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Many binary systems of interest for gravitational-wave astronomy are orbited by a third distant body,
which can considerably alter their relativistic dynamics. Precision computations are needed to understand
the interplay between relativistic corrections and three-body interactions. We use an effective field theory
approach to derive the effective action describing the long-timescale dynamics of hierarchical three-body
systems up to 1PN quadrupole order. At this level of approximation, computations are complicated by the
backreaction of small oscillations on orbital timescales as well as deviations from the adiabatic
approximation. We address these difficulties by eliminating the fast modes through the method of
near-identity transformations. This allows us to compute for the first time the complete expression of the
1PN quadrupole cross terms in generic configurations of three-body systems. We numerically integrate the
resulting equations of motion and show that 1PN quadrupole terms can affect the long term dynamics of
relativistic three-body systems.
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I. INTRODUCTION

The evolution of binary systems can be significantly
affected by relativistic effects as well as by the presence of a
third celestial body. The interplay between these effects is
especially relevant in view of recent observations of triple
systems with pulsars [1] as well as future detections of rela-
tivistic three-body systems expected with the gravitational-
wave (GW) spatial interferometer LISA [2,3]. Three-body
effects have been studied to understand the merger rate of
compact objects [4–10], the transits of exoplanets [11–13],
or the evolution of triple star systems [14–17]. Triple
systems often come in a hierarchical setting where one
of the constituents is far away from the other two. These
configurations are conveniently described in terms of an
“inner binary” elliptic motion composed of the two closest
objects, and an “outer binary” elliptic motion made of the
inner binary itself and the outer object, as depicted
schematically in Fig 1. The long-timescale evolution of
these orbits presents many interesting features already at
the Newtonian level [18], the most well-known example
being the Kozai-Lidov (KL) oscillations of the eccentricity
of the inner binary [19,20]. These effects are usually
studied through the method of double averaging [18], in
which quick oscillations on timescales of order of the
orbital periods are eliminated from the dynamics, leaving

only information about evolution on timescales larger than
the orbital periods. This method is known to work
whenever the system is away from resonances; the latter
makes the whole analysis much less straightforward (see,
e.g., [21]).
When relativistic corrections to the Newtonian dynamics

are considered, in the so-called post-Newtonian (PN)
expansion, the long-timescale dynamics undergoes radical
changes, even when the system remains in a hierarchical
configuration. For instance, the periastron precession can
suppress high eccentricity oscillations when the precession
timescale is much shorter than the timescale characterizing
KL oscillations [4,22–25]. Even if the system can be
described by the inner and the outer orbit, studying the
effects of relativistic corrections on its evolution over long
timescales remains in general quite difficult especially due
to effects at higher orders in the PN expansion [9], which
will usually leave an imprint on the dynamics after a
parametrically large time. It is thus important to compute
three-body relativistic interactions to a high accuracy in
order to evolve these systems on long timescales. One
option is to approach the problem with a numerical
relativistic three-body solver [26–30]; however, this
method is heavily time consuming. On the other hand,
analytic methods are sparse at best [9,24,25,31–34].
Motivated by these developments and by the ensuing

difficulties, we recently introduced a new effective field
theory (EFT) approach to the relativistic, hierarchical three-
body problem [35]. The central idea of this method is to
take advantage of the two small parameters characterizing

*adrien.kuntz@sns.it
†francesco.serra@sns.it
‡enrico.trincherini@sns.it

PHYSICAL REVIEW D 107, 044011 (2023)
Editors' Suggestion

2470-0010=2023=107(4)=044011(29) 044011-1 © 2023 American Physical Society

https://orcid.org/0000-0002-4803-2998
https://orcid.org/0000-0001-5025-0292
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.044011&domain=pdf&date_stamp=2023-02-06
https://doi.org/10.1103/PhysRevD.107.044011
https://doi.org/10.1103/PhysRevD.107.044011
https://doi.org/10.1103/PhysRevD.107.044011
https://doi.org/10.1103/PhysRevD.107.044011


hierarchical three-body systems: the typical velocity of the
inner bodies divided by light speed, v (c ¼ 1), and the ratio
ε ¼ a=a3 between the semimajor axis of the inner binary a
and the one of the outer binary a3. Thanks to the double
perturbative expansion with respect to these parameters, it
is possible to match the dynamics of a hierarchical three-
body system to a simpler two-body interaction, in which
the inner binary is described as a single point particle
endowed with multipole moments. This is achieved by
employing the EFT techniques developed for the relativ-
istic two-body problem [36,37] and by performing the
averaging procedure at the level of the Lagrangian. Most
noticeably, the EFT approach exploits symmetries that are
manifest in the effective Lagrangian, restricting the form of
the allowed interaction terms. Moreover, working with a
single functional rather than with several equations of
motion makes it simpler to set up a systematic study of
the three-body system.
In [35] we presented the EFT setup and derived the

effective Lagrangian describing the system on long time-
scales up to 1PN dipole order, i.e., up to order v2ε3=2

beyond the leading Newtonian interaction. Instead, in the
present work we extend this computation up to 1PN
quadrupolar order, i.e., v2ε5=2 beyond leading order. At
this order, computations are substantially more complex
with respect to our previous study [35]. A first source of
complexity is due to the averaging procedure. At lower
orders the averaging can be performed in the so-called

adiabatic approximation, i.e., neglecting variations of
slowly evolving variables during the average over the
period of both orbits. Instead, when accounting for terms
of mixed quadrupolar and 1PN order, deviations from
adiabaticity must be taken into account. In addition to this,
backreaction from quickly oscillating terms that are sup-
pressed in amplitude will also affect the averaging, contrary
to what happened at lower orders. We address these
complications by following the method of near-identity
transformations [38], which allows one to consistently
implement the averaging procedure to any order of accu-
racy. While several authors already studied quadrupolar
couplings at 1PN order [9,31,32,34,39–42], we are aware
of only three which took into account these deviations from
the adiabatic approximation [31–34]. However, we believe
that we give in this work the first complete expressions of
quadrupolar 1PN terms. Indeed, only the particular case of
a circular outer orbit is considered in [31–33] neglecting
some PN interactions that we describe in this work. On the
other hand, the derivation in [34] reports a puzzling result
that we will mention in Sec. IV.
Another source of complexity lies in finding the suitable

dynamical variables to efficiently package relativistic
corrections in our results. While the idea at the core of
our approach of identifying the inner binary to a spinning
point particle with multipole moments is very intuitive,
providing a definite relation between the variables describ-
ing the inner binary and the parameters of the effective
point particle is subtle in practice. For example, in our
previous work [35] we showed how the choice of a spin
supplementary condition (a gauge condition on the spin
tensor of the effective point particle [43,44]) is related to the
center-of-mass choice of the inner binary. In the present
computations, two new similar subtleties arise. The first
one concerns the definition of osculating elements describ-
ing both inner and outer orbits. In our previous work, we
followed the usual convention and used the osculating
orbital elements defined as the parameters of the ellipse
instantaneously tangent to the trajectory (described with
positions and velocities). However, at 1PN quadrupolar
order we find that it becomes more convenient to use
osculating contact elements, which are defined through
momenta rather than velocities [45]. Since PN corrections
induce a nontrivial relation between momentum and
velocity, these two sets of osculating elements will differ
in general. Wewill give in Sec. II A the precise definition of
contact elements, and we will elaborate more on their
difference with respect to orbital elements in Appendix G.
One remarkable conclusion of the present analysis is that,
while the slowly evolving part of the contact semimajor
axes are conserved throughout the evolution of the
system (as is common in long-timescale evolution of triple
systems [18]), their orbital counterpart features small
variations over long timescales, which offers a new point
of view on earlier findings of [31–34].

FIG. 1. The effective two-body description and the osculating
elements. The inner binary is replaced with a point particle whose
spin and multipole moments are related to the osculating
elements of the inner orbit.
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The second subtle point in the matching between inner
binary and point particle is that the quantities describing the
inner binary system are inherently defined in the rest frame
of its center of mass, which is accelerating because of the
presence of the third body. This entails nontrivial relations
between the absolute positions of the inner binary compo-
nents, defined in the rest frame of the three-body center of
mass, and the relative quantities defined in the binary rest
frame, as we show in Sec. III B. As far as we know, this
point went so far unnoticed in the relativistic three-body
literature. While this step just amounts to a redefinition of
the osculating elements of the inner binary, it proves to be
crucial in order to perform correctly the matching pro-
cedure described in Sec. III D.
Let us now describe in more detail the organization of

this article. We will begin by summarizing our “effective
two-body” approach in Sec. II, which is defined by four
main steps. Steps 1 and 2 will then be performed in Sec. III,
where the core of our matching procedure is explained. To
keep the discussion as simple as possible, we have deferred
the computation of beyond-adiabatic corrections to
Appendix C and use only the final result of this appendix
in the main text. We then perform the two final steps of our
approach in Sec. IV, where we integrate out the gravita-
tional field due to the outer object. Finally, in Sec. V we
provide a numerical solution implementing the new rela-
tivistic interaction derived in the present work, and we
show how it influences the long-timescale dynamics in the
case of a particular three-body system. The rest of the
appendixes are devoted to the following: a presentation of
the averaging procedure that we employ (Appendix A); a
discussion of the conservation of the semimajor axis
(Appendix B); a review of the Lagrange planetary equa-
tions (Appendix D); the derivation of the expressions
connecting the absolute coordinates of the two inner bodies
in the three-body rest frame to their relative coordinates in
the inner binary rest frame (Appendix E); an independent
computation of the so-called quadrupole-squared terms
of [46] (Appendix F); and the relation between contact
and orbital elements (Appendix G).

A. Dictionary of symbols

As a preliminary, we define the quantities that character-
ize the three-body problem and list the symbols that we are
going to use through the work. We will work out the results
in terms of the contact elements, the variables in which the
PN Hamiltonian has the simplest expression. With respect
to the usual Newtonian orbital elements, contact elements
include PN corrections. We review their precise definition
in Sec. II and examine their difference from orbital
elements in Appendix G.

(i) y1, v1, y2, v2: positions and velocities of the two
constituents of the inner orbit, of masses m1 and m2;

(ii) y3, v3: position and velocity of the external perturber,
of mass m3;

(iii) YCM, VCM: position and velocity of the center of
mass of the inner binary, defined in Eq. (E1);

(iv) r, v: relative variables in the inner binary instanta-
neous rest frame, defined in Sec. III B. Note that
r ¼ y1 − y2 and v ¼ v1 − v2 only at lowest PN order,
as explained in Sec. III B;

(v) pA (A ¼ 1; 2; 3), PCM, p: conjugate momenta to the
positions of the three bodies, position of the center of
mass, and relative separation between two inner
bodies;

(vi) r¼jrj, n¼ r=r, R¼YCM−y3, R ¼ jRj, N ¼ R=R,
V ¼ VCM − v3;

(vii) m ¼ m1 þm2 is the mass of the inner binary, μ ¼
m1m2=m is the reduced mass of the inner binary,
X1 ¼ m1=m, X2 ¼ m2=m and ν ¼ μ=m are its
characteristic mass ratios;

(viii) a [a3]: contact semimajor axis of the inner [outer]
orbit;

(ix) e [e3]: contact eccentricity of the inner [outer] orbit;
(x) E ¼ m − GNmμ=ð2aÞ: total (relativistic) energy of

the inner binary;
(xi) M ¼ E þm3 is the total mass of the effective two-

body system. Similarly, μ3 ¼ m3E=M is its reduced
mass, X3 ¼ m3=M, XCM ¼ E=M, and ν3 ¼ μ3=M
are the mass ratios characterizing the outer orbit;

(xii) n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNm=a3

p
[n3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNM=a33

q
]: contact fre-

quency of the inner [outer] orbit;
(xiii) α, β, γ [α3, β3, γ3]: contact orthonormal basis of

vectors characterizing the inner [outer] orbit, aligned
respectively along the contact semimajor axis (point-
ing toward the pericenter), the semiminor axis, and
the angular momentum;

(xiv) Ω, ω, ι [Ω3, ω3, ι3]: contact angles characterizing
the orientation of the inner [outer] orbit, defined by
α ¼ RzðΩÞRxðιÞRzðωÞux where the Rxi ’s are rota-
tion matrices along the given axis xi, and similarly
for the other vectors;

(xv) u and η [u3 and η3]: contact mean and eccentric
anomaly of the inner [outer] orbit. They are
defined by η − e sin η ¼ u and u ¼ ntþ σ
[η3 − e3 sin η3 ¼ u3 and u3 ¼ n3tþ σ3] where σ
and σ3 are the contact mean anomalies at initial
time;

(xvi) L, G,H [L3, G3,H3]: contact conjugate momenta to
u, ω, and Ω, respectively [u3, ω3, and Ω3, respec-
tively], defined in Eq. (C2);

(xvii) J¼μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1−e2Þ

p
γ [J3¼μ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNMa3ð1−e23Þ

p
γ]:

1PN corrected (i.e., contact) Newtonian angular mo-
mentum vector of the inner [outer] orbit.

In addition to these symbols, we will use tilded contact
elements to indicate orbital elements, which will only
appear in Appendix G. We use the mostly positive
metric signature and set c ¼ 1. Greek letters refer to
spacetime indices ranging from 0 to 3, while latin indices
are spatial and range from 1 to 3. ϵαβγδ denotes the totally
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antisymmetric Levi-Civita tensor, not to be confused
with our hierarchical expansion parameter ε≡ a=a3. The
symmetric and antisymmetric parts of a tensor are defined
with parentheses and brackets, respectively, AðμνÞ ¼ ðAμν þ
AνμÞ=2 and A½μν� ¼ ðAμν − AνμÞ=2.

II. THE EFT APPROACH TO THE RELATIVISTIC
HIERARCHICAL THREE-BODY PROBLEM

We consider a hierarchical system in which the inner
binary distance vector r is much smaller than its outer
binary counterpart R. The idea at the core of [35] is that one
can establish a correspondence between the Lagrangian of a
hierarchical three-body system and an effective Lagrangian
describing a two-body system, where one of the two
bodies is a spinning point-particle endowed with multipole
moments representing the inner binary. This identification
was performed up to dipolar order in [35]. Here we
summarize briefly the main steps of the computation:
(1) We start with the GR action describing two bodies

(the inner system) in the presence of a gravitational
field:

S ¼ M2
P

2

Z
d4x

ffiffiffiffiffiffi
−g

p
R −

X
A¼1;2

mA

Z
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνv

μ
Av

ν
A

q
;

ð1Þ

where vμA ¼ ð1; vAÞ is the coordinate velocity of the
point particle. The line element of our spacetime is
decomposed in the nonrelativistic limit following the
spaceþ time splitting presented in [47,48]

ds2¼−e2ϕðdt−AidxiÞ2þe−2ϕγijdxidxj; ð2Þ

where it is sufficient to consider the spatial part of
the metric as diagonal for our 1PN computations:
γij ≃ δij. The two metric fields are decomposed
using the background field method as ϕ ¼ ϕ̄þ ϕ̃,
Ai ¼ Āi þ Ãi, where the tilde quantities correspond
to an external arbitrary field (which will be related to
the gravitational field of the third distant object in
Step 3), while we integrate out the barred quantities
corresponding to gravitons exchanges between the
two bodies. At 1PN order, the resulting effective
Lagrangian is

L ¼ LEIH −m1ϕ̃ðy1Þ
�
1þ 3

2
v21

�
−
m1

2
ϕ̃ðy1Þ2

þm1Ãðy1Þ · v1 þ
GNm1m2

r
ϕ̃ðy1Þ þ ð1 ↔ 2Þ;

ð3Þ

where LEIH is the Einstein-Infeld-Hoffmann Lagran-
gian given by [49]

LEIH ¼ 1

2
m1v21 þ

1

2
m2v22 þ

GNm1m2

r
þ 1

8
m1v41

þ 1

8
m2v42 þ

GNm1m2

2r

�
3v21 þ 3v22 − 7v1 · v2

− v1 · nv2 · n −
GNm
r

�
: ð4Þ

(2) The Lagrangian (3) is expanded in multipoles
around the center of mass of the inner orbit, and
then averaged over one period of the inner orbit to
describe the dynamics on longer timescales. As
discussed in Sec. III, in this way we obtain the
classical effective Lagrangian for the long-timescale
modes of the system. This Lagrangian describes a
composite spinning point particle coupled to an
arbitrary external gravitational field. The multipole
moments of the composite object can be described in
terms of either its osculating elements or its contact
elements (see Sec. II A). For instance, the orbital
elements would be defined through the position and
velocity of the inner binary by

ã ¼ −
GNm
2

�
v2

2
−
GNm
r

�−1
;

ẽ α̃ ¼ 1

GNm
v × ðr × vÞ − r

r
;

γ̃ ¼ r × vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmãð1 − ẽ2Þ

p : ð5Þ

In this equation, ã and ẽ are the semimajor axis and
eccentricity of the orbit, while γ̃ and α̃ are two unit
vectors, respectively, directed along the Newtonian
angular momentum and the Newtonian perihelion of
the inner orbit. In this work, to handle higher-order
corrections in a compact way, we find it convenient
to use contact elements, which we indicate with
untilded symbols and define below [see Eq. (11)].

(3) We add the action of a third point particle and, as in
the first step, integrate the external fields ϕ̃, Ãi
mediating interactions between the third point par-
ticle and the effective spinning point particle repre-
senting the inner binary. The number of terms to take
into account is dictated by a set of power-counting
rules generalizing the non-relativistic general rela-
tivity (NRGR) approach [36,37] to the hierarchical
three-body problem and is described in [35]. The
two dimensionless parameters controlling the per-
turbative expansion are the usual PN parameter v2 ¼
GNm=a and the ratio of semimajor axes ε ¼ a=a3,
where a3 is the semimajor axis of the outer orbit.

(4) We finally average the Lagrangian over the outer
binary timescale. At this final step, the Lagrangian
depends only on the osculating elements of both
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inner and outer orbits. Note that the osculating
elements of the outer orbit are defined similarly
as in (5), replacing all inner quantities with outer
ones. In particular, at first order in the PN expansion,
the total mass of the outer binary will be m3 þ E,
where E ¼ m −GNm=ð2aÞ is the total energy of the
inner binary to Newtonian order. Thus, the osculat-
ing elements of the outer orbit implicitly contain

post-Newtonian corrections, which is a difference
of our approach compared to previous ones (e.g.,
[9,31,34]) which use the total massmþm3 to define
the outer orbit osculating elements.

After these four steps, we obtain a Lagrangian describing
the interactions between the inner and outer orbits up to
order v2ε5=2 on timescales much larger than the orbital
periods:

L ¼ J ·Ωþ J3 ·Ω3 þ 3μ
G2

Nm
2

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p þ 3μ3
G2

NM
2

a23
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e23

p −
4mþ 3m3

2m
ΩprecJ · J3 þ hL≤v2ε5=2

quad i: ð6Þ

In this equation, J (J3) and Ω (Ω3) are the angular
momentum and rotation vectors of the inner (respectively,
outer) orbits, defined by

J ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1 − e2Þ

q
γ; Ω ¼ α × _α; ð7Þ

with analogous formulas for the outer orbit. Let us com-
ment on each component of Eq. (6). The first two terms are
the spin kinetic terms of the two orbits. Once a variational
principle is applied, they will give rise to first-order
evolution equations for the planetary elements of the
two orbits, named Lagrange planetary equations (LPE)
(see Appendix D). Note that, as mentioned before, the spin
J3 of the outer orbit is defined by using the 1PN energy E of
the binary system as its effective mass, so that the spin
kinetic term of the outer orbit secretly hides post-
Newtonian terms [the other term where J3 appears in (6)
is already of 1PN order, so that in this term the difference
between using m or E is of 2PN order]. The two next terms
correspond to the well-known 1PN potentials inducing
perihelion precession of the two orbits at 1PN order [50].
We refer to them as internal Lagrangians since they would
be present even without any interaction between the two
orbits. The third term is a coupling between the angular
momenta of the two orbits at dipole order v2ε3=2. This term,
whose effect on the orbits of hierarchical systems was
already studied, e.g., in [39–41], was the highest-order
coupling in the ε expansion that we described in [35].
It involves a precession frequency given by

Ωprec ¼
GN

a33ð1 − e23Þ3=2
: ð8Þ

Finally, the term L≤v2ε5=2
quad encodes the contributions from

quadrupole-suppressed 0PN and 1PN interactions to the
long-timescale dynamics, which we will compute in
the next sections and which is the main result of the
present work.

A. Contact elements

The quantities above are given in terms of contact
elements, which differ from the usual Newtonian orbital
elements by PN corrections. Such differences will only
become relevant if one considers high enough terms in the
perturbative analysis of the problem, which happens to be
the case in the present work. The key difference is that
contact elements are defined in terms of the canonical
momenta of the system, rather than in terms of the
velocities (see, e.g., [45]). This allows one to keep track
of some PN corrections in a compact way, since the
conjugate momenta will receive corrections as soon as
the interaction Lagrangian depends on the velocities.
Let us now define the contact elements. In the rest frame

of the inner binary center of mass, we can write the
Lagrangian of the inner binary system as

L ¼ 1

2
μv2 þ GNmμ

r
þ μR; ð9Þ

where R encodes any term in the Lagrangian beyond
Newton’s expression for the inner binary system. The
conjugate momentum to the coordinate r will be

p ¼ μvþ μ∂R=∂v: ð10Þ

Then, rather than using Eq. (5), we will define the contact
elements as follows:

a ¼ −
GNm
2

�
p2

2μ2
−
GNm
r

�−1
;

eα ¼ 1

GNmμ2
p × ðr × pÞ − r

r
;

γ ¼ r × pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmμ2að1 − e2Þ

p ; ð11Þ

where the unit vector γ contains two angles and it is
orthogonal to α. With these definitions, in analogy with the
Kepler problem, we have
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r¼ aððcosη− eÞαþ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p
sinηβÞ;

p¼
ffiffiffiffiffiffiffiffiffiffiffi
GNm
a

r
μ

1− ecosη
ð−sinηαþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p
cosηβÞ; ð12Þ

where β ¼ γ × α and η is the (contact) eccentric anomaly,
defined at a time t by

u≡ ntþ ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffi
GNm
a3

r
tþ ϕ ¼ η − e sin η; ð13Þ

with ϕ the initial phase and u the contact equivalent of
the mean anomaly. In the following, it will be useful to
have an explicit relation between the contact elements
ða; e; u;ω;Ω; ιÞ and the orbital elements ðã; ẽ; ũ; ω̃; Ω̃; ι̃Þ.
We derive such a relation in Appendix G; see Eqs. (G13)–
(G17). An important outcome of Appendix G, which we
will use in the main text, is that the difference between
orbital and contact elements is small in the sense that at any
time, they differ by a 1PN quantity (i.e., this difference
cannot grow on long timescales).

III. THE POINT-PARTICLE EFT
TO QUADRUPOLAR ORDER

We now derive an effective Lagrangian describing the
inner binary coupled to an external gravitational field on
timescales much longer than its orbital period. We start by
describing the procedure to integrate out the fast (orbital)
modes, the so-called averaging, which we present in detail
in Appendix A. We then discuss in which reference frame
to define the contact elements of the inner binary, high-
lighting the rest frame of the inner binary’s center of mass
as the most suitable choice. Having done that, we present
the results of the averaging procedure, which is carried out
in some detail in Appendix C. We close the section by
matching the result to a worldline action for the inner
binary.

A. Integrating out fast modes

In field theoretic terms, we wish to derive the effective
action for the slow modes (the long-timescale dynamics) by
integrating out the fast modes (the orbital dynamics). In the
classical limit, this corresponds to substituting the solutions
to the equations of motion for the fast modes in terms of the
slow modes in the Lagrangian. On top of that, we can
average this effective Lagrangian, so as to remove any
quickly oscillating terms, which only carry information
about the already solved short-timescale dynamics. In our
specific case, fast and slow modes are packed together in
our variables, the osculating (orbital or contact) elements.
Therefore, we need a way to split the dynamics over short
and long timescales. Intuitively, a method to achieve this is
considering the average and the average-free part (with
respect to the orbital timescale) of the original equations of

motion. The splitting allows one to solve for the fast modes
in terms of the slow ones, by solving the average-free
equations. This method is broadly referred to as averaging
(see, for instance, Refs. [38,51]).
Despite its intuitiveness, averaging presents a few subtle-

ties that must be clarified in order to set up a systematic and
consistent procedure. For instance, if the period of the fast
oscillations of our system changes slowly, we have to
understand how to account for variations of the period in
our averages. Even more, we need to account for the small
changes of the slow variables over the period of a quick
oscillation. Up to which order can we compute averages
while keeping fixed the slow variables?
While it is easy to estimate the size of these possible

corrections, the task of choosing a setup that makes
transparent how to deal with these issues is much less
straightforward. For instance, one can consider whether to
average with respect to time or with respect to a dynamical
variable (e.g., a time-dependent angle). We can promptly
see that these two choices will lead to different quantities.
For instance, suppose the dynamics has periodicity with
respect to an angle u. If we call T½l� the period as a function
of the slow variables l, the average of a quantity Aðl; uÞ
can be defined in two different ways:

hAiu ¼
Z

u0þ2π

u0

du
2π

Aðl; uÞ; ð14Þ

hAit ¼
1

T½lðtÞ�
Z

tþT½lðtÞ�

t
dt0Aðl; uðt0ÞÞ

¼ 1

T½lðtÞ�
Z

uðtÞþ2π

uðtÞ
du

dt
du

Aðl; uÞ: ð15Þ

Even when in the first integral u0 ¼ uðtÞ, these two
quantities will be different as long as dt=du depends on u.
Intuition suggests that the difference between the choices

that one can take at the level of the setup might be akin to
the difference between the various choices of renormaliza-
tion scheme. While it seems reasonable that different
averaging methods and choices can be followed consis-
tently to describe the same dynamics, some of the choices
that we have to make might depend dramatically on the
nature of the system itself. An extreme example is the case
of the so-called crude averaging (see, e.g., [51]), which
shows that in some cases there can be problems in the
convergence of the averaged solutions unless one chooses
to perform the average after having rewritten the equations
of motion in a certain canonical form.
In light of these possible complications, closely follow-

ing [38] we set up our averaging procedure by means of the
so-called near-identity transformations for an angle-
periodic system written in its canonical form. This method
consists in performing a change of variables such that the
system of equations becomes independent on the angle. We
review this construction in Appendix A.
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The choice of this method has a few relevant conse-
quences. First, it implies that the averages (both at the level
of the equations and at the level of the Lagrangian) must be
taken with respect to the slowly evolving part of the mean
anomaly. For practical reasons, these averages will then be
expressed as integrals over the eccentric anomaly (or rather,
the corresponding contact element). This makes it clear that
the possibly changing value of the time period of the orbit
does not lead to any corrections to the averages. Moreover,
as we show in Appendix A, the construction of near-
identity transformations is such that the averages are
performed, to any order, keeping the slow variables fixed
in the integrand. This might seem counterintuitive, but
stems from the fact that the averages appear as a by-product
of a certain transformation of our variables, rather than as a
direct coarse graining of the dynamics.
Having defined the averaging procedure, our practical

task is to apply it to the relativistic, hierarchical three-body
problem, up to quadrupolar order. In doing so, we only
have difficulties due to the somewhat large number of
variables (the contact elements) and to the presence of two
small parameters that characterize the perturbation theory:
the ratio of semimajor axes and the typical velocity of the
bodies. On top of this, as we have already remarked, we
will have to perform two averaging procedures.

B. Center of mass and relative coordinates
in boosted frame

To carry out the multipole expansion, we express the two
inner bodies’ coordinates y1, y2 as functions of the position
of the inner binary center of mass and of the relative
distance between the two inner bodies, YCM and r. Then,
introducing the contact elements, we can describe the inner
binary as a spinning particle endowed with multipole
moments, coupled to gravity.
When this is done to 1PN order, in general one needs to

account for the difference between the rest frame of the
three-body center of mass and the rest frame of the center of
mass of the inner binary. In fact, one might express the
Lagrangian in terms of contact elements that are defined in
either of the two reference frames, by means of Eq. (12).
These two frames are connected by a boost plus a trans-
lation, a transformation that is nontrivial starting at 1PN
order. This entails a difference between the two sets of
contact elements that one can define. Crucially, while it is
natural to express the effective action in the rest frame of
the three-body center of mass, we find that the matching
procedure is considerably simplified when we express
the Lagrangian in terms of the intrinsic contact elements
of the inner binary, that is, those defined in the rest frame of
the center of mass of the inner binary. This is due to the fact
that an appropriate reference frame is needed to disentangle
the gravitational field from the multipole moments of an
object, as discussed in [35,44]. For this reason, we will
express the terms that appear in the effective Lagrangian, a

functional evaluated in the global three-body rest frame R,
in terms of the coordinates of the inner binary rest frameR0,
so as to obtain a functional depending on the intrinsic
contact elements of the inner binary. As studied in [35],
terms in the effective Lagrangian of order up to ε3=2 are not
affected by this difference in reference frame. However,
when computing quadrupole order contributions, we will
see that it becomes important to account for such a
difference.
While deferring the explicit computations in Appendix E,

let us just show here the final relation between the absolute
coordinates ðy1; y2Þ and the relative ones, YCM,VCM (center-
of-mass position and velocity of the inner binary to 1PN
order) and r0; p0 (relative distance andmomentum in the inner
binary rest frame to 1PN order):

y1 ¼ YCM þ ðX2 þ δÞr0 þ X2ðVCM · r0Þ

×

�
ðX1 − X2Þ

p0

μ
−
VCM

2

�
;

y2 ¼ YCM þ ð−X1 þ δÞr0 − X1ðVCM · r0Þ

×

�
ðX1 − X2Þ

p0

μ
−
VCM

2

�
; ð16Þ

where δ is a 1PN quantity defined by

δ ¼ −
1

m
VCM · p0 þ νðX1 − X2Þ

�
p02

2μ
−
GNm
2r0

�
: ð17Þ

In particular, note that this result implies the following
relation between r ¼ y1 − y2 and r0:

r ¼ r0 − ðVCM · r0Þ
�
VCM

2
þ ðX2 − X1Þ

p0

μ

�
: ð18Þ

The final step is just to express r0, p0 in terms of the contact
elements as in Eq. (12). To avoid clutter, in the rest of the
article we will suppress the primed label on r0, p0.

C. Averaging the Lagrangian

In this section, we start the computation of the quad-
rupolar Lagrangian by carrying out Step 2 described in
Sec. II. Specifically, we expand the Lagrangian (3) in
multipoles around the center of mass of the inner binary,
using the formulas given in Eq. (16). When carrying out
computations up to order v2ε5=2, it is crucial to include
corrections to the leading order averaging procedure
besides the quadrupolar order of the multipole expansion.
These are due to the deviation from perfect adiabaticity, i.e.,
small changes of slowly evolving quantities over the course
of the orbital period, and to backreaction of the quickly
oscillating terms on the long-timescale dynamics. To
simplify the presentation, we leave the detailed analysis
of these corrections to Appendix C. Here we only remark
that such corrections come in the form of the so-called cross
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terms: in this case either PN corrections to 0PN quadrupole
terms or quadrupolar corrections to 1PN terms of the
Lagrangian.
To give a separate treatment of these different contribu-

tions, we split the final averaged Lagrangian for the inner
binary coupled to an external gravitational field, L≤v2ε5=2

quad;12, in
two terms: the quadrupole term coming from the multipole
expansion, computed to 1PN order, and the cross terms
induced by corrections to the leading order averaging
procedure, computed in Appendix C:

L≤v2ε5=2
quad;12 ¼ hLð0Þ

quadi þ hLSi: ð19Þ

From this Lagrangian, integrating out the potential grav-
itons exchanged with the third body and averaging over the
outer orbit, in the next sections we will obtain the long-

timescale Lagrangian L≤v2ε5=2
quad presented in Step 4 of Sec. II.

Starting with the quadrupole term of the multipole
expansion, to order v2ε5=2 included, we obtain the
expression

Lð0Þ
quad ¼ −

1

2
μrirj∂i∂jϕ̃

�
1 −

GNm
r

ð1 − 2νÞ þ 3

2
ð2ðX2 − X1ÞVCM · v þ ð1 − 3νÞv2Þ

þ ðX1 − X2ÞVCM · rðrivj þ rjviÞ
�
þ 1

2
μrirj∂i∂jÃk½Vk

CM þ ðX2 − X1Þvk�; ð20Þ

where all the relevant quantities used in this equation have
been defined in Sec. III B and r, p are the relative position
and momentum vectors in the instantaneous rest frame of
the inner binary center of mass.1 We have made several
simplifications to get to Eq. (20). First, we have dropped
terms nonlinear in ϕ̃ as well as V2

CM corrections as they
would be of order v2ε3 according to the power-counting
rules of our theory, once the external gravitational field is
integrated out. These terms would be relevant when
considering the octupolar order in the center-of-mass
expansion, which is beyond the scope of this paper. Second,
although at this point the coupling ∂i∂jÃkVk

CM is of ε5=2v
order, it cannot contribute to the final ε5=2v2 Lagrangian
when Ãk has been integrated out. This is because the
lowest-order coupling of Ãk to m3 involves also v3, so that

it brings another ε1=2 factor once we integrate out Ãk, due to
the scaling v3 ∼ ε1=2v. Therefore we can ignore the term
∂i∂jÃkVk

CM in the present analysis. Finally, note that the use
of intrinsic relative position vectors, defined in the inner
binary instantaneous rest frame as explained in Sec. III B,
manifests itself in the last factor that multiplies ∂i∂iϕ̃.
Following the method of near-identity transformations,

presented in Appendix A, we can implement the averaging
procedure and eliminate the short-timescale dynamics from
the Lagrangian. We leave to Appendix C the corrections
due to the breaking of adiabaticity and backreaction of
short modes, hLSi in Eq. (19), while here we average
Eq. (20) over one orbit of the inner binary, using
the definition of contact elements given in Eq. (11). We
obtain

hLð0Þ
quadi ¼ −

μa2

4

�
ð1þ 4e2Þαiαj þ ð1 − e2Þβiβj þ GNm

2a
ðð1 − 5νþ 4e2ð2ν − 1ÞÞαiαj þ ð1 − 5νÞð1 − e2ÞβiβjÞ

�
∂i∂jϕ̃

−
1

2
ðX2 − X1ÞaeϵlikJlαjð∂i∂jÃk − 4Vk

CM∂i∂jϕ̃Þ; ð21Þ

where we recall that J is the angular momentum of the binary defined in Eq. (7).
At this point we can compute the whole contribution L≤v2ε5=2

quad;12 by adding the result from our analysis in Appendix C, i.e.,
Eq. (C16), to the contribution of Eq. (21):

L≤v2ε5=2
quad;12 ¼ −

1

2
Qij

E∂i∂jϕ̃ −
1

2
ðX2 − X1ÞaeϵlikJlαjð∂i∂jÃk − 4Vk

CM∂i∂jϕ̃Þ: ð22Þ

Here the traceless “electric-type” quadrupole moment is given to 1PN order by

Qij
E ¼ μa2

2

�
fαðeÞαiαj þ fβðeÞβiβj −

fαðeÞ þ fβðeÞ
3

δij
�
; ð23Þ

1In this expression, we can substitute v ¼ p=μ.
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and the two functions of the eccentricity read

fαðeÞ ¼ 1þ 4e2 −
GNm

2að1 − e2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ
½17þ 13

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
þ 5νð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ

þ e2ð56þ 15
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
− νð13þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ÞÞ þ 4e4ð3þ 2νÞ�; ð24Þ

fβðeÞ ¼ 1 − e2 −
GNm

2að1 − e2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ
½13þ 17

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
þ 5νð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ

þ e2ð31þ 18
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
− 5νð2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ÞÞ þ e4ð5ν − 9Þ�: ð25Þ

The first term of the Lagrangian (22) contains both New-
tonian ε2 and PN v2ε2 scalings, while its second term
proportional to the difference of masses contains only the
PN v2ε5=2 scaling. Note that, in order to remove the trace
from the quadrupole moment, we have made use of the
equation of motion ∂i∂

iϕ̃ ¼ 0.2 Note also that the osculat-
ing elements used in these equations are the intrinsic
contact elements, defined in the rest frame of center of
mass of the inner binary, and not Newtonian orbital
elements. The explicit difference between these two sets
of osculating elements is detailed in Appendix G [see
Eq. (G20)]. As explained there, this difference is small in
the sense that at any time, the contact elements differ from
the osculating elements by a 1PN quantity. Despite the
small difference, Eq. (G20) implies that while the contact
element a is constant by virtue of our averaging procedure
(see Appendix B), the respective orbital element features
post-Newtonian variations. This confirms the findings of
the author of [31,33], who showed for the first time that
cross terms induce variations in the (orbital) semimajor axis
a. However, our Lagrangian formalism allows us to assert
that these variations always stay small over time and cannot
accumulate over a long-timescale to induce large variations
in a, while this was left as an open question in previous
works [31,33].

D. Matching

We will now express the quadrupolar coupling (22) in a
gauge-invariant way. As shown in, e.g., [36,53], the
quadrupolar part of the effective action can be written in
terms of two interactions, the electric-type and magnetic-
type quadrupole terms,

Squad ¼ −
1

2

Z
dτEijQ

ij
E þ 2

3

Z
dτBijQ

ij
B ; ð26Þ

where Qij
E and Qij

B are the electric-type and magnetic-type
quadrupole moments of the source, coupled to the corre-
sponding parts of the Weyl tensor Cμναβ:

Eμν ¼ CμανβVα
CMV

β
CM;

Bμν ¼
1

2
ϵμαβσCαβ

νρVσ
CMV

ρ
CM: ð27Þ

Note that in Eq. (26) these tensors have been projected to a
locally flat frame.
Being only interested in terms of order v2ε5=2, we can

expand Eμν and Bμν to linear order in the gravitational fields
ϕ̃ and Ãi. Furthermore, at this order we can also ignore the

interactions involving _̃Ai as well as both VCM and Ãi
together. Finally, we will also make use of the equations
of motion for the external fields which read
∂i∂

iϕ̃ ¼ ∂i∂
iÃj ¼ 0,3 and of the gauge condition on Ãi

which is ∂iÃ
i ¼ −4 _̃ϕ [47,48]. Thus, the tensors are

given by

Eij ¼ ∂i∂jϕ̃; ð28Þ

Bij ¼
1

2
ϵmnði∂jÞ½∂mÃn þ 4Vm

CM∂
nϕ̃�: ð29Þ

The resulting magnetic-type quadrupole reproduces the
coupling to Ã and ϕ̃ proportional to the difference of
masses X1 − X2 that we found previously in Eq. (22)4:

2Even though we will eventually be interested in off-shell
potential gravitons exchanged between the inner binary and the
third body, using this on-shell condition does not alter the
effective action, similar to what is discussed in [52], since it
amounts to neglecting a contact term.

3As mentioned in Footnote 2 even if we will eventually be
interested in off-shell gravitons we still can use the equations of
motion, which amounts to neglecting a contact term.

4To get the coupling in Eq. (22) from Eqs. (29) and (30),
one has to make use of the gauge condition on Ãi and ϕ̃ and the
fact that

dϕ̃
dt

¼ _̃ϕþ Vi
CM∂iϕ̃

so that this total derivative can be ignored from the vertex.
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Qij
B ¼ 3

2
ðX1 − X2ÞaeJðiαjÞ: ð30Þ

This is consistent with the standard definition of the
magnetic-type quadrupole

Qij
B ¼ ϵmnðiX

A

mAx
jÞ
A x

m
Av

n
A; ð31Þ

(see, e.g., [36]), once averaged over one orbit of the inner
binary system, thus giving a strong check of the validity of
our decomposition. Note that the use of the relative
variables defined in the rest frame of the inner binary,
as explained in Sec. III B, is crucial to obtain the correct
magnetic-type interaction. Had we used relative variables
naively defined in the three-body rest frame (as is the case
in other studies [31–34]), we would not have achieved this
separation between a quadrupole moment intrinsic to the
inner binary coupled to the external gravitational field.
Instead, we would have obtained a quadrupole moment that
depends on the center-of-mass velocity of the inner binary.
This undesirable feature has been avoided thanks to our
choice of variables.
To recap our results, we obtain the following action for

the binary system treated as a point-particle up to quadru-
pole order:

S¼
Z

dτ̃

�
−E1PNþ

1

2
JμνΩμν−

1

2
EijQ

ij
E þ

2

3
BijQ

ij
B

�
; ð32Þ

where Qij
B and Qij

E have been defined in Eqs. (30) and (23),

dτ̃ ¼ dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g̃μνV

μ
CMV

ν
CM

q
, and the first two terms represent

the Lagrangian of the inner binary to dipole order, with
E1PN its energy to 1PN order, Jμν its spin tensor, and Ωμν its
angular velocity rotation vector. These quantities have been
computed in [35]; see Eq. (45) there. We can now move on
to Step 3 of Sec. II and integrate out the external fields ϕ̃, Ãi
in the presence of a third point-particle m3.

IV. DOUBLE-AVERAGED LAGRANGIAN
UP TO ORDER v2ε5=2

In the previous sections we have derived the Lagrangian
L≤v2ε5=2
quad;12 describing the dynamics of the inner binary

coupled to an external gravitational field over timescales
longer than the inner orbital period, up to order v2ε5=2. We
now take into account the presence of the third body. This
implies that we need to integrate out potential gravitons
exchanged between the inner binary and the third body, and
in turn adds a new timescale to the problem: the orbital
period of the outer orbit. Being interested in the evolution
on much longer timescales, we will repeat the averaging
procedure carried out for the inner binary, starting from
quantities that are already averaged with respect to the
period of the inner binary.

The action of the third point particle is given by

L3 ¼ −m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g̃μνv

μ
3v

ν
3

q
; ð33Þ

and we integrate out the gravitational field g̃μν. Since the
corresponding Lagrangian up to dipole order v2ε3=2 has
already been described in [35], we will concentrate on the
quadrupolar contributions.5 From Eq. (32), we see that
three new vertices appear at quadrupolar order, whose
power-counting rules are summarized in Table I.
Integrating out the external fields ϕ̃, Ã as shown in the
Feynman diagrams of Fig. 2, we find

L≤v2ε5=2
quad ¼ GNm3

2R3
ð3NiNj − δijÞ

× ½QE;ij þ 4ðX2 − X1ÞaeϵlkiJlVkαj�; ð34Þ

where we have moved to the center-of-mass frame of the
triple system by setting VCM ¼ X3V, v3 ¼ −XCMV, and we
recall that Qij

E has been defined in Eq. (23). This
Lagrangian contains terms with three different scalings:
Newtonian quadrupolar (ε2) in the Newtonian part of Qij

E ,
1PN quadrupolar (v2ε2) in the 1PN part of Qij

E , and
magnetic-type quadrupolar (v2ε5=2) in the second term
proportional to the difference of masses.
We can now implement the second step of averaging and

eliminate the dynamics on timescales shorter than the
period of the outer orbit by means of new near-identity
transformations. We thus obtain the doubly averaged
Lagrangian:

TABLE I. Power-counting rules for the quadrupolar vertices
contained in the effective point-particle action (32) up to 1PN
order, with J3 ¼ ðGNM3a3Þ1=2, v2 ¼ GNm=a, and ε ¼ a=a3. The
rules are obtained using the scaling presented in Sec. IVA of [35].
For convenience, the integral over time is not displayed, although
it should be included to obtain a dimensionless rule. Furthermore,
in the main text we will ignore the J3 factors when discussing
the scaling of an operator, since in the end the Lagrangian will
always be proportional to J3 (terms not proportional to the
angular momentum represent true quantum loops whose contri-
bution to the dynamics is completely negligible in the NRGR
formalism [37]).

Operator Rule

− 1
2
Qij

E∂i∂
jϕ̃ J1=23 v2ε2

1
3
Qij

Bϵmnði∂jÞ∂mÃn J1=23 vε2

4
3
Qij

Bϵmnði∂jÞVm
CM∂

nϕ̃ J1=23 v2ε5=2

5Being interested in the dynamics of contact elements, we do
not keep track of the possible coupling of the three-body system
itself to an external gravitational field.
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hL≤v2ε5=2
quad i ¼ 3GNm3

4a33ð1 − e23Þ3=2
Qij

Eðαi3αj3 þ βi3β
j
3Þ þ

3ðX2 − X1Þ
XCM

Ωprec
a
a3

ee3
1 − e23

ððJ × αÞ · ðJ3 × α3Þ − 2ðJ · J3Þðα · α3ÞÞ;

ð35Þ

where Ωprec is the precession frequency already defined in
Eq. (8). This completes our derivation of the double-
averaged Lagrangian up to order v2ε5=2. Note that in doing
this last average, we did not need to compute corrections
due to deviation from adiabaticity and backreaction of short
modes, since these effects, similar to what is discussed in
Appendix C, would contribute only to quadrupole times v23
order, which means starting from octupole order, since
v3 ∼ ϵ1=2v.
Starting from this result, the LPE for the long-time-

scale evolution of both the inner and outer orbits are
obtained by taking the relevant derivatives of the
Lagrangian as shown in Eqs. (D7)–(D12). Note that
the angular dependence of the quadrupolar v2ε2 terms
is quite similar to the Newtonian quadrupole at ε2, so that
we expect that these v2ε2 terms will not induce a
qualitatively different behavior in the long-term evolution
of the system. On the other hand, the angular structure of
the v2ε5=2 terms is more involved and somewhat similar
to the Newtonian octupole, which means that similar to
the octupole such terms can give rise to new behaviors at
long times (see, e.g., [18,54]) concerning the influence of
octupole terms in the Kozai-Lidov problem). We will
describe these new behaviors in the next section, where
we will numerically solve the LPE for the long-timescale
dynamics obtained from the quadrupolar Lagrangian up
to order v2ε5=2.
Before moving on, let us compare our result to the ones

already present in the literature. As we stated in the
Introduction, we are aware of only four works that tackled
the task of computing 1PN quadrupolar terms including
the effects due to deviations from the adiabatic approxi-
mation and to backreaction of quickly oscillating modes.
In three of them, a circular outer orbit is assumed [31–33].
As shown by Eq. (35), this causes one to neglect the
presence of magnetic-type quadrupolar terms of order

v2ε5=2, which can lead to new interesting behaviors in the
long-term evolution of the system as we show in Sec. V.
The explicit comparison between the LPE obtained in
these works and our result is complicated by the fact that
we do not use the exact same averaging procedure; see the
comments at the end of Appendix G. On the other hand,
the work in [34] reports a puzzling result. Indeed,
it describes the effect of a so-called libration cross term
in the equations of motion which, once translated to
the Lagrangian point of view, would scale as v2ε1=2 within
our power-counting rules. Such a term is absent from
our derivation, and we believe that it should not be
present.6

V. NUMERICAL SOLUTION TO THE LPE

In this section, we will numerically integrate the
equations of motion stemming from the averaged
Lagrangian (6) for both inner and outer orbits given
some initial conditions. A systematic exploration of the
(huge) parameter space, as has been done in, e.g.,
Ref. [9] with lower-order perturbations in the
Lagrangian, is out of the scope of this paper. Instead,
we content ourselves with showing that the quadrupolar
terms derived in this paper can have some nontrivial
consequences on the long-term evolution of relativistic
three-body hierarchical systems.
Varying the total averaged Lagrangian (6) over plan-

etary elements as described in Appendix D, we obtain the
so-called LPE which dictate the evolution of orbital

(a) (b) (c)

FIG. 2. Feynman diagrams obtained by integrating out the outer fields ϕ̃, Ã and contributing to the quadrupolar Lagrangian (34) up to
order v2ε5=2. The double line represents the inner binary system, while the single line stands for the third particle m3. The black [white]
dot represents the insertion of an “electric-type“ [“magnetic-type”] quadrupolar coupling from Eq. (32). The dotted line represents the
exchange of a scalar ϕ̃, while the dashed line stands for the exchange of a vector Ã.

6Note that before averaging over the inner orbit, the Lagran-
gian indeed contains terms scaling as v2ε1=2, which are also
dependent on the center-of-mass definition. However, one can
check that even with the Newtonian definition of the center of
mass used in [34], the average of these v2ε1=2 terms over the inner
orbit still vanishes.
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elements over long timescales. For the inner orbit, they
are given by

_a ¼ 0; ð36Þ

_e ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

GNmae2

s
∂R
∂ω

; ð37Þ

_ι¼−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GNmað1−e2Þ
p

sin ι

∂R
∂Ω

þ cos ιffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1−e2Þ

p
sin ι

∂R
∂ω

;

ð38Þ

_ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

GNmae2

s
∂R
∂e

−
cos ιffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GNmað1 − e2Þ
p

sin ι

∂R
∂ι

; ð39Þ

_Ω ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1 − e2Þ

p
sin ι

∂R
∂ι

; ð40Þ

where R ¼ δL=μ is the so-called perturbing function,
with δL containing all terms beyond the first two kinetic
parts in the total Lagrangian (6). The LPE for the outer
orbit are obtained by replacing all inner quantities with
outer ones. However, one has to be careful to replace the
mass m with the sum m3 þ E, with E ¼ m −GNm=2a, as
was emphasized below Eq. (6).
Until now, we have not specified any orientation for

our reference frame centered on the total center of mass
of the three-body system. A straightforward application of
Noether’s theorem to the averaged Lagrangian (6) gives
that the total momentum, J þ J3 is conserved. We can
thus follow the conventional elimination of the nodes
procedure (see, e.g., Ref. [18]) to choose the orientation
of the axis with the z axis parallel to J þ J3, in which
the following relations between planetary elements hold
true:

Ω3 ¼ Ωþ π; kJk sin ι ¼ kJ3k sin ι3: ð41Þ

This allows us to eliminate two variables from the eight
dynamical variables that we are solving for by, e.g.,
expressing all quantities in terms of only Ω and
ιtot ¼ ιþ ι3. As a relevant remark, let us highlight two
subtleties concerning the elimination of nodes. First, as
discussed in [54], one cannot directly use the relations (41)
at the level of the Lagrangian or the Hamiltonian, because
this would mean using a consequence of the equations of
motion (conservation of angular momentum) in the
Lagrangian itself, which can lead to wrong results.
Indeed, many studies (including the original one of
Kozai [19]) concluded that the z components of both
angular momentum are conserved independently, which
is incorrect as shown in [54]. Second, note that the

conserved angular momentum is defined with the contact
elements, which differ from the osculating elements at
1PN order as we highlight in Appendix G. In other
words, the angular momentum defined with osculating
elements does feature variations at 1PN order, while the
one defined with contact elements is a constant. Thus,
one cannot eliminate the nodes by following the conven-
tional procedure if one uses the osculating elements
instead of the contact ones.7 As an independent check
of this procedure, our numerical simulation confirms that
the projection of the angular momentum on the z axis,
kJk cos ιþ kJ3k cos ι3, is conserved through the
evolution.
We now discuss our numerical solution for a particular

set of parameters. We choose the inner binary to be
composed of two black holes with total mass m ¼
20M⊙ and mass ratio ν ¼ 0.15, while the outer perturber
has a mass m3 ¼ 50M⊙. The inner semimajor axis is
a ¼ 5 AU, and the outer one is a3 ¼ 350 AU. Such
values are typical for black holes in dense nuclear clusters
[6,55–57]. The initial conditions of the system are
described in Fig. 3, where we plot the total inclination ιtot ¼
ιþ ι3 and the eccentricity e as functions of time. Without
PN perturbations, the system undergoes flips of inclination
and extreme eccentricities due to the octupole effects
beyond the Kozai-Lidov mechanism. The presence of
lower-order PN terms (up to v2ε3=2, i.e., dipole order)
quenches the maximal eccentricity as well as the orbital
flips. This behavior is well-known in the literature
[9,25,58]. However, we find that adding the new 1PN
quadrupolar terms that we computed in this article can
retrigger the flips in inclination. This is shown in Fig. 3.
Whether this ultimately influences the mechanisms leading
to binary mergers in nuclear clusters is left as an interesting
question for future work.
As a final comment, note that we have not studied the

linear stability of the system, which would require
diagonalizing the Hessian matrix of the inner and outer
contact elements. Even without knowing the eigenvalues
of the Hessian matrix, we can appreciate how no unstable
direction was hit in our simulation, since amplitude and
phases of the oscillations do not grow exponentially.
Moreover, we take the persistence of quasiperiodic oscil-
lations as a proxy for the absence of any resonant behavior
(see discussion in Appendix B). Therefore, the accuracy of
the simulation reported is only limited by the growth of
higher order terms that we have neglected. These will
possibly become of order one after a time that is parametri-
cally larger than the interval explored in the simulation.

7The fact that _Ω ≠ _Ω3 for osculating elements was already
noticed in [34]. In comparison, our discussion adds that the
elimination of nodes can be carried out consistently at the level of
contact elements.
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VI. CONCLUSIONS AND OUTLOOK

In this work we have considered the effects of a distant
third body orbiting a tightly bound binary system, forming
a hierarchical triple. We have derived an effective action
that includes relativistic effects up to 1PN order as well as
multipole effects up to quadrupole order.
Our EFT approach allows us to make use of symmetries

to constrain the form of the interactions and makes clear
contact with the underlying field theoretic description of
gravity. In particular, starting from an action of three
worldlines minimally coupled to gravity, we integrated
out the off-shell gravitons that give rise to the binding
potential and matched the theory to a system of inter-
acting composite particles. We did this by first integrating
potential gravitons binding the inner binary and matching
the action of the inner binary to that of a composite
particle coupled to an external gravitational field. Then,
integrating out potential gravitons with wavelengths
comparable to the size of the outer orbit, we obtained
an action describing two interacting particles, the inner
binary and the third body. This method allows one to build

toward a systematic understanding of the long-timescale
dynamics away from resonances.
In practice, deriving the effective action presents a few

challenges. For instance, it is important to understand
which are the most suitable variables to describe the
long-timescale dynamics and the relativistic corrections.
In this study we have found that the contact elements
defined in the center of mass frame of the inner binary
allow one to encode in a compact way various PN
corrections. Moreover, their slowly evolving parts are
the quantities that carry only the relevant information to
describe the system on long timescales. Using near-identity
transformations, we were able to unambiguously integrate
out the effect of fast orbital modes on the dynamics,
outlining a procedure that can be used at any order in
perturbation theory. With this approach, we managed to
gain insight on the interplay between multipole expansion
and relativistic effects. Our main result is that quadrupole-
PN cross terms can retrigger orbital flips in spite of
PN effects that appear at lower order in the multipole
expansion.

FIG. 3. Impact of the quadrupole-1PN terms on the evolution of a three-body system. We solve the LPE (36) with the following
parameters for a three-body system: m ¼ 50M⊙, ν ¼ 0.15, a ¼ 5 AU, m3 ¼ 50M⊙, a3 ¼ 350 AU. The initial conditions are
e ¼ 0.001, e3 ¼ 0.7, ιtot ¼ 87°, ω ¼ 240°, ω3 ¼ 0°, Ω ¼ 0°. In the left plots we show the evolution of the total inclination ιtot ¼ ιþ ι3
and the eccentricity e without taking into account PN perturbations (i.e., setting v2 ¼ 0 in our power-counting rules), but including
Newtonian quadrupolar and octupolar terms as described in, e.g., [18]. The system features orbital flips and eccentricities as high as
1 − e ∼ 10−4, which are typical of the octupolar Kozai-Lidov mechanism [5,6,18,54]. In the right panels, we show the evolution of the
same quantities taking into account higher terms in the PN expansion on top of the Newtonian quadrupolar and octupolar terms. Namely,
we include PN terms up to v2ε3=2 order (in blue) and up to v2ε5=2 order (in orange). The lowest-order PN perturbations (which are well-
known and have been studied in the context of three-body dynamics, e.g., in [9,25,39–41,58]) generically quench the orbital flips and
eccentricities. However, the new v2ε5=2 terms computed in this article retrigger the orbital flips.
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We envision a few possible directions for future work.
An obvious possibility is to derive the EFT for the long-
timescale dynamics to higher order in either PN or multi-
pole expansion. Several works have derived the three-body
potential for gravitational systems in the PM expansion
(see, e.g., [59]), computing also the first orders of the PN
expansion. These results could be used as a starting point to
derive the effective action for the long-timescale dynamics
of the hierarchical three-body problem to higher PN orders.
It would also be very interesting to use our effective two-
body approach to study gravitational-wave generation in
three-body systems; indeed, it is known that a blind
application of the quadrupole formula in the center-of-
mass frame of a hierarchical three-body system can lead to
unphysical results [60]. In contrast, our approach could be
used to consistently derive the radiation-reaction force in
these systems.
Another possible direction of work would be to develop

a systematic study of the presence or absence of resonances
for given initial data. In this regard, our procedure of
integrating out microscopic degrees of freedom in two
different steps, despite its simplicity, has the drawback of
forcing us to ignore possible resonant behaviors. In con-
trast, one might integrate out gravitons and perform the
averaging in a single step, without inputting from the start
the hierarchy between the semimajor axes. For instance, the
method adopted in [61] of performing the hierarchical
expansion by using the method of regions might be
employed also in the averaging procedure. In any case,
having a result that does not rely on the hierarchy between
the two orbits might make it possible to detect resonant
behaviors as well as to eventually derive our convenient
description away from resonances. Further, it would be
interesting to make more explicit the connection between
the averaging procedure and the underlying field theory.
One possibility could be describing the inner and outer
orbits through coherent states of the Kepler problem (see,
e.g., [62]). This might make it possible to derive our results
diagrammatically, without writing the equations of motion
for fast and slow modes.
From the phenomenological point of view, it would be

interesting to quantify how these effects alter existing priors
on the population of binaries that will be observed through
gravitational wave experiments. Even more, our work
could be used to better understand which three-body
configurations can lead to detectable modifications of
gravitational waveforms due to the long-timescale dynam-
ics, and to provide a waveform template incorporating
three-body effects. For instance, it has recently been
proposed that Kozai-Lidov oscillations may be observable
in waveforms [63,64]; taking into account the relativistic
three-body effects that we computed in this work may be

crucial for the parameter estimation of these kind of
systems.
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APPENDIX A: AVERAGING THROUGH
NEAR-IDENTITY TRANSFORMATIONS

We here present the averaging procedure that we adopt
in our computations, the so-called averaging by near-
identity transformations [38]. We do so in the context of
a toy model that closely resembles the three-body
problem, an angle-periodic system in its canonical form.
While in the three-body problem there are two angle
variables (the mean anomalies of inner and outer orbits)
and several slowly evolving variables, we consider a
system with one angle variable, u, and one slowly
evolving variable x:

d
dt

x ¼ ϵg1ðx; uÞ þ ϵ2g2ðx; uÞ þ � � � ;
d
dt

u ¼ HðxÞ þ ϵh1ðx; uÞ þ ϵ2h2ðx; uÞ þ � � � ; ðA1Þ

where ϵ ≪ 1, the dots indicate terms with i > 2, and the
functions gi and hi are periodic in u with period 2π.
Physically, we can think of ϵ as a ratio of timescales,
since the slow variable x has excursions of order 1 over
times that are 1=ϵ longer than those over which u
changes its value by an order 1 factor. We implement
the splitting between fast and slow dynamics using a
change of variables:

uðtÞ ¼ uLðtÞ þ ϵuSðxL; uLÞ;
xðtÞ ¼ xLðtÞ þ ϵxSðxL; uLÞ; ðA2Þ

where uS, xS encode the short-timescale dynamics and
are chosen to be periodic in uL with period 2π.
Equation (A2) is called a near-identity transformation,
since for ϵ → 0 it reduces to an identity. Physically, this
ansatz encodes the fact that fast oscillations will have a
suppressed amplitude. The strategy that we adopt is to fix
the functions uS, xS in such a way to cancel quickly
oscillating terms in Eqs. (A1) order by order in ϵ, up to a
desired accuracy. Then we truncate the equations,
neglecting the higher order corrections that still contain
oscillating terms. This will leave a system of equations
for uL, xL that only depends on the long timescale, up to
corrections that are of arbitrarily high order (which are
neglected after the truncation). Plugging the transforma-
tion in Eq. (A1) we have to second order
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_xL þ ϵð_xL∂xL þ _uL∂uLÞxS ¼ ϵg1ðxL; uLÞ þ ϵ2ðxS∂xL þ uS∂uLÞg1ðxL; uLÞ þ ϵ2g2ðxL; uLÞ þOðϵ3Þ;

_uL þ ϵð_xL∂xL þ _uL∂uLÞuS ¼ HðxLÞ þ ϵH0ðxLÞxS þ
ϵ2

2
H00ðxLÞx2S þ ϵh1ðxL; uLÞ

þ ϵ2ðxS∂xL þ uS∂uLÞh1ðxL; uLÞ þ ϵ2h2ðxL; uLÞ þOðϵ3Þ: ðA3Þ

Now, order by order, we can determine xS, uS in such a way
that the derivatives _xL, _uL only depend on xL, up to terms of
order ϵ3:

_xL ¼ ϵG1ðxLÞ þ ϵ2G2ðxLÞ þOðϵ3Þ;
_uL ¼ HðxLÞ þ ϵH1ðxLÞ þ ϵ2H2ðxLÞ þOðϵ3Þ: ðA4Þ

To obtain this, we write xS ¼ xð0ÞS þ ϵxð1ÞS þ � � � and

uS ¼ uð0ÞS þ ϵuð1ÞS þ � � �. Then, comparing Eq. (A4) with
Eq. (A3) we find that at first order it must be

∂uLx
ð0Þ
S ¼ 1

HðxLÞ
ðg1ðxL; uLÞ −G1ðxLÞÞ;

∂uLu
ð0Þ
S ¼ 1

HðxLÞ
ðh1ðxL; uLÞ þH0ðxLÞxð0ÞS ðxL; uLÞ

−H1ðxLÞÞ: ðA5Þ

Integrating the first equation at fixed xL, we find

xð0ÞS ðxL; uLÞ ¼
Z

uL

0

ds
HðxLÞ

ðg1ðxL; sÞ −G1ðxLÞÞ þ C0ðxLÞ:

ðA6Þ

From this, since by assumption xð0ÞS is periodic in uL with
period 2π, we see that it must beZ

2π

0

ds
HðxLÞ

ðg1ðxL; sÞ −G1ðxLÞÞ ¼ 0; ðA7Þ

which in turn implies that G1 must be chosen to be the
average of g1:

G1 ¼ hg1iuL ¼
Z

2π

0

ds
2π

g1ðxL; sÞ: ðA8Þ

We can further set C0ðxLÞ in such a way that xð0ÞS has zero
average. Schematically we will write

xð0ÞS ðxL; uLÞ ¼
1

HðxLÞ
AfuL

�Z
uL
dsAfsðg1ðxL; sÞÞ

�
;

ðA9Þ
where the symbol Afx indicates taking the average-free part
of the argument with respect to the variable x.
Note that in this approach, the average is defined without

ambiguities through an integral over uL with xL fixed, as a
by-product of requiring xS to be periodic. This procedure
can be thought of as an average over the short timescale
characterizing the evolution of uL, while keeping fixed the
variable xL. Therefore, we are not truly performing an
average over time, but a procedure that is very similar
and which ensures all the same an arbitrarily precise
approximation.
Turning to the equation for uð0ÞS , we find in the same way

that H1ðxLÞ ¼ hh1iuL , since the quantity H0xð0ÞS is average-
free (thanks to our choice of C0). This means that if h1 is
average-free, then _uL will receive corrections starting at
order ϵ2. We will also choose the constant of integration for

uð0ÞS in such a way to make it average-free. Thus it will be

uð0ÞS ðxL; uLÞ ¼
1

HðxLÞ
AfuL

�Z
uL
ds½Afsðh1ðxL; sÞÞ þH0ðxLÞxð0ÞS ðxL; sÞ�

�
: ðA10Þ

This first order truncation of the approximation, when applied to the Newtonian hierarchical three-body problem, gives the
Kozai-Lidov long-timescale dynamics. Turning to second order, we have

∂uLx
ð1Þ
S ¼ 1

HðxLÞ
ðg2 þ ðxð0ÞS ∂xL þ uð0ÞS ∂uLÞg1 −H1∂uLx

ð0Þ
S −G2ðxLÞÞ;

∂uLu
ð1Þ
S ¼ 1

HðxLÞ
�
h2 þH0xð1ÞS þH00

2
ðxð0ÞS Þ2 þ ðxð0ÞS ∂xL þ uð0ÞS ∂uLÞh1 −H1∂uLu

ð0Þ
S −H2ðxLÞ

�
; ðA11Þ

where g1;2 and h1;2 are evaluated in ðxL; uLÞ. Again, requiring the near-identity transformation to be periodic, we find that

G2 and H2 will be averages of the other terms in the right-hand side (RHS). Consequently, xð1ÞS and uð1ÞS will be integrals of

average-free expressions, and we will be able to fix the constants of integration so as to make xð1ÞS and uð1ÞS average-free as
well. In particular, we find
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G2 ¼
Z

2π

0

ds
2π

ðg2ðxL; sÞ þ ðxð0ÞS ∂xL þ uð0ÞS ∂uLÞg1ðxL; sÞÞ;

H2 ¼
Z

2π

0

ds
2π

ðh2ðxL; sÞ þ ðxð0ÞS ∂xL þ uð0ÞS ∂uLÞh1ðxL; sÞ þ
H00

2
ðxð0ÞS Þ2Þ; ðA12Þ

where we have dropped the terms H1∂uLx
ð0Þ
S , H1∂uLu

ð0Þ
S ,

and H0xð1ÞS , which are average-free. These functions can
then be plugged into the equations for xL and uL, and the
slow dynamics can be determined up to terms of order ϵ3.
Similarly, one can derive the averaging procedure to any
order in ϵ simply by fixing higher orders of the near-
identity transformation, through the functions xS and uS.
The toy model just discussed describes well the pro-

cedure we would adopt if we expressed our quantities in
terms of the mean anomaly. However, we can only give a
closed form expression of the perturbing function in terms
of the eccentric anomaly. If we wished to use the variable u
as a proxy for the eccentric anomaly, then we would have to
allow a dependence on u of the function H driving the
leading order evolution of u. It would then be much less
straightforward to understand how to define the near-
identity transformation, since we would have to decide
whether we want to retain a uL dependence in the functions
Hi driving the evolution of uL. Moreover, the equations for
uS would require a more cumbersome integration.
For this reason, we find it useful to exploit the averaging

procedure derived above, in terms of the mean anomaly,
and to simply change integration variables in a consistent
way to the eccentric anomaly. If we call u the mean
anomaly and η the eccentric anomaly, then we know that
Kepler’s equation holds at all times:

u ¼ η − e sin η; ðA13Þ

where e is the eccentricity, which we can regard as a
component of what in general will be the x vector. This
relation ensures that any function periodic in u is also
periodic in η. Given Kepler’s equation, we can perform the
near-identity transformation and find a relation between uL
and the eccentric anomaly. Suppose the eccentricity is
transformed as

e ¼ eLðxLÞ þ ϵeSðxL; uLÞ; ðA14Þ

then we see that it must hold

uL þ ϵuSðxL; uLÞ ¼ η − ðeLðxLÞ þ ϵeSðxL; uLÞÞ sin η:
ðA15Þ

Although the relation between η and uL is very involved,
we can avoid complications by performing a near-identity
transformation on η as well:

η ¼ ηL þ ϵηSðxL; uLÞ: ðA16Þ

Then, it is possible to fix ηS so as to retain, to all orders, the
relation

uL ¼ ηL − eL sin ηL: ðA17Þ

This choice makes it possible to express the integrands
evaluated in uL as simple functions of ηL. Moreover, it
makes it clear that at all orders the change of variables will
be given by

duL ¼ dηLð1 − eL cos ηLÞ: ðA18Þ

Note that crucially, as a result of integrating at fixed xL, the
Jacobian does not have the denominator factor _uþ _e sin η
that would appear in dt=dη. This is to say that the averaging
procedure that we have presented provides a coarse grain-
ing of the system in the time coordinate while removing the
need of actually performing an integral over time.
Before concluding, let us mention other methods to

eliminate fast variables besides the method of near-identity
transformations. One alternative is the so-called multiple
scale analysis, for instance, discussed in [65,66]. The idea
behind this method is to introduce fictitious variables
corresponding to long timescales and to determine the
dependence on these long timescales by imposing the
cancellation of terms that display a secular growth, i.e.,
terms growing linearly with time that would break the
perturbative expansion early on. As far as we know, the
method of near-identity transformations is to be preferred
over the multiple scale analysis if one is interested in
estimating the range of validity in time of the approximate
solution [38]. Besides the multiple scale analysis, we quote
the method of Von Zeipel transformations, [9,67], which
works at the level of the Hamiltonian implementing
canonical transformations that eliminate the dependence
on short-timescale modes, very similar to what we have
done above. Finally, we quote the method of the dynamical
renormalization group [68], which operates in a way similar
to the multiple scale analysis, removing secularly growing
terms by means of counterterms.

APPENDIX B: CONSERVATION OF CONTACT
SEMIMAJOR AXIS

We now turn to the question of whether the semimajor
axes of the two orbits remain constant over long timescales.
Despite the simplicity of this question, to our understanding
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the answer is quite involved. There is an intuitive reasoning
to argue that the semimajor axes are constant over long
timescales. That is, after the averaging procedure is carried
out, the Lagrangian becomes independent of the mean
anomaly of the corresponding orbit, therefore making the
corresponding conjugate momentum constant. The latter,
as shown in Eq. (C2), depends only on the semimajor axis.
However, when considering PN corrections this argument
can hold only for the contact element a, rather than for the
orbital element ã; see discussion in Appendix G. Moreover,
as we discuss in Appendix A, the dynamical variables left
after the averaging procedure are the long-timescale modes
of the original, full contact elements. Therefore the state-
ment will not hold for the full contact element, but only for
its slowly evolving part.
The way to make this intuition rigorous is to implement a

canonical transformation of the Hamiltonian, eliminating
order by order the dependence on the mean anomalies.
This is achieved through the Von Zeipel transformations, as
discussed in [9]. The result is that, indeed, as long as
perturbation theory goes, the semimajor axes remain
constant over long timescales. The systematic control over
each order in perturbation theory given by the near-identity

transformations allows for an independent check of this
statement. Explicitly, using the formulas derived for the toy
model (A1), we can check that, for instance, to second
order we expect the semimajor axis to be constant on long
timescales. To argue this, we can think of the functions
appearing as sources on the right-hand side of Eq. (A1) as
partial derivatives of the Hamiltonian of the system
H ¼ H0 þH1 þ � � � :

g1 ¼ −
∂H1

∂u
; g2 ¼ −

∂H2

∂u
;

H ¼ ∂H0

∂x
; h1 ¼

∂H1

∂x
; ðB1Þ

where we assume H to be periodic in u, meaning that the
functions gi will be average-free. This allows us to inspect
order by order whether the time derivative of the conjugate
momentum to the mean anomaly vanishes or not, by
computing the long-timescale source terms Gi, in
Eq. (A4). For instance, it is evident that G1 ¼ 0, due to
g1 being average-free. For G2, given in Eq. (A12), deter-
mining the answer is less straightforward. Schematically,
we have

G2 ¼
Z

2π

0

ds
2π

�
1

H
AfðH1Þ∂x∂uH1 − ∂x

�
1

H
Af

�Z
u
AfðH1Þ

��
∂
2
uH1

�

¼
Z

2π

0

ds
2π

�
∂x

�
1

H
AfðH1Þ∂uH1

�
− ∂u

�
∂x

�
1

H
Af

�Z
u
AfðH1Þ

��
∂uH1

��
: ðB2Þ

Here we have used that H ¼ HðxÞ and that the integrals
over u are performed at fixed x, as dictated by the method
of near-identity transformations. In this expression, the
total u derivative gives a vanishing contribution thanks to
periodicity of the functions, while in the first term we can
recognize a total derivative plus an average-free term:

1

H
AfðH1Þ∂uH1 ¼

1

2H
∂uðH2

1Þ −
1

H
hH1i∂uH1: ðB3Þ

These terms give a vanishing contribution to the average;
therefore, we find

G2 ¼ 0: ðB4Þ

Moving to higher orders, we will have to handle increas-
ingly complex expressions. In the end, also from the point
of view of near-identity transformations, the simplest route
might be showing that the long-timescale part of x and u are
still conjugate variables described by a
Despite these results, the perturbative expansion can fail

due to resonances between modes of the two orbits. In
practice, if the orbits have commensurable periods, then
some terms of the expansion can be enhanced by inverse

powers of the expansion parameters, usually called small
divisors [38]. As already remarked, in the analysis of this
work we have discarded such cases by performing the
averages over the two orbits independently. Generally,
however, small divisors will appear at high enough orders
in perturbation theory. Their presence will determine a loss
of validity of the predictions that we have obtained and a
corresponding nontrivial evolution of the semimajor axes
on timescales that are parametrically larger than those
characterizing the effects described by lower orders in
perturbation theory. Instead, if the system is studied close to
a resonance, then the standard perturbation theory will stop
working already from low orders, and resonant behavior
will appear early on in the evolution of the system. As an
example, the effects of a resonance on the evolution of a
hierarchical triple were studied in [21].

APPENDIX C: BACKREACTION AND
DEVIATIONS FORM ADIABATICITY

As outlined in Appendix A, the averaging procedure
can be conveniently defined as an average over the
values of the slowly evolving part of the mean anomaly,
and then expressed in terms of the eccentric anomaly as in
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Eq. (A17). Here we apply this procedure to the three-body
problem.

1. Long-timescale and short-timescale Lagrangians

To describe corrections to the adiabatic approximation,
we should return to the Lagrangian (3). It will be useful to
split it between a Newtonian term and a perturbation:

L¼ 1

2
v2 þGNm

r
þR¼ ðGNmÞ2

2L2
þL _uþG _ωþH _ΩþR;

ðC1Þ

where the perturbing function R contains the kinetic term
of the center of mass as well as any other term beyond the
Newtonian two-body interaction of the inner binary. For
simplicity we have divided the Lagrangian by μ, a notation
that we will use throughout the appendixes. The second
equality expresses the Newtonian part as a first-order
Lagrangian depending on the (osculating) contact elements
of the orbit, which are defined in Sec. II A. It can be
checked that this Lagrangian indeed gives the Lagrange
planetary equations presented in Sec. D and that are
usually presented in the Hamiltonian formalism (see also
Refs. [35,45]).
Finally, the conjugate momenta are given by

L¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GNma

p
; G¼L

ffiffiffiffiffiffiffiffiffiffiffi
1−e2

p
; H¼Gcos ι: ðC2Þ

Given Eq. (C1), we can perform near-identity trans-
formations for all the contact elements as outlined in
Appendix A. Once we determine the fast oscillating terms
in each of the near-identity transformations to a desired
order in both ϵ, the ratio of the semimajor axes, and v, the
velocity of the bodies, we can simply plug back into the
Lagrangian these values, obtaining a classical effective
Lagrangian. Once we expand the resulting equations of
motion in ϵ and v, we will recover the slow dynamics, as in
Eq. (A4). To simplify even more the Lagrangian, we can
take its average over the mean anomaly (keeping fixed slow
variables, as prescribed by the near-identity transforma-
tion). Doing so will not alter the equations of motion for the
slowly evolving variables, since the average commutes
with variations of the Lagrangian with respect to these
variables. It will simply remove the average-free part of the
effective Lagrangian, which does not carry dynamical
information. As remarked in the previous appendix, fol-
lowing this procedure at leading order will lead to the long-
timescale Kozai-Lidov dynamics.
More explicitly, considering first the evolution of L and

u alone, we employ the following two near-identity trans-
formations:

u ¼ uL þ uSðLL; uLÞ;
L ¼ LL þ LSðLL; uLÞ; ðC3Þ

where the subscripts L and S stand for the long and short-
timescale variables, respectively, and the S variables are
suppressed by powers of both ε and v. Using the LPE for u
and L (see Appendix D), we determine the equations for
the short-timescale variables as discussed in Appendix A,
finding at lowest order

∂uLLS ¼
L3
L

ðGNmÞ2Afu
�
∂R
∂u

�
;

∂uLuS ¼ −
L3
L

ðGNmÞ2
�
Afu

�
∂R
∂L

�
þ 3ðGNmÞ2LS

L4
L

�
; ðC4Þ

where, following the near-identity transformation pro-

cedure, at leading order we use _X ≃ ðGNmÞ2
L3
L

∂uX, for a

generic quantity X. These equations can be solved to give

LS¼
L3
L

ðGNmÞ2AfuL
�Z

uL

0

duAfu

�
∂R
∂u

��
;

uS¼−AfuL

�Z
uL

0

du

�
L3
L

ðGNmÞ2Afu
�
∂R
∂L

�
þ3LS

LL

��
: ðC5Þ

This is analogous to what was obtained in Eqs. (A9) and
(A10), identifying h1 ↦ −∂R=∂L, g1 ↦ ∂R=∂u, and
χ0H0=H ↦ −3LS=LL. A difference with respect to the
toy model presented in Appendix A is the fact that now
there are two small parameters, i.e., ratio of timescales,
which we have not factorized explicitly. For convenience,
in the following we will indicate F ¼ AfuLðRÞ and, using
that partial derivatives commute with the average over uL,
we will write AfuLð∂R∂XÞ ¼ ∂F

∂X.
Similar results will follow for the other contact elements

and conjugate momenta. At leading order, the equations of
motion for the short-timescale variables, obtained through
the near-identity transformation, will read

∂uLGS¼
L3
L

ðGNmÞ2
∂F
∂ω

; ∂uLωS¼−
L3
L

ðGNmÞ2
∂F
∂G

;

∂uLHS¼
L3
L

ðGNmÞ2
∂F
∂Ω

; ∂uLΩS¼−
L3
L

ðGNmÞ2
∂F
∂H

: ðC6Þ

To convert derivatives with respect to canonical momenta
in derivatives with respect to osculating contact elements,
we use the formulas given in Appendix D. As prescribed by
the near-identity transformation approach, the quantities
entering the right-hand side of Eqs. (C6) are expressed only
in terms of the long-timescale variables eL; aL;…, as
derived in Eq. (A5). For simplicity, we will drop the L
subscript from now on, so that it will be understood that all
osculating contact elements appearing in the perturbing
function do not include quickly oscillating parts. From the
knowledge of these leading order oscillating parts of our
variables, we can now compute the leading effect of
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backreaction of the fast oscillations on the long-timescale
dynamics, using the following procedure. At the level of the
Lagrangian, we can substitute the near-identity transfor-
mations and write the expression in (C1) as

L ¼ LL þ LS; ðC7Þ

the first term corresponding to the Lagrangian evaluated on
the long-timescale variables only, while the second, LS,
corresponding to the remaining part, then to be averaged.
For instance, we have

L _u ¼ ðLL þ LSÞð _uL þ _uSÞ: ðC8Þ

When we take the average of this quantity, the mixed terms
LL _uS and LS _uL, being exactly average-free, will not
contribute. Therefore, we only need to keep track of the
two contributions LL _uL in LL and LS _uS in LS. This
means that, up to unimportant average-free terms, the
long-timescale and short-timescale parts of the Lagrangian
read

LL ¼ LL _uL þGL _ωL þHL
_ΩL þ ðGNmÞ2

2L2
L

þ hRi; ðC9Þ

LS ¼
ðGNmÞ2

2

�
1

ðLL þ LSÞ2
−

1

L2
L

�
þ LS _uS

þ GS _ωS þHS
_ΩS þ

X
X

∂F
∂X

XS; ðC10Þ

whereX represent contact elements and conjugate momenta,
and we have used the splittingR ¼ F þ hRi together with
the fact that ∂hRi=∂XXS is an average-free quantity. In this
equation, it is understood as before that R and F are
evaluated on the long-timescale variables only. We will
approximate the first term as 3=2ððGNmÞ2=L4

LÞL2
S, since

LS is average-free and all the short-timescale variables are
suppressed either by ϵ2 or by v2.
Plugging back the equations of motion as well as the

solutions obtained as in (C5), we find

LS ¼ −
L3
L

ðGNmÞ2
�
∂F
∂u

AfuL

�Z
uL
du

∂F
∂L

�
þ ∂F

∂ω
AfuL

�Z
uL

0

du
∂F
∂G

�
þ ∂F

∂Ω
AfuL

�Z
uL

0

du
∂F
∂H

��

þ 3L2
L

ðGNmÞ2
�
F 2

2
− F 2 −

∂F
∂u

AfuL

�Z
uL
duF

��
; ðC11Þ

where in the second line, the first term comes from the
expansion of 1=ðLL þ LSÞ2, the second from substituting
LS _uS, and the third from substituting the solution found for
uS in Eq. (C5). To simplify further this expression, it is useful
to consider its average over uL. Considering the average
allows us to perform integration by parts without having to
deal with boundary terms, thanks to the fact that these are
obtained subtracting the values of periodic functions at the
end points uL ¼ 0; 2π. Moreover, we can simplify Eq. (C11)
using that hAfðMÞAfðNÞi ¼ hAfðMÞNi for any arbitrary
functions M and N. Thus we find

hLSi ¼
1

2π

Z
2π

0

duL

�
L3
L

ðGNmÞ2
�
∂F
∂L

F þ ∂F
∂G

Z
uL

0

du
∂F
∂ω

þ ∂F
∂H

Z
uL

0

du
∂F
∂Ω

�
þ 3L2

L

2ðGNmÞ2F
2

�
: ðC12Þ

In the next subsection, we will compute the quadrupolar
post-Newtonian cross terms given by this procedure. Using
the same procedure, we can also obtain the so-called
“quadrupole-squared” terms studied in [46], which are a
purely Newtonian contribution of postadiabatic corrections.
As a proof of concept, we use our procedure to compute

such terms in Appendix F and show that they give back the
exact same equations as the ones displayed in [46].

2. 1PN quadrupolar cross terms

We now need the expression of the perturbing function
R, which contains both post-Newtonian and quadrupolar
terms. They are obtained by expanding the Lagrangian (3)
in the center-of-mass frame. In doing so, one obtains a
quadrupolar part Rquad, of order ε2 within our power-
counting rules, and a post-Newtonian part R1PN. The latter
is itself composed of two terms R1PN ¼ Rv2 þRv2ε1=2

scaling differently: the first one is of order v2 and
corresponds to the usual Einstein-Infeld-Hoffmann (EIH)
Lagrangian in the center-of-mass frame, and the second one
is linear in VCM and thus of order v2ε1=2. Higher-order
terms in the ε expansion can be safely neglected for the
precision we aim to.
Now, a helpful simplification comes directly from using

the relative coordinates of the inner binary center of mass
as explained in Sec. III B. Indeed, once we express the
Lagrangian in terms of these coordinates, the contribu-
tions of order v2ε1=2 precisely cancel each other, so that
they do not contribute to cross terms. This cancellation is
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made possible by the fact that the change of reference frame
mixes different orders of the expansion. Had we defined the
contact elements through the three-body center-of-mass
relative coordinates in Eq. (E2), this term would have been
nonzero and would have led to cumbersome formulas that
would have prevented us from performing the matching of
the inner binary to a point particle aswe did in Sec. III D.We
now give the expression of the different perturbing func-
tions in terms of r and v as

Rv2 ¼
1

8
v4ð1 − 3νÞ

þ GNm
2r

�
ð3þ νÞv2 þ νðv · nÞ2 −GNm

r

�
;

Rquad ¼ −
1

2
rirj∂i∂jϕ̃; ðC13Þ

where we recall that ϕ̃ is an arbitrary external field, XA ¼
mA=m and ν ¼ X1X2. Substitution of near-identity trans-
formation in these expressions will produce 1PN quad-
rupolar terms, i.e., of order v2ε2.
Using the expression of the osculating elements,

we find

Rv2 ¼
G2

Nm
2

2a2ð1 − e cos ηÞ2
�
1 − 3ν

4
ð1þ e cos ηÞ2

þ ð3þ νÞð1þ e cos ηÞ þ νe2
sin2η

1 − e cos η
− 1

�
;

ðC14Þ

Rquad ¼ −
a2

2

	
ðcos η − eÞαi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin ηβi



×
	
ðcos η − eÞαj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin ηβj



∂i∂jϕ̃:

ðC15Þ

We can now compute the cross terms following
Eq. (C12). The Lagrangian displayed in Eq. (C12) contains
cross terms of order v2ε2. It also contains 2PN (v4) and
quadrupole-squared (ε4) terms, which we will ignore since
we limit ourselves to 1PN quadrupolar order. Cross terms
of order v2ε2 will not receive contributions from the term
containing both H and Ω derivatives, since Rv2 does not
depend on either of these two variables. Computations are
performed using the Mathematica software, giving the full
expression of cross terms in terms of osculating elements:

hLSi ¼ GNma
8ð1−e2þ

ffiffiffiffiffiffiffiffi
1−e2

p
Þ

n
½2
	
9þ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p 

þ e2

	
51þ 11

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p 

þ 16e4

i
αiαj

þ
h
2
	
7þ 9

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p 

þ e2

	
29þ 17

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p 

− 8e4

i
βiβj

o
∂i∂jϕ̃:

ðC16Þ

This term will be part of the effective Lagrangian for the
long-timescale dynamics:

Leff ¼hLLiþhLSi¼LL _uLþGL _ωLþHL
_ΩLþhRiþhLSi:

ðC17Þ

This effective Lagrangian contains the term L≤v2ε5=2
quad;12 com-

puted in Sec. III, but it also includes the terms at lower
order in the multipole expansion.
Note that other cross terms, besides those contained in

hLSi and those coming from terms of order quadrupole-
1PN in R, might come in principle if the change of
variables from the mean anomaly to the eccentric anomaly,
discussed in Appendix A, was to differ with respect
to the change of variables derived from the Kepler
equation (A13). As discussed, we change the variable from
the long-timescale part of the mean anomaly to the long-
timescale part of the eccentric anomaly, defined so as to be
related to the former by the Kepler equation. This removes
any potential cross term contribution due to the change of
variables in the integration.
Finally, note also that to this order cross terms in the

effective Lagrangian (C17) will not get contributions

due to subleading oscillating parts of the near-identity
transformations (e.g., short-timescale functions with ampli-
tudes of order quadrupole-1PN, similar to xð1ÞS in the
notation of Appendix A), since these will be average-free
and will have to multiply terms of LL, leading to average-
free contributions, if any.

APPENDIX D: LAGRANGE PLANETARY
EQUATIONS

The LPE express the time derivatives of all osculating
(contact) elements in terms of derivatives of the
Hamiltonian [45]. They can be obtained as the equations
of motion stemming from the Lagrangian (C1). The
derivatives of R with respect to canonical momenta can
be transformed in derivatives with respect to planetary
elements by inverting the relations (C2):

a ¼ L2

Gm
; e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

G2

L2

r
; cos ι ¼ H

G
: ðD1Þ

Thus, one has
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∂R
∂L

¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
a

GNm

r
∂R
∂a

þ 1 − e2

e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GNma

p ∂R
∂e

; ðD2Þ

∂R
∂G

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GNma

p ∂R
∂e

þ cos ιffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1 − e2Þ

p
sin ι

∂R
∂ι

;

ðD3Þ

∂R
∂H

¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GNmað1 − e2Þ
p

sin ι

∂R
∂ι

: ðD4Þ

In these equations, the derivatives with respect to the
osculating elements are taken holding all other elements
fixed. However, we should be careful because the
eccentric anomaly η depends on both the eccentricity and
the semimajor axis through the equation η − e sin η ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNm=a3

p
tþ σ. Consequently,

∂η

∂e

����
σ;a fixed

¼ sinη
1− e cosη

;
∂η

∂a

����
σ;e fixed

¼ −
3nt

2að1− e cosηÞ :

ðD5Þ

Thus,

∂R
∂e

¼ ∂R
∂e

����
η fixed

þ sin η
1 − e cos η

∂R
∂η

;

∂R
∂a

¼ ∂R
∂a

����
η fixed

−
3nt

2að1 − e cos ηÞ
∂R
∂η

: ðD6Þ

Apart from this subtlety, one can now easily derive the
LPE from the Lagrangian (C1), and they read

_a ¼
ffiffiffiffiffiffiffiffiffiffiffi
4a

GNm

s
∂R
∂u

; ðD7Þ

_e ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

GNmae2

s
∂R
∂ω

þ 1 − e2ffiffiffiffiffiffiffiffiffiffiffiffiffi
GNma

p
e
∂R
∂u

; ðD8Þ

_ι¼−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GNmað1− e2Þ
p

sin ι

∂R
∂Ω

þ cos ιffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1− e2Þ

p
sin ι

∂R
∂ω

;

ðD9Þ

_u ¼
ffiffiffiffiffiffiffiffiffiffiffi
GNm
a3

r
−

ffiffiffiffiffiffiffiffiffiffiffi
4a

GNm

s
∂R
∂a

−
1 − e2ffiffiffiffiffiffiffiffiffiffiffiffiffi
GNma

p
e
∂R
∂e

; ðD10Þ

_ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

GNmae2

s
∂R
∂e

−
cos ιffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GNmað1 − e2Þ
p

sin ι

∂R
∂ι

; ðD11Þ

_Ω ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1 − e2Þ

p
sin ι

∂R
∂ι

: ðD12Þ

The averaged equations can be obtained as explained in
Appendix A, through a near-identity transformation. The
LPE for the outer orbit are obtained in the very same way,
replacing all inner quantities with outer ones. However, one
has to be careful to replace the mass m with the sum
m3 þ E, with E ¼ m −GNm=2a, as was emphasized
below Eq. (6).
Finally, let us make two technical remarks. First, in order

to express derivatives of the quadrupolar Lagrangian in
Eq. (C15) with respect to angles, we use the following
derivatives of the basis vectors:

∂αi

∂ω
¼ βi;

∂βi

∂ω
¼ −αi;

∂αi

∂Ω
¼ − cosω sin ιγi þ cos ιβi;

∂βi

∂Ω
¼ − cos ιαi þ sin ι sinωγi;

∂αi

∂ι
¼ sinωγi;

∂βi

∂ι
¼ cosωγi: ðD13Þ

Second, we will use (spatial) gauge invariance in order to
simplify the computations as much as possible. Indeed, we
know that the Lagrangian is a rotation-invariant quantity.
Thus, when carrying out the average of the first-order
Lagrangian obtained by integrating out the high-energy
modes, we use a particular gauge choice for the angles:
ι ¼ π=2, ω ¼ 0. The resulting averaged Lagrangian will be
gauge-invariant provided we express it only in terms of the
basis vectors α, β, γ. In this gauge, the derivatives written
above simplify greatly:

∂αi

∂ω
¼ βi;

∂βi

∂ω
¼ −αi;

∂αi

∂Ω
¼ −γi;

∂βi

∂Ω
¼ 0;

∂αi

∂ι
¼ 0;

∂βi

∂ι
¼ γi; ðD14Þ

∂R
∂L

¼ 2

ffiffiffiffiffiffiffiffi
a
Gm

r
∂R
∂a

þ 1 − e2

e
ffiffiffiffiffiffiffiffiffiffi
Gma

p ∂R
∂e

;
∂R
∂G

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e
ffiffiffiffiffiffiffiffiffiffi
Gma

p ∂R
∂e

;
∂R
∂H

¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmað1 − e2Þ
p ∂R

∂ι
: ðD15Þ

EFFECTIVE TWO-BODY APPROACH TO THE HIERARCHICAL … PHYS. REV. D 107, 044011 (2023)

044011-21



To give further support to the validity of this simplifi-
cation we refer the reader to Appendix F, where we
explicitly derive that the spurious dependence on angles
contained in the derivatives (D13) exactly cancel when
averaging the high-energy modes in order to obtain the
quadrupole-squared terms.

APPENDIX E: FROM THE THREE-BODY
CENTER-OF-MASS FRAME TO THE INNER

BINARY REST FRAME

In this appendix we derive the explicit relation between
the absolute coordinates ðy1; y2Þ of the inner binary and the
relative distance r0 defined in the inner binary rest frame,
which is the natural quantity in terms of which one can
express osculating elements, as discussed in Sec. III B.
Let us begin by recalling the post-Newtonian definition of
the center of mass of the relativistic two-body system
composed by the inner binary, given to 1PN order by

EYCM¼E1y1þE2y2;

E¼E1þE2; EA¼mAþ
1

2
mAv2A−

GNm1m2

2r
; ðE1Þ

for A ¼ 1; 2. In the three-body rest frame R, the relation
r ¼ y1 − y2 leads to

y1¼YCMþðX2þδÞr; y2¼YCMþð−X1þδÞr; ðE2Þ

where we have defined

XA ¼mA

m
; m¼m1 þm2; μ¼m1m2

m
; ν¼ μ

m
;

δ¼ −νVCM · vþ νðX1 −X2Þ
�
v2

2
−
GNm
2r

�
: ðE3Þ

However, the relative distance r in the three-body rest
frame R cannot be expressed in terms of the intrinsic
contact elements using Eq. (12). Rather, it will be the
relative distance in the inner binary rest frame R0,
r0 ¼ y01 − y02, and the respective momentum to be related
to these convenient variables by Eq. (12). For this reason,
we want to express the relative coordinates in the rest frame
R in terms of those defined inR0. Concretely, around a time
t0, the two coordinate systems are related by the following
transformation illustrated in Fig. 4:

�
t0 − t0
y0

�
¼ B

�
t − t0

y − YCMðt0Þ

�
; ðE4Þ

where B represents a Lorentz boost of velocity VCMðt0Þ. To
1PN order, the coordinates of the two inner bodies y0A (with
A ¼ 1; 2) in the frame R0 are related to those of the three-
body rest frame R by

y0Aðt0Þ ¼ yAðt0Þ − YCM − VCMðt0 − t0Þ

þ VCM · ðyAðt0Þ − YCMÞ
�
vAðt0Þ −

VCM

2

�
; ðE5Þ

where in the last equation it is understood that YCM
and VCM are evaluated at t0. Inserting this relation
in the center-of-mass definition (E1) to 1PN order, we
obtain

E1y01 þ E2y02 ¼ ðVCM · r0Þp0; ðE6Þ

where we have substituted μv0 ≃ p0. From this, we find
that the relation between absolute coordinates y0A
and relative coordinates r0, v0 in rest frame of the inner
binary is

y01 ¼ ðX2 þ δÞr0 þ ðVCM · r0Þp0=m;

y02 ¼ ð−X1 þ δÞr0 þ ðVCM · r0Þp0=m; ðE7Þ

where δ is the 1PN quantity already defined in Eq. (E3) (the
use of primed or unprimed quantities in δ does not matter
since the difference would be of 2PN order), and it is
understood that y01, y

0
2, r

0, and v0 are evaluated at the same
time t0.
This result allows one to express the three-body frame

coordinates yA in terms of the relative coordinates in the rest
frame of the inner binary, r0, p0,8 which can in turn be
expressed in terms of intrinsic contact elements using
Eq. (12).9 We obtain

FIG. 4. The change of referential (E4): the rest frame of the
inner binary R0 is obtained from the total center-of-mass frame R
by translating it by XCM and boosting it by VCM.

8Note that p0 is defined through the relative velocity v0, the t0
derivative of r0.

9Although Eq. (12) could be used to define osculating
elements whatever the frame, now we will apply it to the relative
distance and momentum in the binary rest frame, which we are
calling r0 and p0.
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y1 ¼ YCM þ VCMðt − t0Þ þ ðX2 þ δÞr0 þ X2ðVCM · r0Þ
�
ðX1 − X2Þ

p0

μ
−
VCM

2

�
;

y2 ¼ YCM þ VCMðt − t0Þ þ ð−X1 þ δÞr0 − X1ðVCM · r0Þ
�
ðX1 − X2Þ

p0

μ
−
VCM

2

�
; ðE8Þ

where r0 and p0 are evaluated at time t, while YCM and VCM
are evaluated at t0.
In particular, this result implies the following relation

between r ¼ y1 − y2 and r0:

r ¼ r0 − ðVCM · r0Þ
�
VCM

2
þ ðX2 − X1Þ

p0

μ

�
: ðE9Þ

The final step is just to evaluate the above expressions (E8)
and their time derivatives at t ¼ t0 and to express r0, p0 in
terms of the contact elements as in Eq. (12). To avoid
clutter, in the main text and the rest of the appendixes we
will suppress the primed label on r0, p0.

APPENDIX F: QUADRUPOLE-SQUARED TERMS

In this appendix we use the methodology developed in
Appendix C to compute the so-called quadrupole-squared
terms presented in [46]. These purely Newtonian contri-
butions to the evolution of a hierarchical system come from
deviations to the adiabatic approximation as well as back-
reaction of quickly oscillating modes when averaging
quadrupolar terms. The magnitude of these contributions
can be greater than octupole order terms so that they
could induce interesting deviations to the Kozai-Lidov
mechanism.
As stated in Appendix C, corrections to the leading order

averaging could come at the level of either the inner
binary or the outer binary orbital motion, because of
short-timescale fluctuations of the form X ¼ XL þ XS
where X is any osculating element or canonical momentum
of the inner or outer binary. More precisely, there are four
kinds of short-timescale fluctuations of osculating elements
to consider: (i) fluctuations of the inner planetary elements
on an inner binary timescale; (ii) fluctuations of the outer
planetary elements on an inner binary timescale; (iii) fluc-
tuations of the inner planetary elements on an outer binary
timescale; and (iv) fluctuations of the outer planetary
elements on an outer binary timescale. In all these cases,
a generalization of the methodology developed in
Appendix C 1 shows that the cross terms in LS (C12)
scale as [see, in particular, Eq. (C10) and Eq. (C6)]

ðiÞ F 2

L
L3

G2
Nm

2
∼ F 2

a
GNm

; ðF1Þ

ðiiÞ F 2

L3

L3

G2
Nm

2
∼ F 2

a
GNm

ε1=2; ðF2Þ

ðiiiÞ F 2

L
L3
3

G2
Nm

2
∼ F 2

a
GNm

ε−3=2; ðF3Þ

ðivÞ F 2

L3

L3
3

G2
Nm

2
∼ F 2

a
GNm

ε−1: ðF4Þ

This makes it clear that, in general, case (iii) gives the
largest contribution of the cross terms (see also the
interesting discussion in Appendix B of Ref. [46]). This
scaling is perfectly valid for the quadrupole-squared terms
that we want to compute in this appendix; instead, in the
previous case of quadrupole-1PN cross terms, there is an
additional suppression on the outer binary timescale that
explains that the dominant contribution to cross terms
comes from case (i) as computed in Appendix C.
This additional suppression comes from the fact that the
PN terms in the function F come with an additional ε2

multiplicative factor for cases (iii) and (iv)—i.e.,
when averaging over the outer binary timescale. To see
this, remark that the 1PN perturbing function can be
schematically written as R1PN ¼ Rv2 þRv2ε1=2 þRv2εþ
Rv2ε3=2 þRv2ε2 . This splitting, as already emphasized in
Appendix C 2, comes from introducing the center-of-mass
coordinates (16) in the EIH Lagrangian (4). With our
center-of-mass choice, Rv2ε1=2 , Rv2ε, and Rv2ε3=2 vanish
after averaging on the inner binary timescale. Thus, the
only term featuring a nontrivial dependence on the outer
binary timescale isRv2ε2 , sinceRv2 is just the standard EIH
Lagrangian for the inner binary and does not depend on
the outer binary period. This proves the additional ε2

suppression of outer binary averages, justifying the use
of case (i) in Appendix C.
Let us now derive the quadrupole-squared terms using

the scaling (iii). Since we are only interested in deviations
from adiabaticity in the outer average, we only perform
leading order averaging for the inner binary timescale.
Having removed the dependence of the Lagrangian on
the mean anomaly of the inner orbit, the semimajor axis
of the inner orbit will remain constant. This means that
this variable will not have short oscillations on timescales
of the order of the period of the outer binary. The other
variables instead will have modes that evolve during the
period of the outer orbit and modes that evolve on much
longer timescales. Therefore we will generally write
X ¼ XL̃ þ XS̃, indicating a near-identity transformation
having the period of the outer binary as the reference
timescale. As indicated by the scaling (iii), we only
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consider such a decomposition for X being an inner
osculating element, because fluctuations of outer osculat-
ing elements are suppressed by an additional ε1=2 factor.
At this point we can already check that the quadrupole-

square cross terms Lagrangian LS̃ scales as

LS̃

LL̃
∼
n3
n
∼

ffiffiffiffiffiffiffiffiffi
Ma3

ma33

s
: ðF5Þ

Thus, despite the quadrupole-squared terms are formally a
ε3=2 perturbation to the quadrupole (i.e., between octupole
and hexadecapole), they could be enhanced to a greater
magnitude than the octupole if the ratio M=m is large.
To proceed with the computation, we will indicate the

quadrupolar part of the perturbing function in Eq. (34) to
Newtonian order as

RQ3 ¼
3GNm3

2μ
Qij NiNj

R3
;

Qij ¼ μa2

2

�
ð1þ 4e2Þαiαj þ ð1 − e2Þβiβj − 2þ 3e2

3
δij

�
;

ðF6Þ

and its average-free part, taken with respect to the long-
timescale part of the outer mean anomaly u3L̃, as

FQ3 ¼ RQ3 −
1

2π

Z
2π

0

du3L̃RQ3; ðF7Þ

where we recall that R is the distance vector of the outer
orbit, R ¼ jRj and N ¼ R=R. With this notation, using the
equations of motion and expanding the perturbing function,
we obtain

LS̃ ¼ LS̃ _uS̃ þ GS̃ _ωS̃ þHS̃
_ΩS̃ þ

X
X

∂FQ3

∂X
XS̃

¼ Af

�Z
u3L̃

ds
∂FQ3

∂G

�
∂FQ3

∂ω

þ Af

�Z
u3L̃

ds
∂FQ3

∂H

�
∂FQ3

∂Ω
: ðF8Þ

Then, performing the averages with respect to the long-
timescale part of the outer mean anomaly, we find

hLSi ¼ −
9G2

Nm
2
3

4μ2

�
∂Qij

∂ω

∂Qkl

∂G
þ ∂Qij

∂Ω
∂Qkl

∂H

�
Aij;kl

≡ Bij;klAij;kl; ðF9Þ

where the tensor Aij;kl is a sort of variance given by

Aij;kl¼
��

NiNj

R3
−
�
NiNj

R3

�
×
Z

dt

�
NkNl

R3
−
�
NkNl

R3

�
:

ðF10Þ

Note that the choice of a constant in the integration does not
matter since it multiplies a zero-mean term. Aij;kl is
symmetric in the ði; jÞ as well as in the ðk; lÞ indices,
and it is antisymmetric by exchange of the pairs ði; jÞ and
ðk; lÞ (by an integration by parts). There now just remains to
compute the derivatives in Eq. (F9). We will use the
derivatives given in Appendix D, Eqs. (D2) and (D13).
These derivatives generically depend on the angles Ω, ω,
and ι. However, such angles cannot remain in the final
result for hLSi, since the contraction in the spatial indices
needs to transform correctly under a rotation. This is
analogous to the “background field method” in EFTs: if
we integrate out some fluctuating field in some given
gauge, then the computational steps can be gauge depen-
dent but the final result should be gauge invariant since
it is expressed as a (gauge-invariant) long-wavelength
Lagrangian. The cancellation of the angular dependence
will be a very nontrivial check of our computation. In the
more complicated computation of the PN quadrupolar cross
terms, instead, we have chosen to reverse the argument and
choose a particular gauge (i.e., a particular value for Ω, ω,
and ι) to simplify the calculations, as explained at the end
of Appendix D.
We now go on for the final computation. In the Bij;kl

tensor, the dependence on the angle ι nicely factors out:

1

sin ι
∂Qkl

∂ι

�
cos ι

∂Qij

∂ω
−
∂Qij

∂Ω

�
¼ μ2a4

4
½ð1þ 4e2Þ cosωðαiγj þ symÞ − ð1 − e2Þ sinωðβiγj þ symÞ�

× ½ð1þ 4e2Þ sinωðαkγl þ symÞ þ ð1 − e2Þ cosωðβkγl þ symÞ�: ðF11Þ

However, there seems to remain an additional dependence on ω which we do not expect. This spurious dependence can be
removed completely by using the fact thatAij;kl is antisymmetric under the exchange of the pairs ði; jÞ and ðk; lÞ. Taking the
antisymmetrization of the above expression, we are led to
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μ2a4ð1 − e2Þð1þ 4e2Þ
8

ððαiγj þ symÞðγkβl þ symÞ − ðγiβj þ symÞðαkγl þ symÞÞ; ðF12Þ

so that all angular dependence drops out. Putting all together, we find the final expression for Bij;kl:

Bij;kl ¼
9G2

Nm
2
3a

4

32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1 − e2Þ

p ½−20e2ð1 − e2Þðαiβj þ symÞð4αkαl − βkβl − δklÞ

þ ð1 − e2Þð1þ 4e2Þððαiγj þ symÞðβkγl þ symÞ − ðβiγj þ symÞðαkγl þ symÞÞ�; ðF13Þ
while the other tensor Aij;kl is given by

Aij;kl ¼ g1ðe3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNMa93

q ½αk3αl3ðαi3βj3 þ symÞ − αi3α
j
3ðαk3βl3 þ symÞ� þ g2ðe3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GNMa93

q ½βi3βj3ðαk3βl3 þ symÞ − βk3β
l
3ðαi3βj3 þ symÞ�;

ðF14Þ
where the two dimensionless functions of the outer eccentricity e3 are given by

g1ðe3Þ ¼
1

48e23ð1 − e23Þ7=2
½4ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e23

q
Þ þ e23ð−8þ 9

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e23

q
Þ þ e43ð4þ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e23

q
Þ�; ðF15Þ

g2ðe3Þ ¼
1

48e23ð1 − e23Þ5=2
½4ð−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e23

q
Þ þ e23ð4þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e23

q
Þ�: ðF16Þ

Plugging the expressions of the basis vectors in terms of
osculating angles, we have checked that our formula (F9)
exactly recovers the LPE with quadrupole-squared terms
derived in [46].

APPENDIX G: FROM CONTACT ELEMENTS
TO ORBITAL ELEMENTS

In this Appendix we explore the difference between
contact elements and orbital elements, the two kinds of
osculating elements that allow one to describe the three-
body system efficiently. As already remarked, the difference
between these two sets of elements is of 1PN order, with the
contact terms being particularly useful to repackage various
PN corrections in the effective action. This analysis allows
us to compare our results with some of the results of [31,33]
concerning the evolution of conserved quantities.
We will now write down explicitly the relation between

these two sets of elements to 1PN order, following [69]. As
discussed in Sec. II A, the key difference between the two
sets of variables is the fact that the momentum is not simply
proportional to the velocity in the PN expansion. Therefore,
it is useful to inspect the relation between p and v at 1PN:

p ¼ v þ ∂R1PN

∂v

¼ v þ
�
1 − 3ν

2
v2 þGNmð3þ νÞ

r

�
v þ GNmν

r
ðn · vÞn;

ðG1Þ

where we recall that in all appendixes we use the con-
vention of dividing the Lagrangian by the reduced
mass μ, so that p and v have the same dimension. In
the 1PN term we could use indifferently v or p since the
difference would be of 2PN order. The easiest orbital
elements to relate to contact elements are the angles Ω̃
and ι̃. Indeed, since the momentum p is still in the plane of
the motion, the definition of Ω̃ and ι̃ do not get affected by
the difference between momentum and velocity. Thus,

Ω̃ ¼ Ω; ðG2Þ
ι̃ ¼ ι: ðG3Þ

Let us start the nontrivial computations with the semimajor
axis. We have the following definitions:

−
GNm
2ã

¼ v2

2
−
GNm
r

; ðG4Þ

−
GNm
2a

¼ p2

2
−
GNm
r

: ðG5Þ

Combining Eqs. (G1), (G4), and (G5) we get to
ã ¼ aþ Δa with

Δa ¼ −
2GNm

ð1 − ẽ cos η̃Þ2
�
1

2
ð1 − 3νÞð1þ ẽ cos η̃Þ2

þ ð3þ νÞð1þ ẽ cos η̃Þ þ νẽ2 sin2 η̃
1 − ẽ cos η̃

�
: ðG6Þ
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In the above expression, using the contact or the osculating
elements in the RHS makes no difference since we neglect
terms of order 2PN (Δa is a 1PN quantity). Let us now
focus on the eccentricity. We have

jr × vj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmãð1 − ẽ2Þ

q
; ðG7Þ

jr × pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1 − e2Þ

q
: ðG8Þ

Splitting ẽ ¼ eþ Δe we get to

Δe ¼ GNmð1 − ẽ2Þ
ãð1 − ẽ cos η̃Þ3 ½cos η̃ð1 − ẽ cos η̃Þ

× ð−7þ ν − ẽð1 − 3νÞ cos η̃Þ − ẽν sin2 η̃�: ðG9Þ
Finall, it remains to find the argument of perihelion ω and
mean anomaly u. Let us denote by f the true anomaly,
representing the angle of the object along its trajectory on
the ellipse, measured from perihelion. Then one has

f þ ω ¼ f̃ þ ω̃ since this corresponds to the true physical
angle of the object, and should not depend on whether we
use tilde quantities or not. Thus, Δω ¼ −Δf. To find Δf,
one can use the definition of the radius vector:

r ¼ að1 − e2Þ
1þ e cos f

¼ ãð1 − ẽ2Þ
1þ ẽ cos f̃

: ðG10Þ

This gives f̃ ¼ f þ Δf with

Δf ¼ GNm
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ẽ2

p
sin η̃

2ã ẽð1 − ẽ cos η̃Þ3 ½14 − ẽ2 − 2νþ 5ẽ2ν − 6ẽð2þ νÞ

× cos η̃ − ẽ2ð1 − 3νÞ cos 2η̃�: ðG11Þ

Finally, to find Δu (defined by ũ ¼ uþ Δu) one can use
again the definition of r ¼ að1 − e cos ηÞ together with η −
e sin η ¼ u to find

Δu ¼ −
GNm

8ã ẽð1 − ẽ cos η̃Þ3 ½2ð−6ẽ
4 þ ẽ2ð1 − 15νÞ − 4ð7 − νÞÞ sin η̃þ 2ẽð6ð2þ νÞ þ 2ẽ2ð7þ 2νÞ − ẽ4ð1 − 3νÞÞ sin 2η̃

þ 2ẽ2ð1 − 3ν − ẽ2ð6þ 4νÞÞ sin 3η̃ − ẽ5ð1 − 3νÞ sin 4η̃�: ðG12Þ

To sum up our results, here are all the modifications to the osculating elements:

Δa ¼ −
2GNm

ð1 − ẽ cos η̃Þ2
�
1

2
ð1 − 3νÞð1þ ẽ cos η̃Þ2 þ ð3þ νÞð1þ ẽ cos η̃Þ þ νẽ2sin2η̃

1 − ẽ cos η̃

�
; ðG13Þ

Δe ¼ GNmð1 − ẽ2Þ
ãð1 − ẽ cos η̃Þ3 ½cos η̃ð1 − ẽ cos η̃Þð−7þ ν − ẽð1 − 3νÞ cos η̃Þ − ẽνsin2η̃�; ðG14Þ

Δω ¼ −
GNm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ẽ2

p
sin η̃

2ã ẽð1 − ẽ cos η̃Þ3 ½14 − ẽ2 − 2νþ 5ẽ2ν − 6ẽð2þ νÞ cos η̃ − ẽ2ð1 − 3νÞ cos 2η̃�; ðG15Þ

Δu ¼ −
GNm

8ã ẽð1 − ẽ cos η̃Þ3 ½2ð−6ẽ
4 þ ẽ2ð1 − 15νÞ − 4ð7 − νÞÞ sin η̃þ 2ẽð6ð2þ νÞ þ 2ẽ2ð7þ 2νÞ − ẽ4ð1 − 3νÞÞ sin 2η̃

þ 2ẽ2ð1 − 3ν − ẽ2ð6þ 4νÞÞ sin 3η̃ − ẽ5ð1 − 3νÞ sin 4η̃�; ðG16Þ

ΔΩ ¼ Δι ¼ 0; ðG17Þ

Δα ¼ βΔω; Δβ ¼ −αΔω: ðG18Þ

These formulas relate the instantaneous values of these two sets of elements. However, it is more interesting to analyze
the difference in the orbit-averaged elements, denoted with an L subscript. Using our previous splitting between long-
timescale and short-timescale variables (see Appendix C), one can write, e.g., for the eccentricity ẽ ¼ eþ Δe ¼
eL þ eS þ Δe with heSi ¼ 0. Thus, we can identify

ẽL ¼ eL þ hΔei; ẽS ¼ eS þ Δe − hΔei; ðG19Þ

and similarly for the other osculating elements. This gives the final relation for the orbit-averaged contact and orbital
elements:
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ãL ¼ aL þ GNm

�
9 − 16ffiffiffiffiffiffiffiffi

1−ẽ2L
p − ν

�
5 − 6ffiffiffiffiffiffiffiffi

1−ẽ2L
p

��
;

ẽL ¼ eL − GNmẽL
ãL

ð8 − 3νÞ
ffiffiffiffiffiffiffiffi
1−ẽ2L

p
1þ

ffiffiffiffiffiffiffiffi
1−ẽ2L

p ;

ω̃L ¼ ωL; Ω̃L ¼ ΩL; ι̃L ¼ ιL; ũL ¼ uL:

ðG20Þ
We can now describe the main physical effects stemming

from this post-Newtonian shift of the osculating elements:
(i) The first and most important point to notice is that the

shifts written in Eq. (G20) will stay small at any
moment in time. In other words, they cannot accu-
mulate a small effect over long timescales to get an
important effect,10 as it happens for quadrupolar and
post-Newtonian perturbations in the LPE; rather, the
two sets of osculating elements will differ by a
quantity that is of post-Newtonian order at any time.
Thus, replacing contact elements by orbital ones will
not make a qualitative difference concerning the long-
timescale evolution of the binary system.

(ii) Plugging the shifts ẽL ¼ eL − hΔei and ãL ¼ aL −
hΔai implied by Eq. (G20) in the kinetic term of the
Lagrangian (C1) shifts the canonical momenta G
and H as

ΔG
G̃

¼ΔH
H̃

¼ehΔei
1− ẽ2

−
hΔai
2ã

¼GNm
2ã

ð7−νÞ: ðG21Þ

In other words, this replaces the effective Newtonian
spin of the binary system J ¼ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmãð1 − ẽ2Þ

p
γ

with its 1PN counterpart given by

J1PN ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1 − e2Þ

q
γ̃

¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmãð1 − ẽ2Þ

q
γ

�
1þGNm

2ã
ð7 − νÞ

�
:

ðG22Þ

On the other hand, the above expression corresponds
to the 1PN expression of the conserved angular

momentum that one can find in, e.g., [70], averaged
over one orbit of the binary system. This is a
nontrivial check of the validity of our computation.

(iii) The most interesting effect coming from these shifts
of a and e is that the semimajor axis ã is not
conserved in time. Indeed, it is the contact element a
that is conserved in time, but it is related to the
osculating ã with a formula involving the eccen-
tricity, Eq. (G20). Since the eccentricity is itself
allowed to vary, one should have a variation of ã
over time at 1PN order. This effect has already been
discussed in [31,33] where it was derived using
the 1PN equations of motion. However, our treat-
ment makes clear the fact that such an effect can-
not accumulate over a long timescale and give
appreciable variation in the semimajor axis a as
discussed before.

On the other hand, a detailed comparison shows
that our formula for the variation of ã and the one
given in [31,33] seem to be in disagreement. The
source of this apparent incompatibility can be traced
back to the fact that our averaging procedure is
somewhat different than the one discussed in
[31,33]. Indeed, the following averages differ at
1PN quadrupolar order:

dhai
dt

≠
�
da
dt


: ðG23Þ

The left-hand side (LHS) of this equation corre-
sponds to the quantity that we compute in this
article. On the other hand, the variation computed
in [31,33] corresponds to the RHS of this equation,
which by definition is equal to ðaðTÞ − að0ÞÞ=T.
Thus, the results of [31,33] concern the evolution of
the initial value of osculating elements after one
inner period, while we are interested in the evolution
of the mean value of osculating elements. This
difference also shows itself in the conservation of
energy and angular momentum: while the work in
[31,33] proves exact conservation of initial PN
energy and angular momentum, we are able to
prove conservation of an averaged PN energy and
angular momentum.

10This is, as long as the elements are computed within the time
interval in which our effective field theory is valid.
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