radiation (OLR) dependence
on Sea Surface Temperature (SST), and SMART (SMART is a dataset for OLR measurements used in Ref. 9) OLR output for various humidity values. The red dashed line
is the mean. Reproduced with permission from Dewey and Goldblatt, Geophys. Res. Lett. 45, 10673–10681 (2018). Copyright 2018, John Wiley and Sons [Ref. 9, Fig. 2(a)].

From the mathematical viewpoint, the EBM proposed here is a
non-autonomous stochastic partial differential equation (SPDE) of
reaction–diffusion type.19,20 The non-autonomy stands in a slowly
varying term corresponding to CO2 concentration. We clarify the
link between such a scheme and a more classical adiabatic approach,
where the slowly varying term is kept constant and the long-term
behavior of the corresponding autonomous dynamical system is
investigated. It is worth pointing out that the timescale of our model
is intermediate between the daily timescale of weather and the cen-
turial timescale of climate. It is sometimes called macroweather, and
it is of the order of a month to one year. For this reason, the abstract
framework of a two-timescale separation of a non-autonomous
dynamical system is introduced to describe the macroweather-
climate dichotomy, interpreting the weather as a faster timescale
than macroweather which is averaged out by looking at the temper-
ature on time interval of months.

This paper is organized as follows. In Sec. II, we introduce the
non-autonomous framework for weather, macroweather, and cli-
mate, with a particular focus on the latter two. We outline the scale
separation between them and provide their tentative definitions.
This first, abstract part culminates in a link between macroweather
and climate, justifying an adiabatic approach to studying the for-
mer in the presence of a non-autonomous dependence, such as CO2

concentration in the atmosphere. In Sec. III, we begin by recalling
the key concepts of EBMs, starting with the zero-dimensional ver-
sion in Sec. III A. We discuss why EBMs are suitable for describing
macroweather and how they can explain the increase in global mean
temperature (GMT) due to rising CO2 concentrations. In Sec. III B,
we introduce our new 1D EBM, detailing the parametrization of
all the terms of the parabolic partial differential equation (PDE).
Section III C describes the deterministic properties of the model,
such as the existence of one or more steady-state solutions and their

dependence on the CO2 parameter. In Sec. III D, we discuss the
stochastic extension of the model and its properties, including the
existence of an explicit invariant measure. Section III E presents the
main results of the second part. We demonstrate how our model
predicts an increase in the variance of temperature fluctuations
under CO2 in the current climate configuration, without intro-
ducing new bifurcation points. We use both numerical tools and
theoretical arguments to explain and understand this phenomenon.
Finally, Sec. IV summarizes our findings, while Appendixes A and B
detail the finite-difference scheme used for numerical simulations
and some spectral properties needed to deduce the existence of the
invariant measure for the stochastic problem.

II. THE NON-AUTONOMOUS SCHEME WITH THREE

TIMESCALES

In Sec. III, we introduce a stochastic EBM with suitable space
dependence, and a slowly varying parameter corresponding to CO2

concentration, in order to investigate the time change of fluctua-
tions, as also discussed in Sec. I. There are three different timescales
involved in this modeling. We could skip the first one by just men-
tioning Ref. 21 and restrict ourselves to two timescales only, but at
the same time we want to insist on the non-autonomous structure of
the modeling, hence it is convenient to enlarge the discussion a bit.

In the modeling we have in mind, there are three timescales,
called

• weather, where variations are visible at the timescale of
hours/day [variables will be denoted by Vw (t), Tw (t) etc.];

• macroweather, where variations are visible at the timescale of
months/year [variables will be denoted by Vmw (t), Tmw (t) etc.];
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• climate, changing at the timescale of dozens of years (probability
measures and their expected values characterize this level, still
changing in time).

Subdivision and attribution of a precise timescale are not strict.
Remark 1 The reader will realize that, for the purpose of

Sec. III, we could start from Subsection II E. Let us then explain
why we think that Subsections II A–II D are also very important.
As already said, the main purpose of this work is to identify possible
explanations for an increase in variance, when a parameter changes.
In a sentence, the two main ingredients are a noise in the system
equations and a suitable nonlinearity which amplifies the variations
of the noise in a different way for different values of the parame-
ter. The noise, then, is crucial. Subsections II A–II D are devoted to
explaining its origin.

A. The weather timescale

Following Ref. 21, it is natural to model the weather scale
by deterministic equations, ordinary equations for simplicity of
notation (but the ideas are the same for PDEs); randomness can
be introduced but it is not strictly necessary, except maybe for a
description of the uncertainty about initial conditions and param-
eters, not included in the present discussion. Following Ref. 21,
we distinguish the main physical variables into fast and slow ones,
according to a system of the form

∂tVw = f (Vw, Tw) ,

∂tTw = εg
(
Vw, Tw, q (εt)

)
,

q (t) slowly varying,

for a small ε > 0. Here, Vw changes in unitary time (corresponding
to hours/day), and Tw varies very slowly (monthly, say). In addition,
the slow variable is influenced by a slow time change of structure,
described by the time-varying parameters q (εt). The function q (t)
is assumed to be slowly varying, hence q (εt) is super-slowly varying
(from here the three timescales arise).

The parameter τ = 1
ε

corresponds to the typical reaction time
of the slow variables, measured in the unitary time of V. Appreciable
changes of T happen in a time of order τ , at the weather scale.

With great simplification, we may think that V collects the
fluid dynamic variables (the fluid Velocity plus other related vari-
ables), which are very unstable and rapidly changing at the daily
level, while T represents Temperature. In this case, the unit of time
at the weather level is of the order of hours, and τ = 1

ε
is of the order

of a few months, hence, e.g., of order 100. On the contrary, the time
change of CO2 concentration, call it τCO2 , is of the order of a dozen
of years, hence, e.g., of order 10 000 in the weather scale. With these
figures, q (t) has a relaxation time of 100 and q (εt) of order 10 000.

B. Macroweather timescale for T

Then, we change the scale and set

T̃mw (t) = Tw

(
t

ε

)
,

so that we observe variations of T̃mw (t) in unitary time. We call this
the macroweather timescale. It holds

∂tT̃mw (t) = g

(
Vw

(
t

ε

)
, T̃mw (t) , q (t)

)
.

Let us recall that, at this timescale, q varies very slowly. Let us look
for a simplification of this equation, where Vw does not appear any
more.

C. The averaging approximation

Let us heuristically describe the averaging approximation,
which can be made rigorous under proper assumptions for suitable
systems, see Ref. 22.

At the integral level, we have

T̃mw (t) − T̃mw (t0) =
∫ t

t0

g
(
Vw

( s

ε

)
, T̃mw (s) , q (s)

)
ds.

If t − t0 is small, let us use the reasonable approximation

∼
∫ t

t0

g
(
Vw

( s

ε

)
, T̃mw (t0) , q (t0)

)
ds

= (t − t0)
1

t − t0

∫ t

t0

g
(
Vw

( s

ε

)
, T̃mw (t0) , q (t0)

)
ds.

Then, if ε << t − t0, we heuristically invoke an ergodic theorem
and approximate

∼ (t − t0)

∫
g
(
v, T̃mw (t0) , q (t0)

)
νT̃mw(t0)

(
dv

)
,

where ντ

(
dv

)
is invariant for

∂tV = f (V, τ) .

Setting

g
(
τ , q

)
=

∫
g
(
v, τ , q

)
ντ

(
dv

)
,

we may write

= (t − t0) g
(
T̃mw (t0) , q (t0)

)
,

and then again approximate it to

∼
∫ t

t0

g
(
T̃mw (s) , q (s)

)
ds.

Hence, we get the simplified model

∂tTmw (t) = g
(
Tmw (t) , q (t)

)
.

D. Hasselmann’s proposal

However, in our case, this simplification is not realistic. If ε is
of order 1

100
, then t − t0 is of order one, because we need the validity
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of the approximation

1

t − t0

∫ t

t0

g
(
Vw

( s

ε

)
, a, b

)
ds ∼

∫
g
(
v, a, b

)
νa

(
dv

)
.

But on a time of order one, we observe variations of T̃mw (t), we said
above, hence the approximation,

∫ t

t0

g
(
Vw

( s

ε

)
, T̃mw (s) , q (s)

)
ds

∼
∫ t

t0

g
(
Vw

( s

ε

)
, T̃mw (t0) , q (t0)

)
ds,

is not so strict [on the contrary, it is excellent for the q (s) ∼ q (t0)

approximation].
We need to keep fluctuations into account at the macroweather

scale. A phenomenological way (Hasselmann’s proposal) is to
replace the model above by

dTmw (t) = g
(
Tmw (t) , q (t)

)
dt +

√
εσ

(
Tmw (t) , q (t)

)
◦ dW (t) ,

for a suitable “volatility” σ (Stratonovich integral ◦ looks more
appropriate). In Ref. 21, heuristic justifications are given, inspired,
for instance, the random displacements of a Brownian particle in a
fluid of molecules (which on their own are subject to a determin-
istic fast dynamics, coupled with the slow deterministic dynamic of
the bigger particle). The Bremen School on Random Dynamical Sys-
tems and other research groups explored for some time rigorous
justifications for this proposal, but a final answer is not known, see,
for instance, Refs. 23 and 24. However, the observation of temper-
ature time series at the timescale of month-year clearly shows some
form of stochasticity and, thus, Hasselmann’s proposal looks very
appealing.

For our purposes below, adhering to Hasselmann’s proposal is
essential, since our results are the consequence of random pertur-
bations of a nonlinear system representing climate dynamics at the
macroweather timescale, namely, a stochastic version of the EBM.
Random perturbations are often accepted just based on the generic
justification of an unknown coupling with other segments of the
physical system (which at the end of the story is the reason also
here, namely, the coupling with the fast variables) but Hasselmann’s
proposal is a more precise explanation.

Let us, however, advise the reader that we shall start, in
our example below, from a stochastic PDE for the temperature
macroweather-scale, given a priori, not derived precisely from the
weather scale as described above. We want to concentrate on the
consequences of particular nonlinearities. Our model will have a
simplified form

dTmw (t) = g
(
Tmw (t) , q (t)

)
dt +

√
εσ dW (t)

with constant σ .

E. Macroweather and climate

As announced at the end of Subsection II E, our investigation
starts from an equation of the form (stochastic differential equation

or SPDE)

dT (t) = g
(
T (t) , q (t)

)
dt + σ dW (t) ,

(1)

q (t) slowly varying,

where we skip the subscripts but keep in mind that it is a
macroweather model, we have skipped the factor

√
ε but we shall

choose a small diffusion coefficient σ , and the nonlinear function g
will be chosen by means of typical arguments related to EBMs. The
slowly varying function q (t) will describe the effect, in the model,
of slowly varying CO2-concentration, appreciated on a timescale of
dozens of years.

The climate is a collection of statistical information from the
time series of this model. If it were an autonomous system [q (t)
equal to a constant], we would invoke invariant measures. Due to
the time change in g, we have to use the formalism of time-varying
invariant measures. However, at the simulation level, we approxi-
mate this time-varying system by an adiabatic system parametrized
by a parameter q,

dT (t) = g
(
T (t) , q

)
dt + σdW (t)

and investigate its invariant measures, parametrized by q. The slow
change of statistics for the true non-autonomous system is mim-
icked by the change of statistics when the parameter q is changed.

Concerning precisely the concept of climate, let us introduce
some formalism. We again limit ourselves to stochastic differen-
tial equations (SDEs) on an Euclidean space R

d (e.g., the space-
discretization of a stochastic partial differential equation, as in
our main example below) but the concepts can be widely gener-
alized, see, for instance, Ref. 25 for a non-autonomous abstract
random dynamical system framework related to the weather-climate
dichotomy (that we improve hereby introducing a third level, the
macroweather). Call Pr

(
R

d
)

the set of probability measures on Borel

sets of R
d. Consider the SDE (1) on the full real line of time. Assume

that W (t) is a d-dimensional two-sided Brownian motion defined
on a Probability space (�, F , P) with expectation E. Assume that,
for the Cauchy problem on the half line [t0, ∞) with initial condition
T0 at time t0, with arbitrary t0 and T0, at least weak global existence
and uniqueness in law holds, and denote the solution by Tt0 ,T0 (t),
t ∈ [t0, ∞); assume T0 7→ Tt0 ,T0 (t) is Borel measurable from R

d to
Pr

(
R

d
)

endowed with the weak convergence of measures.
For all t0 < t, we introduce the Markov semigroup Pt0 ,t map-

ping Pr
(
R

d
)

into Pr
(
R

d
)

defined by the identity
∫

Rd
φ

(
y
) (

Pt0 ,tν
) (

dy
)

= E

∫

Rd
φ

(
Tt0 ,T0 (t)

)
ν

(
dT0

)
,

for every ν ∈ Pr
(
R

d
)

and every bounded continuous test function φ

on R
d. One can prove that

Pr,tPs,r = Ps,t,

Ps,s = Id.

Moreover, one can link the Markov operator for Eq. (1) to the
Fokker–Planck equation

∂tf + div
(
g
(
·, q

)
f
)

= σ 2

2
1f,
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but we do not stress the rigorous results here.
The set of probability densities Pr

(
R

d
)

is the state-space for

the climate. In other words, any ν ∈ Pr
(
R

d
)

is a (possible) state
for the climate. Further, fixed the times t0 < t, the operator Pt0 ,t

defines the evolution, from t0 to t, of the climate dynamics. Thus, we
look for the climate concept inside the class of time-varying invari-
ant measures, which are invariant under the operator defining the
climate dynamics, i.e., a family

{µt}t∈R ⊂ Pr
(
R

d
)

,

such that

Ps,tµs = µt for every s ≤ t.

Remark 2 The concept of time-dependent invariant mea-
sure {µt}t∈R should not be confused with any solution of the
Fokker–Planck equation. Similarly to the fact that, in many cases,
the invariant measure µ of an autonomous system is the limit,
as t → +∞, of the law of the solution X

x0
t starting at time t = 0

from the initial condition x0, independent of x0, the time-dependent
invariant measure µt is expected to be, in many cases, the limit

as t0 → −∞ of the law of the solution X
t0 ,x0
t starting at time t0

from x0, independently of x0 (property that we could call “pull-back
convergence to the equilibrium”).

Two simple illustrative examples are the Ornstein-Uhlenbeck
equations with periodic or linear growth. For the periodic equation,

dXt = −Xt dt + sin(t) dt + dWt,

the unique time-dependent invariant measure µt is the law,
2π-periodic of the process

Xt :=
∫ t

−∞
e−(t−s) sin(s) ds +

∫ t

−∞
e−(t−s) dWs.

For the linear growth equation (closer to our model with CO2

increase),

dXt = −Xt dt + t dt + dWt,

the unique time-dependent invariant measure µt is the law of the
process

Xt :=
∫ t

−∞
e−(t−s)s ds +

∫ t

−∞
e−(t−s) dWs.

Under suitable assumptions for the stochastic equations, there
are results of existence (easy, in particular, relying on the existence of
a compact global attractor) and also uniqueness (more difficult) for
such invariant families. This part of the theory is in progress. When
the invariant measure {µt}t∈R is unique, we call it “the climate.”

When uniqueness does not hold or it is not known, the idea
could be to look for families µt not only invariant but also with
additional properties of interest for physical sciences or other rea-
sons. A typical one could be a pull-back version of “convergence to
equilibrium”:

µt = lim
s→−∞

Ps,tλ, (2)

where λ is a “natural” measure, as a rotation invariant centered
Gaussian measure on R

d. For simplicity of understanding, the reader

can assume that there is one and only one invariant family µt or one
selected by the pull-back property above.

If q (t) varies very slowly, we expect that also µt varies accord-
ingly, and thus an adiabatic approach to the numerical computation
of µt is reasonable, as already remarked above.

It is crucial to emphasize the following point. We believe that
viewing climate as a time-dependent invariant measure, constructed
in the pull-back sense, is not only a rigorous definition but also
a physically meaningful one. Indeed, the current climate is the
result of a long-term evolution that began in the distant past, where
the dependence on the initial condition has been lost. This idea,
together with the application to geophysical science of concepts
from dynamical systems theory, developed in the 1990s,26,27 began
gaining traction approximately 15 years ago.28,29

III. ENERGY BALANCE MODELS

A. The macroweather timescale and the global mean

temperature increase due to carbon dioxide

concentration

EBMs are elementary climate models where, in the simplest
form, the temperature of the planet evolves according to the balance
of the radiation absorbed and emitted by the Earth.7,10–13 Their abil-
ity to capture the essential dynamics of Earth’s climate system while
remaining computationally tractable makes EBMs valuable tools for
understanding a wide range of climate phenomena, from the onset
of ice ages to the impacts of greenhouse gas emissions on global
temperatures.30,31 There exists a spectrum of complexity for this kind
of model, starting from the zero-dimensional (0D) case, moving to
the one-dimensional (1D) case, and arriving at higher-dimensional
models.16 Before delving into the details of our 1D EBM with space
heterogeneous radiation balance, we illustrate (i) why an EBM has
a macroweather timescale, and (ii) why an increase in CO2 concen-
tration in a stochastic 0D EBM leads to an increase in GMT, but not
the variance of the solution.

First, we consider a 0D EBM for the global mean temperature
T = T(t) which, given a positive initial condition T0, is an ODE of
the form

C
dT

dt
= Q0β + q − A − B · (T − 273),

T(0) = T0.

(3)

In this model, the radiation emitted Re by the planet is assumed,
according to the Budyko empirical radiation formula,10 of the form

Re(T) = A + B · (T − 273) − q,

where A, B are positive constants that can be derived by a best-fit
estimate with real data observations; C > 0 denotes the heat capacity
per square meter, while Q0 and β are, respectively, the global mean
radiation and coalbedo. Lastly, the additive parameter q > 0 is the
effect of CO2 concentration on the radiation balance.16,31,32 Denoting
by T∗ the unique stable fixed point of the model, i.e.,

T∗ = Q0β − A + q

B
+ 273,
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the solution of Eq. (3) is given by

T(t) = T∗ + (T0 − T∗) e−t/τ0 ,

where τ0 = C/B is the relaxation time, i.e., the timescale at which a
deviation from the equilibrium temperature is reabsorbed. Consid-
ering an all-land planet, it is reasonable to consider the heat capacity
as half the heat capacity at a constant pressure of the column of dry
air over a square meter, as pointed out in Ref. 16, leading to

C = 5 · 107 J K−1 m−2.

On the other hand, the satellite data suggest16,33

B = 1.90 W m2 K−1.

This leads to a relaxation time of the other of one month, as

τ0 = C

B
= 2.63 × 107 s ≈ 30 days.

It is worth pointing out that the hypothesis of an all-land planet is
a huge simplification of reality. Indeed, the Earth’s system has vari-
ous components capable of storing heat efficiently, each with its own
unique capacity.7 The value for C we have considered corresponds
to the capacity of the atmospheric column. But, even considering
a planet with a mixed-layer only ocean, the heat capacity would be
60 times larger (see Ref. 16), i.e., in the order of a few years, thus
remaining in the macro weather timescale.

Second, we force the model with a stochastic noise modeling
the effect of fast terms with respect to the slow radiation bal-
ance terms of Eq. (3). Denote by (Wt)t≥0 a Brownian motion, and
consider the SDE given by

CdTt =
(
Q0β + q − A − BTt

)
dt + σdWt,

T(0) = T0,
(4)

where σ > 0 is the noise intensity. Denoting by Ã = Q0β + q − A,
the solution can be explicitly written, using a variation of parameters
technique34 as

Tt = T0 e−t/τ0 + Ã

τ0

(
1 − e−t/τ0

)
+ σ

∫ t

0

e−(t−s)/τ0 dWs.

The solution is a Gaussian process with a mean value

E [Tt] = T(0) e−t/τ0 + Ã
(
1 − e−t/τ0

)
, (5)

and variance

Var(Tt) = Var

(
σ

C

∫ t

0

e−(t−s)/τ0 ds

)
= σ 2

C2

∫ t

0

e−2(t−s)/τ0 ds

= σ 2

2BC

(
1 − e−2t/τ0

)
. (6)

Further, the stochastic EBM in Eq. (4) has a unique Gaussian invari-
ant measure ν ∼ N (µν , σ 2

ν ), whose mean µν and variance σ 2
ν can

be obtained taking the limit for the time that tends to infinity in
Eqs. (5) and (6), leading to

µν = Ã = Q0β + q − A

B
, σ 2

ν = σ 2

2BC
.

Thus, a change in the CO2 concentration leads to a change in the
mean value of the climate, i.e., the invariant measure, but not in

its variability. Usually, the variability increase results from a crit-
ical transition, such as a saddle-node bifurcation, which arises in
the model. This is the concept of bifurcation-induced tipping point,
which leads to the critical slowing down behavior of the system,
resulting in an increase in variance and autocorrelation close to
the bifurcation point.2,3,5,6 However, the presence of a bifurcation
point for the global scale climate is questionable, and the presence of
bistable regimes for climate components, sometimes called tipping
elements such for the Atlantic meridional overturning circulation
or polar ice sheets, is localized in space. For all these reasons, in
Sec. III B, we will describe a new one-dimensional model with a local
in-space change in the non-linear term that is able to explain the
variance increase.

B. Model formulation

In this section, we propose a 1D EBM with space-dependent
radiation balance with local bistability in the outgoing radiation
term. The new term does not lead to the addition of a new bifurca-
tion in the model, even if results in a non-linear change in the global
mean temperature with respect to CO2 concentration, in compar-
ison with a linear increase in the case of the non-space dependent
emitted radiation case. However, by adding a noise component to
the model, we detect an increase in fluctuations over time for those
values of CO2 concentration in which the non-linear behavior of
GMT is triggered. We connect the increase in fluctuations over time,
that we denote time variance, to a local (in space) notion of relax-
ation time. The latter indicator in a sense gives information about
the local stability of a space point for, in our case, a global stable
temperature configuration.

The main characteristics of a 1D EBM are that the tempera-
ture u = u(x, t), depending on time t and space x = sin(φ), where
φ ∈ [−π/2, π/2] denotes latitude, are that it evolves according to
the diffusion of heat, and the planet energy balance.10,11,13,15 Our
model, which is an extension of the one considered in Ref. 32,
assumes that the temperature u satisfies the non-linear parabolic
partial differential equation

CT∂tu = ∂x (κ(x)ux) + Ra(x, u) − Re(x, u; q), x ∈ [−1, 1], t ≥ 0,

u(x, 0) = u0(x), x ∈ [−1, 1], (7)

ux(−1, t) = ux(1, t) = 0, t ≥ 0.

The heat capacity CT = 5 × 10−7 J K−1 m−2 is considered uniform
over the whole planet, which we assume is an all-land planet, as
the one presented at the beginning of Sec. III. The PDE is a reac-
tion–diffusion type.35,36 Classical results can be used to prove the
global existence and uniqueness of the solution, given a regular
initial condition.35 Further, it can be proved that [0, +∞) is an
invariant region in the sense of Ref. 36, as pointed out in Ref. 32.
In the following, we are going to describe the terms governing its
time evolution, while the values of the constants appearing in the
parametrizations can be found in Table I.

In scientific modeling, heat diffusion is often depicted assum-
ing the planet as a thin shell. This leads to a non-constant diffusion
coefficient of the form κ(x) = D · (1 − x2), with D > 0, where the
term 1 − x2 arises due to the spherical setting.16 However, this
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TABLE I. Parameters and constants appearing in the 1D EBM (7).

Symbol Meaning Value

D Diffusivity constant 0.45

Q̂0 Mean solar radiation 341.3 W m−2

ε
pl
0 Emissivity at the poles 0.61

ε
eq
0 Emissivity at the equator 0.478

σ 0 Boltzmann’s constant 5.67 · 10−8 W m−2 K−1

α1 Ice albedo 0.7
α2 Water albedo 0.289
K Constant rate—albedo

parametrization 0.1

KSGE Constant rate—SGE
parametrization 0.1

uref Reference temperature—albedo
parametrization 273 K

uSGE
ref Reference temperature—SGE

parametrization 303.2 K

CT Heat capacity 5 × 107 J m−2 K−1

choice introduces difficulties for the mathematical treatment, result-
ing in degenerate problems.37,38 For instance, proving the existence
of steady-state solutions requires the use of weighted Sobolev spaces.
To address this issue, we introduce a simplifying perturbation that
removes the singularity at the border.32 We consider the diffusion
function given by

κ(x) = D ·
(
1 − x2

)
+ δ(x),

with D = 0.3 and δ ∈ C∞(−1, 1), δ(x) = 0 if |x| ≤ η, δ even and
non-decreasing in (0, 1). The radiation absorbed by the planet,
denoted as Ra, is the product of a spatially dependent solar radiation

function Q0(x) = Q̂0 · (1 − x2), where Q̂0 > 0, and a temperature-
dependent co-albedo β = β(u). The co-albedo β(u) = 1 − α(u),
where α is parameterized by a smooth, non-increasing, bounded
function31,32

α(u) = α1 + α2 − α1

2
·
[
1 + tanh

(
K ·

(
u − uref

))]
, (8)

with 0 < α1 < α2 < 1, α1 denotes ice albedo, α2 denotes water
albedo, uref = 275 K, and K is a parametrization constant.

Third, we describe the modeling of the radiation emitted Re,
which is the main innovation of our model. Local bistability in the
Outgoing Longwave Radiation (OLR) may arise in tropical regions
due to a positive feedback loop involving surface temperature and
moisture. This feedback, above a threshold of sea level pressure
and GHG concentration, causes the atmosphere to become optically
thick, thus reducing OLR.9

To model this effect, we choose a space-dependent, latitude-
symmetric Outgoing Longwave Radiation (OLR) of the form

Re(x, u; q) = q + |x| Rpl
e (u) + (1 − |x|) Req

e (u), (9)

where R
pl
e and R

eq
e denote, respectively, the OLR at the pole and the

equator. The convex combination between R
pl
e and R

eq
e (Fig. 3) shows

the space-dependent OLR Re, using different colors to represent

FIG. 3. Representation of the Outgoing Longwave Radiation (OLR) Re = Re

(x, u; q) in Eq. (9) for q = 0. Different colors are used to represent the depen-
dence on the space. At the tropics, the OLR presents the bistability due to the
super-greenhouse effect shown in Fig. 2. The bistable regimes progressively dis-
appear as the space point moves to the poles, where the Stefan–Boltzmann law
in Eq. (10) is applied to parametrize OLR.

distinct latitude points. We define them as

Rpl
e (u) = ε

pl
0 σ0u|u|3, (10)

where ε0 is the emissivity constant and σ0 is the Stefan–Boltzmann
constant. On the other hand, at the poles, we reproduce the super-
greenhouse effect by considering

Req
e (u) = Rpl

e (u)g(u) + (1 − g(u))ε
eq
0 σ0u|u|3, (11)

where g is a smooth transition function of the form

g(u) = 1

1 + e

(
u−uSGE

ref

)
KSGE

,

where uSGE
ref = 303.2 K and KSGE = 0.36 are, respectively, a reference

temperature and a constant in the transition velocity involved in

the SGE parametrization. Further, ε
eq
0 < ε

pl
0 is an emissivity constant

at the equator taking into account the OLR reduction due to the
SGE. Note that the OLR at the poles and at the equator in Eqs. (10)
and (11) has been defined, just for mathematical convenience, in the
physically meaningless range of negative Kelvin temperature.

Lastly, the additive positive parameter q models the effect of
CO2 concentration on the energy budget.31,39 A higher q leads to
lower radiation emitted back to space from the surface. We empha-
size the reason behind considering a constant value for the CO2

parameter q. Greenhouse gas concentration can be regarded as
constant at a macroweather, i.e., monthly, timescale, by avoiding
seasonality insertion since it evolves on a much larger timescale.
For instance, the CO2 concentration has increased by around 47%
from 1850 to 2020, moving from 284 parts per million (ppm) to
412 ppm.40 In a first approximation, we assume that the spatial
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distribution of greenhouse gases is uniform over the globe. This
assumption, although no longer the state of the art, was widespread
at the turn of the century and is based on the well-mixing property of
GHG. This means that since most GHGs, such as CO2, have a large
lifetime, many studies have been conducted using global average
values for the spatial distribution.1,39,41

C. Deterministic properties of the model

In this section, we describe the deterministic properties of our
model as the number of steady-state solutions and their stability.
The new feature of our model is the rise of a strong non-linear
increase in GMT with respect to the greenhouse parameter q, in the
proximity of the model configuration describing the actual climate
of the Earth.

In general, in dynamical system theory, huge information is
given by the study of the steady-state solutions of the model, which
are, in a sense, the long-time behavior solutions. More specifically,
in our model, these solutions consist of the non-negative solutions
u = u(x) of the following elliptic PDE:

0 =
(
κ(x)u′)′ + Ra(x, u) − Re(x, u; q),

0 = u′(−1) = u′(1).
(12)

A common way to prove the existence of at least one stable steady-
state solution involves a variational approach by studying the mini-
mization problem

inf
{
Fq(u) | u ∈ H1,2(−1, 1), u ≥ 0

}
, (13)

where

Fq(u) =
∫ 1

−1

R(x, u(x)) dx + 1

2

∫ 1

−1

[
κ(x)u′(x)

]2
dx, (14)

with ∂uR = Re − Ra and H1,2(−1, 1) denoting the Sobolev space of
order 1 and exponent 2.12,42–44 Applying the results of Ref. 32, The-
orems 1 and 3, it is possible to gain information about the existence
and uniqueness of a steady-state solution.

Proposition 1
(i) There exists a unique minimizer u∗ ∈ C∞([−1, 1]) of the varia-

tional problem (13). Further, u∗ solves the elliptic problem (12)
and it is stable for the dynamics of the 1D EBM (7).

(ii) The map q 7→ 1
2

∫ 1

−1
u∗(x)ds is non-decreasing.

Note how the second part of the previous result gives qualita-
tive information on the behavior of the GMT. Furthermore, if the
diffusion coefficient is sufficiently large and the 0D EBM, obtained
by removing the diffusion term and averaging in space the radia-
tion balance, is bistable, it can be rigorously proven the existence of
a second stable steady-state solution and a third unstable one.32

Given the non-linear nature of the problem, a rigorous demon-
stration of all properties of the model is not always possible. In this
case, the problem can be overcome by using numerical simulations.
In particular, for each fixed q, we numerically simulated the solu-
tions of Eq. (12). As q varies, we obtained, according to the large
literature on this kind of model, that there can be either 1 or 3 sta-
tionary solutions. In the former case, the solution is stable. In the
latter case, two solutions are stable, one describing a “snowball” con-
figuration uS for Earth’s temperature with ice all over its surface.

The other describes a warm climate uW, similar to the one in which
we are living. Additionally, an unstable solution uM, whose aver-
age global mean temperature (GMT) lies between the GMT of uS

and uS, also arises. See Fig. 4(a) for a graphical representation of the
steady-state solutions in the bistable case.

In general, proving theoretically the results for such kinds of
models is non-trivial due to the presence of nonlinear terms in
the energy budget parametrization. The bifurcation diagram of the
model in the (q, ū∗) plane, where u∗ denotes a solution of the ellip-

tic PDE, and ū∗ = 1
2

∫ 1

−1
u∗(x) dx is its GMT, is depicted in Fig. 4(b).

We highlight how the addition of a space-dependent OLR with trop-
ics bistability does not introduce a new bifurcation. Thus, no new
steady-state solutions are added or the stability of the already exist-
ing ones is altered. However, as highlighted in Fig. 4(c), a strong
non-linear behavior of the GMT for the warm solution uW appears
for the value of q in the neighborhood of q ≈ 11.3, a thing that
does not happen if we remove the bistability in Re.32 We aim to
focus on that phenomenon, when a noise component, describing
the weather effect, is added to the model. This is the main topic of
Secs. III D and III E.

D. Stochastic properties of the model

As discussed in the previous paragraphs, the EBM presented in
this work corresponds to a macroweather timescale. However, as far
as it has been introduced, it lacks in taking into account the effect
of fast components of Earth’s system, such as atmospheric pressure,
wind, and precipitation. In the literature, this has been achieved
elementary by adding a stochastic term, such as white noise, to
the radiation budget.21,45–47 Note that this addition is necessary to
describe the increase in the frequency of rare events. In fact, while
a deterministic EBM is useful for obtaining information on global
mean temperature, it is not able to investigate fluctuations around it
due to all phenomena, such as weather, not included in the radiation
balance of the model.

We consider H = L2(−1, 1) and the stochastic EBM given by

dut = [Aut + R(x, ut)] dt + σ dWt,

u|t=0 = u0,
(15)

where (Wt)t denotes the cylindrical Wiener process on H, u0 ∈ H
is a non-negative initial condition, and A : D(A) → L2(−1, 1) is the
operator

D(A) =
{
u ∈ H2(−1, 1) | u′(−1) = u′(1) = 0

}
,

Au =
(
κ(x)u′)′

.
(16)

We would like to apply the invariant measure theory for gradient
systems to deduce the existence and uniqueness of an invariant mea-
sure and its explicit formula. This cannot be applied to the operator
A since it is invertible on L2(−1, 1). For this reason, we consider the
operator

Ã = λId − A, (17)

where λ > 0 is a positive constant. By exploiting the Sturm–Liouville
theory, it can be proved that −Ã is a self-adjoint, negative definite
operator, with eigenvalue 0 < λ1 < λ2 < · · · , such that the trace of
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FIG. 4. (a) Steady-state solutions for the 1D EBM (7) for q = 11.3. Solid lines denote stable solutions, and dotted lines denote unstable solutions. The snowball solution
uS is plotted in blue, the middle solution uM in red, and the warm solution uW in yellow. (b) Bifurcation diagram in the (q, ū∗) plane for the 1D EBM (7), where u∗ denotes

steady-state solutions and ū∗ = 1
2

∫ 1

−1
u∗(x) dx is its global mean temperature (GMT). The S-shaped bifurcation diagram is characterized by the two classical saddle-node

bifurcations around q ≈ 7 and q ≈ 38, and a non-linear (with respect to q) increase in GMT around q ≈ 22. (c) Zoom of the bifurcation diagram around q ≈ 11.3 and uW .

Tr
[(

−Ã
)β−1

]
< +∞, for some β ∈ (0, 1). See Appendix B for a

sketch of the proof of these facts. In this way, it is possible to deduce
the following result.20,32,48

Proposition 2 Let E = C([−1, 1]). Then, there exists a unique
P-a.s. E-valued mild solution of the SPDE (15). Further, there exists a
unique Gibbs invariant measure ν̃, and ν̃ � µ̃ with explicit formula

ν̃(du) = 1

Z
exp

(
− 2

σ 2
Ĩ(u)

)
µ̃(du), (18)

where µ̃ ∼ N

(
0, − σ 2

2
Ã−1

)
and

Ĩq(u) =
∫ 1

−1

R(x, u(x)) dx − λ

2
||u||22.

We remark that the invariant measure ν̃ is the object, in our
context of stochastic EBM, that in Sec. II E has been taken as the
definition of climate. Then, it is worth pointing out the link between

the invariant measure ν̃ and the functional Fq building up the vari-
ational problem (13). Indeed, at least formally, we can write the
Gaussian measure µ̃ as

µ̃(du) = 1

Z1

exp

(
−1

2
〈Q−1u, u〉

)
“du′′,

where Z1 is a normalization constant, Q = − σ 2

2
Ã−1 is the

covariance operator of µ̃, 〈·, ·〉 denotes the scalar product on
H = L2(−1, 1), and “du′′ is the formal notation for the Lebesgue
measure on H. By an integration of parts, we deduce

−1

2

〈
Q

−1u, u
〉
= − 2

σ 2

(
λ

2
||u||22 − 1

2
〈κ(x)u′, u′〉

)
.

Hence, substituting back the formal expression for µ̃ in Eq. (18), we
conclude

ν̃(du) ∝ exp

(
− 2

σ 2
Fq(u)

)
“du′′.
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From this expression, we can deduce two important facts. First, the
invariant measure of the stochastic EBM is concentrated on the
global minimum points of the functional Fq. Second, the study of
ν̃ and its spread depending on q is as difficult as understanding
how the functional Fq changes. For this reason, in Sec. III E, we
will use numerical simulation to investigate how ν̃ changes, depend-
ing on the adiabatic parameter q, as CO2 lies in the critical interval
in Fig. 4(c).

E. Variance and extreme weather events increase

It is widely acknowledged that greenhouse gas emissions from
human activities have led to more frequent and intense weather and
climate extremes since the pre-industrial era, particularly temper-
ature extremes.40 Despite numerous definitions proposed to assess
what constitutes an extreme event, there is currently no universally
accepted definition.49 One commonly used definition considers an
extreme weather event as one that exceeds a predefined threshold
for a climate variable.

As it is well understood that such occurrences become more
likely as the variance of that climate variable increases, we consider
the time variance as a proxy indicator of extreme weather events
for our EBM setting. As explained in Sec. III D, an explicit for-
mula for the invariant measure of the stochastic EBM (4) exists.
However, due to the presence of a non-linear term inside the Gibbs
factor in Eq. (18), obtaining theoretical information is challenging.
Thus, we rely on numerical simulations to capture the behavior of
the variance.

Specifically, given a fixed value of q > 0 and the warm steady-

state solution uW = u
(q)
W , we numerically integrate the stochastic

PDE,

CT∂tu = ∂x (κ(x)ux) + Ra(x, u) − Re(x, u; q) + σ dWt,

(x, t) ∈ [−1, 1] × [0, T],

u(x, 0) = uW(x), x ∈ [−1, 1],

ux(−1, t) = ux(1, t) = 0, t ∈ [0, T].

(19)

The simulation runs for T = 500 years to capture the properties of
the invariant measure around the warm climate uW, and we chose
a noise intensity σ = 0.2. The finite difference method applied to
simulate the equation is detailed in Appendix A. Here, we describe
what we mean by variance, its properties detected by numerical
experiments, and our observations.

Given a space point x ∈ [−1, 1] and a realization ω 7→ u(ω)

of the solution of Eq. (19), we consider the variance of the
process t 7→ ut(x, ω) = u(x, t). We denote the numerical approx-
imation of the solution by U = (uij)ij

, where uij = u(xi, tj), and

(xi)i=1,...,n and (tj)j=1,...,m
represent the spatial and temporal meshes,

respectively, over the domain [−1, 1] and [0, T]. The time-variance
is calculated as

σ 2
t (xi) = 1

m

m∑

j=1

(
uij − ūi

)2
,

where ūi = 1
m

∑m
j=1 uij. Figure 5(a) illustrates the time-variance indi-

cator, with different colors representing different values of the
parameter q.

We observe two distinct behaviors of the variance. First,
depending on q, there is an increase in σ 2

t , peaking around q ≈ 11.3,
followed by a decrease. This peak corresponds to the q value that
results in the largest increase in GMT, as shown in Fig. 4(c). Second,
as expected, for a given value of q, the spatial profile of σ 2

t is symmet-
ric with respect to x = 0. Additionally, three local maximum points
emerge one at x = 0 and the others at |x| ≈ 0.8. Our interpretation
is that σ 2

t identifies the highest fluctuating regions as those where the
freezing water temperature is crossed (sub-arctic regions, |x| = 0.8),
or where the SGE triggers bistability (tropical areas, x = 0).

To support this interpretation, it is useful to introduce the local
stability indicator

γ (x) = ∂uR(x, uW(x)),

where R(x, u) = Ra(x, u) − Re(x, u; q). If the model were a simple
Ordinary Differential Equation (ODE) without the coupling diffu-
sion term, γ (x) would be, up to a positive constant depending on
CT, the eigenvalue obtained by linearizing the reaction term around
the stable steady-state temperature uW(x). Positive values of γ (x)
indicate local instability, while negative values indicate stability if
the diffusion term is removed. Figure 5(b) presents the local stability
indicator γ , with colors denoting different values of the parameter q.
Notably, there is a clear relationship between time-variance and the
local stability indicator: regions with high time-variance σ 2

t coincide
with areas of positive γ . This explains the spatial profile of σ 2

t for a
fixed value of q.

The reason for γ (x) > 0 at some points is due to the presence
of the diffusion term. If κ ≡ 0, then uW is not a minimizer of Fq, but
instead solves the problem

uW(x) = arg min
u≥0

R(x, u), (20)

where ∂uR = Re − Ra. Here, ∂uR|(x,uW(x)) = 0, and since uW(x) is a
minimum point, it follows ∂2

uR|(x,uW(x)) = ∂uR|(x,uW(x)) ≤ 0. But with
κ(x) > 0, uW(x) no longer satisfies Eq. (20), but instead is a mini-
mizer of Fq, where the diffusion term appears in the second term on
the right-hand side of Eq. (14). This term, which intuitively mini-
mizes the temperature gradient, allows for some points to fluctuate
around a mean value that would be unstable if κ ≡ 0.

To understand why, given x ∈ [−1, 1], the map q 7→ σ 2
t (x)

= σ
2,(q)
t (x) increases until around q ≈ 11.3 and then decreases, we

offer the following explanation. As q increases, the temperature
uW(x) of the warm climate increases, as can be checked by numerical
simulations and partially understandable from Proposition 1. This
leads the temperature, especially in the tropical area, to approach
the region where instability due to the SGE arises. Once the trop-
ical temperature surpasses this region, the instability, and thus the
variance, decreases. We support our statements as follows.

(i) Figure 6 shows how the steady-state solution u
(q)
W approaches

unstable areas, defined by points (x, u) where ∂uR(x, u) > 0.
For q1 = 11.21, q2 = 11.28, and q3 = 11.4, the map (x, u)

7→ ∂uR(x, uW(x)) is presented, with the curve x 7→ (x, uW(x),
∂uR(x, uW(x)) depicted in red. When the time variance peaks
(i.e., q = q2), the steady-state solution values around the equa-
tor are close to the local maximum of ∂uR, approximately close
to (xM, uM) = (0, 305). For q = q1 and q = q3, the equatorial
steady-state value is smaller and larger than uM, respectively.
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FIG. 5. Indicators for the stochastic 1D EBM (19) over the time interval [0, T ], with T = 500 years. (a) Time-variance indicator σ 2
t . Different colors represent different values

of q for which the stochastic 1D EBM is simulated. (b) Local stability indicator γ , using the same color scheme as in subfigure (a).

FIG. 6. Plot of the map (x, u) 7→ ∂uR(x, u) and the curve x 7→ (x, uW (x), ∂uR(x, u
(q)

W (x)) in red, for different values of q.
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FIG. 7. (a) Average local stability indicator γ̄ (q) =
∫ 1

−1
∂uR(x, u

(q)

W (x))dx. It increases, peaks around q ≈ 11.3, and then decreases. (b) Histogram of the distribution of the

solution of t 7→ u(x̄, t) for the stochastic EBM (19) for q = 11.2 (blue) and q = 11.3 (red), at x̄ = 0.6.

(ii) We consider the local mean stability indicator

γ̄ (q) =
∫ 1

−1

γ (x) dx =
∫ 1

−1

∂uR(x, u
(q)
W (x)) dx.

Its plot is shown in Fig. 7(a). Although providing only average
information, it exhibits behavior qualitatively similar to that of
σ 2

t for each fixed value of x, peaking around q ≈ 11.3.

Finally, we show the distribution of the solution u(x, t) of the
stochastic 1D EBM (4) for the fixed space point x = 0.6 (similar
results are observed for different space points). Figure 7(b) shows
the distribution as a histogram, comparing two distinct values of
q. Blue depicts the results for q = 11.2, while red shows q = 11.3.
From the plot, we deduce that our model captures the shift in
the mean value and the increase in variance, correlating with the
IPCC schematic climate change reproduction in Fig. 1 and weather
observations in Modena in Fig. 2(a).

IV. CONCLUSIONS

In the first part of this work, we have presented a non-
autonomous framework to describe the scale separation between
weather, macroweather, and climate. According to Hasselmann’s
proposal, weather is conceptualized as arising from a set of deter-
ministic equations, describing variables such as temperature on a
fast timescale, typically from an hour to one day. Macroweather,
on the other hand, encompasses variations that are neither as short-
term as weather nor as long-term as climate. We assume that tem-
perature on a macroweather timescale satisfies a stochastic equation,
reflecting the most original aspect of Hasselmann’s work. Addition-
ally, at the macro weather timescale, we include a non-autonomous
term to model the atmospheric CO2 concentration, which evolves
on a timescale of years. Finally, we identify climate with the invariant
measure arising from the stochastic equation at the macro weather
level.

In the second part, we have introduced a new 1D EBM on
a macroweather timescale, which can predict the increase in the
number of extreme weather events associated with climate change.
The novelty of our model relies on the parametrization of the non-
linear space-dependent radiation budget. Indeed, we have inserted
the presence of the SGE, a phenomenon typical of tropical areas
that may lead to an instability in the OLR. Our model includes a
non-autonomous term q = q(t), that in light of the first part, we
have considered constant, that is the effect of the CO2 concentration
on the radiation balance. We have recalled the basic mathematical
properties of our model, such as the existence of steady-state solu-
tions, using also numerical simulations. Also, we have shown how
the GMT of the steady-state solution increases with increasing CO2

concentration. Third, we have the stochastic version of our 1D EBM,
obtained by perturbing our model with an additive space-time white
noise. Being in the class of stochastic reaction–diffusion SPDE, it
is possible to write explicitly the invariant measure as a Gibbs one.
However, the presence of the non-linearity arising from the radia-
tion budget prevents us from deducing more information from the
invariant measure.

The most important results of our work are presented in
Sec. III E. There, we have exploited numerical simulations to study
the changes in the invariant measure as the CO2 concentration
increases. To obtain this, we have performed numerical integration
of the stochastic 1D EBM on a time interval of 500 years and with the
initial condition the warm steady-state solution uW of the determin-
istic 1D EBM, changing only q in different runs of the simulation.
Given q, for each space point x ∈ [−1, 1], we associate the extreme
weather event frequency with the time variance σ 2

t (x) of a trajec-
tory of the stochastic 1D EBM at point x. We explain the spatial
behavior of σ 2

t (x), which presents two local maximum points for
x ≈ ±0.8 and one for x = 0, combining heuristic reasoning with
empirical indicators. The informal explanation is that the presence
of the diffusion term forces the stable warm stationary solution, and
the oscillations around it due to noise, to take on values that are
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not stable if we were to consider the ODE obtained by removing
the diffusion term. These regions of temperature, which are locally
unstable, correspond to the areas where the variance σ 2

t is highest.
We also motivated the behavior of σ 2

t (x) = σ 2
t (q)(x) with respect to

q, at fixed x. The variance observed in this way increases to a maxi-
mum value and then decreases. This is explained by the increase in
GMT due to q and the presence of the diffusion term, leading the
solution of the stochastic EBM to be increasingly in, and then out of,
the region of instability due to the SGE.

Lastly, we are aware that our model, although based on physi-
cal laws, is largely phenomenological. In some parts of our model,
we have included simplifications of convenience, such as in the
perturbation of the diffusion function, which makes the problem
non-singular and thus easier to deal with mathematically; in other
parts, such as in the parametrization of the space-dependent and
tropic-restored OLR, we have followed the principle of simplicity.
Other choices would certainly have been possible, but the elemen-
tary nature of the model leads us to avoid choices that are too fine or
complex.

Concerning open questions, an important one would be under-
standing the correct form of the noise term. We have assumed it to
be additive and without correlation in space and time. This is an
extreme simplification, which allows us to deduce certain proper-
ties of the invariant measure. But already Hasselmann in his seminal
work proposed a different, i.e., multiplicative, type of noise. In addi-
tion to this, understanding how the properties of the model change if
more physical processes are considered, such as advection, is a prob-
lem we would like to address in the future, as well as the extension
of our work to a two-dimensional setting.
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APPENDIX A: NUMERICAL SCHEME

In this section, we describe the numerical method adopted to
approximate the solutions of the stochastic PDE (19). We used an
implicit Euler-Maruyama method, which is a small modification
of the semi-implicit Euler-Maruyama method presented in Ref. 51,
Sec. 10.5.

First, it is worth recalling that the numerical experiments pre-
sented in Sec. III E are all performed for a fixed value of q, and using

uW = u
(q)
W as initial condition of the parabolic stochastic problem

(19). The steady-state solution uW solves the elliptic problem (12).
To numerically approximate it, we have applied the same finite
difference scheme described in Ref. 32, Appendix A.

Second, we move to describe the numerical method for the
parabolic problem. We denote by R(x, u; q) = Ra(x, u) − Re(x, u; q)
the non-linear radiation budget, and the underline notation to
denote a vector (e.g., y ∈ R

4). We consider two uniform meshes for

the spatial domain [−1, 1] and the time domain [0, T], i.e.,

xi = −1 + i1x, i = 0, . . . , n, 1x = 2

n

and

tj = j1t, j = 0, . . . , m, 1t = T

m
= 500

m
.

The number of points in the space and time mesh, respectively,
n + 1 and m + 1, is chosen in a way that 1x = 1x = 0.01. Then,
the solution to the problem can be approximated by considering the
system

CT

ui,j+1 − ui,j

1t
=

ui−1,j+1κi− 1
2

− ui,j+1

(
κi− 1

2
+ κi+ 1

2

)
+ ui+1,j+1κi+ 1

2

1x2

+ R(xi, ui,j+1) +
√

1t

1x
σ zi,j 0 ≤ i ≤ n, 0 ≤ j ≤ m − 1,

0 = un+1,j − un−1,j

21x
= u1,j − u−1,j

21x
j = 1, . . . , m,

ui,0 = uW(xi), i = 0, . . . , n,

where u−1,j, un+1,j are ghost points,
(
zi,j

)
i,j

is a collection of inde-

pendent identically distributed (i.i.d.) normal random variables,

and ui,j = u(xi, tj), κi± 1
2

= κ

(
xi± 1

2

)
, xi± 1

2
= xi ± 1x/2. Since

u1,j = u−1,j and un+1,j = un−1,j, the previous system of equation can
be rewritten as

(In+1 − rA) uj+1 = In+1u
j + 1T

CT

R(uj+1) +
√

1t

1x
σZj,

where In+1 denotes the (n + 1) × (n + 1) identity matrix,

uj =
(
u0,j, . . . , un,j

)T
, r = 1t

CT1x2 , R(y) =
(
R(x0, y1), . . . , R(xn, yn+1)

)T
,(

Zj
)

j
denotes a set of i.i.d. N (0, In+1) normal random vectors, and
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A ∈ R
(n+1)×(n+1) is the tridiagonal matrix with diagonal d ∈ R

n+1,
superdiagonal d1 ∈ R

n, and subdiagonal d−1 ∈ R
n given by

d(i) =





−(κ−1/2 + κ1/2), i = 1,

−(κi−3/2 + κi−1/2), i = 2, . . . , n,

−(κn−1/2 + κn+1/2), i = n + 1,

d1(i) =
{

κ−1/2 + κ1/2, i = 1,

κi−1/2, i = 2, . . . , n,

d−1(i) =
{

κi−1/2 + κ1/2, i = 1, . . . , n,

−(κn−1/2 + κn+1/2), i = n.

Thus, given the numerical approximation uj at time tj, to
advance the scheme at time tj+1 it is needed to solve the previous
non-linear system of algebraic equations. To do this, we apply the
Newton–Raphson Method (NRM), which we recall in the following.
We consider the map Fj : R

n+1 → R
n+1 defined as

Fj(y) = (In+1 − rA) y − uj − 1T

CT

R(y) −
√

1t

1x
σZj.

To approximate the vector y ∈ R
n+1 such that Fj(y) = 0, the NRM

consider the following sequence

{
yk+1 = yk − JFj

(
yk

)−1
Fj

(
yk

)
,

y0 = uj,

where JFj ∈ R
(n+1)×(n+1) is the Jacobian matrix of Fj with respect to y.

Since the noise intensity σ = 0.2 is small, we expect that the choice
y0 = uj is a good initial guess of the solution. The iteration of the

NRM is stopped when
∥∥Fj

(
yk

∥∥ ≤ 10−10.

APPENDIX B: SPECTRAL PROPERTIES OF THE

OPERATOR Ã

To apply the invariant measure theory, the operator Ã = λId
− A defined in Sec. III D should satisfy the following assumptions
(see Ref. 48, Sec. 11):

(i) Ã is self-adjoint and there exists ω > 0 such that

〈Ãx, x〉 ≤ −ω|x|2, x ∈ D(A).

(ii) There exists β ∈ (0, 1) such that Tr
[
(−Ã)

β−1
]

< +∞.

We denote by (λn)n the eigenvalues of −A, where

D(A) =
{
u ∈ H2(−1, 1) | u′(−1) = u′(1) = 0

}
,

Au =
(
κ(x)u′)′

.
(B1)

Since A is a Sturm–Liouville regular operator, classical results assure
the existence of the real eigenvalues λn, and furthermore, it can be

proved

λ1 < λ2 < · · · · · · < λn < · · · → +∞.

First, to check hypothesis (i), it is thus sufficient to prove that

λn ≥ 0, ∀n.

Indeed, by definition of eigenvalue, there exists an eigenfunction
vn ∈ D(A) such that

Avn = −λnvn.

Multiplying the previous identity by vn and integrating over the
domain [−1, 1], we get

∫ 1

−1

[
κ(x)v′

n(x)
]′

vn(x) dx = −λn

∫ 1

−1

vn(x)
2 dx.

Performing an integration by parts on the left-hand side, we deduce

−
∫ 1

−1

κ(x)
(
v′

n(x)
)2

dx = −λn

∫ 1

−1

vn(x)
2 dx.

In conclusion,

λn =
∫ 1

−1
κ(x)

(
v′

n(x)
)2

dx
∫ 1

−1
vn(x)

2 dx
,

and our claim follows from the fact that κ(x) > 0 on [−1, 1].
Second, the hypothesis (ii) is a consequence of the following

asymptotic estimate for regular Sturm–Liouville problems (Ref. 52,
Sec. 4): there exist B > 0 and n0 > 0 such that

[(
n − 1

2

)
π

B

]2

< λn <

[(
n + 1

2

)
π

B

]2

, ∀n ≥ n0.

REFERENCES
1Climate Change 2001: The Scientific Basis, Contribution of Working Group I to
the Third Assessment Report of the Intergovernmental Panel on Climate Change,
edited by J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden,
X. Dai, K. Maskell, and C. A. Johnson (Cambridge University Press, 2001).
2V. Dakos, M. Scheffer, E. H. van Nes, V. Brovkin, V. Petoukhov, and H. Held,
“Slowing down as an early warning signal for abrupt climate change,” Proc. Natl.
Acad. Sci. 105, 14308–14312 (2008).
3M. Scheffer, J. Bascompte, W. Brock, V. Brovkin, S. Carpenter, V. Dakos, H.
Held, E. Nes, M. Rietkerk, and G. Sugihara, “Early-warning signals for critical
transitions,” Nature 461, 53–9 (2009).
4C. Kuehn, “A mathematical framework for critical transitions: Bifurcations,
fast–slow systems and stochastic dynamics,” Physica D 240, 1020–1035 (2011).
5P. Ashwin, S. Wieczorek, R. Vitolo, and P. Cox, “Tipping points in open systems:
Bifurcation, noise-induced and rate-dependent examples in the climate system,”
Philos. Trans. R. Soc. A 370, 1166–1184 (2012).
6T. M. Lenton, V. N. Livina, E. H. van Nes, and M. Scheffer, “Early warning of cli-
mate tipping points from critical slowing down: Comparing methods to improve
robustness,” Philos. Trans. R. Soc. A 370, 1185–1204 (2012).
7M. Ghil and V. Lucarini, “The physics of climate variability and climate change,”
Rev. Mod. Phys. 92, 035002 (2020).
8P. Bernuzzi and C. Kuehn, “Bifurcations and early-warning signs for spdes with
spatial heterogeneity,” J. Dyn. Differ. Equ. (published online, 2023).
9M. Dewey and C. Goldblatt, “Evidence for radiative-convective bistability in
tropical atmospheres,” Geophys. Res. Lett. 45, 10673–10681, https://doi.org/10.
1029/2018GL078903 (2018).
10M. I. Budyko, “The effect of solar radiation variations on the climate of the
earth,” Tellus A 21, 611–619 (2022).

Chaos 34, 093122 (2024); doi: 10.1063/5.0223309 34, 093122-15

© Author(s) 2024

 20 Septem
ber 2024 07:18:12

https://pubs.aip.org/aip/cha
https://doi.org/10.1073/pnas.0802430105
https://doi.org/10.1038/nature08227
https://doi.org/10.1016/j.physd.2011.02.012
https://doi.org/10.1098/rsta.2011.0306
https://doi.org/10.1098/rsta.2011.0304
https://doi.org/10.1103/RevModPhys.92.035002
https://doi.org/10.1007/s10884-023-10274-2
https://doi.org/10.1029/2018GL078903
https://doi.org/10.3402/tellusa.v21i5.10109


Chaos ARTICLE pubs.aip.org/aip/cha

11W. D. Sellers, “A global climatic model based on the energy balance of the earth-
atmosphere system,” J. Appl. Meteorol. Climatol. 8, 392–400 (1969).
12G. R. North, “Theory of energy-balance climate models,” J. Atmos. Sci. 32,
2033–2043 (1975).
13M. Ghil, “Climate stability for a sellers-type model,” J. Atmos. Sci. 33, 3–20
(1976).
14J. I. Díaz, “On the mathematical treatment of energy balance climate models,” in
The Mathematics of Models for Climatology and Environment, edited by J. I. Díaz
(Springer, Berlin, 1997), pp. 217–251.
15P. Cannarsa, V. Lucarini, P. Martinez, C. Urbani, and J. Vancostenoble, “Anal-
ysis of a two-layer energy balance model: Long time behavior and greenhouse
effect,” Chaos 33, 113111 (2023).
16G. R. North and K.-Y. Kim, Energy Balance Climate Models (Wiley, 2017).
17K. Emanuel, A. A. Wing, and E. M. Vincent, “Radiative-convective instability,”
J. Adv. Model. Earth Syst. 6, 75–90 (2014).
18T. Beucler and T. W. Cronin, “Moisture-radiative cooling instability,” J. Adv.
Model. Earth Syst. 8, 1620–1640 (2016).
19G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, London
Mathematical Society Lecture Note Series (Cambridge University Press, 1996).
20G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions (Cam-
bridge University Press, 2014).
21K. Hasselmann, “Stochastic climate models part I. Theory,” Tellus 28, 473–485
(1976).
22M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems
(Springer, Berlin, 2012).
23L. Arnold, “Hasselmann’s program revisited: The analysis of stochasticity in
deterministic climate models,” in Stochastic Climate Models, edited by P. Imkeller
and J.-S. von Storch (Birkhäuser, Basel, 2001), pp. 141–157.
24Y. Kifer, “Averaging and climate models,” in Stochastic Climate Models
(Springer, 2001), pp. 171–188.
25F. Flandoli, U. Pappalettera, and E. Tonello, “Nonautonomous attractors and
young measures,” Stochastics Dyn. 22, 2240003 (2022).
26H. Crauel and F. Flandoli, “Attractors for random dynamical systems,” Probab.
Theory Relat. Fields 100, 365–393 (1994).
27L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics
(Springer-Verlag, Berlin, 1998), pp. xvi+586.
28M. Ghil, M. D. Chekroun, and E. Simonnet, “Climate dynamics and fluid
mechanics: Natural variability and related uncertainties,” Physica D 237,
2111–2126 (2008).
29M. D. Chekroun, E. Simonnet, and M. Ghil, “Stochastic climate dynamics:
Random attractors and time-dependent invariant measures,” Physica D 240,
1685–1700 (2011).
30D. Dommenget and J. Flöter, “Conceptual understanding of climate change
with a globally resolved energy balance model,” Clim. Dyn. 37, 2143–2165
(2011).
31R. Bastiaansen, H. A. Dijkstra, and A. S. von der Heydt, “Fragmented tipping in
a spatially heterogeneous world,” Environ. Res. Lett. 17, 045006 (2022).
32G. Del Sarto, J. Bröcker, F. Flandoli, and T. Kuna, “Variational techniques
for a one-dimensional energy balance model,” Nonlinear Processes Geophys. 31,
137–150 (2024).

33C. E. Graves, W.-H. Lee, and G. R. North, “New parameterizations and sen-
sitivities for simple climate models,” J. Geophys. Res.: Atmos. 98, 5025–5036
(1993).
34P. Baldi, Stochastic Calculus (Springer International Publishing, 2017).
35R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics
(Springer, New York, 1997).
36J. Smoller, Shock Waves and Reaction—Diffusion Equations (Springer Science &
Business Media, 2012), Vol. 258.
37G. Floridia, “Approximate controllability for nonlinear degenerate parabolic
problems with bilinear control,” J. Differ. Equ. 257, 3382–3422 (2014).
38P. Cannarsa, M. Malfitana, and P. Martinez, “Parameter determination for
energy balance models with memory,” in Mathematical Approach to Climate
Change and Its Impacts: MAC2I (Springer International Publishing, 2020),
pp. 83–130.
39G. Myhre, A. Myhre, and F. Stordal, “Historical evolution of radiative forcing
of climate,” Atmos. Environ. 35, 2361–2373 (2001).
40I. P. on Climate Change (IPCC), Climate Change 2021—The Physical Sci-
ence Basis: Working Group I Contribution to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change (Cambridge University Press, 2023).
41G. Myhre, E. J. Highwood, K. P. Shine, and F. Stordal, “New estimates of
radiative forcing due to well mixed greenhouse gases,” Geophys. Res. Lett. 25,
2715–2718, https://doi.org/10.1029/98gl01908 (1998).
42G. R. North, L. Howard, D. Pollard, and B. Wielicki, “Variational formulation
of Budyko-Sellers climate models,” J. Atmos. Sci. 36, 255–259 (1979).
43G. R. North, “Multiple solutions in energy balance climate models,” Global
Planet. Change 2, 225–235 (1990).
44H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations
(Springer, 2011), Vol. 2.
45P. Imkeller, “Energy balance models—Viewed from stochastic dynamics,” in
Stochastic Climate Models, edited by P. Imkeller and J.-S. von Storch (Birkhäuser,
Basel, 2001), pp. 213–240.
46J. Díaz, J. Langa, and J. Valero, “On the asymptotic behaviour of solutions of a
stochastic energy balance climate model,” Physica D 238, 880–887 (2009).
47G. Díaz and J. I. Díaz, “Stochastic energy balance climate models with legendre
weighted diffusion and an additive cylindrical wiener process forcing,” Discrete
Contin. Dyn. Syst. 15, 2837–2870 (2022).
48G. Da Prato, An Introduction to Infinite-Dimensional Analysis (Springer, Berlin,
2006).
49D. B. Stephenson, H. Diaz, and R. Murnane, “Definition, diagnosis, and origin
of extreme weather and climate events,” Clim. Extremes Soc. 340, 11–23 (2008).
50L. Lombroso and S. Quattrocchi, L’osservatorio di Modena: 180 Anni di Misure
Meteoclimatiche (SMS, 2008).
51G. J. Lord, C. E. Powell, and T. Shardlow, An Introduction to Computa-
tional Stochastic PDEs, Cambridge Texts in Applied Mathematics (Cambridge
University Press, 2014).
52C. Fulton and S. Pruess, “Eigenvalue and eigenfunction asymptotics for regular
Sturm-Liouville problems,” J. Math. Anal. Appl. 188, 297–340 (1994).
53G. Del Sarto (2024). “A non-autonomous framework for climate change and
extreme weather events increase in a stochastic energy balance model – Numerical
code,” Zenodo. https://doi.org/10.5281/zenodo.11609953

Chaos 34, 093122 (2024); doi: 10.1063/5.0223309 34, 093122-16

© Author(s) 2024

 20 Septem
ber 2024 07:18:12

https://pubs.aip.org/aip/cha
https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1976)033<0003:CSFAST>2.0.CO;2
https://doi.org/10.1063/5.0136673
https://doi.org/10.1002/2013MS000270
https://doi.org/10.1002/2016MS000763
https://doi.org/10.1111/j.2153-3490.1976.tb00696.x
https://doi.org/10.1142/S0219493722400032
https://doi.org/10.1007/BF01193705
https://doi.org/10.1016/j.physd.2008.03.036
https://doi.org/10.1016/j.physd.2011.06.005
https://doi.org/10.1007/s00382-011-1026-0
https://doi.org/10.1088/1748-9326/ac59a8
https://doi.org/10.5194/npg-31-137-2024
https://doi.org/10.1029/92JD02666
https://doi.org/10.1016/j.jde.2014.06.016
https://doi.org/10.1016/S1352-2310(00)00531-8
https://doi.org/10.1029/98gl01908
https://doi.org/10.1175/1520-0469(1979)036<0255:VFOBSC>2.0.CO;2
https://doi.org/10.1016/0921-8181(90)90003-U
https://doi.org/10.1016/j.physd.2009.02.010
https://doi.org/10.3934/dcdss.2021165
https://doi.org/10.1017/CBO9780511535840.004
https://doi.org/10.1006/jmaa.1994.1429
mailto:https://doi.org/10.5281/zenodo.11609953

