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Abstract

We present a rigorous derivation of classical molecular dynamics (MD) from quan-
tum molecular dynamics (QMD) that applies to the standard Hamiltonians of molecular
physics with Coulomb interactions. The derivation is valid away from possible electronic
eigenvalue crossings.
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1 Introduction

A basic mathematical formulation of the passage from quantum to classical mechanics, following
the ideas of Eugene Wigner [Wig32], is due to Lions and Paul [LP93] and Gérard [Ger91a]: if
{Ψε} is a sequence of solutions to a semiclassically scaled Schrödinger equation with smooth
potential, then the sequence of corresponding Wigner transforms converges (up to subsequences)
to a solution of the Liouville equation, i.e. the transport equation of the underlying classical
dynamics. For a closely related mathematical approach to semiclassical limits, which goes back
to Egorov and is based on Weyl quantization and Moyal calculus, see e.g. [Rob87, Mar02].

Due to the reliance on smooth potentials, and in particular on the existence and uniqueness
of trajectories of the classical dynamics, these results are not directly applicable when one
tries to derive classical molecular dynamics (MD) from Born-Oppenheimer quantum molecular
dynamics (QMD). By the latter, one means quantum dynamics of the molecule’s atomic nuclei
in the exact non-relativistic Born-Oppenheimer potential energy surface given by the ground
state eigenvalue of the electronic Hamiltonian with Coulomb interactions. The limit where
the natural small parameter in QMD, the ratio of electronic to nuclear mass me/mn =: ε2,
tends to zero, has the structure of a semiclassical limit. (The physical value of this parameter
is ∼ 1/2000 for hydrogen, and even less for the other atoms.) However, the potential energy
surface of QMD is not even continuous, because it always contains Coulomb singularities due to
nuclei-nuclei repulsion; in addition it can have cone-type singularities at electronic eigenvalue
crossings.

Here we present a rigorous derivation of MD from QMD in the limit of small mass ratio
that is applicable to the exact Born-Oppenheimer potential energy surface with Coulomb in-
teractions. Our result is valid away from eigenvalue crossings. This is done by extending the
approach of Lions and Paul [LP93] to an appropriate class of non-smooth potentials. The
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main technical novelty is a non-concentration estimate on the set of Coulomb singularities,
which allows to show, in particular, that the singular term ∇U which appears in the Liouville
equation lies in L1 with respect to the limiting Wigner measure, thereby guaranteeing that the
weak formulation of the Liouville equation continues to make sense.

Our methods do not seem to allow to analyse the limit dynamics at eigenvalue crossings,
since no analogon of our Coulombic non-concentration estimate is available. In fact, the phys-
ically correct starting point to investigate what happens at crossings would not be QMD, as
the Born-Oppenheimer approximation underlying QMD also breaks down (see [NW29, Zen32]
for earliest insights, [Hag94] for a first rigorous account, and e.g. [FG02, CdV03, Las04, LT05]
for recent results).

In the remainder of this Introduction we describe our main result precisely.

Quantum molecular dynamics To simplify matters we assume that all nuclei have equal
mass. In atomic units (me = |e| = ~ = 1), non-relativistic Born-Oppenheimer quantum
molecular dynamics is given by the time-dependent Schrödinger equation{

iε∂tΨε(·, t) = HεΨε(·, t) for t ∈ R,
Ψε(·, 0) = Ψ0

ε ,
(SE)

with Hamiltonian

Hε = −ε
2

2
∆ + U, (1)

where Ψε(·, t) ∈ L2(Rd; C) is the wavefunction of the nuclei at time t, d = 3M (M = number
of nuclei), ∆ is the Laplacian on Rd, ε := (me/mn)

1/2 is the (dimensionless) small parameter
already discussed above (where we have assumed for simplicity that all nuclei have equal mass),
and U : Rd → R is the Born-Oppenheimer ground state potential energy surface obtained
by minimization over electronic states (see e.g. [SO93]). The precise definition of U is as
follows. Let Z1, .., ZM ∈ N and R1, .., RM ∈ R3 denote the charges and positions of the nuclei,
and let N denote the number of electrons in the system (usually N =

∑M
α=1 Zα). Then for

x = (R1, . . . , RM) ∈ Rd

U = Ee` + Vnn, Ee`(x) = inf
ψ
〈ψ,He`(x)ψ〉, (2)

Vnn(x) =
∑

1≤α<β≤M

ZαZβ
|Rα −Rβ|

, He`(x) =
N∑
i=1

(
−1

2
∆ri −

M∑
α=1

Zα
|ri −Rα|

)
+

∑
1≤i<j≤N

1

|ri − rj|
.

Here the ri ∈ R3 denote electronic coordinates and the infimum is taken over the usual subset
of L2((R3 × Z2)

N ; C) of normalized, antisymmetric electronic states belonging to the domain
H2((R3 × Z2)

N ; C) of He`(x). Physically, Ee` is the electronic part of the energy, consisting
of kinetic energy of the electrons, electron-nuclei attraction, and electron repulsion; this part
depends indirectly on the positions Rα of the nuclei since these appear as parameters in the
electronic Hamiltonian, and can be shown to be bounded and globally Lipschitz (cf. [FriXX])
although it is not elementary to see this. In case N ≤

∑M
α=1 Zα, Zhislin’s theorem (see [Fri03]

for a short proof) says that the infimum in (2) is actually attained, the minimum value being
an isolated eigenvalue of finite multiplicity of He`. Vnn is the direct electrostatic interaction
energy between the nuclei, and is the origin of the discontinuities of U .

We remark that quantum molecular dynamics (SE), (1), (2), which is taken as starting point
here, itself already constitutes an approximation to full Schrödinger dynamics for electrons
and nuclei. Its rigorous justification constitutes an interesting problem in its own right; for a
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comprehensive treatment in the case of smooth interactions and absence of electronic eigenvalue
crossings see [Teu03, PST03].

The potential (2) satisfies the standard Kato-type condition

U = Ub+Us, Ub ∈ L∞(Rd), Us(x) =
∑

1≤α<β≤M

Vαβ(Rα−Rβ), Vαβ ∈ L2(R3)+L∞(R3). (3)

For such potentials, the operator Hε is self-adjoint on L2(Rd) with domain D(Hε) = H2(Rd), cf.
[Kat51]. By standard results on the unitary group generated by a self-adjoint operator, for any
initial state Ψ0

ε ∈ D(Hε) this equation has a unique solution Ψε ∈ C(R; H2(Rd))∩C1(R; L2(Rd)),
the solution operator Uε(t) : Ψ0

ε 7→ Ψε(·, t) being unitary. In particular,

‖Ψε(·, t)‖ = ‖Ψ0
ε‖ for all t ∈ R, (4)

where here and below ‖ · ‖ denotes the L2(Rd) norm.

The Wigner picture Given the state Ψε(·, t) ∈ L2(Rd; C) of the system at time t, define the
associated Wigner function of lengthscale ε on Rd × Rd,

Wε(x, p, t) =
1

(2π)d

∫
Rd

Ψε(x+
εy

2
, t)Ψε(x−

εy

2
, t)e−ip·y dy (5)

=
1

(2πε)d

∫
Rd

Ψε(x+
y

2
, t)Ψε(x−

y

2
, t)e−ip·y/ε dy.

Note that the integrand belongs to L1(Rd
y), so Wε is well defined for a.e. x ∈ Rd. In fact, the

integrand is continuous in x with respect to the L1(Rd
y)-norm, and hence Wε is continuous in

x. Roughly speaking, Wε is a joint position and momentum density of the system. Warning:
Wε is not nonnegative except in the limit ε→ 0, but at least its marginals are,∫

Rd

Wε(x, p, t) dp =
∣∣∣Ψε(x, t)

∣∣∣2 (position density), (6)∫
Rd

Wε(x, p, t) dx =
∣∣∣ 1

(2πε)d/2

∫
Rd

e−ip·x/εΨε(x, t) dx︸ ︷︷ ︸
=:(FΨε)(p/ε,t)

∣∣∣2 (momentum density).

Here and below, Fφ denotes the (standard, not scaled) Fourier transform of the function φ.
When Ψε satisfies (SE), its Wigner function satisfies

∂tWε = −p · ∇xWε + fε, (WE)

fε(x, p, t) = − i

(2π)d

∫
Rd

U(x+ εy
2
)− U(x− εy

2
)

ε
Ψε(x+

εy

2
, t)Ψε(x−

εy

2
, t)e−ip·y dy.

Formally, this follows from a lengthy but elementary calculation which goes back to Wigner,
see Section 2 below. In this section we also introduce a suitable function space setting in which
the calculation becomes rigorous for general self-adjoint Hamiltonians of type (1). We call eq.
(WE) the Wigner equation. Note that it contains no modification of quantum dynamics (SE),
but is just a different mathematical formulation of it.

Limit dynamics ¿From now on we focus on the specific potential energy surface (2). In the
limit ε→ 0, the difference quotient in the potential term satisfies

U(x+ εy
2
)− U(x− εy

2
)

ε
→ ∇U(x) · y a.e.
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(due to the Lipschitz continuity of Ee` and the fact that the singular set of Vnn is of measure
zero). To understand what happens with eq. (WE) in the limit, it is useful to split fε into a
term containing ∇U(x) · y and a term containing the difference quotient of U minus its limit.
The first term simplifies due to ye−ip·y = i∇pe

−ip·y, giving

fε = ∇U(x) · ∇pWε + gε,

where

gε = − i

(2π)d

∫
Rd

[U(x+ εy
2
)− U(x− εy

2
)

ε
−∇U(x) · y

]
Ψε(x+

εy

2
, t)Ψε(x−

εy

2
, t)e−ip·y dy.

Formally, passing to the limit in (WE) and assuming that gε tends to zero, we obtain the
Liouville equation

∂tW = −p · ∇xW +∇U(x) · ∇pW. (LE)

This is the transport equation for classical molecular dynamics in Rd × Rd with potential U ,

ẋ = p, ṗ = −∇U(x). (MD)

Moreover, assuming the initial data to (SE) to be normalized, by (6) one expects
∫

R2d dW (t) = 1,
i.e. W (t) should be a probability measure on phase space for all t ∈ R.

The main difficulties in making this rigorous for rough potentials lie in (a) justifying the
existence of a limiting probability measure on phase space for all times and general initial data
which are not restricted to ‘avoid’ the singularities, (b) justifying that gε goes to zero. The
latter issue arises because when the potential U is not everywhere differentiable, the term in
square brackets does not go to zero for every x, let alone locally uniformly. On the other hand,
the remaining part of the integrand can concentrate on individual positions x when standard
semiclassical wave packets such as

Ψ0
ε(x) = ε−

αd
2 ei

p0
ε
·xφ(x−x0

εα
), 0 < α < 1, ‖φ‖ = 1,

are under consideration, whose Wigner function converges to δ(x0,p0). Thus the only viable
strategy appears to be to establish that the Wigner function does not charge the singular set
in the limit.

Main result Our rigorous result achieves goal (a) in the desired generality, and goal (b) away
from possible crossings, establishing in particular that the Liouville equation (LE) remains valid
across Coulomb singularities. In order to formulate our result we need the following definition.

Definition 1.1 A sequence {µε} of nonnegative Radon measures on Rd is called tight if

lim
R→∞

lim sup
ε→0

∫
|x|>R

dµε = 0.

Theorem 1.1 Suppose U : Rd → R is the Born-Oppenheimer potential energy surface (2) of
any molecule, or more generally U = Ub + Us with Ub ∈ W1,∞(Rd),

Us(x) =
∑

1≤α<β≤M

Cαβ
|Rα −Rβ|

, Cαβ ≥ 0, x = (R1, . . . , RM) ∈ Rd. (7)

Let {Ψ0
ε}ε>0 be a sequence of initial data such that Ψε ∈ H2(Rd), ‖Ψ0

ε‖ = 1, ‖HεΨ
0
ε‖ ≤ c for

some constant c independent of ε, {|Ψ0
ε |2} tight. Let Ψε ∈ C(R; H2(Rd)) ∩C1(R; L2(Rd)) be the
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corresponding solutions to the time-dependent Schrödinger equation (SE), and let Wε be their
Wigner transforms (5). Then:

(i) (Compactness) For a subsequence, Wε ⇀W in D′(R2d+1).

(ii) (Existence of a limiting probability measure on phase space) W ∈ Cweak∗(R;M(R2d)), and
W (t) is a probability measure for all t, that is to say W (t) ≥ 0 and

∫
R2d dW (t) = 1.

(iii) (No-concentration estimate at Coulomb singularities) For all t we have ∇Us ∈ L1( dW (t)),
and W (t)(S × Rd) = 0, where S is the singular set {x = (R1, . . . , RM) ∈ R3M | Rα = Rβ for
some α 6= β with Cαβ 6= 0}.
(iv) (Limit equation) If Ω ⊆ Rd is any open set such that Ub ∈ C1(Ω), then W is a global weak
solution of the Liouville equation (LE) on Ω× Rd × R, that is to say∫

R

∫
R2d

(
∂t + p · ∇x −∇U(x) · ∇p

)
φ(x, p, t) dW (t) dt = 0 (8)

for all φ ∈ C∞
0 (Ω× Rd × R).

Remarks 1) The regularity requirement Ub ∈ C1 in (iv) is minimal in order for the weak
Liouville equation (8) to make sense for general measure valued solutions W . This is due to the
appearance of ∇U inside the integral with respect to the measure dW (t). Note however that
in case of (2) this narrowly excludes eigenvalue crossings, as seen from the 2D matrix example

He` =

(
ρ1 −ρ2

ρ2 ρ1

)
,

whose ground state eigenvalue equals −|ρ|, and is hence Lipschitz but not C1. For interesting
model problems with scalar or vector-valued potentials in which the behaviour of Wigner mea-
sures past discontinuities of ∇U can be analysed for suitable classes of initial data see [Ker05]
and [FG02, Las04, LT05].

2) The assumptions on the potential U are far weaker than those needed for uniqueness of the
Hamiltonian ODE (MD) underlying the limit equation. Recall that the standard condition
guaranteeing uniqueness for ODE’s ż = f(z) is boundedness of the gradient of the vector field
f , which in the case of (MD) means boundedness of the second, not the first gradient of U . Our
assumptions on U are also weaker than those under which uniqueness for weak (Lp) solutions
to (LE) is known. The recent nontrivial uniqueness results for transport equations ([Amb04])
require f ∈ BV, i.e. in case of (MD), ∇U ∈ BV (for recent refinements see [BC09], [AGS08]).
Interestingly, however, the latter requirement, while violated by the Coulombic part Us = Vnn
in (2), would be met by the model eigenvalue crossing in Remark 1), and expected to be met
by the electronic part Ub = Ee` in (2). We hope to address uniqueness in future work.

3) The higher integrability result in (iii) that ∇Us ∈ L1( dW (t)), which is essential for making
sense of the limit equation at Coulomb singularities, requires a quantitative no-concentration
estimate of form ∫

|Rα−Rβ |<δ
dW (t) = O(δ2) as δ → 0, (9)

for any α 6= β with Cαβ 6= 0. This is because |∇Rα(1/|Rα − Rβ|)| = 1/|Rα − Rβ|2 ≥ 1/δ2

in |Rα − Rβ| < δ. We do not think that the validity of such an estimate is obvious, the
naively expected bound only being O(δ) instead of O(δ2) (on grounds of the potential energy
term

∫
Us|Ψε|2, which can be controlled independently of ε and t by energy conservation, only
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containing the weaker singularities 1/|Rα −Rβ|). See Sections 4 and 5 for the proof of (9).

4) In the special case Us = 0, Ub ∈ W2,∞(Rd), (iv) holds with Ω = Rd, so Theorem 1.1 recovers
the result of Lions and Paul [LP93, Théorème IV.1.1)].

5) In the special case of the potential energy surface (2) of the H2 molecule (M = 2, N = 2,
Z1 = Z2 = 1), it is known that the ground state eigenvalue of the electronic Hamiltonian is
nondegenerate. It then follows from a result of Hunziker [Hun86] that Ub is analytic, and in
particular C1, on Ω = R6\S, and Theorem 1.1 justifies classical molecular dynamics globally.

6) Also, more can be said about the set Ω in (iv) in the case of the potential energy surface
(2) of a general neutral or positively charged dimer (M = 2, N ≤ Z1 + Z2). By invariance of
the electronic Hamiltonian He` and the nuclei-nuclei interaction Vnn in (2) under simultaneous
rotation and translation of all particles, we have that U(R1, R2) = u(|R1 − R2|), that is to
say the potential is a function of a single parameter, internuclear distance. It then follows
by combining the result of Hunziker [Hun86] with a classical result of Kato on analyticity
of eigenvalues of analytic one-parameter families of Hamiltonians [Kat95] that we may take
Ω = R6\(S ∪ C), where S = {R1 = R2} is the set of Coulomb singularities introduced in part
(iii) of the theorem, and C =

⋃
j{|R1 − R2| = cj}, the cj being the (possibly empty) discrete

subset of R+ of interatomic distances at which the lowest two eigenvalues of the electronic
Hamiltonian cross. Note in particular that S∪C is a closed set of measure zero; hence Theorem
1.1 justifies the Liouville equation on an open set of full measure. We expect that when U is
given by (2), it is always smooth on an open set of full measure. Note however that such a
result does not follow solely from consideration of non-degenerate eigenvalues as in [Hun86].

7) As shown below (Lemma 3.2), the weak convergence in (i) also holds in the stronger spaces
L∞weak∗(R;A′) and Cweak∗,loc(R;A′), with A being the Banach space defined in (16).

2 Wigner-transformed quantum dynamics

We now make precise in an appropriate function space setting the well known fact (discussed
informally in the Introduction) that the Wigner transform takes solutions of the Schrödinger
equation (SE) to solutions of the Wigner equation (WE). Our choice of spaces is convenient
for our goal to study the limit dynamics for rough potentials. In other contexts other function
spaces have been considered [Mar89].

We begin with the well known formal derivation (assuming that the wavefunction is smooth
and rapidly decaying for all t).

Formal derivation Let Ψε be a solution to (SE), and let Wε denote its Wigner transform (5).
Differentiating the latter with respect to t, we obtain

∂tWε(x, p, t) =
1

(2π)d

∫
Rd

[(
∂tΨε(x+

εy

2
, t)

)
Ψε(x−

εy

2
, t)+Ψε(x+

εy

2
, t)∂tΨε(x−

εy

2
, t)

]
e−ip·y dy.

(10)
By (SE) and ∆±εy/2 = (4/ε2)∆y this is equivalent to

∂tWε(x, p, t) = fε(x, p, t)

+
2i

ε(2π)d

∫
Rd

[(
∆yΨε(x+

εy

2
, t)

)
Ψε(x−

εy

2
, t)−Ψε(x+

εy

2
, t)∆yΨε(x−

εy

2
, t)

]
e−ip·y dy (11)

with fε as in (WE). The Laplacian terms can be simplified via the formula (∆a)b − a∆b =
div(∇a · b− a · ∇b), an integration by parts, and the formula ∇y = ±(ε/2)∇±εy/2, whence the
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integral in (11) becomes∫
Rd

div
[(
∇yΨε(x+

εy

2
, t)

)
Ψε(x−

εy

2
, t)−Ψε(x+

εy

2
)∇yΨε(x−

εy

2
, t)

]
e−ip·y dy (12)

= ip ·
∫

Rd

[(
∇yΨε(x+

εy

2
, t)

)
Ψε(x−

εy

2
, t)−Ψε(x+

εy

2
, t)∇yΨε(x−

εy

2
, t)

]
e−ip·y dy (13)

=
εi

2
p ·

∫
Rd

∇x

[
Ψε(x+

εy

2
, t)Ψε(x−

εy

2
, t)

]
e−ip·y dy (14)

=
ε(2π)d

2i

(
−p · ∇xWε(x, p, t)

)
.

Substituting this expression into (11), we obtain (WE).

Rigorous derivation In the sequel, position coordinates in Rd, d = 3M , are denoted by
x = (x1, .., xd) = (R1, .., RM) ∈ Rd, xi ∈ R, Rα ∈ R3.

Lemma 2.1 The Wigner transform (5) of any solution Ψε ∈ C(R; H2(Rd)) ∩C1(R; L2(Rd)) of
the Schrödinger equation (SE) with U as in (3) satisfies

Wε ∈ C1(R; L∞(R2d)),
∂

∂xi
Wε,

∂2

∂xi∂xj
Wε, and fε ∈ C(R; L∞(R2d)) for all i, j = 1, . . . , d

(15)
and solves the Wigner equation (WE).

To obtain an effortless proof, the idea is to express all terms under investigation with the help
of the following bilinear map which extends the quadratic map Ψε 7→ Wε introduced in (5):

Fε(Ψ, χ) :=
1

(2π)d

∫
Rd

Ψ(x+ εy
2
)χ(x− εy

2
)e−ip·y dy.

Lemma 2.2 The map (Ψ, χ) 7→ Fε(Ψ, χ) is a continuous map from L2(Rd)×L2(Rd) to L∞(R2d).
In particular, the map Ψε 7→ Wε = Fε(Ψε,Ψε) is a continuous map from L2(Rd) to L∞(R2d).

Proof of Lemma 2.2 Let Ψ, Ψ′, χ, χ′ ∈ L2(Rd), W = Fε(Ψ, χ), W ′ = Fε(Ψ
′, χ′). Then

|W (x, p)−W ′(x, p)|

=
1

(2π)d

∣∣∣∣∫
Rd

(
(Ψ−Ψ′)(x+ εy

2
)χ(x− εy

2
) + Ψ′(x+ εy

2
)(χ− χ′)(x− εy

2
)
)
e−ip·y dy

∣∣∣∣
≤ 1

(2π)d

(
‖(Ψ−Ψ′)(x+ ε·

2
)‖ ‖χ(x− ε·

2
)‖+ ‖Ψ′(x+ ε·

2
)‖ ‖(χ− χ′)(x− ε·

2
)‖

)
=

( 1

επ

)d(
‖Ψ−Ψ′‖ ‖χ‖+ ‖Ψ′‖ ‖χ− χ′‖

)
for all x and p. Taking Ψ′ = χ′ = 0 shows W ∈ L∞(R2d), and the estimate above establishes
the asserted continuity of Fε. �

Proof of Lemma 2.1 First, we claim that Wε ∈ C(R; L∞(Rd)). This is immediate from
Ψε ∈ C(R; L2(Rd)) and Lemma 2.2.

Next, we investigate the terms ∂
∂xi
Wε,

∂2

∂xi∂xj
Wε, and fε. The underlying terms ∂

∂xi
Ψε,

∂2

∂xi∂xj
Ψε and UΨε are in C(R; L2(Rd)), because Ψε ∈ C(R; H2(Rd)) and the operators ∂

∂xi
, ∂2

∂xi∂xj
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and U = Hε − ε2

2
∆ are continuous maps from H2(Rd) to L2(Rd). Note now that we have the

following representations with the help of the bilinear map Fε:

∂

∂xi
Wε = Fε

(
∂
∂xi

Ψε,Ψε

)
+ Fε

(
Ψε,

∂
∂xi

Ψε

)
,

∂2

∂xi∂xj
Wε = Fε

(
∂2

∂xi∂xj
Ψε,Ψε

)
+ Fε

(
∂
∂xi

Ψε,
∂
∂xj

Ψε

)
+ Fε

(
∂
∂xj

Ψε,
∂
∂xi

Ψε

)
+ Fε

(
Ψε,

∂2

∂xi∂xj
Ψε

)
,

fε = − i
ε

(
Fε(UΨε,Ψε)− Fε(Ψε, UΨε)

)
.

It now follows from Lemma 2.2 that these terms are in C(R; L∞(R2d)).
It remains to show that Wε ∈ C1(R; L∞(R2d)), with derivative ∂tWε given by eq. (WE).

First we show continuous differentiability with respect to time. We have

Wε(·, t+ h)−Wε(·, t)
h

=
Fε(Ψε(·, t+ h),Ψε(·, t+ h))− Fε(Ψε(·, t),Ψε(·, t))

h

= Fε

(
Ψε(·,t+h)−Ψε(·,t)

h
,Ψε(·, t+ h)

)
+ Fε

(
Ψε(·, t), Ψε(·,t+h)−Ψε(·,t)

h

)
.

Hence by the two convergences Ψε(·,t+h)−Ψε(·,t)
h

→ ∂tΨε(·, t) in L2(Rd) (from Ψε ∈ C1(R; L2(Rd)))
and Ψε(·, t+ h) → Ψε(·, t) in L2(Rd) (from Ψε ∈ C(R; L2(Rd))) and the continuity of Fε,

Wε(·, t+ h)−Wε(·, t)
h

→ Fε(∂tΨε(·, t),Ψε(·, t)) + Fε(Ψε(·, t), ∂tΨε(·, t)) in L∞(R2d) as h→ 0.

Consequently t 7→ Wε(·, t) is a differentiable map from R to L∞(R2d), with derivative given by
eq. (10). Continuity in time of the derivative ∂tWε, i.e. the fact that Wε ∈ C1(R; L∞(R2d)),
now follows from (10), Ψε ∈ C(R; L2(Rd)), ∂tΨε ∈ C(R; L2(Rd)), and – one more time – the
continuity of Fε (Lemma 2.2).

We conclude the proof by showing that Wε satisfies (WE). The formal derivation of this
equation from eq. (10) (which we have already established above) has been performed by the
calculations (11)—(14). Here, we need only to justify these calculations rigorously. Eq. (11)
follows immediately from (10) and (SE). Note that all four summands of the integrands on
the RHS of eq. (11) (cf. also the definition of fε in (WE)), separately belong to L1(Rd

y), for
any x, p and t, because U(x± εy

2
)Ψε(x± εy

2
, t) and ∆xΨε(x± εy

2
, t) belong to L2(Rd

y). Eq. (12)
follows from the product rule for the Laplacian, and eq. (13) from the fact that the vector
field inside the square brackets of (12) belongs to the Sobolev space W1,1(Rd

y) = W1,1
0 (Rd

y) and

e−ip·y ∈ W1,∞(Rd
y), and that

∫
Rd div(v)φ = −

∫
Rd v · ∇φ for all v ∈ W1,1

0 (Rd), φ ∈ W1,∞(Rd).
Finally, eq. (14) follows from an elementary change of variables, concluding the proof. �

3 Time-dependent Wigner measures

We first give a modest technical extension of the construction of Wigner measures in [LP93].
Instead of considering a sequence of wavefunctions at a fixed time t, we consider a sequence
of continuous paths Ψε ∈ C(R; L2(Rd)) – not required to satisfy any equation – and show that
under mild conditions these give rise to a continuous path W ∈ Cweak∗(R;M(R2d)) of Wigner
measures. See Lemma 3.2. We then combine the lemma with careful a priori estimates on the
singular contributions to fε in eq. (WE) and a lemma on propagation of tightness under (SE)
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to prove Theorem 1.1 (i) and (ii). An interesting feature of these proofs is that, in contrast
to the existing literature, they are extracted directly from the Schrödinger dynamics, without
relying on a representation of the limit measure as push-forward of its initial data under (MD),
which is not available here. As regards our proof in (ii) that

∫
R2d dW (t) = 1 for all t, our

argument via Schrödinger dynamics is inspired by Corollary 1 in [FL03] (see also Proposition
4 in [Las04]).

We begin by recalling the notion of weak convergence of Wigner transforms at a fixed
time t to Wigner measures introduced in [LP93]. For an alternative construction of Wigner
measures see [Ger91a]. Closely related constructions are the microlocal defect measures of
Gérard [Ger91b], motivated by questions in microlocal analysis, and the H-measures of Tartar
[Tar90], motivated by questions in homogenization theory.

Let A denote the following Banach space

A := {φ ∈ C0(R2d) | ‖φ‖A :=

∫
Rd

sup
x∈Rd

|(Fpφ)(x, y)| dy <∞}. (16)

Here C0(R2d) is the usual space of continuous functions on R2d tending to zero at infinity, and
Fpφ is the partial Fourier transform (Fpφ)(x, y) =

∫
Rd e

−ip·yφ(x, p) dp. Since A is a dense subset
of C0(R2d), its dual A′ contains C′

0(R2d) = M(R2d), the space of not necessarily nonnegative
Radon measures on R2d of finite mass. In particular, the delta function δ(x0,p0) centered at a
single point (x0, p0) in classical phase space belongs to A′, and weak* convergence in A′ allows
convergence of smeared-out Wigner functions coming from a quantum state to a delta function
on phase space (i.e., a “classical” state).

The following basic facts were established by Lions and Paul.

Lemma 3.1 (Wigner measures) [LP93]

(i) (compactness) Let {Ψε} be any sequence in L2(Rd) such that

‖Ψε‖2 ≤ C (17)

for some constant C independent of ε. Then the sequence of corresponding Wigner transforms
{Wε} contains a subsequence {Wε′} converging weak* in A′ to some W ∈ A′.

(ii) (positivity) Any such limit W ∈ A′ satisfies W ∈ M(R2d), W ≥ 0. In other words, W is
a nonnegative Radon measure of finite mass.

(iii) (upper bound) Let {Ψε′} be a further subsequence such that |Ψε′|2
∗
⇀ µ in M(Rd). Then∫

p∈Rd

W (·, dp) ≤ µ.

In particular, any limit W as in (i) satisfies
∫

R2d dW ≤ C, with C as in (17).

(iv) (preservation of mass) If ‖Ψε‖2 = C for all ε, and the sequences of position and momentum
densities are both tight, that is to say

lim sup
ε→0

∫
|x|>R

|Ψε(x)|2 dx→ 0, lim sup
ε→0

∫
|p|>R

∣∣∣∣ 1

(2πε)d/2
(FΨε)

(p
ε

)∣∣∣∣2 dp→ 0 (R→∞),

then

∫
R2d

dW = C. In particular, in the case C = 1, W is a probability measure.

9



For future purposes we note that (i) is immediate from the Banach-Alaoglu theorem and the
elementary estimate ∣∣∣∫

R2d

Wεφ d(x, p)
∣∣∣ ≤ 1

(2π)d
‖Ψε‖2‖φ‖A for φ ∈ A, (18)

which implies

‖Wε‖A′ = sup
φ∈A\{0}

∫
Wε φ

‖φ‖A
≤ 1

(2π)d
‖Ψε‖2, (19)

that is to say {Wε} is a bounded sequence in A′. The proofs of (ii) and (iii) are less elementary,
and require use of the Husimi transform; see [LP93].

An analogue yielding time-continuous paths of Wigner measures is the following.

Lemma 3.2 (Time-dependent Wigner measures)

(i) (compactness) Let {Ψε} be a sequence in C(R; L2(Rd)) such that

sup
t∈R

‖Ψε(·, t)‖2 ≤ C (20)

for some constant independent of ε, and let {Wε} be the sequence of associated Wigner functions.

Then for a subsequence, Wε
∗
⇀W weak* in L∞(R;A′).

(ii) Suppose in addition that for any test function φ ∈ C∞
0 (R2d) the functions

fε,φ(t) :=

∫
R2d

Wε(x, p, t)φ(x, p) d(x, p)

are differentiable and satisfy
sup
t∈R

| d
dt
fε,φ(t)| ≤ Cφ (21)

for some constant Cφ independent of ε. Then, W ∈ Cweak∗(R;M(R2d)), W (t) ≥ 0 for all t, and

Wε(·, t)
∗
⇀ W (t) in A′ for all t. Moreover, the latter convergence is uniform on compact time

intervals, i.e., for any test function φ ∈ A and any compact I ⊂ R, fε,φ(t) converges uniformly
with respect to t ∈ I to

∫
R2d φ dW (t).

Here (i) is a straightforward adaptation of the time-independent theory in [LP93]. The key
point is the assertion in (ii) that the limit measure has slightly higher regularity in time than
näıvely expected (continuous instead of L∞). This allows, in particular, to make sense of initial
values.

Proof The first part is an easy consequence of Lemma 3.1, cf. (19), and assumption (20), which
imply that {Wε} is bounded in L∞(R;A′). Since the latter is the dual of the separable space
L1(R;A), the assertion follows from the Banach-Alaoglu theorem.

The second part is less trivial, and requires various approximation arguments. First, we
test the weak* convergence of {Wε} from (i) against tensor products φ(x, p)χ(t) with φ ∈ A,
χ ∈ L1(R). This gives∫

R
fε,φ(t)χ(t) dt =

∫
R2d+1

Wε φ⊗ χ d(x, p, t) →
∫

R

∫
R2d

φ⊗ χ dW (t) dt =

∫
R
fφ(t)χ(t) dt,

where fφ(t) :=
∫

R2d φ dW (t). Consequently fε,φ
∗
⇀ fφ in L∞(R).
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Now let φ ∈ C∞
0 (R2d). Then by assumption (21) and the compact embedding W1,∞([−T, T ]) ↪→

C([−T, T ]), fε,φ converges uniformly to fφ on any compact interval [−T, T ]. In particular fφ
is, as a uniform limit of continuous functions, continuous, and fε,φ(t) → fφ(t) pointwise for all
t ∈ R, that is to say

Wε(·, t) ⇀W (t) in D′(R2d) pointwise for all t ∈ R. (22)

Now fix t. For a further subsequence which may depend on t, by Lemma 3.1 Wε′(·, t)
∗
⇀ W̃ (t)

in A′ ⊂ D′. Together with (22) this yields W (t) = W̃ (t), as well as the convergence Wε(·, t)
∗
⇀

W (t) in A′ for the whole sequence. By Lemma 3.1, all remaining statements about W (t) follow,
except its asserted continuity in t.

It remains to show the latter, i.e.∫
R2d

φ dW (t+ h) →
∫

R2d

φ dW (t) (h→ 0) for all φ ∈ C0(R2d). (23)

Given φ ∈ C0(R2d) and δ > 0, by the density of C∞
0 (R2d) in C0(R2d) there exists φδ ∈ C∞

0 (R2d)
such that ‖φδ − φ‖∞ < δ, where ‖ · ‖∞ denotes the norm of L∞(Rn). Consequently∣∣∣∫

R2d

φ dW (t+ h)−
∫

R2d

φ dW (t)
∣∣∣

≤
∣∣∣∫

R2d

φδ dW (t+ h)−
∫

R2d

φδ dW (t)
∣∣∣ +

∣∣∣∫
R2d

(φ− φδ) dW (t+ h)
∣∣∣ +

∣∣∣∫
R2d

(φ− φδ) dW (t)
∣∣∣

≤
∣∣∣∫

R2d

φδ dW (t+ h)−
∫

R2d

φδ dW (t)
∣∣∣ + δ

(∫
R2d

dW (t+ h) +

∫
R2d

dW (t)
)
.

As h → 0, the first term vanishes by the continuity of
∫

R2d φδ dW (t) = fφδ
(t) in t (which was

already established above). The second term stays bounded by 2Cδ by Lemma 3.1, (iii), giving

lim sup
h→0

∣∣∣∫
R2d

φ dW (t+ h)−
∫

R2d

φ dW (t)
∣∣∣ ≤ 2Cδ.

Since δ was arbitrary, the continuity assertion (23) follows, and the proof of Lemma 3.2 is
complete. �

Remark Functional analytically, Lemma 3.2 says that under the assumptions (20), (21), {Wε}
is relatively compact in Cweak∗,`oc(R;A′). This may be viewed as a weak-convergence variant
of the well known compactness lemma of J. L. Lions [Lio69, Chap. 1, Théorème 5.1], in which
the condition of boundedness of time derivatives in some Banach space has been replaced by
condition (21) which is related to a weak topology.

We close this section by applying the above lemma to prove the first two statements of Theorem
1.1.

Proof of Theorem 1.1 (i) This follows from ‖Ψε(t)‖ = ‖Ψ0
ε‖ = 1, Lemma 3.2 (i), and the

fact that weak∗ convergence in L∞(R;A′) implies convergence in D′(R2d+1). �

Proof of Theorem 1.1 (ii) First we prove that W ∈ Cweak∗(R;M(R2d)), W (t) ≥ 0. By the
Lemma 3.2, all we need to show is that for any function φ ∈ C∞

0 (R2d) on phase space, the
expected value

fε,φ(t) =

∫
R2d

Wε(x, p, t)φ(x, p) d(x, p)
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is differentiable in t and satisfies hypothesis (21) of Lemma 3.2 (ii), i.e. f ′ε,φ(t) stays bounded

independently of ε and t. Differentiability in t holds even for φ ∈ L1(R2d), since Wε ∈
C1(R; L∞(R2d)) by Lemma 2.1.

To deduce (21) we start by exploiting the Wigner equation (WE). This yields

|f ′ε,φ(t)| ≤
∣∣∣ ∫

R2d

Wε(x, p, t) p · ∇xφ(x, p) d(x, p)
∣∣∣

+
∣∣∣ 1

(2π)d

∫
R2d

Ub(x+ εy
2
)− Ub(x− εy

2
)

ε
Ψε(x+

εy

2
, t)Ψε(x−

εy

2
, t)(Fpφ)(x, y) d(x, y)

∣∣∣
+

∣∣∣ 1

(2π)d

∫
R2d

Us(x+ εy
2
)− Us(x− εy

2
)

ε
Ψε(x+

εy

2
, t)Ψε(x−

εy

2
, t)(Fpφ)(x, y) d(x, y)

∣∣∣.
The first term on the right hand side is bounded by 1

(2π)d‖Ψε(·, t)‖2‖p·∇xφ‖A by (18), and hence

bounded independently of ε and t, by (4) and ‖Ψ0
ε‖ = 1.

Thanks to the elementary inequality |Ub(x+
εy
2

)−Ub(x− εy
2

ε
| ≤ ‖∇Ub‖∞|y|, the second term is

bounded independently of ε and t by

1

(2π)d
‖∇Ub‖∞

∫
Rd

|y| sup
x∈R

|(Fpφ)(x, y)| dy.

Finally, in order to estimate the third term we observe that for R,Q ∈ Rn

1

ε

∣∣∣∣∣ 1∣∣R + εQ
2

∣∣ − 1∣∣R− εQ
2

∣∣
∣∣∣∣∣ ≤ |Q|∣∣R + εQ

2

∣∣ ∣∣R− εQ
2

∣∣ .
Hence, with x = (R1, . . . , RM), y = (Q1, . . . , QM) and setting R = Rα−Rβ, Q = Qα−Qβ ∈ R3,
the third term is bounded by

1

(2π)d

∑
1≤α<β≤M

Cαβ‖
1

|Rα −Rβ|
Ψε(·, t)‖2

∫
Rd

|Qα−Qβ| sup
x∈R

|(Fpφ)(x, y)| dy

≤ 1

(2π)d
2

m
‖UsΨε(·, t)‖2

∫
Rd

|y| sup
x∈R

|(Fpφ)(x, y)| dy,

where m = min{Cαβ |Cαβ 6= 0}. But the right hand side stays bounded independently of ε
and t thanks to Lemma 5.1, establishing hypothesis (21) and thus completing the proof that
W ∈ Cweak∗(R;M(R2d)), W (t) ≥ 0.

It remains to show that
∫

R2d dW (t) = 1 for every t. In Lemma 3.2 (ii) we proved that Wε(·, t)
converges weak* in A′ to W (t) for every t. Hence Lemma 3.1 (iv) is applicable and it suf-
fices to verify that both the sequence of position densities |Ψε(·, t)|2 and momentum densities
| 1
(2πε)d/2 (FΨε)(

p
ε
, t)|2 are tight. As regards the momentum densities, this follows from uniform

boundedness of kinetic energy, (53), since

1

2

∫
|p|≥R

∣∣∣ 1

(2πε)d/2
(FΨε)(

p
ε
, t)

∣∣∣2 dp ≤ 1

R2

1

2

∫
Rd

∣∣∣ 1

(2πε)d/2
(FΨε)(

p
ε
, t)

∣∣∣2|p|2 dp

=
1

R2

1

2

∫
Rd

|ε∇Ψε(x, t)|2 dx.

Finally, tightness of the position densities follows (under much weaker hypotheses on potential
and initial data) from the Lemma 3.3 below, completing the proof of Theorem 1.1 (ii). �
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Lemma 3.3 (Propagation of tightness) Let U be as in (3), and suppose in addition U bounded
from below. Let {Ψε} be a sequence of solutions to the time-dependent Schrödinger equation
(SE), whose initial data satisfy Ψ0

ε ∈ H2(Rd), ‖Ψ0
ε‖ = 1 (normalization), and 〈Ψ0

ε , HεΨ
0
ε〉 ≤

C (bounded energy). If the sequence of initial position densities {|Ψ0
ε |2} is tight, then so is

{|Ψε(·, t)|2}, for all t ∈ R.

Proof of Lemma 3.3 Let χ ∈ C∞
0 (Rd), 0 ≤ χ ≤ 1, χ = 1 on |x| > 1, χ = 0 on |x| < 1/2,

and for R > 0 set χR(x) := χ(x/R). Then |∇χR| ≤ C/R, |∆χR| ≤ C/R2 for some constant C
independent of R. Letting 〈·, ·〉 be the L2(Rd) inner product and abbreviating 〈A〉φ = 〈φ, Aφ〉,
we obtain from (SE)

d

dt
〈χR〉Ψε(·,t) =

i

ε
〈[χR, Hε]〉Ψε(·,t).

Since [χR, Hε] = ε2

2
∆χR + ε2∇χR · ∇,

d

dt
〈χR〉Ψε(·,t) ≤

ε

2

∫
Rd

|∆χR(x)| |Ψε(x, t)|2 dx+

∫
Rd

|ε∇Ψε(x, t)| |∇χR(x)| |Ψε(x, t)| dx

≤ ε

2
‖∆χR‖∞ ‖Ψε(·, t)‖+ ‖∇χR‖∞ ‖ε∇Ψε(·, t)‖ ‖Ψε(·, t)‖.

¿From the boundedness from below of U and the conservation in time of the energy 〈Ψε(·, t), HεΨε(·, t)〉,
we obtain ‖ε∇Ψε(·, t)‖ ≤ const. for some constant independent of ε and t. Using the bounds
on ‖∇χR‖∞ and ‖∆χR‖∞, and assuming without loss of generality ε ≤ R, it follows that
d
dt
〈χR〉Ψε(·,t) ≤ const.

R
for some constant independent of ε and t. Consequently (considering

without loss of generality t ≥ 0)∫
|x|>R

|Ψε(x, t)|2 dx ≤ 〈χR〉Ψε(·,t) ≤ 〈χR〉Ψ0
ε
+

∫ t

s=0

const.

R
ds ≤

∫
|x|>R

2

|Ψ0
ε(x)|2 dx+

const.

R
t→ 0

as R→∞, by the tightness of the sequence of initial position densitites. �

4 Justification of the Liouville equation

We now show that time-dependent Wigner measures arising as a limit of semiclassically scaled
solutions to the Schrödinger equation are weak solutions of the Liouville equation (LE).

In line with the discussion in the Introduction, the main work will go into analyzing the
behaviour near the Coulomb singularities. The first order of business will be to verify that the
limit equation even makes sense, for which we need that the gradient of the potential lies in L1

with respect to the Wigner measure, for all t.
We note the particularly impeding feature that the singularities of the Coulomb forces

appearing in the Liouville equation have the magnitude 1/|Rα − Rβ|2, and are hence much
worse than the singularities of the Coulomb potentials 1/|Rα − Rβ| appearing in the original
Schrödinger equation.

Proof of Theorem 1.1 (iii) We want to show that

W (t)(S × Rd) = 0, (24)∫
R2d

|∇Us| dW (t) <∞ for all t ∈ R. (25)
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To this end, we fix t ∈ R and choose a subsequence such that |Ψε(·, t)|2
∗
⇀ µ in M(Rd).

According to Lemma 3.1 (iii) we have∫
p∈Rd

W (·, dp, t) ≤ µ. (26)

First we show W (t)(S × Rd) = 0. By (26) it suffices to show that µ(S) = 0. Let φ ∈ C(Rd)
with 0 ≤ φ ≤ 1, φ = 1 for dist(x,S) < δ, and φ = 0 for dist(x,S) ≥ 2δ. We use the elementary

property of weak* convergence in M(Rd) that if µε ≥ 0, µε
∗
⇀ µ in M(Rd), and f is a bounded

nonnegative continuous function, then
∫

Rd f dµ ≤ lim inf
ε→0

∫
Rd f dµε. (This follows immediately

by approximating f by compactly supported functions fj with 0 ≤ fj ≤ f and dominated
convergence.) Consequently∫

dist(x,S)≤δ
dµ ≤

∫
Rd

φ dµ ≤ lim inf
ε→0

∫
Rd

φ |Ψε(·, t)|2 dx = lim inf
ε→0

∫
dist(x,S)≤2δ

|Ψε(·, t)|2 dx.

The idea now is to use the fact that Us ≥ 1eCδ on {x ∈ Rd | dist(x,S) ≤ 2δ} for some constant

C̃, and appeal to Lemma 5.1 below. This yields∫
dist(x,S)≤δ

dµ ≤
(
C̃δ

)2

lim inf
ε→0

∫
Rd

U2
s |Ψε(·, t)|2 dx ≤

(
C̃δ

)2

C. (27)

Since the RHS tends to zero as δ → 0, µ(S) = 0 and W (t)(S × Rd) = 0, completing the proof
of (24).

To show (25) we will use the monotone convergence theorem. To this end we set for δ > 0

fδ := min
{
f,

1

δ

}
, f := |∇Us|.

Then fδ is a bounded continuous function on Rd. By the fact that |∇Us| ≤ C0U
2
s (thanks to

the identity
∣∣∣∇Rα

1
|Rα−Rβ |

∣∣∣ = 1
|Rα−Rβ |2

) and Lemma 5.1 below,∫
Rd

fδ dµ ≤ lim inf
ε→0

∫
Rd

fδ|Ψε(·, t)|2 dx ≤ C0 lim inf
ε→0

∫
Rd

U2
s |Ψε(·, t)|2 dx ≤ C0C, (28)

where C0, C are constants independent of ε and t.
Consider now the limit δ → 0. In this limit, fδ → f monotonically on Rd\S. Since µ(S) = 0,

it follows that fδ → f µ-almost everywhere. Hence the monotone convergence theorem yields
f ∈ L1( dµ) and ∫

Rd

f dµ = lim
δ→0

∫
Rd

fδ dµ. (29)

Consequently, by the p-independence of f , (26), (29), (28),∫
R2d

f dW (t) ≤
∫

Rd

f dµ ≤ C0C <∞, (30)

establishing (25) and completing the proof of (iii). �

Proof of Theorem 1.1 (iv) Let Ω ⊆ Rd be an open set such that Ub ∈ C1(Ω). We need to
show that eq. (8) holds for every φ ∈ C∞

0 (Ω×Rd×R). Starting point is the fact that by Lemma
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2.1, Wε satisfies the Wigner equation (WE). Multiplying (WE) by φ and integrating by parts,
we obtain the weak form∫

R2d+1

(
Wε(∂t + p · ∇x)φ+ fεφ

)
d(x, p, t) = 0. (31)

Passage to the limit ε → 0 in eq. (31) is done in three steps, carried out in the order of
increasing difficulty: 1. Analysis of the local terms, 2. Analysis of the nonlocal term

∫
fεφ for

test functions vanishing in a neighbourhood of the Coulomb singularities, 3. Analysis of the
nonlocal term in a neighbourhood of the Coulomb singularities.

Step 1: Analysis of the local terms in (31)

As ε→ 0, Wε
∗
⇀W in L∞(R;A′), and hence in particular in D′(R2d+1). Thus, the first term in

(31) satisfies∫
R2d+1

Wε (∂t + p · ∇x)φ d(x, p, t) →
∫

R

∫
R2d

(∂t + p · ∇x)φ dW (t) dt (ε→ 0). (32)

Step 2: Analysis of the nonlocal term
∫
fεφ for test functions vanishing in a neigh-

bourhood of the Coulomb singularities

Let S ⊂ Rd be the set of Coulomb singularities of the potential Us (see Theorem 1.1 (iii)). Our
goal in this step is to prove that∫

R2d+1

fε φ d(x, p, t) → −
∫

R

∫
R2d

∇U · ∇pφ dW (t) dt (ε→ 0) (33)

for all test functions on Ω×Rd×R which vanish in a neighbourhood of S, i.e., φ ∈ C∞
0 ((Ω\S)×

Rd×R). This together with (31), (32) completes the proof of (iv) for the above test functions.
We begin by rewriting the left hand side of (33). Substituting the definition of fε and

carrying out the integration over p gives (abbreviating Ψε = Ψε(x + εy
2
, t), Ψε = Ψε(x− εy

2
, t),

Fpφ = (Fpφ)(x, y, t))∫
R2d+1

fε φ d(x, p, t) = − i

(2π)d

∫
R2d+1

U(x+ εy
2
)− U(x− εy

2
)

ε
ΨεΨε(Fpφ) d(x, y, t). (34)

The idea now is to split the y-integration into two regions in such a way that either |εy| << 1,
in which case the difference quotient of U is well approximated by the derivative ∇U(x) · y,
or |y| >> 1, in which case Fpφ is very small, due to the rapid decay of the Schwartz function
Fpφ as |y| → ∞. To implement this idea, we introduce a cut off radius ε−α with some fixed
α ∈ (0, 1) and choose the regions of integration as |y| ≤ ε−α and |y| > ε−α. In particular,
we denote Λε := {(y, t) ∈ Rd+1 | |y| ≤ ε−α} and Vε := {(y, t) ∈ Rd+1 | |y| > ε−α}. It is also
convenient to subtract off, and then add again, the RHS of (34) with the difference quotient of
U replaced by the derivative ∇U(x) · y. This yields the following natural splitting of the RHS
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of (34) into a sum of five terms∫
R2d+1

fε φ d(x, p, t) = T1 + T+
2 + T−2 + T3 + T4, (35)

T1 := − i

(2π)d

∫
Rd×Λε

[U(x+ εy
2
)− U(x− εy

2
)

ε
−∇U(x) · y

] 1

|y|
· |y|ΨεΨε(Fpφ) d(x, y, t),

T±2 := ∓ i

(2π)d

∫
Rd×Vε

U(x± εy
2
)

ε
ΨεΨε(Fpφ) d(x, y, t),

T3 :=
i

(2π)d

∫
Rd×Vε

∇U(x) · yΨεΨε(Fpφ) d(x, y, t),

T4 := − i

(2π)d

∫
R2d+1

∇U(x) · yΨεΨε(Fpφ) d(x, y, t).

Here, in T1 the factor 1
|y| · |y| = 1 has been inserted for future use.

We begin by analysing T1. Let δ, R > 0 such that the set ΩR,δ := {x ∈ Ω | |x| ≤
R, dist(x,S ∪ ∂Ω) ≥ δ} contains all x with (x, p, t) ∈ suppφ. Then provided ε is sufficiently
small

|x± εy

2
| ≤ 2R, dist(x± εy

2
,S ∪ ∂Ω) ≥ δ

2
for all x ∈ ΩR,δ, |y| ≤ ε−α,

that is to say x± εy
2
∈ Ω2R,δ/2. Hence by the continuous differentiability of U in Ω2R,δ/2,

U(x+ εy
2
)− U(x− εy

2
)

ε|y|
→ ∇U(x) · y

|y|
as ε→ 0 uniformly for x ∈ ΩR,δ, |y| ≤ ε−α.

Consequently, applying the Cauchy-Schwarz inequality with respect to the integration over x,
T1 can be estimated by

|T1| ≤
1

(2π)d
sup

x∈ΩR,δ , |y|≤ε−α

∣∣∣∣U(x+ εy
2
)− U(x− εy

2
)

ε|y|
− ∇U(x) · y

|y|

∣∣∣∣ sup
t∈R

‖Ψε(·, t)‖2 ‖yFpφ‖∗ → 0

(36)
as ε→ 0, where here and below, for any function χ ∈ S(R2d+1) we denote

‖χ‖∗ :=

∫
Rd+1

sup
x∈Rd

|χ(x, y, t)| d(y, t). (37)

The terms T±2 can be estimated in an analogous manner, again applying the Cauchy-Schwarz
inequality with respect to the integration over x:

|T±2 | ≤
1

(2π)d
sup
t∈R

‖UΨε(·, t)‖ sup
t∈R

‖Ψε(·, t)‖
1

ε

∫
Vε

sup
x∈Rd

|(Fpφ)(x, y, t)| d(y, t). (38)

By Lemma 5.1 and the boundedness of Ub, the norm ‖UΨε(·, t)‖ stays bounded independently
of t and ε. On the other hand, since Fφ ∈ S(R2d+1),

sup
(x,y,t)∈R2d+1

(1+|y|)m|(Fpφ)(x, y, t)| =: cm <∞

for any m = 0, 1, 2, . . .. Consequently, for all m ≥ d+ 1 and all |y| > ε−α

|(Fpφ)(x, y, t)| ≤ cm
(1+|y|)m

≤ cm
(1+|y|)d+1

1

(ε−α)m−d−1
=

cm
(1+|y|)d+1

εα(m−d−1).
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Hence, choosing T so large that |t| ≤ T for all (x, p, t) ∈ suppφ, the last factor in (38) satisfies∫
Vε

sup
x∈Rd

|(Fpφ)(x, y, t)| d(y, t) ≤ εα(m−d−1)

∫
Rd

2Tcm
(1+|y|)d+1

dy. (39)

Then, if m is chosen so large that the exponent α(m − d − 1) > 1, the positive power of ε in
(39) ’beats’ the singular factor 1

ε
in (38). Thus

T±2 → 0 as ε→ 0 (40)

(in fact, faster than any power of ε, but this is not needed in the sequel).
The proof that T3 → 0 is analogous but easier, due to the absence of a singular prefactor 1

ε

and the fact that ∇U(x), unlike U(x± εy/2), is bounded on suppφ. We simply estimate

|T3| ≤
1

(2π)d
sup
x∈ΩR,δ

|∇U(x)|
∫
Vε

|y| sup
x∈Rd

|(Fpφ)(x, y, t)| d(y, t) → 0 as ε→ 0 (41)

by (39) with m > d+ 2.
Finally, consider the last term, T4. Using iyFpφ = Fp(∇pφ) and interchanging the integra-

tions over p and y,

T4 =− 1

(2π)d

∫
R2d+1

∇U(x) ·
[∫

Rd

∇pφ(x, p, t)e−ip·y dp
]
Ψε(x+

εy

2
, t)Ψε(x−

εy

2
, t) d(x, y, t)

=−
∫

R2d+1

∇U(x) · ∇pφ(x, p, t)Wε(x, p, t) d(x, p, t).

Since ∇U · ∇pφ ∈ L1(R;A) due to the continuity of ∇U on suppφ, and since Wε
∗
⇀ W in the

dual L∞(R;A′),

T4 → −
∫

R

∫
R2d

∇U(x) · ∇pφ(x, p, t) dW (t) dt as ε→ 0. (42)

Combining (36), (40), (41), (42) yields (33) for φ ∈ C∞
0 ((Ω \ S)×Rd×R).

Step 3: Analysis of the nonlocal term
∫
fεφ in a neighbourhood of the Coulomb

singularities

We prove here that eq. (33) continues to hold for arbitrary φ ∈ C∞
0 (Ω× Rd × R) not required

to vanish in a neighbourhood of the Coulomb singularities, i.e. that the Liouville equation
continues to hold across Coulomb singularities.

This is quite remarkable, since the available a priori bound
∫

Rd U
2
s |Ψε(·, t)|2 ≤ const. only

rules out concentration of the measure |Ψε(·, t)|2 on Coulomb singularities (as was shown in
(27)), but not concentration of the blown-up measure U2

s |Ψε(·, t)|2 ∼ |∇Us| |Ψε(·, t)|2 which
asymptotically appears in

∫
fεφ (see the leading term T4 in (35)). This suggests the possibil-

ity that an additional contribution of form
∫

R

∫
S×Rd φ dν(t) dt, with ν(t) a singular measure

supported on S × Rd, could appear in the limit equation (8).
This possibility will be ruled out by careful use of the evolution equation (WE) satisfied by

Wε. Roughly, our analysis below will lead to the insight that the asymptotic amount of mass
of fε in a δ-neighbourhood of the singular set S is at most of order δ, not order one.

We will need rather precisely chosen cutoff functions. Given δ > 0, we let

ηδ(x) :=
∏

1≤α<β≤M

η
( |Rα −Rβ|

δ

)
with x = (R1, . . . , Rm),
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where η ∈ C∞
0 (R) with 0 ≤ η ≤ 1, η = 1 on |z| ≤ 1/2, η = 0 on |z| ≥ 1. Then for some

constants C1, C2 independent of δ

|∇ηδ(x)| ≤
C1

δ
for all x, ηδ(x) = 0 for dist(x,S) ≥ C2δ. (43)

We now write φ = (1 − ηδ)φ + ηδφ, and consider both contributions to
∫

R2d+1 fεφ d(x, p, t)
separately. Since (1− ηδ)φ belongs to C∞

0 ((Ω \ S)× Rd × R), we have by Step 2 (cf. (33))∫
R2d+1

fε (1− ηδ)φ d(x, p, t) → −
∫

R

∫
R2d

∇U · (1− ηδ)∇pφ dW (t) dt as ε→ 0. (44)

We now claim that the remaining terms are small when δ is small, that is to say

lim sup
ε→0

∣∣∣∫
R2d+1

fε ηδφ d(x, p, t)
∣∣∣ → 0 as δ → 0, (45)∫

R

∫
R2d

∇U · ηδ∇pφ dW (t) dt→ 0 as δ → 0. (46)

Clearly, (44) and (45), (46) imply eq. (33) for the arbitrary test function φ ∈ C∞
0 (Ω×Rd×R).

Proving (46) is not difficult, but for convenience of the reader we include a proof. Consider
first a fixed t. By the facts that 0 ≤ ηδ ≤ 1 and supp ηδ ⊂ {x ∈ Rd | dist(x,S) ≤ C2δ},∣∣∣∫

R2d

∇U · ηδ∇pφ dW (t)
∣∣∣≤‖∇pφ‖∞

∫
(supp ηδ∩suppφ)×Rd

|∇U | dW (t) (47)

→ ‖∇pφ‖∞
∫

(S∩suppφ)×Rd

|∇U | dW (t) = 0 as δ → 0,

since dW (t)(S × Rd) = 0 and ∇U ∈ L1(suppφ; dW (t)). Moreover the LHS of (47) stays
bounded independently of t by (30). Hence the integrand with respect to t in (46) tends to
zero boundedly a.e. as δ → 0, and so by dominated convergence we infer (46).

It remains to establish (45). This is the difficult part of Step 3, due to the fact discussed
above that the a priori bound of Lemma 5.1 does not rule out the possibility of concentration
of mass of |∇U‖Ψε(·, t)|2 on the set S of Coulomb singularities. Using first (WE) and then the
definition of Wε we have∫

R2d+1

fε ηδφ d(x, p, t) = −
∫

R2d+1

Wε (∂t + p · ∇x)(ηδφ) d(x, p, t)

= −
∫

R2d+1

Wε

[
ηδ(∂t + p · ∇x)φ+∇ηδ · pφ

]
d(x, p, t) = − 1

(2π)d

∫
R2d+1

uε,δ d(x, y, t)

= − 1

(2π)d

∫
Rd×Λε

uε,δ d(x, y, t)︸ ︷︷ ︸
=:Q1

− 1

(2π)d

∫
Rd×Vε

uε,δ d(x, y, t)︸ ︷︷ ︸
=:Q2

,

where we have split the domain of integration as in Step 2, and where

uε,δ(x, y, t) =
[
ηδ(x)Fp((∂t + p · ∇x)φ)︸ ︷︷ ︸

=:χ

(x, y, t)+∇ηδ(x)·Fp(pφ)︸ ︷︷ ︸
=:ξ

(x, y, t)
]
Ψε(x+

εy

2
, t)Ψε(x−

εy

2
, t).
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The second term, Q2, is exactly of the same form as the term T3 in Step 2, with ∇U(x)
replaced by ηδ(x) respectively ∇ηδ(x), and the test function yFpφ replaced by χ respectively
ξ. Consequently, estimating as for (41),

|Q2| ≤
1

(2π)d

[
‖ηδ‖∞

∫
Vε

sup
x∈Rd

|χ(x, y, t)| d(y, t)+‖∇ηδ‖∞
∫
Vε

sup
x∈Rd

|ξ(x, y, t)| d(y, t)
]
→ 0 (ε→ 0),

(48)
by (39) with χ respectively ξ in place of Fpφ, and m > d+1. The first term, Q1, will be dealt
with by an argument similar to the no-concentration estimate (27) in the proof of (iii), except
now a non-local version is needed since the term under investigation is not local in Wε. For ε
sufficiently small, and (x, y) belonging to the domain of integration, that is to say x ∈ supp ηδ,
|y| ≤ ε−α, we have (writing x = (R1, .., RM), y = (Q1, .., QM))

|(Rα ±
εQα

2
)− (Rβ ±

εQβ

2
)| ≤ 2δ for 1 ≤ α < β ≤M

and consequently Us(x± εy
2
) ≥ 1eCδ for x ∈ supp ηδ, |y| ≤ ε−α, and some constant C̃. Hence

|Q1| ≤
(C̃δ)2

(2π)d

∫
Rd×Λε

[
ηδ|χ|+ |∇ηδ| |ξ|

]
|Us(x+

εy

2
)Ψε(x+

εy

2
, t)| |Us(x−

εy

2
)Ψε(x−

εy

2
, t)| d(x, y, t)

≤ (C̃δ)2

(2π)d

[
‖ηδ‖∞‖χ‖∗ + ‖∇ηδ‖∞‖ξ‖∗

]
sup
t∈R

‖UsΨε(·, t)‖2

with ‖ · ‖∗ given by (37). Since ‖UsΨε(·, t)‖ stays bounded independently of t and ε by Lemma
5.1, ‖ηδ‖∞ = 1, and ‖∇ηδ‖∞ ≤ C1

δ
by (43), it follows that

|Q1| ≤ C∗[δ
2 + δ] (49)

for some constant C∗ independent of ε and δ. Note how the positive power of δ gained by
inserting the multiplier Us has ‘beaten’ the negative power of δ coming from the gradient of
the cutoff function ηδ. Combining (48), (49) gives (45). This completes the proof of Theorem
1.1 (iv) for general test functions. �

5 An a priori estimate for the Schrödinger equation with

repulsive Coulomb interactions

We prove now the a priori estimate used in the derivation of the Liouville equation that the
potential term UsΨε(·, t) in the semiclassically scaled Schrödinger equation (SE) stays bounded
in L2(Rd) independently of ε and t.

For potentials with Coulomb singularities, such as (2), such an estimate says in particular
that in the limit ε→ 0, the wavefunction cannot concentrate mass at the singularities.

On physical grounds, one would expect this to be true only for repulsive interactions (as
present here), but not for attractive interactions. The challenge then is to translate this phys-
ical intuition into a mathematical argument fine enough to detect sign information. This is
achieved by the positive commutator argument below, which exploits not just the repulsivity
(i.e., positivity) of Us, but also its special Coulombic nature.
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Lemma 5.1 Let U = Ub + Us be as in Theorem 1.1. Let {Ψ0
ε} ⊂ D(Hε) satisfy ‖Ψ0

ε‖ = 1 and
‖HεΨ

0
ε‖ ≤ c for some constant c independent of ε. Then the solution Ψε(·, t) to (SE) satisfies

sup
t∈R

‖UsΨε(·, t)‖2 ≤ C (50)

for some constant C independent of ε.

Proof By standard results on the unitary propagator e−itH associated to a self-adjoint operator
H, if ψ0 ∈ D(H), then so is ψ(·, t) = e−itHψ0 for all t ∈ R, and ‖ψ(·, t)‖, 〈ψ(·, t), Hψ(·, t)〉,
‖Hψ(·, t)‖ are time-independent. (Formally, the time-independence follows from the Heisenberg
evolution equation for expected values, d

dt
〈ψ(·, t), Aψ(·, t)〉 = 〈ψ(·, t), 1

i
[A,H]ψ(·, t)〉, by taking

A = I, H, H2.) Applied to our case this yields, besides (4),

sup
t∈R

(1

2

∫
Rd

|ε∇Ψε(x, t)|2 dx+

∫
Rd

(Ub(x) + Us(x))|Ψε(x, t)|2 dx
)
≤ const., (51)

sup
t∈R

∥∥∥(
−ε

2

2
∆ + Ub + Us

)
Ψε(·, t)

∥∥∥2

≤ const., (52)

the constants being independent of ε. By (4), the boundedness of Ub, and the nonnegativity of
Us,

sup
t∈R

1

2

∫
Rd

|ε∇Ψε(x, t)|2 dx ≤ const., sup
t∈R

∫
Rd

Us(x)|Ψε(x, t)|2 dx ≤ const., (53)

all constants being independent of ε. Now we expand the left hand side of (52), and rewrite
the latter in the form

sup
t∈R

(∥∥∥(
−ε

2

2
∆ + Ub

)
Ψε(·, t)

∥∥∥2

+ 2Re
〈
−ε

2

2
∆Ψε(·, t), UsΨε(·, t)

〉
+ 2Re〈UbΨε(·, t), UsΨε(·, t)〉+ ‖UsΨε(·, t)‖2

)
≤ const. (54)

Using the positivity of Us and (53), the third term satisfies

sup
t∈R

|2Re〈UbΨε(·, t), UsΨε(·, t)〉| ≤ 2‖Ub‖∞ sup
t∈R

|〈Ψε(·, t), UsΨε(·, t)〉| ≤ const. (55)

The key point now is the following claim:

Re〈−∆ψ,Usψ〉 ≥ 0 for ψ ∈ H2(Rd). (56)

Postponing its proof, substitution of (55), (56) (with ψ = Ψε(·, t)) into (54) yields

sup
t∈R

∥∥∥(
−ε

2

2
∆ + Ub

)
Ψε(·, t)

∥∥∥2

≤ const., sup
t∈R

‖UsΨε(·, t)‖2 ≤ const.,

establishing the assertion.
It remains to prove (56). (This depends on the Coulombic nature of Us as well as the fact

that it is positive, i.e., repulsive.) By a standard approximation argument, using the density
of C∞

0 (Rd) in H2(Rd) and the fact that, by Hardy’s inequality, ψ 7→ Usψ is a continuous map
from H1(Rd) to L2(Rd), it suffices to prove (56) for ψ ∈ C∞

0 (Rd). In this case, compute

Re〈−∆ψ,Usψ〉 = Re

∫
Rd

∇ψ · ∇(Usψ) =

∫
Rd

|∇ψ|2Us + Re

∫
Rd

(∇ψ)ψ · ∇Us.
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The first term is ≥ 0 and the second term equals

1

2

∫
Rd

(
(∇ψ)ψ + ψ∇ψ

)
· ∇Us =

1

2

∫
Rd

∇|ψ|2 · ∇Us =
1

2

∫
Rd

|ψ|2(−∆Us).

Now, considering e.g. the term
1

|R1 −R2|
in Us, cf. (7), write

−∆(R1,...,RM ) = −∆R1+R2√
2

−∆R1−R2√
2

−∆(R3,...,RM )

and hence

−∆(R1,...,RM )
1

|R1 −R2|
= −2∆R1−R2

1

|R1 −R2|
= 8πδ(R1 −R2)

(recall −∆ 1
|·| = 4πδ in R3). Thus

∫
Rd |ψ|2(−∆Us) ≥ 0, which completes the proof of (56). �
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