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An important practical problem in the field of quantum metrology and sensors is to find the optimal
sequences of controls for the quantum probe that realize optimal adaptive estimation. In Belliardo et
al., arXiv:2312.16985 (2023), we solved this problem in general, by introducing a procedure capable
of optimizing a wide range of tasks in quantum metrology and estimation by combining model-aware
reinforcement learning with Bayesian inference. We take a model-based approach to the optimisation
where the physics describing the system is explicitly taken into account in the training through
automatic differentiation. In this follow-up paper we present some applications of the framework.
The first family of examples concerns the estimation of magnetic fields, hyperfine interactions, and
decoherence times for electronic spins in diamond. For these examples, we perform multiple Ramsey
measurements on the spin. The second family of applications concerns the estimation of phases
and coherent states on photonic circuits, without squeezing elements, where the bosonic lines are
measured by photon counters. This exposition showcases the broad applicability of the method,
which has been implemented in the qsensoropt library released on PyPI, which can be installed with
pip.

I. INTRODUCTION

In recent years, the intersection of quantum mechanics
and machine learning has become a focal point of explo-
ration, with a particular emphasis on leveraging quantum
technologies for various applications. This convergence
holds immense potential for mutual enhancement across
both domains. Quantum technologies, notably quan-
tum computers, offer unique capabilities to tackle clas-
sical machine learning challenges, such as classification
and sampling, utilizing both classical and quantum data
sources [1–3].
Conversely, traditional machine learning methodolo-

gies can enhance quantum information tasks, including
state preparation [4–7], optimal quantum feedback [8],
error correction [9], device calibration [10–13], charac-
terization [14], and quantum tomography [15–17]. This
work aligns with the latter category, employing model-
aware reinforcement learning (RL) to derive optimized
adaptive and non-adaptive control strategies for quantum
metrology and estimation tasks [8, 18–20].

Specifically, we address the challenge of optimal exper-
imental design [21], a task already explored using ma-
chine learning techniques [22–26], which we explore in the
quantum realm, finding performances going beyond the
current state-of-the-art [27]. Estimation processes in this
context involve numerous non-differentiable steps, such
as simulating measurements and resampling from poste-
rior distributions, posing challenges to the application of
model-aware RL. To overcome these obstacles, our ap-
proach incorporates techniques like importance sampling,
adding log-likelihood to the loss [8], the reparametrization
trick, and the Scibior and Wood correction [28].

The methodology involves identifying tunable parame-
ters in a given physical platform and metrological task,
allowing an agent (which can be a neural network, a deci-
sion tree, or a list of trainable controls) to learn an optimal
policy through gradient descent optimization. We have ab-
stracted and packaged this procedure into the qsensoropt
library, which is available on GitLab [29], together with
the online documentation of the classes and the examples
of this paper [30]. The library can also be installed with
pip on every machine without the need for cloning the en-
vironment, being it available on PyPI. This is a versatile
tool for finding adaptive policies to optimize the precision
of quantum sensor, which we think will be of much use
for the quantum information community. By exploiting
the classes and function preprogrammed in this library,
users can implement the quantum mechanical model of
their sensors, and optimise an adaptive or non-adaptive
policy, which can be later exported and implemented in
the experiments.

Demonstrating the broad applicability of our approach,
we optimized examples on the nitrogen-vacancy (NV)
center platform for various metrology tasks, including
DC and AC magnetometry, decoherence estimation, and
hyperfine coupling characterization. In the realm of pho-
tonic circuits, we explored applications such as multiphase
discrimination, the agnostic Dolinar receiver [31], and co-
herent states classification. Our findings showcase the
superiority of model-aware RL over traditional control
strategies, even outperforming model-free RL in multiple
scenarios. Through this work we lay the tools to accelerate
the search for optimal control policies in quantum sens-
ing and metrology, potentially expediting the widespread
industrial application of this quantum technology.
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The existing literature encompasses various works ad-
dressing challenges akin to our approach, which we have
categorized into four classes according to their relation
with our work. The first class encompasses the competitor
approaches for optimization in quantum metrology [32–
36]. These lack coverage of non-greedy or adaptive policies
of Bayesian estimation. The second class contains those
optimal control algorithms based on the optimization of
the Fisher information [37–44], which again often lack
coverage of Bayesian estimation, adaptivity through the
use of neural network, or can be applied only to NV cen-
ters. The third class design a theoretical approach to
optimal control in quantum sensing, but lack an imple-
mentation [20, 23, 24, 45, 46]. The fourth and last class
applies variational quantum circuits to specific metrologi-
cal tasks [47–53]
In this work, we give an overview of the main compo-

nents of the framework that allows quantum metrology
tasks to be optimized with machine learning, with sev-
eral examples of interest where we achieved results that
are comparable to or better than the current state of
the art for each task. However, we refer to [54] for a
complete description of the method and a review of the
literature. See also [55] for a three-pages explanation of
the theory with a single example. Although we have also
implemented the optimization of frequentist estimation,
based on the Fisher information, the results present in
this paper concern exclusively the domain of Bayesian
estimation.

A. Review of the framework

This section is meant to be a quick review of the various
components of the qsensoropt framework used throughout
the paper. For a rigorous treatment of the theory behind,
please refer to [54]. See also Section ID for a more detailed
review of the quantum model of a sensor, and how it is
used in Bayesian estimation with different degrees of
control. This section defines a common mathematical
schematization to quantum metrology, in which we fit all
the examples of this paper. If an optimization problem
can be expressed in terms of this scheme, then it can be
optimized with the qsensoropt library.

The sensor’s model: Some elements of the Bayesian
inference process in quantum metrology are universal,
in the sense that they do not depend on the particular
task. These are the Bayesian filtering, the repeated exe-
cution of the measurements, and the training of the agent.
Together with other general aspects of the optimization
routine, these are implemented in the library. To apply
the framework the user needs to code the model of the
specific quantum sensor of interest. This model should
simulate the stochastic outcome extraction of the measure-
ments and evaluate the probability of observing a specific
outcome for the particular quantum system at hand. In
this description, it should be stated which parameters
are controls, that can be tuned by the experimenter, and

which are the target of the estimation. These last ones,
which will be indicated collectively by the symbol θ, are
unknowns related to the environment of the probe, which
are codified during the probe’s evolution, or they are pa-
rameters of the state of the probe if it has been encoded
in a distant laboratory, on which we have no control. This
encoding is formalized later within the object Φθ, defined
in Section ID.

The measurements loop: A quantum metrology or
estimation task usually involves many measurements in-
dexed by t, through which the information on the target
parameters is accumulated step-by-step in the Bayesian
posterior. The sequence of measurements is organized
in a “measurement loop”, which is represented in Fig. 1
and it involves three fundamental steps. An iteration of
the loop starts with the simulation of the evolution and
the measurement of the sensor’s probe, all done thanks
to the model implemented by the user. We indicate
with yt the outcome of the t-th measurement and with
yt := (y0, y1, . . . , yt) the list of outcomes until the t-th it-
eration (included). The second step in the loop’s iteration
is the processing of the outcome, which allows the internal
representation of the Bayesian posterior to be updated.
This is done via a particle filter, which uses an ensemble
of points in the parameter space (called particles) and
weights to approximate the posterior, see [54, 56] for more
details. The initial distribution is the prior π(θ), which
is uniform over some interval in every application pre-
sented in this paper. At the third and last step of the
iteration, some information on the state of the estimation
and on the posterior is computed and fed to an agent
which evaluates the controls for the next measurement
on the probe, i.e. for the next iteration of the loop. We
indicate with xt the controls of the t+ 1-th measurement
and with xt := (x0, x1, . . . , xt) the list of controls until
iteration t (included). This agent doing the controlling
will typically be a neural network (NN). This agent can
leverage knowledge from past measurements to optimize
the estimation task’s overall performance, which makes
the control strategy adaptive and non-greedy. The poste-
rior on θ at the t-th iteration of the loop is conditioned
on the full list of previous controls and outcomes, and it
will be indicated with P (θ|xt,yt). Typically, during the
training, a number B > 1 of simulations of the estimation
are executed in parallel with the same agent in a batch;
we call B the batch size. From this batch, the statistical
properties of the strategy produced by the agent are es-
timated, like a precision figure of merit specified by the
user, e.g. the mean square error or the error probability.

The precision-resources paradigm: Each iteration
of the measurement loop consumes a certain amount of
a specific “resource” such as the estimation time or the
available probes. Once these resources are depleted, the
measurement loop concludes. For each application, the
resource must be specified, and it is as important as the
definition of the precision figure of merit. The goal of the
machine learning framework is to optimize the precision
for a fixed maximum amount of consumed resources. In
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Figure 1. This general scheme illustrates the information
flow within the measurement loop for a quantum metrology
task where the quantum probe is an NV center. Refer to
Section IIA for a brief description of the physics of such
systems. The environment we aim to study interacts with the
quantum probe and encodes it with the unknown variables θ.
This probe is then measured using a tunable instrument (1).
The outcome of this measurement provides us with information
about the probe’s state and in turn about the environment’s
variables. This information is used to update the posterior
Bayesian distribution on θ (2). Some summary information
derived from the posterior is then input into an agent that
decides the new control parameters for the measurement in
the next iteration of the loop (3). This control is then realized
through the electronics of the experiment. In this picture, the
agent is a neural network.

the simplest case, the resource is just the number of
measurements executed in the whole estimation, which
we indicate with Mmax, which is also the number of total
iterations of the measurement loop.

Overview of the training process: After the mea-

surement loop ends, an estimator θ̂ for the parameters
θ is computed from from the Bayesian posterior. The
user-defined precision metric serves as the training loss to
be minimized through a stochastic gradient descent pro-
cedure, which acts on the trainable variables of the agent,
e.g. the biases and weights in the case of a NN, which are
indicated collectively with the symbol λ. The gradient of
the loss is computed via automatic differentiation, where
the derivatives flow through the sampling of stochastic
variables, like the measurement outcomes, and through
the physical model of the sensor. This characterizes the
training as model-aware policy gradient reinforcement
learning and special precautions are taken to compute an
unbiased estimator of the gradient [8, 54]. Each training
step involves a complete execution of the measurement
loop until the resources are depleted. After multiple train-
ing steps, in the order of O(104), the precision reaches a
plateau and the training is stopped. At this point, the
agent has been optimized. In all the applications of this
paper Adam [57] has been used as an optimizer. The
learning rate is set to decrease at each training step, with

Φ(t,xt)
θ Myt

(xt) ρt+1(θ)
yt

xt control
xt+1

ρ′ t(θ)ρt(θ)
outcom

e
encoding measurement

ytyt−1

Control 
Unit

θ

t
ρt+1(θ)
xt+1
yt

θ

θ

t = 1

θ

t = 0
ρ0
x0 ⋯

Figure 2. (Top panel) The measurement loop of Fig. 1 repre-
sented as an ordered sequence of concatenated events (cyan
boxes). The violet arrows describe the temporal evolution of
the probe state, the red lines the controls, and the green arrow
the measurement outcomes that accumulate along the way.
(Bottom panel) Schematic description of the processes involved
in the t-th event: first the input state ρt(θ) of the probe un-
dergoes to a possible new encoding stage of the parameters θ

via the action of the LCPT map Φ
(t,xt)
θ ; then the transformed

state ρ′t(θ) gets measured producing the outcome yt and the
probe emerges as the conditional state ρt+1(θ). As indicated
by the figure all these operations are in part determined by
the inputted control xt. The new value of the parameter xt+1

is determined by the control unite element elaborating the
newly acquired outcome yt. To connect with the scheme in
Fig. 1 observe that the control unit here encompasses both
the particle filter updating the Bayesian distribution and the
neural network.

an in inverse square root decay law, as specified in [58].
The initial learning rate α0 has been chosen optimally for
each simulation. through trial and error.

B. Specifics of each experiment

From the description of this machine learning approach,
it is clear that in order to apply this technique on a par-
ticular sensor four pieces of information must be specified
and implemented in the code by the user. These are listed
in the following.

• The sensor’s model, represented by the code that
defines the probability of each potential outcome in
a measurement. This model is typically derived from
the Born rule applied to the physics of the sensor,
necessitating the specification of a division between
control and target parameters. Further insights on
how to schematize the quantum mechanics behind
this aspect are detailed in Section ID.

• The nature and the amount of resources consumed
in the metrological task.
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• The input to the agent, which must be a function
of the posterior distribution, and in general of the
measurement outcomes for the implementation of
an adaptive control policy.

• The error figure of merit used to gauge the precision
of the estimation, such as the mean square error.

C. Selection of the agent

In all the adaptive experiments the NN has by default
5 hidden layers with 64 neurons each, and the activation
function is tanh. For the non-adaptive strategy, the con-
trols for each measurement step do non depend on the
Bayesian posterior. In this case, the agent can still be
a NN with reduced input, or instead, we directly opti-
mize the values of the controls in the training by setting
λ := xt. In Section IVB we experimented with using a
decision tree to compute the controls. This means that
the posterior is bypassed and the adaptive controls are
directly selected based on the list of past measurement
outcomes yt. More precisely the outcome selects the tree
branch at each node.

D. Dynamical model

In this section, we present a rigorous characterization
of the measurement loop of Fig. 1. To start with, let us
observe that the whole procedure can be represented as
an ordered sequence of concatenated events describing
the information acquired by the agent at the various
stages and the associated evolution of the probe state
(see top panel of Fig. 2). In particular, the event t takes
as input the state of the probe at the beginning of the
t-th measurement loop (orange), the control value xt
synthesized by the agent in the previous event (red line),
the complete list of the outcomes yt−1 = (y0, y1, · · · , yt−1)
of the measurements performed up to that point, as well
as a possible new encoding of the parameters θ into the
probe state. As shown in the bottom panel of Fig. 2, a
characterization of t-th event is obtained by assigning the
following three elements:

• a Completely Positive, Trace Preserving ( LCPT)

linear map [59, 60] Φ
(t,xt)
θ , describing the physical

process which encodes the parameters θ into the
state of the probe at the beginning of the event (red
box of the figure);

• a collection of operators {Myt
(xt)}yt

fulfilling
the normalization condition

∑
yt
Eyt

(xt) = 1,

Eyt(xt) :=M†
yt
(xt)Myt(xt), describing the measure-

ment process (black box);

• a control unit (white box).

This is effectively a different way to divide the iteration,
more centred on the quantum mechanical evolution with

respect to Fig. 1 and the previous section, which was
more centred on the machine learning side and the flow of
information. It is important to connect this two different
representation, and this can be done by observing that
the first two element in the above list, i.e the LCPT map
and the measurement, are part of the sensor’s model,
while the Bayesian update and the NN are part of the
last element, i.e. the control unit. The inclusion of the

index t in the definition of Φ
(t,xt)
θ allows for the analysis

of non-uniform models where the encoding mechanism
varies along the measurement loop. For instance, setting

Φ
(t,xt)
θ as the identity map 1 for t ≥ 1 represents models

where θ is imprinted on the probe only at the beginning
of the first measurement loop. The explicit inclusion of
the parameter xt in the definition of {Myt

(xt)}yt
and

Φ
(t,xt)
θ accommodates instead models where the agent

exerts control over the measurement and possibly on the
encoding mechanism (e.g. determining factors such as
the duration of the probe’s interaction with the external
system that is responsible for the effect). Define now
ρt(θ) := ρ(θ,xt−1,yt−1) the density matrix of the probe
at the beginning of the t-th event (i.e. the state that
emerges as output from (t− 1)-th event). According to

the model, such configuration is first evolved via Φ
(t,xt)
θ

through the mapping

ρt(θ) 7→ ρ′t(θ) := Φ
(t,xt)
θ [ρt(θ)] , (1)

producing the state ρ′t(θ) := ρ′(θ,xt,yt−1) that under-
goes to the measurement process defined by the operators
{Myt

(xt)}yt
. The probability of outcome yt follows the

Born rule:

P (yt|θ,xt,yt−1) := Tr[Eyt(xt)ρ
′
t(θ)] . (2)

The conditional probe state ρt+1(θ) := ρ(θ,xt,yt) after
measurement is determined instead by the formula:

ρt+1(θ) :=
Myt(xt)ρ

′
t(θ)M

†
yt
(xt)

P (yt|θ,xt,yt−1)
. (3)

Eq. (1) and Eq. (3) define the update of the input probe
density matrix from the event t to event t+1. The update
of the control parameter xt+1 is instead determined by
the classical data processing unit of the model that uses
yt as input information. An essential ingredient of such
a procedure is the Bayesian inference formula,

P (θ|xt,yt) :=
P (yt|θ,xt,yt−1)P (θ|xt−1,yt−1)∑
θ′ P (yt|θ′,xt,yt−1)P (θ′|xt−1,yt−1)

,

(4)
which allows one to update the posterior probability
P (θ|xt−1,yt−1) acquired at the beginning of the t event
to the posterior probability P (θ|xt,yt) of the next event.
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II. PLATFORMS FOR QUANTUM METROLOGY

A. Experiments on the NV center

The first family of examples presented in Section III
are applications on the platform of single electronic spins
in diamond. The nitrogen-vacancy (NV) center is a point
defect of the diamond crystal that allows for the ini-
tialization, detection, and manipulation of its electronic
spin. It exhibits an exceptionally long quantum coherence
time, maintaining this property even at room temperature.
Consequently, it has found applications in areas such as
magnetometry, thermometry, and stress sensing [61–64].
The e− spin of the NV center is a two-level system, and
the Ramsey measurement, upon which the examples in
this paper are based, involves the initialization of such
spin in the coherent state |ψ⟩ := (|↑⟩ + |↓⟩)/

√
2 with a

π/2 microwave (MW) pulse, where |↑⟩/|↓⟩ is the spin-
up/spin-down state. The spin is then left to freely evolve
and interact with the environment, in order to encode the
target parameters. The duration τ of the time interval of
free evolution is the control parameter in this platform,
changed from measurement to measurement. A second
π/2 MW pulse closes the encoding stage. When the NV
center is excited with green light, according to the state
of the e− spin, it has different probabilities of decaying
through a radiative or a non-radiative path, which means
that the number of photoluminescence photons emitted is
different for the two states of the spin. This mechanism
allows a reliable direct measurement of the spin even at
room temperature. We can also tune an extra phase φ of
the spin evolution through the MW pulse. There are two
possible choices for the resources on this platform, either
we fix the maximum number of Ramsey measurements
Mmax, or we fix the maximum total free evolution time

T =
∑Mmax−1

t=0 τt, which is the sum of the evolution times
in each Ramsey measurement. In this second case, the
measurement number M is a stochastic variable. We
demonstrated the applicability of our machine learning
methods for single and multiparameter metrology on vari-
ous estimation tasks on NV centers including both DC [27]
and AC magnetometry, decoherence estimation [65], and
the characterization of the hyperfine coupling with a 13C
nucleus [66].

B. Experiments with photonic circuits

The second family of examples we study is based on
photonic circuits [67–71]. The systems we simulated can
all be realized with lasers as photon sources and passive
elements, like phase plates and beam splitters (BS), to-
gether with number resolving photon counters. We will
assume to have programmable elements, which means
that we can dynamically change the values of the phase
imprinted by a plat and of the transmissivity of a BS on a
time scale faster than the time interval between the mea-
surements. This is necessary if we want to have adaptivity

in the estimation. In the examples of this paper, we range
from using a single bosonic mode system to controlling
ten modes. The resources for this class of experiments
are either the number of input states or the number of
photons in a signal. We studied multiphase estimation,
the agnostic Dolinar receiver [31], and coherent states
classification, both in the case where the states are classi-
cally known and in the case they must be learned from a
quantum training set. We have avoided the use of active
elements in all these experiments, that would generate
single or multimode squeezing. We also avoided the use of
other non-classical states of light like Fock states, which
would require an implementation of the physics of the
sensor that goes beyond that of Gaussian systems. This
is a limitation only of the presented applications, and
nothing prevents our framework from being useful also
for those systems.

III. APPLICATIONS ON THE NV CENTER
PLATFORM

All the NV center applications share the same input to
the agent, independently of the nature or the number d of
parameters to estimate. The construction of this input is
presented in Section IIIA. Similarly all these application
share also the same loss Section III B.

A. Input to the neural network

The input to the NN is obtained by concatenating, at
each iteration of the measurement loop, the estimators
for the unknown parameters, their standard deviations,
their correlation matrix, the total number of consumed
resources up to that point, and the index of the measure-
ment iteration. All these variables are rescaled to make
them fit in the [−1, 1] interval, which makes them more
suitable to be the inputs of a NN. More precisely the
input at the t-th measurement step is composed of the
following elements.

• Mean of the posterior given by

θ̂t :=

∫
θP (θ|xt,yt) , (5)

normalized to lay in the interval [−1, 1], which is pos-
sible since the prior is uniform with known extrema.
These inputs are d scalars, where d is the number of
parameters to estimate, and will be indicated with

the symbol θ̃t in the following.

• Standard deviations around the mean for each pa-
rameter computed from the Bayesian posterior dis-
tribution. Given the covariance matrix Σt defined
as

Σt :=

∫
(θ − θ̂t)(θ − θ̂t)

⊺P (θ|xt,yt) dθ , (6)
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the next d inputs to the NN are given by the vector
σ̃t, with entries

σ̃t,j := − 2

10
ln
√

Σt,jj − 1 , (7)

being
√

Σt,jj the said standard deviations. This
time, since we do not know in advance the admissible
values for the covariance matrix, we cannot cast the
standard deviation exactly in [−1, 1], but we can
do it approximately for standard deviations in the
range (10−5, 1), through the above formula. These
inputs are d scalars.

• Correlation matrix χt between the parameters, com-
puted as

χt,ij :=
Σt,ij√
Σt,iiΣt,jj

. (8)

This matrix doesn’t need the normalization, since
its entries are already in the interval [−1, 1]. The
matrix χt is flattened and each entry is added to
the input of the NN. These are d2 further scalars.

• The iteration index of the measurement loop t
normalized in [−1, 1], according to the maximum
number of measurement steps Mmax, fixed before-
hand. This input is a single scalar, indicated with
t̃ := 2t/Mmax − 1.

• The amount of consumed resources Rt normalized
in [−1, 1], according to the maximum amount of
resources R, also fixed beforehand. This is a single

scalar indicated with R̃t := 2Rt/R − 1. For the
NV center applications the resources are either the
number of measurements, i.e. Rt := t and R :=
Mmax, or the total free evolution time, i.e. Rt :=∑t

k=0 τk and R := Tmax.

The total length of the NN input as a function of the
number of parameters is ni := d2 + 2d + 2. If the NN
is used for the non-adaptive strategy it receives in input

only the two scalars R̃t and t̃, this is the case for the
decoherence estimation in Section III E.

B. Definition of the precision figure of merit

The error on the estimation task for the NV center is

L(λ) := tr[G ·K(λ)] , (9)

where K(λ) is the mean error matrix of the estimator θ̂
on the batch of B parallel simulations, i.e.

K(λ) :=

B∑
k=1

(θ̂ − θ)(θ̂ − θ)⊺ , (10)

G ≥ 0 is the weight matrix used to obtain a scalar error
for the multiparameter metrological problem, and λ are

the trainable variables of the agent. The estimator θ̂ is
the mean of the posterior defined in Eq. (5) but K(λ)
ought not to be confused with the covariance Σt defined
in Eq. (6). The latter refers to a single estimation, the
former to multiples; in other words K(λ) is the empirical
dispersion of the estimator, computed through multiple

experiments, while Σt is the uncertainty on θ̂t of a single
estimation. The mean error in Eq. (9) can be expanded
as

L(λ) =
B∑

k=1

tr[G · (θ̂k − θk)(θ̂k − θk)
⊺] , (11)

from which it is clear that the error ℓ(θ̂k,θk) for each
single estimation in the batch should be:

ℓ(θ̂k,θk) := tr[G · (θ̂k − θk)(θ̂k − θk)
⊺] , (12)

where the subscript k is the index of the simulation inside
the batch. For those examples with a fixed maximum
amount of free evolution time Tmax we use the cumulative
loss as a figure of merit for the precision in the training:

Lcum(λ) :=
1

MmaxB

Mmax−1∑
t=0

B∑
k=1

ℓ(θ̂k,t,θk)

η(θk, Tt,k)
, (13)

with normalizing factor η(θk, Tk) given by

η(θk, Tt,k) := min

(
d∑

i=1

Gii
(bi − ai)

12
,

1

Tt,k

)
, (14)

where the sum is over the d parameters θ, being (ai, bi)
the extrema of the uniform prior on the i-th parameter,
and Gii the i-th diagonal entry of the weight matrix. The
quantity Tt,k is the total elapsed evolution time, i.e.

Tt,k :=

t∑
m=0

τm,k , (15)

which plays the role of the amount of consumed resources
and can be different across the batch of estimations. The
quantity τt,k is the evolution time at the iteration index t,
for the k-th instance of the estimation in the batch. The
figure of merit Lcum is designed to take into account also
the precision of the intermediate results, and not only

the error of θ̂ at the end of the estimation. For those
examples referring to a measurement-limited estimation
we use the logarithm loss, i.e.

Llog(λ) :=
1

Mmax

Mmax−1∑
t=0

log

[
1

B

B∑
k=1

ℓ(θ̂k,t,θk)

]
, (16)

which is a version of the cumulative loss that doesn’t
require the normalizing factor η and has been found to
work better for measurement-limited estimations.
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C. DC magnetometry with time and phase control

1. Description of the task

The NV center electron spin is sensitive to magnetic
fields; for example, static fields determine the electron
Larmour frequency, which can be measured as an accumu-
lated phase by a Ramsey experiment. The spin projection
measurement that follows has a binary outcome according
to the selected spin state. Indicating with ±1 these two
outcomes their probabilities are

p(±1|ω, T2, τ) :=
1

2
± 1

2
e−τ/T2 cos (ωτ + φ) . (17)

This is the quantum sensor’s model that has to be hard
coded for the RL framework to be applicable. We can
easily identify the theoretical description of the model
using the convention defined in Section ID. The initial
state for the system is the state |+⟩⟨+|, while the physical
map Φ

(t,xt)
θ is the same at each step and can be divided

in the usual evolution of a spin under the action of a
magnetic field, with Hamiltonian

Ĥ :=
ℏω
2
σ̂z , (18)

followed by a φ phase rotation, and a dephasing of the
state. the phase ω := γB represents the unknown preces-
sion frequency to be estimated, which is proportional to
the static magnetic field B with γ ≃ 28MHz/mT. The
unitary component of the evolution is

Û(τ, φ) := exp

[
−i

(
Ĥτ

ℏ
+
φ

2
σz

)]
, (19)

and we define the action on the state as

Uτ,φ(ρ̂) := Û(τ, φ)ρ̂Û(τ, φ)† , (20)

The action of the dephasing integrated on the evolution
time τ can be described by a depolarizing dissipative term
that is written in the form of an LCPT map

Φτ (ρ̂) := ρ̂e−τ/T2 +
1

2
(1− e−τ/T2) , (21)

so that the map Φ
(t,xt)
θ defined in the breakdown of Sec-

tion ID is

Φ
(t,xt)
θ := Φτt ◦ Uτt,φt

, (22)

with xt := (τt, φt). The free evolution time τ and the
phase φ are controlled by the trainable agent, while ω is
the unknown parameter to be estimated. The parameter
T2 denotes the transverse relaxation time, serving as the
time scale for the dephasing induced by magnetic noise.
Mostly this is caused by the 13C in the diamond lattice. In
some of the examples of this section we perform multipa-
rameter estimation, indeed the transverse relaxation time

T2 may or may not be an unknown in the estimation. The
prior on the frequency ω is uniform in (0, 1)MHz. In the
simulations with unknown T−1

2 , a narrow prior, uniform
in T−1

2 ∈ (0.09, 0.11)MHz, was chosen. The optimization
of the NV center as a magnetometer has been extensively
studied in the literature with analytical tools [72, 73], with
numerics [74–86], and with Machine Learning [27, 87, 88],
but with the model-aware RL implemented by qsensoropt,
we were able to outperform these works, and redefine the
state-of-the-art for the performances of DC magnetometry
with NV centers.

2. Discussion of the results

We conducted multiple estimations summarized in
Fig. 3, where we compared the performances of the opti-
mized adaptive (NN) and non-adaptive strategies against
the Particle Guess Heuristic (PGH) [89], which is a com-
monly referenced strategy in the literature. Additionally,
we introduced a variant of the σ−1 strategy [73], named
σ−1&T−1, which accounts for the finite coherence time.
According to the σ−1&T−1 strategy, the evolution time τt
is computed from the covariance matrix Σt of the current
posterior distribution as

τt =
[
tr(Σt)

1
2 + T̂−1

2

]−1

, (23)

while the standard σ−1 strategy prescribes τt = tr(Σt)
− 1

2 .
In the case of a fixed T−1

2 , this value was used instead

of its estimator T̂−1
2 . For computing the controls of the

PGH strategy, two particles θ1 and θ2 are drawn from
the Bayesian posterior distribution; the evolution time is
then computed as

τt = (||θ1 − θ2||2 + ε)
−1

, (24)

with ε := 10−5 MHz. As a function of the normalized
input to the NN, the controls τ and φ are obtained from(

τt
φt

)
=

(
h
π

)
· |fNN(θ̃t, σ̃t, χt, R̃t, t̃ )|+

(
1 µs
0

)
, (25)

where h, which stands for “height”, is a prefactor that is
chosen to be appropriate for each simulation, and should
be of the order of magnitude of the expected optimal τt.
The NN is the function fNN. The prefactors h for our ex-
periments appear in the table below. For the time-limited
estimations these prefactors are chosen to be roughly
in accordance with the maximum value of the control
predicted by the analysis in [58, 90], for the measurement-
limited case see Appendix C. The constant shift added in
Eq. (25) and the absolute value are necessary to keep τt
strictly positive, which is helpful for the convergence of
the training. The NN has been pretrained to reproduce
a linear ramp for the control time τ , starting from 1 µs
and reaching τ = h at the end of the estimation. This be-
haviour has been suggested to us by the analytical results
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Time Measurement

T2 = ∞ Tmax
20

⌈2
√
Mmax µs⌉

T2 <∞ max
{
Tmax
20

, T2

}
max

{
⌈2

√
Mmax⌉ µs, T2

}
T−1
2 ∈ (a, b) max

{
Tmax
20

, a−1
}

max
{
⌈2

√
Mmax⌉ µs, a−1

}
Table I. Prefactor h appearing in Eq. (25) for DC magnetometry on an NV center.

exposed in Appendix C and in [58]. The same initial con-
trols are used for the non-adaptive strategy. Besides the
optimized adaptive strategy with time and phase controls
we reported also, under the name “Only τ”, the optimized
precisions achieved through controlling the time τt only,
also reported in [54]. From the plots in Fig. 3 we conclude
that there is only a very small advantage in controlling
the phase for T2 = 10µs, if there is any at all. Similarly,
with T2 = ∞, 100 µs no advantage has been found, al-
though the plots haven’t been reported. For T2 = 10 µs
and Tmax = 2560µs the phase control had converged to
the constant φ = π, and more training could not take it
out of this minimum. From the plot for T2 = 5µs we see
that the advantage of controlling the phase φ grows as
the coherence time becomes smaller. The results of the
simulations with T−1

2 ∈ (0.09, 0.11)MHz are very similar
to that with T2 = 10µs because of the relatively narrow
prior on T−1

2 .

3. Future directions

Typically, in the applications, the meaningful resource
is the total time required for the estimation. This doesn’t

coincide however with T =
∑Mmax−1

t=0 τt, because the ini-
tialization of the NV center, the read-out, and the data
processing all take time. This overhead time is propor-
tional to the number of measurements, so, in a real exper-
iment, we expect the actual resource to be a combination
of the evolution time T and the number of measurements
M . In future work, the role of the higher moments of the
Bayesian posterior distribution in the determination of
the controls should be explored. In particular, it should
be understood if with(

τt
φt

)
=

(
h
π

)
· |fNN(θ̃t, σ̃t, χt, γ̂1, µ̃4, µ̃5, . . . , R̃t, t̃ )|

+

(
1µs
0

)
, (26)

more precision from the adaptivity can be achieved. In
this formula γ̃1 is the skewness of the posterior and µ̃i

are its higher moments. A further improvement of this
work would be to implement non single-shot readout of
the NV center state, since at room-temperature it is the
only way to measure the spin, as done by Zohar et al. [81].
The decoherence model we have used in this example and
in all the others of the section works well for surface NV

center, while for bulk centers a better model is

p(±1|ω, T2, τ) :=
1

2
± 1

2
e−(τ/T2)

2

cos (ωτ + φ) . (27)

The majority of the theoretical works, especially those
papers involving ML [27], refer to Eq. (17), and we wanted
to be consistent with this trend in order to facilitate
the comparisons. A further study could be treating the
exponent of the dephasing term as a nuisance parameter.

D. AC magnetometer

1. Description of the task

In this section, we study the estimation of the intensity
of an oscillating magnetic field of known frequency with
an NV center used as an AC magnetometer. The NV
center spin precesses in the magnetic field of intensity B
and frequency ω, then its state is observed. The model
for the binary outcome of the Ramsey measurement is

p(±1|Ω, T2, τ) :=
1

2
± 1

2
e−τ/T2 cos

[
Ω

ω
sin(ωτ)

]
. (28)

These probabilities can be found with a physical setup
very similar to the one described in Section III C, where
we need to change the Hamiltonian of the system, which
now oscillates with frequency ω, i.e.

Ĥ :=
ℏΩ
2

cos(ωτ)σ̂z , (29)

in this situation we also neglect the controllable phase
φ, i.e. we set φ = 0 for all the measurement steps. The
evolution time τ is controlled by the trainable agent, while
Ω := γB is the unknown parameter to be estimated. The
parameter T−1

2 may or may not be an unknown in the
estimation; in all cases G = 1. The prior on Ω is uniform
in (0, 1)MHz for all the examples. The formula for τt is

τt = 1µs · |fNN(θ̃t, σ̃t, χt, R̃t, t̃ )|+1µs . (30)

The weights and biases of the NN are randomly initialized,
and so are the controls for the non-adaptive strategy.

2. Discussion of the results

The results of the strategy optimization for this model
are reported in Fig. 4. Remarkably the time-limited
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Figure 3. The performances of the optimized adaptive and non-adaptive strategies are reported in this plots for DC magnetometry
on NV center with time and phase control, together with the same strategies commonly used in the literature discussed in
Section III C. Along with the NN optimized to control τ and φ, the performances of the NN trained to control only the evolution
time τ are reported as the dotted brown line. The first two lines of plots have a fixed T−1

2 , with only the precession frequency ω
being estimated. In contrast, the last line refers to the estimation of both T−1

2 and ω simultaneously, i.e. θ = (ω, T−1
2 ). In both

cases G = 1. The shaded grey areas indicate the Bayesian Cramér-Rao bound, which is the ultimate precision bound computed
from the Fisher information, that can be found in Appendix A 3. For these estimations, we have used N = 480 particles for the
particle filter. In each plot, we reported also the batch size B and the initial learning rate α0 used in the simulations for the
“Adaptive” strategy.

estimations with long coherence time can saturate the
bound set by the Fisher information. The model used
in this example is formally equivalent to Eq. (17) with
φ = 0, where the adaptive strategy gives only small
advantages, at difference with the results obtained here for
AC-magnetometry. This is because the AC model maps to
the DC one in a very different region of parameters with
respect to the region we have explored in Section III C.

3. Future directions

In AC magnetometry the technique of dynamical de-
coupling is often used to improve the sensitivity with

respect to Ω and to increase the coherence time T2. This
consists of a series of π-pulses that reverse the sign of the
accumulated phase. Given ti, 0 < i < L+ 1, the times at
which the instantaneous π-pulse are applied, the outcome
probabilities for a Ramsey measurement on a noiseless
NV center is
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Figure 4. This figure refers to the problem of AC magnetometry on an NV center with known frequency ω = 0.2MHz, see
Eq. (28) for the model. The MSE of the optimized NN and static strategies are plotted, together with the performances of the
σ−1, the σ−1&T−1, and the PGH strategies, discussed in Section III C. On the left, the precisions of the time-limited simulations
are reported, while the plots on the right refer to the measurement-limited estimation. For all the plots G = 1. The shaded grey
areas indicate the Bayesian Cramér-Rao bound, which is the ultimate precision bound computed from the Fisher information,
that can be found in Appendix A4. For these estimations, we have used N = 480 particles for the particle filter. In each plot,
we reported also the batch size B and the initial learning rate α0 used in the simulations for the “Adaptive” strategy.

p(±1|Ω, T2, τ) :=
1

2
± 1

2
cos

[
Ω

ω

L+1∑
i=1

(−1)i (sin(ωti)− sin(ωti−1))

]
, (31)

with L being the number of pulses, and t0 and tL+1 being
respectively the initialization and the measurement times.

In the current simulations we haven’t used π-pulses, but
optimizing their application is the natural extension of
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this example, left for future works. For controlling the
pulses there are three possibilities, listed in the following.

• The interval between all the pulses is fixed to τ =
ti+1 − ti, which is produced by a NN together with
the number of pulses L. In this case, we have two
controls, one of them L being discrete.

• The controls are the L time intervals τi = ti − ti−1.
The number of pulses is fixed but they can be made
ineffective with τi = 0.

• The control is the free evolution time τ together
with a boolean variable, that tells whether a pulse
or a measurement has to be applied after the free
evolution. This would require a stateful model for
the NV center.

The problem of estimating the magnetic field knowing
the frequency is complementary to the protocol for the
optimal discrimination of frequencies [72], which has been
applied to distinguish two chemical species in a sample.
In this work the authors put forward an optimal strategy
for the discrimination of two frequencies ω and ω +∆ω,
knowing the intensity of the field. If ∆ω ≪ ω and the
field intensity is unknown, then a two stage approach to
the problem is possible. We first estimate the intensity of
the field as done in this example, while considering the fre-
quency ω to be fixed and known, then we proceed with the
optimal frequency discrimination based on the intensity
just estimated. The error probability of the second stage
depends on the precision of the first. Given a maximum
total time for the discrimination, the assignment of time
to the first and the second stages can be optimized to
minimize the final error. It is important for the first stage
to have low sensitivity to variations in the frequency, and
for ∆ω ≃ 0 we expect this two stage protocol to be close
to optimality. For optimizing the frequency discrimina-
tion with the field intensity as a nuisance parameter in
a fully integrated protocol the introduction of π-pulses
is necessary, as they have been used in [72]. The natural
extension of frequency discrimination is the estimation of
both the intensity and the frequency of the magnetic field
optimally, both starting from a broad prior. All these
improvements are left for future work.

E. Decoherence estimation

1. Description of the task

In this example, we study an NV center subject to
variable decoherence of the dephasing type, that we want
to characterize. The model for the binary outcome of the
Ramsey measurement is

p(±1|T, β, τ) := 1± e−(τ/T )β

2
, (32)

that can be obtained with a dynamical model similar to
the one described in Section III C, where we need to set

the magnetic field B or equivalently the frequency ω to
zero and change slightly the noise model, using

Φτ (ρ̂) := ρ̂e−(τ/T )β +
1

2

[
1− e−(τ/T )β

]
. (33)

The evolution time τ is controlled by the trainable agent,
while T−1 and β are the two unknown characteristic
parameters of the dephasing noise, i.e. respectively the
transverse relaxation time and the decay exponent. In
the applications, the coherence time of the noise encodes
some useful information about the environment, like the
concentration of radicals in a biological sample or the
transport property of a material. The priors on T−1 and β
are uniform in (0.01, 0.1)MHz and (1.5, 4.0) respectively.

2. Discussion of the results

In this section, we compare the results of various strate-
gies to control τ , which are reported in the following.

• Optimized adaptive strategy with a trained NN,
that outputs the control according to

τt = 100µs · |fNN(θ̃t, σ̃t, χt, R̃t, t̃ )|+1µs , (34)

• Static strategy implemented with a NN that receives

in input only R̃t and t̃, i.e.

τt = 100µs · |fNN(R̃t, t̃ )|+1µs , (35)

• Random strategy, where the inverse of the evolution
time τ−1 is chosen randomly and uniformly in the
support of the prior for T−1, i.e. (0.01, 0.1)MHz.

• Inverse time strategy. In this case, the evolution

time is τ := α
1/β̂
M T̂−1 for the measurement-limited

estimation and τ := α
1/β̂
T T̂−1 for the time-limited es-

timations, where αM = 0.79681 and αM = 0.43711.
These numerical coefficients come from the opti-
mization of the Fisher information reported in Ap-
pendix A 5. For the simulations where β is treated
as a nuisance parameter, αM is used also for the
time-limited estimation. This strategy not only

depends on the current estimate T̂−1 for the deco-
herence time but also on the estimator for the decay

coefficient β̂, and it is, of course, adaptive.

Notice that, differently from the other NV center exam-
ples, the non-adaptive strategy for this application has
been implemented not as a list of controls for each in-
dividual measurement but as a NN. The results of the
strategy optimization for this model are reported in Fig. 5.
Both the adaptive and non-adaptive strategies have been
pretrained to reproduce a linear ramp that reaches the
maximum τ = 100 µs at the end of the estimation. From
these simulations, we conclude that there is no advantage
in using a NN instead of the strategy that optimizes the
Fisher information, except when we are interested in the
estimation of β.
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Figure 5. In these plots the MSE for the decoherence estimation on an NV center is reported as a function of the consumed
resources, with the time-limited estimations on the left and the measurement-limited ones on the right. In the first line of plots,
the decaying exponent β is unknown and it is treated as a nuisance parameter. Therefore, only the precision on the inverse
decay time appears in the loss. The plots on the second line refer to the case where β is known and fixed (β = 2), and only
T−1 is estimated. In the third line of plots β and T−1 are unknown and are both parameters of interest. In this case, the
weight matrix is chosen to be G = diag(1, 1/800MHz2), to compensate for the different order of magnitude of the values of the
parameters β and T−1. The shaded grey areas indicate the Bayesian Cramér-Rao bound, which is the ultimate precision bound
computed from the Fisher information, see Appendix A 5 for details. For these estimations, we have used N = 2048 particles for
the particle filter. In each plot, we reported also the batch size B and the initial learning rate α0 used in the simulations for the
“Neural Network” strategy.

3. Future directions

Identifying the decay exponent has applications in dis-
tinguishing the type of NV center, surface of bulk, that
we are dealing with. Such a problem would be formulated
in terms of a discrimination task between β = 1, 2, with
T as the nuisance parameter.

F. Hyperfine coupling estimation

1. Description of the task

In this example, we study the measurement of an NV
center strongly coupled to a 13C nuclear spin in the di-
amond lattice. Such nuclear spin is not hidden in the
spin bath of nuclei that are responsible for the dephasing
noise, instead, it causes a relatively large split of the en-
ergy levels of the NV center, according to the hyperfine
interaction strength, that can be measured in an exper-
iment. The precession frequency of the NV center in a
magnetic field is determined by the state of the nuclear
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spin. In the experiment of T. Joas et al. [66] multiple in-
coherent nuclear spin flips happen during the read out, so
that the nuclear spin is in each eigenstate approximately
half of the time. This motivates the choice for model
probability of the Ramsey measurement:

p(±1|ω0, ω1, T2, τ)

:=
1

2
± 1

4
e−τ/T2 [cos (ω0τ) + cos (ω1τ)] , (36)

which we take directly from [66]. In such a model, ω0

and ω1 are the two precession frequencies to be estimated,
split by the hyperfine interaction, T2 is the coherence
time, while τ and φ are the controls, that are respec-
tively the evolution time and the phase. This model is
completely symmetric under permutation of the two pre-
cession frequencies, therefore only those weight matrices
G that are permutationally invariant in the two parame-
ters should be considered for this estimation. The prior
on (ω0, ω1) is the uniform distribution over the triangle
in the (ω0, ω1) plane identified by the points (0, 0)MHz,
(0, 1)MHz, and (1, 1)MHz, since we have decided to can-
cel this permutation symmetry by fixing ω1 > ω0. An
important observation to be made is that the Fisher in-
formation matrix (FI) I(τ, φ) for ω0 and ω1 of the model
in Eq. (36) is singular and remains singular even for mul-
tiple measurements with different τ and φ. This means
that the Fisher information is of no use in the optimiza-
tion of the strategy. The controls τ and φ are computed
according to Eq. (25) with the prefactor

h = min

(
40,

T2
2

)
. (37)

The means square errors of the two frequencies are
weighted equally with G = 1. The frequency difference
is the component of the hyperfine interaction parallel to
the NV center quantization axis, i.e. A|| = |ω1 − ω0|.

2. Discussion of the results

Besides the NN and the static strategies, the perfor-
mances of the particle guess heuristic (PGH) and of the
σ−1 strategies have been tested. The results are reported
in Fig. 6. The NN is pretrained to reproduce a linear ramp
for the control time, that reaches its maximum τ = h
at the end of the estimation, while the phase control is
random. Similarly, the non-adaptive strategy is initially
a linear ramp in τ and is random in φ. From these sim-
ulations, there seems to be no significant advantage in
using an adaptive strategy for the simultaneous estima-
tion of the two precession frequencies, neither for large
nor for small coherence times T2. Nevertheless optimizing
with model-aware Reinforcement Learning still gives us
an advantage with respect to other simpler approaches.

3. Future directions

There is also another way of expressing the outcome
probability of the measurement: instead of defining the
model in terms of ω0 and ω1 we could define it in terms
of the frequencies sum Σ = ω0 + ω1 and difference ∆ =
ω1 − ω0, thus writing

p(±1|Σ,∆, T2, τ) :=
1

2
± 1

4
e−τ/T2

[
cos

(
Σ+∆

2
τ

)
+ cos

(
Σ−∆

2
τ

)]
. (38)

In this form there is no permutational invariance in Σ
and ∆, instead, the model is invariant under the trans-
formation ∆ → −∆. Using this expression, we should
choose a prior having ∆ > 0, which means ω1 > ω0,
and we should impose the positivity of the frequencies
by requiring Σ > ∆ in the prior. Since we are interested
in the difference ∆, the sum of the frequencies Σ would
be treated as a nuisance parameter. The absence of an
advantage of the adaptive strategy over the non-adaptive
one is probably also due to the hyper-simplified infor-
mation passed to the NN. We are in fact approximating
a complex 2D posterior, with many peaks and valleys
with a Gaussian. A better approach would be to train
an autoencoder to compress the information contained in
the posterior and pass it to the NN. The autoencoder will
be trained to compress the class of distributions that are
produced by the likelihood of the Section III F. In uture
work, we plan to extend the estimation to the detection

of multiple nuclear spins surrounding the NV center. For
the estimation of n frequencies in the model

p(±1|{ωi}ni=0, T2, τ) :=
1

2
± 1

2n
e−τ/T2

n−1∑
i=0

cos(ωiτ) , (39)

an appropriate precision figure of merit would be

ℓ(θ̂,θ) := min
π∈Sn

n−1∑
i=0

(ω̂i − ωi)
2 , (40)

with θ = (ω0, ω1, . . . , ωn−1) and θ̂ = (ω̂0, ω̂1, . . . , ω̂n−1),
and Sn being the permutation group of n elements. If
we impose the condition ωi ≤ ωi+1, then we can get rid
of the minimization in the permutation. In this case, it
is interesting to notice that the n-dimensional volume of
the parameter space for a uniform prior on ωi which is



14

Figure 6. Sum of the mean square errors on the frequencies ω0 and ω1 for the optimized adaptive (NN) and non-adaptive
strategies (static), compared to other common strategies used in the literature [66] and described in Section III C. The shaded
grey areas in the above plot indicate the Bayesian Cramér-Rao bound, which is the ultimate precision bound computed from
the Fisher information, see Appendix A6 for details. For these estimations, we have used N = 4096 particles for the particle
filter. In each plot, we reported also the batch size B and the initial learning rate α0 used in the simulations for the “Adaptive”
strategy.

null outside of (a, b) is reduced by a factor n! due to the
symmetry of the parameters, i.e.

Vn ≤ (b− a)n

n!
. (41)

This may reduce the number of particles necessary to rep-
resent the Bayesian posterior and make the optimization
of this application accessible.

IV. APPLICATIONS ON THE PHOTONIC
CIRCUITS PLATFORM

In this section, we report all the information and data
related to the examples on the photonic platform, i.e. the
agnostic Dolinar receiver, the classification of known and
unknown coherent states, and multiphase discrimination
in a four arms interferometer.

A. Agnostic Dolinar receiver

1. Description of the task

In [54] we already discussed the Dolinar receiver, and
in this section we briefly review the physics of this system
and the task we are trying to solve. The goal consists of
distinguishing between the two coherent states |−α⟩ and
|α⟩ with α unknown using a single copy of the signal |±α⟩.
The Dolinar receiver, known for its good performance, tra-
ditionally uses a local oscillator (LO) synchronized with
the sender’s laser. Recent studies introduced an alterna-
tive, the agnostic Dolinar receiver, eliminating the need
for the LO. Instead, the new device utilizes n reference
states |α⟩ sent alongside the signal. In this setup, classical
knowledge about |α⟩ is absent, treating it as an unknown

parameter. The device, as shown in Fig. 7, utilizes |α⟩⊗n
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to discriminate the sign of the signal. The signal is com-
bined with a reference state on a programmable BS with
transmissivity θt. The result of the photon counting at
each BS is used to update the Bayesian posterior on α
and the signal’s sign. A NN determines the angle θt+1 for
the next BS. This task involves continuous (the signal’s
amplitude α ∈ R) and discrete (signal sign) parameters.
The performance of the receiver is evaluated based on the
error probability in the classification of the signal’s sign,
while the amplitude α is a nuisance parameter. With
this schematization, we can identify the parameters of the
dynamical model defined in Section ID. Differently from
all the variations of the NV center studied until now, in
this case, there is no dynamical evolution, meaning that
the LCPT map Φt,xt

θ is always equal to the identity. In
this case, all the control is in the collection of operators
{M̂yt

(xt)}, which means that the initial state of the probe
is already encoded, as it comes from a different laboratory
on which we don’t have any control. The input state for
this procedure is the pure state |α⟩⊗n ⊗ |±α⟩. At the

k-th step, the measurement operators M̂yk
(xk) can be

written as the product of a BS operation, implemented by
Û (k,n+1)(θk), that mixes the n+ 1-th state, namely the
one to discriminate, with the reference state in position k,
followed by a measurement on the k-th component using
photon counting. In equations,

M̂mk
(θk) = |mk⟩k⟨mk|Û (k,n+1)(θk) , (42)

where we revised slightly the notation to make it closer
to the standard one for a beam splitter, using θk instead
of xk as the mixing angle, and using mk instead of yk as
the integer number that represents how many photons
have been counted. This formula holds for all the steps

except the last one, where two photon-counting operators
are present, instead of one.

Input to the neural network

The input to the NN is the concatenation of the follow-
ing nine scalar values.

• The signal intensity ψ+
t after the t-th measurements,

assuming that the initial state was |+α⟩.

• The posterior estimator for the initial signal inten-
sity α̂+, assuming the signal’s sign was s = +.

• The variance of the posterior distribution σ̂+ for
the initial signal intensity, assuming the sign was
s = +.

• The signal intensity ψ−
t after the t-th measurements,

assuming that the initial state was |+α⟩.

• The posterior estimator for the initial signal inten-
sity α̂−, assuming the signal’s sign was s = −.

• The variance of the posterior distribution σ̂− for
the initial signal intensity, assuming the sign was
s = −.

• The posterior probability p̂+ that the original signal
had a + sign.

• The index of the current measurement step, nor-
malized in the interval [−1,+1] with respect to
the total number of measurements, indicated with
t̃ := 2t/Mmax − 1.

The reflectivity θt is produced by the NN through the
following formula

θt = fNN(ψ
+
t , α̂+, σ̂+, ψ

−
t , α̂−, σ̂−, p̂+, t̃)− π · (nPhot mod 2) . (43)

The symbol nPhot indicates the total number of photons
measured up to the point where the NN is called, which
controls the addition of an extra phase −π to the trans-
missivity. The same mechanism is implemented for the
non-adaptive strategy.

Definition of the precision figure of merit

The loss in the agnostic Dolinar receiver measures the
error in guessing the sign of the signal |±α⟩, after it
has been completely measured. The lower bound on the
error probability given n copies of the reference states
is pH(α), and can be found in Appendix B 1. We have
implemented two possible policies for guessing the sign
s, that we indicate respectively with ŝBayes and ŝParity.

They are respectively

ŝBayes(p̂+) :=

{
+1 if p̂+ > 0.5 ,

−1 if p̂+ ≤ 0.5 ,
(44)

and

ŝParity(nPhot) :=

{
+1 if nPhot mod 2 = 0 ,

−1 if nPhot mod 2 = 1 .
(45)

The Kronecker delta function

δ(x, y) :=

{
1 if x = y ,

0 if x ̸= y ,
(46)

is necessary to introduce the losses, which are
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Figure 7. Representation of the measurement loop for the Dolinar receiver. The signal state |±α⟩ is mixed with the reference
states and measured with photon counting. The posterior distribution on α has two components, corresponding to the signs
s = ±1. The intensity of the intermediate signal ψ±

t , the mean and the variance of the posterior, are fed to the NN that
computes the next transmissivity.

• loss=0: ℓ(p̂+, s) := 1− δ(ŝBayes, s),

• loss=1: ℓ(p̂+, s) := 1− p̂s,

• loss=2: ℓ(nPhot, s) := 1− δ(ŝParity, s),

• loss=3: ℓ(p̂+, s, α) := 1− δ(ŝBayes, s)− pH(α),

• loss=4: ℓ(p̂+, s, α) := 1− p̂s − pH(α),

• loss=5: ℓ(nPhot, s, α) := 1− δ(ŝParity, s)− pH(α),

• loss=6: ℓ(p̂+, s, α) :=
1−δ(ŝBayes,s)

pH(α) ,

• loss=7: ℓ(p̂+, s, α) :=
1−p̂s

pH(α) ,

• loss=8: ℓ(nPhot, s, α) :=
1−δ(ŝParity,s)

pH(α) ,

All these losses, when averaged, converge to the proba-
bility of a wrong classification. It is not obvious a priori
which loss is the best one.

Discussion of the results

The simulation results are presented in Fig. 8. While
in [54] we trained the optimized strategies with loss=3
in this paper we used loss=6, which seems however to
deliver slightly worst results. In both cases, the plots
represent loss=0, averaged over many executions of the
estimation task.

B. Quantum Machine Learning classification of
states

In this example, we put forward a quantum Ma-
chine Learning (QML)-based classifier able to distin-
guish between three coherent states |α0⟩, |α1⟩, |α2⟩, with
α0, α1, α2 ∈ C, given n copies of each of them, which
constitute the quantum training set. The signal state is a
single copy of a coherent state, promised to be one of the
three training states, i.e. |αs⟩ with s = 0, 1, 2. The priors
on the components of the training states |α0⟩, |α1⟩, |α2⟩
are uniform in the harmonic oscillator phase space in a
square of side 2α centered at the origin, that is

αR
i := ℜ(αi) ∈ (−α,+α) , αI

i := ℑ(αi) ∈ (−α,+α) ,
(47)

for i = 1, 2, 3. Also the prior on the signal classes s =
0, 1, 2 is uniform. What makes this task difficult is that
the complex numbers α0, α1, α2 are not precisely known,
not at least beyond the information coming from the prior.
There are therefore seven parameters to be estimated: the
real and imaginary components of these three complex
amplitudes (six continuous parameters in total), plus the
class of the signal s, which is a discrete parameter. The
device that performs this task is made of programmable
BS only, of which we control the transmissivity θ and
the phase φ, and is represented in Fig. 9. The resource
consumed in a single execution of the discrimination task
is the average number of photons in the device, i.e.

Nph := n
(
|α0|2 + |α1|2 + |α2|2

)
+ |αs|2 . (48)

In this application, we experimented also with using a
ternary decision tree as an agent instead of a NN. The
device presented in this section can also be interpreted
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Figure 8. Comparison of error probabilities for various strategies with different numbers of copies of |α⟩, specifically n = 4
and n = 8, for loss=6. The shaded gray area is the region excluded by the Helstrom bound [91, 92], which is the lowest error
probability theoretically achievable when assuming having an infinite number of reference states (n = ∞) at disposal. The solid
red and violet lines are the Helstrom bound calculated for a finite number of copies of |α⟩ [31], respectively n = 4 and n = 8.
For the details on the computation of the Helstrom bound see Appendix B 1. The black dashed line showcases the lowest error
found in the old work [31], without Machine Learning, while the black solid line is the performance achieved using the NN. The
performances of the optimal non-adaptive strategies haven’t been reported since they can’t rival the ones of the NN. For both
the training and the performance evaluation we used N = 512 particles. In each plot, we reported also the batch size B and the
initial learning rate α0 used in the simulations for the “Neural Network” strategy.

Figure 9. Schematic representation of the quantum Machine learning discrimination device controlled by the NN. The training
set states enter sequentially the ports of the BS from above, where they are mixed with the signal. The outcome of the photon
counting measurement is then used to update the posterior distribution on the values of α0, α1, α2, and s. The order in which
the measurements are performed is indicated near the symbols for the photon counters, from which we deduce M = 13. All the
outcomes of the previous measurements contribute to the determination of the next controls through the PF and the NN.

as a generalization of the agnostic Dolinar receiver of
Section IVA.

Input to the agent

Let us define the posterior probabilities of the signal
being respectively s = 0, 1, 2 as p̂0, p̂1, and p̂2. This
distribution is computed as the marginal of the Bayesian

posterior by integrating over the continuous variables,
and can be computed on the particle filter. In case the
agent is a NN, then it receives as input the following 19
scalars.

• The average state of the signal after the t-th photon
counting measurements. These are two scalar values,
i.e. the real and imaginary parts of the coherent

state, and will be indicated collectively as ψ̂t. The
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average is taken over the posterior distribution.

• The mean posterior estimator for the real and imag-
inary components of the complex amplitudes of the
three training states at the t-th step, collected in
the tuple α̂t := (α̂R

0 , α̂
I
0, α̂

R
1 , α̂

I
1, α̂

R
2 , α̂

I
2).

• The standard deviations from the mean of the ampli-
tudes of the reference states, collected in the tuple
σ̂t := (σ̂R

0 , σ̂
I
0 , σ̂

R
1 , σ̂

I
1 , σ̂

R
2 , σ̂

I
2). The scalars passed

to the NN are actually − 1
10 log σ̂t.

• The posterior probability for the initial state to be
s = 0, normalized in [−1,+1], i.e. p̃0 := 2p̂0 − 1.

• The posterior probability for the initial state to be
s = 1, normalized in [−1,+1], i.e. p̃1 := 2p̂1 − 1.

• The posterior probability for the initial state to be
s = 2, normalized in [−1,+1], i.e. p̃2 := 2p̂2 − 1

• The index of the current photon counting mea-
surement normalized in [−1,+1], indicated with

t̃ := 2t/Mmax − 1.

• t̄ = t mod 3 − 1. This tells whether the current
photon counting is performed by mixing the signal
with |α0⟩, |α1⟩, or |α2⟩.

The two controls for the beam splitter are obtained di-
rectly from the NN as(

θt
φt

)
= fNN

(
ψ̂t, α̂t,−

1

10
log σ̂t, p̃0, p̃1, p̃2, t̃, t̄

)
. (49)

Now we focus on the case the agent is a ternary decision
tree, see Fig. 10. In this case, the input is based directly
on the string of outcomes yt instead of going through
the Bayesian posterior distribution. The outcome yt of
each measurement, i.e. the number of photon observed
in the photon counter, is classified into one of the three
classes according to the relation with the mean number
of photons ⌊α2⌉. This is realized by defining the variable
ỹt, i.e.

ỹt :=


0 if yt ≤ ⌊α2⌉ − 1 ,

1 if yt = ⌊α2⌉ ,
2 if yt ≥ ⌊α2⌉+ 1 .

(50)

The infinite possibilities for the outcomes get reduced to
only three classes without losing too much information.
The modified outcomes up to the t-th measurement are
used to decide which branch to follow at each node of
a ternary decision tree, and are collected in the tuple
ỹt := (ỹ0, ỹ1, . . . , ỹt). The path in the tree (and the whole
controls trajectory) is completely identified by ỹt. At each
node there are a couple of controls (θ, φ) to be used in
the next measurement, which are the trainable variables
of the agent, and are returned in the call to the strategy,
i.e. (

θt
φt

)
= fTree(ỹt, t) . (51)

where fTree represents the decision tree.

Figure 10. Example of a decision tree used in the quantum
machine learning classifier. A tuple of controls (θ, φ) is associ-
ated with each node in the tree. The value ỹt determines the
path chosen in the tree at each node in an experiment.

Definition of the precision figure of merit

The precision is the estimated error probability of a
wrong classification. The estimator for the signal class is

ŝ(p̂) := argmax(p̂0, p̂1, p̂2) , (52)

where p̂ := (p̂0, p̂1, p̂2), and the loss for each instance of
the task reads

ℓ(p̂, s) := 1− δ(ŝ, s) , (53)

which is one if an error is made and zero if the guess is
right. Averaged on many estimations, it converges to the
error probability for the classification task.

Discussion of the results

We have trained the QML classifier for α = 0.75 and
α = 1.00. All the estimations have been performed for
n = 4. We studied the precision of the discrimination
device in the quantum regime, i.e. with a small number of
photons, since for α≫ 1 the coherent states are perfectly
distinguishable. With α = 0.75, the signal contains on
average 0.5 photons, we should therefore expect relatively
large discrimination errors even with optimal strategies.
Nevertheless, the point of the optimization is to extract
every last bit of information from the device, even in a
regime where the errors are relatively frequent. The per-
formances of the NN and the decision tree are compared to
that of the optimized non-adaptive strategy and the pre-
cision of a non-optimized strategy, for which each photon
counter receiver the same fraction of the signal |αs⟩. The
ultimate precision limit is represented by the pretty good
measurement (PGM), discussed in Appendix B. This last
cannot be realized with linear optics and photon counting,
and assumes a perfect a priori knowledge of the training
states |α0⟩, |α1⟩, and |α2⟩ which we don’t have. To make
a more fair comparison, we assumed the PGM consumes
2n training states where this QML device consumes only
n. The 2n copies are intended to be sufficient to perfectly
identify αi, in order to later perform the corresponding
PGM on the signal |αs⟩. Still, the PGM error probability
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is not expected to be achievable. The performances of
the QML classifier for different controls are reported in
Fig. 11. There is a gap between the performances of the
non-adaptive controls and the two adaptive strategies (NN
and decision tree). This gap starts from zero and grows
with the average number of photons. This is intuitive
since with very few photons we don’t expect the adaptive
measurements to be better than the non-adaptive one,
because almost always the measurement outcomes of the
photon counters will be zero, which doesn’t give any in-
formation about the training states. On the other hand,
with many photons there is more space for learning. This
can be also understood considering the number of possible
trajectories of the Bayesian posterior during the estima-
tion, which is only one for α = 0 (no update is made,
the outcomes are always zero), and grows exponentially
with the number of photons. More possible trajectories
means having potentially different controls on each one
of them in order to improve the precision, which is by
definition adaptivity. In Fig. 12 we report some examples
of trajectories.

In our experiments, we observed that the convergence
of the NN to the optimal strategy is slow and doesn’t
always happen (see the case α = 0.75 in Fig. 11), while
the decision tree is shown to be a superior control for this
device. In general, for a problem with many parameters
and a relatively small space of possible outcome trajecto-
ries, the decision tree is superior to the NN. On the other
hand, with few parameters and a large space of outcome
trajectories (like in the examples on NV centers), the
decision tree is unusable in the form we presented here
and the NN is superior. For a large number of average
photons ⟨Nph⟩ the error probability curves tend to satu-
rate. This is because even with infinite n, and therefore
perfect knowledge of the training states, a single copy
of the signal can’t be classified unambiguously. In this
application, we have used N = 512 particles to represent
the posterior distribution, which, conventional wisdom
says are too few for the estimation of seven parameters.
We have observed though that using N = 1024 particles
doesn’t improve significantly the precision. Notice that in
this device we are performing the simultaneous estimation
of multiple quantum incompatible parameters [93], that
are the real and imaginary components of the states am-
plitudes, whose corresponding generators x and p don’t
commute. We have also tried to implement the discrim-
ination on a parallel device, instead of the serial one
represented in Fig. 9. In this case, the original signal is
first equally split on three wires, i.e. |αs⟩ → | αs√

3
⟩⊗3, and

on each line the signal is mixed with the n copies of the
same training state. The performances of this parallel
device, however, turned ou to be always worst then the
serial one and are not reported here.

1. Future directions

The controls from the decision tree have the advantage
of being faster to compute with respect to those of the
NN, but storing the tree requires more memory. A fu-
ture direction of research could be to trim the decision
tree after the training by keeping only those paths that
correspond to the most probable trajectories.

C. Multiphase discrimination on a photonic circuit

1. Description of the task

In this section, we examine an example of multiphase
estimation. We consider an interferometer consisting of
four arms [94], with two balanced quarters serving as
the opening and closing elements respectively. A quarter
generalizes a beam splitter to have four inputs and four
outputs. After passing through the closing quarter, all
wires are measured using photon counters. Three of the
four arms experience phase shifts with unknown phases
φi for i = 0, 1, 2. Immediately after they are subjected
to three other phase shifts ci ∈ [0, 2π), which are the
controls in our experiment, managed by the agent. In
this interferometer, represented in Fig. 13, we simultane-
ously test each line to determine the presence or absence
of a phase shift, which can only assume the two values
φi ∈ {0, 1} rad. In some practical applications, these
phase shifts could result from the presence on the line of
a specific object, a chemical species, or it could represent
a piece of encoded information that we want to retrieve
(think of an optical memory device). This photonic appli-
cation can also be considered as a very rudimental form
of adaptive imaging with few photons. During the experi-
ment a total of Mmax identical copies of an input state
are fed sequentially to the interferometer and measured
independently on the interferometer’s end. Based on the
outcomes of the four photon counting measurements, the
correct values for the tuple φ := (φ0, φ1, φ2) is inferred
using Bayesian inference. The agent is a NN that outputs
the tuple of control phases c := (c0, c1, c2) to be applied in
the next round of measurements. The schematization of
the dynamical model defined in Section ID can be applied

also in this case. The LCPT map Φ
(t,xt)
φ is unitary and

thus can be written in the form

Φ(t,xt)
φ (ρ̂) := Ûφρ̂Û

†
φ , (54)

where we have introduced the unitary operator Ûφ(ct),
which is a simple composition of the unitary matrices
representing the quarter and the phase shifts shown in
Fig. 13 on each bosonic line:

Ûφ := Û(φ2)Û(φ1)Û(φ0)Ûquarter. (55)

The measurement operators are similar, and can be writ-
ten as a product of unitaries implementing teh controlled
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Figure 11. Error probabilities as a function of the average number of photons in the QML device for the classification of coherent
states, reported for different strategies. Both “Neural Network” and “Decision Tree” are optimized adaptive strategies. The
“Non-optimized” strategy refers to a device where the phase imprinted by the BS are all zero and the reflectivity is chosen, so
that the same fraction of the signal reaches each one of the photon counters. The shaded grey areas indicate the performances
of the pretty good measurement (PGM), computed for 2n copies of each training state, see Appendix B 4 for details. This is not
the ultimate achievable precision for the classification problem, but it is a reasonable reference value not achievable with linear
optics. Both the weights of the NN and the controls in the non-adaptive strategies have been initialized randomly. For these
estimations, we have used N = 512 particles to represent the posterior. In each plot, we reported also the batch size B and the
initial learning rate α0 used in the simulations for the “Neural Network” strategy.
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Figure 12. Five trajectories for the neural network controls θ and ϕ are showed as a function of the measurement index t. The
colour shade indicates the five different executions of the experiment. The parameters α0, α1, α2 has been selected at random
within the prior interval, like the signal class s = 0, 1, 2 for these five instances estimation. There is a tendency for the control
trajectories to diverge in time (this can be seen well in the plot for θ), since having already done some measurements means
that the controls can be tailored to the particular instance of the task. This behaviour is trained in the NN but is hard-coded in
the decision tree strategy.

phase shifts ci, then the same quarter unitary operator
and, lastly, a series of photon-counting measurements on
all the lines, that can be written as projectors on the
base that diagonalize the number operators for each of
the lines. Notice that the control c can be inserted as a
part of the dynamical model Φ

(t,xt)
φ as well as a part of

the measurement.

Input to the neural network

The input to the NN is build from the concatenation
of the following 10 scalar quantities.

• The Bayesian posterior probabilities for the hypothe-
ses on the values of the phases φi, i.e. {wj}8j=1 with∑8

j=1 wj = 1.

• The index of the measurement step normalized in
[−1,+1], i.e. t̃ := 2t/Mmax − 1, where Mmax is
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Figure 13. Four modes interferometer for the simultaneous estimation of three phases. The interferometer has two balanced
quarter as opening and closing elements, which are the generalization of the balanced BS for four modes in input and four modes
in output. The three unknown phases are called φ0, φ1, φ2 ∈ {0, 1} rad, while the control phases are c0, c1, c2. The input of the
NN are the eight probabilities constituting the posterior distribution on the values of the three phases.

the number of measurements. A single use of the
interferometer, in which we sent an input state and
read all the four photon counters is treated as a
single measurement.

• The normalized average number of photons con-
sumed in all the previous measurements, indicated

with Ñph.

The three controls phases ci are computed asc0c1
c2

 = 2π · fNN

(
{wj}8j=1, t̃, Ñph

)
. (56)

Definition of precision figure of merit

On each estimation in the batch the error is zero if the
correct phases are guessed correctly and one if the guess is
wrong. Let us indicate with the symbol h ∈ {1, 2, . . . , 8}
the index of the correct value, then the estimator for this
discrete parameter is

ĥ
(
{wj}8j=1

)
:= argmax(w1, w2, . . . w8) , (57)

and the loss is given by

ℓ(ĥ, h) := 1− δ(ĥ, h) , (58)

which, averaged on the batch, is the probability of a wrong
classification.

Discussion of the results

In our simulations the input state always takes the form
of a product of coherent states on the four bosonic wires,
i.e. |ψin⟩ = |α0α1α2α3⟩. We investigate the performance
of both optimized adaptive and non-adaptive strategies for
the following four inputs having different average number
of photons ⟨n⟩.

• |ψin⟩ = |1000⟩: α0 = 1, α1 = α2 = α3 = 0, ⟨n⟩ = 1:

• |ψin⟩ = |1100⟩: α0 = α1 = 1, α2 = α3 = 0, ⟨n⟩ = 2:

• |ψin⟩ = |1110⟩: α0 = α1 = α2 = 1, α3 = 0, ⟨n⟩ = 3:

• |ψin⟩ = |1111⟩: α0 = α1 = α2 = α3 = 1, ⟨n⟩ = 4:

The total number of measurements for each estimation
remains fixed to Mmax = 32 in all the plots of Fig. 14,
however, the maximum number of photons is given by
⟨Nph⟩max := ⟨n⟩Mmax, and varies according to the input
state. From Fig. 14, we infer that for the input states
|ψin⟩ = |1000⟩ , |1100⟩, the adaptive strategy offers some
advantage over the non-adaptive one, while for states with
a higher number of photons the non-adaptive strategy is
optimal. The most efficient input, in terms of the number
of photons consumed to achieve a specific error proba-
bility, is |ψin⟩ = |1000⟩. The state with three photons
doesn’t perform as well as the other inputs. Regarding
the damage to the sample or the energy consumed, both
of which are proportional to the total number of photons,
it is preferable to conduct multiple measurements, each
involving fewer photons, rather than fewer measurements
with a larger number of photons. Thus, minimizing en-
ergy consumption or potential sample damage requires



22

Figure 14. These plots display the probability of incorrectly guessing the value of the unknown phases (φ0, φ1, φ2) as a function
of the average number of photons consumed during the estimation, shown on the lower x-axis. The title of each plot indicates the
input state and the maximum average number of photons ⟨Nph⟩max used for this values discrimination task. The upper x-axis
represents the number of measurements t, i.e., the number of input states |ψ⟩ utilized. The optimized adaptive and non-adaptive
strategies are compared to the random strategy, where the controls ci are randomly selected uniformly in the interval [0, 2π).
The shaded grey areas indicate the performances of the pretty good measurement (PGM), computed for multiple copies of
the encoded states, see Appendix B 3 for the details. This is not the ultimate precision bound regarding this discrimination
problems, but it is a reasonable reference value not achievable with linear optics. In each plot we reported also the batch size B
and the initial learning rate α0 used in the simulations for the “Adaptive” strategy.

extending the total measurement time, which may become
impractical beyond a certain limit. For a set number of
measurements, and hence a fixed estimation time, states
with a higher photon number generally outperform those
with fewer photons, with |ψin⟩ = |1110⟩ being an excep-
tion. The observation that either the states with high or
low photon count are optimal, depending on the resources
we consider, underlines the importance of agreeing on the
nature of the expensive resource while discussing metrol-
ogy. For the states |ψ⟩ = |1111⟩ the NN is not able to
perfectly reproduce the performances of the optimal non-
adaptive strategy, most probably because it converges to
a local minimum of the loss during the training. Both the
NN and the non-adaptive strategies have been randomly
initialized in [0, 2π) before the training.

D. Non-adaptive linear classifier of coherent states

1. Description of the task

In the example of this section the goal is to classify a
coherent state |αs⟩, which we are promised is one of the

states {|αi⟩}d−1
i=1 , which are classically known, at difference

with Section IVB. For doing this we will employ a net-
work of beam splitters and phase plates (BS network) that
receives in input the signal |αs⟩ to be classified. The other
inputs of the network are in order |α0⟩ , |α1⟩ , . . . , |αd−1⟩,
that is, the reference states corresponding to the possi-
ble values of signal, which are fixed for each execution
of the task. It follows that the network, represented in
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Fig. 15, must have d + 1 bosonic wires. The output of
the network is measured with individual photon counters
on each wire. The signal |αs⟩ will be classified according
to the photon counters outcomes. If more than one signal
state is available multiple BS networks can be stacked on
one another and the classification will be based on the
measurements from all the layers. Each layer can have
a different network. This is the only example in which
we don’t use a NN, that means we don’t have adaptivity.
Instead, we directly optimized the parametrized BS. For
the same reason, it is very simple to describe the dy-
namical model with the framework defined in Section ID.
There is no encoding of the state, meaning that the LCPT

map Φ
(t,xt)
θ is the identity, and the measurement opera-

tors can be written as a product of the unitary matrix
implementing the BS network followed by projectors on
the Fock states, similarly to what has been done for the
Dolinar receiver in Section IVA. We now briefly comment
on the parametrization of the BS network. The initial
state of the light is Gaussian, just like the linear circuit
is a Gaussian operation [95]. We can keep track of the
Gaussian state of d+ 1 modes by following the evolution
of the displacement r ∈ R2(d+1) and of the covariance
matrix Σ ∈ R2(d+1) × R2(d+1), which in general is

r → r′ := Sr + d , and Σ → Σ′ := SΣS⊺ , (59)

where S is a real symplectic matrix. In this context Σ
is not the covariance matrix of the posterior distribution
but the covariance of Gaussian state of the modes. For a
BS network, which is made of passive elements, we have
no additional displacement, i.e. d = 0. Furthermore the
energy is conserved, which means tr (Σ′) = tr (ΣS⊺S),
that implies S⊺S = 1, since this condition must hold for
every Σ. We have arrived at the results, that the action
of a BS network is represented by a real symplectic and
orthogonal matrix S. These two conditions are equivalent
to the matrix S being in the form

S =

(
ℜU ℑU
−ℑU ℜU

)
, with U ∈ U(d+ 1) . (60)

The unitary matrix U can then be parametrized as U =

ei(A+A†), where A ∈ GL(d + 1,C) is a complex matrix,
hose entries are the trainable variables of the agent, i.e.
the BS network in this case. Despite not being an adaptive
experiment, this is still a Bayesian estimation, since we
start from a uniform prior over the hypotheses and apply
the Bayes’ rule to incorporate the outcomes of the photon
counters in the posterior.

Definition of the precision figure of merit

After all the measurements have been performed we
obtain the discrete Bayesian posterior probabilities on
the possible states, i.e. {p̂i}d−1

i=0 , from which we define the
estimator for the signal’s class

ŝ = argmax (p̂0, p̂1, . . . , p̂d−1) , (61)

and the loss for an instance of the task

ℓ(ŝ, s) := 1− δ(ŝ, s) , (62)

which averaged over a batch of tests converges to the error
probability of classification.

Discussion of the results

The linear classifier has been trained and tested for some
symmetric configurations of the αi. In particular the roots
of the unit for d = 3, 5, 7, 9 have been chosen. The results
are reported in Fig. 16. For a symmetric configuration
of states the PGM is optimal, but it can’t be achieved
with linear optics, see Appendix B2 and Appendix B5
for details. The optimality of the PGM means that a
single layer BS network can’t achieve its performances,
however this raises the interesting question of how many
layers M , and copies of the signal |αs⟩, are necessary
to match or surpass the error probability of the PGM.
Three copies of the signal are always sufficient in these
examples to match the PGM error probability. Beside
that, the performances of the trained BS networks are
also compared to that of randomly extracted BS networks.
An interesting observation is that the advantage over the
random strategy that the trained network has, decreases
as the number of hypotheses grows. For d→ ∞ we expect
to have no gain. An adaptive strategy may be able to
restore the gap with the untrained BS networks.

V. CONCLUSIONS

Our findings indicate that model-aware RL outperforms
traditional control strategies in multiple scenarios, surpass-
ing even model-free RL. Thee fact that many problems can
be solved by minimal changes to the examples could pave
the way for researchers to expedite the search for optimal
controls in quantum sensors, potentially accelerating the
advent of their widespread industrial application. With
this work, we believe we have solved the problem of opti-
mal controls for quantum sensors that are simple enough
to be efficiently simulated. Since the sensor’s model must
be simulated on a computer with the overhead of auto-
matic differentiation, we do not expect to be able to scale
this procedure to sensors more complex than a handful
of qubits in the near future. This limitation excludes the
application of model-aware RL to domains where complex
entangled states are used. However, given their limited
experimental use at the moment, this constraint on effi-
cient simulability may not significantly impact the utility
of model-aware RL. It is notable that the most relevant
platform for quantum metrology today is the single spin
in diamond, which is straightforward to simulate. While
large quantum systems remain inaccessible, we believe
that scaling the procedure to a large number of unknown
parameters is feasible. Although the number of parti-
cles and, consequently, the memory requirements must
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Figure 15. On the left we represent the programmable interferometer with the BS network, the input being the signal state
|αs⟩ and the fixed reference states |αi⟩ with i = 0, 1, . . . , d− 1. On the right we have stacked M layers of interferometers, each
receiving a copy of the signal. The classification is done on the basis of the outcomes of the photodetectors.

Figure 16. Probability of error in the classification of a coherent state as a function of the number M of copies of the signal |αs⟩
used, which is also the number of layers of BS networks used in the classifier. The dashed orange line is the average performance
of randomly extracted BS networks. The dotted blue line is the optimal error probability for a single copy of the signal, while
the shaded grey area indicates the optimal error probability for M copies of the signal, both computed with the PGM. More
details can be found in Appendix B 5. In each plot we reported also the batch size B and the initial learning rate α0 used in the
simulations for the “Optimised” strategy.

increase for a growing number of parameters, we have
already successfully optimized a seven-parameters prob-
lem in Section IVB. We believe it is possible to find even
more efficient representations of the Bayesian posterior
distribution than the particle filter, which will enable us
to optimize problems with tens of parameters. While

we acknowledge that experimentally relevant problems
can only rarely be approached analytically, the results
obtained in this way can often be valuable in setting up
and guiding more powerful numerical optimization, just
as the analytical study of the Fisher information in Ap-
pendix A and of phase estimation in [58] and Appendix C
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have been useful in setting the initial state of the neural
network and of the adaptive controls for the NV centers,
and in defining the normalization of the network’s output.
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Appendix A: Lower bounds for NV centers

In this section, we apply the Bayesian Cramér-Rao
bound to the estimation of various parameters on the NV
center platform. This bounds will be based on the Fisher
information [21]. Consider a stochastic variable y, which

is extracted from a probability distribution p(y|θ), where
θ is a parameter we want to estimate. This is a model
for an experiment leading to a stochastic outcome. The
information on θ available from the knowledge of y can
be measured by the Fisher information (FI), defined as

I(θ) := Ey

[(
∂ log p(y|θ)

∂θ

)2
]
, (A1)

where the expectation value is taken over the distribution
p(y|θ). There is also a multiparameter version of the FI,
called the Fisher information matrix (FI matrix), defined
as

Iij(θ) := Ey

[
∂ log p(y|θ)

∂θi

∂ log p(y|θ)
∂θj

]
. (A2)

If the experiment allows to be controlled through the
parameter x, then the outcome probability is p(y|x, θ)
and the FI inherits such dependence, i.e. we write I(θ|x).
In this paper the control parameter x is computed from a
strategy h, that stands for “heuristic”, which could be the
Particle Guess Heuristic or a neural network for example.
In this case, we indicate it explicitly in symbol for the
control xh.

1. Bayesian Cramér-Rao bound

Given θ a single parameter to estimate, we call I(θ|xh)
the Fisher information of a sequence of measurements with
controls xh = (xh0 , x

h
1 , · · · , xhM−1), which are computed

from a strategy h. The quantity I(θ|xh), together with
the Fisher information of the prior π(θ), i.e. I(π), defines

a lower bound on the precision ∆2θ̂ of whatever estimator

θ̂, that contains the expectation value of I(θ|xh) on π(θ),
and is optimized on the strategy h. This lower bounds
reads

∆2θ̂ ≥ 1

suph Eθ [I(θ|xh)] + I(π)
. (A3)

This definition appears in the work of Fiderer et al. [27].
For the NV center the controls are the evolution time τ
and the phase φ, this last however doesn’t play any role
in the computation of the lower bound, and it will be
omitted in the following. For the multiparameter bound
we will avoid the complication of introducing the Fisher
information matrix and consider instead the sum of the
bounds for two independent estimations, thus writing
instead

tr[G · (θ̂−θ)⊺(θ̂−θ)] ≥
d∑

k=1

1

suph Eθk [I(θk|τh)] + I(πk)
.

(A4)
The Fisher information of a sequence of measurements
is always additive, even if the quantum probe is only
measured weakly, but in dealing with projective measure-
ments, as it is the case for NV center, the advantage is
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that the measurements are uncorrelated, and the same
expression for the Fisher information applies to all of
them, independently on the results of the previous mea-
surements, i.e.

I(θ|τ ) =
M∑
t=1

I(θ|τt) ≤M sup
τ
I(θ|τ) , (A5)

where M is the total number of measurements. The opti-
mization of the single measurement FI gives directly the
precision bound for the measurement-limited estimation:

∆2θ̂ ≥ 1

suph Eθ [I(θ|τh)] + I(π)

≥ 1

M Eθ [supτ I(θ|τ)] + I(π)
. (A6)

If the total evolution time is the limiting resource, then,
the expression for the total FI is

I(θ|τ ) = T

M∑
t=1

τt
T

[
I(θ|τt)
τt

]
≤ T sup

τ

I(θ|τ)
τ

, (A7)

with
∑M

t=1 τt = T . In this expression the total FI is the
weighted sum of the renormalized FI of each measure-

ment, i.e. I(θ|τt)
τt

, and can be manifestly upper bounded
by concentrating all the weights on the supremum of
the renormalized FI. This gives the lower bound for the
precision of the time-limited estimation:

∆2θ̂ ≥ 1

suph Eθ [I(θ|τh)] + I(π)

≥ 1

T Eθ

[
supτ

I(θ|τ)
τ

]
+ I(π)

. (A8)

In the following we will apply this general observations
to the derivation of the numerical bounds for DC and AC
magnetometry, for decoherence estimation, and for the
measurement of the parallel hyperfine coupling.

2. Evaluation of the Fisher information

Since the measurement outcome in the NV center is
binary, we can compute the Fisher information for a
parameter θ, given the control τ , as

I(θ|τ) = E

[(
∂ log p(±1|θ, τ)

∂ω

)2
]

=

(
∂p
∂θ

)2
p(1− p)

=

(
∂p
∂θ

)2
1
4 − (p− 1

2 )
2
, (A9)

where we have used the definition in Eq. (A1), and where
p := p(+1|θ, τ). For example, for a decoherence free
estimation of the precession frequency ω we have p :=
cos2

(
ωτ
2

)
, from which ∂p

∂θ = τ sin(ωτ
2 ) cos(ωτ

2 ), and finally

I(ω|τ) = τ2.

3. DC magnetometry

The lower bound on the estimation of the frequency
ω (and of the inverse of the decoherence time T−1

2 ) are
reported in the table below, and are represented in Fig. 3
and Fig. 3. The left column contains the bound for a
finite number of measurements M , while right column
refers to the estimation with a fixed total evolution time
T . The first row refers to the estimation of ω with perfect
coherence, the second row refers to the estimation of ω
with a finite and know T2, while the last row refers to
the simultaneous estimation of ω and T−1

2 treated on
equal footing, i.e. G = 1. The symbols I(ω) and I(T−1

2 )
indicate the FI of the prior of the precession frequency
and of the decoherence time respectively. The numerical
values of the quantities appearing in the table, for ω ∈
(0, 1)MHz and T−1

2 ∈ (0.09, 0.11)MHz, are: µ = 0.1619,
E[T 2

2 ] = 101.01 µs2, E [T2] = 10.0336 µs, I(ω) = 12 µs2,
I(T−1

2 ) = 3 · 104 µs2. In the following we derive these
bounds.

• The Fisher information for the precession frequency
ω is given by I(ω|τ) = τ2, so that supτ I(ω|τ) = ∞
and the analysis based on the Cramér-Rao bound
doesn’t gives a useful bound. Eq. (A11) can be
found by observing that each measurement gives at
most one bit of information about the value of ω,
because it has a binary outcomes [27]. This bound is
applied to all the measurement-limited estimations
in the table in addiction to the one coming from
the Fisher information.

• With a finite decoherence time T2 < ∞ the FI for
the frequency ω is

I(ω|τ, T2) =
1

D
τ2e−

2τ
T2 cos2

(ωτ
2

)
sin2

(ωτ
2

)
, (A16)

with

D :=

[
e−

τ
T2 cos2

(ωτ
2

)
+

1− e−
τ
T2

2

]
·[

e−
τ
T2 sin2

(ωτ
2

)
+

1− e−
τ
T2

2

]
(A17)

which, by defining C := cos2
(
ωτ
2

)
, can be bounded

in the following way

I(ω|τ, T2) =
τ2e−

2τ
T2 C(1− C)[

1
4 − e−

2τ
T2 (C − 1

2 )
2
] (A18)

≤ τ2e−
2τ
T2

1− e−
2τ
T2

= T 2
2

x2e−2x

1− e−2x
; , (A19)

where x = τ
T2
. The maximization in x ∈ R+ gives

supτ I(ω|τ, T2) = µT 2
2 with µ = 0.1619. Inserting

this expression in Eq. (A6) gives the first term in
the maximum of Eq. (A13), the second term was
explained in the previous point.
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Time Measurement

T2 = ∞ 1
T2+I(ω)

A10 2−2(M+1)

3
MHz2 A11

T2 <∞ 1
0.5TT2+I(ω)

A12 max
{

2−2(M+1)

3
MHz2, 1

µMT2
2 +I(ω)

}
A13

T−1
2 ∈ (a, b) 1

0.5TE[T2]+I(ω)
+ 1

0.5TE[T2]+I(T
−1
2 )

A14 1

µME[T2
2 ]+I(ω)

+ 1

µME[T2
2 ]+I(T

−1
2 )

A15

Table II. Lower bounds for the precision of the frequency and decoherence time estimation in DC magnetometry on an NV
center.

• We now turn to the estimation of an unknown T−1
2 ,

with prior uniform in (0.09, 0.11), alongside ω. The

total MSE is ∆2ω̂ + ∆2T̂−1
2 . The supremum of

the FI for ω is always supτ I(ω|τ, T2) = µT 2
2 , but

this time the expectation value Eθ is not trivial,
i.e. Eθ [supτ I(ω|τ, T2)] = µE

[
T 2
2

]
. The derivative

of the probability with respect to T−1
2 , used to

compute the FI is

∂p

∂T−1
2

= −τe−
τ
T2

[
cos2

(ωτ
2

)
− 1

2

]
. (A20)

With the same notation for the cosine we write the
FI for the inverse of the decoherence time as

I(T−1
2 |ω, τ) =

τ2e−
2τ
T2

(
C − 1

2

)2[
1
4 − e−

2τ
T2 (C − 1

2 )
2
]

≤ T 2
2

x2e−2x

1− e−2x
. (A21)

The maximization of this expression gives
supτ I(T

−1
2 |ω, τ) = µT 2

2 , which is the same expres-
sion of I(ω|T2, τ), that again has a non trivial expec-
tation value on the parameters. Putting everything
together and adding the prior information on T−1

2

gives Eq. (A15).

• Regarding the time-constrained lower bounds, for
T2 = ∞, the total FI is maximized by performing a
single measurement of time duration τ = T , which
gives Eq. (A10), through the application of Eq. (A8).

• For T2 < ∞ we have to maximize the normalized
FI in x ∈ R+, i.e.

I(ω|τ, T2)
τ

≤ τe−
2τ
T2

1− e−
2τ
T2

≤ T2
xe−2x

1− e−2x
≤ TT2

2
, (A22)

from which Eq. (A12) follows from Eq. (A8).

• In the last case we have to estimate both ω and
T−1
2 ∈ (0.09, 0.11)MHz. Regarding the estima-

tion of ω the Fisher information is always given
by Eq. (A22), only that this time the expectation
value on T2 is non trivial, and produces the first

addend of Eq. (A14). For the estimation of T−1
2 we

have a similar expression for the normalized FI:

I(T−1
2 |τ, ω)
τ

≤ τe−
2τ
T2

1− e−
2τ
T2

≤ T2
xe−2x

1− e−2x
≤ TT2

2
, (A23)

which similarly needs the expectation value appear-
ing in Eq. (A8) to give the second piece of Eq. (A14).

4. AC magnetometry

The lower bound on the precision of the frequency Ω and
of the inverse of the decoherence time T−1

2 , are reported
in the table below, and are represented in Fig. 4 of Sec-
tion IIID. The meaning of the rows and columns here are
the same as in Appendix A 3. The symbols I(Ω) = 12 µs2
and I(T−1

2 ) = 3 · 104 µs2 indicate respectively the FI of
the prior of the frequency and of the inverse of the de-
coherence time. In the following we derive each of these
bounds.

• The decoherence free FI for Ω in the measurement-
limited case is obtained from Eq. (A9) through the
derivative

∂p

∂Ω
=

sin(ωτ)

ω
cos

[
B

2ω
sin(ωτ)

]
sin

[
B

2ω
sin(ωτ)

]
,

(A30)
and reads

I(Ω|τ) = sin2 ωτ

ω2
≤ 1

ω2
. (A31)

Inserting this expression in Eq. (A8) gives immedi-
ately the first part of Eq. (A25) in the table. The
second operand of the max come from analysis on
the number of bits [27], which we already discussed
in the previous section.

• For the time-limited estimation of Ω we have to
maximize the normalized FI in x = ωτ ∈ R+:

I(Ω|τ)
τ

=
1

ω

sin2(ωτ)

ωτ
=

1

ω

sin2 x

x
≤ γ

ω
, (A32)

where γ = 0.724611. By inserting this result in
Eq. (A8) we get Eq. (A24).



31

Time Measurement

T2 = ∞ 1
γT
ω

+I(Ω)
A24 max

{
2−2(M+1)

3
MHz2, 1

M
ω2 +I(Ω)

}
A25

T2 <∞ 1
γT
ω

+I(Ω)
A26 max

{
2−2(M+1)

3
MHz2, 1

M
ω2 +I(Ω)

}
A27

T−1
2 ∈ (a, b) 1

M
ω2 +I(Ω)

+ 1

0.5TE[T2]+I(T
−1
2 )

A28 1
γT
ω

+I(Ω)
+ 1

µME[T2
2 ]+I(T

−1
2 )

A29

Table III. Lower bounds on the estimation precision of the magnetic field intensity and decoherence time in AC magnetometry
on an NV center.

• For the case T2 < ∞ we don’t compute any new
bound, instead we use the one for the decoherence
free estimation, which must be valid also for the
noisy model. Accordingly, Eq. (A27) is equal to
Eq. (A25) and Eq. (A26) is equal to Eq. (A24).

• For the simultaneous estimation of Ω and of T−1
2 we

use the same bound computed for DC magnetometry
for the precision on T−1

2 and obtain Eq. (A29) and
Eq. (A28) for the measurement-limited and time-
limited estimation respectively.

5. Decoherence estimation

In this section, we report the bounds based on the
FI for the estimation of the inverse of the decoherence
time T−1

2 and the exponent β on the NV center platform,
which are reported in Fig. 5 of Section III E. The numer-
ical coefficients appearing in the table are µ = 0.16190,
δ = 0.24429, χ = 0.23966, ε = 0.20687, η = 0.10582,
ψ = 2.43013, E[T 2

2 ] = 103 µs2, E[T2] = 25.5848 µs,
E[T−1

2 ] = 0.0450MHz2, E[β2] = 8.08332, E[β−2] =
0.16666, I(T−1) = 1481.48 µs2, and I(β) = 1.92. We
proceed in deriving point by point the lower bounds of
the above table from the Fisher information.

• The derivative of the model probability in T−1
2 is

given by

∂p

∂T−1
2

= −1

2
e
−
(

τ
T2

)β

βτ

(
τ

T2

)β−1

. (A39)

from which we obtain the FI from Eq. (A9):

I(T−1
2 |τ, β) = β2T 2

2

e
−2

(
τ
T2

)β (
τ
T2

)2β
1− e

−2
(

τ
T2

)β . (A40)

By defining x =
(

τ
T2

)β
∈ R+ we rewrite the above

expression as

I(T−1
2 |τ, β) = β2T 2

2

e−2xx2

1− e−2x
≤ µβ2T 2

2 , (A41)

which inserted into Eq. (A6), by taking the expec-
tation value on the parameters β and T2, gives the
expression in Eq. (A34).

• For β = 2 we can avoid the expectation value of β2,
which is replaced by the factor 4 in Eq. (A36).

• For the simultaneous estimation of T−1
2 and β we

need an expression for the Fisher information on β,
which can be obtained from the derivative

∂p

∂β
= −1

2

(
τ

T2

)β

e
−
(

τ
T2

)β

log

(
τ

T2

)
, (A42)

and reads

I(β|τ, T2) =
1

β2

(
τ
T2

)2β
e
−2

(
τ
T2

)β

log2
(

τ
T2

)β
1− e

−2
(

τ
T2

)β

≤ 1

β2

x2e−2x log2 x

1− e−2x
≤ χ

β2
, (A43)

where x =
(

τ
T2

)β
∈ R+. The coefficient χ comes

from the maximization of the function in x only.
Given the result supτ I(β|τ, T2) = χβ−2, we insert
this expression in Eq. (A6), obtaining the second
term of Eq. (A38).

• Regarding the time-limited estimation, the relevant
quantity to optimize is the renormalized FI again.
For the estimation of T−1

2 this reads

I(T−1
2 |τ, β)
τ

= β2TT2
e−2xx2−

1
β

1− e−2x

≤ β2TT2 sup
x,β

e−2xx2−
1
β

1− e−2x
(A44)

= δβ2TT2 , (A45)

where δ is the supremum of the function in x ∈ R+

and β ∈ (1.5, 4), realized for β = 1.5. Inserting the
expression above in Eq. (A8) and taking the expec-
tation values of the parameters produces Eq. (A34).

• The β = 2 bound can be obtained from Eq. (A45) by
maximizing only on x. The coefficient ε in Eq. (A36)

is defined as ε = supx
e−2xx

3
2

1−e−2x . After adding the FI

from the prior we get Eq. (A36).

• For the estimation of β we again maximize the
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Time Measurement

β nuis. 1

δTE[T2]E[β2]+I(T−1
2 )

A33 1

µME[T2
2 ]E[β2]+I(T−1

2 )
A34

β = 2 1

4εTE[T2]+I(T
−1
2 )

A35 1

4µME[T2
2 ]+I(T−1

2 )
A36

Both 1

ψTE[T−1
2 ]E[β−2]+I(β)

+ 1

δTE[T2]E[β2]+I(T−1
2 )

A37 1
χME[β−2]+I(β)

+ 1

µME[T2
2 ]E[β2]+I(T−1

2 )
A38

Table IV. Lower bounds for the precision of the characterization of a dephasing noise on an NV center.

normalized FI in x ∈ R+:

I(β|τ, T2)
τ

=
1

T2β2

x2−
1
β e−2x log2 x

1− e−2x

≤ 1

T2β2
sup
β,τ

x2−
1
β e−2x log2 x

1− e−2x

≤ ψT−1
2 β−2 , (A46)

which inserted in Eq. (A8) gives the second part of
the bound in Eq. (A37), the first being identical to
Eq. (A34).

6. Hyperfine coupling estimation

In this section, we report the precision lower bounds for
the estimation of the parallel hyperfine coupling of the NV
center electron spin with a carbon nucleus, which are plot-
ted in Fig. 6 of Section III F. These bounds are based on
the one computed for DC magnetometry in Appendix A 3.
The numerical coefficients in the table are µ = 0.16190
and I(ω) = 18.18181 µs2. The true values of both fre-
quencies ω0 and ω1 are extracted uniformly in (0, 1)MHz
in the simulations, however, since they are completely
symmetrized in the model likelihood, the true prior is
the uniform distribution over the triangle in the (ω0, ω1)
plane identified by the points (0, 0)MHz, (1, 0)MHz, and
(1, 1)MHz. Given σ2 the variance of such distribution we
define I(ω) := 1

2σ
2 the prior FI for a single frequency. In

the following we give a derivation for the bounds in the
table above.

• Starting from Eq. (A11), based on the bit counting
argument, we observe that 2M measurements are
needed for having N bits of information for each
of the phases ω0,1 ∈ (0, 1)MHz. The MSE on a
single phase after N measurement is thus limited

by 2−M

12 . For two phases the bound becomes 2−M

6 .
Since it is not easy to implement the information
on the triangular prior in this bound, we consider a
square subset of the triangular prior only, i.e. we
fix ω0 ∈ (0.5, 1)MHz and ω1 ∈ (0, 0.5)MHz. This
means dividing the bound further by a factor 4,
which gives us Eq. (A48).

• The FI for a single frequency is 1
4 that of the DC

magnetometry example of Eq. (A10), i.e. I(ω0,1) =
T 2

4 in the infinite coherence case. This comes from

the factor 1
2 in the likelihood. For two parameters

this gives the bound of Eq. (A47).

• The same argument can be made to go from
Eq. (A13) to Eq. (A50) and from Eq. (A12) to
Eq. (A49).

Appendix B: Lower bounds for photonic circuits

In this section, we present the precision lower bound for
the photonic based applications. These are the agnostic
Dolinar receiver, the multiphase discrimination task on
the four bosonic lines interferometer, the linear classifier of
multiple states, and the QML classifier of three coherent
states. All these examples are based on the identification
of the correct hypothesis among a finite number of them.
Accordingly, the figure of merit for their performances
is the probability of a wrong classification. The bounds
presented here for this family of tasks are based either
on the Helstrom bound [91] and on its generalizations,
or on the pretty good measurement (PGM), which gives
good results for the one shot classification of states [96].
This approach doesn’t really give a lower bound for the
precision, in all cases but one, nevertheless we use it as
a reference value, and given the fact that performing
the PGM requires in general entangled measurements
we consider its precision to be unachievable by means of
photon counting and linear optics only.

1. Helstrom bound

Consider a pure state |ψ⟩ in the Hilbert spaceH. We are
assured that this state is either |ψ0⟩ or |ψ1⟩, both of which
also reside in H. Our objective is to correctly identify
which state it is. If we are free to perform whatever
POVM measurement on |ψ⟩, then the error probability is
bounded as

Pe ≥ PH
e :=

1

2
− 1

2

√
1− |⟨ψ0, ψ1⟩|2 . (B1)

This is called the Helstrom bound [91] and for two orthog-
onal states is PH

e = 0. In the Dolinar receiver, where the
task is to discriminate |±α⟩, the Helstrom bound reads

PH
e =

1

2
− 1

2

√
1− |⟨−α,+α⟩|2

=
1

2
− 1

2

√
1− e−4|α|2 . (B2)



33

Time Measurement

T2 = ∞ 2
1
4
T2+I(ω)

A47 2−M

24
MHz2 A48

T2 <∞ 2
1
8
TE[T2]+I(ω)

A49 max
{

2−M

24
MHz2, 2

1
4
µMT2

2 +I(ω)

}
A50

Table V. Lower bounds for the estimation precision of two precession frequencies, split by the hyperfine interaction of the NV
center with a 13C nucleus.

This is represented by the shaded gray region on the
precision plots of the Dolinar receiver in Fig. 8 of Sec-
tion IVA. In this work we study however the agnostic
Dolinar receiver, where the task is to discriminate the
states |α⟩ ⊗ |α⟩⊗n

and |−α⟩ ⊗ |α⟩⊗n
, without having any

classical knowledge on the value of α. It can be proved [31]
that the error lower bound in this case is

PH
e :=

1

2

1− 1

2

∞∑
k=0

P(k;
√
n+ 1α)

√
1−

(
n− 1

n+ 1

)2k
 ,

(B3)
where P(k;µ) is the probability distribution of a Poisso-
nian variable, i.e.

P(k;µ) :=
µke−µ

k!
. (B4)

The Helstrom bound with limited n is plotted as the red
lines of Fig. 8.

2. Pretty good measurement

Suppose we are given a state |ψ⟩ ∈ H and we are
promised it belongs to the set of states {|ψj⟩}mj=1, which
are classically known. The a priori probabilities for the
states are pj for j = 1, . . . ,m. We can perform whatever
measurement on |ψ⟩ and the task is to identify the state in
the set. A good approach to this problem, which doesn’t
require solving a semidefinite program, is the PGM [96],
which prescribes performing the POVM measurement
MPGM := {Mj}mj=1, whose operators are

Mj := pjS
− 1

2 |ψj⟩⟨ψj |S− 1
2 , (B5)

where S :=
∑m

j=1 pj |ψj⟩⟨ψj |. If in the measurement the
outcome corresponding to the j-th operator is observed,
then the guess for the state classification is |ψj⟩. The
error probability of the PGM is therefore

PPGM
e = 1−

m∑
j=1

pjTr (Mj |ψj⟩⟨ψj |) . (B6)

In our applications to photonic circuits such measure-
ments are not optimal and in general their performance
cannot be achieved with linear optics and photon measure-
ment. They provide nevertheless a useful reference value
for the estimation precision. Throughout the thesis the
computation of PPGM

e has been carried out numerically.

3. Multiphase discrimination

In this work we studied the problem of multiphase
discrimination on a four arms interferometer, for four
different input states. In order to give a reference value on
the precision of the discrimination we apply the PGM. Let
us break the interferometer and remove the control phases
{ci}3i=1, the closing quarter, and the photodetectors. The
photon states after the encoding with the phases {φi}3i=1

are respectively

1. ∣∣∣1
2
e−iφ0 ,

1

2
ie−iφ1 ,

1

2
ie−iφ2 ,−1

2

〉
, (B7)

2.∣∣∣1
2
(1 + i)e−iφ0 ,

1

2
(−1 + i)e−iφ1 ,

1

2
(1 + i)e−iφ2 ,

1

2
(−1 + i)

〉
, (B8)

3. ∣∣∣1
2
+ ie−iφ0 ,

1

2
ie−iφ1 ,

1

2
ie−iφ2 ,−1

2
+ i
〉
, (B9)

4. ∣∣∣ie−iφ0 , ie−iφ1 , ie−iφ2 , i
〉
, (B10)

for the input states with one, two, three, and four photons
on average. We are allowed to consume n input states in
order to produce n copies of the encoded coherent states
reported above. These are then sent to an adder, which
perform the operation

U |α⟩⊗n
=
∣∣√nα〉 , (B11)

on the n coherent states for each of the four bosonic wires.
On this resulting state of the interferometer the PGM is
then executed. The error probability can be expressed as
a function of the number of input states n or as a function
of the total number of employed photons, and is the gray
area represented in Fig. 14 of Section IVC. Although this
is not rigorously a lower bound on the precision it serves
as a reference value, which is most certainly impossible
to saturate with the device at our disposal.
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4. Quantum Machine Learning classifier

In the QML task we have a device that identifies the
class s of a signal |αs⟩, given the quantum training set

|α0⟩⊗n ⊗ |α1⟩⊗n ⊗ |α2⟩⊗n
. In order to perform the PGM

we must know classically the states that we aim to dis-
tinguish and this is not possible with a finite quantum
training set. We suppose that by consuming double the
amount of reference states, i.e. 2n for each class, we can
estimate the complex numbers α0, α1, α2 exactly and then
apply the optimal PGM. For many instances of the classi-
fication task, with the reference states |α0⟩ , |α1⟩ , |α2⟩ and
the signal |αs⟩ extracted according to their prior, we com-
pute the error probability of the PGM, i.e. PPGM

e , and
associate to it the average number of consumed photons

Nph = 2n
(
|α0|2 + |α1|2 + |α2|2

)
+ |αs|2 . (B12)

We then average the data points (Nph, P
PGM
e ) in order

to compute the expected error probability ⟨PPGM
e ⟩ for a

certain average number of photons. This curve defines the
shaded gray area in Fig. 11 of Section IVB. Although this
is not rigorously a lower bound on the precision it serves
as a reference value, which is most certainly impossible
to saturable with the device at our disposal.

5. Liner classifier of multiple states

The last example on the photonic circuit platform of
Section IVD concerns the classification of a signal state
|αs⟩, that can take values in the set of known states
{|αj⟩}mj=1. For this discrimination we employ only a
network of beam splitters, which is statically optimized,
and no adaptivity is taken into account. By virtue of the
cyclic symmetry of the states to discriminate, the PGM
is optimal [97–99] and its error rate defines the shaded

grey area in the plots of Fig. 16. Again we are using an
adder, with action reported in Eq. (B11), to build the

state
∣∣∣√Mαs

〉
out of M copies of the signal, which in the

device are passed to theM layers of the discriminator. On

the state
∣∣∣√Mαs

〉
the PGM is executed and its precision

is plot as a function of M .

Appendix C: Analytical optimization for the NV
center

In this section, we optimize the precision of magnetic
field estimation on an NV center, with the tools developed
in [58]. In the present paper we have so far allowed the
continuous tuning of the parameters τ and φ, but now
we suppose that only τj = 2j−1 can be measured, for
j = 1, 2, . . . ,K, and similarly we are limited to φ = 0, π2 .
We parametrize a strategy under these constraints by
defining νj the number of measurements performed with
time τj . The total number of Ramsey measurements is
then

M := 2

K∑
j=1

νj , (C1)

By applying the phase algorithm presented in [58] and
using the corresponding analytical tool to upper bound
its precision we can write

∆2ω̃ ≤
(
2π

3

)2
 1

4K
+ 16

K∑
j=1

A

4j−1
C−νj

 , (C2)

where C ≃ 1.66 and A ≃ 0.60 are numerical constants.
We can find the optimal measurement distribution that op-
timizes this upper bound with the methods of Lagrangian
multiplier:

L :=

(
2π

3

)2
 1

4K
+ 16

K∑
j=1

A

4j−1
C−νj

− λ

2

K∑
j=1

νj −M

 . (C3)

The optimization on νj gives

νj = νK +
2

log2 C
(K − j) . (C4)

The number of measurements νj should be integers, but
in the following we will neglect the rounding as we are
only interested in extracting the scaling of the precision of
the phase estimation procedure. By substituting Eq. (C4)
in Eq. (C2) we get

∆2θ̂ ≤
(
2π

3

)2 (
1 + 64KAC−νK

) 1

4K
, (C5)

and the resource resummation reads

M = K

(
νK − 1

log2 C

)
+

K2

log2 C
. (C6)

We now extract νK as a function of M and K from
Eq. (C6), and substitute it in Eq. (C5) to get

∆2ω̂ ≤
(
2π

3

)2
(

1

4K
+ 32KA

2−
M log2 C

K

2K

)
. (C7)

Observe that 2−
M log2 C

K < 1 , ∀K ≥ 0 and that the right
hand side of Eq. (C7) tends to zero for K → ∞, because
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the term K at numerator of 32KA 2− log2 C M
K

2K
cannot com-

pensate the exponential at denominator. As K → ∞ we
have νK → 0, but this is a non-physical solution because
it must be νK ≥ 1. Therefore the maximum allowed K
(:= K⋆) corresponds to νK⋆ = 1. In this case, the resource
resummation reads

M = K⋆

(
1− 1

logb C

)
+

K⋆2

logb C
. (C8)

For K⋆ ≫ 1 the above equation gives

K⋆ =
√
log2 C

√
M . (C9)

This result led us to the choice of the prefactor h that
corresponds the maximum τ . According to this deriva-
tion, neglecting the factor

√
log2 C, which is of order one,

we get the maximum free evolution time τK⋆ ≃ 2
√
M .

Inserting K⋆ in Eq. (C7) and neglecting the subleading
terms we arrive at the scaling

∆2θ̂ ⪅ O

( √
M

4
√

log2 C
√
M

)
. (C10)

This scaling for the precision is exponential in the square
root of the number of measurements. If the free evolution
time follows instead the power law τj = bj−1, then the
corresponding Lagrangian for the optimization of the
precision is

L :=
( π

n · bK−1

)2
+

K∑
j=1

(
2π

n · bj−2

b

b− 1

)2

AC−νj + λ

2

K∑
j=1

νj −M

 , (C11)

with n = b+1. The optimization with respect to νj gives
the expression

νj = νK +
2

logb C
(K − j) , (C12)

and the resource resummation is

M = K

(
νK − 1

logb C

)
+

K2

logb C
. (C13)

The same analysis done before give the precision scaling

∆2θ̂ ⪅ O

( √
M

b2
√

logb C
√
M

)
. (C14)

We wish to emphasis that this is an achievable scaling
of the precision for a fixed number of measurements M ,

which has to be compared with the unachievable lower
bound on the precision, obtained through a bit-counting
argument [27]:

∆2θ̂ ≥ 2−2(M+1)

3
, (C15)

which has been used as a lower bound in Appendix A.
This bound is computed assuming that each measurement
gives exactly 1 bit of information about the phase θ. In
summary, while the precision lower bound for this count-
ing of the resources scales asO(4−N ), we have been able to

prove the achievability of the (much worst) O(
√
N4−

√
N )

scaling.
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