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1 Introduction and summary

The breaking of supersymmetry has dramatic effects in String Theory [1–6], since it typically
unfolds strong back-reactions on the vacuum and consequent deformations of Minkowski space.
As of today, one can only address these phenomena within the low-energy effective theory, and
thus follow the fate of vacua only within regions of weak string coupling and weak curvature.
On the other hand, all available information about regions where one or both preceding
conditions are not satisfied is at best of qualitative value. Nonetheless, exploring different
scenarios even with our limited tools is crucial to build up some intuition on phenomena
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that are clearly of utmost interest. The three non-supersymmetric ten-dimensional strings
of [7–11] are useful starting points, since their spectra lack the tachyonic modes that typically
emerge when supersymmetry is broken in String Theory. In these cases the back-reaction on
the vacuum is dominated, at weak coupling, by runaway potentials of the type

V = T eγ ϕ , (1.1)

which we shall often refer to as “tadpole potentials”. In the Einstein frame, which we shall
largely use in the following, γ = 3

2 for the two orientifolds [12–23] of [9, 10] and [11], and
γ = 5

2 for the SO(16) × SO(16) string of [7, 8], which is a variant of the heterotic strings
of [24–26]. The models of [7, 8] and [9, 10] are not supersymmetric, while supersymmetry
is non-linearly realized [27–29] in the model of [11], which provides the simplest instance
of “brane supersymmetry breaking” [30–36].

The vacua of [37], where tadpole potentials are taken into account, have exhibited
several surprising features. The most relevant of these is the emergence of spontaneous
compactifications where the internal space is an interval, whose boundaries host dynamical
extended objects and whose size, differently from what happens in the ordinary Kaluza-Klein
setting, is determined by the strength of the potentials. While regions of strong coupling
and/or strong curvature are present near the ends, the resulting spacetimes are surprisingly
stable and, in the orientifold case, make long-range gravity an inevitable feature of the effective
lower-dimensional Minkowski spacetime [38, 39]. In contrast, AdS × S compactifications [40–
42] can be supported by different types of fluxes, but are unstable in the presence of tadpole
potentials [38, 39].

Branes and orientifolds live naturally in proper vacua of the theory, and in the companion
paper [43] we address their emergence in the effective nine-dimensional Minkowski spaces
that result from the Dudas-Mourad compactifications of [37]. This construction, however,
involves solutions that depend on at least a pair of coordinates, so that the proper setup is
provided by metrics of the axisymmetric type, as in [44] and [45]. Here we explore simpler
backgrounds depending on a single coordinate, where the internal tori discussed in [46]
and [47] are replaced with spheres. They can describe compactifications with spherically
symmetric internal spaces in the presence of tadpoles, or even some aspects of the more
general solutions considered in [43], within regions where spherical symmetry dominates. The
inclusion of curvature complicates the background equations, which only afford simple exact
solutions in limiting cases. One presents itself when the curvature dominates over the tadpole,
and can encompass the exact description of charged and uncharged black holes and branes of
supersymmetric theories, while another concerns cases where the tadpole potential dominates
over the curvature, and can encompass the scenarios explored in [47]. When the effects of
tadpole, curvature and fluxes are combined, the preceding cases allow one to build a detailed
catalog of the possible asymptotics, and thus a semi-quantitative picture of the general case.

The plan of this paper is as follows. In section 2 we recall the portions of the low-energy
effective theories of interest and the resulting systems of equations that determine backgrounds
with internal spheres depending on a single coordinate. In section 3 we move on to revisit
standard results on uncharged black holes and branes in the harmonic gauge, while also
recasting them in the more familiar isotropic coordinates. In section 4 we revisit electrically
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charged p-branes, provide the harmonic-coordinate description of the widely studied BPS
solutions and of their non-BPS deformations, and compute the corresponding tensions and
charges. We also clarify some normalization issues that arose in [48] and [49] in connection
with self-dual fluxes. In section 5 we come to the central theme of this work, and address
the combined effects of tadpole and curvature. While the resulting system of equations does
not admit simple analytic solutions, we provide evidence that the tadpole or the curvature
typically dominate over one another, so that a close scrutiny of the analytic results obtained
when this occurs yields a detailed catalog of allowed asymptotics, which can be linked to
one another only within a subset of the possible options. The numerical studies described in
section 5.5 can be understood rather convincingly in these terms. An interesting feature of the
resulting spacetimes is that they close, in cigar-like shapes, within finite radial distances from
the origin, as in the original nine-dimensional solutions of [37]. The general emergence of this
feature was nicely anticipated by Antonelli and Basile in [50]. Section 6 addresses the most
complete setting of this type, where the effects of curvature, tadpole and flux are combined.
Aside from a handful of special (unstable) AdS × S solutions discussed in [40, 41]1 and a
special case that reduces to the results of section 5, we identify a richer catalog of asymptotics
that are very useful to characterize a numerical exploration that we have performed within
this more general setting. As a by-product, we identify two new exact solutions for the
heterotic SO(16) × SO(16) theory, which emerge when the internal spheres are replaced by
tori. Finally, appendix A contains a summary of the different pairs of asymptotics that can
combine with one another in the absence of form fluxes.

2 Action principle and field equations

In the string frame, the relevant bosonic contributions to the low-energy effective action
are encoded in

SS = 1
2κ2

10

∫
d10x

√
−G

{
e−2ϕ

[
R+ 4(∂ϕ)2

]
− T e γS ϕ − e−2βS ϕ

2 (p + 2)! H
2
p+2

}
, (2.1)

where we have omitted non-Abelian gauge fields and localized sources, and where the relevant
values of p, γS and βS for the three ten-dimensional non-tachyonic models can be found
in table 1.

In the action of eq. (2.1)

κ2
10 =

(
2π
√

α′
)8

4π
, (2.2)

and in these units the tension of a Dp brane in the type II theories is [1–6]

Tp =
√

π

κ10

(
2π
√

α′
)3−p

= 2π(
2π
√

α′
)p+1 . (2.3)

Note that the quantization condition

2κ2
10 Tp T6−p = 2π (2.4)

1Or in [42], if the forms are replaced by Abelian gauge fields.

– 3 –



J
H
E
P
1
0
(
2
0
2
4
)
0
5
4

Model p βS γS βp γ

USp(32) (1, 5) (0, 0) −1 (−1
2 , 1

2)
3
2

U(32) (−1, 1, 3, 5, 7) (0, 0, 0, 0, 0) −1 (−1,−1
2 , 0, 1

2 , 1) 3
2

SO(16) × SO(16) (I, V ) (1,−1) 0 (12 ,−1
2)

5
2

Table 1. String-frame and Einstein-frame parameters for the tachyon-free ten-dimensional string
models. Roman numerals refer to NS-NS branes, entries within parentheses refer to RR ones. The
opposite signs of βS for the fundamental string and the NS fivebrane reflect the duality between the
corresponding field strengths, which inverts the dilaton coupling.

holds. In particular, the D9 brane tension can be cast in the form

T9 =
1

(2π)4 (2πα′)5
, (2.5)

and consequently the tadpole potential of the Sugimoto model [11], which originates from
a BPS orientifold O9+ plane and 32 anti-D9 branes, has an overall strength

T e−ϕ

2κ2
10

= 64 T9 e−ϕ ≃ 0.041
(2πα′)5

e−ϕ , (2.6)

in our units, where half of the contribution originates from the branes and the other half
from the orientifold. For the type-0’B string the orientifold is tensionless, and therefore
the tadpole potential originates solely from its non-BPS D-branes. The vacuum amplitudes
indicate that, in this case,

T e−ϕ

2κ2
10

= 64√
2
T9 e−ϕ , (2.7)

with T9 given again by eq. (2.5), so that the overall tension of the D-branes is reduced by
a factor

√
2 with respect to its value for the Sugimoto model. Finally, for the heterotic

SO(16) × SO(16) string the contribution originates from the torus amplitude, and was
computed in [7, 8]. Its overall strength,

0.037
(2πα′)5

, (2.8)

is similar to the preceding result, but there is no accompanying power of e−ϕ in the string frame.
In the Einstein frame, which is reached by the Weyl transformation

GMN = e
ϕ
2 gMN , (2.9)

the action becomes

SE = 1
2κ2

10

∫
d10x

√
−g

[
R− 1

2 (∂ϕ)2 − T e γ ϕ − e−2βp ϕ

2 (p + 2)! H
2
p+2

]
, (2.10)

where the values of βp and γ are still defined in table 1. For the 0’B theory one must add
the self-duality condition for the five-form field strength

H5 = ⋆H5 . (2.11)
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In some of the ensuing analysis it will prove convenient to allow for generic values of
D, thus working with

SE = 1
2κ2

D

∫
dDx
√
−g

[
R− 4

D − 2 (∂ϕ)2 − T e γ ϕ − e−2βp ϕ

2 (p + 2)! H
2
p+2

]
, (2.12)

although this extension does not concern the critical strings of direct interest for this paper.
Actions of this type are relevant for non-critical strings (for which γS = −2) or for lower-
dimensional non-supersymmetric models. In this more general D-dimensional case,

βp = βS −
D − 2(p + 2)

D − 2 , γ = γS + 2D

D − 2 , (2.13)

and we define the length ℓ as

κ2
D = (2πℓ)D−2

4π
. (2.14)

For ten-dimensional strings ℓ =
√

α′, and the preceding relation thus links κ10 to the
string length.

As summarized in table 1, for the D-branes of the ten-dimensional orientifolds, the
allowed values of βp in eq. (2.13) become

βp = p− 3
4 , (2.15)

while for the heterotic model they are captured by

βp = 3− p

4 . (2.16)

The portions of the Einstein-frame equations concerning the metric tensor, a (p+1)-form
gauge field and the dilaton read

RMN −
1
2 gMN R = 4

D − 2 ∂M ϕ ∂N ϕ + e−2βp ϕ

2(p + 1)!
(
H2

p+2

)
MN

− 1
2 gMN

[
4 (∂ϕ)2
D − 2 + e−2βp ϕ

2(p + 2)! H
2
p+2 + V (ϕ)

]
,

8
D − 2 □ϕ = −βp e−2βp ϕ

(p + 2)! H
2
p+2 + V ′(ϕ) ,

d
(
e−2βp ϕ ⋆ Hp+2

)
= 0 , (2.17)

where
V (ϕ) = T eγ ϕ , (2.18)

with the values of γ that we discussed above. The contributions of the (p + 2)-form to the
equations of motion involve

(
H2

p+2

)
MN

, defined as(
H2

p+2

)
MN

= (Hp+2)MM2...Mp+2
(Hp+2)NN2...Np+2

gM2N2 . . . gMp+2Np+2 . (2.19)

Equivalently, one can work with

RMN = 4
D − 2 ∂M ϕ ∂N ϕ + 1

2(p + 1)! e−2βp ϕ
(
H2

p+2

)
MN

+ gMN

[
− (p + 1) e−2βp ϕ

2(D − 2)(p + 2)! H
2
p+2 +

V (ϕ)
D − 2

]
. (2.20)
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2.1 Vacuum setup and harmonic coordinates

Taking the tadpole potential (2.18) into account entails some complications, since Minkowski
space is no more a vacuum solution, while supersymmetry is inevitably broken. Our ultimate
goal is to clarify, insofar as possible, how the p-branes of different string theories are affected
by the tadpole potential, and to this end we shall proceed in steps.

Our analysis will rest on two key ingredients. The first, the choice of a vacuum, is well
captured, in all cases of interest, by the class of backgrounds

ds 2 = e2A(r) γµν(x) dxµ dxν + e2B(r) dr2 + e2C(r) ℓ2 γmn(ξ) dξm dξn ,

ϕ = ϕ(r) ,

Hp+2 = Hp+2 e 2βpϕ+B+(p+1)A−(D−p−2)C
√
−γ(x) dx0 ∧ . . . ∧ dxp ∧ dr ,

Hp+1 = hp+1

√
−γ(x) dx0 ∧ . . . ∧ dxp , (2.21)

where γµν(x) and γmn(ξ) are Lorentzian and Euclidean metrics of maximally symmetric
spaces with curvatures k′ = (0,±1) and k = (0,±1), and of dimensions (p+1) and (D−p−2).
We have included the two electric form-field profiles, which are compatible with the isometries
of the metric and solve the corresponding equations of motion with constant values of Hp+2
and hp+1. We shall mainly concentrate on the first type of contribution, Hp+2, because
it is the proper one for charged branes. Magnetic profiles can be obtained from these by
electric-magnetic duality.

This setup can encompass a number of vacuum configurations in the presence of the
tadpole potential (2.18): the original Dudas-Mourad vacuum of [37], where γmn is absent
altogether and k′ = 0, and also some generalizations, including the vacua with internal tori
considered in [46, 47], but also the AdS × S vacua of [40–42], where k = 1. The second
ingredient is the inclusion of the extended object. When k = 0 and the internal space is
a sphere, the setup of eqs. (2.21) suffices to encompass BPS p-branes and orientifolds in
the Minkowski vacua of supersymmetric strings, where the tadpole potential is absent, but
also some interesting deformations of them whose role emerged long ago in two-dimensional
Conformal Field Theory [51]. All these solutions have ISO(1, p)× SO(D − p− 1) isometry
groups, and in all these cases r parametrizes the distance from the brane. When this distance
is large, all these solutions ought to approach the Minkowski vacuum, but as we shall see
this is not generally the case.

The description of branes and orientifolds in the presence of the tadpole potential (2.18)
requires a more general ansatz, which is the main subject of [43]. Once one demands that
brane solutions approach the vacuum at large distances, the proper setup is provided by
metrics of the axisymmetric type, as in [44] and [45]. In this work we shall focus on the
simpler and more symmetrical background ansatz in eqs. (2.21). With appropriate boundary
conditions, this can capture branes without tadpoles, vacua with tadpoles or even some
limiting behaviors of branes with tadpoles, in regions where the axisymmetry enhances to
a full spherical symmetry.

The present setting entails some complications with respect to the vacuum solutions
considered in [46, 47]. The internal manifold is now curved, and in the following the internal
metrics γmn will correspond to spheres SD−p−2. We shall concentrate on this option, leaving

– 6 –



J
H
E
P
1
0
(
2
0
2
4
)
0
5
4

for future work the exploration of the hyperbolic internal spaces, which would correspond to
k′ = −1, of curved spacetime sections and of corresponding cosmologies.

In the cases of interest that we have spelled out, the resulting equations are

A′′+A′F ′=− T

(D−2) e2B+γ ϕ+ k p

ℓ2
e2(B−A)

+(D−p−3)
2(D−2) e2B+2βp ϕ−2(D−p−2)CH2

p+2+
(D−p−2)
2(D−2) e2B−2βp−1 ϕ−2(p+1)Ah2p+1 ,

C ′′+C ′F ′=− T

(D−2) e2B+γ ϕ+ k′(D−p−3)
ℓ2

e2(B−C)

− (p+1)
2(D−2) e2B+2βp ϕ−2(D−p−2)CH2

p+2−
p

2(D−2) e2B−2βp−1 ϕ−2(p+1)Ah2p+1 ,

ϕ′′+ϕ′F ′= T γ (D−2)
8 e2B+γ ϕ (2.22)

+βp (D−2)
8 e2B+2βp ϕ−2(D−p−2)CH2

p+2+
βp−1 (D−2)

8 e2B−2βp−1 ϕ−2(p+1)Ah2p+1 ,

where
F = (p + 1)A−B + (D − p− 2)C . (2.23)

“Initial” conditions, or more properly boundary values, cannot be given independently for
all fields, since the allowed choices must satisfy the “Hamiltonian constraint”

(p + 1)A′[p A′ + (D − p− 2)C ′] + (D − p− 2)C ′[(D − p− 3)C ′ + (p + 1)A′]

− 4 (ϕ′)2
D − 2 + T e 2B+γ ϕ − k p(p + 1)

ℓ2
e2(B−A) − k′(D − p− 3)(D − p− 2)

ℓ2
e2(B−C)

+ 1
2 e 2βp ϕ+2B−2 (D−p−2)C H2

p+2 −
1
2 e−2βp−1 ϕ−2(p+1)A+2B h2p+1 = 0 . (2.24)

The “harmonic gauge”

B = (p + 1)A + (D − p− 2)C (2.25)

simplifies somewhat the preceding expressions, and we shall often use it in the following to
build the solutions. However, it will prove helpful and instructive to compare the results
with those obtained in the more familiar “isotropic gauge”, in which

e2C(r) = r2

ℓ2
e2B(r) , (2.26)

which is the standard choice for supersymmetric backgrounds with spherical symmetry.
Note that, in this fashion, the system possesses an interesting discrete symmetry: its

equations are left invariant by the redefinitions[
A, C, p, k, k′] ←→ [

C, A, D − p− 3, k′, k
]

,[
H2

p+2, βp; h2p+1, βp−1
]
←→

[
−h2p+1,−βp−1;−H2

p+2,−βp

]
. (2.27)

This can be regarded as implementing a sort of “electric-magnetic” duality, and will be
useful when exploring more general backgrounds with curvature also in the spacetime portion
of the metric.
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3 Exact solutions with vanishing charges

We can now examine the simplest exact solutions of the system (2.22) that are of interest
for the present analysis of black holes and branes. They are uncharged and include the
non-BPS branes of the type II theory.

The solutions belonging to this class obtain for T = 0, k = 0, k′ = 1, hp+1 = 0 and
Hp+2 = 0. The two cases p = D − 3 and p = D − 2 are degenerate, since the curvature
does not play a role in them, and reduce to the solutions discussed in [46, 47]. However,
for p < D − 3 the internal curvature does play a role, and in the harmonic gauge (2.25)
the system implies that

A = A0 + A1 r , ϕ = ϕ0 + ϕ1 r , (3.1)

where A0, A1, ϕ0 and ϕ1 are constants. Letting

X = (p + 1)A + (D − p− 3)C , (3.2)

the remaining equation can be simply turned into

(
X ′)2 = (D − p− 3)2

ℓ2
e2X + Ex , (3.3)

where Ex is an integration constant. The Hamiltonian constraint (2.24) reduces to

A2
1
(p + 1)(D − 2)

D − p− 3 + 4ϕ2
1

D − 2 = Ex
D − p− 2
D − p− 3 , (3.4)

so that Ex ≥ 0, and one can set

Ex = 1
σ2 , A1 =

√
D − p− 2

(p + 1)(D − 2)
cosα

σ
, ϕ1 =

√
(D − p− 2)(D − 2)

4(D − p− 3)
sinα

σ
, (3.5)

with α an angular parameter. Eq. (3.12) is then solved by2

X = − log
[(D − p− 3)σ

ℓ
sinh

(
r + r0

σ

)]
, (3.6)

where r0 is an integration constant, which can be removed by shifting the r variable.
The solution for C can thus be cast in the form

C = − 1
D − p− 3 log

[
σ

D − p− 3
ℓ

sinh
(

r

σ

) ]
− p + 1

D − p− 3(A0 + A1r) , (3.7)

and in the harmonic gauge one can conclude that

B = −D − p− 2
D − p− 3 log

[
σ

D − p− 3
ℓ

sinh
(

r

σ

) ]
− p + 1

D − p− 3(A0 + A1r) . (3.8)

2As discussed in [46], the second-order differential equation for X that leads to eq. (3.3) admits three
types of solutions. One corresponds to eq. (3.3), another rests on trigonometric functions and is obtained
letting 1

σ2 → − 1
σ2 , and finally a third one is recovered in the limit 1

σ2 → 0. In this case, the Hamiltonian
constraint excludes the second option, while for the last one it implies the two conditions A1 = ϕ1 = 0, so that
the end result is a flat spacetime. The resulting metric is actually the r → 0 limit of the solutions obtained
starting from eq. (3.3), which captures the asymptotically flat space far away from the branes, as we shall see
in the following.
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This class of solutions without fluxes depends on four parameters: α, σ, ϕ0 and A0. The
last one, however, can be simply removed rescaling the spacetime coordinates x, while also
rescaling r and σ by the same factor. In detail, the relevant rescaling is

r → Λ r , σ → Λσ , (3.9)

so that the combinations A1 r and ϕ1 r are unaffected, while

B → B − log Λ
D − p− 3 , C → C − log Λ

D − p− 3 . (3.10)

This transformation can remove A0 from B and C, and then rescaling the spacetime co-
ordinates x removes it completely from the metric, while still remaining in the harmonic
gauge. Equivalently, one can simply perform the shifts

A(r)→ A(r)− D − p− 3
p + 1 λ , B(r)→ B(r) + λ , C(r)→ C(r) + λ , (3.11)

without rescaling r, σ and the spacetime coordinates. In both cases, one is left with three
independent parameters in the metric tensor, which reads

ds2 = e−
2 r
R dx2

p+1 + e
2(p+1) r

(D−p−3)R

[(D − p− 3)σ
ℓ

sinh
(

r

σ

)]− 2(D−p−2)
D−p−3

dr2

+ e
2(p+1) r

(D−p−3)R

[(D − p− 3)σ
ℓ

sinh
(

r

σ

)]− 2
D−p−3

ℓ2 dΩ2
D−p−2 , (3.12)

where

R = −
√

(p + 1)(D − 2)
D − p− 2

σ

cosα
. (3.13)

Near r = 0, this reduces to the flat metric in the harmonic coordinates,

ds2 ∼ dx2
p+1 +

[(D − p− 3) r

ℓ

]− 2(D−p−2)
D−p−3

dr2 +
[(D − p− 3) r

ℓ

]− 2
D−p−3

ℓ2 dΩ2
D−p−2 , (3.14)

which can be turned into the Minkowski metric

ds2 ∼ dx2
p+1 + dρ2 + ρ2 dΩ2

D−p−2 (3.15)

by defining a new polar variable ρ as

ρ = ℓ

[(D − p− 3)
ℓ

r

]− 1
D−p−3

. (3.16)

We can now take a closer look at a few interesting cases, in order to compare the results
obtained in the harmonic gauge with those emerging in more familiar coordinate systems.
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3.1 The Schwarzschild-Tangherlini solutions

For p = 0 and D = 4, the preceding results ought to describe an uncharged spherical black
hole if one decouples the dilaton, setting ϕ1 = 0. This choice would translate into the two
options α = 0, π in eq. (3.5). Eq. (3.13) then implies that

R = −ϵ σ , (3.17)

where ϵ = ±1, and in these harmonic coordinates the metric reads

ds2 = −e−
2 r
R dt2 + e

2 r
R

[
R

ℓ
sinh

(
r

R

)]−4
dr2 + e

2 r
R

[
R

ℓ
sinh

(
r

R

)]−2
ℓ2 dΩ2

2 . (3.18)

One can now work in the region r > 0. There is a coordinate singularity as r → 0 where,
as we have seen, the solution approaches flat space, which lies at infinite distance from
finite values of r, and there is another coordinate singularity as r → +∞. With positive
values of R, the time-time component of the metric tensor vanishes as r → +∞, as is the
case at the Schwarzschild horizon. In fact, the transition to the conventional Schwarzschild
coordinates can be effected letting

e−
2 r
R = 1 + ϵ

ξ0
ξ

, (3.19)

where 0 < ξ < +∞ if ϵ = 1, and ξ0 < ξ < +∞ if ϵ = −1, with

ξ0 =
2ℓ2

σ
. (3.20)

In this fashion, for ϵ = −1 one recovers the familiar expression

ds2 = −
(
1− ξ0

ξ

)
dt2 + dξ2

1− ξ0
ξ

+ ξ2 dΩ 2
2 , (3.21)

and the black-hole mass MBH is related to the integration constant R according to

MBH = ℓ2

R GN
= 8πℓ2

κ2
4 R

, (3.22)

since in four dimensions
1

16π GN
= 1

2κ42
. (3.23)

When R > 0, the mass MBH is positive and the harmonic coordinates only span the
region outside the horizon, which lies at ξ = ξ0. On the other hand, negative values of
R would translate into negative masses, and thus into the presence of naked singularities,
which are unacceptable for these black holes.

Confining the attention to positive masses, and thus to positive values of R, a similar
procedure leads to the Schwarzschild-Tangherlini solutions,

ds2 = −
[
1−

(
ξ0
ξ

)D−3]
dt2 + dξ2

1−
(

ξ0
ξ

)D−3 + ξ2 dΩ2
D−2 , (3.24)
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which describe spherical black holes in generic dimensions D > 3, starting from the harmonic-
gauge metrics

ds2 = −e−
2 r
R dt2 + e

2 r
(D−3)R

[(D − 3)R
ℓ

sinh
(

r

R

)]− 2(D−2)
D−3

dr2

+ e
2 r

(D−3)R

[(D − 3)R
ℓ

sinh
(

r

R

)]− 2
D−3

ℓ2 dΩ2
D−2 . (3.25)

In these cases, the link between the coordinate systems is

e−
2r
R = 1− 2 ℓ

R

(
ξ

ℓ

)−(D−3)
, (3.26)

and there is again a horizon, which now lies at

ξD−3
0 = 2

R
ℓD−2 , (3.27)

and is approached as r → +∞ in harmonic coordinates. Also in this case, R is related to
the mass, but now according to

MBH = (D − 2)ΩD−2 ℓD−2

(D − 3)κ2
D R

, (3.28)

with

Ωn = 2π
n+1
2

Γ
(

n+1
2

) , (3.29)

the area of an n-sphere of unit radius. Using eq. (2.14), we obtain

MBH = 25−D π
5−D
2 (D − 2)

(D − 3) Γ
(

D−1
2

)
R

. (3.30)

Negative values of R bring along, again, naked singularities.
Isotropic coordinates are also of interest for black holes. Let us take a close look at them,

since they are the standard choice for BPS branes. In this case the gauge condition is

eC = ρ eB , (3.31)

where ρ ≥ 0 is the radial variable, and the coordinate transformation linking the Schwarzschild
coordinate ξ to the isotropic coordinate ρ is

1−
(

ξ0
ξ

)D−3
=


(

ρ
ρ0

)D−3
2 −

(
ρ
ρ0

)−D−3
2

(
ρ
ρ0

)D−3
2 +

(
ρ
ρ0

)−D−3
2


2

. (3.32)

In isotropic coordinates, the Schwarzschild-Tangherlini metric thus takes the form

ds2 = −


(

ρ
ρ0

)D−3
2 −

(
ρ
ρ0

)−D−3
2

(
ρ
ρ0

)D−3
2 +

(
ρ
ρ0

)−D−3
2


2

dt2

+


(

ρ
ρ0

)D−3
2 +

(
ρ
ρ0

)−D−3
2

2


4

D−3 (
ρ0
ρ

)2 (
dρ2 + ρ2dΩ2

D−2

)
. (3.33)
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Note that the transformation (3.32) is a one-to-one map between the two intervals ξ0 < ξ <∞
and ρ0 < ρ < ∞.

3.2 Properties of uncharged p-branes

We can now move on to uncharged p-branes, which generalize the black-hole solutions just
described and have a manifest ISO(1, p) isometry. In the harmonic gauge, the starting point
for their characterization is provided by the ansatz of eq. (2.21), which leads to eq. (3.12).
The Hamiltonian constraint, which was solved in eq. (3.5) in terms of the angle α, leads to
dilaton profiles that are generally linear in the r coordinate

ϕ = ϕ0 + ϕ1r . (3.34)

As r → 0 the metric behaves as

ds2 ∼
(
1− 2 r

R

)
dx2

p+1 + dρ2 + ρ2 dΩ2
D−p−2 , (3.35)

where ρ and r are related in eq. (3.16). The correction that we retained suffices to determine
the tension of the extended object. In general, if

ds2 ∼
[
1 + V (ρ)

]
dx2

p+1 + dρ2 + ρ2 dΩ2
D−p−2 , (3.36)

the linearized Einstein equations with a localized source would reduce to the Poisson equa-
tion for V ,

∇2
ρ V = 2κ2

D

D − p− 3
D − 2 Tp δ(ρ⃗) , (3.37)

where δ(ρ⃗) is unambiguously defined via the Cartesian coordinates yi such that, asymptotically,

dρ2 + ρ2 dΩ2
D−p−2 =

D−p−1∑
i=1

(
dyi
)2

. (3.38)

Information on the source is indeed available far from the singularity via Gauss’s law, which
translates into the condition

ΩD−p−2 ρD−p−2 ∂ρV = 2κ2
D

D − p− 3
D − 2 Tp . (3.39)

In the present case, the asymptotic link between r and ρ in eq. (3.16) and the expression
for the potential in terms of r lead to

V = −2 ℓ

R

1
D − p− 3

(
ρ

ℓ

)−(D−p−3)
, (3.40)

and thus determine the effective tension

Tp = D − 2
D − p− 3

ΩD−p−2
κ2

D

ℓD−p−2

R
. (3.41)

For non-vanishing values of p and for R > 0 (R < 0) one is thus describing an uncharged
extended object of positive (negative) tension.
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On the other hand, the dominant behavior as r → ∞,

A ∼ − r

R
, C ∼ 1

D − p− 3

[(p + 1) r

R
− r

σ

]
, (3.42)

determines the limiting form of the metric,

ds2 ∼ e−
2 r
R dx2

p+1 + e
2 r

D−p−3( p+1
R

−D−p−2
σ )dr2 + e

2 r
D−p−3( p+1

R
− 1

σ ) ℓ2 dΩ2
D−p−2 , (3.43)

while the dilaton tends to +∞ if ϕ1 > 0 and to −∞ if ϕ1 < 0. Letting

Γ = 1
D − p− 3

(
−p + 1

R
+ D − p− 2

σ

)
, (3.44)

one can define the proper distance from the singularity as

ζ = 1
Γ e−Γr , (3.45)

and taking eq. (3.13) into account, one can also conclude that

Γ > 0 , (3.46)

irrespective of the sign of R. In all cases, r → ∞ thus lies at a finite distance from finite
non-vanishing values of r. In terms of the proper distance ζ the limiting behavior of the
metric is captured by

ds2 ∼ (Γζ)
2

RΓ dx2
p+1 + dζ2 + (Γζ)

2
(D−p−3)Γ(− p+1

R
+ 1

σ ) ℓ2 dΩ2
D−p−2 , (3.47)

or alternatively by

ds2 ∼ (Γζ)
2

RΓ dx2
p+1 + dζ2 + (Γζ)2−

2
Γσ ℓ2 dΩ2

D−p−2 . (3.48)

Note that, as ζ → 0, the spheres in the directions orthogonal to the branes become infinitely
large compared to their flat-space counterparts. For this reason, close to the branes the
internal curvature is subleading, and these solutions approach those discussed in [46] for the
case of an internal torus. A curvature singularity is present as r → +∞, or ζ → 0, unless
p = 0 and α = π. This is due to the fact that Γ is always positive, since the equations
of motion imply that

R ∝ (∂ϕ)2 ∝ (sinα)2 e2Γr , (3.49)

which diverges as r → ∞, unless α = 0 or π. However, a direct computation shows that
if α = 0 the scalar combination RMNP Q RMNP Q diverges for any value of p, so that the
only singularity-free case corresponds to p = 0 and α = π, and thus to the black holes with
positive mass described in the previous section. In this case the limit r →∞ identifies the
horizon, which shields the true singularity. However, the presence of naked singularities is a
generic feature for branes when only the two-derivative Einstein action is taken into account,
which signals the need for higher-derivative corrections in order to provide a satisfactory
description of these extended objects.
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There are special uncharged solutions with ϕ1 = 0, and thus with a constant dilaton,
which possess the attractive feature of reducing to flat spacetimes when the tension Tp vanishes.
This option can be neatly characterized referring to the Noether current for the shift symmetry
ϕ→ ϕ + c, where c is a constant, which has only a radial component in the background,

jr = 8
D − 2 ∂rϕ = 8

D − 2 ϕ1 . (3.50)

A non-vanishing component of this current signals a charge flow between r → ∞, the
singularity, and r = 0, where the background approaches flat space far away from the
extended object, which should not occur for branes embedded in supersymmetric spacetimes.
For the two classes of solutions with ϕ1 ̸= 0, the scalar profile is always singular as r →∞.

Before concluding this analysis, it is instructive to recast the metric in isotropic coordinates
in the whole spacetime, performing the change of variables

2 (D − p− 3)σ

ℓ
tanh

(
r

2σ

)
=
(

ℓ

ρ

)D−p−3
. (3.51)

The flat limiting behavior at large distances from the extended object is now recovered as
ρ → ∞, where the preceding equation reduces to eq. (3.16). Letting now

v(ρ) = tanh
(

r

2σ

)
= ℓ

2(D − p− 3)σ

(
ℓ

ρ

)D−p−3
, (3.52)

the metric takes the form

ds2 =
[1 + v(ρ)
1− v(ρ)

]− 2 σ
R

dx2
p+1

+
[1 + v(ρ)
1− v(ρ)

] 2 σ(p+1)
R(D−p−3) [

1− v2(ρ)
] 2

D−p−3
(
dρ2 + ρ2dΩ2

D−p−2

)
, (3.53)

while the dilaton profile reads

ϕ = ϕ0 + ϕ1 σ log
[1 + v(ρ)
1− v(ρ)

]
. (3.54)

This type of solution was already discussed in the literature in [52], and was reconsidered,
in [53], under the spell of Sen’s construction of non-BPS branes [54, 55]. However, the
emphasis placed on this correspondence led the authors to focus on combinations of branes
and anti-branes in equal numbers, to which they associated uncharged branes, without
considering other options.

All the preceding results refer to the range p < D − 3, where the internal space can be
curved. In the complementary range, the internal space is flat, and the solutions reduce
everywhere to those considered in [46].
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4 Electrically charged p-branes

We can now see how, in the absence of a tadpole potential, the harmonic gauge adapts
itself to the description of charged branes.

4.1 Charged p-branes

In the absence of form profiles the dilaton can be decoupled, and the metric equations in
the Einstein frame reduce to those of General Relativity, as was the case in the previous
section. However, the dilaton enters the kinetic terms of form fields, and therefore it plays a
non-trivial role for charged branes, to which we now turn. Consequently, the corresponding
solutions are not simple generalizations of the Reissner-Nordstrom black hole.

We shall continue to focus on metrics with ISO(1, p) isometries, along the lines of the
CFT analysis in [51]. As in the preceding sections, harmonic coordinates allow for a unified
treatment of different systems where Hp+2 ̸= 0 but hp−1 = 0. The equations with only
hp−1 ̸= 0 but Hp+2 = 0 are more complicated and less relevant to the current analysis of
branes, so that we shall confine our attention to the first option.

In special cases, the solutions belonging to this class preserve a number of supersymmetries.
An extensive review of supersymmetric brane solutions, with details on their emergence in
the literature, can be found in [56]. BPS branes can be obtained more simply by solving
first-order equations [57, 58], but working in the harmonic gauge we shall be able to recover
these supersymmetric solutions, while also capturing some non-supersymmetric deformations.

In the conventions of eqs. (2.22), it is now convenient to introduce the three combinations

X = (p + 1)A + (D − p− 3)C ,

Y = (p + 1)A + βpϕ ,

Z = D − 2
4 βpA− D − p− 3

D − 2 ϕ , (4.1)

which correspond to the three exponents present in the original system (2.22). The metric
functions A, B and C and the dilaton ϕ are then determined by X, Y and Z according to

A = 4 (D − p− 3)
∆ Y + 4 (D − 2)βp

∆ Z , (4.2)

B = D − p− 2
D − p− 3 X − 4 (p + 1)

∆ Y − 4(D − 2)(p + 1)βp

(D − p− 3)∆ Z ,

C = 1
D − p− 3 X − 4 (p + 1)

∆ Y − 4(D − 2)(p + 1)βp

(D − p− 3)∆ Z,

ϕ = (D − 2)2βp

∆ Y − 4(D − 2)(p + 1)
∆ Z ,

where
∆ = 4(D − p− 3)(p + 1) + (D − 2)2βp

2 . (4.3)

The equations for X and Y decouple and become

X ′′ = (D − p− 3)2
ℓ2

e2X , Y ′′ = ∆
8(D − 2) H2

p+2 e2Y , (4.4)
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while the equation for Z is simply

Z ′′ = 0 . (4.5)

It is solved by

Z = z0 + z1r , (4.6)

where z0 and z1 are integration constants, and consequently the Hamiltonian constraint
becomes

0 = 2(D − p− 3)2(D − p− 2)
ℓ2

e2X + 8(D − 2)(D − p− 3)
∆ (Y ′)2 (4.7)

− 2(D − p− 2)(X ′)2 + 32(D − 2)(p + 1)
∆ z1

2 − (D − p− 3)H2
p+2 e2Y ,

while the second-order equations for X and Y can be turned into

(X ′)2 = (D − p− 3)2
ℓ2

e2X + Ex ,

(Y ′)2 = ∆
8(D − 2)H2

p+2 e2Y + Ey , (4.8)

where the two “energies” Ex and Ey are integration constants. The three constants z1, Ex and
Ey are not independent, however, since the Hamiltonian constraint links them according to

0 = 8(D − 2)(D − p− 3)
∆ Ey − 2(D − p− 2) Ex + 32(D − 2)(p + 1)

∆ z21 . (4.9)

The special solutions with Ex = 0 and Ey = 0 have thus z1 = 0. They stand out for their
simplicity and their physical significance, and can be cast in the form

X = − log
[

D − p− 3
ℓ

r

]
,

Y = − log
∣∣∣H̃p+2 (r + r1)

∣∣∣ ,

Z = z0 . (4.10)

Here r > 0 and r1 is an integration constant, and

H̃p+2 =
√

∆
8(D − 2) Hp+2 , (4.11)

where the relative factor equals one in ten dimensions. The metric becomes

ds2 =
dx2

p+1∣∣∣H̃p+2 (r + r1)
∣∣∣ 8(D−p−3)

∆

e
8(D−2)βp

∆ z0 (4.12)

+
∣∣∣H̃p+2 (r + r1)

∣∣∣ 8(p+1)
∆ e

− 8(D−2)(p+1)βp
(D−p−3)∆ z0

 dr2[
(D−p−3)

ℓ r
] 2(D−p−2)

D−p−3

+
ℓ2 dΩ2

D−p−2[
(D−p−3)

ℓ r
] 2

D−p−3

 ,
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while the dilaton and form profiles are given by

eϕ = e−
4(D−2)(p+1)

∆ z0∣∣∣H̃p+2 (r + r1)
∣∣∣ (D−2)2βp

∆

,

Hp+2 = −
Hp+2[

H̃p+2 (r + r1)
]2 dx0 ∧ . . . ∧ dxp ∧ dr . (4.13)

We have inserted a minus sign in the definition of Hp+2 with respect to eqs. (2.21), so that
positive values of Hp+2 correspond to branes with identical signs for tension and charge.

For βp ̸= 0 and r1 ̸= 0, the dependence on z0 can be completely eliminated, while also
casting the metric in a form that approaches the standard Minkowski in eq. (3.14) as r → 0,
by performing the redefinitions

r → e
− 4(p+1)

(D−2)βp

(
z0− D−p−3

(D−2)βp
log
∣∣H̃p+2 r1

∣∣)
r ,

r1 → e
− 4(p+1)

(D−2)βp

(
z0− D−p−3

(D−2)βp
log
∣∣H̃p+2 r1

∣∣)
r1 ,

xµ → e
− 4

(D−2)βp

(
z0− D−p−3

(D−2)βp
log
∣∣H̃p+2 r1

∣∣)
xµ . (4.14)

These results can be equivalently obtained performing the shifts

A(r)→ A(r)− D − p− 3
p + 1 λ , B(r)→ B(r) + λ ,

C(r)→ C(r) + λ , ϕ(r) → ϕ(r) + D − p− 3
βp

λ , (4.15)

with a constant

λ = 4(D − 2)(p + 1)βp

(D − p− 3)∆ z0 −
4(p + 1)

∆ log
∣∣∣H̃p+2 r1

∣∣∣ , (4.16)

which also leave the system in a harmonic gauge. These steps effectively lead to the
identification

z0 =
D − p− 3
(D − 2)βp

log
∣∣∣H̃p+2 r1

∣∣∣ . (4.17)

Letting then

eϕ0 =
∣∣∣H̃p+2 r1

∣∣∣− 1
βp , (4.18)

the metric can be finally cast in the form

ds2 =
∣∣∣∣1 + r

r1

∣∣∣∣−
8(D−p−3)

∆
dx2

p+1 (4.19)

+
∣∣∣∣1 + r

r1

∣∣∣∣
8(p+1)

∆

 dr2[
(D−p−3)

ℓ r
] 2(D−p−2)

D−p−3

+
ℓ2 dΩ2

D−p−2[
(D−p−3)

ℓ r
] 2

D−p−3

 ,
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while the dilaton and the form-field strength become

eϕ = eϕ0

∣∣∣∣1 + r

r1

∣∣∣∣−
(D−2)2βp

∆
,

Hp+2 = −ϵ

√
8(D − 2)

∆
1
|r1|

eβpϕ0

∣∣∣∣1 + r

r1

∣∣∣∣−2
dx0 ∧ . . . ∧ dxp ∧ dr , (4.20)

where ϵ denotes the sign of Hp+2. As we have stressed, we are confining our attention to
positive nonzero values of r, while allowing both positive and negative values for r1. All
in all, the solutions finally contain two free parameters, ϕ0 and r1. We have left out the
cases with βp = 0 and/or r1 = 0, which require different rescalings. However, if r1 ̸= 0 and
βp = 0 the end result, as we shall see, can be simply obtained from eqs. (4.19) and (4.20),
setting βp = 0 in them.

If r1 > 0, the allowed range for r is 0 < r < ∞, while if r1 < 0 the range is limited
to the interval 0 < r < |r1|, since we focus on solutions that approach flat space far away
from the singularity, as ought to be the case for branes in a Minkowski vacuum. Otherwise,
the range |r1| < r < ∞ would be another viable option.

One can now redefine the independent variable according to(
ℓ

ρ

)D−p−3
= (D − p− 3)

ℓ
r , (4.21)

in order to recast the metric in the isotropic gauge, and it is also convenient to let

hp = ℓD−p−2

(D − p− 3) r1
. (4.22)

The metric, dilaton, and form-field strength then become3

ds2 =
(
1 + hp

ρD−p−3

)− 8(D−p−3)
∆

dx2
p+1 +

(
1 + hp

ρD−p−3

) 8(p+1)
∆ (

dρ2 + ρ2 dΩ2
D−p−2

)
,

eϕ = eϕ0

(
1 + hp

ρD−p−3

)− (D−2)2βp
∆

, (4.23)

Hp+2 = ϵ

√
8(D − 2)

∆ eβpϕ0

(
1 + hp

ρD−p−3

)−2
|hp| (D − p− 3) ρ−(D−p−2) dx0 ∧ .. ∧ dρ .

For large values of ρ, the spacetime part of the metric approaches Minkowski space,
up to the leading correction factor

(
1 + hp

ρD−p−3

)− 8(D−p−3)
∆

∼ 1− 8(D − p− 3)hp

∆ ρ−(D−p−3) . (4.24)

For hp ̸= 0 this signals, via Gauss’s theorem, the presence of a source with non-vanishing
tension at ρ = 0. One can extract the value of the tension proceeding as in eq. (3.39), while

3No absolute values are needed in the following expressions, with our choices for the range of r.
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also taking into account the dilaton dressing eβpϕ Tp,4 or alternatively one can deduce it from
the δ(ρ⃗) contributions in the equations of motion. The result is

Tp = ϵ̃ e−βpϕ0 8(D − 2)(D − p− 3) |hp|
2κ2

D ∆ ΩD−p−2 , (4.25)

where ϵ̃ is the sign of hp, or equivalently, in view of eq. (4.22), the sign of r1. Positive values
of r1 lead to a positive tension, while negative values lead to a negative tension. Note that
the factor e−βpϕ0 is present, since we are working in the Einstein frame.

The charge can be computed from the equation for the form field with a localized source

1
2κ2

D

d (e−2βpϕ ⋆Hp+2) = Qp δ(ρ⃗) , (4.26)

or from Gauss’s theorem, integrating over the interior of a sphere of large radius, where

δ (ρ⃗) =
D−p−1∏

a=1
δ (ya) d ya , (4.27)

as we already stressed in eq. (3.38), involves all Cartesian coordinates ya that are transverse
to the brane. This leads to

Qp = ϵ e−βpϕ0

√
8(D − 2)

∆
(D − p− 3) |hp| ΩD−p−2

2κ2
D

, (4.28)

where ϵ is the sign of Hp+2. Positive values of ϵ lead to a positive charge, while negative
values leads to a negative charge. All in all

Tp

Qp
= ϵ ϵ̃

√
8(D − 2)

∆ , (4.29)

so that charge and tension are proportional for generic values of D.
In the ten-dimensional case, which is relevant for String Theory, the results for the

isotropic gauge become

ds2 =
(
1 + hp

ρ7−p

)− (7−p)
8

dx2
p+1 +

(
1 + hp

ρ7−p

) (p+1)
8 (

dρ2 + ρ2 dΩ2
8−p

)
,

eϕ = eϕ0

(
1 + hp

ρ7−p

)−βp

,

Hp+2 = ϵ eβpϕ0

(
1 + hp

ρ7−p

)−2
|hp| (7− p) ρ−(8−p) dx0 ∧ . . . ∧ dxp ∧ dρ , (4.30)

where
hp = ϵ̃

ℓ 8−p

(7− p) |r1|
. (4.31)

4In the string frame the D-brane tension would enter the DBI action in the combination T e−ϕ, which
becomes T eβp ϕ in the Einstein frame. This is also the proper Einstein-frame dressing for NS5 branes, since
p − 3 = 7 − p in that case.
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The absolute values of tension and charge of the source now coincide, while the relative sign is
determined by the product ϵ ϵ̃, where ϵ and ϵ̃ are the signs of Hp+2 and of hp, or equivalently
of r1. In particular, for N D-branes, whose tension and charge are both positive and given
by eq. (2.3), one can link hp to the string scale α′ according to

hp =

(
2π
√

α′
)7−p

(7− p)Ω8−p
N eβpϕ0 . (4.32)

Note that this result apparently differs from the standard one, hp ∝ Neϕ0 . The discrep-
ancy arises since we are using a different Einstein-frame convention, which will prove more
natural when discussing branes in the presence of a tadpole potential. For supersymmetric
branes, the dilaton zero-mode is usually absorbed in the Planck mass, and as a result it
explicitly contributes to the form-field kinetic term. This is a natural choice for solutions that
are asymptotic to the Minkowski vacuum with a constant dilaton. In this paper, however,
we shall explore cases where a constant contribution to the dilaton, ϕ0, is not related to the
asymptotic behavior, so that it is more natural not to remove it from the rest of ϕ. The
relation between the different conventions is as follows:

Tstandard = Tp e
p−7
4 ϕ0 , Hp+2,standard = Hp+2 e−

p+1
4 ϕ0 . (4.33)

4.2 The case βp = 0

If βp = 0, the dilaton decouples, and the metric and (p + 2)-form field strength reduce to

ds2 =
dx2

p+1∣∣∣H̃p+2 (r + r1)
∣∣∣ 8(D−p−3)

∆

+
∣∣∣H̃p+2 (r + r1)

∣∣∣ 8(p+1)
∆

 dr2[
(D−p−3)

ℓ r
] 2(D−p−2)

D−p−3

+
ℓ2 dΩ2

D−p−2[
(D−p−3)

ℓ r
] 2

D−p−3

 ,

Hp+2 = −
Hp+2[

H̃p+2 (r + r1)
]2 dx0 ∧ . . . ∧ dxp ∧ dr . (4.34)

There is still some redundancy, however, which can be fixed rescaling H̃p+2 to H̃p+2∣∣H̃p+2 r1
∣∣ .

Alternatively, one can rescale r and x in such a way that

A(r)→ A(λ r) + 1
p + 1 log λ , B(r)→ B(λ r) + log λ ,

C(r)→ C(λ r) , ϕ(r) → ϕ(λ r) , (4.35)

with
λ =

∣∣∣H̃p+2 r1
∣∣∣ . (4.36)

Letting now

r̃1 =
ϵ̃∣∣∣H̃p+2
∣∣∣ , (4.37)
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where ϵ̃ is again the sign of r1, the background takes the form

ds2 =
∣∣∣∣1 + r

r̃1

∣∣∣∣− 2
p+1

dx2
p+1

+
∣∣∣∣1 + r

r̃1

∣∣∣∣ 2
D−p−3

 dr2[
(D−p−3)

ℓ r
] 2(D−p−2)

D−p−3

+
ℓ2 dΩ2

D−p−2[
(D−p−3)

ℓ r
] 2

D−p−3

 ,

Hp+2 = −ϵ

√
2(D − 2)

(p + 1)(D − p− 3)
1
|r̃1|

(
1 + r

r̃1

)−2
dx0 ∧ . . . ∧ dxp ∧ dr ,

eϕ = eϕ0 . (4.38)

In this fashion, one ends up with expressions that are identical to those in eqs. (4.19) and (4.20)
even for βp = 0, after a relabeling of the residual integration constants. Consequently, the
isotropic-gauge backgrounds in eqs. (4.23) with βp = 0 (also in ∆) account for this special
case, if now

hp = ℓD−p−2

(D − p− 3) r̃1
. (4.39)

The tension and the charge of the extended object that sources this solution are still
given by eqs. (4.25) and (4.28), which in terms of r̃1 read

Tp = ϵ̃
8(D − 2)

∆
ΩD−p−2
2κ2

D

ℓD−p−2

|r̃1|
,

Qp = ϵ

√
8(D − 2)

∆
ΩD−p−2
2κ2

D

ℓD−p−2

|r̃1|
. (4.40)

For positive values of hp these solutions interpolate between flat space as ρ → ∞ and
smooth AdSp+2 × SD−p−2 spaces, with

RAdSp+2 = p + 1
D − p− 3 |hp|

1
D−p−3 , RSD−p−2 = |hp|

1
D−p−3 (4.41)

as ρ → 0.

4.3 The D3 brane and the self-dual five-form

In ten dimensions, the value βp = 0 corresponds to the D3 brane. In this case, however,
the five-form field strength is self-dual, and thus additional care is required. In fact, adding
to the form field strength in eqs. (4.38) for p = 3 and D = 10 its Hodge dual does build
a self-dual five-form, but the stress tensor is then doubled. In order to retain the original
form of the metric, one can simply divide by

√
2 the field strength H5, so that the self-dual

background of interest reads

ds2 =
∣∣∣∣1 + r

r̃1

∣∣∣∣− 1
2

dx2
4 +

∣∣∣∣1 + r

r̃1

∣∣∣∣ 12
 dr2(

4 r
ℓ

) 5
2
+ ℓ2 dΩ2

5(
4 r
ℓ

) 1
2

 ,

H5 = −
ϵ√
2 |r̃1|

[(
1 + r

r̃1

)−2
dx0 ∧ . . . ∧ dx3 ∧ dr + volS5

]
,

eϕ = eϕ0 , (4.42)
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where volS5 denotes the volume form on the unit sphere. In this case the tension is still
given by eq. (4.40), which becomes

T3 = ϵ̃
Ω5
2κ2

10

ℓ5

|r̃1|
(4.43)

in ten dimensions, while the charge is divided by
√
2, and reads

Q3 = ϵ
Ω5
2κ2

10

ℓ5√
2 |r̃1|

, (4.44)

so that the BPS condition is now

|T3| =
√
2 |Q3| . (4.45)

This relation depends on the conventions for the kinetic term of the form field, and there
are different choices in the literature. In general, if one starts from the kinetic term

S = 1
2κ2

10

∫
χ

2 H5 ∧ ⋆H5 , (4.46)

where self-duality is to be imposed at the end and χ is a real parameter that reflects the
choice of normalization, the form field strength of our self-dual solution becomes

H5 = −
ϵ√

2χ |r̃1|

[(
1 + r

r̃1

)−2
dx0 ∧ . . . ∧ dx3 ∧ dr + volS5

]
. (4.47)

In the isotropic gauge the background then takes the form

ds2 =
(
1 + h3

ρ4

)− 1
2

dx2
4 +

(
1 + h3

ρ4

) 1
2 (

dρ2 + ρ2dΩ2
5

)
,

H5 =
4 ϵ√
2χ
|h3|

[(
1 + h3

ρ4

)−2 1
ρ5

dx0 ∧ . . . ∧ dρ− volS5

]
, (4.48)

where the relative minus sign between the two terms is induced by the transformation in
eq. (4.21) linking the harmonic and isotropic coordinates, so that also here H5 = ⋆H5. One
can define the charge according to

d ⋆H5 = d H5 = 2κ2
10 Q3 δ(ρ⃗) , (4.49)

or better via Gauss’s theorem, as

Q3 =
1

2κ2
10

∫
S5

⋆H5 =
1

2κ2
10

∫
S5
H5 . (4.50)

This would correspond to a probe D3 brane coupling

δS = χ Q3

∫
B4 . (4.51)

– 22 –



J
H
E
P
1
0
(
2
0
2
4
)
0
5
4

The choice χ = 2 corresponds to the convention of [46],5 while χ = 1 is the standard convention
for the non-self-dual case that we are using in this paper, and finally χ = 1

2 corresponds
to the convention of [59]. Note that the BPS condition is also convention-dependent, and
becomes in general

|T3| =
√
2χ |Q3| . (4.52)

4.4 The limiting value r1 = 0

Returning to generic values of p and D, the limiting case r1 = 0 was left out in the preceding
discussion, and we now want to address its meaning, starting from eqs. (4.12) and (4.13).
The rescalings

r → e
− 4(p+1)

(D−2)βp

(
z0− D−p−3

(D−2)βp
log
∣∣H̃p+2 ℓ

∣∣)
r ,

xµ → e
− 4

(D−2)βp

(
z0− D−p−3

(D−2)βp
log
∣∣H̃p+2 ℓ

∣∣)
xµ , (4.53)

eliminate z0 and |Hp+2|, turning the background into

ds2 =
(

r

ℓ

)− 8(D−p−3)
∆

dx2
p+1 (4.54)

+
(

r

ℓ

) 8(p+1)
∆

 dr2[
(D−p−3)

ℓ r
] 2(D−p−2)

D−p−3

+
ℓ2 dΩ2

D−p−2[
(D−p−3)

ℓ r
] 2

D−p−3

 ,

eϕ = eϕ0

(
r

ℓ

)− (D−2)2βp
∆

,

Hp+2 = −ϵ

√
8(D − 2)

∆ eβpϕ0 ℓ

r2
dx0 ∧ . . . ∧ dxp ∧ dr ,

where 0 < r < ∞,

eϕ0 =
∣∣∣H̃p+2 ℓ

∣∣∣− 1
βp , (4.55)

and ϵ is the sign of Hp+2, as before.
These backgrounds are not asymptotically flat, and consequently if they capture the

whole spacetime they cannot be used to describe branes. However, they describe regions
close to their horizons. Formally, one could still refer to eqs. (4.12) and (4.13), using a
non-vanishing value of r1 as a regulator, to then take the r1 → 0 limit, or equivalently the
hp →∞ limit, of eqs. (4.25) and (4.28). In this fashion, for generic values of βp tension and

5Note, however, that the probe brane coupling used in [48] differs from eq. (4.51) by a factor two, so that
tension and charge should rather appear in the combination T3 − Q3. There is actually an additional factor of
two, since in this selfdual case an electric coupling brings along an identical magnetic one. As a result the
complete interaction potential is T3 T ′

3 − 2 χ Q3 Q′
3, so that the no-force condition is precisely as demanded

by eq. (4.52). These difficulties have been known for a while [60], and this brief discussion should clarify the
issue, correcting some factors in the example discussed in [49], which is also a neat illustration of the idea of
dynamical cobordism [61–67].
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charge would tend to infinity in the limit, while still being proportional. Moreover, for βp ̸= 0
there are singularities at r = 0,∞: the former lies at an infinite proper distance, while the
latter lies at a finite proper distance. On the other hand, for βp = 0 there are no singularities,
and one recovers AdS × S backgrounds, as in eq. (4.41).

Let us now show in detail that these solutions capture the large-r region of the original
backgrounds of eqs. (4.12) and (4.13). For convenience, we choose isotropic coordinates with
a rescaled ρ compared to eq. (4.21), and then, letting(

ℓ

ρ

)D−p−3
= r

ℓ
, (4.56)

leads to

ds2 =
(

ℓ

ρ

)− 8(D−p−3)2
∆

dx2
p+1

+
(

ℓ

ρ

) 8(D−p−3)(p+1)
∆

(D − p− 3)−
2

D−p−3
(
dρ2 + ρ2dΩ2

D−p−2

)
, (4.57)

and

eϕ = eϕ0

(
ℓ

ρ

)− (D−p−3)(D−2)2βp
∆

,

Hp+2 = ϵ

√
8(D − 2)

∆ eβpϕ0 D − p− 3
ℓ

(
ρ

ℓ

)D−p−4
dx0 ∧ . . . ∧ dxp ∧ dρ . (4.58)

These expressions capture indeed the “near-horizon” region of charged branes, and in fact
they reduce to the near-horizon limit of eqs. (4.23) after rescaling ρ and x according to

ρ→
( |hp|

ℓD−p−3

) 4(p+1)
(D−2)2β2

p
ρ , xµ →

( |hp|
ℓD−p−3

)− 4(D−p−3)
(D−2)2β2

p
xµ , (4.59)

and after redefining ϕ0 according to

ϕ0 → ϕ0 −
1
βp

log |hp| . (4.60)

In conclusion, these solutions are effectively zooming in near the core of the branes.

4.5 BPS branes in String Theory

Setting D = 10 and selecting the appropriate values for βp from table 1, one can recover
from the preceding setup the BPS branes of String Theory [68–70] from eqs. (4.30), and
from (4.48) for the self-dual D3 case. ϵ̃, the sign of r1, or equivalently of hp, determines
whether the solution has positive or negative tension. On the other hand, ϵ controls the
sign of the charge. Therefore, branes and O+ planes correspond to ϵ̃ = 1 and ϵ = 1, while
orientifold O− planes correspond to ϵ̃ = −1 and ϵ = −1. Anti-branes and anti-orientifolds
are simply obtained from these by reverting ϵ.

When sources with negative tension are present, which is the case when ϵ̃ = −1, the
solution describes in principle two regions: the region for 0 < r < |r1| is the proper one to
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describe extended objects, since it includes an asymptotically flat limit as r → 0. The tension
and the charge of the extended object can be deduced, as before, from the limiting behavior
of the background in the asymptotically flat region. In seeking a connection with String
Theory, one should stop before the singularity is reached, in order to leave out contributions
that are not under control in perturbation theory. On the other hand, retaining the region
|r1| < r <∞ yields a solution that is not asymptotically flat. This different solution includes
a pair of singularities at the ends of the relevant interval, which are separated by a finite
proper distance. Orthogonal spheres shrink there to points, while the tensor lines of force go
from one end to the other, in a way that is somewhat reminiscent of what happens inside
a plane capacitor in Electromagnetism.

4.6 Non-BPS branes

The BPS branes that we described in the previous sections obtain if one sets to zero the two
energy-like quantities Ex and Ey in eqs. (4.8). In this section we shall address the general
case, and in particular we shall derive tensions and charges of these deformed branes. For
brevity, we shall refer to the Ex = Ey = 0 solutions as BPS for any dimension D, although
they are actually BPS solutions only in ten-dimensional String Theory. Turning on these
parameters yields solutions that do not preserve any supersymmetry in ten dimensions.

The starting point is again provided by eqs. (4.8) and by the Hamiltonian constraint

z21 = 1
4(p + 1)

[(D − p− 2)
4(D − 2) ∆ Ex − (D − p− 3) Ey

]
, (4.61)

which restricts the ranges of Ex and Ey according to

Ex ≥
4(D − 2)(D − p− 3)

∆(D − p− 2) Ey . (4.62)

In order to characterize the independent solutions, it is now convenient to define a unit vector
n, while also grouping Ex and Ey into a two component vector E, according to

n ≡ (nx, ny) =
( (D − p− 2)∆
16(D − 2)(p + 1)Σ ,−(D − p− 3)

4(p + 1)Σ

)
, E = (Ex, Ey) , (4.63)

where

Σ =
√( (D − p− 2)∆

16(D − 2)(p + 1)

)2
+
((D − p− 3)

4(p + 1)

)2
, (4.64)

in terms of which the Hamiltonian constraint reduces to

E · n = z21
Σ . (4.65)

Consequently, one can parameterize the vector E in terms of two independent constants,
z1 and w, as

E = 1
Σ
(
z21 n + w n⊥

)
, (4.66)

where
n⊥ = (−ny , nx) (4.67)
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is a unit vector perpendicular to n. Explicitly, the two components of E read

Ex = z21
Σ nx −

w

Σ ny , Ey = z21
Σ ny + w

Σ nx . (4.68)

The solutions for X and Y depend on the signs of Ex and Ey and, up to an overall
translation of r, one can conveniently cast them in the form

X = − log
∣∣∣∣D − p− 3

ℓ
F (Ex, r)

∣∣∣∣ , Y = − log
∣∣∣H̃p+2 F (Ey, r + r1)

∣∣∣ , (4.69)

where

F (E , r) =


1√
E sinh

(√
E r
)

if E > 0 ,

r if E = 0 ,
1√
|E|

sin
(√
|E| r

)
if E < 0 .

(4.70)

In terms of F , the general solution for the metric reads

ds2 =
dx2

p+1∣∣∣H̃p+2 F (Ey, r + r1)
∣∣∣ 8(D−p−3)

∆

e
8(D−2)βp

∆ (z0+z1r)

+
∣∣∣H̃p+2 F (Ey, r + r1)

∣∣∣ 8(p+1)
∆ e

− 8(D−2)(p+1)βp
(D−p−3)∆ (z0+z1r)

×

 dr2∣∣∣D−p−3
ℓ F (Ex, r)

∣∣∣ 2(D−p−2)
D−p−3

+
ℓ2 dΩ2

D−p−2∣∣∣D−p−3
ℓ F (Ex, r)

∣∣∣ 2
D−p−3

 , (4.71)

while the dilaton and the form fields are

eϕ = e−
4(D−2)(p+1)

∆ (z0+z1r)∣∣∣H̃p+2 F (Ey, r + r1)
∣∣∣ (D−2)2βp

∆

,

Hp+2 = −
Hp+2∣∣∣H̃p+2 F (Ey, r + r1)

∣∣∣2 dx0 ∧ . . . ∧ dxp ∧ dr , (4.72)

where

H̃p+2 =
√

∆
8(D − 2) Hp+2 , (4.73)

as in eq. (4.11). One can eliminate z0, as in previous sections, by performing the rescalings

(
r, r1, |Ex,y|−

1
2 , z−1

1

)
→ e

− 4(p+1)
(D−2)βp

(
z0− D−p−3

(D−2)βp
log
∣∣H̃p+2 F(Ey ,r1)

∣∣) (
r, r1, |Ex,y|−

1
2 , z−1

1

)
,

xµ → e
− 4

(D−2)βp

(
z0− D−p−3

(D−2)βp
log
∣∣H̃p+2 F(Ey ,r1)

∣∣)
xµ , (4.74)
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which generalize those in eq. (4.14), and the background can be finally cast in the form

ds2 =
∣∣∣∣∣F (Ey, r + r1)
F (Ey, r1)

∣∣∣∣∣
− 8(D−p−3)

∆

e
8(D−2)βp

∆ z1rdx2
p+1

+
∣∣∣∣∣F (Ey, r + r1)
F (Ey, r1)

∣∣∣∣∣
8(p+1)

∆

e
− 8(D−2)(p+1)βp

(D−p−3)∆ z1r

×

 dr2∣∣∣ (D−p−3)
ℓ F (Ex, r)

∣∣∣ 2(D−p−2)
D−p−3

+
ℓ2 dΩ2

D−p−2∣∣∣ (D−p−3)
ℓ F (Ex, r)

∣∣∣ 2
D−p−3

 ,

eϕ = eϕ0 e−
4(D−2)(p+1)

∆ z1r

∣∣∣∣∣F (Ey, r + r1)
F (Ey, r1)

∣∣∣∣∣
− (D−2)2βp

∆

, (4.75)

Hp+2 = −ϵ

√
8(D − 2)

∆ eβpϕ0 |F (Ey, r1)|−1
∣∣∣∣∣F (Ey, r + r1)
F (Ey, r1)

∣∣∣∣∣
−2

dx0 ∧ . . . ∧ dxp ∧ dr ,

where
eϕ0 =

∣∣∣H̃p+2F (Ey, r1)
∣∣∣− 1

βp . (4.76)

These solutions thus depend on the four independent real parameters r1, ϕ0, z1 and w, whose
physical significance will be addressed shortly.

4.6.1 Different classes of solutions

There are actually, altogether, six different classes of solutions, depending on the signs of Ex

and Ey. Indeed, out of the nine a priori possible options, the three cases (Ex < 0 , Ey ≥ 0)
and (Ex = 0 , Ey > 0) are excluded by the positivity of z1

2 in eq. (4.65), and thus by the
parametrization in eq. (4.66). Moreover, in the six remaining cases this parametrization
implies the inequality

Ex ≥
∣∣∣∣ny

nx

∣∣∣∣ Ey , (4.77)

which restricts the possible ranges of Ex and Ey. One can show that, within the relevant
ranges of D and p, |ny| < |nx|, so that when Ex < 0 and Ey < 0 the inequality

1√
|Ey|

<
1√
|Ex|

(4.78)

holds, and consequently the period of F (Ey, r + r1) is smaller than that of F (Ex, r). As a
result, the solutions within this class cannot interpolate between two consecutive zeros of
F (Ex, r) without encountering, between them, a zero of F (Ey, r + r1).

Interestingly, when Ex and Ey are positive, in the region Ex r ≫ 1 the solutions approach
the vacuum solutions with form fluxes of [46]. The integration constants of that paper can
be mapped to the present ones by the redefinitions

ϕ1 = −
4(D − 2)(p + 1)

∆ z1 , C1 = −
√
Ex

2(D − p− 3) −
4(D − 2)(p + 1)βp

(D − p− 3)∆ z1 , (4.79)
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and the function f(r) of [46] corresponds to
∣∣∣H̃p+2 F (Ey, r + r1)

∣∣∣. This class of solutions
interpolates between flat space as r → 0 and the flux vacua of [46] when Ex r ≫ 1.

All six classes of solutions allow for asymptotically flat spacetimes. This is the case when
r = 0 lies in the allowed region, so that the corresponding metrics approach eq. (3.14), as
should be the case when describing extended objects embedded in a Minkowski vacuum. The
range of r then extends up to the first zero of F (Ey, r + r1), or up to r =∞, if no such zero is
present. When Ex < 0, asymptotically flat spacetimes also emerge when the range of r extends
from a zero of F (Ex, r) to a zero of F (Ey, r + r1). In fact, with an appropriate rescaling one
can turn the metric into eq. (4.75), while also shifting r1 by a suitable number of periods of
|F (Ex, r)|. Consequently, one can always work with r = 0 at one end of the allowed range.

There are also solutions that do not include an asymptotically flat region. These vacua,
which are at times reminiscent of “dipole-like” setups, do not afford an interpretation related
to extended objects embedded in a vacuum, and in these cases one cannot associate to them
tension and charge. This is the case, for instance, for positive values of Ex and Ey, if r1 < 0
and one is working in the region |r1| < r < +∞, or for positive Ex and negative Ey when
the range of r is between two consecutive zeros of F (Ey, r + r1).

4.6.2 Tensions and charges of asymptotically flat solutions

For the asymptotically flat solutions one can compute tension and charge, as in previous cases,
starting from the first order expansion of the background around r = 0. One thus finds6

Tp = e−βpϕ0 8(D − 2)
∆

ΩD−p−2
2κ2

D

ℓ D−p−2
[
F ′ (Ey, r1)
F (Ey, r1)

− D − 2
D − p− 3 βpz1

]
,

Qp = ϵ e−βpϕ0

√
8(D − 2)

∆
ΩD−p−2
2κ2

D

ℓ D−p−2 |F (Ey, r1)|−1 . (4.80)

In the three possible cases, eq. (4.70) leads to

F ′ (Ey, r1)
F (Ey, r1)

=


√
Ey coth

(√
Ey r1

)
if Ey > 0 ,

1
r1

if Ey = 0 ,√
|Ey| cot

(√
|Ey| r1

)
if Ey < 0 .

(4.81)

In general, the ratio Tp

Qp
can take any value by tuning z1 and Ey, which can be chosen

independently, compatibly with the Hamiltonian constraint (4.62). Allowing a non-zero
value for z1 has an interesting effect, along the lines of what we saw for uncharged branes.
The original Lagrangian is invariant under a generalized shift symmetry, which affects the
dilaton and the form field according to

δϕ = c , δBp+1 = βp cBp+1 . (4.82)

The corresponding Noether current has again a non-vanishing r component, which is pro-
portional to z1. In detail

jr = − 8
D − 2 ∂rϕ− β

e−2βpϕ

(p + 1)! Hrµ0...µpBµ0...µp = 32(p + 1)
∆ z1 , (4.83)

6We are considering the same dilaton dressing as for BPS branes, namely eβpϕTp, which is instrumental to
define the tension compatibly with the Einstein-frame actions for the branes of ten-dimensional string theory.

– 28 –



J
H
E
P
1
0
(
2
0
2
4
)
0
5
4

and the presence of this current signals again a charge flow between the asymptotically flat
region and the extended object. For the special solutions with z1 = 0, one can make definite
statements about the ratio between tension and charge. In detail∣∣∣∣∣ Tp

Qp

∣∣∣∣∣ =
√

8(D − 2)
∆

∣∣F ′ (Ey, r1)
∣∣ , (4.84)

so that, taking eqs. (4.70) into account, in ten dimensions,

∣∣∣∣∣ Tp

Qp

∣∣∣∣∣ =

cosh

(√
Ey r1

)
if Ey > 0 ,

1 if Ey = 0 ,∣∣∣cos (√|Ey| r1
)∣∣∣ if Ey < 0 .

(4.85)

Solutions with positive Ey have |Tp| > |Qp|, those with Ey = 0 are the BPS ones with
|Tp| = |Qp|, and finally solutions with Ey < 0 have |Tp| < |Qp|. Note also that the backgrounds
with z1 = 0 involve three independent parameters, which are in one-to-one correspondence
with the tension, the charge, and the asymptotic value of the dilaton.

4.6.3 Singularities

In ten dimensions, in all instances with p < 7 related to String Theory, which concern
D-branes or NS5 branes, to which the formalism applies verbatim,

eB ∼ |F (Ey, r + r1)|
(p+1)
16 e

− (p+1)βp
2(7−p) z1r |F (Ex, r)|−

8−p
7−p . (4.86)

When F (Ey, r + r1) has a zero at some finite value of r, say r⋆, the range of r terminates
there. This point always lies at a finite proper distance from a generic point r > 0, because
eB(r⋆) = 0. This can happen either when r1 < 0, in which case r⋆ = |r1|, or when Ey < 0,
so that the corresponding F (Ey, r + r1) is a trigonometric function. Otherwise, when the
range of r extends to ∞, the proper distance between a finite value of r and ∞ remains
finite, with the only exception of the BPS D3 brane. In fact, if Ex > 0 and Ey ≥ 0, eB tends

to zero exponentially fast, while if Ex = 0, Ey = 0 and p ̸= 3, eB ∼ r
−1− (p−3)2

16(7−p) for large
values of r. This behavior grants indeed a finite proper distance with the only, well-known,
exception of BPS D3 branes.

The Ricci scalar diverges at all finite distance endpoints with the following exceptions:

• βp = 0 and z1 = 0.

• Ey > 0 and z1 = − 2
p+1βp

√
Ey.

Moreover, computing the squared Riemann tensor, RMNP Q RMNP Q, one can see that the
non-singular options reduce to

• βp = 0 and Ex = Ey = z1 = 0.
This corresponds to the D3 brane background, which is altogether free of singularities.

• p = 0, Ey > 0 and z1 = 3
2
√
Ey = 3

2
√
Ex.

This corresponds to the charged dilatonic black 0-branes of [71]. This case is recovered
since for p = 0 our ansatz becomes the one for black branes, and as r → ∞ one
approaches the outer horizon, which shields the true singularity.
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4.6.4 The uncharged brane limit

The uncharged branes of section 3 can be recovered from the general charged solutions with
Ex > 0 and Ey ≥ 0. From the expression of the charge in eq. (4.80), one can see that the
limit Qp → 0 is approached as |F (Ey, r1)| → ∞, and the tension can remain finite provided
|r1| → ∞ while Ey is kept finite. The charged brane background in eqs. (4.75) then becomes

ds2 = e−
2 r
R dx2

p+1 + e
2(p+1) r

(D−p−3)R

[(D − p− 3)σ
ℓ

sinh
(

r

σ

)]− 2(D−p−2)
D−p−3

dr2

+ e
2(p+1) r

(D−p−3)R

[(D − p− 3)σ
ℓ

sinh
(

r

σ

)]− 2
D−p−3

ℓ2 dΩ2
D−p−2 ,

ϕ = ϕ0 + ϕ1r , (4.87)

with

σ = 1√
Ex

,
1
R

= 4(D − p− 3)
∆

√
Ey −

4(D − 2)βp

∆ z1 ,

ϕ1 = −
(D − 2)2βp

∆
√
Ey −

4(D − 2)(p + 1)
∆ z1 . (4.88)

The Hamiltonian constraint of eq. (4.61) can then be cast in the form

1
R2

(p + 1)(D − 2)
D − p− 3 + 4ϕ2

1
D − 2 = 1

σ2
D − p− 2
D − p− 3 , (4.89)

which is the Hamiltonian constraint of the uncharged case in eq. (3.4). The limiting form of
the background depends on three real parameters, which determine the asymptotic value of
the dilaton, ϕ′(0) and the tension of the brane, and the solution is indeed the background
profile of uncharged branes presented in eqs. (3.12).

4.6.5 Some special cases

For the reader’s convenience, let us conclude this section by briefly summarizing some
interesting options that arise in ten dimensions, the case relevant for String Theory.

• To begin with, in ten dimensions and for generic values of p the backgrounds reduce to

ds2=
∣∣∣∣∣F (Ey, r+r1)
F (Ey, r1)

∣∣∣∣∣
− 7−p

8

eβpz1rdx2
p+1

+
∣∣∣∣∣F (Ey, r+r1)
F (Ey, r1)

∣∣∣∣∣
p+1
8

e
− (p+1)βp

7−p
z1r

 dr2∣∣∣ (7−p)
ℓ F (Ex, r)

∣∣∣ 2(8−p)
7−p

+
ℓ2 dΩ2

8−p∣∣∣ (7−p)
ℓ F (Ex, r)

∣∣∣ 2
7−p

 ,

eϕ = eϕ0 e−
p+1
2 z1r

∣∣∣∣∣F (Ey, r+r1)
F (Ey, r1)

∣∣∣∣∣
−βp

,

Hp+2=−ϵ eβpϕ0 |F (Ey, r1)|−1
∣∣∣∣∣F (Ey, r+r1)
F (Ey, r1)

∣∣∣∣∣
−2

dx0∧. . .∧dxp∧dr . (4.90)
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• For the special case of deformed D3 branes in ten dimensions, taking the self-duality
into account, the preceding expression change slightly, as we have explained, and take
the form

ds2 =
∣∣∣∣∣F (Ey, r + r1)
F (Ey, r1)

∣∣∣∣∣
− 1

2

dx2
4 +

∣∣∣∣∣F (Ey, r + r1)
F (Ey, r1)

∣∣∣∣∣
1
2

 dr2∣∣∣4ℓ F (Ex, r)
∣∣∣ 52 + ℓ2 dΩ2

5∣∣∣4ℓ F (Ex, r)
∣∣∣ 12
 ,

eϕ = eϕ0 e−2z1r ,

H5 = −
ϵ√
2
|F (Ey, r1)|−1

∣∣∣∣∣F (Ey, r + r1)
F (Ey, r1)

∣∣∣∣∣
−2

dx0 ∧ . . . ∧ dx3 ∧ dr + volS5

 , (4.91)

with the standard normalization for the kinetic term of the form field. In this case the
expressions for tension and charge reduce to

T3 =
Ω5
2κ2

10
ℓ 5 F ′ (Ey, r1)
F (Ey, r1)

, Q3 =
ϵ√
2

Ω5
2κ2

10
ℓ 5 |F (Ey, r1)|−1 , (4.92)

and in general

T32 − 2 sign (Ey) Q3
2 =

Ω5
√
|Ey|

2κ2
10

2

ℓ 10 . (4.93)

Note that only the dilaton profile depends on z1, whose value does not affect tension
and charge in this case.

• For p = 0 the background reduces to

ds2 = −
∣∣∣∣∣F (Ey, r + r1)
F (Ey, r1)

∣∣∣∣∣
− 7

8

e−
3
4 z1r(dx0)2

+
∣∣∣∣∣F (Ey, r + r1)
F (Ey, r1)

∣∣∣∣∣
1
8

e
3
28 z1r

 dr2∣∣∣7ℓ F (Ex, r)
∣∣∣ 167 + ℓ2 dΩ2

8∣∣∣7ℓ F (Ex, r)
∣∣∣ 27
 ,

eϕ = eϕ0 e−
1
2 z1r

∣∣∣∣∣F (Ey, r + r1)
F (Ey, r1)

∣∣∣∣∣
3
4

,

H2 = −ϵ e−
3
4ϕ0 |F (Ey, r1)|−1

∣∣∣∣∣F (Ey, r + r1)
F (Ey, r1)

∣∣∣∣∣
−2

dx0 ∧ dr . (4.94)

These are deformations of the BPS D0 brane, for which z1 = w = 0 and

r1 = e
3
4ϕ0 Ω8

ℓ

(2π)7 . (4.95)

The only option, among them, with a non-singular outer horizon, where the dilaton approaches
a constant value, was identified by Horowitz and Strominger in [71]. It corresponds to z1 > 0
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and w = 23
9 z21 , so that Ex = Ey = 4

9 z21 , and the resulting expressions for tension and
charge read

T0 = e
3
4ϕ0 Ω8

2κ2
10

ℓ 8 2
3 z1

[
coth

(2
3 z1 r1

)
+ 9

7

]
,

Q0 = ϵ e
3
4ϕ0 Ω8

2κ2
10

ℓ 8 2
3 z1

[
sinh

(2
3 z1 r1

)]−1
. (4.96)

As r → ∞, in this case one approaches indeed a horizon, where the harmonic coordinates
end, which shields a true singularity. Note that |T0| > |Q0| for all these solutions.

5 Vacua with bulk tadpoles and internal spheres

In this section we include the tadpole contribution in the equations, while turning off p-form
fluxes. Our aim is to explore new types of vacua that are allowed, in the presence of a tadpole
potential (2.18), when the internal space has a positive curvature, thus complementing
previous results obtained in [47]. In addition, the ensuing discussion can also have some
bearing on the limiting behaviors of uncharged branes in the presence of tadpole potentials,
in regions where the axisymmetric backgrounds discussed in [43] leave way to spherically
symmetric ones. As explained in section 2, this analysis still relies on the ansatz of eqs. (2.21)
used in the previous two sections to discuss branes in Minkowski backgrounds, so that
one can naturally address the issue here. The result is nonetheless a complicated coupled
non-linear system, so that simple exact solutions along the lines of the preceding sections do
not exist. However, one can identify analytically several interesting limiting behaviors, which
suffice to illuminate the overall shapes of the solutions when supplemented by numerical
analysis. As usual, the results obtained in this fashion are directly significant for String
Theory only insofar as the string coupling is sufficiently small and the spacetime curvature
is also bounded. Nonetheless, as we shall see, the asymptotics of the vacua possess some
neat and instructive features.

5.1 The equations

Although we shall eventually focus on the interesting case D = 10, let us begin by formulating
the system for generic values of D, resorting to the combinations

X = (p + 1)A + (D − p− 3)C ,

W = (p + 1)A + (D − p− 2)C + γ

2 ϕ ,

K = ϕ + γ
(D − 2)2

8 A . (5.1)

In terms of these, one can recover the original functions of eqs. (2.22) as

A = 16(D − p− 2)
Ξ X − 16(D − p− 3)

Ξ W + 8(D − p− 3)γ
Ξ K ,

B = (D − 2)2(D − p− 2)γ2

Ξ X + 16(p + 1)
Ξ W − 8(p + 1)γ

Ξ K ,
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C =
(
(D − 2)2γ2 − 16(p + 1)

)
Ξ X + 16(p + 1)

Ξ W − 8(p + 1)γ
Ξ K ,

ϕ = −2(D − 2)2(D − p− 2)γ
Ξ X + 2(D − 2)2(D − p− 3)γ

Ξ W + 16(p + 1)
Ξ K , (5.2)

where we have defined

Ξ = 16(p + 1) + (D − 2)2(D − p− 3)γ2 . (5.3)

The equations of motion thus become

X ′′ = (D − p− 3)2
ℓ2

e2X − T e2W ,

W ′′ = (D − p− 2)(D − p− 3)
ℓ2

e2X + D − 2
16

(
γ2 − γ2

c

)
T e2W ,

K ′′ = 0 , (5.4)

where the critical value of γ is

γc =
4
√

D − 1
D − 2 , (5.5)

while the corresponding Hamiltonian constraint reads

0 = (D − p− 3)(D − p− 2)
ℓ2

e2X − Te2W + 1
Ξ
[
16(D − 2)(D − p− 3)(W ′)2

− 32(D − 2)(D − p− 2)W ′X ′ − (D − p− 2)(D − 2)2
(
γ2 − γ2

c

)
(X ′)2

+ 64(p + 1)
D − 2 (K ′)2

]
. (5.6)

The equation for K is thus solved by a linear function, which is determined by the
Hamiltonian constraint up to an additive constant, and one is left with two coupled non-linear
equations for X and W . Note that the last coefficient in the second equation vanishes for the
critical value of γ that pertains to the orientifold models. For this value of γ the Hamiltonian
constraint also simplifies, and becomes

0 = (D − p− 3)(D − p− 2)
ℓ2

e2X − T e2W − 2X ′W ′ + D − p− 3
D − p− 2 (W ′)2

+ 4(p + 1)
(D − 2)2(D − p− 2) (K

′)2 . (5.7)

5.2 Exact results

The above system does admit a simple class of exact solutions, which can be obtained
demanding that X and W differ by a constant and read

X = − log
[√

(D − p− 3)Ξ
ℓ2 (16− (D − 2)2γ2) ρ cosh

(
r

ρ

)]
,

W = X + 1
2 log

[ 16(D − p− 3)(D − 2)
ℓ2 T (16− (D − 2)2γ2)

]
,

K = k0 +
√

(D − 2) [(D − 2)3γ2 + p(16− (D − 2)2γ2)]
64(p + 1)

r

ρ
, (5.8)
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where ρ and k0 are integration constants. These solutions exist provided

γ <
4

D − 2 , (5.9)

or γ < 1
2 in ten dimensions, which is instrumental to guarantee their reality. Unfortunately,

eq. (5.9) excludes the tadpole potentials of ten-dimensional non-supersymmetric strings,
for which γ ≥ 3

2 , and lies below the sphere level in all dimensions. Moreover, there are
no scaling solutions of the type

X = − log
(

r

ρ

)
+ cx , W = − log

(
r

ρ

)
+ cw (5.10)

with internal spheres, but cosmological scaling solutions are possible with negative internal
curvature.

In general, one can understand the limiting behavior of the solutions by taking a close
look at the possible endpoints, where divergences of X or W occur. From eqs. (5.4), for all
values of γ that are relevant to String Theory, and in particular for γ ≥ γc,

(W −X)′′ = D − p− 3
ℓ2

e2X + (D − 2)
16

(
γ2 − 16

(D − 2)2
)

T e2W > 0 , (5.11)

and moreover

W ′′ > 0 , (5.12)

in view of eqs. (5.4).
Taking these results into account, one can now classify the possible asymptotic behaviors.

The convexity of W −X, together with the lack of solutions with X and W differing by a
constant in the cases relevant to String Theory, suffice to identify the few available options.

For brevity, in the following we shall ignore all integration constants that do not affect
the leading dependence on r. In this fashion, all constant limits will be effectively replaced by
vanishing ones. Moreover, we shall use the freedom of shifting and reflecting the r coordinate,
thus focusing on the two limits r → 0+ and r → +∞. Any other case is equivalent to
these up to reflections and translations.

5.3 Limiting behaviors where the tadpole is sub-dominant

We can now begin our analysis, starting from cases where eX ≫ eW . When this inequality
holds, one can neglect the tension-dependent terms in eqs. (5.4) and the system reduces to

X ′′ = (D − p− 3)2
ℓ2

e2X ,

W ′′ = (D − p− 2)(D − p− 3)
ℓ2

e2X ,

K ′′ = 0 , (5.13)

while the Hamiltonian constraint reduces to

0 = (D − p− 3)(D − p− 2)
ℓ2

e2X + 1
Ξ
[
16(D − 2)(D − p− 3)(W ′)2

− 32(D − 2)(D − p− 2)W ′X ′ − (D − p− 2)(D − 2)2
(
γ2 − γ2

c

)
(X ′)2

+ 64(p + 1)
D − 2 (K ′)2

]
. (5.14)
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The first of eqs. (5.13) can be turned into

(X ′)2 = (D − p− 3)2
ℓ2

e2X + EX , (5.15)

while the equations for W and K are solved by

W = D − p− 2
D − p− 3X + w1r , K = k1r , (5.16)

with w1, k1 real constants. The different constants are related by the Hamiltonian constraint
according to

EX = 64(D − p− 3)(p + 1)k2
1 + 16(D − 2)2(D − p− 3)2w2

1
(D − 2)(D − p− 2)Ξ , (5.17)

so that EX = 1
ρ2 ≥ 0, and consequently within regions of this type the solution for X is

approximately
X = − log

(
D − p− 3

ℓ
ρ sinh r

ρ

)
(5.18)

if EX > 0, while the case EX = 0 can be recovered from this expression as ρ → ∞. The
condition that the tadpole potential be subdominant reads

ρ

ℓ
sinh

(
r

ρ

)
e−(D−p−3)w1r ≫ 1 . (5.19)

It can only hold as r → ∞, and one should distinguish two cases.

a. If EX = 0, the Hamiltonian constraint sets w1 = k1 = 0 and the condition of eq. (5.19)
is automatically satisfied as r →∞. This first type of behaviour, however, is somewhat
trivial. In this case

X ∼ − log r

ℓ
,

W ∼ −D − p− 2
D − p− 3 log r

ℓ
,

K ∼ 0 , (5.20)

but these limiting forms describe flat space in harmonic coordinates, as seen in eq. (3.14).
Contrary to what the harmonic gauge coordinate r might suggest, this asymptotic
solution merely captures the values of the fields at a regular point, where the dilaton
also approaches a constant value.

b. If Ex > 0 a second, more interesting, type of behaviour is possible. It concerns a region
of space that is encountered as r →∞, provided eq. (5.19) holds, which demands that

(D − p− 3) ρ w1 < 1 . (5.21)

In this case

X ∼ −r

ρ
,

W ∼
(

w1 −
D − p− 2

(D − p− 3) ρ

)
r .

K ∼ k1r , (5.22)
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and the background has the limiting behavior

ds2 ∼ e2ar dx2
p+1 + e2brdr2 + e2cr ℓ2 dΩ2

D−p−2 , ϕ ∼ ϕ1r , (5.23)

with

a = 8(D − p− 3)(γk1 − 2w1)
Ξ ,

b = − D − p− 2
(D − p− 3)ρ −

8(p + 1)(γk1 − 2w1)
Ξ ,

c = − 1
(D − p− 3)ρ −

8(p + 1)(γk1 − 2w1)
Ξ ,

ϕ1 =
16(p + 1)k1 + 2(D − 2)2(D − p− 3)γ w1

Ξ . (5.24)

This background reduces to eq. (3.43), and recovers the tadpole-free near-singularity
regions of the uncharged branes of section 3, up to the identifications

σ = ρ ,

cosα = 8 (D − p− 3) ρ (γ k1 − 2w1)
Ξ

√
(p + 1)(D − 2)
(D − p− 2) . (5.25)

A closer look at the behavior of eB and eϕ shows that, in the relevant case of ten
dimensions, the singularity always lies at a finite proper distance. The string coupling can
diverge, vanish or approach a finite value there, depending on whether the combination

8 (p + 1) k1 + (D − 2)2 (D − p− 3) γ w1 , (5.26)

which is proportional to sinα, as defined in eq. (5.25), is positive, negative or zero. The
inequality (5.21), for which this behavior is valid, only constraints the angle α to lie in
the interval

α0 − π − arcsin
( 1
A

)
< α < α0 + arcsin

( 1
A

)
, (5.27)

where

A = Ξ 3
2

64(p + 1)

√
D − p− 2

D − 2 , tanα0 =
4

(D − 2)γ

√
p + 1

D − p− 3 . (5.28)

5.4 Limiting behaviors where the tadpole is dominant

In the opposite regime, where eW ≫ eX , the system of equations reduces to

X ′′ = −T e2W ,

W ′′ = D − 2
16

(
γ2 − γ2

c

)
T e2W ,

K ′′ = 0 , (5.29)
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together with the Hamiltonian constraint

0 = −Te2W + 1
Ξ

[
16(D − 2)(D − p− 3)(W ′)2 − 32(D − 2)(D − p− 2)W ′X ′

− (D − p− 2)(D − 2)2
(
γ2 − γ2

c

)
(X ′)2 + 64(p + 1)

D − 2 (K ′)2
]

. (5.30)

These equations coincide with those analyzed in [47], where the internal space was a torus
rather than a sphere. Therefore, the asymptotics that we are discussing capture limiting
behaviors of some of the exact solutions found there, near one or the other end. Since the
behaviors at the two ends in [47] do not necessarily imply that eW ≫ eX , as must be the
case in the asymptotics we are after, only the limiting regions where this inequality holds are
relevant to the present analysis. In the following we shall identify these regions explicitly.
The general lesson is that the singularity always lies at a finite proper distance, and the string
coupling can diverge or vanish there. We can now examine in detail the available options.

In all these cases the second of eqs. (5.29) can be turned into

(W ′)2 = D − 2
16

(
γ2 − γ2

c

)
Te2W + EW , (5.31)

while
K = k1 r , (5.32)

and when γ ̸= γc

X = − 16
(D − 2) (γ2 − γ2

c )
W + x1r , K = k1r , (5.33)

while the Hamiltonian constraint reads

EW =
(
γ2 − γ2

c

) (D − 2)3(D − p− 2)
(
γ2 − γ2

c

)
x2
1 − 64(p + 1)k2

1
16Ξ , (5.34)

where x1, k1 are real constants. The condition eW ≫ eX becomes

γ2 − 16
(D−2)2

γ2 − γ2
c

W − x1 r ≫ 0 . (5.35)

In general, the allowed limiting behaviors depend on the range of γ. We thus begin
by considering the range γ > γc.

For γ = γc, as we have stressed, some of the preceding steps do not apply, and we
shall return to it at the end.

5.4.1 Asymptotic behaviors for γ > γc

The solution for W depends on the sign of EW . Letting

1
r0

=
√

D − 2
16 |γ2 − γ2

c |T ,
1
ρ2

= |EW | , (5.36)
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one finds

W = − log
[

ρ

r0
sinh

(
r

ρ

)]
if EW > 0 ,

W = − log
(

r

r0

)
if EW = 0 ,

W = − log
[

ρ

r0
sin
(

r

ρ

)]
if EW < 0 . (5.37)

c. In all three cases W is dominated near r = 0 by an expression of the form

W ∼ − log r

ℓ
. (5.38)

Here γ > γc, and therefore it is a fortiori larger than 4
D−2 , so that eq. (5.35) always

holds near r = 0, and we are thus led to identify another type of asymptotic behavior:

X ∼ r20 T log r

ℓ
,

W ∼ − log r

ℓ
,

K ∼ 0 . (5.39)

These expressions recover the singular asymptotics of the vacua described in section 3.2.2
of [47]. In our case the metric and the dilaton thus approach the limiting forms

ds2 ∼
(

r

ℓ

)2|λ| (
dx2

p+1 + ℓ2dΩ2
D−p−2

)
+
(

r

ℓ

)2(D−1)|λ|
dr2 ,

eϕ ∼
(

r

ℓ

)− 2(D−1)γ|λ|
γ2

c , (5.40)

with

λ = 1
D − 1

(
1− γ2

γ2
c

)−1

, (5.41)

and r = 0 hosts curvature and string-coupling singularities.

d. The fourth type of behaviour is encountered as r → ∞ if EW ≥ 0. If EW > 0, the
asymptotic behavior of the solutions as r →∞ is captured by

X ∼
(
x1 + r20 T

)
r ,

W ∼ −r

ρ
,

K ∼ k1r , (5.42)

with x1 given in terms of ρ and k1 as7

x1 = −
4

(D − 2)2

[
(D − 2) Ξ

(D − p− 2) (γ2 − γ2
c )

2 ρ2
+ 4(p + 1) (D − 2) k2

1
(D − p− 2)(γ2 − γ2

c )

] 1
2

, (5.43)

7Only this sign for x1 is compatible with the inequality (5.19).

– 38 –



J
H
E
P
1
0
(
2
0
2
4
)
0
5
4

and provided the inequality

64(p + 1)
(
γ2 − γ2

c

)
k2
1 >

[
(D − 2)3(D − p− 2)

(
γ2 − 16

(D − 2)2
)2
− 16Ξ

]
1
ρ2

(5.44)

holds, so that the dominance condition (5.35) is satisfied in the limit. The metric
is of the form (5.23), but the coefficients a, b, c, ϕ are now more involved. This case
captures deformations of the vacua with positive “energy” studied in [47]. In fact, since
W → −∞, the solutions approach a tensionless Kasner behavior as r →∞. This also
captures the asymptotics of the uncharged branes of section 3 close to their cores, with
parameters (σ, α) that are determined by (ρ, k1).

The EW → 0 limit can be recovered as the ρ → ∞ limit of the preceding results. W

has a logarithmic dependence on r, but this is subleading with respect to the linear
profiles of X and K, which must be non-vanishing since k2

1 > 0 from eq. (5.44). In this
fashion, one connects to the zero “energy” solutions considered in section 3.2.2 of [47].

5.4.2 Asymptotic behaviors for γ < γc

If eW ≫ eX and γ < γc, a range that is not directly relevant for ten-dimensional strings
but is interesting nonetheless, the solution for W is

W = − log
[

ρ

r0
cosh

(
r

ρ

)]
, (5.45)

and now EW is bound to be positive.

e. In this case, one finds a single family of asymptotics as r →∞, for which

X ∼
(

x1 −
16

(D − 2) (γ2
c − γ2) ρ

)
r ,

W ∼ −r

ρ
,

K ∼ k1r . (5.46)

The Hamiltonian constraint links the various constants according to

1
ρ2

= γ2
c − γ2

16Ξ
[
64(p + 1)k2

1 + (D − 2)3(D − p− 2)
(
γ2

c − γ2
)

x2
1

]
, (5.47)

and the inequality
γ2 − 16

(D−2)2

(γ2
c − γ2) ρ

> x1 (5.48)

must hold to guarantee that eW ≫ eX . The limiting form of the background is the
same as in case d, and captures again an asymptotic limit of the vacua discussed in
section 3.2.1. of [47]. These solutions approach a tensionless Kasner behavior for large
values of r, as is the case the uncharged branes of section 3 close to their cores.
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5.4.3 Asymptotic behaviors for γ = γc

The case eW ≫ eX with γ = γc is more subtle, since the large exponential disappears
altogether from the equation for W . The systems reduces to

X ′′ = −T e2W ,

W ′′ = 0 ,

K ′′ = 0 , (5.49)

and the last two equations are solved by

W = w1 r ,

K = k1 r , (5.50)

but the solution for X depends crucially on whether or not w1 = 0. At the same time,
the Hamiltonian constraint reduces to

0 = −T e2W − 2w1 X ′ + D − p− 3
D − p− 2 w2

1 +
4(p + 1)

(D − 2)2(D − p− 2) k2
1 . (5.51)

One can see that in all cases X → −∞ in the asymptotic region, which is approached as
r → ∞, but it is still convenient to distinguish three types of behavior.

f. The first two types of asymptotic behavior emerge when w1 ̸= 0, and are captured by

X ∼ − T

4w2
1

e2w1r + 1
2w1

[
(D − p− 3)w2

1
(D − p− 2) + 4(p + 1) k2

1
(D − 2)2(D − p− 2)

]
r ,

W ∼ w1r ,

K ∼ k1r , (5.52)

but the sign of w1 has a major effect on the asymptotics.
If w1 > 0 only the exponential matters in X and eW is automatically much larger than
eX . In this case, letting

U(r) = − T

8(D − 2)w2
1

e2w1r , (5.53)

the background approaches

ds2 ∼ e2U(r)
(
dx2

p+1 + ℓ2 dΩ2
D−p−2

)
+ e2(D−1)U(r) dr2

eϕ ∼ e−(D−2)
√

D−1U(r) . (5.54)

This limiting behavior is akin to that of the original nine-dimensional solution of [37],
but the present background is actually conformal to the direct product of a (p + 2)-
dimensional Minkowski space and an internal sphere SD−p−2. Referring to eqs. (3.5),
this solution also captures the near-core behavior of uncharged branes, with

cosα = −
√

p + 1
(D − 2)(D − p− 2) , (5.55)

while σ can be set to any finite value in this asymptotic region by a rescaling and a
shift the variable r, which have no other effect.
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On the other hand, if w1 < 0 the exponential term can be neglected altogether and the
original hierarchy eW ≫ eX is guaranteed provided

w2
1 <

4(p + 1) k2
1

(D − 2)2(D − p− 1) . (5.56)

The three metric functions A, B and C are then linear in r, and one recovers a tensionless
Kasner behavior, or the near-core region of uncharged branes. In all cases, the end
result is a deformation of the vacua of [47], and w1 is related to the parameter β of that
paper.

g. The last type of behavior is encountered as r →∞ with w1 = 0, so that

X ∼ − 2(p + 1) k2
1

(D − 2)2(D − p− 2) r2 ,

W ∼ 0 ,

K ∼ k1r , (5.57)

and the linear terms introduced by k1 are subdominant. This limiting behavior captures
the critical β → 0 case of [47], and letting

U(r) = − (p + 1)k2
1

(D − 2)3(D − p− 2) r2 , (5.58)

it approaches again the form in eqs. (5.54).

In conclusion, the different types of behavior that we have identified recover the asymp-
totics of the toroidal compactifications of [47], or the limiting behaviors of the uncharged
brane solutions of section 3 their near-core regions. The issue is linking to one another two
asymptotic behaviors in the absence of exact solutions. Some help, in this respect, comes
from the fact the profile of K is exactly linear. Therefore the values of k1 must coincide
at both ends, which leads to a number of restrictions summarized in appendix A and is
also a convenient tool in the numerics.

5.5 Numerical results

We have explored different options for γ = 3
2 , the value corresponding to the ten-dimensional

orientifolds of [9–11], performing numerical tests for D = 10 and for p = 0, . . . , 6. Figures 1
and 2 describe our findings for p = 5, but the results are qualitatively similar in all cases.
Note that the tension T can be identified with 1

ℓ2 up to a shift of W in eqs. (5.4), and then
1
ℓ2 can be absorbed defining a dimensionless radial variable, so that the numerical results
apply to both ten-dimensional orientifolds.

A general lesson is that in all cases the spacetime closes abruptly, at a finite distance from
the origin, when one departs from it along the radial r direction, due to the tadpole potential.
Independently of whether the spacetime is flat near the origin or a brane is contained there,
the behavior near the radial end is always along the lines of [37], or of its extensions in [47],
since the curvature has a subleading role in the region where spacetime ends abruptly.

– 41 –



J
H
E
P
1
0
(
2
0
2
4
)
0
5
4

-1.0 -0.5 0.5 1.0
r

-8

-6

-4

-2

2

4

-2.0 -1.5 -1.0 -0.5 0.5 1.0
r

-4

-3

-2

-1

1

2

Figure 1. The left panel illustrates the two functions X (blue, solid curve) and W (green, solid
curve) for a solution corresponding to D = 10 and γ = 3

2 that starts from the limiting behavior of
type a for r large and negative and approaches the asymptotic limit of type f (dashed and dot-dashed
curves). The right panel illustrates the corresponding behaviors of A(r) (blue, dot-dashed), B(r) (red,
solid), C(r) (green, dashed) and ϕ(r) (black, dotted).

-4 -3 -2 -1
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1.4

1.6
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ξ

Figure 2. The left panel illustrates how the proper radial distance ξ depends on r for the solution
illustrated in figure 1, which starts from the limiting behavior of type a for r large and negative. The
right panel illustrates the behavior of eC , which determines the radii of the orthogonal spheres, as a
function of the proper distance ξ. The dashed regions have been completed by hand, since the limiting
behavior is clear but obtaining it directly would be too demanding in terms of computer time. The
orthogonal spheres grow as in flat space before the tadpole contribution suddenly takes over.

The left panel in figure 1 illustrates the r-dependence of the metric functions X and
W for a vacuum solution. This is flat around the origin, which is approached, in harmonic
coordinates, as r → −∞ but closes, due to the tadpole potential, at a finite distance from it.
The results are also compared with the asymptotic limit of type f of the previous section,
corresponding to the dashed and dot-dashed curves, which are closely approached near the
radial end. The right panel in figure 1 describes the corresponding behavior of A(r), B(r),
C(r) and ϕ(r). Figure 2 illustrates, for this solution, the r-dependence of the proper distance
ξ from the origin and the behavior of eC , which characterizes the size of the transverse
spheres, as a function of ξ.

Figures 3 and 4 describe similar findings, for p = 5, when one of the uncharged branes
of section 3 is contained at the origin. As r → −∞ the metric approaches in this case
eq. (3.48) with Γ = 5

4 and σ = 3
2 , so that eC ∼ ξ7/15, but the spacetimes still closes,

away from the brane, as in the preceding example. There also solutions with γ = 3
2 and

k1 = 0, which interpolate between two asymptotic behaviors of type f, so that the tadpole
dominates at both ends.
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Figure 3. The left panel illustrates the two functions X (blue, solid curve) and W (green, solid curve)
for a solution corresponding to D = 10, γ = 3

2 and p = 5 that starts from the limiting behavior of type
b with k1 = 0 for r large and negative and approaches the asymptotic limit of type f (dashed and
dot-dashed curves). The right panel illustrates the corresponding behavior of A(r) (blue, dot-dashed),
B(r) (red, solid), C(r) (green, dashed) and ϕ(r) (black, dotted).
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Figure 4. The left panel illustrates how the proper radial distance ξ depends on r for the solution
of figure 3, which starts from the limiting behavior of type b for r large and negative and readily
approaches the behavior of type f . The right panel illustrates the behavior of eC (black, solid line),
which determines the radii of the orthogonal spheres, as a function of the proper distance ξ. The
dashed region on the right of this curve was again completed by hand, since the limiting behavior
is clear but obtaining it directly would be too demanding in terms of computer time. Note that,
differently from the case in figure 2, the curve in the right panel only approaches a linear flat-space
behavior (gray, dot-dashed line) after a while. As ξ → 0, eC ∼ ξ

7
15 , which is the behavior near the

core for an uncharged brane of section 3 (blue dotted line) consistent with the chosen asymptotics.

We have also explored these types of behavior for γ = 5
2 , the value corresponding to the

SO(16) × SO(16) heterotic string of [7, 8]. Qualitatively, one finds the similar results, but
the faster growth of the tadpole term restricts the region captured by the solutions of [47]
and has the overall effect of making the numerical results less accurate. Figures 5 and 6
illustrate a solution that approaches the vacuum as the proper distance ξ → 0, and is thus
the counterpart of those in figures 1 and 2. This case has the interesting feature of involving
a collapse of type c, the only case where, as explained in [47], the collapse is directly sensitive
to the tadpole potential. On the other hand, for γ ≤ 3

2 the collapse is always dominated
by a tadpole-free behavior, even in strong-coupling regions, a property that for γ > 3

2 only
holds in asymptotic weak-coupling regions (type d).
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Figure 5. The left panel illustrates the two functions X (blue, solid curve) and W (green, solid curve)
for a solution corresponding to the SO(16) × SO(16) model and p = 5 that start from the limiting
behavior of type a for r large and negative and approach the asymptotic limit of type c for a finite
value of r (dashed and dot-dashed curves). The right panel illustrates the corresponding behavior of
A(r) (blue, dot-dashed), B(r) (red, solid), C(r) (green, dashed) and ϕ(r) (black, dotted).
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Figure 6. The left panel illustrates how the proper radial distance ξ depends on r for the solution
corresponding to the SO(16) × SO(16) model and p = 5 that starts from the limiting behavior of
type a for r large and negative. The right panel illustrates the behavior of eC , which determines
the radii of the orthogonal spheres, as a function of the proper distance ξ. The dashed region has
been completed by hand, since the limiting behavior is clear but obtaining it directly would be too
demanding in terms of computer time. The gray dot-dashed line corresponds to a flat-space growth of
the orthogonal spheres that holds before the vacuum energy contribution takes over.

6 Vacua with bulk tadpoles, fluxes and internal spheres

In this section we finally address the most general setups depending on a single variable r,
with hp+1 = 0. To this end, we begin by defining the convenient combinations

X = (p + 1)A + (D − p− 3)C ,

Y = (p + 1)A + βp ϕ ,

W = (p + 1)A + (D − p− 2)C + γ

2 ϕ , (6.1)

which are, in eqs. (2.22), the exponents associated to curvature, flux and tadpole in the
harmonic gauge. These quantities determine the original functions as

A = 2(D − p− 2)βp

Θ X + (D − p− 3)γ
Θ Y − 2(D − p− 3)βp

Θ W ,

B = (p + 1)(D − p− 2)γ
Θ X − (p + 1)γ

Θ Y + 2(p + 1)βp

Θ W ,
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C = (p + 1)(γ − 2βp)
Θ X − (p + 1)γ

Θ Y + 2(p + 1)βp

Θ W ,

ϕ = −2(p + 1)(D − p− 2)
Θ X + 2(p + 1)

Θ Y + 2(D − p− 3)(p + 1)
Θ W , (6.2)

where

Θ = (p + 1)
[
2βp + (D − p− 3)γ

]
. (6.3)

Defining the three combinations

∆ = 4(D − p− 3)(p + 1) + (D − 2)2βp
2 ,

Ξ = 16(p + 1) + (D − 2)2(D − p− 3)γ2 ,

γc =
4
√

D − 1
D − 2 , (6.4)

when expressed in terms of X, Y and W the background equations become

X ′′ = (D − p− 3)2
ℓ2

e2X − T e2W ,

Y ′′ = ∆
4(D − 2)

H2
p+2
2 e2Y +

(
D − 2

8 βp γ − p + 1
D − 2

)
T e2W ,

W ′′ = (D − p− 2)(D − p− 3)
ℓ2

e2X +
(

D − 2
8 βp γ − p + 1

D − 2

)
H2

p+2
2 e2Y

+ D − 2
16

(
γ2 − γ2

c

)
T e2W , (6.5)

while the Hamiltonian constraint reads

0 = (D − p− 3)(D − p− 2)
ℓ2

e2X − T e2W −
H2

p+2
2 e2Y + p + 1

(D − 2)Θ2

{

− (D − p− 2)
[
32(p + 1)

(
D − 2

8 βp γ − p + 1
D − 2

)
+ p + 1

D − 2 Ξ− 4D − 1
D − 2 ∆

]
(X ′)2

+ Ξ (Y ′)2 + 4(D − p− 3)∆ (W ′)2 − 8(D − p− 2)∆ X ′W ′

+ 32(D − 2)
(

D − 2
8 βp γ − p + 1

D − 2

)
Y ′ [(D − p− 2)X ′ − (D − p− 3)W ′]} . (6.6)

Note that performing the redefinitions

X̃ = X + 1
2 log [(D − p− 3)(D − p− 2)] ,

Ỹ = Y + 1
2 log

(
H2

p+2 ℓ2

2

)
,

W̃ = W + 1
2 log

(
T ℓ2

)
, (6.7)
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and working in dimensionless units by rescaling the radial variable according to r → r
ℓ , one

can recast the whole system in the simpler form

X ′′ = D − p− 3
D − p− 2 e2X − e2W ,

Y ′′ = ∆
4(D − 2) e2Y +

(
D − 2

8 βp γ − p + 1
D − 2

)
e2W ,

W ′′ = e2X +
(

D − 2
8 βp γ − p + 1

D − 2

)
e2Y + D − 2

16
(
γ2 − γ2

c

)
e2W , (6.8)

where, or brevity, here and in the following, we are leaving the “∼” implicit on all re-
defined quantities. This result, together with the corresponding Hamiltonian constraint,
which becomes

0 = e2X − e2W − e2Y + p + 1
(D − 2)Θ2

{
− (D − p− 2)

[
32(p + 1)

(
D − 2

8 βp γ − p + 1
D − 2

)

+ p + 1
D − 2 Ξ− 4D − 1

D − 2 ∆
]
(X ′)2 + Ξ (Y ′)2 + 4(D − p− 3)∆ (W ′)2 − 8(D − p− 2)∆X ′W ′

+ 32(D − 2)
(

D − 2
8 βp γ − p + 1

D − 2

)
Y ′ [(D − p− 2)X ′ − (D − p− 3)W ′] } , (6.9)

are a convenient starting point to discuss the qualitative features of the solutions.
Inverting the system (6.5), or alternatively the system (6.8) and taking into account

that the exponential functions have a definite sign one can derive three linear inequalities
involving X ′′, Y ′′ and W ′′. Their indications, however, are less clear than in the preceding
section, since they mix all three variables.

6.1 A special case

A special case presents itself when

D − 2
8 βp γ − p + 1

D − 2 = 0 . (6.10)

This is only possible, in ten-dimensional strings, for the orientifold D5 brane. When eq. (6.10)
holds, Y decouples and the corresponding equation can be integrated once in terms an
energy-like quantity, obtaining

(Y ′)2 = ∆
4(D − 2) e2Y + Ey , (6.11)

while the remaining system becomes

X ′′ = D − p− 3
D − p− 2 e2X − e2W ,

W ′′ = e2X + D − 2
16

(
γ2 − γ2

c

)
e2W , (6.12)
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and the Hamiltonian constraint reduces to

0 = e2X − e2W + 4(D − 2)
∆ Ey + 1

Ξ
[
16(D − 2)(D − p− 3)(W ′)2

− 32(D − 2)(D − p− 2)W ′X ′ − (D − p− 2)(D − 2)2
(
γ2 − γ2

c

)
(X ′)2

]
. (6.13)

When the contributions involving e2X , which arise from the curvature, are neglected, this
case affords a class of exact solutions that were discussed in detail in [47].

The present results are similar to those captured by eqs. (5.4) and (5.6) for X and
W , where Ey is replaced by (K ′)2, up to a positive proportionality constant. There is a
key difference, however, since Ey can have any sign while (K ′)2 is inevitably non-negative.
Undoing the redefinitions performed in eqs. (6.7), the explicit solution for Y is finally

Y = − log
∣∣∣∣∣
√

∆
8(D − 2) Hp+2 F (Ey, r + r1)

∣∣∣∣∣ , (6.14)

where F was defined in eq. (4.70).
When eq. (6.10) holds, starting from any solution (A0, B0, C0, ϕ0) without fluxes one

can build a solution (A, B, C, ϕ) with fluxes. Indeed, eq. (6.10) implies that replacing Y in
eqs. (6.2) with βp K reproduces eqs. (5.2). The detailed correspondence is

A = A0 +
(D − p− 3)γ

Θ (Y − βp k1 r) ,

B = B0 −
(p + 1)γ

Θ (Y − βp k1 r) ,

C = C0 −
(p + 1)γ

Θ (Y − βp k1 r) ,

ϕ = ϕ0 +
2(p + 1)

Θ (Y − βp k1 r) , (6.15)

with
Ey = β2

p k2
1 . (6.16)

In this case, the form field strength is determined by eq. (2.21), and reads

Hp+2 =
8(D − 2)
∆Hp+2

[F (Ey, r + r1)]−2 dx0 ∧ . . . ∧ dxp ∧ dr , (6.17)

but Y generically introduces another singular point at r = −r1, where the solution must end.
When Ey ≥ 0, one can thus reconstruct asymptotics with fluxes starting from the

corresponding ones without fluxes of section 5. When Ey < 0, the asymptotic behavior of
the system can be deduced as in the proceeding section, up to the replacement of k2

1 with
−k2

1, but the range of r will be confined to the interval between two consecutive zeros of
F (Ey, r + r1), so that one will never reach the r → ∞ regions.

A physically interesting sub-case obtains when Ey = 0, so that k1 = 0. Here, Y has
the logarithmic profile

Y = − log
∣∣∣∣∣
√

∆
8(D − 2) Hp+2 (r + r1)

∣∣∣∣∣ , (6.18)
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Figure 7. The left panel illustrates the three functions X (blue), Y (red) and W (green) for a
solution corresponding to D = 10, γ = 3

2 and p = 5 that starts from the core of a BPS D5 brane for
r large and negative (asymptotic limit of type 5 in the orientifold classification of section 6.3) and
approaches an asymptotic limit of type 7 in the same classification. The right panel illustrates the
corresponding behavior of A(r) (blue, dot-dashed), B(r) (red, solid), C(r) (green, dashed) and ϕ(r)
(black, dotted). The spacetime closes as in the preceding cases, but the tensor lines of force converge
on the outer surface, where the field strength becomes singular. The behavior of the proper distance
ξ(r) and of eC(ξ) is along the lines of the preceding cases.

and only a few cases of section 5 with k1 = 0 apply: case a, case b with the condition in
eq. (A.2), and case f with w1 > 0 if γ = γc, case c if γ > γc and case e with the condition
in eq. (A.3) if γ < γc. Focusing on the cases that are directly relevant for ten-dimensional
strings, the condition in eq. (6.10) only holds, as we have seen, if γ = γc and p = 5. Then,
for the asymptotics corresponding to cases b and f, the logarithmic contribution makes Y

subleading with respect to X, and one is effectively led back to the flux-less asymptotics.
The only genuinely new limiting behavior corresponds to case a, for which X, Y and W

have, as r → ∞, the logarithmic profiles

X ∼ − log r

ℓ
, Y ∼ − log r

ℓ
, W ∼ −3

2 log r

ℓ
, (6.19)

up to constants. Equivalently, the metric coefficients, the dilaton and the seven-form field
strength approach

A ∼ −1
8 log r

ℓ
, B ∼ −9

8 log r

ℓ
, C ∼ −1

8 log r

ℓ
,

ϕ ∼ −1
2 log r

ℓ
, H7 ∼

ℓ

r2
dx0 ∧ . . . ∧ dx5 ∧ dr . (6.20)

This result is apparently along the lines of case a of section 5, but its meaning is quite
different. Rather that describing a generic non-singular point, these expressions capture the
leading behavior near the singularity of a BPS D5 brane, as can be seen comparing them
with eqs. (4.54). Figure 7 illustrates some numerical results on this case.

6.2 A class of exact solutions

The system of eqs. (6.8) has a class of exact solutions where X, Y and W differ by a
constant, provided

−D − p− 3
2 γ < βp < 0 . (6.21)
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In terms of the shifted fields and of the dimensionless radial variable r, the solution reads

X = − log
[√

(p + 1)(2βp + (D − p− 3)γ)
(D − p− 2)((p + 1)γ − 2βp)

r

]
,

Y = − log
[√

(p + 1)(2βp + (D − p− 3)γ)
(D − 2)γ r

]
,

W = − log
[√

(p + 1)(2βp + (D − p− 3)γ)
−2(D − 2)βp

r

]
. (6.22)

These expressions capture, as special case, the AdS3×S7 orientifold vacuum and the AdS7×S3

heterotic vacuum of [40, 41]. If these solutions are perturbed, one finds that the resulting
linearized system has power-like solutions that, however, can blow up at both ends of the
r > 0 range. Therefore, these solutions do not behave as attractors in the whole range, and
are actually unstable at one end or the other. The analogy with the standard AdS5 × S5

case [72] suggested a possible correspondence [73, 74] between the AdS3 × S7 orientifold
vacuum and the near-horizon region of the D1 brane. However, the strong coupling present
in the region makes the argument at most suggestive.

We can now turn to the analysis of the asymptotic regimes, which can be done on
rather general grounds, but for convenience we confine our attention to the ten-dimensional
non-supersymmetric string and treat separately the two orientifolds and the heterotic model.

6.3 The ten-dimensional orientifolds

For the two ten-dimensional orientifolds γ = 3
2 and βp = p−3

4 , with p = 1, 3, 5 so that, using
the redefinitions in eqs. (6.7), the equations become

X ′′ = 7− p

8− p
e2X − e2W ,

Y ′′ = 2 e2Y − 5− p

4 e2W ,

W ′′ = e2X − 5− p

4 e2Y ,

0 = e2X − e2W − e2Y − 1
(9− p)2(p + 1)

[
− 32(7− p)(W ′)2

− (8− p)
(
(5− p)X ′ − 4Y ′)2 + 8W ′ (8(8− p)X ′ − (7− p)(5− p)Y ′) ] . (6.23)

When p ̸= 5 this system is still rather complicated. We thus confine our attention to the
possible asymptotic behaviors, although the lack of conserved quantities and convenient
convexity conditions will not allow to match pairs of them as in previous sections.

There are in principle eight different options for the limiting behavior of the above system.

1. In regions where the three functions X, Y and W tend to −∞, only the second
derivatives are left, and they all approach a linear dependence on r, as pertains to
Kasner-like solutions.

2. If the three functions X, Y and W differ by a constant, one is led to the solutions
described in the preceding section, and the inequality (6.21) selects p = 1 for the
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orientifolds. However, the instability implies that this behavior is fine tuned and
not generic.

3. If Y and W differ by a constant, and both dominate over X, the W equation becomes

Y ′′ = −5− p

4 e2Y , (6.24)

while consistency with the Y equation requires that p < 5, and eq. (6.24) implies that
the asymptotic profiles of Y are linear. Consequently, the same is true for W , and
in fact even for X, on account of the limiting form of the equations. This is again a
Kasner-like asymptotics.

4. The case when X and W dominate and differ by a constant leads to no solutions, as
we have already saw in the flux-less case of section 5.

5. If X and Y are the leading contributions, there is always a Kasner-like behavior, together
with one asymptotics as r → 0 when p = 1 and one as r →∞ for p = 5. In the last two
cases, the limiting form of the solutions approach the BPS r1 → 0 cases of eqs. (4.54).
The latter limit captures the near-horizon region of the D5 brane, where the string
coupling is weak, as can be seen from the behavior of the dilaton in eqs. (4.20).

6. When W is the leading contribution, its asymptotic behavior is linear, W ∼ w1r, but
one must distinguish three cases. If w1 < 0, the solution approaches a Kasner-like
behavior, if w1 = 0 it approaches case g of section 5.4, and finally if w1 > 0 it approaches
case f of section 5.4.

7. When Y is the leading contribution, there are Kasner-like asymptotics, as above, and
also dipole-like asymptotics, for all values of p, with

X ∼ 0 , Y ∼ − log r , W ∼ 5− p

8 log r , (6.25)

as r → 0. This corresponds to the r = −r1 singularities of section 4, as discussed after
eqs. (4.20) and in section 4.5 in connection with orientifolds.

8. When X is the leading contribution, aside from the usual Kasner-like asymptotics there
is only another option, a regular point, as in the flux-free case.

Note that all these orientifold asymptotics, with the exception of the AdS3 × S7 case, are
those of the tadpole-free theory. This result is along the lines of what happens for the original
nine-dimensional vacuum of [37], or for its lower dimensional counterparts of [47].
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6.4 The ten-dimensional SO(16) × SO(16) model

For the heterotic SO(16) × SO(16) model γ = 5
2 and βp = 3−p

4 , with p = 1, 5 so that, using
the redefinitions in eqs. (6.7), the equations become

X ′′ = 7− p

8− p
e2X − e2W ,

Y ′′ = 2 e2Y + 7− 3p

4 e2W ,

W ′′ = e2X + 7− 3p

4 e2Y + 2 e2W , (6.26)

0 = e2X − e2W − e2Y + 1
(19− 3p)2(p + 1)

[
32(7− p)(W ′)2

− 3(8− p)(5− p)(1 + 3p)(X ′)2 + 8(8− p)(7− 3p)X ′Y ′ + 16(22− 3p)(Y ′)2

+ 8W ′ (−8(8− p)X ′ − (7− p)(7− 3p)Y ′) ] . (6.27)

Again, there are in principle eight different options for the limiting behavior of the
above system

1. In regions where the three functions X, Y and W tend to −∞, only the second
derivatives are left, and they all approach a linear dependence on r, as pertains to
Kasner-like solutions.

2. If the three functions X, Y and W differ by a constant, one is led once more to the
exact solutions described in section 6.2, and the inequality (6.21) selects p = 5 for the
heterotic string. However, the instability implies that this behavior is also fine tuned
and not generic.

3. If Y and W differ by a constant, and both dominate over X, for p = 1 one finds the
asymptotic solution

X ∼ 1
3 log r , Y ∼ − log r , W ∼ − log r , (6.28)

around r → 0. Note that this is actually part of an exact solution of the system of
eqs. (6.5) in the absence of curvature as in [47], which reads

X = 1
3 log

(√
3 ρ sinh r

ρ

)
± 8 r√

63
,

Y = − log
(√

3 ρ sinh r

ρ

)
,

W = − log
(√

3 ρ sinh r

ρ

)
. (6.29)

For p = 5, there is another asymptotic solution for which X is the dominant negative
contribution, now as r → +∞, with

X ∼ −e2y1r

4 y21
, (6.30)
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with y1 a positive constant. This is again part of a special exact solution of the full
system in the absence of curvature as in [47], which reads

X = −e2y1r

4y21
+ 19y1r

24 , Y = y1r , W = y1r . (6.31)

y1 can have any sign in this exact solution, but in the asymptotic regime of interest,
when the curvature is present, the sign is fixed to be positive by the dominance condition.

4. The case when X and W dominate and differ by a constant leads to no solutions, as in
the orientifold case.

5. If X and Y are the leading contributions and differ by a constant, there is always a
Kasner-like behavior, together with one asymptotics as r → 0 when p = 5 and one as
r →∞ for p = 1. In the last two cases, as in the orientifold settings, the limiting forms
of the solutions approach the BPS r1 → 0 cases of eqs. (4.54). The p = 1 case captures
the near-core region of fundamental strings, where the string coupling is weak, as can
be seen from the behavior of the dilaton in eqs. (4.20).

6. When W is the leading contribution, there are Kasner-like asymptotics, together with
a limiting behavior of type c, from the classification of section 5.4, for all the relevant
values of p, for which

X ∼ 1
2 log r , Y ∼ 3p− 7

8 log r , W ∼ − log r , (6.32)

as r → 0.

7. When Y is the leading contribution, there are Kasner-like asymptotics, as above, and
also dipole-like asymptotics, for all values of p, with

X ∼ 0 , Y ∼ − log r , W ∼ 3p− 7
8 log r , (6.33)

as r → 0. This corresponds to the r = −r1 singularities of section 4, as discussed after
eqs. (4.20).

8. When X is the leading contribution, aside from the usual Kasner-like asymptotics there
is only another option, a regular point, as in the flux-free case.

Contrary to what we have seen for the orientifolds, here some of the asymptotics are sensitive
to the tadpole. This occurs for the AdS7 × S3 solution, for case c of section 5.4, which is also
a lower-dimensional counterpart of the original nine-dimensional solution of [37] but with an
internal sphere, and lastly for the genuinely new case of eq. (6.28), only when p = 1.
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A Matched flux-free asymptotics

In this appendix we summarize the restrictions that the exact linear behavior

K(r) = k1 r + k0 (A.1)

places on the possible types of asymptotics for the vacua of section 5.

1. For γ > γc, the convexity of W −X, together with the unique value of k1 throughout
the range of r imply that if the solution behaves at one end as in case a, it must behave
at the other as in case c. Alternatively, if the solution behaves at one end as in case b,
with

k1 = 0 , w1 ρ = − 1
(D − p− 3)

√
(D − p− 2) Ξ
16(D − 2) , (A.2)

it is again bound to behave as in case c at the other. There is a third option, however,
which we cannot exclude in this fashion: the solution might behave as c at both ends.
Note that the r coordinate must terminate at a finite value in case c, and only in this
case. Moreover, the asymptotic behavior of type b with k1 ̸= 0 at one end can only
combine with the behavior of type d at the other. Finally, asymptotic behaviors of type
d are both ends are not excluded by the present analysis.

2. For γ = γc, if the solution behaves as in case a at one end, it must behave as in case f
at the other, with k1 = 0 and w1 > 0. Alternatively, if the solution behaves as in case b
at one end, with k1 and w1 as in eq. (A.2), it must behave as in case f at the other,
with k1 = 0 and w1 > 0. Moreover, if at one end the asymptotic behavior is of type b,
with k1 ̸= 0, there are several options at the other end, since it can be of types d, f or
g, with the same value of k1. Finally, the asymptotic behavior could be of any of the
three type d, f, g at both ends.

3. For γ < γc, the conservation of k1 implies that if the solution behaves as in case a at
one end, it must behave as in case e at the other, with

k1 = 0 , x1 ρ = − 1
γ2

c − γ2

√
16Ξ

(D − 2)3(D − p− 2) . (A.3)

Alternatively, if the solution behaves as in case b at one end, with k1 and w1 as in
eq. (A.2), it must again behave as in case c at the other, with k1 and x1 as in eq. (A.3).
Moreover, the asymptotic behavior of type b with k1 ̸= 0 can only combine with case e,
with the same value of k1, at the other end. Finally, asymptotic behaviors of type e at
both ends are not excluded by the present analysis.

We have thus identified a limited number of options for the combined asymptotics at
the two ends:

• γ > γc

k1 = 0 and { a ; b with eq. (A.2) ; c }

k1 ̸= 0 and { b ; d }
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• γ = γc

k1 = 0 and { a ; b with eq. (A.2) ; f with w1 > 0 }

k1 ̸= 0 and { b ; d ; f ; g }

• γ < γc

k1 = 0 and { a ; b with eq. (A.2) ; e with eq. (A.3) }

k1 ̸= 0 and { b ; e }

Within each of the six groups above, one can combine any pairs of asymptotics, with the
condition that the underlined options be taken at most once. For example, in the first group,
which refers to γ > γc and k1 = 0, there are only three possible pairs: (a, c), (b, c), (c, c).

Open Access. This article is distributed under the terms of the Creative Commons Attri-
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