
Machine Learning Applications in Empirical Finance:

Volatility Modeling and Forecasting

Doctoral Thesis

by

German Rodikov

Doctoral Program in Data Science

Supervisor

Nino Antulov-Fantulin, ETH Zürich, Switzerland

Advisor

Fabrizio Lillo, Scuola Normale Superiore, University of Bologna, Italy

Copyright © 2023 by German Rodikov

Machine Learning Applications in Empirical Finance: Volatility

Modeling and Forecasting

by

German Rodikov

September 4th, 2023

Submitted to the Scuola Normale Superiore di Pisa in partial fulfillment of the

requirements for the Doctoral Program in Data Science

Abstract

Predicting volatility in financial markets is crucial for assessing financial risks. While
deep learning has significantly progressed, neural networks often require additional
features to outperform traditional econometric models for volatility prediction. It could
be due to complexities such as market noise, microstructure, heteroscedasticity, news
effects, and multiple time scales. Although econometric models for price volatility have
evolved considerably over the years, the potential for integrating these models with
deep learning techniques, particularly Recurrent Neural Networks (RNNs), still needs
to be explored.

In this research, we investigate the performance of Long Short-Term Memory
(LSTM) RNNs in predicting volatility and benchmark performance against established
econometric models. Specifically, we investigate the impact of hyperparameter
optimization, focusing on input dimension and LSTM architecture.

We introduce a novel RNN cell design called the σ-Cell to address the challenges
of volatility modeling within deep learning. This design incorporates domain-specific
knowledge and time-varying parameters, resulting in a generative network that
captures the joint distribution of the stochastic volatility process. It also provides
an approximation of the conditional distribution of latent variables. We employ a
log-likelihood-based loss function to optimize the model and introduce a specialized
Adjusted-Softplus activation function.

Furthermore, we propose a new LSTM cell variant, σ-LSTM, including a stochastic
processing layer. By embedding stylized facts related to volatility as a form of inductive
bias, we improve the model’s predictive accuracy by utilizing a probabilistic loss
function.

Our research underscores the value of integrating domain knowledge with deep
learning techniques for more accurate volatility prediction in financial markets. It
also emphasizes the importance of meticulous hyperparameter tuning, particularly
concerning input dimension and architecture.

1

Publications

Journal Articles

• Can LSTM outperform volatility-econometric models? German Rodikov, Nino

Antulov-Fantulin, https://arxiv.org/abs/2202.11581 (to appear in the Proceedings

of MDPI, International Conference on Time Series and Forecasting 2023)

• Introducing the σ-Cell: Unifying GARCH, Stochastic Fluctuations and Evolving

Mechanisms in RNN-based Volatility Forecasting, German Rodikov, Nino

Antulov-Fantulin, https://arxiv.org/abs/2309.01565 (under review, Journal

of Financial Econometrics — Oxford Academic) German Rodikov and Nino

Antulov-Fantulin

• Volatility-inspired σ-LSTM cell German Rodikov, Nino Antulov-Fantulin

https://arxiv.org/abs/2202.11581 (selected, to appear in the Springer, Contributions

to Statistics 2023)

Conferences

• DCP 2022 DYNAMICS AND COMPLEXITY, Pisa (Italy), 26-28 May 2022.

• AMASES XLVI Italian Association for Mathematics Applied to Social and

Economic Sciences, Palermo (Italy), 22-24 September 2022.

• ITISE 2023 9th International Conference on Time Series and Forecasting. Gran

Canaria (Spain), 12-14 July 2023.

2

Acknowledgments

I am profoundly grateful to my supervisor, Nino Antulov-Fantulin, for his unwavering

guidance, support, and encouragement throughout this journey. I also extend my

sincere gratitude to my advisor, Fabrizio Lillo, whose insights and expertise have been

invaluable in bringing this work to fruition.

My heartfelt thanks go to Dino Pedreschi, the coordinator of the Data Science PhD

program, for providing me with the opportunity to be part of this excellent program and

for fostering an environment that made research collaboration and access to essential

resources possible.

I would also like to extend my appreciation to the other Data Science PhD board

members and those affiliated with the program who supported my research endeavors:

Anna Monreale, Francesca Chiaromonte, and Silvia Zappulla.

Lastly, I owe immense gratitude to my family, who provided me with unwavering

care, warmth, and support throughout this journey and whose belief in me sustained

me every step of the way.

3

Contents

1 Introduction 17

2 Background 21

2.1 Volatility Models . 21

2.1.1 GARCH family models . 22

2.1.2 Stochastic Volatility Models . 24

2.1.3 Realized Volatility . 26

2.1.4 Hybrid Approaches . 28

2.2 Machine Learning . 31

2.2.1 RNN . 32

2.2.2 Advanced Cells . 34

2.2.3 LSTM . 34

2.2.4 GRU . 35

2.2.5 MUT1 and MUT2 . 36

2.2.6 Concluding Remarks on RNN Cell Types 37

2.2.7 Backpropagation . 38

2.2.8 Adam Optimizer . 40

2.2.9 Hyperparameters . 41

2.3 Accuracy Metrics . 42

2.3.1 Volatility Forecast Evaluation Metrics 43

2.3.2 Value at Risk . 45

2.3.3 Diebold-Mariano Test . 46

2.3.4 Model Confidence Set Test . 46

4

3 LSTM-RV 48

3.1 Motivation . 48

3.2 Introduction . 48

3.3 Preliminaries . 50

3.3.1 Baseline Volatility Models . 50

3.3.2 LSTM Input Dimension Hyperparameter 51

3.4 Experiments . 52

3.4.1 Data . 53

3.4.2 Hyperparameter Optimization and Data Preprocessing 54

3.5 Results . 56

3.6 Conclusion . 66

4 σ-Cell 67

4.1 Motivation . 67

4.2 Introduction . 68

4.3 Preliminaries . 69

4.3.1 Baseline Volatility Models . 69

4.3.2 Recurrent Neural Networks . 70

4.4 σ-Cell RNNs Volatility Models . 71

4.4.1 σ-Cell: Nonlinear GARCH-based 73

4.4.2 σ-Cell-N: Integrating Stochastic Layer 74

4.4.3 σ-Cell-RL: Integrating Residuals RNN Layer 75

4.4.4 σ-Cell-NTV: Integrating Time-Varying Approach 76

4.4.5 σ-Cell-RLTV: Integrating Time-Varying Approach 78

4.4.6 Loss-function . 79

4.4.7 Activation Function . 80

4.4.8 Adam Optimizer . 81

4.4.9 Training . 83

4.5 Experimental Approach: Synthetic and Real Data 83

4.5.1 Synthetic Data Generation . 84

4.5.2 Real Data . 85

4.6 Results . 93

5

4.6.1 Synthetic data set . 93

4.6.2 Real Data . 101

4.7 Conclusion . 123

4.8 Application: Algorithm for Volatility Prediction with σ-Cell-RLTV . . 124

5 σ-LSTM 126

5.1 Motivation . 126

5.2 Introduction . 126

5.3 Preliminaries . 129

5.3.1 Baseline Volatility Models . 129

5.3.2 LSTM-RV . 130

5.3.3 σ-Cell . 131

5.4 σ-LSTM . 132

5.5 Experiments . 135

5.6 Results . 139

5.7 Conclusion . 149

6 Further research questions 150

7 Conclusion 153

6

List of Tables

3.1 Description of Asset Types and Aggregation Scales 54

3.2 Detailed Description of Asset Data . 54

3.3 The Table of LSTM and LSTM-RV Hyperparameters 56

3.4 Hyperparameter Sets for Model Convergence 57

3.5 Performance Metrics for Number of Layers of LSTM-RV on Different

Validation Data Sets . 59

3.6 Performance Metrics for Various Models on the Dell Inc. Stock Validation

Data Set . 60

3.7 Performance Metrics for Various Models on S&P 500 Validation Data Set 60

3.8 Performance Metrics for Various Models on BTCUSDT Validation Data

Set . 61

3.9 Performance Metrics for Various Models on ETHUSDT Validation Data

Set . 61

3.10 Out-of-Sample Performance Metrics for the Dell Inc. Stock (Part 1) . . 62

3.11 Out-of-Sample Performance Metrics for the Dell Inc. stock (Part 2) . . 62

3.12 Out-of-Sample Performance Metrics for S&P 500 Index (Part 1) 63

3.13 Out-of-Sample Performance Metrics for S&P 500 Index (Part 2) 63

3.14 Out-of-Sample Performance Metrics for BTCUSDT (Part 1) 64

3.15 Out-of-Sample Performance Metrics for BTCUSDT (Part 2) 64

3.16 Out-of-Sample Performance Metrics for ETHUSDT (Part 1) 65

3.17 Out-of-Sample Performance Metrics for ETHUSDT (Part 2) 65

4.1 Data Set Description for S&P 500 and BTCUSDT 86

4.2 Statistical Summary of Returns for S&P 500 and BTCUSDT. 91

7

4.3 Comparative Performance Metrics of Volatility Models on In-Sample

Synthetic Data . 94

4.4 Comparative Performance Metrics of Volatility Models on Out-of-Sample

Synthetic Data . 95

4.5 In-Sample Performance Metrics for S&P 500 Volatility Forecasting Models102

4.6 Out-of-Sample Performance Metrics for S&P 500 Volatility Forecasting

Models . 103

4.7 In-Sample Performance Metrics for BTCUSDT Volatility Forecasting

Models . 104

4.8 Out-of-Sample Performance Metrics for BTCUSDT Volatility Forecasting

Models . 105

4.9 S&P 500 Volatility Forecasting: Diebold-Mariano Test with σ-Cell-RLTV

as the Base Model . 106

4.10 S&P 500 Volatility Forecasting: Diebold-Mariano Test with HAR as the

Base Model . 107

4.11 BTCUSDT Volatility Forecasting: Diebold-Mariano Test with σ-Cell-RLTV

as the Base Model . 108

4.12 BTCUSDT Volatility Forecasting: Diebold-Mariano Test with HAR as

the Base Model . 109

4.13 MCS with 10,000 bootstraps test sample 112

5.1 Data Set Description for S&P 500, AAPL and BTCUSDT 136

5.2 Statistical Summary of Returns for S&P 500, AAPL, and BTCUSDT. . 136

5.3 In-Sample Performance Metrics for S&P 500 Volatility Forecasting Models141

5.4 Out-of-Sample Performance Metrics for S&P 500 Volatility Forecasting

Models . 141

5.5 In-Sample Performance Metrics for AAPL Volatility Forecasting Models 142

5.6 Out-of-Sample Performance Metrics for AAPL Volatility Forecasting

Models . 142

5.7 In-Sample Performance Metrics for BTCUSDT Volatility Forecasting

Models . 143

8

5.8 Out-of-Sample Performance Metrics for BTCUSDT Volatility Forecasting

Models . 143

5.9 MCS with 10,000 bootstraps test sample 147

9

List of Figures

3.1 The following plot illustrates the Convergence Rate of MSE loss for three

different input dimension hyperparameters. The Dell Inc. stock training

data set. 57

3.2 The following plot illustrates the input dimension and input length

interconnection loss for the Dell Inc. stock validation data set. 58

4.1 The following plot illustrates Activation Functions ReLU and Adjusted-Softplus.

a) The plot illustrates the behaviors of the ReLU and derivative b)

Adjusted-Softplus activation functions and derivatives. ReLU, which is

zero for negative inputs and linear with slope one for positive inputs,

provides a simple, computationally efficient nonlinearity. On the other

hand, Adjusted-Softplus is a smoothed version of ReLU for x > 0. . . . 82

4.2 The following plot illustrates the generated synthetic data, which includes

a sequence of returns and their associated volatility denoted by σ. Panel

(a) represents the training data, while panel (b) displays the out-of-sample

data. The blue dashed line represents the true generated returns, and

the black solid line depicts the true sigma values. This synthetic data

set is characterized by known underlying dynamics. 85

10

4.3 This plot depicts the Realized Volatility, Returns, and Price of the S&P

500 Index between 10th March 2007 and 1st March 2022. The gray solid

line represents the realized volatility (offset by +0.1), the blue dashed

line represents intraday returns, and the black dash-dot line indicates the

price. Both the RV and returns, derived from daily data, are presented

on the primary y-axis, while the price is shown on a secondary y-axis.

The vertical red dashed and green dotted lines demarcate the beginnings

of the test and validation sets, respectively, with each set comprising

252 points. All remaining data serve as the training set. 87

4.4 This plot displays the autocorrelation (ACF) and partial autocorrelation

(PACF) for the returns and volatility of the S&P 500 Index. The ACF

illustrates the extent of a linear relationship between current values and

their lags, while the PACF captures the correlation between a value and

its lag that isn’t explained by shorter lags. a) ACF for returns b) PACF

for returns c) ACF for volatility d) PACF for volatility 88

4.5 This plot depicts the Realized Volatility, Returns, and Price of the

Bitcoin-USD Pair between 1st January 2007 and 20th April 2020. The

gray solid line represents the realized volatility (offset by +0.1), the

blue dashed line represents intraday returns, and the black dash-dot

line indicates the price. Both the RV and returns, derived from daily

data, are presented on the primary y-axis, while the price is shown

on a secondary y-axis. The vertical red dashed and green dotted lines

demarcate the beginnings of the test and validation sets, respectively,

with each set comprising 252 points. All remaining data serve as the

training set. 89

4.6 This plot displays the autocorrelation (ACF) and partial autocorrelation

(PACF) for the returns and volatility of the Bitcoin-USD Pair. The ACF

illustrates the extent of a linear relationship between current values and

their lags, while the PACF captures the correlation between a value and

its lag that isn’t explained by shorter lags. a) ACF for returns b) PACF

for returns c) ACF for volatility d) PACF for volatility 90

11

4.7 This plot showcases the distribution and Box Plot of Returns for the S&P

500 and Bitcoin-USD. Panel a) displays the histogram of the S&P 500

returns, while Panel b) provides its box plot, highlighting the spread of

data and potential outliers. Similarly, Panel c) illustrates the histogram

of Bitcoin-USD returns, and Panel d) presents its box plot, showcasing

data dispersion and any outliers. These visualizations offer insights into

the central tendency, dispersion, and shape of the return distributions

for both assets. 92

4.8 The following plot illustrates the predictions for in-sample synthetic

data for different forecasting models: (a) Stochastic Volatility (SV)

model’s prediction of generated sigma values. (b) GARCH(1,1) model’s

prediction of generated sigma values. (c) σ-Cell-N model’s prediction of

generated sigma values. (d) σ-Cell-NTV model’s prediction of generated

sigma values. (e) σ-Cell-RL model’s prediction of generated sigma values.

(f) σ-Cell-RLTV model’s prediction of generated sigma values. 96

4.9 The following plot illustrates the prediction for out-of-sample synthetic

data for different forecasting models: (a) Stochastic Volatility (SV)

model’s prediction of generated sigma values. (b) GARCH(1,1) model’s

prediction of generated sigma values. (c) σ-Cell-N model’s prediction of

generated sigma values. (d) σ-Cell-NTV model’s prediction of generated

sigma values. (e) σ-Cell-RL model’s prediction of generated sigma values.

(f) σ-Cell-RLTV model’s prediction of generated sigma values. 97

12

4.10 The following plot illustrates the evolution of |Wr| and |Ws| in the

σ-Cell-NTV model during training. The plots illustrate the progression

of norms at two different training epochs, highlighting the emergence of

a structured pattern in |Wr| and |Ws| as training progresses. (a) |Wr| at

epoch 1: Distribution of the |Wr| during the initial stages of training is

mostly noise. (b) |Ws| at epoch 1: Distribution of the |Ws| at the start

of training is mostly noise. (c) |Wr| at epoch 100: After 100 epochs, a

distinct pattern is visible in the distribution of |Wr|. (d) |Ws| at epoch

100: The distribution of |Ws| after 100 epochs, revealing the emergence

of a clear structure. 99

4.11 The following plot illustrates the evolution of |Wr| and |Ws| in the

σ-Cell-RLTV model during training. The plots illustrate the progression

of norms at two different training epochs, highlighting the emergence

of a structured pattern in |Wr| and |Ws| as training progresses. (a)

|Wr| at epoch 1: The |Wr| during the initial stages of training is largely

unstructured. (b) |Ws| at epoch 1: The |Ws| at the start of training

shows a lack of clear structure. (c) |Wr| at epoch 100: after 100 epochs,

a distinct inverse pattern of variance is visible in the |Wr|. (d) |Ws|

at epoch 100: after 100 epochs |Ws| revealing the emergence of a clear

structure. 100

4.12 The following plot illustrates the prediction for in-sample realized

volatility for the S&P 500 index. The presented plots provide a visual

assessment of the performance of various models in predicting realized

volatility. Each sub-figure displays the true realized volatility along

with the model’s estimate. (a) Stochastic Volatility (SV) model (b)

GJR-GARCH model (c) HAR model (d) σ-Cell model (Continued on

next page.) . 111

4.12 (Continued from previous page.) (e) σ-Cell-N model (f) σ-Cell-NTV

model (g) σ-Cell-RL model (h) σ-Cell-RLTV model 112

13

4.13 The following plot illustrates the prediction for out-of-sample realized

volatility for the S&P 500 index. The presented plots provide a visual

assessment of the performance of various models in predicting realized

volatility. Each sub-figure displays the true realized volatility along with

the model’s 1-step ahead prediction. (a) Stochastic Volatility (SV) model

(b) GJR-GARCH model (c) HAR model (d) σ-Cell model (Continued

on next page.) . 113

4.13 (Continued from previous page.) (e) σ-Cell-N model (f) σ-Cell-NTV

model (g) σ-Cell-RL model (h) σ-Cell-RLTV model 114

4.14 The following plot illustrates the prediction for in-sample realized

volatility for the BTCUSDT. The presented plots provide a visual

assessment of the performance of various models in predicting realized

volatility. Each sub-figure displays the true realized volatility along

with the model’s estimate. (a) Stochastic Volatility (SV) model (b)

GJR-GARCH model (c) HAR model (d) σ-Cell model (Continued on

next page.) . 115

4.14 (Continued from previous page.) (e) σ-Cell-N model (f) σ-Cell-NTV

model (g) σ-Cell-RL model (h) σ-Cell-RLTV model 116

4.15 The following plot illustrates the predictions for out-of-sample realized

volatility for the BTCUSDT pair. The presented plots provide a visual

assessment of the performance of various models in predicting realized

volatility. Each sub-figure displays the true realized volatility along with

the model’s 1-step ahead prediction. (a) Stochastic Volatility (SV) model

(b) GJR-GARCH model (c) HAR model (d) σ-Cell model (Continued

on next page.) . 117

4.15 (Continued from previous page.) (e) σ-Cell-N model (f) σ-Cell-NTV

model (g) σ-Cell-RL model (h) σ-Cell-RLTV model 118

14

5.1 This plot depicts the Realized Volatility, Returns, and Price of Apple Inc.

stock between 10th March 2007 and 1st March 2022. The gray solid line

represents the realized volatility (offset by +0.1), the blue dashed line

represents intraday returns, and the black dash-dot line indicates the

price. Both the RV and returns, derived from daily data, are presented

on the primary y-axis, while the price is shown on a secondary y-axis.

The vertical red dashed and green dotted lines demarcate the beginnings

of the test and validation sets, respectively, with each set comprising

252 points. All remaining data serve as the training set. For a similar

analysis on the S&P 500 and BTCUSDT, see Chapter 4, Figure 4.3, 4.5. 137

5.2 This plot displays the autocorrelation (ACF) and partial autocorrelation

(PACF) for the returns and volatility of Apple Inc. stock. The ACF

illustrates the extent of a linear relationship between current values and

their lags, while the PACF captures the correlation between a value and

its lag that isn’t explained by shorter lags. a) ACF for returns b) PACF

for returns c) ACF for volatility d) PACF for volatility. For a similar

analysis on the S&P 500 and BTCUSDT, see Chapter 4, Figure 4.4, 4.6. 138

5.3 This plot showcases the distribution and Box Plot of Returns for the

Apple Inc. stock. Panel (a) displays the histogram of the returns, while

Panel (b) presents its box plot, highlighting the spread of data and

potential outliers. These visualizations offer insights into the central

tendency, dispersion, and shape of the return distribution. For a similar

analysis on the S&P 500 and BTCUSDT, see Chapter 4, Figure 4.7. . . 139

5.4 The following plot illustrates the prediction for out-of-sample BTCUSDT

pair data for Different Forecasting Models: (a) GJR-GARCH model’s

prediction. (b) HAR model’s prediction. (c) LSTM-RV model’s

prediction. (d) σ-Cell-N model’s prediction. (e) σ-Cell-RLTV model’s

prediction. (f) σ-LSTM model’s prediction. 144

15

5.5 The following plot illustrates the prediction for out-of-sample Apple

Inc. Stock data for Different Forecasting Models: (a) GJR-GARCH

model’s prediction. (b) HAR model’s prediction. (c) LSTM-RV model’s

prediction. (d) σ-Cell-N model’s prediction. (e) σ-Cell-RLTV model’s

prediction. (f) σ-LSTM model’s prediction. 145

5.6 The following plot illustrates the prediction for out-of-sample BTCUSDT

pair data for Different Forecasting Models: (a) GJR-GARCH model’s

prediction. (b) HAR model’s prediction. (c) LSTM-RV model’s

prediction. (d) σ-Cell-N model’s prediction. (e) σ-Cell-RLTV model’s

prediction. (f) σ-LSTM model’s prediction. 146

16

Chapter 1

Introduction

Volatility transcends its role as a statistical metric. Volatility holds an integral role

in financial markets, shaping risk environments, informing trading strategies, and

influencing decision-making. Consequently, volatility has emerged as a foundational

construct in finance, garnering extensive research attention.

Volatility is a fundamental concept in finance that quantifies the extent of price

fluctuations for a financial asset. It acts as a crucial proxy for risk in financial markets.

High volatility often indicates elevated risk and substantial price changes, whereas low

volatility suggests more stable market conditions Poon and Granger [2003]. Given

that the pricing of derivative financial instruments is directly related to the implied

volatility of the underlying assets, understanding volatility is essential for the valuation

and trading of these instruments Gatheral [2006]. Furthermore, the derivatives market

has seen significant growth in recent decades, making the modeling and forecasting of

volatility increasingly vital for both researchers and practitioners Figlewski [2008].

Early stochastic models for price changes, such as Brownian motion and the Wiener

process, provided foundational insights into asset price volatility. However, these models

are limited in their ability to capture all the empirical nuances of price fluctuations

Francq and Zakoian [2010]. More contemporary models, like those in the Autoregressive

Conditional Heteroscedasticity (ARCH) family, aim to characterize volatility through a

conditional process Engle [1982b]. In these models, the conditional variance fluctuates

over time, while the unconditional variance remains relatively stable Francq and

Zakoian [2010]. Despite their contributions, traditional volatility models face challenges,

17

Chapter 1: Introduction

including reliance on strong assumptions and the inherent difficulty of directly observing

volatility.

In response to these limitations, researchers have explored alternative methods for

modeling and forecasting volatility. One such method is realized volatility (RV), which

estimates the integrated variance of a stochastic process over a given timeframe, offering

a more precise measure of time-varying volatility Andersen et al. [2003]. Realized

volatility is particularly beneficial for capturing the cumulative variability in stock

price dynamics and facilitating the development of more advanced financial models

that account for the complexities of market dynamics Corsi et al. [2012].

Despite advancements in volatility modeling, traditional methods often rely on

strong assumptions and encounter difficulties capturing the intricate temporal structures

inherent in financial markets. Moreover, these approaches grapple with the challenge

of directly observing volatility, which is often latent and unobservable Cavalcante et al.

[2016].

Machine learning techniques, particularly Neural Networks (NNs), have been

introduced to address these challenges in recent years. While NNs hold the potential to

learn complex, non-linear relationships in data, their application in volatility forecasting

has produced mixed results Krauss et al. [2017]. Among the various neural network

architectures, RNNs have effectively handled sequential data Fischer and Krauss [2018].

LSTM cells, a specialized variant of RNNs, mitigate the issue of diminishing memory

for early inputs through gated mechanisms that regulate information flow Hochreiter

and Schmidhuber [1997a]. However, LSTM models have the drawback of requiring

the tuning of a large number of training parameters, thereby increasing computational

costs and complicating hyperparameter optimization for long sequences Greff et al.

[2016].

Despite the increasing adoption of machine learning techniques, including NNs, these

methods have yet to improve volatility prediction substantially. This shortfall represents

a critical gap in machine learning and financial literature, raising the question: Can

machine learning techniques be effectively tailored to capture the nuances of financial

volatility?

Addressing this question, our study investigates:

18

Chapter 1: Introduction

• Can LSTM-based RNNs capture the temporal dynamics of realized volatility?

• How does the optimized LSTM model perform compared to established

Heterogeneous Autoregressive (HAR) and Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) models in forecasting realized volatility?

• Is it possible to enhance the performance of volatility prediction tasks by

integrating RNNs with domain-specific knowledge?

• Can the addition of time-varying parameters improve the performance of these

models in volatility prediction tasks?

• Can a modified LSTM RNN cell, enriched with domain knowledge, enhance the

performance of machine learning techniques in volatility prediction?

Chapter 2 provides a comprehensive literature review on volatility modeling, covering

various approaches such as deterministic, probabilistic, and hybrid models. We also

present essential background information on Recurrent Neural Networks, their advanced

cell types, and approaches for assessing model performance.

Chapter 3 investigates how Neural Networks, specifically Long Short-Term Memory

LSTM-based RNN, can effectively capture the temporal structure of realized volatility.

We explore using LSTM models with hyperparameter optimization and specific input

dimension to forecast realized volatility. The chapter demonstrates neural networks’

effectiveness in forecasting volatility by comparing their predictive capabilities with

established models such as HAR and GARCH.

In Chapter 4, we introduce the σ-Cell type models, a specialized design of RNN

cells. We discuss how the σ-Cell integrates principles from GARCH, incorporates a

stochastic layer, and employs time-varying parameters to address the dynamic nature

of financial volatility. We show that this combination creates a generative network that

captures the joint distribution of the stochastic volatility process while approximating

the conditional distribution of latent variables given the observables. We further

describe how we utilize a log-likelihood-based loss function and develop a specialized

Adjusted-Softplus activation function to enhance the model’s efficacy.

19

Chapter 1: Introduction

Chapter 5 introduces the σ-LSTM approach, a novel method that combines the

advantages of LSTMs with established methodologies in volatility modeling. We

elucidate how the σ-LSTM incorporates concepts from the σ-Cell model and the

theoretical foundations of latent stochastic processes within an LSTM-based neural

network framework. We assess how this new approach addresses the limitations of

traditional volatility models by leveraging the capabilities of machine learning and

neural networks to capture the temporal structure of realized volatility more effectively.

Chapter 6 presents recommendations for future research, while Chapter 7 concludes

the study.

The significance of this research lies in its potential to enhance the modeling

and forecasting of financial market volatility. This study aims to offer a nuanced

understanding of volatility dynamics by employing machine learning techniques,

specifically neural networks. Such insights could broadly affect risk management,

trading strategies, and financial policy formulation.

This work contributes to the existing literature by leveraging machine learning

techniques to offer a novel perspective on volatility prediction. Specifically, by

investigating the capability of neural networks to capture the temporal structure

of realized volatility and by introducing the σ-Cell approach, this study aims to

advance both the understanding and prediction of volatility in financial markets.

In summary, this research seeks to further the field of financial volatility modeling

by integrating machine-learning techniques with domain-specific knowledge. By

introducing the σ-Cell, σ-LSTM approaches and exploring LSTM-based neural networks,

this study aims to provide a fresh perspective on volatility prediction, thereby

contributing to ongoing efforts to understand and forecast fluctuations in financial

markets.

20

Chapter 2

Background

2.1 Volatility Models

Volatility forecasting plays a pivotal role in finance and risk management Poon and

Granger [2003], Engle [1982b], Jorion et al. [2007]. As a gauge of market risk and

uncertainty, accurate volatility forecasts guide portfolio allocation, option pricing, and

value-at-risk calculations Brooks and Persand [2003], Giot [2005]. This makes volatility

modeling a crucial capability for investors, financial institutions, and policymakers

Engle [1982b], Angelidis and Degiannakis [2008]. However, volatility forecasting remains

challenging due to the latent and dynamic nature of volatility arising from fluctuating

market conditions Tsay [2005], Francq and Zakoian [2010].

Financial time series exhibits pervasive stylized facts like heteroskedasticity, fat tails,

and long memory Cont [2001]. For asset returns Xt = logPt+1−logPt, the non-constant

volatility presents difficulties for inference and prediction Tsay [2005]. Volatility

clustering and sudden spikes violate the constant variance assumption underlying

classical methods Francq and Zakoian [2010].

While extensive research explores volatility modeling, gaps remain in translating

models into practice Satchell and Knight [2011]. Many studies focus on statistical

significance rather than economic value and real-world usage Patton and Sheppard

[2009]. This highlights the need for thoughtful volatility model assessment attuned to

industry objectives. Overall, volatility forecasting remains active as markets evolve

and new models are developed to manage risk in an ever-changing world.

21

Chapter 2: Background 2.2.1. Volatility Models

Modeling asset returns is complicated by time-varying and latent volatility dynamics.

Let returns be defined asXt = logPt+1−logPt, where Pt is the asset price. The volatility

σt is the standard deviation of returns conditional on past information Ft−1 Shreve

et al. [2004], equation 2.1.

σ2
t = Var[Xt | Ft−1] (2.1)

Volatility evolves randomly over time, driven by fluctuating market conditions

and economic factors Poon and Granger [2003]. This violates the constant variance

assumption of basic statistical models Tsay [2005].

Classical financial models like Black-Scholes often disregard heteroskedasticity for

tractability Black and Scholes [1973]. However, empirical evidence shows volatility

clustering, sudden spikes, and long memory patterns Ding et al. [1993], Poon [2005],

Francq and Zakoian [2010]. Capturing these dynamics requires flexible stochastic

volatility models Kim et al. [1998].

Popular approaches include GARCH models that represent volatility as an

autoregressive process Bollerslev [1986], stochastic volatility models with an unobserved

latent volatility process Hull and White [1987b], realized volatility models using

high-frequency data Barndorff-Nielsen and Shephard [2002b], and hybrid methods

Engle et al. [2013]. Each has advantages and tradeoffs for modeling complex volatility

dynamics.

2.1.1 GARCH family models

The ARCH model, introduced by Robert Engle, addresses heteroskedasticity by

setting the conditional variance process as autoregressive and modeling log returns as

volatility-adjusted white noise where the innovations are independent and identically

distributed (i.i.d) with zero mean and unit variance Engle [1982a]. To ensure positive

volatility, all model coefficients must be nonnegative.

Bollerslev (1986) further improved the ARCH model by introducing the GARCH

(Generalized Autoregressive Conditional Heteroskedasticity) model, integrating an

additional autoregressive structure within the conditional variance, equation 2.2

22

Chapter 2: Background 2.2.1. Volatility Models

Bollerslev [1986].

GARCH models are used to estimate and forecast volatility by modeling the

conditional variance of returns. They capture the effects of past squared returns and

past conditional variances on the current conditional variance. GARCH models are

widely used in finance due to their ability to handle volatility clustering, leverage effects,

and changing conditional volatility, equation 2.2

σ2
t = α0 +

p∑
i=1

αix
2
t−i +

q∑
j=1

βjσ
2
t−j (2.2)

xt ∼ i.i.d. N
(
0, σ2

t

)
(2.3)

The GARCH model, particularly the GARCH(1,1), is favored for financial time

series modeling due to its tractability and the inherently discrete nature of financial

data Francq and Zakoian [2010].

Volatility in financial markets is characterized by time-varying processes and

parameters, which complicates the estimation of risk and uncertainty measures like

σ. Various shapes of returns distributions have been identified, including fat tails,

volatility clustering, and leverage effects Engle [1982b], Bollerslev [1986], Black [1976],

Nelson [1990], Mandelbrot [1967], Fama [1965]. These stylized facts have significant

implications for volatility prediction Diebold [1998], Poon and Granger [2003].

Volatility exhibits patterns such as clustering, where returns tend to group in high

or low volatility periods, and leverage effects, where volatility increases when the market

drops. Other features include mean reversion, where volatility reverts to a long-term

mean, and cross-correlation, where volatility correlations across assets and markets

often strengthen during downturns Diebold [1998].

Despite its utility, the traditional GARCH model has limitations, such as the

assumption of normality and difficulty capturing sudden volatility jumps. To address

these issues, various extensions have been introduced. For example, the GJR-GARCH

model captures asymmetric volatility reactions 2.4. In equation 2.4, It−1 is an indicator

function that takes the value 1 if xt−1 < 0 and 0 otherwise Glosten et al. [1993a].

23

Chapter 2: Background 2.2.1. Volatility Models

σ2
t = α0 +

q∑
j=1

βjσ
2
t−j +

p∑
i=1

αix
2
t−i + γx2

t−1It−1 (2.4)

Similarly, the TARCH model is another extension 2.5. Let x+
t−1 be xt−1 if xt−1 > 0

and 0 otherwise, and x−
t−1 be xt−1 if xt−1 ≤ 0 and 0 otherwise Zakoian [1994].

σt = α0 +

q∑
j=1

βjσt−j +

p∑
i=1

α+
i x

+
t−i +

p∑
i=1

α−
i x

−
t−i (2.5)

Another notable variant is Nelson’s EGARCH model, which formulates dependencies

in log variance log (σ2
t), as shown in equation 2.6, where g (Zt) = θZt+λ (|Zt| − E (|Zt|)).

The formulation for g allows the sign and the magnitude to have separate effects on the

volatility, which provides a more nuanced understanding of the asymmetric relationships

between observations and subsequent volatility shifts Nelson [1991].

log σ2
t = ω +

q∑
k=1

βkg (Zt−k) +

p∑
k=1

αk log σ
2
t−k (2.6)

The GARCH family of models, building on the foundational ARCH model, offers

a robust framework to work with the complex financial time series and the dynamic

volatilities therein. With each variant addressing specific nuances, the GARCH models

have their place as indispensable tools in mathematical finance.

2.1.2 Stochastic Volatility Models

Stochastic volatility (SV) models allow volatility to follow a stochastic process rather

than being constant. This better captures the time-varying and random nature of

volatility in financial markets Hull and White [1987b].

Stock prices are often modeled using stochastic differential equations (SDEs) due to

the inherent randomness in their movements, equation 2.7, where S is the stock price,

µ is the drift coefficient, σ is the diffusion coefficient, and Wt is the Wiener process or

Brownian Motion Mandelbrot [1967].

dS = µSdt+ σSdWt, (2.7)

24

Chapter 2: Background 2.2.1. Volatility Models

The Geometric Brownian Motion (GBM) model, assuming a constant volatility σ,

is given by equation 2.8, where S0 is the initial stock price.

S(t) = S0e
(µ− 1

2
σ2)t+σWt (2.8)

The zt is defined as a noise term in the context of the SV model, equation 2.9.

log(σ2
t) = η + ϕ(log(σ2

t−1)− η) + zt (2.9)

In this context, zt is a white noise or shock term that introduces randomness into

the log volatility process. Typically, this term is assumed to be normally distributed

with a mean of zero and some variance σ2
z .

zt ∼ N
(
0, σ2

z

)
(2.10)

It represents unanticipated changes or shocks in the log volatility that are not

explained by the model’s other components. In time series analysis, noise or shock

terms like zt are essential as they capture unpredictable fluctuations that deterministic

or autoregressive components of the model might not capture.

While GARCH models treat volatility as a deterministic process, SV models

incorporate it as a latent stochastic process that evolves randomly over time Taylor

[1982]. Early SV models, such as the Hull-White model Hull and White [1987b], model

log volatility as a mean-reverting Ornstein-Uhlenbeck process Ornstein [1930].

The Heston model Heston [1993] allows volatility to follow a mean-reverting

square-root process (the Cox-Ingersoll-Ross or CIR process) that’s correlated with

returns. This correlation permits closed-form pricing solutions, making the Heston

model popular for options pricing and risk management. Notably, the model captures

the volatility smile observed in financial markets. The Heston model’s SDEs are

represented in equations 2.11 and 2.12

dSt = µStdt+
√
vtStdW

1
t (2.11)

25

Chapter 2: Background 2.2.1. Volatility Models

dvt = κ(θ − vt)dt+ σ
√
vtdW

2
t (2.12)

For empirical analysis, discrete-time SV models have grown in popularity. One

basic specification models log-volatility as an AR(1) process with an additive noise

term zt ∼ N (0, σ2
z), where ϕ determines persistence Jacquier et al. [2002], Kim et al.

[1998].

Various extensions of the basic SV model have been proposed to capture more

empirical features. For example, SVJ models incorporate jumps in returns and volatility

Bates [1996]. SVCJ and SABR models further extend the framework, with the

latter using a lognormal process for volatility Duffie et al. [2000], Hagan et al. [2002].

Multivariate SV models estimate stochastic volatility for multiple assets via maximum

likelihood Sandmann and Koopman [1998] or Bayesian MCMC techniques Jacquier

et al. [2002].

In conclusion, SV models offer a flexible approach for modeling complex empirical

dynamics, including volatility clustering, jumps, and leverage effects Shephard [2005].

Available in both continuous and discrete-time formats, advancements in Bayesian

methods and MCMC have enhanced the estimation of these latent volatility models.

2.1.3 Realized Volatility

Realized volatility (RV) provides a model-free, nonparametric estimate of daily volatility

based on high-frequency intraday returns Andersen et al. [2003], Barndorff-Nielsen and

Shephard [2002a]. Let p(t) denote the log price of an asset at time t. The intraday

return over a period ∆ is defined in equation 2.13.

rt−j∆ = pt−j∆ − pt−(j+1)∆ (2.13)

The daily RV is then calculated as the square root of summed squared intraday

returns Andersen et al. [2003], equation 2.14.

RV d
t =

√√√√M−1∑
j=0

r2t−j∆ (2.14)

26

Chapter 2: Background 2.2.1. Volatility Models

Under general semimartingale conditions, as the frequency of returns increases, RV is

a consistent estimator of the integrated variance (IV) Mancini [2009], Barndorff-Nielsen

and Shephard [2002b], equation 2.15.

IV d
t =

∫ t−1d

t

σ2(ω)dω (2.15)

Where IV represents the true latent daily volatility. This demonstrates RV as a

robust realized measure of volatility Patton [2011]. However, market microstructure

noise can bias RV, warranting adjustments Hansen and Lunde [2006]. Overall, RV

allows model-free volatility estimation, useful for forecasting and risk management

Andersen et al. [2007].

Realized volatility (RV) calculated from high-frequency intraday returns provides

an accurate nonparametric measure of volatility Andersen et al. [2003]. However, RV

alone does not model dynamics. Heterogeneous autoregressive (HAR) models forecast

RV by incorporating its persistence across different time horizons Corsi [2009].

The heterogeneity in HAR models reflects varying trading horizons and volatility

perspectives among market participants Müller et al. [1993]. Short-term traders react

to daily fluctuations, while longer-term investors focus on weekly or monthly volatility

Corsi [2009]. The HAR model captures this by including lagged RV components at

daily, weekly, and monthly frequencies.

RVt = c+ βdRV
(d)
t−1 + βwRV

(w)
t−1 + βmRV

(m)
t−1 + ϵt (2.16)

In equation 2.16 RV
(d)
t , RV

(w)
t , and RV

(m)
t are the daily, weekly (5-day), and

monthly (22-day) RV, respectively. The additive cascade structure allows volatility

components across horizons to influence forecasts.

To address issues related to negativity and to approximate normal distributions, the

log-transformed RV is often used. The log-transformed RV aggregated over n periods

is given by:

log RVt(n) =
1

n
(log RVt+ . . .+ logRVt−n+1) (2.17)

This log transformation is particularly useful for modeling RV dynamics across

27

Chapter 2: Background 2.2.1. Volatility Models

different investment horizons, as it allows for a more stable and accurate estimate of

realized volatility Corsi et al. [2012].

log RVt+ 1d(d) = c+ β(d) log RVt(d) + β(w) log RVt(w) + β(m) log RVt(m) + ϵt+1d (2.18)

The HAR model with jumps (HAR-CJ) incorporates separate jump and continuous

sample path variance components into the forecasting model Corsi et al. [2012].

This allows disentangling the impacts of jumps vs. diffusion-based continuous price

movements on future volatility. An alternative approach models log jumps and

continuous log RV in the HAR structure Andersen et al. [2012]. Incorporates lagged

log realized variances, bipower variation, and log realized semivariances into the HAR

model Zheng et al. [2014]. This captures volatility asymmetry and downside risk.

HAR models effectively incorporate the heterogeneity and memory of volatility

arising from varying investor horizons Bollerslev et al. [2016]. Empirical studies show

HAR forecasts outperform GARCH models and various volatility proxies Corsi [2009],

Patton and Sheppard [2015]. Extensions incorporate other factors like volume, liquidity,

and returns Fuertes et al. [2009]. Overall, the flexible HAR framework provides an

intuitive approach to modeling RV dynamics.

2.1.4 Hybrid Approaches

Financial volatility modeling is a rapidly evolving field, with researchers continually

exploring hybrid approaches that amalgamate various models to capture intricate

patterns in financial time series data Shephard [2005]. These hybrid models have

gained significant attention in volatility forecasting for their ability to leverage the

strengths of different modeling techniques. Broadly, these hybrid approaches can be

categorized into four types: Statistical-Statistical Hybrids, Machine Learning-Machine

Learning Hybrids, Statistical-Machine Learning Hybrids, and Ensemble Approaches.

Each category typically encapsulates specialized modules, rendering these models

versatile and adaptive.

One prevalent approach combines ARCH-type and SV models Engle and Gallo

28

Chapter 2: Background 2.2.1. Volatility Models

[2006]. In this configuration, the ARCH-type model captures autoregressive patterns

in conditional volatility, while the SV model accounts for stochastic volatility. The

outputs from both models are then synthesized to produce the final volatility prediction

Shephard [2005].

A different hybrid model that integrates elements of GARCH and SV models is

the GAS model proposed Christoffersen et al. [2008]. These hybrids aim to capture

both autoregressive and stochastic components of volatility. Examples include the

SV-GARCH Harvey et al. [1994], GARCH-Jump Maheu and McCurdy [2004], and

SV-Jump models Eraker et al. [2003]. While computationally more demanding than

standalone GARCH or SV models, they offer more accurate volatility estimates by

leveraging the strengths of both frameworks Angelidis et al. [2008]. The flexibility of

hybrid models makes them appealing, though estimation complexity remains a practical

challenge.

Another innovative approach utilizes the GARCH-MIDAS (Mixed Data Sampling)

model to account for the influence of macroeconomic indicators on volatility. This

model integrates high-frequency financial data with low-frequency macroeconomic data.

The GARCH model is applied to the high-frequency data, while the MIDAS approach

incorporates macroeconomic indicators through a set of dynamically updated weights

Engle et al. [2013].

Another hybrid approach merges the GARCH model with the Markov Switching

model. Here, the GARCH model captures autoregressive patterns in conditional

volatility, while the Markov Switching model is applied to the residuals to capture

regime-switching behavior Hamilton [2020].

Machine learning techniques have been increasingly employed in financial tasks

such as anomaly detection and volatility prediction Cavalcante et al. [2016]. Despite

their ability to learn complex patterns from data without imposing rigid functional

forms, these machine-learning approaches have shown mixed results in outperforming

traditional econometric models for predicting realized volatility Van Dijk and Franses

[2003]. This inconsistency in performance could be attributed to challenges in capturing

asymmetric volatility dynamics, which arise from factors like heterogeneous agent

behavior and information impact effects Black [1976], Nelson [1990].

29

Chapter 2: Background 2.2.1. Volatility Models

Similarly, neural networks have been applied to various forecasting tasks, including

stock price prediction Khan [2011] and volatility forecasting Bucci [2020]. The

performance of these models has been inconsistent; some studies indicate poor

out-of-sample forecasting performance for nonparametric models like neural networks

Clements and Krolzig [1998], Pavlidis et al. [2012], while others report promising results

Rosa et al. [2014], Miura et al. [2019]. This further underscores the challenges and

limitations of using machine learning techniques in financial forecasting tasks.

The Neural Stochastic Volatility Model (NSVM) is an unconditional generative

model that uses two pairs of RNNs and Multi-Layer Perceptrons (MLPs) to generate

sequences of latent and observable variables over time Luo et al. [2018].

A novel hybrid model has emerged that combines GARCH models with Long

Short-Term Memory (LSTM) networks, a specific type of Recurrent Neural Networks

(RNNs). This approach initially applies GARCH models to financial time series data and

then incorporates these predictions as input features into LSTM networks Hochreiter

and Schmidhuber [1997b], Hu et al. [2020].

Recent studies have introduced unique models like RNNs that capture the ω-constant

of the GARCH process Nguyen et al. [2020] and hybrids that combine Stochastic

Volatility (SV) models with Simple Recurrent Units (SRU) Nguyen et al. [2022]. These

models show promise in capturing long-term memory effects and auto-dependence of

volatility.

One of the emerging trends is the integration of traditional volatility models

with RNNs. The σ-Cell methodology, which combines the GARCH process with

RNN dynamics, introduces a fresh perspective on volatility estimation Rodikov and

Antulov-Fantulin [2023].

Financial volatility modeling is marked by a rich tapestry of hybrid models, each

with unique strengths and limitations. As the field continues to evolve, it remains

crucial to rigorously assess these models’ performance, especially in out-of-sample

forecasting tasks.

30

Chapter 2: Background 2.2.2. Machine Learning

2.2 Machine Learning

The utility of machine learning algorithms becomes particularly evident when

addressing computational tasks of high complexity that defy manual programming.

Consider, for example, the abstract problem of inferring underlying structures within a

high-dimensional data space; traditional algorithmic approaches may prove insufficient.

However, by leveraging a plethora of labeled data instances, one can employ supervised

learning techniques to construct an effective predictive model. To formalize the concept

of supervised learning, let us consider an input space X and an output space Y . Let D

represent the empirical distribution of observed data, comprising tuples (x, y) where

x ∈ X serves as the input and y ∈ Y is the corresponding ground truth output. The

objective is to identify a function f : X → Y that minimizes the prediction error,

quantified as the discrepancy between the predicted and true output values.

While the ultimate goal is to minimize the test error, which is the expected error

over the entire distribution D, this is generally infeasible due to the unobservable nature

of D. Consequently, the focus shifts to minimizing the training error, which serves as

an approximation of the test error. A critical challenge herein lies in ensuring that a

model that performs well on the training set also generalizes effectively to unseen data,

a dilemma commonly referred to as the generalization problem Hastie et al. [2009],

Bishop and Nasrabadi [2006].

One strategy to address the generalization problem is to constrain the hypothesis

space F from which the function f is selected. If the cardinality of F is relatively

small in comparison to the size of the training set, the training error becomes a reliable

estimator of the test error. However, this approach has its limitations; specifically, the

optimal test error achievable may exceed acceptable thresholds.

The dimensionality of F should be commensurate with the complexity of the training

data. While a smaller F simplifies the learning process, it may lack the expressive

power to capture the intricacies of the task at hand. Conversely, an overly complex F

risks overfitting to the training data. There exists no universal criterion for selecting

the optimal F ; the choice is contingent upon domain-specific knowledge and empirical

evidence from related tasks.

Upon the selection of an appropriate hypothesis space F and the accumulation

31

Chapter 2: Background 2.2.2. Machine Learning

of a sufficiently large training data set, the subsequent computational challenge lies

in identifying a function f within F that minimizes the training error. Although

the search for an optimal function is computationally intractable in the general case,

one can resort to optimizing smoother approximations of F through gradient-based

methods.

Let fθ denote a smooth approximation of F , parameterized by θ. Assuming that

both fθ and the loss function L are differentiable, the gradient of the training error with

respect to θ can be computed analytically. Under these conditions, Gradient Descent

(GD) serves as a viable optimization algorithm for minimizing the training error Ruder

[2016]. In GD, the parameter vector θ is iteratively updated in the direction of the

negative gradient, thereby reducing the training error. The magnitude of these iterative

updates is governed by the learning rate ε, a hyperparameter that necessitates careful

tuning.

The convergence properties of GD have been extensively studied and are

well-understood under specific conditions. For instance, when the objective function

to be minimized is a positive definite quadratic function, GD exhibits predictable

convergence rates Nesterov [2003]. For more general classes of functions, although an

exact rate of convergence may not be readily derivable, empirical estimates can often

provide insights into the algorithm’s efficiency in locating a local minimum.

2.2.1 RNN

Recurrent Neural Networks (RNNs) are a type of neural network designed to handle

sequential data by maintaining a hidden state that carries information across time

steps. RNNs have been applied to time series forecasting, natural language processing,

and other sequential tasks. The ”vanishing gradient” problem limits the ability of

RNNs to learn long-term dependencies in the data. Various modifications, such as the

LSTM and GRU cells, have been proposed to address this limitation.

RNNs send information cyclically, encompassing both past and current inputs. The

way RNNs relay information from a prior iteration to its hidden layer is captured

mathematically Zhang et al. [2021]. This involves defining the hidden and input states

at time t, matrices representing input-to-hidden and hidden-to-hidden connections,

32

Chapter 2: Background 2.2.2. Machine Learning

and a bias. The aggregated data then interacts with an activation function to ensure

compatibility with backpropagation, the equations for hidden and output states 2.19,

2.20.

ht = ϕh (XtWxh + ht−1Whh + bh) (2.19)

Ot = ϕo (htWho + bo) (2.20)

Considering that ht considers its preceding state, all prior hidden states influence

it, we can train RNNs by the Backpropagation technique.

In the process of passing our input Xt forward through the network, we sequentially

calculate the hidden state Ht and the output state Ot. Subsequently, we employ a loss

function L(O,Y) to quantify the disparity between all the computed outputs Ot and

their corresponding target values Yt, equation 2.21.

L(O,Y) =
T∑
t=1

ℓt (Ot,Yt) (2.21)

This aggregates every individual loss value ℓt from each iterative step. Depending

on the problem, this loss term ℓt can be defined in multiple ways, such as Mean Squared

Error, Hinge Loss, and Cross Entropy Loss; in our case, we employed not deterministic,

as MSE or MAE, but probabilistic loss using MLE equation 4.30.

The backpropagation approach to cater to RNNs. It unfolds the RNN to resemble a

conventional Feedforward Neural Network, making it apt for backpropagation. During

the propagation of data forward through this network, hidden and output states are

determined in a sequence. A loss function measures the discrepancy between the

generated outputs and the target values.

Neural networks can handle complex patterns in data, but they are deterministic,

meaning they always produce the same output for a given input. One way to address

this is by adding latent variables to the neural networks, but this can make calculations

hard. Recent research has found a way to make these calculations more manageable by

using a method called variational inference, when we add hidden continuous variables

into the neural network structure Kingma and Welling [2013], Rezende et al. [2014].

33

Chapter 2: Background 2.2.2. Machine Learning

Another idea is to come up with a way to combine observable and hidden variables in a

sequenceChung et al. [2015], while another possibility is to use different types of layers

in the network that take advantage of the network’s Markovian properties Fraccaro

et al. [2016].

2.2.2 Advanced Cells

In more recent developments, various RNN architectures, including LSTM Hochreiter

and Schmidhuber [1997c], Gated Recurrent Units (GRU)Cho et al. [2014a], and

Statistical Recurrent Units (SRU)Oliva et al. [2017], have demonstrated significant

potential in forecasting time-series data sets. Among these, the LSTM architecture

stands out, especially for its exemplary performance in the intricate domain of volatility

prediction Bucci [2020], Rodikov and Antulov-Fantulin [2022].

Advanced cells, such as the Gated Recurrent Unit (GRU) and the Peephole LSTM

Gers et al. [2000], offer variations on the LSTM architecture to improve performance or

reduce computational complexity. These cells have been used in various applications

and have shown improvements over traditional LSTMs in specific tasks Gers et al.

[2000]. The choice of cell type depends on the problem, the data, and the available

computational resources.

2.2.3 LSTM

Long Short-Term Memory (LSTM) networks are a type of RNN with a more

sophisticated cell structure designed to handle long-term dependencies better. LSTMs

use gates (input, forget, and output gates) to control the flow of information within the

cell. They have been widely used in applications requiring sequential data processing,

including time series forecasting and natural language processing. LSTMs have shown

promise in modeling and forecasting volatility in financial markets.

LSTM is a specific cell type in a recurrent neural network capable of catching

long-term dependencies in data and fixing this exploding or vanishing gradient issue.

Achievement is possible due to the cell state and a combination of four gates interacting.

The ability to eliminate or add information to the cell state, carefully regulated by gates

structures, is a crucial difference with RNN. LSTM cells contain an additional state,

34

Chapter 2: Background 2.2.2. Machine Learning

which helps to internally maintain input memory, making them especially suitable for

solving problems associated with sequential. Cell state conveys relative information

along the entire chain of the sequence. The state of the cell reflects the corresponding

information throughout the processing of the series, so data from earlier time steps can

participate in later time steps Olah [2015].

ft = σ (Wf · [ht−1, xt] + bf) (2.22)

it = σ (Wi · [ht−1, xt] + bi) (2.23)

C̃t = tanh (WC · [ht−1, xt] + bC) (2.24)

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.25)

ot = σ (Wo [ht−1, xt] + bo) (2.26)

ht = ot ∗ tanh (Ct) (2.27)

2.2.4 GRU

The Gated Recurrent Unit (GRU) is a variation of the LSTM architecture that simplifies

the learning process by eliminating the cell state. On the other hand, the Statistical

Recurrent Unit (SRU) is designed to discern long-term dependencies in data. It achieves

this by leveraging simple moving averages of summary statistics and linear combinations

of historical data.

GRU is a new generation of recurrent neural networks, very similar to LSTMs, a

variation on the LSTM, introduced by Cho et al. [2014b]. The update gate combines the

forget and input gates, and the cell state merges with the hidden state called the reset

gate. As a result, the model is more straightforward, and the training procedure takes

less time than the net with standard LSTM instead of GRU. By this modification, LSTM

and GRU fix the vanishing/exploding gradient problem encountered by traditional

RNN

35

Chapter 2: Background 2.2.2. Machine Learning

zt = σ (Wz · [ht−1, xt]) (2.28)

rt = σ (Wr · [ht−1, xt]) (2.29)

h̃t = tanh (W · [rt ∗ ht−1, xt]) (2.30)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (2.31)

2.2.5 MUT1 and MUT2

MUT1 and MUT2 are novel RNN cells designed to capture different aspects of temporal

dependencies in sequences Jozefowicz et al. [2015]. MUT1 architecture is defined by

equations 2.32-2.34

z = sigm (Wxzxt + bz) (2.32)

r = sigm (Wxrxt +Whrht + br) (2.33)

ht+1 = tanh (Whh (r ⊙ ht) + tanh (xt) + bh)⊙ z + ht ⊙ (1− z) (2.34)

Here, z is the update gate, which decides how much of the new hidden state should

be updated. r is the reset gate, which determines how much of the past hidden state

ht should be forgotten. ht+1 is the new hidden state, which is a combination of the

previous hidden state ht and a candidate hidden state generated using r and z.

The unique feature of MUT1 is the use of the hyperbolic tangent function directly

on the input xt, which adds an additional non-linearity to the candidate hidden state.

MUT2 is another RNN cell that aims to capture temporal dependencies but with

slight modifications to the MUT1 architecture. The equations defining MUT2 in

2.35-2.37.

z = sigm (Wxzxt +Whzht + bz) (2.35)

r = sigm (xt +Whrht + br) (2.36)

36

Chapter 2: Background 2.2.2. Machine Learning

ht+1 = tanh (Whh (r ⊙ ht) +Wxhxt + bh)⊙ z + ht ⊙ (1− z) (2.37)

Similar to MUT1, z is the update gate, and r is the reset gate. However, in MUT2,

the update gate z is influenced by both the current input xt and the previous hidden

state ht. Additionally, the candidate hidden state in ht+1 is influenced by a weighted

sum of the current input xt, unlike in MUT1, where a hyperbolic tangent of xt is

used. Both MUT1 and MUT2 aim to provide a nuanced understanding of temporal

dependencies in sequence data. They offer variations in the gating mechanisms and the

generation of the candidate hidden state, allowing for flexibility in capturing different

types of sequence patterns.

2.2.6 Concluding Remarks on RNN Cell Types

In summary, various RNN architectures have been developed to address the challenges of

modeling sequential data. LSTM networks have been particularly effective in time-series

forecasting, demonstrating superior performance Siami-Namini et al. [2019], Song et al.

[2020].

However, other architectures like GRU offer advantages in terms of computational

efficiency. GRUs have been shown to converge faster during the training process,

making them a suitable choice for applications where computational resources or time

constraints Cho et al. [2014b].

The more recent MUT1 and MUT2 cells Jozefowicz et al. [2015] offer interesting

alternatives. Preliminary studies suggest these architectures may be particularly

well-suited for audio sequence modeling.

Therefore, the choice of RNN cell type should be guided by the specific requirements

of the task, the nature of the data, and the available computational resources. While

LSTMs may offer the best performance in many scenarios, the faster convergence

of GRUs and the specialized capabilities of MUT1 and MUT2 make them worthy

contenders for specific applications.

37

Chapter 2: Background 2.2.2. Machine Learning

2.2.7 Backpropagation

Backpropagation is the optimization algorithm that trains neural networks, including

RNNs and LSTMs. It involves computing the gradient of the loss function with respect

to the model parameters and updating the parameters to minimize the loss.

In the architecture of a RNN, we encounter three distinct weight matrices, Wxh,Whh

and Who, Equations 2.19 and 2.20. It is imperative to compute the partial derivatives

with respect to each of these weight matrices for the optimization process. Utilizing

the chain rule of calculus, we derive the expression for Who equation 2.38.

∂L
∂Who

=
T∑
t=1

∂ℓt
∂Ot

· ∂Ot

∂ϕo

· ∂ϕo

Who

=
T∑
t=1

∂ℓt
∂Ot

· ∂Ot

∂ϕo

·Ht (2.38)

For the partial derivative with respect to Whh equation 2.39.

∂L
∂Whh

=
T∑
t=1

∂ℓt
∂Ot

· ∂Ot

∂ϕo

· ∂ϕo

∂Ht

· ∂Ht

∂ϕh

· ∂ϕh

∂Whh

=
T∑
t=1

∂ℓt
∂Ot

· ∂Ot

∂ϕo

·Who ·
∂Ht

∂ϕh

· ∂ϕh

∂Whh

(2.39)

For the partial derivative with respect to Wxh, equation 2.40.

∂L
∂Wxh

=
T∑
t=1

∂ℓt
∂Ot

· ∂Ot

∂ϕo

· ∂ϕo

∂Ht

· ∂Ht

∂ϕh

· ∂ϕh

∂Wxh

=
T∑
t=1

∂ℓt
∂Ot

· ∂Ot

∂ϕo

·Who ·
∂Ht

∂ϕh

· ∂ϕh

∂Wxh

(2.40)

Owing to the temporal dependencies inherent in the recurrent neural network

architecture, each Ht is contingent upon its preceding time step, as shown in

Equations2.41 and 2.42.

∂L
∂Whh

=
T∑
t=1

∂ℓt
∂Ot

· ∂Ot

∂ϕo

·Who

t∑
k=1

∂Ht

∂Hk

· ∂Hk

∂Whh

(2.41)

∂L
∂Wxh

=
T∑
t=1

∂ℓt
∂Ot

· ∂Ot

∂ϕo

·Who

t∑
k=1

∂Ht

∂Hk

· ∂Hk

∂Wxh

(2.42)

The rewritten mathematical formulation is represented in Equations 2.43 and 2.44.

38

Chapter 2: Background 2.2.2. Machine Learning

∂L
∂Whh

=
T∑
t=1

∂ℓt
∂Ot

· ∂Ot

∂ϕo

·Who

t∑
k=1

(
W⊤

hh

)t−k ·Hk (2.43)

∂L
∂Wxh

=
T∑
t=1

∂ℓt
∂Ot

· ∂Ot

∂ϕo

·Who

t∑
k=1

(
W⊤

hh

)t−k ·Xk (2.44)

In the process of backpropagation through time (BPTT), we need to store powers

of Wk
hh for each loss term ℓt in the overall loss function L. This can lead to numerical

instability. Precisely, eigenvalues smaller than 1 vanish, and those larger than one

diverge Bengio et al. [1994]. One approach to address the numerical instability is

truncating the sum at a computationally convenient size Zhang et al. [2021], a technique

known as Truncated BPTT. Truncated backpropagation is often considered the best

way to train RNNs Williams and Peng [1990]. It has been effectively used for training

RNNs in tasks like word-level language modeling, showing better results than larger

N -gram models Mikolov et al. [2010, 2011]. It sets an upper bound on the number of

time steps for which the gradient can flow back Sutskever [2013]. This can be thought

of as a moving window of past time steps that the RNN considers, ignoring anything

before the cut-off time step.

An issue with standard BPTT is that it takes a lot of computational power to

update the model’s parameters even once. For example, training an RNN on a sequence

of k elements is as computationally demanding as running both a forward and backward

pass in a neural network with k layers.

We can reduce the computational cost by simply breaking the k-element sequence

into more minor sequences and treating each as a separate training example.

Truncated BPTT is similar to the naive method regarding computational cost per

update, but it’s better at capturing long-term patterns. It processes the sequence

step-by-step and updates the parameters every step by looking back one step. The

model can learn from many steps while keeping the computational cost low. As a

result, the model can use information from far back in the sequence when needed.

Like many neural networks, RNNs suffer from the problem of vanishing or exploding

gradients Arjovsky et al. [2016]. In Equations 9 and 10, the term ∂Ht

∂Hk
introduces

matrix multiplication over a potentially long sequence. Small values than one in this

39

Chapter 2: Background 2.2.2. Machine Learning

multiplication can cause the gradient to vanish with each time step, or conversely, large

values than one can lead to exploding gradients Zhang et al. [2021].

2.2.8 Adam Optimizer

Adam (Adaptive Moment Estimation) is an adaptive gradient descent optimization

algorithm commonly used for training deep neural networks due to its efficiency and low

memory requirements Kingma and Ba [2014]. Unlike vanilla stochastic gradient descent

(SGD), which uses a fixed learning rate, Adam adjusts the learning rate dynamically

during training by estimating first and second moments of the gradient Ruder [2016].

Specifically, Adam computes adaptive learning rates for each parameter by taking

an exponential moving average of the gradient and squared gradient. These moments

are bias-corrected for initialization effects Kingma and Ba [2014]. By adapting the

learning rate per parameter, Adam works well for problems with large parameter spaces

or noisy/sparse gradients Reddi et al. [2019].

Let’s denote the parameters of the model as θ and the objective function (the loss

to be minimized) as J(θ). In the context of training a model, J(θ) is typically the sum

of the log-likelihood loss overall training samples.

At the tth timestep, the update rule for the Adam optimizer is defined in 2.45, 2.46,

2.47, 2.48, 2.49.

mt = β1mt−1 + (1− β1)gt (2.45)

vt = β2vt−1 + (1− β2)g
2
t (2.46)

m̂t =
mt

1− βt
1

(2.47)

v̂t =
vt

1− βt
2

(2.48)

θt+ 1 = θt − η
m̂t√
v̂t + ϵ

(2.49)

In equations 2.45, 2.46, 2.47, 2.48, 2.49 next notations:

• gt denotes the gradient of the objective function w.r.t. the model parameters at

the current timestep t: gt = ∇θJ(θ).

40

Chapter 2: Background 2.2.2. Machine Learning

• mt and vt are estimates of the first and second moments (the mean and the

uncentered variance, respectively) of the gradients.

• m̂t and v̂t are bias-corrected estimates of the first and second moments.

• β1 and β2 are the exponential decay rates for the moment estimates, typically set

to 0.9 and 0.999, respectively.

• η is the learning rate, and ϵ is a small constant for numerical stability, typically

set to 10−8.

In Adam, the step size is computed as an exponential moving average of the gradient

and the squared gradient, which are then bias-corrected. This feature of Adam makes

it suitable for problems with large parameter spaces or when the objective function

has a noisy or sparse gradient, making it a good choice for training recurrent neural

networks.

Extensions of Adam include incorporating Nesterov momentum Dozat [2016],

adaptive normalization techniques Loshchilov and Hutter [2017], and rectified variants

Liu et al. [2019]. ADAptive Moment estimation methods remain widely used for

training neural networks and other differentiable models Ruder [2016].

Other popular adaptive SGD algorithms include RMSprop Igel and Hüsken [2003]

and Adadelta Zeiler [2012]. RMSprop maintains per-parameter learning rates based on

the magnitude of recent gradients. Adadelta further adapts the learning rate based on a

moving window of gradient updates. Together with Adam, these methods demonstrate

the effectiveness of dynamic learning rate adaptation for optimizing complex loss

landscapes Wilson et al. [2017].

2.2.9 Hyperparameters

Hyperparameters are settings that govern the model training process but are not

estimated from data. Selecting optimal hyperparameters is a crucial step in developing

high-performance machine learning models. While model parameters are learned during

training, hyperparameters must be set a priori based on domain expertise, heuristics,

or search strategies Claesen and De Moor [2015]. Major hyperparameters include the

41

Chapter 2: Background 2.2.3. Accuracy Metrics

learning rate, batch size, number of epochs, model architecture (e.g., number of layers

and units), and regularization parameters Goodfellow et al. [2016].

A variety of techniques exist for hyperparameter tuning. Simple methods like

grid search and random search evaluate performance over a manually defined subset

of the hyperparameter space Bergstra and Bengio [2012]. More advanced Bayesian

optimization techniques construct a probabilistic model to guide the search process

towards promising regions Snoek et al. [2012]. The choice of tuning strategy involves

tradeoffs between search efficiency and implementation complexity Feurer and Hutter

[2019].

Proper hyperparameter configuration can substantially influence model accuracy,

training time, and generalization capabilities Maclaurin et al. [2015], Domhan et al.

[2015]. Thoughtful hyperparameter selection tailored to the data set, model class,

and problem setting is critical for developing performant and robust machine learning

solutions. The search for optimal hyperparameters remains an active area of research

across deep learning and other model families.

2.3 Accuracy Metrics

Synthetic data sets, where the true generative process is known, are valuable for

evaluating statistical and machine-learning models Gretton et al. [2009], Moreno-Torres

et al. [2012]. With real-world data, the underlying data-generating process is usually

unknown. Synthetic data provides a means of assessing model performance against a

ground truth Quinonero-Candela et al. [2008]. In time series analysis and econometrics,

synthetic data enables testing volatility predictions when the true volatility path is

observable Francq and Zakoian [2019]. This helps determine model accuracy in volatility

estimation prior to deployment on real financial data.

Synthetic data generation requires specifying a data model that captures key

properties of the real data. For financial data, this may include stylistic properties

like autocorrelation, heteroskedasticity, jumps, and fat tails Cont [2001]. Controlled

experiments can then evaluate model performance under different controlled generative

processes Athey and Imbens [2015]. Cross-validation on real data is still needed, but

42

Chapter 2: Background 2.2.3. Accuracy Metrics

synthetic data provides an additional diagnostic.

Real-world financial data sets also have advantages complementary to synthetic

data. They capture the nuances of actual market conditions Fama [1998]. Economic

events, investor behavior, and market microstructure are naturally embedded O’hara

[1998]. Models developed and tested solely on synthetic data may fail to generalize to

real data. Testing on real data sets from different time periods and markets is essential

Pagan [1996].

In practice, a combination of synthetic and real data is ideal for developing and

evaluating financial models Francq and Zakoian [2019], Francq and Zaköıan [2015].

Synthetic data allows diagnosing accuracy and tuning models. Real data then evaluates

real-world performance across different markets and time periods. The dual use of

synthetic and real data leverages the strengths of each in developing robust and

generalizable models.

2.3.1 Volatility Forecast Evaluation Metrics

Our study utilized multiple models to evaluate their forecasting performance. To

assess the accuracy of these models, we employed multiple approaches. The R2 of

Mincer-Zarnowitz forecasting regressions Mincer and Zarnowitz [1969].

Mean Absolute Error (MAE) metric evaluates the average magnitude of errors

between predicted and observed values without considering their direction, equation

2.50, where σt is the observed value and σ̂t is the predicted value at observation t,

and T is the total number of observations. In contrast to Root Mean Squared Error

(RMSE), MAE treats all errors equally.

MAE =
1

T

n∑
i=1

|σt − σ̂t| (2.50)

Root Mean Squared Error metric assesses the average magnitude of errors between

predicted and observed values, equation 2.51, where σt is the observed value and σ̂t is

the predicted value at observation t, and T is the total number of observations. It is

particularly sensitive to outliers since it gives more weight to larger errors than smaller

ones. A model with a lower RMSE value is considered better fitting.

43

Chapter 2: Background 2.2.3. Accuracy Metrics

RMSE =

√√√√ 1

T

n∑
i=1

(σt − σ̂t)2 (2.51)

The heteroskedasticity adjusted root mean square error (HRMSE) Bollerslev and

Ghysels [1996], which is calculated in equation 2.52, where σt is the variance at time t

and σ̂t is the corresponding forecast. HRMSE is a modified version of the RMSE that

takes into account the presence of heteroscedasticity in the data.

HRMSE =

√√√√ 1

T

T∑
t=1

(
σt − σ̂t

σt

)2

(2.52)

However, as the HRMSE is not considered a robust loss function Patton [2011], we

also employed the QLIKE loss function, defined in equation 2.53.

QLIKE =
1

T

T∑
t=1

(
log σt +

σ̂t

σt

)
(2.53)

The QLIKE loss function measures how well a model predicts a set of observations,

considering both the mean and variance of the predicted values. It is particularly useful

for evaluating volatility models where the focus is on forecasting the variance of returns,

which is robust in the context Patton [2011].

The Negative Log-Likelihood (NLL) metric quantifies the fit of a model to observed

data by calculating the negative logarithm of the likelihood of the observed data given

the model. Lower NLL values indicate a better fit of the model to the observed data.

In this study, NLL is defined as shown in equation 2.54, where rt is the observed return

at time t, σ̂t is the model’s predicted volatility at time t, and P (rt | σ̂t) represents the

likelihood of observing return rt given the predicted volatility σ̂t.

NLL = −
T∑
t=1

logP (rt|σ̂t) (2.54)

Certain evaluation metrics are better suited for assessing volatility forecast models.

Metrics like R2, while popular for evaluating predictive models, have limitations for

volatility forecasting Van Dijk and Franses [2003]. R2 is prone to overfitting, sensitive

to scale, and better suited for linear models Tofallis [2015].

44

Chapter 2: Background 2.2.3. Accuracy Metrics

Instead, robust loss functions like QLIKE and HRMSE are preferred Patton [2011].

These are designed to handle the challenges of volatility forecasting. Financial returns

exhibit conditional heteroskedasticity, where the variance changes over time Engle

[1982b]. Standard loss functions like MSE perform poorly under heteroskedasticity. In

contrast, QLIKE and HRMSE are robust loss functions that account for time-varying

volatility Patton [2011].

For likelihood-based volatility models, the negative log-likelihood (NLL) is an

appropriate scoring metric Bollerslev [1986]. NLL measures the model’s likelihood of

generating the observed data. Models with lower NLL values have higher likelihood and

better fit. NLL naturally handles the probability distribution of returns conditional on

predicted volatility.

Overall, QLIKE, HRMSE, and NLL are well-suited for evaluating volatility forecasts

due to their robustness to heteroskedasticity and basis in likelihood theory Patton

[2011]. R2 has significant limitations in this context that may lead to poor model

selection. Careful choice of scoring metrics tailored to the modeling task is crucial for

rigorous evaluation.

2.3.2 Value at Risk

Value at Risk (VaR) is a widely used risk measure in finance and banking Jorion [2007],

Dowd [2007]. VaR estimates the maximum expected loss on an investment over a given

time period at a specified confidence level Dowd [2007].

VaR provides an aggregated risk exposure amount, capturing tail risks and volatility

Angelidis and Degiannakis [2008]. It is computed using the distribution of historical

returns or Monte Carlo simulation Hendricks [1996]. Common confidence levels are

95% or 99% for daily VaR Jorion [2007]. The time horizon is often one day or ten days,

reflecting investment holding periods Pérignon et al. [2008].

VaR has limitations; it does not account for losses exceeding VaR or give insights

into the loss distribution Artzner et al. [1999]. Conditional VaR addresses these issues

by estimating losses conditional on breaching VaR Rockafellar and Uryasev [2002]. VaR

remains widely used in banking regulation and risk management due to its conceptual

simplicity Jorion [2000]. Proper modeling of volatility dynamics is key for accurate

45

Chapter 2: Background 2.2.3. Accuracy Metrics

VaR forecasting across different confidence levels Angelidis et al. [2004].

2.3.3 Diebold-Mariano Test

The Diebold-Mariano (DM) test is a statistical test for evaluating the predictive accuracy

of competing forecasts Diebold and Mariano [1995]. It tests the null hypothesis that

the difference in loss between two forecast models is zero against the alternative that

there is a significant difference Giacomini and White [2006].

For volatility forecasting, standard loss functions for the DM test are MSE and

MAD Patton [2011]. MSE penalizes more significant errors, while MAD weights all

errors equally. The DM test computes the loss differential between the two models and

assesses if it is significantly different from zero Diebold and Mariano [1995].

The DM test has some limitations to consider. It assumes forecast errors are

uncorrelated over time, but volatility exhibits autocorrelation Engle [1982b]. Robust

DM tests using Newey-West standard errors help control for autocorrelation Harvey

et al. [1997]. The test may also have low power when forecast losses are highly persistent

Clark and McCracken [2001].

The DM test provides a formal statistical framework for comparing rival volatility

forecast models Patton and Sheppard [2009]. We apply it using MSE and MAD loss

functions at 5% significance. However, robust variants and power limitations warrant

consideration when interpreting the results.

2.3.4 Model Confidence Set Test

The Model Confidence Set (MCS) test provides a statistical framework for comparing

multiple forecast models to determine a superior set of models Hansen et al. [2011].

The MCS test sequentially eliminates inferior models until the remaining set contains

the best model with a specified confidence level Barbieri and Berger [2004].

The MCS test uses bootstrapping to construct the empirical distribution of loss

differentials between models Politis and Romano [1994]. Bootstrapping is advantageous

when the theoretical distribution is unknown or complex to derive Efron and Tibshirani

[1994]. It involves resampling with replacement to generate a sampling distribution for

a statistic of interest Davison and Hinkley [1997].

46

Chapter 2: Background 2.2.3. Accuracy Metrics

We apply the MCS test for volatility forecasting using 10,000 bootstrap iterations

at a 5% confidence level Hansen et al. [2011]. The bootstrap-based MCS test makes no

distributional assumptions and accounts for the joint evaluation of multiple models

Clark and McCracken [2013]. It provides a robust statistical approach for identifying

the top-performing subset of volatility forecast models.

47

Chapter 3

LSTM-RV

3.1 Motivation

Volatility prediction for financial assets is crucial for understanding financial risks.

Despite recent advancements in deep learning, they often struggle to outperform

robust econometric volatility models due to complexities arising from noise, market

microstructure, heteroscedasticity, news effects, and various time scales, among other

factors. This study examined the Long Short-Term Memory (LSTM) recurrent

neural networks for volatility prediction and compared them with prominent

volatility-econometric models. Our investigation focused on the influence of the input

dimension hyperparameter and LSTM architecture on performance. The results suggest

that the optimal input dimension ranges from 7 to 12 values, and deeper LSTM

models may not guarantee improved performance. We also investigated the effects of

both preprocessing and hyperparameter optimization in improving the overall results.

Our study underscores the importance of carefully considering the input dimension

hyperparameter, LSTM architecture, and hyperparameter tuning in volatility prediction

tasks.

3.2 Introduction

Volatility modeling has long been a cornerstone in financial mathematics, with its roots

tracing back to early stochastic models like Brownian motion Bachelier [1900], Jarrow

48

Chapter 3: LSTM-RV 3.3.2. Introduction

et al. [2004]. Traditional models, such as the ARCH family, have been widely used but

come with limitations, particularly in capturing the full range of empirical observations

associated with asset price volatility Engle [1982b], Bollerslev [1986].

In recent years, Neural Networks (NNs) have gained traction in financial

econometrics, offering promising results in various applications ranging from bond

rating to stock price prediction Dutta and Shekhar [1988], Kamijo and Tanigawa [1990].

However, their application in volatility forecasting has been limited, often serving as a

supplementary tool to traditional GARCH models Hajizadeh et al. [2012], Maciel et al.

[2016]. Neural Networks (NN) have been extensively employed for forecasting tasks,

such as predicting stock prices Khan [2011] or volatility with additional input Bucci

[2020]. Some studies have combined conditional volatility models with NN Arnerić

et al. [2014]. The performance results of these works in volatility prediction tasks have

been mixed. In some instances, nonparametric models, including NN, have shown

poor forecasting performance for out-of-sample tests Clements and Krolzig [1998],

Pavlidis et al. [2012]. In Vortelinos [2017], it was demonstrated that feed-forward NN

approximation is insufficient. Moreover, Vortelinos [2017], Bucci et al. [2017], Miura

et al. [2019] reported mixed forecast accuracy for out-of-sample realized volatility using

NN. Nonetheless, promising results for out-of-sample realized volatility forecasts have

been provided by Rosa et al. [2014], Miura et al. [2019]. Implied and realized volatility

forecasting tasks were investigated in Hamid and Iqbal [2004], which showed comparable

NN performance for realized volatility. Complex neural network architectures, such as

Jordan Neural Networks (JNN), have shown potential in volatility forecasting Arnerić

et al. [2018].

Advancements in machine learning have introduced Long Short-Term Memory

(LSTM) networks, which are particularly adept at capturing long-term dependencies in

time-series data Hochreiter and Schmidhuber [1997c]. While LSTMs have been applied

to volatility forecasting, existing studies often do not delve deeply into the nuances of

LSTM architecture or the selection of appropriate hyperparameters Rosa et al. [2014],

Miura et al. [2019], Bucci [2020], Bucci et al. [2017].

This gap in the literature brings us to our research. While machine learning

models, particularly LSTMs, hold promise for volatility forecasting, there is a lack of

49

Chapter 3: LSTM-RV 3.3.3. Preliminaries

comprehensive studies that explore the impact of architecture and hyperparameters on

their performance.

Our study aims to fill this gap by analyzing LSTM-based models for volatility

forecasting. We focus on optimizing the architecture and hyperparameters to enhance

the model’s predictive capabilities. Specifically, we conduct a search of hyperparameter

space for LSTM models for volatility tasks. Moreover, we introduced hyperparameter

optimization for input dimension (LSTM-RV) for realized volatility forecasting tasks.

3.3 Preliminaries

3.3.1 Baseline Volatility Models

This section provides a brief overview of widely used models for measuring and

forecasting volatility, primarily based on historical behavior.

The GARCH family of models estimates historical volatility or conditional variance

Bollerslev [1986]. These models account for clustering effects and have been extended

into versions like Exponential GARCH, GJR-GARCH, and TGARCH. However,

an increase in complexity does not necessarily ensure better results and can make

calculations more intricate.

The HAR-RV model, introduced by Corsi [2009], assumes that agents in financial

markets have differing perceptions of volatility depending on their investment horizons.

The model comprises an additive cascade of partial volatilities generated at different

time horizons following an autoregressive process. This approach offers a stable and

accurate estimate for realized volatility 2.16.

The ARIMA model facilitates the modeling of integrated or difference-stationary

time series. It involves assessing the stationarity of the series, transforming it by taking

differences, and constructing an ARMA model for the transformed series Box et al.

[2015]. However, ARIMA models may fail to capture the heteroscedastic volatility

properties commonly observed in financial time series.

The EWMA method calculates volatility by weighting individual periodic RV

and assigning greater weight to recent observations. Though it serves as a practical

benchmark, EWMA is considered simplistic when compared to more advanced volatility

50

Chapter 3: LSTM-RV 3.3.3. Preliminaries

models.

3.3.2 LSTM Input Dimension Hyperparameter

A neural network can be envisioned as a layered structure of interconnected neurons.

Recurrent neural networks (RNNs) are a class of neural networks that utilize previous

outputs as inputs, enabling them to handle sequential data. RNN neurons possess a cell

state or memory; inputs are processed according to this internal state, achieved through

the recurrent mechanism. RNNs contain repeating activation modules of layers that

allow them to store information; however, this storage capacity is often limited 2.19,

2.19. RNNs frequently suffer from vanishing gradient issues, which can cause model

training to become exceedingly slow or cease entirely. LSTM is a specific cell type

within a recurrent neural network designed to capture long-term dependencies in data

and address the exploding or vanishing gradient problem Hochreiter and Schmidhuber

[1997a]. This achievement is made possible due to the cell state and the interaction

of four gates 2.22,2.23,2.24,2.25. The ability to selectively add or remove information

from the cell state, meticulously regulated by gate structures, is a crucial distinction

from simple RNNs. LSTM cells contain an additional state, which helps to internally

retain input memory 2.26, making them particularly suited for solving problems related

to sequential data. The cell state conveys relevant information throughout the entire

sequence chain. This state reflects the corresponding information during the entire

series processing, allowing data from earlier time steps to participate in later time

steps.

The construction of an NN typically involves the enumeration and identification of

the optimal architecture that minimizes the error. In Panchal et al. [2010], authors

propose information criteria to aid in determining an appropriate neural network

structure. However, the most common approach remains to train various numbers of

architectures by some search algorithm and select the one with the lowest error Bergstra

and Bengio [2012], Hutter et al. [2011]. This iterative process enables researchers and

practitioners to develop neural networks tailored to specific tasks, ultimately enhancing

the performance and accuracy of their models Bergstra and Bengio [2012], Snoek et al.

[2012].

51

Chapter 3: LSTM-RV 3.3.4. Experiments

For our steady, we consider a univariate time series; only one feature is used as

input. Therefore, the input dimension will be equal to one. However, for LSMT with

optimized dimensionality hyperparameter (LSTM-RV), we consider a sliding window

approach incorporating a sequence of past values as input for each time step.

Implementing input dimension hyperparameter optimization can help better adapt

to varying data characteristics. In this optimized architecture, the input matrix

X ∈ Rm×n is utilized, where m represents the number of input samples, and n is the

optimized input dimension length of each t input. This optimized hyperparameter

allows the LSTM model to capture relevant information across different time scales

efficiently.

Leveraging this optimized input dimension, the LSTM model can learn complex

patterns and dependencies in sequential data more effectively, enhancing its predictive

capabilities.

3.4 Experiments

This study investigates the performance of predicting realized volatility across various

financial assets, including stocks, index, and cryptocurrencies. We also assess the impact

of data granularity on model performance. This section describes the experiments

conducted, including the accuracy measures used for evaluation, the data, and the

hyperparameter optimization and data preprocessing steps involved in setting up the

LSTM model and other models.

Mean Squared Error (MSE) minimizes the average squared deviations between

actual and predicted values, providing a more accurate estimate of the distance between

them. Mean Absolute Error (MAE) uses absolute values to estimate this distance,

offering robustness against outliers 2.50. Additionally, Root Mean Squared Error

(RMSE) 2.51 and Mean Absolute Percentage Error (MAPE) are utilized to assess

accuracy.

The Diebold-Mariano test Diebold [2015] compares the forecast accuracy of two

models, with the null hypothesis stating equal accuracy. The alternative hypothesis

may claim differing levels of accuracy or one model’s superiority over the other.

52

Chapter 3: LSTM-RV 3.3.4. Experiments

Value at Risk (VaR) Jorion [2000] estimates the maximum expected loss for a given

period and specified probability. VaR quantifies potential losses in a portfolio over a

fixed period, with common time horizons of one, five, or ten days and risk levels set at

95 or 99 percent.

3.4.1 Data

This study examines the application of neural networks (NN) for estimating and

predicting realized volatility across various market structures, specifically focusing on

indices, stocks, and cryptocurrencies. We also analyze the effects and dependencies of

data granularity, as shown in Table 3.1 and Table 3.2.

We calculate the daily Realized Volatility (RV) for the stock market data based

on 1-minute price observations. However, for GARCH-family models, returns are

computed using the last daily closing price. Consequently, our experimental data set

comprises intraday returns and their corresponding RV values. The data set is divided

into training, validation, and testing. The validation and testing samples for stocks

consist of 252 data points, equivalent to one trading year.

Next, we investigate the S&P 500 index data set, which corresponds to daily price

data, encompassing 17,923 price data points for calculating 815 RV observation points

analogous Bucci [2020]. The methodology is analogous to stock data calculations.

However, for this case, we compute monthly RV based on daily log returns instead of

daily RV based on a 1-minute time frame for stock data. We use 245 data points for

both the validation and test data sets.

Lastly, we explore cryptocurrency data, specifically the (Bitcoin-USD) BTCUSDT

and Ethereum-USD (ETHUSDT) pairs. Bitcoin price data corresponds to a 1-minute

time frame, while Ethereum data is obtained from a high-frequency data set

corresponding to a 1-second time frame. Similar to the stock and index data,

cryptocurrency data is divided into three parts: training, validation, and testing.

The validation and test samples are the same size as the stock data set validation and

test sets, consisting of 252 data points each.

In summary, our study investigates the performance of neural networks in estimating

and predicting realized volatility across distinct market structures and time frames. By

53

Chapter 3: LSTM-RV 3.3.4. Experiments

analyzing stocks, indices, and cryptocurrencies, we aim to understand the dependencies

and effects of data granularity on the effectiveness of neural network-based models

in forecasting volatility. The data sets are partitioned into training, validation, and

testing samples, allowing for a comprehensive evaluation of the proposed models in

various financial contexts.

Table 3.1: Description of Asset Types and Aggregation Scales

Asset Name Time Frame

Stock Dell Inc. 1 minute
Index S&P500 1 day
Crypto.c Bitcoin-USD 1 minute
Crypto.c Ethereum-USD 1 second

Table 3.2: Detailed Description of Asset Data

Asset Name From To Price Points RV Points

Stock Dell Inc. 02.01.98 29.11.13 1,730,585 3,982
Index S&P500 01.02.50 01.12.17 17,923 815
Crypto-c Bitcoin-USD 31.12.11 22.04.19 3,837,857 2,670
Crypto-c Ethereum-USD 01.02.20 21.05.20 8,237,492 2,650

Note: The table presents an overview of the data used in the analysis, including
the asset type, the date range of the data, and the number of realized
volatility (RV) points. Aggregation is done on different time scales.
Aggregation is done on different time scales: Stock and BTCUSDT on a
day, S&P500 on a month, and ETHUSDT on an hour.

3.4.2 Hyperparameter Optimization and Data Preprocessing

Our study explored various configurations concerning dynamic and objective outcomes

through a trial-and-error approach to identify optimal setups for the given task.

Identifying the best neural network configuration necessitates conducting multiple

experiments with different hyperparameters, as described in Panchal et al. [2010].

Consequently, we established and analyzed the results of numerous training epochs,

selecting an appropriate configuration based on low MSE and MAE metrics for the

validation data set. Hidden size, the number of layers, loss function, activation function,

batch size, dropout, epochs, and optimizer are hyperparameters that influence a model’s

54

Chapter 3: LSTM-RV 3.3.4. Experiments

architecture, training process, and performance, affecting its ability to learn complex

patterns, prevent overfitting, and optimize accuracy1. In this study, we optimize the

listed hyperparameters to find the most appropriate setting for our task.

A key aspect of our design involved searching for an optimal input dimension

hyperparameter of LSTM-RV to capture relevant information across different time

horizons. LSTM possesses a state layer Ct, which practically assists in capturing long

dependencies besides an input dimension. Consequently, LSTM should be adequate for

any reasonable input dimension. However, appropriately defining the input dimension

hyperparameter is vital for achieving high accuracy in this task.

Notably, considering HAR or ARIMA models requires defining a lag. Determining

how long the series must contain the necessary data to forecast the next prediction

horizon is essential. However, differentiating price data results in the loss of certain

data properties (since they are contained in the price) in order to obtain a stationary

series. This might be a key factor in LSTM’s success, as a series with a length of n

lags is preserved due to the cell memory mechanism Laptev et al. [2017].

Another crucial hyperparameter to consider is the activation function. Limited

research has examined the relationship between various activation functions and

their impact on performance for volatility prediction tasks. We evaluated several

potential options for our objective, as outlined in Table 3.3. Furthermore, another vital

hyperparameter is the optimizer. While the commonly implemented Adam optimizer is

widely used, it may not be suitable for all tasks. However, as we demonstrate later, the

appropriate selection of activation functions and optimizers can substantially influence

the results.

Standardization is an essential preprocessing step for training LSTM models, which

can often enhance their efficiency. To this end, we employed a min-max scaling approach

for normalizing input data within the range of 0 to 1. We deliberately avoided using

augmented approaches that incorporated external information.

Furthermore, we optimized the parameter α of the EWMA to improve MSE and

MAE accuracy measures. We also conducted an optimization procedure for the

HAR-RV model targeting the MSE and MAE metrics, while retaining the standard

1The hyperparameter notations are aligned with the PyTorch library

55

Chapter 3: LSTM-RV 3.3.5. Results

model with parameters 1, 5, and 22. In addition, ARIMA GARCH and GJR-GARCH

were optimized based on information criteria, as suggested in Burnham and Anderson

[2004].

Table 3.3: The Table of LSTM and LSTM-RV Hyperparameters

Hyperparameters Values

Input Dimension* [1-50]
Hidden size [1-100]
Number of layers [5-20]
Dropout [0.01, 0.05, 0.1, 0.2, 0.3]
Activation fn [linear, ReLU, SoftMAX, Tanh]
Loss fn [MAE, MSE, HUBER]
Epochs [1-10,20,30,50,100,1000]
Batch size [1,2,4,8,16,32,64]
Optimizer [RMSprop, SGD, ADAM]

Note: The hyperparameter optimization procedure is
only for the LSTM-RV model.

* Indicates that the hyperparameter is specific to the
LSTM-RV model.

3.5 Results

In this empirical study, we aimed to address the following research questions: How

does the architectural configuration of LSTM networks, including factors such as

the number of layers and hidden units, affect predictive performance? Can a

hyperparameter-optimized LSTM model surpass established benchmarks like the HAR

and GARCH models in realized volatility forecasting? What is the influence of the

dimension hyperparameter on an LSTM model efficiency and accuracy for this task,

and what value maximizes performance?

In this section, we present the results for three types of data sets considered in our

experiment: stock, indices, and cryptocurrencies, along with three Realized Volatility

(RV) aggregations: monthly, daily, and hourly. We begin by discussing the performance

of the examined models and providing detailed comparisons. Standard accuracy

measures were employed for one-step-ahead prediction using RMSE and MAE metrics2.

2The results presented in a table have been scaled for ease of readability. To obtain the actual
values, please apply the scaling factor provided in a table header.

56

Chapter 3: LSTM-RV 3.3.5. Results

Subsequently, we assessed the significance of improvement using the Diebold-Mariano

test and Value at Risk metrics.

Table 3.4: Hyperparameter Sets for Model Convergence

Hyperparameters h1 set h2 set h3 set

Input Dimension 1 8 20
Layers 2 2 2
Hidden size 20 20 20
Epochs 500 500 500
Optimizer Adam Adam Adam

Note: This table summarizes the
hyperparameters used in figure 3.2
for the models.

0 100 200 300 400 500
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Le
ar

ni
ng

 L
os

s

h-parameters set 1
h-parameters set 2
h-parameters set 3

Figure 3.1: The following plot illustrates the Convergence Rate of MSE loss for three
different input dimension hyperparameters. The Dell Inc. stock training data set.

The best performance in the stock market was demonstrated by LSTM-RV.

LSTM-RV achieved the highest MAE accuracy for the validation data set Table 3.10.

However, for RMSE hyperparameter-optimized for MSE HAR model surpassed other

models. Nevertheless, in terms of out-of-sample RMSE and MAE accuracy, the

LSTM-RV model outperformed competing models. The DM test also indicated

57

Chapter 3: LSTM-RV 3.3.5. Results

Figure 3.2: The following plot illustrates the input dimension and input length
interconnection loss for the Dell Inc. stock validation data set.

a significant improvement in forecast quality compared to the closest competitor,

Table 3.11.

To compare performance under different market conditions, we investigated the

S&P 500 index data set, where data granularity is more limited than stock data sets or

cryptocurrencies. We deliberately consider this particular data set to enable comparison

with the results reported in Bucci [2020]. In the validation phase, the model did not

yield the best results for RMSE and MAE, although the gap was not significant at

0.1% accuracy, ranking it as the second most accurate model Table 3.7. However, the

LSTM-RV model exhibited good RMSE accuracy with a substantial margin for the

out-of-sample results Table 3.12. The DM test also indicated statistically significant

forecast accuracy. This is noteworthy, considering the complexity of training a network

with numerous parameters and the need for large amounts of training data compared

to econometric models.

The LSTM-RV model also demonstrated high accuracy performance in the

cryptocurrency market in both validation Table 3.8, Table 3.9, and out-of-sample tests

58

Chapter 3: LSTM-RV 3.3.5. Results

Table 3.5: Performance Metrics for Number of Layers of LSTM-RV on Different
Validation Data Sets

Number Dell Inc. S&P500 BTCUSDT ETHUSDT
of Layers MAE∗ MSE∗ MAE∗ MSE∗ MAE∗ MSE∗ MAE∗ MSE∗

1 7.462 0.134 8.666 0.426 7.229 0.163 6.414 0.158
2 6.936 0.134 9.482 0.452 7.804 0.163 5.525 0.067
3 7.802 0.232 9.626 0.464 8.139 0.261 6.065 0.068
4 8.285 0.323 9.647 0.507 8.958 0.334 6.217 0.156
5 8.339 0.325 9.682 0.513 8.998 0.341 6.277 0.162
6 8.384 0.329 9.685 0.518 9.054 0.351 6.284 0.168
7 8.416 0.331 9.760 0.520 9.054 0.353 6.327 0.171
8 8.486 0.325 9.817 0.524 9.186 0.359 6.368 0.179
9 8.525 0.336 9.685 0.513 9.229 0.363 6.454 0.179
10 8.621 0.341 9.967 0.527 9.306 0.369 6.530 0.185
20 9.239 0.427 10.605 0.579 9.943 0.380 6.701 0.202

Note: The table presents a comparative analysis of performance metrics across a
numbers of layers for multiple data sets. The metrics employed are the scaled
Mean Absolute Error (MAE∗), calculated as MAE × 103, and the scaled Mean
Squared Error (MSE∗), calculated as MSE × 103. The LSTM-RV architecture
specifications are outlined in tables of validation data set results for each data set
under consideration.

Table 3.14, Table 3.16. It should be noted, however, that the Bitcoin out-of-sample

HAR-RV performance is on par with the LSTM-RV model. Our findings suggest that

dimensionality hyperparameterization of LSTM-RV is crucial, as these parameters

increase with more granular data.

In the case of high-frequency data, the LSTM-RV model yielded more stable results.

Conversely, the standard LSTM exhibited reduced performance accuracy.

59

Chapter 3: LSTM-RV 3.3.5. Results

Table 3.6: Performance Metrics for Various Models on the Dell Inc. Stock Validation
Data Set

Model Description Parameters RMSE (103) MAE (103) MAPE

EWMA MSE alpha 0.12 11.0926 7.7043 30.4275
EWMA MAE alpha 0.15 11.1070 7.6868 30.1312
HAR MSE d,w,m: 1, 12, 26 10.9870 7.8279 31.8926
HAR MAE d,w,m: 1, 11, 28 11.0194 7.8179 31.8276
HAR d,w,m: 1, 5, 22 11.1143 7.9304 32.2523
ARIMA p,d,q: 1, 1, 2 11.5286 8.1161 32.3217
GARCH order 1,1 13.4846 8.9360 59.3186
GJR-GARCH order 1,1 13.4841 8.9330 59.3172
LSTM input-dim 20 13.9635 9.0714 27.9306
LSTM-RV input-dim 8 11.5960 6.9357 23.2722

Note: The table presents the performance metrics for a 1-step ahead prediction on
the Dell Inc. stock validation data set. The data set size is 252 points. LSTM
architecture: Hidden size = 20; Number of layers = 2; Loss function = MSE;
Dropout = 0.1; Activation function = ReLU; Batch size = 32; Epochs = 500;
Optimizer = Adam.

Table 3.7: Performance Metrics for Various Models on S&P 500 Validation Data Set

Model Description Parameters RMSE (103) MAE (103) MAPE

EWMA MSE alpha 0.2 20.4632 9.3206 23.2058
EWMA MAE alpha 0.28 20.5475 9.2023 22.5636
HAR MSE d,w,m 3, 4, 55 20.1926 8.5367 20.7522
HAR MAE d,w,m 3, 15, 30 20.2359 8.4996 20.4421
HAR d,w,m 1, 5, 22 21.2955 8.9237 20.7829
ARIMA p,d,q 1, 1, 1 23.2479 10.147 24.5666
GARCH order 1,1 28.7892 23.970 72.8169
GJR-GARCH order 1,1 28.8595 23.847 71.8954
LSTM input-dim 20 22.2736 26.547 66.4353
LSTM-RV input-dim 12 20.6301 8.6655 20.6121

Note: The table presents the performance metrics for a 1-step ahead prediction
on the S&P 500 validation data set. The data set size is 252 points. LSTM
architecture: Hidden size = 20; Number of layers = 1; Loss function = MSE;
Dropout = 0.01; Activation function = ReLU; Batch size = 32; Epochs = 100;
Optimizer = Adam.

60

Chapter 3: LSTM-RV 3.3.5. Results

Table 3.8: Performance Metrics for Various Models on BTCUSDT Validation Data Set

Model Description Parameters RMSE (103) MAE (103) MAPE

EWMA MSE alpha 0.42 13.1625 7.9259 21.6890
EWMA MAE alpha 0.83 13.9643 7.6130 21.1396
HAR MSE d,w,m 1, 5, 45 13.1465 8.9144 29.9428
HAR MAE d,w,m 1, 4, 18 13.2281 8.7833 29.1916
HAR d,w,m 1, 5, 22 13.1945 8.8089 29.3820
ARIMA p,d,q 3, 1, 3 15.8378 8.5929 23.2321
GARCH order 1,1 18.2987 14.584 61.8887
GJR-GARCH order 1,1 17.6519 13.770 58.7079
LSTM input-dim 20 15.7557 9.4235 23.9942
LSTM-RV input-dim 8 12.7771 7.2293 21.0681

Note: The table presents the performance metrics for a 1-step ahead prediction
on the BTCUSDT cryptocurrency for a 1-step ahead prediction. The data set
size is 252 points. LSTM architecture details are as follows: Hidden size =
20; Number of layers = 1; Loss function = MSE; Dropout = 0.1; Activation
function = ReLU; Batch size = 32; Epochs = 100; Optimizer = Adam.

Table 3.9: Performance Metrics for Various Models on ETHUSDT Validation Data Set

Model Description Parameters RMSE (103) MAE (103) MAPE

EWMA MSE alpha 0.5 8.5095 5.7709 22.5619
EWMA MAE alpha 0.7 8.6151 5.6981 22.3058
HAR MSE d,w,m 1, 5, 30 8.3400 6.1236 26.7363
HAR MAE d,w,m 1, 4, 24 9.0411 6.0497 22.9636
HAR d,w,m 1, 5, 22 8.3460 6.1170 26.7087
ARIMA p,d,q 1, 1, 2 8.6465 5.7329 22.8089
GARCH order 1,1 10.019 6.0207 28.4042
GJR-GARCH order 1,1 9.5977 5.9829 28.7266
LSTM input-dim 20 15.698 11.812 40.9822
LSTM-RV input-dim 7 8.1961 5.5248 22.8914

Note: The table summarizes the performance metrics for various models on the
ETHUSDT cryptocurrency for a 1-step ahead prediction. The data set size is
252 points. LSTM architecture details are as follows: Hidden size = 50; Number
of layers = 2; Loss function = MSE; Dropout = 0.1; Activation function =
ReLU; Batch size = 32; Epochs = 100; Optimizer = RMSProp.

61

Chapter 3: LSTM-RV 3.3.5. Results

Table 3.10: Out-of-Sample Performance Metrics for the Dell Inc. Stock (Part 1)

Model RMSE (103) MAE (103) MAPE VaR

EWMA MSE 11.8803 7.7360 43.3397 0.2544
EWMA MAE 11.7882 7.5838 41.6260 0.2544
HAR MSE 11.7178 8.2606 53.1560 0.1533
HAR MAE 11.6789 8.2126 52.9801 0.1533
HAR 11.6789 8.2126 52.9801 0.1533
ARIMA 12.0444 7.4324 40.7973 0.1986
GARCH 18.2725 13.720 62.4810 0.2140
GJR-GARCH 18.0589 11.716 60.0866 0.2028
LSTM 14.1276 9.0725 56.4351 0.1196
LSTM-RV 11.4416 6.8530 35.8922 0.1280

Note: The table summarizes the out-of-sample performance
metrics for various models on the Dell Inc. stock for a
1-step ahead prediction. The data set size is 252 points. VaR
10 days indicates the 10-day Value at Risk measure.

Table 3.11: Out-of-Sample Performance Metrics for the Dell Inc. stock (Part 2)

Model DM.t MSE3 P.val MSE3 DM.t MAE3 P.val MAE3

EWMA MSE 0.4295 0.6679 3.6767 0.0002
EWMA MAE 0.1543 0.8774 3.2005 0.0015
HAR MSE 0.0507 0.9595 5.5384 0.0000
HAR MAE 0.1722 0.8633 5.5707 0.0000
HAR 0.1722 0.8633 5.5707 0.0000
ARIMA 8.7439 0.0000 12.052 0.0000
GARCH 1.6996 0.0904 4.6902 0.0000
GJR-GARCH 1.4385 0.1515 4.1625 0.0000
LSTM 4.7601 0.0000 6.7555 0.0000
LSTM-RV - - - -

Note: This table is a continuation of Table 3.10 and provides additional
out-of-sample performance metrics for various models on the Dell
Inc. stock for a 1-step ahead prediction.

3 The asterisks and scientific notation represent statistical significance
and small p-values. DM.t MSE refers to the Diebold-Mariano test for
Mean Squared Error, and DM.t MAD denotes the Diebold-Mariano
test for Mean Absolute Deviation.

62

Chapter 3: LSTM-RV 3.3.5. Results

Table 3.12: Out-of-Sample Performance Metrics for S&P 500 Index (Part 1)

Model RMSE (103) MAE (103) MAPE VaR

EWMA MSE 22.7377 14.8143 32.0655 0.2807
EWMA MAE 21.8396 14.0323 30.1342 0.2805
HAR MSE 22.2281 13.4078 28.1917 0.3185
HAR MAE 22.1787 13.2569 27.3338 0.3177
HAR 21.2263 12.7762 26.790 0.3185
ARIMA 21.4788 14.1858 30.8716 0.2823
GARCH 31.7454 24.1938 37.0463 0.1440
GJR-GARCH 31.9215 24.5954 36.9429 0.1446
LSTM 23.5619 14.4471 32.9160 0.1511
LSTM-RV 20.4150 12.8474 28.505 0.3374

Note: The table summarizes the out-of-sample performance
metrics for various models on the S&P 500 index for a 1-step
ahead prediction. The data set size is 252 points. VaR 10
days indicates the 10-day Value at Risk measure.

Table 3.13: Out-of-Sample Performance Metrics for S&P 500 Index (Part 2)

Model DM.t MSE3 P.val MSE3 DM.t MAD3 P.val MAD3

EWMA MSE 3.4105 0.0007 4.3333 0.0000
EWMA MAE 2.9263 0.0037 2.7277 0.0068
HAR MSE 2.2882 0.0229 1.7231 0.0861
HAR MAE 2.2819 0.0233 1.3088 0.1918
HAR 2.5911 0.0101 -0.3437 0.7313
ARIMA 3.0891 0.0022 6.0096 0.0000
GARCH 4.5905 0.0000 18.972 0.0000
GJR-GARCH 4.6029 0.0000 19.613 0.0000
LSTM 3.4729 0.0000 12.181 0.0000
LSTM-RV - - - -

Note: This table is a continuation of Table 3.12 and provides additional
out-of-sample performance metrics for various models on the S&P
500 index for a 1-step ahead prediction.

3 The asterisks and scientific notation represent statistical significance
and small p-values. DM.t MSE refers to the Diebold-Mariano test for
Mean Squared Error, and DM.t MAD denotes the Diebold-Mariano
test for Mean Absolute Deviation.

63

Chapter 3: LSTM-RV 3.3.5. Results

Table 3.14: Out-of-Sample Performance Metrics for BTCUSDT (Part 1)

Model RMSE (103) MAE (103) MAPE VaR

EWMA MSE 16.6472 8.3999 20.6981 0.3956
EWMA MAE 16.8880 8.7378 21.7385 0.3956
HAR MSE 16.0889 9.0112 25.4136 0.2805
HAR MAE 16.0846 8.9371 25.1927 0.2793
HAR 16.1576 8.9817 25.2597 0.2795
ARIMA 19.6889 9.6716 23.0919 0.2598
GARCH 34.3660 17.607 40.3906 0.1491
GJR-GARCH 36.1548 18.061 40.9336 0.1495
LSTM 22.4670 15.245 40.6017 0.1493
LSTM-RV 15.6290 7.8785 20.3574 0.2583

Note: The table summarizes the out-of-sample performance
metrics for various models on BTCUSDT cryptocurrency
for a 1-step ahead prediction. The data set size is 252 points.
VaR 10 days indicates the 10-day Value at Risk measure.

Table 3.15: Out-of-Sample Performance Metrics for BTCUSDT (Part 2)

Model DM.t MSE3 P.val MSE3 DM.t MAD3 P.val MAD3

EWMA MSE 1.4792 0.1403 1.8250 0.0691
EWMA MAE 0.6404 0.5224 2.0189 0.0445
HAR MSE 1.3917 0.1652 5.5401 0.0000
HAR MAE 1.2148 0.2255 5.2337 0.0000
HAR 1.6145 0.1076 5.6381 0.0000
ARIMA 3.7090 0.0002 7.6181 0.0000
GARCH 3.8704 0.0001 7.2925 0.0000
GJR-GARCH 3.7308 0.0002 7.9830 0.0000
LSTM 4.0497 0.0001 6.8073 0.0000
LSTM-RV - - - -

Note: This table is a continuation of Table 3.14 and provides additional
out-of-sample performance metrics for various models on BTCUSDT
cryptocurrency for a 1-step ahead prediction.

3 The asterisks and scientific notation represent statistical significance
and small p-values. DM.t MSE refers to the Diebold-Mariano test for
Mean Squared Error, and DM.t MAD denotes the Diebold-Mariano
test for Mean Absolute Deviation.

64

Chapter 3: LSTM-RV 3.3.5. Results

Table 3.16: Out-of-Sample Performance Metrics for ETHUSDT (Part 1)

Model RMSE (103) MAE (103) MAPE VaR

EWMA MSE 12.0455 6.4798 26.0383 0.2472
EWMA MAE 12.3271 6.6222 26.8891 0.2469
HAR MSE 11.4807 6.6540 29.3306 0.1787
HAR MAE 12.1568 7.1052 31.6274 0.1813
HAR 11.4797 6.6583 29.3342 0.1787
ARIMA 12.3204 7.3057 31.4821 0.1801
GARCH 76.4503 54.010 39.247 0.0931
GJR-GARCH 71.6640 51.818 39.280 0.0931
LSTM 16.5935 10.357 37.0491 0.0946
LSTM-RV 11.6203 6.0079 22.6919 0.1461

Note: The table summarizes the out-of-sample performance
metrics for various models on ETHUSDT cryptocurrency
for a 1-step ahead prediction. The data set size is 252 points.
VaR 10 days indicates the 10-day Value at Risk measure.

Table 3.17: Out-of-Sample Performance Metrics for ETHUSDT (Part 2)

Model DM.t MSE3 P.val MSE3 DM.t MAD3 P.val MAD3

EWMA MSE 0.6170 0.5377 1.6013 0.1105
EWMA MAE 0.5746 0.5660 1.8285 0.0686
HAR MSE -0.2493 0.8033 2.2370 0.0261
HAR MAE 0.7861 0.4325 3.0047 0.0029
HAR -0.2573 0.7971 2.2608 0.0246
ARIMA 2.7745 0.0059 7.1878 0.0000
GARCH 4.6473 0.0000 14.769 0.0000
GJR-GARCH 5.0685 0.0000 15.610 0.0000
LSTM 3.1206 0.0020 10.646 0.0000
LSTM-RV - - - -

Note: This table is a continuation of Table 3.16 and provides additional
out-of-sample performance metrics for various models on ETHUSDT
cryptocurrency for a 1-step ahead prediction.

3 The asterisks and scientific notation represent statistical significance
and small p-values. DM.t MSE refers to the Diebold-Mariano test for
Mean Squared Error, and DM.t MAD denotes the Diebold-Mariano
test for Mean Absolute Deviation.

65

Chapter 3: LSTM-RV 3.3.6. Conclusion

3.6 Conclusion

This study aimed to investigate the efficacy of LSTM recurrent neural networks

in predicting volatility and to compare their performance with well-established

econometric models across various markets, including stocks and the increasingly

popular cryptocurrency markets. The focus was on using realized volatility as the

target variable.

A critical contribution of this paper is adding the procedure of input dimensions

hyperparameterization, which considerably enhanced the model’s accuracy. It was

determined that an efficient range for this hyperparameter lies between 7 and 12

periods, enabling LSTM-RV to outperform robust models in the domain. Furthermore,

out-of-sample accuracy tests revealed that LSTM-RV provided substantial benefits

across different market types.

Moreover, we examined the impact of LSTM architecture - a number of layers

and a number of neurons in each layer. We discovered that each of them significantly

influences the final results, and typically, deeper structures do not offer substantial

improvements over less deep LSTM models.

Additionally, it was found that hyperparameter tuning is essential for further

performance improvement. Our findings underscore the importance of considering

LSTM model architecture, the input dimensions hyperparameter, preprocessing steps,

and hyperparameter tuning.

Despite the effectiveness of neural networks, challenges persist, such as the black-box

nature of the model, which impedes the analysis of relationships within the data.

Another challenge lies in the high number of parameters to be learned during training

compared to HAR or EWMA models. Nonetheless, contemporary computing power

permits relatively swift training of RNN models for volatility prediction tasks.

66

Chapter 4

σ-Cell

4.1 Motivation

Econometric price volatility models have seen considerable empirical and theoretical

progress over the past fifty years. Despite this robust evolution, the integration of

volatility modeling within deep learning, especially Recurrent Neural Networks (RNNs),

remains underexplored. This paper introduces a step in this direction with the σ-Cell

type models, a particular RNNs cells design. The σ-Cell integrates the Generalized

Autoregressive Conditional Heteroskedasticity (GARCH) principles, a stochastic layer,

and time-varying parameters to address the dynamic nature of financial volatility. This

union creates a generative network that embodies the joint distribution of the stochastic

volatility process while offering an approximation of the latent variables’ conditional

distribution, given the observables. Such a design adeptly captures the temporal

intricacies of volatility in financial time series. We utilize a log-likelihood-based loss

function and develop a particular Adjusted-Softplus activation function to enhance the

model’s efficacy further. Experimental results on synthetic and real-world data validate

our approach, indicating superior out-of-sample forecasting performance compared to

traditional GARCH family models and the Stochastic Volatility model. This work

represents a significant step towards integrating domain knowledge with the capabilities

of neural networks.

67

Chapter 4: σ-Cell 4.4.2. Introduction

4.2 Introduction

Price volatility serves as a cornerstone in econometrics, offering a lens to understand

the variability of financial asset prices. Over its half-century history, the field has seen

significant advancements in probability and statistics Bachelier [1900]. While early

stochastic models like Brownian motion and the Wiener process were pioneering, they

were not comprehensive enough to capture all empirical observations related to asset

price fluctuations Cont [2001].

In financial markets, volatility acts as a crucial indicator of risk. Its variations reflect

the oscillations in asset prices, with increased volatility signaling heightened market risk.

Given the critical role of implied volatility in pricing derivative instruments, a nuanced

understanding is essential, particularly as the derivatives market expands Engle [1982b],

Bollerslev [1986], Poon and Granger [2003].

However, classical models like ARCH and GARCH, despite their groundbreaking

contributions, encounter limitations. These include the unobservability of intrinsic

volatility and assumptions that may not align with real-world financial dynamics Poon

and Granger [2003], Andersen and Bollerslev [1998], Hansen and Lunde [2005].

In recent years, Neural Networks (NNs) have gained traction in financial

econometrics, offering promising results in various applications ranging from bond

rating to stock price prediction Dutta and Shekhar [1988]. However, the application

of Neural Networks in volatility forecasting has been limited, often serving merely as

supplementary tools to traditional models Hajizadeh et al. [2012]. This chapter bridges

the gap between traditional and modern approaches by introducing the σ-Cell. Our

approach integrates the capabilities of Recurrent Neural Networks (RNNs) with the

proven methodologies of GARCH and the theoretical foundation of latent stochastic

processes. We evaluate the σ-Cell using synthetic data, the S&P 500 index, and

the cryptocurrency pair of Bitcoin-USD (BTCUSDT) to demonstrate its predictive

capabilities.

68

Chapter 4: σ-Cell 4.4.3. Preliminaries

4.3 Preliminaries

Volatility stands as a fundamental measure in financial markets, representing the

degree of variation of trading prices over time. The ARCH Model, introduced by

Engle in 1982, identifies time-varying volatility within time series data, serving as

the foundation for many subsequent models Engle [1982b], Bollerslev [1986]. The

GARCH Model, Bollerslev’s 1986 innovation, the GARCH model, extended the ARCH

model by incorporating past conditional variances into current estimations, akin to the

AR to ARMA model transition Bollerslev [1986]. Almost a decade after Bollerslev’s

foundational GARCH model, Engle and Kroner in 1995 introduced a multivariate

extension. This allowed the model to handle multiple financial series simultaneously,

making use of historical data dependencies in complex financial scenarios Bollerslev

[1986], Engle and Kroner [1995].

SV models propose that volatility follows latent stochastic processes. Unlike

deterministic models, current volatility in SV models is influenced by unseen processes,

even with complete historical data. For example, Heston’s model posits that the

variance process is influenced by underlying factors Heston [1993]. While these models

are theoretically rich, they often require assumptions that may not always align with

empirical scenarios. The MCMC-based models framework has emerged to enhance

volatility forecasting. These models, though powerful, demand extensive data and

sometimes struggle with multivariate time series Kastner and Frühwirth-Schnatter

[2014], Wu et al. [2013].

Volatility models delineate the behavior of volatility processes, aiding in the

estimation and prediction of time series fluctuations. Given the reliance on historical

data for forecasting pertinent quantities, we postulate that the conditional variance

depends on past information. This dependence can be classified as either deterministic

or stochastic, resulting in two distinct categories of volatility models.

4.3.1 Baseline Volatility Models

We employ the GARCH and GJR-GARCH models as deterministic baselines for

comparison Bollerslev [1986], Engle [1982a]. The GARCH(1,1) model is especially

69

Chapter 4: σ-Cell 4.4.3. Preliminaries

popular for its simplicity and effectiveness in capturing financial volatility Francq

and Zakoian [2010]. The GJR-GARCH model adds complexity by accounting for

asymmetric volatility reactions to market returns Glosten et al. [1993a]. These models

serve as robust benchmarks for evaluating our proposed approach.

We also employ SV models, such as the Hull-White and Heston models, as stochastic

baselines Hull and White [1987a], Heston [1993]. These models use stochastic differential

equations to capture volatility dynamics. We include SV models for two main purposes:

to benchmark our model against established stochastic frameworks and to test its

robustness and predictive accuracy. This comparative analysis aims to provide a

comprehensive evaluation of various volatility modeling approaches.

4.3.2 Recurrent Neural Networks

The world of financial volatility modeling is continuously evolving as researchers work

on hybrid approaches that combine various approaches to model volatility and capture

more complex patterns in financial time series data.

In the domain of volatility forecasting in financial markets, hybrid approaches have

garnered significant attention for their potential to combine the strengths of different

modeling techniques. Generally, these hybrid models can be classified into several

categories: Statistical-Statistical Hybrids, Machine Learning-Machine Learning hybrids,

Statistical-Machine Learning hybrids, and Ensemble Approaches.

Deep learning techniques, which have demonstrated prowess in fields like image and

speech recognition, are now being harnessed to study volatility LeCun et al. [2015].

These models have shown immense potential in diverse applications, ranging from

machine translation to pattern recognition Krizhevsky et al. [2012], Chorowski et al.

[2015], Bahdanau et al. [2014].

NNs have been extensively employed for forecasting tasks, such as predicting stock

prices Khan [2011] or volatility with additional input Bucci [2020]. Some studies have

combined conditional volatility models with NNs Arnerić et al. [2014]. The performance

results of these works in volatility prediction tasks have been mixed. Nonparametric

models, including NNs, have shown poor forecasting performance for out-of-sample

tests Clements and Krolzig [1998], Pavlidis et al. [2012]. In Vortelinos [2017], it

70

Chapter 4: σ-Cell 4.4.4. σ-Cell RNNs Volatility Models

was demonstrated that feed-forward NNs approximation is insufficient. Moreover,

Vortelinos [2017], Bucci et al. [2017], Miura et al. [2019] reported mixed forecast

accuracy for out-of-sample realized volatility using NNs. Nevertheless, promising

results for out-of-sample realized volatility forecasts had been provided by Rosa et al.

[2014], Miura et al. [2019]. Implied and realized volatility forecasting tasks were

investigated in Hamid and Iqbal [2004], which showed comparable NN performance

for realized volatility. Complex neural network architectures, such as Jordan Neural

Networks (JNN), have shown potential in volatility forecasting Arnerić et al. [2018].

RNNs are designed to model sequential data, thus making them suitable for volatility

modeling. RNNs process information cyclically, taking into account both past and

current inputs. The method RNNs use to relay information from one iteration to the

next in the hidden layer is detailed mathematically in Zhang et al. [2021]. This involves

defining the hidden and input states at time t, matrices representing input-to-hidden

and hidden-to-hidden connections, and a bias. The aggregated data then interacts with

an activation function to ensure compatibility with backpropagation, the equations for

hidden and output states 2.19, 2.20.

However, hybrid models typically encapsulate modules, making them more versatile.

This paper presents a novel approach, the σ-Cell, which is inspired by the integration

possibility of domain knowledge and the efficiency of RNNs for forecasting in sequential

data. The σ-Cell RNN is a specialized RNN cell designed for volatility modeling that

integrates the principles of the GARCH, a stochastic approach, and the time-varying

parameters’ dynamic with the capabilities of RNNs.

4.4 σ-Cell RNNs Volatility Models

In this section, we introduce the estimation of conditional volatility in a time series

using a modified GARCH process integrated with RNN dynamics. Given a time series

X = {x1, x2, . . . , xT}, our primary aim is to ascertain the conditional volatility, σt, at

each discrete time t. The volatility, σ2
t , is characterized by the subsequent relation,

equation 4.1.

71

Chapter 4: σ-Cell 4.4.4. σ-Cell RNNs Volatility Models

σ2
t = F (xt)1 · σ

2
t−1 + F (xt)2 · ϵ

2
t + b (4.1)

In equation 4.1, F : Rd → R2 denotes a function mapping the value xt onto a vector

in R2. Notably, unlike traditional GARCH(1, 1) where parameters remain constant,

the entities of this vector, denoted by F (xt)1 and F (xt)2, act as dynamic parameters,

varying based on the data point xt. And b is a constant term, providing an additional

degree of flexibility to the model. The residual error ϵt at an instance t is computed

as shown in equation 4.2, where G : Rd → R signifies a function that associates the

observed value xt with its residual 4.3.

ϵt = xt −G (xt) (4.2)

G(xt) ∼ N(0, σ2
t) (4.3)

Equation 4.1 defines the process in which our methodology operates. It delineates

a GARCH-like mechanism tailored for the precise estimation of conditional volatility

inherent in a provided time series. Central to this approach is the explicit estimation of

volatility, σt, for every point t within the time series X, and dynamic volatility modeling

wherein the model determines σ2
t by integrating the prevailing time series value, xt,

with the preceding volatility, σ2
t−1, and the corresponding error term, ϵ2t . The function

F is a pivotal element, offering a dynamic mapping from the current observation, xt,

to a bivariate vector, bestowing the model with real-time modulation of the GARCH

parameters and thus affording enhanced adaptability. The error quantification term ϵt

captures the difference between the actual and the anticipated values at time t, serving

as a crucial metric to gauge the precision of the model.

For simplicity, in our model, the time series is assumed to be univariate with

dimensionality d = 1, but in the general form, it could be multivariate. This

dimensionality allows for capturing intricate patterns from multiple time series variables,

enriching the model’s capability in volatility estimation.

Our methodology provides a method to forecast volatility in multivariate time

series data. By fusing the principles of the GARCH process with increased parameter

72

Chapter 4: σ-Cell 4.4.4. σ-Cell RNNs Volatility Models

flexibility through function F . Based on this, subsequent sections delve into how this

model can be seamlessly merged with RNNs, thus potentially benefiting GARCH and

RNN architectures to enhance volatility predictions.

4.4.1 σ-Cell: Nonlinear GARCH-based

This section introduces the nonlinear GARCH-based RNN Cell, abbreviated as σ-Cell.

This innovative approach combines the predictive power of the GARCH model, known

in econometrics for its volatility forecasting capabilities, with the ability of recurrent

neural networks to process and learn from sequential data.

The motivation for the σ-Cell comes from the need for better volatility management

in sequences, especially in financial data. RNNs, capable of processing information

across long sequences, are combined with GARCH principles to handle this challenge

more effectively.

Another innovation of the σ-Cell is its introduction of nonlinearity into the

traditional GARCH model using an activation function. This approach allows the

model to detect more complex patterns in sequential data, significantly improving

its effectiveness compared to linear models Franses and Van Dijk [1996]. The σ-Cell

calculates conditional volatility at each time point using a nonlinear transformation,

represented by ϕ. This transformation adjusts the weighted mix of squared past

volatility and squared input, as expressed in equation 4.4:

σ̃2
t = ϕ(σ̃2

t−1Ws + x2
t−1Wr + bh) (4.4)

σ2
t = ϕo(σ̃

2
tWo + bo) (4.5)

In equation 4.4, σ2
t denotes the hidden state of the RNN at time t. The weight

matrices Ws and Wr correspond to the previous volatility and input, respectively.

In the RNN described by equation 4.4, the weight matrices Ws and Wr each have

parameters equal to the product of the input size and hidden size. In this specific case,

our input is scalar, and we have chosen a small hidden size of 10, making the number

of parameters for both Ws and Wr relatively small. The bias vector bh has a number

of parameters equal to the hidden size. In equation 4.5, the weight matrix Wo has

73

Chapter 4: σ-Cell 4.4.4. σ-Cell RNNs Volatility Models

parameters corresponding to the product of the hidden size and output size, with our

output consisting of just one value. The bias vector bo has parameters equal to the

output size. Summing up the parameters from all these elements, the total number of

parameters in this system comes to 41.

The optimization of the σ-Cell RNN model is carried out in two phases, with each

phase refining one set of weights to enhance the model’s stability. This novel approach

augments the traditional GARCH model with nonlinearity, better capturing complex

volatility fluctuations. By integrating the σ-Cell, we expect to achieve a more effective

model for forecasting volatile patterns, benefiting from the flexibility and adaptability

of deep learning architectures.

The selection of the optimal activation function, denoted as ϕ and ϕo, is pivotal

to neural network efficacy. In this study, the Adjusted Softplus activation function

(equation 4.34) serves as ϕ, introducing nonlinearity in hidden layers. Conversely,

the ReLU activation function (equation 4.32) is adopted for ϕo to impart efficient

nonlinearity to the output. Prior research underscores the pronounced influence of

activation functions on network performance Karlik and Olgac [2011], Ramachandran

et al. [2017]. Thus, careful consideration should be given when selecting an activation

function from the various options available He et al. [2015].

4.4.2 σ-Cell-N: Integrating Stochastic Layer

Building on the σ-Cell RNN volatility model introduced in the previous section, we

present the enhanced σ-Cell-N model. This iteration integrates a stochastic layer into the

σ-Cell’s RNN dynamics, adding depth and complexity to its predictive capabilities.The

stochastic layer introduces a stochastic component to the residuals. Specifically, for

each time instance t, the residual is given by 4.6.

x̃t−1 = xt−1 −N(0, σt−1) (4.6)

In equation 4.6, N represents the Gaussian distribution, and σt−1 is the volatility

from the previous time point. The stochastic layer in the 4.6 model is formulated to

directly incorporate the volatility from the previous time point as a variance measure,

74

Chapter 4: σ-Cell 4.4.4. σ-Cell RNNs Volatility Models

thereby coupling the past volatility’s influence with the current observation in a manner

reminiscent of GARCH model dynamics. This design choice ensures a continuous and

coherent propagation of uncertainty through the series, allowing for more nuanced

volatility predictions. While the notation draws inspiration from RNN structures, it

essentially mirrors the error term in traditional GARCH models as depicted in equation

4.1.

The variance dynamics over time are represented by equations 4.7, 4.8.

σ̃2
t = ϕ(σ̃2

t−1Ws + x̃2
t−1Wr + bh) (4.7)

σ2
t = ϕo(σ̃

2
tWo + bo) (4.8)

In equations 4.7, 4.8, σ2
t−1Ws captures the influence of past variance on current

variance, echoing GARCH models legacy effects. The x̃2
t−1Wr term assesses the squared

residual effects on current variance, paralleling GARCH models’ disturbance influence.

The weights Ws,Wr, and Wo are learned parameters potentially derived from

neural network structures. The functions ϕ and ϕo are activation functions 4.34, 4.32,

respectively, adding nonlinearity to the model, while bh and bo are bias terms.

By combining past variance, disturbances, and a stochastic layer, the σ-Cell-N offers

a more comprehensive perspective on volatility dynamics. This model exemplifies the

blend of GARCH principles with neural architecture-derived weights and nonlinear

activations, providing a richer understanding of time series volatility.

4.4.3 σ-Cell-RL: Integrating Residuals RNN Layer

The enhanced model introduces a novel mechanism for calculating residuals, diverging

from the purely stochastic approach seen in the σ-Cell-N configuration. Instead of solely

relying on stochastic deviations, this version uses the discrepancies between empirical

data and predictions provided by an added RNN layer G, as shown in equations 4.9,

4.10, where we use the hyperbolic tangent (tanh) activation function φ LeCun et al.

[1989].

75

Chapter 4: σ-Cell 4.4.4. σ-Cell RNNs Volatility Models

ht = φ (xt−1Wxh + ht−1Whh + bh) (4.9)

G(ht) = φ (htWho + bo) (4.10)

x̃t−1 = xt−1 −G(ht) (4.11)

Here, x̃t−1 represents the residuals at the t
th time instance. The residual computation

takes into account the actual value xt−1 as input for G. G is computed using the prior

hidden state ht−1 and the current input xt−1, reflecting the behavior of recurrent cells.

In essence, ht−1 captures historical context, which, combined with xt−1, aids in current

forecasting. For variance, the modeling remains fundamentally consistent, as shown in

equation 4.12.

σ̃2
t = ϕ(σ̃2

t−1Ws + x̃2
t−1Wr + bh) (4.12)

σ2
t = ϕo(σ̃

2
tWo + bo) (4.13)

The critical distinction is that the residuals, x̃t, now stem from the RNN layer’s

predictions. This tie-in of the RNN layer inherently adjusts the variance equation

based on the predictive capabilities of the RNN cell.

The σ-Cell-RL model integrates an RNN component to craft residuals. Instead

of using stochastic elements for unpredictability, it harnesses the RNN’s forecasting

deviations. This marriage of time series modeling with neural networks enhances

adaptability, potentially elevating the model’s capability to detect complex data patterns

in sequences.

4.4.4 σ-Cell-NTV: Integrating Time-Varying Approach

Building upon previous discussions on fixed parameter weights Wr and Ws, this section

delves into a time-varying approach for these parameters. First, the input vector xt−1

undergoes a transformation 4.14.

76

Chapter 4: σ-Cell 4.4.4. σ-Cell RNNs Volatility Models

wt−1 = φ̃ (Wxt−1 + b) (4.14)

Here, the linear combination of xt−1 with weight matrix W and bias vector b is

passed through a nonlinear function, φ̃, resulting in the vector wt−1.

Further, wt−1 is split into two components 4.15, 4.16.

Ws,t = π1 (wt−1) (4.15)

Wr,t = π2 (wt−1) (4.16)

Using π1 and π2, the first and second halves of wt−1 are extracted, respectively. For

a wt−1 with 2n elements 4.17, 4.18.

π1 (wt−1) = wt−1[1 : n] (4.17)

π2 (wt−1) = wt−1[n+ 1 : 2n] (4.18)

The residual computation employs stochasticity similar to 4.6, we provide it in

equation 4.19.

x̃t−1 = xt−1 −N(0, σt−1) (4.19)

Lastly, the variance evolution, similar to σ-Cell dynamics, is described in equation

4.20

σ̃2
t = ϕ(σ̃2

t−1Ws,t + x̃2
t−1Wr,t + bh) (4.20)

σ2
t = ϕo(σ̃

2
tWo + bo) (4.21)

In 4.20, the variance σ2
t hinges on past variance, σ2

t−1, modulated by the time-varying

parameter Ws,t and the squared residuals x̃t2 modulated by Wr, t.

Conclusively, by integrating time-varying parameters Ws,t and Wr,t, we achieve a

77

Chapter 4: σ-Cell 4.4.4. σ-Cell RNNs Volatility Models

fusion of traditional time series techniques with deep learning approaches, by refining

variance modeling by time-varying parameters.

4.4.5 σ-Cell-RLTV: Integrating Time-Varying Approach

The proposed model marries the dynamic attributes of the time-varying method with

the recurrent, residual features of the σ-Cell-RL. For each time step t, we describe it

4.22, 4.23, 4.24, 4.25, 4.26, 4.27, 4.28.

wt = φ̃(Wxt−1 + b) (4.22)

Ws,t = π1(wt) (4.23)

Wr,t = π2(wt) (4.24)

ht = φ (xt−1Wxh + ht−1Whh + bh) (4.25)

G(ht) = φ (htWho + bo) (4.26)

x̃t−1 = xt−1 −G(ht) (4.27)

σ̃2
t = ϕ(σ̃2

t−1Ws,t + x̃2
t−1Wr,t + bh) (4.28)

σ2
t = ϕo(σ̃

2
tWo + bo) (4.29)

Here, σ2
t−1 represents the historical variance, modulated by the recurrent,

time-varying weights Ws,t and Wr,t. Parameters - W and b denote weights and

biases. And φ̃, π1, π2, f , and ϕ are the operational functions in the network. However,

ht−1, σ̃t−1 are the hidden states from the prior time step. Analogous with σ-RL, we

78

Chapter 4: σ-Cell 4.4.4. σ-Cell RNNs Volatility Models

implement x̃t−1 in equations 4.25, 4.26, 4.27.

In this approach, we improved memory retention and heightened resistance to

specific noise disturbances. However, the model comes with an increased computational

burden and a potential to overfit, particularly in sparser data sets.

4.4.6 Loss-function

The objective of this study is to learn the optimal functions F and G that best describe

our data. In order to do this, we employ the principle of maximum likelihood estimation.

The maximum likelihood method aims to find the parameters of a statistical model

that maximizes the likelihood of the data given the model.

Our task then becomes the minimization of the negative log-likelihood of the

observed data given the model. This is expressed in the following loss function in

equation 4.30.

L =
∑
t

[
log
(
σ2
t

)
+

(xt −G (xt))
2

σ2
t

]
(4.30)

The first term inside the sum is the logarithm of the variance, σ2
t . The second term

is the squared difference between the observed value, xt, and the predicted value, G(xt),

scaled by the inverse of the variance. When the predicted value is close to the observed

value, this term becomes small, whereas when the predicted value deviates from the

observed value, this term becomes large, thus increasing the loss L.

To find the functions F and G that yield the minimum value of this loss, we

formulate the following optimization problem 4.31.

argmin
F,G

L(F,G) (4.31)

In this context, we are seeking the functions F and G that minimize the negative

log-likelihood. This task is typically approached via gradient-based optimization

methods, such as Gradient Descent or Stochastic Gradient Descent. In these methods,

we iteratively update the parameters of F and G in the direction that most reduces L,

until we reach a point where the loss can no longer be decreased (a minimum).

The use of negative log-likelihood as opposed to the standard log-likelihood stems

79

Chapter 4: σ-Cell 4.4.4. σ-Cell RNNs Volatility Models

from the nature of the optimization problem. The standard log-likelihood aims to

find the parameters that maximize the likelihood, but optimization algorithms are

traditionally designed to minimize a given function. Therefore, by taking the negative

of the log-likelihood, the maximization problem is transformed into a minimization

problem, making it more tractable for standard optimization algorithms.

4.4.7 Activation Function

Activation functions are a fundamental component of neural networks. They determine

the output of a neuron given an input or set of inputs, hence controlling the complexity

of the model and its ability to fit nonlinear patterns within the data. When predicting

financial market volatility, nonlinearity and complexity are important considerations.

Financial markets are influenced by a multitude of interconnected variables that often

interact in nonlinear ways. As such, the ability to model these intricate relationships is

critical for accurate predictions.

Furthermore, financial market volatility can be influenced by a variety of unexpected

events such as geopolitical changes or economic shocks, leading to abrupt jumps or falls

in prices. This reality requires an activation function that can effectively model sudden

changes or discontinuities, something that linear activation functions can’t handle.

In this context, nonlinear activation functions like Rectified Linear Unit (ReLU)

and Softplus become particularly useful Nair and Hinton [2010], Glorot et al. [2011].

They introduce the necessary nonlinearity to the model while avoiding the issues of

vanishing or exploding gradients, thereby improving the training of deep neural networks.

The ReLU function is widely used due to its simplicity and efficiency, while Softplus

provides a smooth and differentiable approximation of ReLU, thereby maintaining a

balance between computational efficiency and the ability to handle complex, nonlinear

relationships.

Understanding the nature of the task and the specific properties of each activation

function allows us to make informed decisions when designing and training our neural

networks for volatility prediction.

In the following subsections, we will describe the activation functions we have chosen

for this task.

80

Chapter 4: σ-Cell 4.4.4. σ-Cell RNNs Volatility Models

ReLU (Rectified Linear Unit) Activation Function

The Rectified Linear Unit, or ReLU, is a simple, nonlinear activation function that has

become a default choice in many neural network architectures Nair and Hinton [2010],

Glorot et al. [2011], Ramachandran et al. [2017]. The ReLU function is defined in

equation 4.32. This means that it outputs the input directly if it is positive; otherwise,

it outputs zero. The simplicity of ReLU reduces the computational cost and mitigates

the vanishing gradient problem, which aids in training deep neural networks.

f(x) = max(0, x) (4.32)

Adjusted Softplus Activation Function

The Softplus function is another nonlinear activation function, which can be considered

as a smooth approximation to the ReLU function Glorot et al. [2011]. Softplus is

defined in equation 4.33. Unlike ReLU, Softplus does not have a sharp transition at 0

and never produces an absolute zero activation, except at negative infinity,

f(x) = log(1 + ex) (4.33)

We develop a particular softplus activation function equation 4.34, the function

is modified to have zero output for negative input values and is scaled such that the

Softplus of 1 is 1. This modified Softplus function can be particularly useful in scenarios

where the benefits of a smooth activation function are desired, and where output values

are preferably non-negative and normalized with respect to a specified scale.

Adjusted Softplus(x) = max

(
0,

(
1

β
log
(
1 + eβx

)
− log(2)

β

)
· 1

1
β
log (1 + eβ)− log(2)

β

)
(4.34)

4.4.8 Adam Optimizer

For training our proposed model, we employ the Adam (Adaptive Moment Estimation)

optimization algorithm. Adam is particularly well-suited for problems like ours that

81

Chapter 4: σ-Cell 4.4.4. σ-Cell RNNs Volatility Models

(a)

2 1 0 1 2
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

ReLU
ReLU'

(b)

2 1 0 1 2
x

0.0

0.5

1.0

1.5

2.0

y

Adjusted-Softplus
Adjusted-Softplus'

Figure 4.1: The following plot illustrates Activation Functions ReLU and
Adjusted-Softplus. a) The plot illustrates the behaviors of the ReLU and derivative b)
Adjusted-Softplus activation functions and derivatives. ReLU, which is zero for negative
inputs and linear with slope one for positive inputs, provides a simple, computationally
efficient nonlinearity. On the other hand, Adjusted-Softplus is a smoothed version of
ReLU for x > 0.

involve large parameter spaces and potentially noisy or sparse gradients. Its adaptive

learning rates for different parameters make it highly efficient, allowing for quicker

convergence while requiring lower memory resources compared to other optimization

algorithms Kingma and Ba [2014]. The algorithm’s ability to compute exponential

moving averages of the gradient and the squared gradient, which are then bias-corrected,

offers a robust approach to navigating the complex loss landscape commonly encountered

in financial time series modeling.

The choice of Adam as our optimization algorithm aligns well with the intricacies

of volatility forecasting, where the objective function can be highly nonlinear, and the

gradients can vary widely across different regions of the parameter space. By leveraging

Adam’s adaptive learning rates and moment estimates, as defined in equations 2.45 to

2.49, we aim to achieve a more stable and efficient training process, thereby enhancing

the generalizability and predictive power of our model.

82

Chapter 4: σ-Cell 4.4.5. Experimental Approach: Synthetic and Real Data

4.4.9 Training

The weights of the σ-Cell RNNs are initialized using the Xavier Uniform distribution,

which provides a balanced initial scale for the weights, facilitating the learning process,

and the biases are initialized to zero Glorot and Bengio [2010], Sutskever et al. [2013].

Gradient clipping is employed as a regularization technique to avoid the adverse effects

of exploding gradients, which can destabilize the learning process Pascanu et al. [2013].

The gradients are clipped to a maximum norm of 1.0, ensuring that the updates to the

weights during training do not become excessively large and destabilize the network.

The iterative learning process is guided by the Adam optimizer, which is well-suited

for training deep neural networks with large-scale data. The Adam optimizer adapts the

learning rate for each weight based on the historical gradients, providing an efficient and

stable optimization approach. During each epoch of training, the weights of the σ-Cell

RNNs are updated based on the gradients of the employed Log-likelihood loss equation

4.30 with respect to the weights. This iterative update of the weights continues through

multiple epochs until the convergence criteria are met. As the training progresses, the

model gradually learns to capture the underlying patterns in the data, refining the

weights and biases to minimize the loss function. This iterative learning approach allows

the model to effectively learn the complex dynamics in the data, and the resulting

trained σ-Cell RNN provides an accurate and robust model for capturing the volatility

dynamics in financial time series data.

4.5 Experimental Approach: Synthetic and Real

Data

In our study, we leveraged a comprehensive suite of metrics and statistical tests to

rigorously evaluate the forecasting performance of various models. We employed

the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) to gauge

the average magnitude of errors between predicted and observed values, defined in

equations 2.50 and 2.51, respectively. To account for heteroskedasticity in the data,

we also utilized the Heteroskedasticity Adjusted Root Mean Square Error (HRMSE),

83

Chapter 4: σ-Cell 4.4.5. Experimental Approach: Synthetic and Real Data

formulated in equation 2.52 Bollerslev and Ghysels [1996]. Recognizing the limitations

of HRMSE, we further incorporated the QLIKE loss function, which is particularly

robust for volatility forecasting, as shown in equation 2.53 Patton [2011].

To quantify the goodness-of-fit of our models to the observed data, we employed the

Negative Log-Likelihood (NLL) metric, defined in equation 2.54. Additionally, we used

the R2 of Mincer-Zarnowitz forecasting regressions to assess the explanatory power of

our models Mincer and Zarnowitz [1969].

For comparative evaluation, we applied the Diebold-Mariano (DM) test, focusing

on Mean Squared Error (MSE) as the loss function, to discern statistically significant

differences between the forecasting models Diebold and Mariano [1995]. To further

substantiate our findings, we employed the Model Confidence Set (MCS) test, which

identifies a set of best-performing models with a high level of statistical confidence

Hansen et al. [2011]. This test was conducted using bootstrapping techniques, allowing

us to compare multiple forecasting models and identify the most reliable ones with a 5

4.5.1 Synthetic Data Generation

Our synthetic data generation is inspired by the cyclical and often fluctuating nature of

financial market volatility. We consider a sequence of 2000 data points where volatility

(σi) at each point i is generated using equation 4.35.

σi = 1 + A sin

(
πi

B

)
(4.35)

Here, the parameters A and B govern the amplitude and frequency of the sine

wave, respectively. These are set to A = 0.7 and B = 50 in our specific synthetic data

generation process. The sin function imbues our model with cyclical fluctuations in

the volatility, embodying the frequently changing volatility regimes often observed in

financial markets.

The synthetic return (xi) at each point i is then created using the equation:

xi = σi · ϵi (4.36)

In 4.36 ϵi is a random number drawn from a standard normal distribution (ϵi ∼

84

Chapter 4: σ-Cell 4.4.5. Experimental Approach: Synthetic and Real Data

N(0, 1)). This ensures that our synthetic returns (xi) are directly influenced by our

generated volatility (σi).

We split this synthetic data set into a training set (the first half of the data) and a

test set (the second half) to evaluate the model’s performance on unseen data.

This synthetic data provides a robust testing ground for our model, enabling us to

compare the predicted volatility values with the true known volatility. This synthetic

data set, with known underlying dynamics, is a valuable benchmark for evaluating the

performance of the volatility modeling. It is essential to note that the synthetic data

has been structured to reflect some stylized facts of financial returns, which will aid in

better understanding the model’s efficacy in real-world scenarios.

(a)

0 200 400 600 800 1000
Time Steps

6

4

2

0

2

4

6

Va
lu

e

Generated Returns
Generated Sigma

(b)

0 200 400 600 800 1000
Time Steps

4

2

0

2

4

Va
lu

e

Generated Returns
Generated Sigma

Figure 4.2: The following plot illustrates the generated synthetic data, which includes
a sequence of returns and their associated volatility denoted by σ. Panel (a) represents
the training data, while panel (b) displays the out-of-sample data. The blue dashed
line represents the true generated returns, and the black solid line depicts the true
sigma values. This synthetic data set is characterized by known underlying dynamics.

In the following sections, we will expand our experimental analysis to real financial

data, bringing additional complexity and testing the model’s performance in capturing

more intricate, real-world dynamics.

4.5.2 Real Data

In this study, we investigate the proposed models for estimating and predicting realized

volatility in diverse market structures. We focus on two specific asset types: an index,

represented by the S&P 500, and a cryptocurrency, represented by the Bitcoin-USD

85

Chapter 4: σ-Cell 4.4.5. Experimental Approach: Synthetic and Real Data

(BTCUSDT) pair. We analyze daily data to examine the effects and dependencies

associated with this granularity 5.1.

For the S&P 500 data, we use 1-minute price observations from March 10, 2007,

to March 1, 2022, resulting in 3,800 days of realized volatility observations. RV and

returns are calculated based on the last daily closing price. Our experimental data

set consists of intraday returns and corresponding RV. We partition the data set into

training, validation, and test subsets. The validation and test subsets each contain

252 points, equivalent to one trading year, with the remaining data allocated to the

training subset.

For the cryptocurrency data, we study the Bitcoin-USD pair. We use 1-minute

price data from January 1, 2013, to April 20, 2020. This data set provides extensive

price points, from which we calculate 2,667 RV observations. As with the S&P 500

data set, we divide the cryptocurrency data into training, validation, and test subsets,

with the validation and test subsets each containing 252 points.

Table 4.1: Data Set Description for S&P 500 and BTCUSDT

Asset Time Frame From To RV Points

S&P 500 1 minute 10.03.07 01.03.22 3,800
BTCUSDT 1 minute 01.01.13 20.04.20 2,667

Note: The table presents an overview of the data used in the
analysis, including the asset, the time frame of the data,
the date range of the data, and the number of realized
volatility (RV) points. The last 252 data points are used for
out-of-sample testing, and the preceding 252 data points
are used for validation.

The mean, median, standard deviation, skewness, and kurtosis were calculated for

each asset’s returns, giving us valuable insights into the underlying data distributions.

The S&P 500 stock has a mean return of 0.00029, which is close to zero, indicating

no clear trend in either direction, Table 5.2. The standard deviation is 0.0128, implying

a relatively moderate degree of price fluctuation. The negative skewness of -0.1886

suggests a left-leaning data distribution, while the kurtosis of 13.9915 indicates a

distribution with relatively heavy tails, implying occasional large changes in stock

prices. The median return of 0.0007 further supports the near-zero mean, confirming

the absence of a clear trend.

86

Chapter 4: σ-Cell 4.4.5. Experimental Approach: Synthetic and Real Data

2008 2010 2012 2014 2016 2018 2020 2022
Date

0.1

0.0

0.1

0.2

0.3

In
tra

da
y

R
et

ur
ns

 a
nd

 R
ea

liz
ed

 V
ol

at
ili

ty

Realized Volatility (offset +0.1)
Returns

1000

2000

3000

4000

P
ric

e

Price

Figure 4.3: This plot depicts the Realized Volatility, Returns, and Price of the S&P
500 Index between 10th March 2007 and 1st March 2022. The gray solid line represents
the realized volatility (offset by +0.1), the blue dashed line represents intraday returns,
and the black dash-dot line indicates the price. Both the RV and returns, derived from
daily data, are presented on the primary y-axis, while the price is shown on a secondary
y-axis. The vertical red dashed and green dotted lines demarcate the beginnings of
the test and validation sets, respectively, with each set comprising 252 points. All
remaining data serve as the training set.

87

Chapter 4: σ-Cell 4.4.5. Experimental Approach: Synthetic and Real Data

(a)

0 5 10 15 20 25 30
Lag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

(b)

0 5 10 15 20 25 30
Lag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

(c)

0 5 10 15 20 25 30
Lag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

(d)

0 5 10 15 20 25 30
Lag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

Figure 4.4: This plot displays the autocorrelation (ACF) and partial autocorrelation
(PACF) for the returns and volatility of the S&P 500 Index. The ACF illustrates the
extent of a linear relationship between current values and their lags, while the PACF
captures the correlation between a value and its lag that isn’t explained by shorter lags.
a) ACF for returns b) PACF for returns c) ACF for volatility d) PACF for volatility

88

Chapter 4: σ-Cell 4.4.5. Experimental Approach: Synthetic and Real Data

2013 2014 2015 2016 2017 2018 2019 2020
Date

0.4

0.2

0.0

0.2

0.4

0.6

0.8

In
tra

da
y

R
et

ur
ns

 a
nd

 R
ea

liz
ed

 V
ol

at
ili

ty

Realized Volatility (offset +0.1)
Returns

0

2500

5000

7500

10000

12500

15000

17500

20000

P
ric

e

Price

Figure 4.5: This plot depicts the Realized Volatility, Returns, and Price of the
Bitcoin-USD Pair between 1st January 2007 and 20th April 2020. The gray solid
line represents the realized volatility (offset by +0.1), the blue dashed line represents
intraday returns, and the black dash-dot line indicates the price. Both the RV and
returns, derived from daily data, are presented on the primary y-axis, while the price is
shown on a secondary y-axis. The vertical red dashed and green dotted lines demarcate
the beginnings of the test and validation sets, respectively, with each set comprising
252 points. All remaining data serve as the training set.

89

Chapter 4: σ-Cell 4.4.5. Experimental Approach: Synthetic and Real Data

(a)

0 5 10 15 20 25 30
Lag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

(b)

0 5 10 15 20 25 30
Lag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

(c)

0 5 10 15 20 25 30
Lag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

(d)

0 5 10 15 20 25 30
Lag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

Figure 4.6: This plot displays the autocorrelation (ACF) and partial autocorrelation
(PACF) for the returns and volatility of the Bitcoin-USD Pair. The ACF illustrates the
extent of a linear relationship between current values and their lags, while the PACF
captures the correlation between a value and its lag that isn’t explained by shorter lags.
a) ACF for returns b) PACF for returns c) ACF for volatility d) PACF for volatility

90

Chapter 4: σ-Cell 4.4.5. Experimental Approach: Synthetic and Real Data

In contrast, the Bitcoin asset has a higher mean return of 0.00349, reflecting a

slight upward trend. It also has a higher standard deviation of 0.0466, indicating more

substantial price volatility compared to the S&P 500 stock, table 5.2. The slightly

negative skewness of -0.0726 and the higher kurtosis of 14.3508 suggest a distribution

with an extreme fat tail, indicating a higher likelihood of significant price changes. The

median return of 0.0020 aligns with the positive mean, further supporting the upward

trend.

We also generated plots for each asset to offer a more intuitive understanding of

the data distributions. Figure X showcases the distribution of intraday returns, and

Figure Y presents a box plot of the intraday returns. These graphical representations

further illustrate the unique characteristics of each asset’s return distribution, serving

as a visual supplement to our statistical analysis.

Table 4.2: Statistical Summary of Returns for S&P 500 and BTCUSDT.

Asset Mean Median STD Skewness Kurtosis

S&P 500 0.00029 0.0007 0.0128 -0.1886 13.9915
BTCUSDT 0.00349 0.0020 0.0466 -0.0726 14.3508

Note: The table presents key statistical metrics of the interdaily
returns for the S&P 500 index and the Bitcoin-USD
(BTCUSDT) trading pair. The metrics include mean, median,
standard deviation (STD), skewness, and kurtosis. A positive
skewness indicates a right-side heavier tail of the probability
density function, while a negative skewness indicates a left-side
heavier tail. Kurtosis measures the ”tailedness” of the
probability distribution of returns. Higher kurtosis indicates
a heavier tail, signifying a higher probability of extreme
outcomes. For the analysis, we use the entire data set without
dividing it into validation and test sets.

By focusing on these two contrasting asset types, we aim to gain a comprehensive

understanding of how various σ-Cell can estimate and predict realized volatility across

different market structures accurately.

91

Chapter 4: σ-Cell 4.4.5. Experimental Approach: Synthetic and Real Data

(a)

0.10 0.05 0.00 0.05 0.10 0.15
Interdaily Returns

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

(b)

0.10 0.05 0.00 0.05 0.10 0.15
Interdaily Returns

(c)

0.4 0.2 0.0 0.2 0.4
Interdaily Returns

0

100

200

300

400

500

Fr
eq

ue
nc

y

(d)

0.4 0.2 0.0 0.2 0.4
Interdaily Returns

Figure 4.7: This plot showcases the distribution and Box Plot of Returns for the S&P
500 and Bitcoin-USD. Panel a) displays the histogram of the S&P 500 returns, while
Panel b) provides its box plot, highlighting the spread of data and potential outliers.
Similarly, Panel c) illustrates the histogram of Bitcoin-USD returns, and Panel d)
presents its box plot, showcasing data dispersion and any outliers. These visualizations
offer insights into the central tendency, dispersion, and shape of the return distributions
for both assets.

92

Chapter 4: σ-Cell 4.4.6. Results

4.6 Results

In this study, we sought to gauge the predictive efficacy of the proposed σ-Cell models.

Our evaluation encompassed various experiments using synthetic and real-world financial

data sets. The proposed models’ performance was contrasted against traditional

GARCH family models and the Stochastic Volatility (SV) model in the synthetic data

scenario. However, the comparison was made against GARCH, SV models, as well as

the Heterogeneous Autoregressive (HAR) model proposed by Corsi (2009) in the actual

data context Corsi [2009].

4.6.1 Synthetic data set

The comparative analysis delineated in Table 4.3 elucidates the performance of various

σ-Cell model variants vis-à-vis established models across multiple evaluation metrics,

namely RMSE, MAE, NLL, δ Mean, and δ Amplitude. Notably, the σ-Cell-RLTV

variant demonstrates superior performance in RMSE and MAE metrics, outclassing

all other models under consideration. Conversely, the TARCH model lags behind,

registering the least favorable scores in these categories.

In terms of the NLL metric, the σ-Cell-NTV variant emerges as the most

efficient model, while the TARCH model once again exhibits suboptimal performance.

Furthermore, the σ-Cell-NTV variant also leads in the δ Mean and δ Amplitude metrics,

underscoring its robustness across multiple dimensions of evaluation.

Turning our attention to Table 4.4, which assesses out-of-sample performance on

synthetic test data, the σ-Cell-RLTV variant continues to distinguish itself. It excels

not only in RMSE and MAE but also registers the lowest NLL among its σ-Cell

counterparts.

When juxtaposed with other volatility models such as GARCH(1,1), EGARCH,

TARCH, GJR-GARCH, and SV, the σ-Cell-RLTV variant maintains its competitive

edge in RMSE and MAE metrics.

Overall, the σ-Cell-RLTV model shows superior performance in RMSE, MAE,

and NLL metrics compared to other models. Its performance in the δ Mean and δ

Amplitude metrics also suggest its consistency and accuracy in predicting volatility

93

Chapter 4: σ-Cell 4.4.6. Results

Table 4.3: Comparative Performance Metrics of Volatility Models on In-Sample
Synthetic Data

Model RMSE MAE NLL δ Mean δ Amplitude

σ-Cell 0.3207 0.2362 0.9703 -0.0810 -1.4876
σ-Cell-N 0.3039 0.2292 0.9651 -0.0316 -1.2188
σ-Cell-NTV 0.2741 0.2223 0.9565 0.0318 -0.4003
σ-Cell-RL 0.3217 0.2401 0.9707 -0.0496 -1.6247
σ-Cell-RLTV 0.2614 0.2043 0.9531 -0.0265 -0.7845
GARCH(1,1) 0.3058 0.2295 1.1977 -0.0537 -1.4702
EGARCH 0.3712 0.2376 1.2255 -0.0594 -4.8949
TARCH 0.3844 0.2471 1.2182 -0.0361 -5.1248
GJR-GARCH 0.3160 0.2383 1.1890 -0.0304 -1.6385
SV 0.3246 0.2762 0.9716 -0.1170 -0.7082

Note: The table presents the performance metrics for five variants of
the σ-Cell model and five other volatility models using synthetic
in-sample data for validation. The evaluation metrics include
RMSE, MAE, NLL, δ Mean, and δ Amplitude. The σ-Cell-RLTV
variant is notable for its performance in the RMSE and MAE
metrics, while the σ-Cell-NTV variant stands out in the NLL,
δ Mean, and δ Amplitude metrics. Values highlighted in bold
indicate the best performance for each metric.

changes. These results highlight the potential effectiveness of the σ-Cell-RLTV model

in predicting realized volatility on synthetic test data.

94

Chapter 4: σ-Cell 4.4.6. Results

Table 4.4: Comparative Performance Metrics of Volatility Models on Out-of-Sample
Synthetic Data

Model RMSE MAE NLL δ Mean δ Amplitude

σ-Cell 0.3269 0.2584 0.9724 -0.0426 -1.3954
σ-Cell-N 0.3271 0.2510 0.9724 0.0075 -1.0481
σ-Cell-NTV 0.3176 0.2479 0.9694 0.0027 -1.4280
σ-Cell-RL 0.3382 0.2633 0.9761 -0.0231 -1.5759
σ-Cell-RLTV 0.2873 0.2307 0.9602 -0.0110 -0.9959
GARCH(1,1) 0.3214 0.2643 1.1571 -0.0343 -1.0934
EGARCH 0.3230 0.2617 1.1609 -0.0341 -1.2120
TARCH 0.3602 0.2688 1.1834 -0.0460 -3.5309
GJR-GARCH 0.3244 0.2650 1.1644 -0.0354 -1.3509
SV 0.4070 0.3568 1.0565 -0.0087 0.4855

Note: The table presents the performance metrics for various
volatility models on out-of-sample synthetic data. The metrics
include Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), Negative Log-Likelihood (NLL), the difference in mean
(δ Mean), and the difference in amplitude (δ Amplitude). The
models being compared include five variants of the σ-Cell model as
well as five other well-known volatility models. The σ-Cell-RLTV
variant stands out with a comparatively low RMSE, MAE, and
NLL, indicating superior accuracy and consistency among the
σ-Cell variants. Values highlighted in bold indicate the best
performance for each metric.

95

Chapter 4: σ-Cell 4.4.6. Results

(a)

0 50 100 150 200 250
Time Steps

0.5

1.0

1.5

2.0

2.5
Generated Sigma
SV

(b)

0 50 100 150 200 250
Time Steps

0.5

1.0

1.5

2.0

2.5

3.0 Generated Sigma
GARCH(1,1)

(c)

0 50 100 150 200 250
Time Steps

0.5

1.0

1.5

2.0

2.5

3.0
Generated Sigma

-Cell-N

(d)

0 50 100 150 200 250
Time Steps

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25 Generated Sigma
-Cell-NTV

(e)

0 50 100 150 200 250
Time Steps

0.5

1.0

1.5

2.0

2.5

3.0
Generated Sigma

-Cell-RL

(f)

0 50 100 150 200 250
Time Steps

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Generated Sigma

-Cell-RLTV

Figure 4.8: The following plot illustrates the predictions for in-sample synthetic data
for different forecasting models: (a) Stochastic Volatility (SV) model’s prediction of
generated sigma values. (b) GARCH(1,1) model’s prediction of generated sigma values.
(c) σ-Cell-N model’s prediction of generated sigma values. (d) σ-Cell-NTV model’s
prediction of generated sigma values. (e) σ-Cell-RL model’s prediction of generated
sigma values. (f) σ-Cell-RLTV model’s prediction of generated sigma values.

96

Chapter 4: σ-Cell 4.4.6. Results

(a)

0 50 100 150 200 250
Time Steps

0.0

0.5

1.0

1.5

2.0

2.5

Generated Sigma
SV

(b)

0 50 100 150 200 250
Time Steps

0.5

1.0

1.5

2.0

2.5
Generated Sigma
GARCH(1,1)

(c)

0 50 100 150 200 250
Time Steps

0.5

1.0

1.5

2.0

2.5
Generated Sigma

-Cell-N

(d)

0 50 100 150 200 250
Time Steps

0.5

1.0

1.5

2.0

2.5

3.0 Generated Sigma
-Cell-NTV

(e)

0 50 100 150 200 250
Time Steps

0.5

1.0

1.5

2.0

2.5

3.0 Generated Sigma
-Cell-RL

(f)

0 50 100 150 200 250
Time Steps

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25 Generated Sigma
-Cell-RLTV

Figure 4.9: The following plot illustrates the prediction for out-of-sample synthetic data
for different forecasting models: (a) Stochastic Volatility (SV) model’s prediction of
generated sigma values. (b) GARCH(1,1) model’s prediction of generated sigma values.
(c) σ-Cell-N model’s prediction of generated sigma values. (d) σ-Cell-NTV model’s
prediction of generated sigma values. (e) σ-Cell-RL model’s prediction of generated
sigma values. (f) σ-Cell-RLTV model’s prediction of generated sigma values.

97

Chapter 4: σ-Cell 4.4.6. Results

Exploring Time-Varying Parameters of σ-Cell-NTV and σ-Cell-RLTV

The σ-Cell-NTV and σ-Cell-RLTV models represent a fusion of time series modeling

techniques with the power of deep learning. At their core, these models leverage

recurrent neural networks to model the time-dependent structure in financial data,

coupled with the introduction of time-varying parameters to capture dynamic shifts in

the underlying financial processes.

The σ-Cell-NTV model introduces time-varying weights Ws,t, and Wr,t to model the

time-varying nature of financial time series. This is achieved through the transformation

of the input vector xt via a nonlinear function, followed by the separation of the

transformed vector into two components. These components are used to modulate

the past variance and the squared residuals in the variance evolution equation. This

enables the model to adapt to changing market conditions and capture complex temporal

relationships in the data.

On the other hand, the σ-Cell-RLTV model builds upon the σ-Cell-RL by

incorporating recurrent, time-varying weights into the variance evolution equation.

This provides the model with an improved memory retention capability and heightened

resistance to specific noise disturbances. By integrating the recurrent nature of the

σ-Cell-RL and the dynamic attributes of the time-varying method, the σ-Cell-RLTV

model offers a more robust and nuanced understanding of financial time series data.

Both models demonstrate a clear progression in the evolution of the norms |Wr| and

|Ws| during training 4.10, 4.11 Initially, these norms exhibit an unstructured pattern,

but as training progresses, a clear structure emerges. The observed structure in the

norms reflects the model’s ability to capture intricate relationships in the data and

provides valuable insights into the underlying financial processes.

While these models offer a promising approach for modeling financial time series

data, they come with increased computational complexity and a potential risk of

overfitting, especially in sparser data sets. Thus, careful consideration should be given

to model selection and hyperparameter tuning to strike a balance between model

complexity and predictive performance.

In summary, the σ-Cell-NTV and σ-Cell-RLTV models offer a novel approach to

modeling financial time series data by combining traditional time series techniques

98

Chapter 4: σ-Cell 4.4.6. Results

with the flexibility and adaptability of deep learning. These models show promise

in capturing complex temporal relationships and provide valuable insights into the

dynamics of financial processes.

(a)

0 200 400 600 800 1000
Time Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(b)

0 200 400 600 800 1000
Time Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(c)

0 200 400 600 800 1000
Time Steps

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(d)

0 200 400 600 800 1000
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 4.10: The following plot illustrates the evolution of |Wr| and |Ws| in the
σ-Cell-NTV model during training. The plots illustrate the progression of norms at
two different training epochs, highlighting the emergence of a structured pattern in
|Wr| and |Ws| as training progresses. (a) |Wr| at epoch 1: Distribution of the |Wr|
during the initial stages of training is mostly noise. (b) |Ws| at epoch 1: Distribution
of the |Ws| at the start of training is mostly noise. (c) |Wr| at epoch 100: After 100
epochs, a distinct pattern is visible in the distribution of |Wr|. (d) |Ws| at epoch 100:
The distribution of |Ws| after 100 epochs, revealing the emergence of a clear structure.

99

Chapter 4: σ-Cell 4.4.6. Results

(a)

0 200 400 600 800 1000
Time Steps

0.0

0.2

0.4

0.6

0.8

(b)

0 200 400 600 800 1000
Time Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c)

0 200 400 600 800 1000
Time Steps

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

(d)

0 200 400 600 800 1000
Time Steps

0.60

0.65

0.70

0.75

0.80

0.85

Figure 4.11: The following plot illustrates the evolution of |Wr| and |Ws| in the
σ-Cell-RLTV model during training. The plots illustrate the progression of norms at
two different training epochs, highlighting the emergence of a structured pattern in
|Wr| and |Ws| as training progresses. (a) |Wr| at epoch 1: The |Wr| during the initial
stages of training is largely unstructured. (b) |Ws| at epoch 1: The |Ws| at the start
of training shows a lack of clear structure. (c) |Wr| at epoch 100: after 100 epochs, a
distinct inverse pattern of variance is visible in the |Wr|. (d) |Ws| at epoch 100: after
100 epochs |Ws| revealing the emergence of a clear structure.

100

Chapter 4: σ-Cell 4.4.6. Results

4.6.2 Real Data

Table 5.3 shows the evaluation of the in-sample performance metrics for a diverse array

of volatility forecasting models specifically trained on the S&P 500 index. Within the

ambit of σ-Cell models, the σ-Cell-NTV variant merits particular attention for its R2,

which signifies a high degree of predictive accuracy during the in-sample period. This

model also manifests superior point forecast accuracy, as evidenced by its comparatively

low RMSE. The σ-Cell-RLTV variant is not far behind, also demonstrating robust

predictive capabilities as indicated by its R2.

In juxtaposition with other models, the HAR model is a formidable contender,

boasting in-sample solid performance. Its relatively low MAE and RMSE metrics

corroborate its point forecast accuracy, while its elevated R2 underscores its predictive

prowess.

Conversely, the SV model languishes at the lower end of the performance spectrum,

marred by elevated MAE and RMSE values, which suggest suboptimal point forecast

accuracy. Its R2 further attests to its diminished predictive efficacy relative to the

other models under consideration.

Occupying a middle ground, the GARCH variants and EGARCH models exhibit

moderate performance metrics. Their R2 values and RMSE metrics place them in an

intermediary position, falling short of the high-performing σ-Cell and HAR models yet

surpassing the underperforming SV model.

In summation, the σ-Cell-NTV and σ-Cell-RLTV models distinguish themselves

with superior in-sample performance metrics, closely following the traditional HAR

model.

Table 5.4 compares the out-of-sample performance of various volatility forecasting

models on the S&P 500 index. It particularly focuses on how the σ-Cell models measure

up against other models.

Among the σ-Cell models, the σ-Cell-RLTV model performs the best. It has the

second-highest R2 value among all models, indicating strong predictive accuracy. Its

lower RMSE compared to other σ-Cell models also suggests a better point forecast

accuracy.

The HAR model also performs well, especially considering it uses realized volatility

101

Chapter 4: σ-Cell 4.4.6. Results

Table 4.5: In-Sample Performance Metrics for S&P 500 Volatility Forecasting Models

Model MAE 103 RMSE 103 HRMSE QLIKE R2

σ-Cell 4.5433 7.1825 2.5177 -3.35507 0.683718
σ-Cell-N 4.2755 7.3268 3.9454 -3.37082 0.703984
σ-Cell-NTV 4.4954 6.7988 2.9629 -3.37653 0.741065
σ-Cell-RL 4.6405 7.4594 3.7466 -3.33337 0.669921
σ-Cell-RLTV 4.2681 6.7396 4.6134 -3.36883 0.72224
GARCH(1,1) 5.3125 8.2736 3.349 -3.36648 0.660096
EGARCH 5.2580 8.3533 3.3518 -3.36965 0.653453
TARCH 5.1771 8.4349 3.232 -3.36978 0.669526
GJR-GARCH 5.1116 8.193 3.2048 -3.36603 0.667675
HAR 4.1901 7.3104 3.7523 -3.3793 0.675116
SV 8.3227 15.8116 13.3486 -3.30144 0.317564

Note: The table presents the in-sample performance of various
volatility forecasting models applied to S&P 500 index. The
performance metrics include Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), Heteroscedasticity-Adjusted RMSE (HRMSE),
Quasi-Likelihood (QLIKE), and the coefficient of determination (R2).
Metrics MAE, RMSE are evaluated at a scale of 103.

(RV) data as input, which gives it more information. It has the highest R2 and the

lowest RMSE, confirming its strong predictive performance for the S&P 500 index’s

volatility.

In contrast, the SV model performs poorly. Its MAE and RMSE are much higher

than those of the other models, indicating that it may struggle to make accurate

predictions for the S&P 500 index’s volatility. This could be due to large errors in the

model’s forecasts.

In summary, the σ-Cell-RLTV model shows the most promise among the σ-Cell

models for forecasting S&P 500 volatility.

In summary, among the σ-Cell models, the σ-Cell-RLTV model appears to be the

most promising for forecasting the volatility of the S&P 500 index. However, the

traditional HAR model also stands out as a strong performer, highlighting the need for

further investigation into the comparative advantages of these models in the context of

S&P 500 volatility forecasting.

From Table 5.7, we observe the in-sample performance metrics for BTCUSDT

volatility forecasting models. The σ-Cell-RLTV model stands out among the

102

Chapter 4: σ-Cell 4.4.6. Results

Table 4.6: Out-of-Sample Performance Metrics for S&P 500 Volatility Forecasting
Models

Model MAE 103 RMSE 103 HRMSE QLIKE R2

σ-Cell 2.9022 4.3506 2.1655 -3.79978 0.292862
σ-Cell-N 2.7759 4.2079 2.4303 -3.85495 0.25181
σ-Cell-NTV 2.8566 4.2148 2.2502 -3.8158 0.327333
σ-Cell-RL 2.8681 4.3061 2.4395 -3.83052 0.257238
σ-Cell-RLTV 2.4940 3.6792 2.1279 -3.86195 0.464835
GARCH(1,1) 2.6258 3.9908 2.6406 -3.868 0.319658
EGARCH 2.8062 4.123 2.671 -3.86277 0.274502
TARCH 2.5811 3.961 2.5103 -3.86102 0.33776
GJR-GARCH 2.4939 3.8503 2.6177 -3.87638 0.372308
HAR 2.3316 3.3896 2.6567 -3.88498 0.516026
SV 68.2419 82.3501 24.6661 -2.64681 0.262184

Note: The table presents the out-of-sample performance of various
volatility forecasting models applied to S&P 500 index. The
performance metrics include Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), Heteroscedasticity-Adjusted RMSE (HRMSE),
Quasi-Likelihood (QLIKE), and the coefficient of determination (R2).
Metrics MAE, RMSE are evaluated at a scale of 103.

σ-Cell models with a reasonable R2 value indicating good predictive accuracy. The

σ-Cell-RLTV model’s performance appears to be competitive, highlighting the potential

of this variant for forecasting the volatility of the BTCUSDT trading pair.

Among the traditional models, the HAR model performs as expected well with the

highest R2, making it the best-performing model in this comparison. Moreover, it has

the lowest MAE among all models, further indicating the robust forecasting ability

of the HAR model in capturing the complex volatility dynamics of the BTCUSDT

trading pair.

From Table 5.8, we can see the out-of-sample test results for the BTCUSD trading

pair using various volatility forecasting models. Among the σ-Cell models, the

σ-Cell-NTV variant stands out with a good R2 value, showcasing good predictive

accuracy in forecasting the BTCUSD trading pair volatility. Further, the model also

has a relatively low MAE and RMSE, emphasizing its robust forecasting performance.

This demonstrates the effectiveness of the σ-Cell-NTV model in capturing the volatility

dynamics of the BTCUSD trading pair.

Regarding traditional models, the GJR-GARCH model performs exceptionally well

103

Chapter 4: σ-Cell 4.4.6. Results

Table 4.7: In-Sample Performance Metrics for BTCUSDT Volatility Forecasting Models

Model MAE 103 RMSE 103 HRMSE QLIKE R2

σ-Cell 11.4741 17.2758 2.1228 -2.3708 0.406287
σ-Cell-N 9.5845 14.8304 2.0743 -2.40586 0.383233
σ-Cell-NTV 9.8954 14.5676 2.2275 -2.4149 0.40949
σ-Cell-RL 11.8278 17.3736 1.9941 -2.30458 0.323242
σ-Cell-RLTV 9.8975 13.9467 2.2753 -2.41649 0.490842
GARCH(1,1) 10.645 15.2788 2.2737 -2.40314 0.339935
EGARCH 10.4241 15.4131 2.249 -2.40367 0.317588
TARCH 9.815 17.0394 2.2396 -2.40786 0.251025
GJR-GARCH 10.4658 16.0143 2.2568 -2.39506 0.278871
HAR 8.3432 13.046 2.1962 -2.43033 0.519423
SV 16.2048 20.2572 2.632 -2.35452 0.120267

Note: The table presents the in-sample performance of various volatility
forecasting models applied to the BTCUSDT trading pair. The
performance metrics include Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), Heteroscedasticity-Adjusted RMSE (HRMSE),
Quasi-Likelihood (QLIKE), and the coefficient of determination (R2).
Metrics MAE, RMSE are evaluated at a scale of 103.

in terms of R2 with the highest value among all models in the table. However, this

model has a relatively low MAE and RMSE but is not comparable to σ-Cell-NTV.

Overall, these results emphasize the potential of both σ-Cell and traditional models

in predicting the volatility of the BTCUSD trading pair, with the σ-Cell-NTV and

GJR-GARCH models showcasing particularly strong performance.

Table 4.9 presents the results of the Diebold-Mariano (DM) test comparing the

performance of various volatility forecasting models with the σ-Cell-RLTV model, which

serves as the base model for the S&P 500 index. The metrics used for performance

evaluation are MSE and MAD losses, and the associated p-values are also reported,

signifying the statistical significance of the performance differences.

The σ-Cell, σ-Cell-N, σ-Cell-NTV, and σ-Cell-RL models all show low p-values in

both MSE and MAD metrics, indicating their performance is statistically different from

the base model, with the σ-Cell model in particular showing extremely low p-values.

In contrast, the GARCH(1,1), TARCH, and GJR-GARCH models have relatively high

p-values in both metrics, suggesting that their performance is not significantly different

from the σ-Cell-RLTV model. The EGARCH model exhibits a low p-value in the MSE

104

Chapter 4: σ-Cell 4.4.6. Results

Table 4.8: Out-of-Sample Performance Metrics for BTCUSDT Volatility Forecasting
Models

Model MAE 103 RMSE 103 HRMSE QLIKE R2

σ-Cell 11.5603 18.5519 2.0116 -2.3075 0.523151
σ-Cell-N 8.6526 15.0106 2.0952 -2.3861 0.54771
σ-Cell-NTV 8.694 15.1973 2.1058 -2.3841 0.552158
σ-Cell-RL 10.2195 16.7332 2.0523 -2.3489 0.481362
σ-Cell-RLTV 8.9647 15.3183 2.1562 -2.3821 0.512133
GARCH(1,1) 11.7684 20.9741 2.2144 -2.3579 0.164693
EGARCH 11.9173 22.4158 2.2097 -2.3569 0.231588
TARCH 11.1243 23.8724 2.212 -2.3619 0.194875
GJR-GARCH 10.316 19.6479 2.1261 -2.3712 0.561019
HAR 8.7206 16.1625 2.1609 -2.3901 0.462834
SV 42.9903 47.1292 3.5722 -2.1328 0.342456

Note: The table presents the out-of-sample performance of various
volatility forecasting models applied to the BTCUSDT trading pair.
The performance metrics include Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), Heteroscedasticity-Adjusted
RMSE (HRMSE), Quasi-Likelihood (QLIKE), and the coefficient
of determination (R2). Metrics MAE, RMSE are evaluated at a scale
of 103.

metric but a relatively high p-value in the MAD metric, indicating that its performance

is significantly different in terms of MSE but not in terms of MAD. The HAR model

has the lowest MSE and MAD among the models, but its p-values suggest that its

performance is not significantly different from the base model.

The SV model has extremely low p-values in both metrics and substantially higher

loss values, indicating its significantly inferior performance compared to the base

model. In summary, the σ-Cell-RLTV model demonstrates comparable performance to

the GARCH(1,1), TARCH, GJR-GARCH, and HAR models in forecasting S&P 500

volatility, while the SV model, σ-Cell, σ-Cell-N, σ-Cell-NTV, and σ-Cell-RL models

show significantly different performance.

Table 4.10 presents the results of the DM test comparing the performance of various

volatility forecasting models with the HAR model, which serves as the base model for

the S&P 500 index.

Most of the models in this table have low p-values in both the MSE and MAD

metrics, indicating that their performance is statistically different from the HAR model.

105

Chapter 4: σ-Cell 4.4.6. Results

Table 4.9: S&P 500 Volatility Forecasting: Diebold-Mariano Test with σ-Cell-RLTV as
the Base Model

Model MSE Loss MSE p-value MAD Loss MAD p-value

σ-Cell 0.018927 1.840e-05 2.902154 3.608e-13
σ-Cell-N 0.017707 4.069e-03 2.775868 1.204e-02
σ-Cell-NTV 0.017764 1.588e-05 2.856639 1.700e-10
σ-Cell-RL 0.018542 9.517e-03 2.868097 1.937e-02
σ-Cell-RLTV 0.013536 - 2.494049 -
GARCH(1,1) 0.015927 9.404e-02 2.625849 2.729e-01
EGARCH 0.016999 1.675e-02 2.806154 1.275e-02
TARCH 0.015689 2.259e-01 2.581056 5.045e-01
GJR-GARCH 0.014825 3.834e-01 2.493900 9.989e-01
HAR 0.011489 2.247e-01 2.331576 2.589e-01
SV 6.781546 2.434e-34 68.241853 1.336e-63

Note: The table presents the results of the Diebold-Mariano (DM) test
comparing the Mean Squared Error (MSE) and Mean Absolute
Deviation (MAD) losses of various volatility forecasting models against
the σ-Cell-RLTV model for S&P 500 index. The table reports the loss
values scaled by 103 and the associated p-values. P-values below 0.05
indicate a statistically significant difference in performance from the
σ-Cell-RLTV model.

Specifically, the σ-Cell, σ-Cell-N, σ-Cell-NTV, σ-Cell-RL, GARCH(1,1), and EGARCH

models all have p-values below 0.05 in both metrics. The extremely low p-values

associated with the SV model in both metrics, along with substantially higher loss

values, highlight its significantly inferior performance compared to the HAR model.

The σ-Cell-RLTV model, in contrast, shows p-values greater than 0.05 in both

metrics, suggesting that its performance is not significantly different from the HAR

model. The TARCH and GJR-GARCH models have p-values below 0.05 in the MSE

metric but greater than 0.05 in the MAD metric, indicating that their performance

differs from the HAR model in terms of MSE but not in terms of MAD.

In summary, the σ-Cell-RLTV model shows comparable performance to the HAR

model in forecasting S&P 500 volatility. The TARCH and GJR-GARCH models

have mixed performance depending on the metric. In contrast, the σ-Cell, σ-Cell-N,

σ-Cell-NTV, σ-Cell-RL, GARCH(1,1), EGARCH, and SV models exhibit statistically

different performance from the HAR model in forecasting S&P 500 volatility.

Table 4.11 provides the results of a DM test comparing the performance of models

106

Chapter 4: σ-Cell 4.4.6. Results

Table 4.10: S&P 500 Volatility Forecasting: Diebold-Mariano Test with HAR as the
Base Model

Model MSE Loss MSE p-value MAD Loss MAD p-value

σ-Cell 0.018927 4.610e-04 2.902154 5.639e-04
σ-Cell-N 0.017707 1.192e-03 2.775868 3.550e-03
σ-Cell-NTV 0.017764 1.693e-03 2.856639 1.175e-03
σ-Cell-RL 0.018542 1.203e-04 2.868097 1.916e-03
σ-Cell-RLTV 0.013536 2.247e-01 2.494049 2.589e-01
GARCH(1,1) 0.015927 3.345e-03 2.625849 1.337e-02
EGARCH 0.016999 2.934e-04 2.806154 6.765e-05
TARCH 0.015689 4.127e-02 2.581056 6.787e-02
GJR-GARCH 0.014825 1.968e-02 2.493900 1.927e-01
HAR 0.011489 - 2.331576 -
SV 6.781546 2.444e-34 68.241853 3.198e-63

Note: The table presents the results of the Diebold-Mariano (DM) test
comparing the Mean Squared Error (MSE) and Mean Absolute
Deviation (MAD) losses of various volatility forecasting models against
the HAR model for the S&P 500 index. The table reports the loss
values scaled by 103 and the associated p-values. P-values below 0.05
indicate a statistically significant difference in performance from the
HAR model.

to the σ-Cell-RLTV model, which serves as the base model for the BTCUSDT

cryptocurrency.

The σ-Cell, σ-Cell-RL, GARCH(1,1), EGARCH, GJR-GARCH, and SV models all

have p-values below 0.05 in the MAD metric, indicating a statistically significant

difference in performance from the σ-Cell-RLTV model. In particular, the SV

model exhibits substantially higher loss values and very low p-values in both metrics,

highlighting its significantly inferior performance relative to the σ-Cell-RLTV model.

On the other hand, the σ-Cell-N and σ-Cell-NTV models show p-values greater than

0.05 in both metrics, suggesting that their performance is not significantly different

from the σ-Cell-RLTV model. The TARCH model exhibits p-values above 0.05 in both

metrics, indicating comparable performance to the σ-Cell-RLTV model as well.

The HAR model also shows p-values greater than 0.05 in both MSE and

MAD metrics, indicating that its performance is not statistically different from the

σ-Cell-RLTV model.

The σ-Cell and σ-Cell-RL models exhibit mixed performance with p-values below

107

Chapter 4: σ-Cell 4.4.6. Results

Table 4.11: BTCUSDT Volatility Forecasting: Diebold-Mariano Test with σ-Cell-RLTV
as the Base Model

Model MSE Loss MSE p-value MAD Loss 103 MAD p-value

σ-Cell 0.344173 4.188e-02 11.560288 7.333e-05
σ-Cell-N 0.225319 7.433e-01 8.652624 4.743e-01
σ-Cell-NTV 0.230959 9.051e-01 8.693979 4.971e-01
σ-Cell-RL 0.279999 8.147e-02 10.219531 5.952e-03
σ-Cell-RLTV 0.234649 - 8.964701 -
GARCH(1,1) 0.439914 9.324e-02 11.768381 1.272e-03
EGARCH 0.502470 6.094e-02 11.917297 4.814e-03
TARCH 0.569893 1.244e-01 11.124331 8.147e-02
GJR-GARCH 0.386041 6.668e-02 10.315967 8.031e-02
HAR 0.261226 6.955e-01 8.720598 7.188e-01
SV 2.221157 2.886e-27 42.990330 1.941e-59

Note: The table presents the results of the Diebold-Mariano (DM) test
comparing the Mean Squared Error (MSE) and Mean Absolute Deviation
(MAD) losses of various volatility forecasting models against the
σ-Cell-RLTV model for BTCUSDT cryptocurrency. The table reports
the loss values scaled by 103 and the associated p-values. P-values below
0.05 indicate a statistically significant difference in performance from the
σ-Cell-RLTV model.

0.05 in the MAD metric, but above 0.05 in the MSE metric, suggesting significant

differences in performance from the σ-Cell-RLTV model in terms of MAD but not

MSE. Similarly, the GARCH(1,1), EGARCH, and GJR-GARCH models have p-values

below 0.05 in the MAD metric but above 0.05 in the MSE metric, indicating their

performance differs from the σ-Cell-RLTV model in terms of MAD but not MSE.

In summary, the σ-Cell-N, σ-Cell-NTV, TARCH, and HAR models show comparable

performance to the σ-Cell-RLTV model in forecasting BTCUSDT volatility, whereas

the σ-Cell, σ-Cell-RL, GARCH(1,1), EGARCH, GJR-GARCH, and SV models exhibit

statistically different performance in terms of MAD.

Table 4.12 presents the results of a DM test comparing the forecasting performance

of various models to that of the HAR model, which serves as the base model for the

BTCUSDT cryptocurrency.

The σ-Cell-N, σ-Cell-NTV, and σ-Cell-RLTV models exhibit strong performance in

both MSE and MAD metrics, with high p-values indicating their performance is not

significantly different from the HAR model. The SV model performs the worst with

108

Chapter 4: σ-Cell 4.4.6. Results

Table 4.12: BTCUSDT Volatility Forecasting: Diebold-Mariano Test with HAR as the
Base Model

Model MSE Loss 103 MSE p-value MAD Loss 103 MAD p-value

σ-Cell 0.344173 2.747e-01 11.560288 1.865e-04
σ-Cell-N 0.225319 5.879e-01 8.652624 9.194e-01
σ-Cell-NTV 0.230959 6.520e-01 8.693979 9.676e-01
σ-Cell-RL 0.279999 7.886e-01 10.219531 4.722e-02
σ-Cell-RLTV 0.234649 6.955e-01 8.964701 7.188e-01
GARCH(1,1) 0.439914 4.965e-03 11.768381 3.452e-07
EGARCH 0.502470 6.950e-03 11.917297 2.073e-05
TARCH 0.569893 8.848e-02 11.124331 1.264e-02
GJR-GARCH 0.386041 2.145e-01 10.315967 7.111e-02
HAR 0.261226 - 8.720598 -
SV 2.221157 6.309e-25 42.990330 1.001e-58

Note: The table presents the results of the Diebold-Mariano (DM) test comparing
the Mean Squared Error (MSE) and Mean Absolute Deviation (MAD) losses
of various volatility forecasting models against the HAR model for BTCUSDT
cryptocurrency. The table reports the loss values scaled by 103 and the
associated p-values. P-values below 0.05 indicate a statistically significant
difference in performance from the HAR model.

extremely low p-values, indicating its performance is significantly worse than the HAR

model. GARCH(1,1) and EGARCH models have low p-values in both MSE and MAD

loss, suggesting their performance is significantly different from the HAR model.

The σ-Cell-RL model shows mixed performance, with a p-value below 0.05 in the

MAD metric but above 0.05 in the MSE metric. This suggests that its performance is

significantly different from the HAR model in terms of MAD but not MSE.

In summary, the σ-Cell-N, σ-Cell-NTV, and σ-Cell-RLTV models show comparable

performance to the HAR model in forecasting BTCUSDT volatility. On the other hand,

the GARCH(1,1), EGARCH, and SV models exhibit statistically different performance

from the HAR model in both MSE and MAD metrics. The σ-Cell-RL model shows a

nuanced performance, differing from the HAR model in terms of MAD but not MSE.

Table 4.13 presents the results of a Model Confidence Set (MCS) procedure

conducted on various volatility forecasting models applied to two different financial

markets, the S&P 500 index and the BTCUSDT cryptocurrency. The MCS method is

employed to identify which models perform significantly better or worse than others in

terms of MSE performance on the test data, using 10,000 bootstrap resamples. Three

109

Chapter 4: σ-Cell 4.4.6. Results

metrics are reported for each model: MSE (scaled by 103), MCS p-values, and a

designation for the set of models that perform at or above the 90% and 75% confidence

levels, denoted as M̂∗
90,75%.

For the S&P 500 index, the σ-Cell-RLTV model performs exceptionally well,

achieving the lowest MSE among the σ-Cell variants at 0.0135 and a high MCS

p-value of 0.791. This high p-value suggests that its performance is statistically

indistinguishable from the best-performing model, the HAR model, which has the

lowest overall MSE of 0.0114 and a high p-value of 0.839. All σ-Cell variants, as

well as the GARCH(1,1), TARCH, and GJR-GARCH models, also perform well, with

relatively low MSE values and high p-values, indicating their inclusion in the M̂∗
75%

set. The EGARCH model, however, falls into the M̂∗
90% set due to its p-value of 0.111.

The SV model performs the worst, with a high MSE of 6.7815 and a p-value of 0.000,

suggesting it is not well-suited for forecasting S&P 500 volatility.

Turning to the BTCUSDT data, several σ-Cell variants exhibit the lowest MSE

values, with the σ-Cell-N model performing best at an MSE of 0.2253. The σ-Cell-RLTV

model stands out with a high MCS p-value of 0.945, closely followed by the σ-Cell-NTV

and HAR models. All of these models, along with other σ-Cell variants, fall into the

M̂∗
75% set, indicating their strong performance in forecasting BTCUSDT volatility. In

contrast, the SV model performs the worst, with an MSE of 2.2211 and a p-value of

0.000, indicating poor predictive accuracy.

In summary, the σ-Cell-RLTV and HAR models are top performers for both the

S&P 500 index and BTCUSDT data, showing superior forecasting abilities. Other

σ-Cell variants and GARCH-type models also perform well across both data sets.

However, the SV model consistently shows the least suitability among the models

tested for both markets.

110

Chapter 4: σ-Cell 4.4.6. Results

(a)

2020-03-09 2020-05-19 2020-07-30 2020-10-09 2020-12-21 2021-03-04

0.00

0.02

0.04

0.06

0.08

0.10
Realized Volatility
SV

(b)

2020-03-09 2020-05-19 2020-07-30 2020-10-09 2020-12-21 2021-03-04

0.00

0.02

0.04

0.06

0.08

0.10
Realized Volatility
GJR-GARCH

(c)

2020-03-09 2020-05-19 2020-07-30 2020-10-09 2020-12-21 2021-03-04

0.00

0.02

0.04

0.06

0.08

0.10
Realized Volatility
HAR

(d)

2020-03-09 2020-05-19 2020-07-30 2020-10-09 2020-12-21 2021-03-04

0.00

0.02

0.04

0.06

0.08

0.10
Realized Volatility

-Cell

Figure 4.12: The following plot illustrates the prediction for in-sample realized volatility
for the S&P 500 index. The presented plots provide a visual assessment of the
performance of various models in predicting realized volatility. Each sub-figure displays
the true realized volatility along with the model’s estimate. (a) Stochastic Volatility
(SV) model (b) GJR-GARCH model (c) HAR model (d) σ-Cell model (Continued
on next page.)

111

Chapter 4: σ-Cell 4.4.6. Results

Table 4.13: MCS with 10,000 bootstraps test sample

Model S&P 500 BTCUSDT

MSE 103 P-value M̂∗
90,75% MSE 103 P-value M̂∗

90,75%

σ-Cell 0.0189 0.117 * 0.3441 0.135 *
σ-Cell-N 0.0177 0.533 ** 0.2253 0.617 **
σ-Cell-NTV 0.0177 0.325 ** 0.2309 0.769 **
σ-Cell-RL 0.0185 0.639 ** 0.2799 0.525 **
σ-Cell-RLTV 0.0135 0.791 ** 0.2346 0.945 **
GARCH(1,1) 0.0159 0.444 ** 0.4399 0.027
EGARCH 0.0169 0.111 * 0.5024 0.039
TARCH 0.0156 0.627 ** 0.5698 0.000
GJR-GARCH 0.0148 0.660 ** 0.3860 0.037
HAR 0.0114 0.839 ** 0.2612 0.836 **
SV 6.7815 0.000 2.2211 0.000

Note: The table presents the average loss over the test sample and the MCS
p-values. The realized volatility forecasts in M̂∗

90% and M̂∗
75% are indicated

by one and two asterisks, respectively. Values highlighted in bold indicate
superior performance for the given Loss metric. In cases where multiple models
exhibit closely matched performance, the top few models are highlighted to
emphasize their comparative effectiveness.

(e)

2020-03-09 2020-05-19 2020-07-30 2020-10-09 2020-12-21 2021-03-04

0.00

0.02

0.04

0.06

0.08

0.10
Realized Volatility

-Cell-N

(f)

2020-03-09 2020-05-19 2020-07-30 2020-10-09 2020-12-21 2021-03-04

0.00

0.02

0.04

0.06

0.08

0.10
Realized Volatility

-Cell-NTV

(g)

2020-03-09 2020-05-19 2020-07-30 2020-10-09 2020-12-21 2021-03-04

0.00

0.02

0.04

0.06

0.08

0.10
Realized Volatility

-Cell-RL

(h)

2020-03-09 2020-05-19 2020-07-30 2020-10-09 2020-12-21 2021-03-04

0.00

0.02

0.04

0.06

0.08

0.10
Realized Volatility

-Cell-RLTV

Figure 4.12: (Continued from previous page.) (e) σ-Cell-N model (f) σ-Cell-NTV
model (g) σ-Cell-RL model (h) σ-Cell-RLTV model

112

Chapter 4: σ-Cell 4.4.6. Results

(a)

2021-03-08 2021-05-18 2021-07-29 2021-10-08 2021-12-17 2022-03-01

0.00

0.01

0.02

0.03

0.04
Realized Volatility
SV

(b)

2021-03-08 2021-05-18 2021-07-29 2021-10-08 2021-12-17 2022-03-01

0.00

0.01

0.02

0.03

0.04
Realized Volatility
GJR-GARCH

(c)

2021-03-08 2021-05-18 2021-07-29 2021-10-08 2021-12-17 2022-03-01

0.00

0.01

0.02

0.03

0.04
Realized Volatility
HAR

(d)

2021-03-08 2021-05-18 2021-07-29 2021-10-08 2021-12-17 2022-03-01

0.00

0.01

0.02

0.03

0.04
Realized Volatility

-Cell

Figure 4.13: The following plot illustrates the prediction for out-of-sample realized
volatility for the S&P 500 index. The presented plots provide a visual assessment of
the performance of various models in predicting realized volatility. Each sub-figure
displays the true realized volatility along with the model’s 1-step ahead prediction. (a)
Stochastic Volatility (SV) model (b) GJR-GARCH model (c) HAR model (d) σ-Cell
model (Continued on next page.)

113

Chapter 4: σ-Cell 4.4.6. Results

(e)

2021-03-08 2021-05-18 2021-07-29 2021-10-08 2021-12-17 2022-03-01

0.00

0.01

0.02

0.03

0.04
Realized Volatility

-Cell-N

(f)

2021-03-08 2021-05-18 2021-07-29 2021-10-08 2021-12-17 2022-03-01

0.00

0.01

0.02

0.03

0.04
Realized Volatility

-Cell-NTV

(g)

2021-03-08 2021-05-18 2021-07-29 2021-10-08 2021-12-17 2022-03-01

0.00

0.01

0.02

0.03

0.04
Realized Volatility

-Cell-RL

(h)

2021-03-08 2021-05-18 2021-07-29 2021-10-08 2021-12-17 2022-03-01

0.00

0.01

0.02

0.03

0.04
Realized Volatility

-Cell-RLTV

Figure 4.13: (Continued from previous page.) (e) σ-Cell-N model (f) σ-Cell-NTV
model (g) σ-Cell-RL model (h) σ-Cell-RLTV model

114

Chapter 4: σ-Cell 4.4.6. Results

(a)

2018-12-06 2019-01-25 2019-03-16 2019-05-05 2019-06-24 2019-08-13

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 Realized Volatility
SV

(b)

2018-12-06 2019-01-25 2019-03-16 2019-05-05 2019-06-24 2019-08-13

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 Realized Volatility
GJR-GARCH

(c)

2018-12-06 2019-01-25 2019-03-16 2019-05-05 2019-06-24 2019-08-13

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 Realized Volatility
HAR

(d)

2018-12-06 2019-01-25 2019-03-16 2019-05-05 2019-06-24 2019-08-13
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 Realized Volatility
-Cell

Figure 4.14: The following plot illustrates the prediction for in-sample realized volatility
for the BTCUSDT. The presented plots provide a visual assessment of the performance
of various models in predicting realized volatility. Each sub-figure displays the true
realized volatility along with the model’s estimate. (a) Stochastic Volatility (SV) model
(b) GJR-GARCH model (c) HAR model (d) σ-Cell model (Continued on next
page.)

115

Chapter 4: σ-Cell 4.4.6. Results

(e)

2018-12-06 2019-01-25 2019-03-16 2019-05-05 2019-06-24 2019-08-13

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 Realized Volatility
-Cell-N

(f)

2018-12-06 2019-01-25 2019-03-16 2019-05-05 2019-06-24 2019-08-13

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 Realized Volatility
-Cell-NTV

(g)

2018-12-06 2019-01-25 2019-03-16 2019-05-05 2019-06-24 2019-08-13
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 Realized Volatility
-Cell-RL

(h)

2018-12-06 2019-01-25 2019-03-16 2019-05-05 2019-06-24 2019-08-13

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 Realized Volatility
-Cell-RLTV

Figure 4.14: (Continued from previous page.) (e) σ-Cell-N model (f) σ-Cell-NTV
model (g) σ-Cell-RL model (h) σ-Cell-RLTV model

116

Chapter 4: σ-Cell 4.4.6. Results

(a)

2019-08-15 2019-10-04 2019-11-23 2020-01-12 2020-03-02 2020-04-21

0.05

0.10

0.15

0.20

Realized Volatility
SV

(b)

2019-08-15 2019-10-04 2019-11-23 2020-01-12 2020-03-02 2020-04-21

0.05

0.10

0.15

0.20

Realized Volatility
GJR-GARCH

(c)

2019-08-15 2019-10-04 2019-11-23 2020-01-12 2020-03-02 2020-04-21

0.05

0.10

0.15

0.20

Realized Volatility
HAR

(d)

2019-08-15 2019-10-04 2019-11-23 2020-01-12 2020-03-02 2020-04-21

0.00

0.05

0.10

0.15

0.20

0.25
Realized Volatility

-Cell

Figure 4.15: The following plot illustrates the predictions for out-of-sample realized
volatility for the BTCUSDT pair. The presented plots provide a visual assessment of
the performance of various models in predicting realized volatility. Each sub-figure
displays the true realized volatility along with the model’s 1-step ahead prediction. (a)
Stochastic Volatility (SV) model (b) GJR-GARCH model (c) HAR model (d) σ-Cell
model (Continued on next page.)

117

Chapter 4: σ-Cell 4.4.6. Results

(e)

2019-08-15 2019-10-04 2019-11-23 2020-01-12 2020-03-02 2020-04-21

0.05

0.10

0.15

0.20

Realized Volatility
-Cell-N

(f)

2019-08-15 2019-10-04 2019-11-23 2020-01-12 2020-03-02 2020-04-21

0.05

0.10

0.15

0.20

0.25 Realized Volatility
-Cell-NTV

(g)

2019-08-15 2019-10-04 2019-11-23 2020-01-12 2020-03-02 2020-04-21
0.00

0.05

0.10

0.15

0.20

Realized Volatility
-Cell-RL

(h)

2019-08-15 2019-10-04 2019-11-23 2020-01-12 2020-03-02 2020-04-21

0.05

0.10

0.15

0.20

Realized Volatility
-Cell-RLTV

Figure 4.15: (Continued from previous page.) (e) σ-Cell-N model (f) σ-Cell-NTV
model (g) σ-Cell-RL model (h) σ-Cell-RLTV model

118

Chapter 4: σ-Cell 4.4.6. Results

Pairwise Comparisons using a linear regression framework

Tables 4.14a, 4.14a, 4.15a and 4.15b present the results of pairwise comparisons between

different forecasting models for the S&P 500 and BTCUSDT, respectively, using a

linear regression framework. These comparisons aim to determine which models provide

valuable information for forecasting. The framework is based on a linear regression

model of the form yt+1 = α0+α1ŷi,t+1+α2ŷj,t+1+ut, where ŷi,t+1 represents the forecast

from the model in the i− th row, ŷj,t+1 represents the forecast from the model in the

j − th column, and yt+1 is the actual value at time t+ 1. Tables 4.14a, 4.14a, 4.15a,

and 4.15b display the estimated coefficients, α1 and α2, and their respective p-values

for each pairwise comparison.

The significance levels are indicated with asterisks: * denotes significance at the

1% level, ** at the 5% level, and *** at the 10% level. These significance levels serve

as evidence for or against the null hypothesis that the respective coefficient equals

zero. A significant a1 coefficient suggests that the model in the row provides valuable

information for forecasting, while a significant a2 coefficient suggests that the model in

the column provides valuable information.

Overall, this analysis offers insights into the relative performance of different

forecasting models for the S&P 500 and BTCUSDT.

The data presented in Tables 4.14a and 4.14b offer several insights into the

comparative performance of the various forecasting models for the S&P 500 index.

• The σ-Cell models, including σ-Cell, σ-Cell-N, and σ-Cell-NTV, seem to have high

significance with each other. This suggests that these models contain valuable

information for forecasting the S&P 500 index.

• The σ-Cell-NTV model has high significance (indicated by ***) with the

σ-Cell-RLTV model, showing strong evidence against the null hypothesis that

the coefficient equals zero. This indicates that the σ-Cell-NTV model and the

σ-Cell-RLTV model might have a relationship.

• The GARCH(1,1) model has high significance with the σ-Cell-RL and EGARCH

models, which implies that it is highly informative for forecasting the S&P 500

index.

119

Chapter 4: σ-Cell 4.4.6. Results

• Interestingly, the TARCH model seems to have significant coefficients with the

GJR-GARCH model. This suggests that there might be a connection between

these models when forecasting the S&P 500 index.

• The HAR model also exhibits significant coefficients with the SV model, indicating

that these models might share valuable information for forecasting the S&P 500

index.

In summary, among the σ-Cell type models, σ-Cell-N and σ-Cell-RL seem to have

strong performance overall, with significant coefficients against most of the other models.

However, the performance of other σ-Cell type models is mixed and varies depending

on the specific models being compared. The GARCH(1,1) and EGARCH models also

seem to be significant in forecasting the S&P 500 index. The relationship between the

TARCH and GJR-GARCH models, as well as the HAR and SV models, suggests that

there may be shared information among these models that can be utilized for better

forecasting of the S&P 500 index.

The data presented in Tables 4.15a and 4.15b offer several insights into the

comparative performance of the various forecasting models for BTCUSDT.

• The σ models, such as σ-Cell, σ-Cell-N, and σ-Cell-NTV, seem to be highly

significant with each other, indicating that they contain valuable information for

forecasting the BTCUSDT pair.

• The σ-Cell model has high significance (indicated by ***) with GARCH(1,1),

EGARCH, and TARCH models, showing strong evidence against the null

hypothesis that the coefficient equals zero.

• The GARCH(1,1) model has high significance with HAR and SV models, which

also suggests that it is highly informative for forecasting BTCUSDT.

In summary, among the σ-Cell type models, σ-Cell-N and σ-Cell-RL seem to have

strong performance overall, with significant coefficients against most of the other models.

However, the performance of other σ-Cell type models is mixed and varies depending

on the specific models being compared.

120

Chapter 4: σ-Cell 4.4.6. Results

(a
)
S
&
p
5
0
0
P
a
ir
w
is
e
C
o
m
p
a
ri
so
n
o
f
F
o
re
ca
st
in
g
M
o
d
el

P
er
fo
rm

a
n
ce
,

co
effi

ci
en
t
a1

σ
-C

e
ll

σ
-C

e
ll
-N

σ
-C

e
ll
-N

T
V

σ
-C

e
ll
-R

L
σ
-C

e
ll
-R

L
T
V

G
A
R
C
H
(1

,1
)

E
G
A
R
C
H

T
A
R
C
H

G
J
R
-G

A
R
C
H

H
A
R

S
V

σ
-C

e
ll

-
0
.5
1
8
*
*
*

-0
.8
2
7
*
*

0
.5
0
7
*
*
*

0
.4
9
2

0
.3
4
9
*
*
*

0
.3
1
5
*
*
*

0
.0
6
8

0
.0
9
9

0
.2
5
3
*
*
*

0
.4
4
0
*
*
*

σ
-C

e
ll
-N

0
.3
0
8
*
*

-
0
.2
0
1

0
.5
7
8
*
*
*

0
.3
3
8
*
*

0
.4
0
2
*
*
*

0
.3
8
2
*
*
*

0
.1
8
9
*

0
.2
0
9
*

0
.3
1
7
*
*
*

0
.5
1
2
*
*
*

σ
-C

e
ll
-N

T
V

1
.4
5
8
*
*
*

0
.5
8
4
*
*
*

-
0
.5
2
2
*
*
*

1
.3
6
9
*
*
*

0
.4
2
7
*
*
*

0
.3
8
0
*
*
*

0
.1
0
4

0
.1
5
1

0
.2
5
9
*
*
*

0
.4
4
7
*
*
*

σ
-C

e
ll
-R

L
0
.4
3
6
*
*
*

0
.4
8
5
*
*
*

0
.4
0
9
*
*
*

-
0
.4
3
8
*
*
*

0
.4
6
4
*
*
*

0
.4
5
5
*
*
*

0
.2
6
4
*
*
*

0
.2
7
1
*
*
*

0
.5
0
6
*
*
*

0
.4
9
6
*
*
*

σ
-C

e
ll
-R

L
T
V

0
.2
2
6

0
.4
9
3
*
*
*

-0
.7
3
1
*
*

0
.4
9
6
*
*
*

-
0
.3
2
6
*
*
*

0
.2
9
6
*
*
*

0
.0
4
2

0
.0
7
0

0
.2
4
8
*
*
*

0
.4
4
1
*
*
*

G
A
R
C
H
(1

,1
)

0
.8
0
1
*
*
*

0
.9
2
4
*
*
*

0
.6
2
1
*
*
*

0
.9
7
2
*
*
*

0
.8
2
7
*
*
*

-
0
.0
8
3

-0
.4
4
2
*

-0
.3
7
9

0
.3
4
7
*
*
*

0
.8
7
4
*
*
*

E
G
A
R
C
H

0
.9
5
5
*
*
*

1
.0
5
3
*
*
*

0
.7
9
3
*
*
*

1
.0
8
7
*
*
*

0
.9
7
9
*
*
*

1
.3
2
4
*
*

-
-0

.2
8
3

-0
.2
7
0

0
.3
9
2
*
*
*

0
.9
5
5
*
*
*

T
A
R
C
H

1
.0
6
7
*
*
*

1
.0
1
1
*
*
*

1
.0
1
8
*
*
*

0
.9
5
3
*
*
*

1
.0
9
2
*
*
*

1
.4
2
5
*
*
*

1
.3
0
8
*
*
*

-
0
.8
9
4
*
*
*

0
.5
8
7
*
*
*

0
.8
2
0
*
*
*

G
J
R
-G

A
R
C
H

1
.0
7
0
*
*
*

1
.0
2
6
*
*
*

0
.9
9
3
*
*
*

0
.9
6
8
*
*
*

1
.1
0
1
*
*
*

1
.4
5
5
*
*
*

1
.3
6
4
*
*
*

0
.2
8
0

-
0
.5
9
9
*
*
*

0
.8
4
7
*
*
*

H
A
R

0
.9
1
4
*
*
*

0
.9
3
7
*
*
*

0
.8
8
5
*
*
*

0
.9
5
9
*
*
*

0
.9
1
8
*
*
*

0
.9
3
0
*
*
*

0
.9
1
6
*
*
*

0
.7
3
3
*
*
*

0
.7
7
8
*
*
*

-
0
.7
9
2
*
*
*

S
V

0
.5
8
0
*
*
*

0
.6
0
7
*
*
*

0
.5
5
8
*
*
*

0
.6
2
7
*
*
*

0
.5
8
5
*
*
*

0
.5
8
4
*
*
*

0
.5
7
0
*
*
*

0
.4
9
6
*
*
*

0
.5
2
6
*
*
*

0
.3
2
7
*
*
*

-

(b
)
S
&
p
5
0
0
P
a
ir
w
is
e
C
o
m
p
a
ri
so
n
o
f
F
o
re
ca
st
in
g
M
o
d
el

P
er
fo
rm

a
n
ce
,

co
effi

ci
en
t
a2

σ
-C

e
ll

σ
-C

e
ll
-N

σ
-C

e
ll
-N

T
V

σ
-C

e
ll
-R

L
σ
-C

e
ll
-R

L
T
V

G
A
R
C
H
(1

,1
)

E
G
A
R
C
H

T
A
R
C
H

G
J
R
-G

A
R
C
H

H
A
R

S
V

σ
-C

e
ll

-
0
.3
0
8
*
*

1
.4
5
8
*
*
*

0
.4
3
6
*
*
*

0
.2
2
6

0
.8
0
1
*
*
*

0
.9
5
5
*
*
*

1
.0
6
7
*
*
*

1
.0
7
0
*
*
*

0
.9
1
4
*
*
*

0
.5
8
0
*
*
*

σ
-C

e
ll
-N

0
.5
1
8
*
*
*

-
0
.5
8
4
*
*
*

0
.4
8
5
*
*
*

0
.4
9
3
*
*
*

0
.9
2
4
*
*
*

1
.0
5
3
*
*
*

1
.0
1
1
*
*
*

1
.0
2
6
*
*
*

0
.9
3
7
*
*
*

0
.6
0
7
*
*
*

σ
-C

e
ll
-N

T
V

-0
.8
2
7
*
*

0
.2
0
1

-
0
.4
0
9
*
*
*

-0
.7
3
1
*
*

0
.6
2
1
*
*
*

0
.7
9
3
*
*
*

1
.0
1
8
*
*
*

0
.9
9
3
*
*
*

0
.8
8
5
*
*
*

0
.5
5
8
*
*
*

σ
-C

e
ll
-R

L
0
.5
0
7
*
*
*

0
.5
7
8
*
*
*

0
.5
2
2
*
*
*

-
0
.4
9
6
*
*
*

0
.9
7
2
*
*
*

1
.0
8
7
*
*
*

0
.9
5
3
*
*
*

0
.9
6
8
*
*
*

0
.9
5
9
*
*
*

0
.6
2
7
*
*
*

σ
-C

e
ll
-R

L
T
V

0
.4
9
2

0
.3
3
8
*
*

1
.3
6
9
*
*
*

0
.4
3
8
*
*
*

-
0
.8
2
7
*
*
*

0
.9
7
9
*
*
*

1
.0
9
2
*
*
*

1
.1
0
1
*
*
*

0
.9
1
8
*
*
*

0
.5
8
5
*
*
*

G
A
R
C
H
(1

,1
)

0
.3
4
9
*
*
*

0
.4
0
2
*
*
*

0
.4
2
7
*
*
*

0
.4
6
4
*
*
*

0
.3
2
6
*
*
*

-
1
.3
2
4
*
*

1
.4
2
5
*
*
*

1
.4
5
5
*
*
*

0
.9
3
0
*
*
*

0
.5
8
4
*
*
*

E
G
A
R
C
H

0
.3
1
5
*
*
*

0
.3
8
2
*
*
*

0
.3
8
0
*
*
*

0
.4
5
5
*
*
*

0
.2
9
6
*
*
*

0
.0
8
3

-
1
.3
0
8
*
*
*

1
.3
6
4
*
*
*

0
.9
1
6
*
*
*

0
.5
7
0
*
*
*

T
A
R
C
H

0
.0
6
8

0
.1
8
9
*

0
.1
0
4

0
.2
6
4
*
*
*

0
.0
4
2

-0
.4
4
2
*

-0
.2
8
3

-
0
.2
8
0

0
.7
3
3
*
*
*

0
.4
9
6
*
*
*

G
J
R
-G

A
R
C
H

0
.0
9
9

0
.2
0
9
*

0
.1
5
1

0
.2
7
1
*
*
*

0
.0
7
0

-0
.3
7
9

-0
.2
7
0

0
.8
9
4
*
*
*

-
0
.7
7
8
*
*
*

0
.5
2
6
*
*
*

H
A
R

0
.2
5
3
*
*
*

0
.3
1
7
*
*
*

0
.2
5
9
*
*
*

0
.5
0
6
*
*
*

0
.2
4
8
*
*
*

0
.3
4
7
*
*
*

0
.3
9
2
*
*
*

0
.5
8
7
*
*
*

0
.5
9
9
*
*
*

-
0
.3
2
7
*
*
*

S
V

0
.4
4
0
*
*
*

0
.5
1
2
*
*
*

0
.4
4
7
*
*
*

0
.4
9
6
*
*
*

0
.4
4
1
*
*
*

0
.8
7
4
*
*
*

0
.9
5
5
*
*
*

0
.8
2
0
*
*
*

0
.8
4
7
*
*
*

0
.7
9
2
*
*
*

-

N
o
te
:
T
h
e
ta

b
le

(a
)
a
n
d

(b
)
p
re

se
n
t
th

e
re

su
lt
s
o
f
p
a
ir
w
is
e
c
o
m

p
a
ri
so

n
s
b
e
tw

e
e
n

d
iff

e
re

n
t
fo
re

c
a
st
in

g
m

o
d
e
ls

fo
r
S
&
p

5
0
0

u
si
n
g

th
e
fr
a
m

e
w
o
rk

o
f
a

li
n
e
a
r
re

g
re

ss
io
n

m
o
d
e
l.

T
h
e
li
n
e
a
r
re

g
re

ss
io
n

m
o
d
e
l
is

sp
e
c
ifi

e
d

a
s
y
t
+

1
=

α
0
+

α
1
ŷ
i
,t

+
1
+

α
2
ŷ
j
,t

+
1
+

u
t
,
w
h
e
re

ŷ
i
,t

+
1

re
p
re

se
n
ts

th
e
fo
re

c
a
st

fr
o
m

th
e
m
o
d
e
l
in

th
e
i-
th

ro
w
,
ŷ
j
,t

+
1

re
p
re

se
n
ts

th
e
fo
re

c
a
st

fr
o
m

th
e
m

o
d
e
l
in

th
e
j-
th

c
o
lu

m
n
,
a
n
d

y
t
+

1
is

th
e
tr
u
e
v
a
lu

e
a
t
ti
m

e
t
+

1
.
T
h
e
ta

b
le

d
is
p
la
y
s
th

e
e
st
im

a
te

d
c
o
e
ffi

c
ie
n
ts
,
α
1

a
n
d

α
2
,
a
n
d

th
e
ir

re
sp

e
c
ti
v
e

p
-v
a
lu

e
s
fo
r
e
a
c
h

p
a
ir
w
is
e
c
o
m
p
a
ri
so

n
.
T
h
e
fo
re

c
a
st

e
v
a
lu

a
ti
o
n

p
e
ri
o
d

c
o
v
e
rs

th
e
la
st

2
5
2

tr
a
d
in

g
d
a
y
s.

In
T
a
b
le

(a
),

a
1

c
o
e
ffi

c
ie
n
ts

a
n
d

th
e
ir

si
g
n
ifi

c
a
n
c
e
le
v
e
ls

a
re

p
re

se
n
te

d
in

th
e
fi
rs
t
p
a
rt

o
f
th

e
ta

b
le
.
E
a
c
h

c
e
ll

in
th

is
p
a
rt

o
f
th

e
ta

b
le

sh
o
w
s
th

e
a
1

c
o
e
ffi

c
ie
n
t
fo
r
th

e
c
o
rr
e
sp

o
n
d
in

g
m
o
d
e
l
p
a
ir
in

g
,
a
lo
n
g

w
it
h

a
st
e
ri
sk

s
in

d
ic
a
ti
n
g

th
e
si
g
n
ifi

c
a
n
c
e
le
v
e
l.

S
im

il
a
rl
y
,
T
a
b
le

(b
)
sh

o
w
s
th

e
a
2

c
o
e
ffi

c
ie
n
ts

a
n
d

th
e
ir

si
g
n
ifi

c
a
n
c
e
le
v
e
ls
.

S
ig
n
ifi

c
a
n
c
e
le
v
e
ls

a
re

in
d
ic
a
te

d
w
it
h

a
st
e
ri
sk

s:
’*
’
d
e
n
o
te

s
si
g
n
ifi

c
a
n
c
e
a
t
th

e
1
%

le
v
e
l,

’*
*
’
a
t
th

e
5
%

le
v
e
l,

a
n
d

’*
*
*
’
a
t
th

e
1
0
%

le
v
e
l.

T
h
e
se

si
g
n
ifi

c
a
n
c
e
le
v
e
ls

se
rv

e
a
s

e
v
id

e
n
c
e
fo
r
o
r
a
g
a
in

st
th

e
n
u
ll

h
y
p
o
th

e
si
s
th

a
t
th

e
re

sp
e
c
ti
v
e
c
o
e
ffi

c
ie
n
t
e
q
u
a
ls

z
e
ro

.
A

si
g
n
ifi

c
a
n
t
a
1

c
o
e
ffi

c
ie
n
t
su

g
g
e
st
s
th

a
t
th

e
m

o
d
e
l
in

th
e
ro

w
p
ro

v
id

e
s
v
a
lu

a
b
le

in
fo
rm

a
ti
o
n

fo
r
fo
re

c
a
st
in

g
,
w
h
il
e
a

si
g
n
ifi

c
a
n
t
a
2

c
o
e
ffi

c
ie
n
t
su

g
g
e
st
s
th

a
t
th

e
m
o
d
e
l
in

th
e
c
o
lu

m
n

p
ro

v
id

e
s
v
a
lu

a
b
le

in
fo
rm

a
ti
o
n
.

121

Chapter 4: σ-Cell 4.4.6. Results

(a
)
B
T
C
U
S
D
T

P
ai
rw

is
e
C
om

p
ar
is
on

of
F
or
ec
as
ti
n
g
M
o
d
el

P
er
fo
rm

an
ce
,

co
effi

ci
en
t
a1

σ
-C

e
ll

σ
-C

e
ll
-N

σ
-C

e
ll
-N

T
V

σ
-C

e
ll
-R

L
σ
-C

e
ll
-R

L
T
V

G
A
R
C
H
(1

,1
)

E
G
A
R
C
H

T
A
R
C
H

G
J
R
-G

A
R
C
H

H
A
R

S
V

σ
-C

e
ll

-
0
.1
7
2

0
.1
5
6

0
.4
5
0
*
*
*

0
.3
6
1
*
*
*

0
.6
1
3
*
*
*

0
.6
3
0
*
*
*

0
.5
9
4
*
*
*

0
.2
6
7
*
*
*

0
.4
0
5
*
*
*

0
.4
7
8
*
*
*

σ
-C

e
ll
-N

0
.6
1
8
*
*
*

-
0
.4
1
1
*
*
*

0
.6
7
9
*
*
*

0
.6
1
4
*
*
*

0
.8
1
9
*
*
*

0
.8
8
8
*
*
*

0
.8
2
7
*
*
*

0
.4
2
3
*
*
*

0
.6
0
2
*
*
*

0
.6
8
0
*
*
*

σ
-C

e
ll
-N

T
V

0
.6
0
6
*
*
*

0
.4
3
7
*
*
*

-
0
.7
0
0
*
*
*

0
.7
1
9
*
*
*

0
.7
6
3
*
*
*

0
.7
8
7
*
*
*

0
.7
6
4
*
*
*

0
.4
1
7
*
*
*

0
.5
7
4
*
*
*

0
.6
4
8
*
*
*

σ
-C

e
ll
-R

L
0
.2
0
6
*

0
.1
7
0
*

0
.1
0
7

-
0
.2
7
0
*
*

0
.6
8
2
*
*
*

0
.6
7
7
*
*
*

0
.6
8
5
*
*
*

0
.2
5
6
*
*
*

0
.4
5
1
*
*
*

0
.5
7
8
*
*
*

σ
-C

e
ll
-R

L
T
V

0
.4
1
5
*
*

0
.2
9
7
*

0
.1
0
7

0
.6
6
3
*
*
*

-
0
.9
0
8
*
*
*

0
.8
8
0
*
*
*

0
.8
8
7
*
*
*

0
.4
6
6
*
*
*

0
.6
4
6
*
*
*

0
.7
8
0
*
*
*

G
A
R
C
H
(1

,1
)

-0
.0
4
9

0
.0
6
1

0
.1
0
5

0
.1
5
8
*
*

0
.1
7
9
*
*

-
0
.2
1
4
*

0
.3
5
0
*
*
*

0
.0
8
3

0
.0
0
8

0
.4
9
7
*
*
*

E
G
A
R
C
H

-0
.0
5
8

-0
.0
5
8

0
.0
1
9

0
.0
9
0

0
.1
3
4
*
*

0
.3
8
7
*
*
*

-
0
.3
4
1
*
*
*

-0
.1
0
7
*

-0
.0
9
1

0
.3
7
1
*
*
*

T
A
R
C
H

0
.0
0
6

0
.0
2
3

0
.0
5
9

0
.0
8
3

0
.1
4
2
*
*
*

0
.3
0
1
*
*
*

0
.1
9
9
*
*
*

-
-0

.0
3
2

-0
.0
3
1

0
.3
5
3
*
*
*

G
J
R
-G

A
R
C
H

0
.3
5
7
*
*
*

0
.3
2
2
*
*
*

0
.3
1
6
*
*
*

0
.4
1
0
*
*
*

0
.3
6
3
*
*
*

0
.5
3
8
*
*
*

0
.6
1
5
*
*
*

0
.5
7
4
*
*
*

-
0
.5
1
0
*
*
*

0
.4
5
5
*
*
*

H
A
R

0
.4
6
6
*
*
*

0
.4
2
6
*
*
*

0
.4
2
8
*
*
*

0
.5
8
8
*
*
*

0
.5
6
9
*
*
*

1
.0
4
4
*
*
*

1
.1
5
4
*
*
*

1
.0
8
2
*
*
*

0
.1
1
3

-
0
.8
1
9
*
*
*

S
V

0
.3
2
6
*
*
*

0
.2
9
5
*
*
*

0
.3
1
2
*
*
*

0
.3
4
8
*
*
*

0
.3
3
2
*
*
*

0
.5
1
8
*
*
*

0
.4
8
1
*
*
*

0
.5
1
2
*
*
*

0
.3
0
8
*
*
*

0
.3
5
7
*
*
*

-

(b
)
B
T
C
U
S
D
T

P
ai
rw

is
e
C
om

p
ar
is
on

of
F
or
ec
as
ti
n
g
M
o
d
el

P
er
fo
rm

an
ce
,

co
effi

ci
en
t
a2

σ
-C

e
ll

σ
-C

e
ll
-N

σ
-C

e
ll
-N

T
V

σ
-C

e
ll
-R

L
σ
-C

e
ll
-R

L
T
V

G
A
R
C
H
(1

,1
)

E
G
A
R
C
H

T
A
R
C
H

G
J
R
-G

A
R
C
H

H
A
R

S
V

σ
-C

e
ll

-
0
.6
1
8
*
*
*

0
.6
0
6
*
*
*

0
.2
0
6
*

0
.4
1
5
*
*

-0
.0
4
9

-0
.0
5
8

0
.0
0
6

0
.3
5
7
*
*
*

0
.4
6
6
*
*
*

0
.3
2
6
*
*
*

σ
-C

e
ll
-N

0
.1
7
2

-
0
.4
3
7
*
*
*

0
.1
7
0
*

0
.2
9
7
*

0
.0
6
1

-0
.0
5
8

0
.0
2
3

0
.3
2
2
*
*
*

0
.4
2
6
*
*
*

0
.2
9
5
*
*
*

σ
-C

e
ll
-N

T
V

0
.1
5
6

0
.4
1
1
*
*
*

-
0
.1
0
7

0
.1
0
7

0
.1
0
5

0
.0
1
9

0
.0
5
9

0
.3
1
6
*
*
*

0
.4
2
8
*
*
*

0
.3
1
2
*
*
*

σ
-C

e
ll
-R

L
0
.4
5
0
*
*
*

0
.6
7
9
*
*
*

0
.7
0
0
*
*
*

-
0
.6
6
3
*
*
*

0
.1
5
8
*
*

0
.0
9
0

0
.0
8
3

0
.4
1
0
*
*
*

0
.5
8
8
*
*
*

0
.3
4
8
*
*
*

σ
-C

e
ll
-R

L
T
V

0
.3
6
1
*
*
*

0
.6
1
4
*
*
*

0
.7
1
9
*
*
*

0
.2
7
0
*
*

-
0
.1
7
9
*
*

0
.1
3
4
*
*

0
.1
4
2
*
*
*

0
.3
6
3
*
*
*

0
.5
6
9
*
*
*

0
.3
3
2
*
*
*

G
A
R
C
H
(1

,1
)

0
.6
1
3
*
*
*

0
.8
1
9
*
*
*

0
.7
6
3
*
*
*

0
.6
8
2
*
*
*

0
.9
0
8
*
*
*

-
0
.3
8
7
*
*
*

0
.3
0
1
*
*
*

0
.5
3
8
*
*
*

1
.0
4
4
*
*
*

0
.5
1
8
*
*
*

E
G
A
R
C
H

0
.6
3
0
*
*
*

0
.8
8
8
*
*
*

0
.7
8
7
*
*
*

0
.6
7
7
*
*
*

0
.8
8
0
*
*
*

0
.2
1
4
*

-
0
.1
9
9
*
*
*

0
.6
1
5
*
*
*

1
.1
5
4
*
*
*

0
.4
8
1
*
*
*

T
A
R
C
H

0
.5
9
4
*
*
*

0
.8
2
7
*
*
*

0
.7
6
4
*
*
*

0
.6
8
5
*
*
*

0
.8
8
7
*
*
*

0
.3
5
0
*
*
*

0
.3
4
1
*
*
*

-
0
.5
7
4
*
*
*

1
.0
8
2
*
*
*

0
.5
1
2
*
*
*

G
J
R
-G

A
R
C
H

0
.2
6
7
*
*
*

0
.4
2
3
*
*
*

0
.4
1
7
*
*
*

0
.2
5
6
*
*
*

0
.4
6
6
*
*
*

0
.0
8
3

-0
.1
0
7
*

-0
.0
3
2

-
0
.1
1
3

0
.3
0
8
*
*
*

H
A
R

0
.4
0
5
*
*
*

0
.6
0
2
*
*
*

0
.5
7
4
*
*
*

0
.4
5
1
*
*
*

0
.6
4
6
*
*
*

0
.0
0
8

-0
.0
9
1

-0
.0
3
1

0
.5
1
0
*
*
*

-
0
.3
5
7
*
*
*

S
V

0
.4
7
8
*
*
*

0
.6
8
0
*
*
*

0
.6
4
8
*
*
*

0
.5
7
8
*
*
*

0
.7
8
0
*
*
*

0
.4
9
7
*
*
*

0
.3
7
1
*
*
*

0
.3
5
3
*
*
*

0
.4
5
5
*
*
*

0
.8
1
9
*
*
*

-

N
o
te
:
T
a
b
le
s
(a

)
a
n
d

(b
)
p
re

se
n
t
th

e
re

su
lt
s
o
f
p
a
ir
w
is
e
c
o
m

p
a
ri
so

n
s
b
e
tw

e
e
n

d
iff

e
re

n
t
fo
re

c
a
st
in

g
m

o
d
e
ls

fo
r
B
T
C
U
S
D
T

u
si
n
g

th
e
fr
a
m

e
w
o
rk

o
f
a

li
n
e
a
r
re

g
re

ss
io
n

m
o
d
e
l.

T
h
e

li
n
e
a
r
re

g
re

ss
io
n

m
o
d
e
l
is

sp
e
c
ifi

e
d

a
s
y
t
+

1
=

α
0
+

α
1
ŷ
i
,t

+
1
+

α
2
ŷ
j
,t

+
1
+

u
t
,
w
h
e
re

ŷ
i
,t

+
1

re
p
re

se
n
ts

th
e
fo
re

c
a
st

fr
o
m

th
e
m
o
d
e
l
in

th
e
i-
th

ro
w
,
ŷ
j
,t

+
1

re
p
re

se
n
ts

th
e

fo
re

c
a
st

fr
o
m

th
e
m

o
d
e
l
in

th
e
j-
th

c
o
lu

m
n
,
a
n
d

y
t
+

1
is

th
e
tr
u
e
v
a
lu

e
a
t
ti
m

e
t
+

1
.
T
h
e
ta

b
le

d
is
p
la
y
s
th

e
e
st
im

a
te

d
c
o
e
ffi

c
ie
n
ts
,
α
1

a
n
d

α
2
,
a
n
d

th
e
ir

re
sp

e
c
ti
v
e
p
-v
a
lu

e
s

fo
r
e
a
c
h

p
a
ir
w
is
e
c
o
m
p
a
ri
so

n
.
T
h
e
fo
re

c
a
st

e
v
a
lu

a
ti
o
n

p
e
ri
o
d

c
o
v
e
rs

th
e
la
st

2
5
2

tr
a
d
in

g
d
a
y
s.

In
T
a
b
le

(a
),

a
1

c
o
e
ffi

c
ie
n
ts

a
n
d

th
e
ir

si
g
n
ifi

c
a
n
c
e
le
v
e
ls

a
re

p
re

se
n
te

d
in

th
e
fi
rs
t
p
a
rt

o
f
th

e
ta

b
le
.
E
a
c
h

c
e
ll

in
th

is
p
a
rt

o
f
th

e
ta

b
le

sh
o
w
s
th

e
a
1

c
o
e
ffi

c
ie
n
t
fo
r
th

e
c
o
rr
e
sp

o
n
d
in

g
m
o
d
e
l
p
a
ir
in

g
,
a
lo
n
g

w
it
h

a
st
e
ri
sk

s
in

d
ic
a
ti
n
g

th
e
si
g
n
ifi

c
a
n
c
e
le
v
e
l.

S
im

il
a
rl
y
,
T
a
b
le

(b
)
sh

o
w
s
th

e
a
2

c
o
e
ffi

c
ie
n
ts

a
n
d

th
e
ir

si
g
n
ifi

c
a
n
c
e
le
v
e
ls
.

S
ig
n
ifi

c
a
n
c
e
le
v
e
ls

a
re

in
d
ic
a
te

d
w
it
h

a
st
e
ri
sk

s:
’*
’
d
e
n
o
te

s
si
g
n
ifi

c
a
n
c
e
a
t
th

e
1
%

le
v
e
l,

’*
*
’
a
t
th

e
5
%

le
v
e
l,

a
n
d

’*
*
*
’
a
t
th

e
1
0
%

le
v
e
l.

T
h
e
se

si
g
n
ifi

c
a
n
c
e
le
v
e
ls

se
rv

e
a
s

e
v
id

e
n
c
e
fo
r
o
r
a
g
a
in

st
th

e
n
u
ll

h
y
p
o
th

e
si
s
th

a
t
th

e
re

sp
e
c
ti
v
e
c
o
e
ffi

c
ie
n
t
e
q
u
a
ls

z
e
ro

.
A

si
g
n
ifi

c
a
n
t
a
1

c
o
e
ffi

c
ie
n
t
su

g
g
e
st
s
th

a
t
th

e
m

o
d
e
l
in

th
e
ro

w
p
ro

v
id

e
s
v
a
lu

a
b
le

in
fo
rm

a
ti
o
n

fo
r
fo
re

c
a
st
in

g
,
w
h
il
e
a

si
g
n
ifi

c
a
n
t
a
2

c
o
e
ffi

c
ie
n
t
su

g
g
e
st
s
th

a
t
th

e
m
o
d
e
l
in

th
e
c
o
lu

m
n

p
ro

v
id

e
s
v
a
lu

a
b
le

in
fo
rm

a
ti
o
n
.

122

Chapter 4: σ-Cell 4.4.7. Conclusion

4.7 Conclusion

In conclusion, our exploration of integrating a well-established econometric volatility

model with RNNs has provided new models for volatility prediction. We introduced

several designs of the new σ-Cell, drawing inspiration from the GARCH process,

time-varying recurrent parameters, and inductive biases, thereby enhancing the model’s

capability to grasp the intricate temporal dynamics present in financial time series.

We employed a distinctive loss function grounded in a log-likelihood-based

methodology to optimize the training process. Furthermore, we developed a specific

version of the activation function, Adjusted-Softplus, to enhance the training process.

We evaluated and compared the forecast performance of the proposed models with a

well-established model in the field. The proposed σ-Cell-RLTV and σ-Cell-NTV models

outperform traditional methods in out-of-sample predictive tasks, demonstrating the

potential for significant advancements in econometric modeling techniques with deep

learning.

The promising results obtained from our study pave the way for further explorations

in integrating traditional econometric models and advanced neural network architectures.

Such amalgamations can provide more precise and reliable predictions, crucial in various

financial applications such as risk management, portfolio optimization, and algorithmic

trading. Therefore, all innovations presented in this paper substantially enhance the

capabilities of neural network-based volatility modeling.

123

Chapter 4: σ-Cell 4.4.8. Application: Algorithm for Volatility Prediction with σ-Cell-RLTV

4.8 Application: Algorithm for Volatility Prediction

with σ-Cell-RLTV

Algorithm 1 σ-Cell-RLTV Algorithm for Volatility Prediction

Require: Sequence of inputs: x ∈ Rn

Ensure: Predicted volatility for the next input: σt

1: Initialize σ0

2: for each time step t = 1, 2, . . . , n do
3: Compute parameter vector wt using Eq. 4.22:
4: wt ← φ̃(Wxt−1 + b)

5: Compute component Ws,t using Eq. 4.23:
6: Ws,t ← π1(wt)

7: Compute component Wr,t using Eq. 4.24:
8: Wr,t ← π2(wt)

9: Compute residual x̃t−1 using Eq. 4.25:
10: x̃t−1 ← xt − f(ht−1, xt−1)

11: Compute estimated volatility σ̃2
t using Eq. 4.28:

12: σ̃2
t ← ϕ(σ̃2

t−1Ws,t + x̃2
t−1Wr,t + bh)

13: Predict σ2
t using Eq. 4.29:

14: σ2
t ← ϕo(σ̃

2
tWo + bo)

15: end for

16: return Predicted volatility σt ←
√

σ2
t

Algorithm 1 presents the σ-Cell-RLTV approach, which is designed to forecast

the volatility of financial returns. The sequence of returns, denoted as x and with

dimension n, serves as the primary input for this algorithm.

The parameter vector wt is obtained by passing the input vector xt−1 through the

function φ̃, which involves a linear transformation using the weight matrix W and the

bias vector b. Subsequently, the components Ws, t and Wr,t are derived from wt using

the functions π1, and π2, respectively.

The sequence is passed through the layer described in Equation 4.22, which generates

x̃t−1. Then, for each time step t, ranging from 1 to n, x̃t is calculated as the difference

124

Chapter 4: σ-Cell 4.4.8. Application: Algorithm for Volatility Prediction with σ-Cell-RLTV

between the input and the layer f (ht−1, xt−1), modulated by a function of the RNN’s

previous hidden state ht−1 and the actual input at that time.

Next, σ̃2
t is computed as a function of Ws, t, σ̃2

t−1, Wr, t, and x̃2
t . Finally, σ2

t is

calculated using Equation 4.29, the function ϕo ensures that the estimated volatility

remains positive. This process generates the estimated volatility for each return in the

sequence.

125

Chapter 5

σ-LSTM

5.1 Motivation

Volatility models, which analyze price variations, have been a key area of study in

econometrics. Both theoretical considerations and empirical evidence underpin these

models. Recent developments in deep learning, particularly neural networks, have

introduced new tools for econometric modeling. However, the application of neural

networks to volatility modeling still lacks the incorporation of certain established

patterns known as ”stylized facts,” which could enhance the predictive performance of

the neural networks in volatility forecasting.

In this study, we advocate integrating stylized facts related to volatility dynamics,

treated as an inductive bias, into the architecture of Long Short-Term Memory (LSTM)

cells. This approach seeks to refine model performance. We introduce a novel LSTM

cell variant, denoted as σ-LSTM, incorporating a stochastic processing layer. Our

findings reveal that this model exhibits strong out-of-sample forecasting capabilities.

Additionally, we enhance the training process by employing a specialized loss function

derived from the loglikelihood method.

5.2 Introduction

Given the dynamic nature of financial markets, financial data modeling has long been

a subject of intense research and scrutiny. Traditional regression models, such as

126

Chapter 5: σ-LSTM 5.5.2. Introduction

the linear regression model y = Xβ + ϵ, has been foundational in understanding

and predicting financial behaviors. In these models, y denotes the response variable.

Meanwhile, β represents unobservable parameters, X is the non-random explanatory

variable, and ϵ signifies the noise or error term.

However, real-world financial data complexities often challenge these models’

assumptions. For instance, the assumption of homoscedasticity, where errors have

constant variance and the absence of serial correlation between errors, is often violated

in financial time series data. In scenarios where these assumptions are challenged,

the Gauss-Markov theorem, which asserts the optimality of the ordinary least squares

(OLS) estimator, becomes less applicable Huang et al. [1970]. To avoid redundancy,

consider: ”The field of econometrics has devoted significant effort to address these

complexities, especially the heteroskedastic nature of financial data Tsay [2005].

As financial markets evolve, so does the need for more sophisticated models to

capture the intricate dynamics of financial volatility. This study delves into volatility

modeling, exploring both traditional and novel approaches. Our goal is to bridge the

gap between econometric techniques and the capabilities of neural networks (NN).

In this study, we explore the volatility of asset returns, intrinsically marked by

heteroscedasticity. This suggests that the variance of these returns is not constant

but evolves over time. Volatility is intrinsically tied to risk and the extent of price

variations.

From a conditional process standpoint, there are models that treat the variance of

returns as a dynamic conditional parameter. Notably, the Autoregressive Conditional

Heteroskedasticity (ARCH) model Engle [1982b] and the Generalized Autoregressive

Conditional Heteroskedasticity (GARCH) model Bollerslev [1986] stand out. Central

to these models is the idea that, based on historical data, the variance of returns can

change over periods. However, the overall variance remains mostly stable.

In contrast, with the rise of high-frequency financial data, realized volatility (RV)

has emerged as a strong alternative for volatility modeling. A prime example of this

is the Heterogeneous Autoregression (HAR) model Corsi [2009]. Due to its robust

predictive abilities and simple estimation methods, the HAR model is now a benchmark

in the field. Realized volatility is preferred for its precision and dependability in

127

Chapter 5: σ-LSTM 5.5.2. Introduction

estimating market volatility.

Recently, several RNN architectures, like LSTM Hochreiter and Schmidhuber

[1997c], Gated Recurrent Units (GRU)Cho et al. [2014a], and Statistical Recurrent

Units (SRU)Oliva et al. [2017], have shown great promise in forecasting time-series

data sets. Among these, the LSTM architecture stands out, especially for its exemplary

performance in the intricate domain of volatility prediction Bucci [2020].

The Gated Recurrent Unit (GRU) is an LSTM variant that simplifies learning by

removing the cell state. On the other hand, the Statistical Recurrent Unit (SRU) is

designed to discern long-term dependencies in data. It achieves this by leveraging

simple moving averages of summary statistics and linear combinations of historical

data.

In the study by Nguyen et al. [2020], a unique RNN model was introduced that

captures the ω-constant of the GARCH process. Another study Nguyen et al. [2022]

introduced a hybrid approach that combined the Stochastic Volatility (SV) model

with the SRU. While the SRU is adept at capturing long-term memory effects and the

auto-dependence of volatility, in this SR-SV model, it precisely models the deterministic

dynamics of the hidden states.

As the field of time series forecasting evolves rapidly, one emerging trend is

integrating traditional volatility models with RNNs. The σ-Cell methodology, which

combines the GARCH process with RNN dynamics, introduces a fresh perspective on

volatility estimation Rodikov and Antulov-Fantulin [2023].

Although there has been a recent surge in interest in modeling the heteroskedasticity

of returns using RNN architectures, there remains a gap. Prior research has not delved

into this challenge from the perspective of a modified LSTM cell Nguyen et al. [2020,

2022].

Our research builds upon the work that introduced the σ-Cell models, the RNN

cell design tailored to address the dynamic nature of financial volatility. This

design integrates the principles of GARCH with a stochastic layer and time-varying

parameters. Our study seeks to augment this foundational approach; while the original

σ-Cell models employed a relatively straightforward RNN architecture, they were not

without limitations, especially concerning long-term memory and issues of gradient

128

Chapter 5: σ-LSTM 5.5.3. Preliminaries

vanishing/exploding. We posit that the integration of LSTM networks, known for

their proficiency in managing long-range dependencies and mitigating gradient-related

challenges, can significantly enhance the σ-Cell models.

Our proposed σ-LSTM retains the features of the original σ-Cell models and utilizes

a log-likelihood-based loss function. This addition aims to yield a more robust and

precise volatility forecasting model. Our work continues and expands upon the original

σ-Cell paradigm. It underscores the potential advantages of merging econometric price

volatility models with deep learning methodologies, emphasizing the synergistic benefits

of combining domain expertise with the computational power of neural networks.

5.3 Preliminaries

5.3.1 Baseline Volatility Models

In this study, we employ the GARCH(1,1) and GJR-GARCH models as our baseline

for volatility forecasting. The GARCH(1,1) model is particularly renowned for its

parsimony and effectiveness in capturing the stylized facts of financial time series, such

as volatility clustering and leverage effects Francq and Zakoian [2010]. Its mathematical

tractability and computational efficiency make it a widely used tool in both academic

research and practical applications, serving as a benchmark for evaluating more complex

models.

On the other hand, the GJR-GARCH model extends the basic GARCH framework

by allowing for asymmetric responses to positive and negative shocks in financial

returns Glosten et al. [1993b]. This feature is particularly relevant for capturing the

”leverage effect,” where negative returns tend to induce a higher subsequent volatility

than positive returns of the same magnitude. By incorporating both the GARCH(1,1)

and GJR-GARCH models as our baselines, we aim to provide a comprehensive and

robust foundation for our experiments.

Our study also incorporates the HAR (Heterogeneous Autoregressive) model as an

additional baseline for volatility forecasting Corsi [2009]. The HAR model has gained

considerable attention for providing stable and accurate estimates of realized volatility

over various time horizons Corsi et al. [2012]. Unlike traditional GARCH-type models,

129

Chapter 5: σ-LSTM 5.5.3. Preliminaries

which primarily focus on short-term volatility dynamics, the HAR model captures the

long-memory property of volatility by aggregating information across multiple time

scales.

The inclusion of the HAR model in our comparative analysis serves multiple

purposes. First, it allows us to evaluate the performance of our proposed model against

a well-established alternative that has been empirically validated for its forecasting

accuracy Corsi et al. [2012]. Second, the HAR model’s ability to integrate volatility

information from a variety of market participants makes it a valuable addition to our

model set, enriching the robustness and comprehensiveness of our analysis.

5.3.2 LSTM-RV

Recent advancements in forecasting methodologies have brought the LSTM model to the

forefront, especially in the domains of stock and cryptocurrency markets. The empirical

study we reviewed delves deep into the intricacies of LSTM configurations equations

2.22-2.27, Hochreiter and Schmidhuber [1997c], exploring the influence of various

parameters such as the number of layers, neurons, activation functions, and optimizers.

The study shows the model’s capability to outperform established benchmarks. This

has spurred our interest in assimilating the LSTM-RV model into our existing model

set for a comprehensive comparative analysis Rodikov and Antulov-Fantulin [2022].

One of the pivotal aspects highlighted in the study is the role of hyperparameter

tuning in enhancing the model’s forecasting accuracy. Specifically, the input dimension

size in the preprocessing procedure emerged as a critical parameter. The study suggests

that setting the input dimension ranges from 5 to 12 can significantly improve the

LSTM’s performance Rodikov and Antulov-Fantulin [2022]. Such insights underscore

the importance of meticulous parameter tuning in neural network architectures.

The versatility of the LSTM model is further exemplified by its adaptability across

diverse markets. Whether it’s the traditional stock market or the cryptocurrency

domain, the LSTM model has demonstrated a unified approach to processing data.

This adaptability is particularly noteworthy given these markets’ inherent differences

and volatility patterns. The model’s ability to seamlessly transition between these

markets is a testament to its robustness and potential for broader applications in the

130

Chapter 5: σ-LSTM 5.5.3. Preliminaries

future.

5.3.3 σ-Cell

In the evolving landscape of time series forecasting, integrating traditional volatility

models with RNNs has emerged as a promising avenue. The σ-Cell approach, which

utilizes the GARCH process with RNN dynamics, offers a novel perspective on volatility

estimation 4.4. By incorporating these models into our comparison set, we aim to

discern the potential improvements the σ-LSTM model might achieve.

The σ-Cell approach delineates a GARCH-like mechanism tailored for the estimation

of conditional volatility inherent in a given time series. Central to this methodology

is the explicit volatility estimation, σt, for every point within the time series. This

dynamic volatility modeling determines σ2
t by integrating the current time series value

with the preceding volatility and the corresponding error term. However, consider:

”The approach offers dynamic mapping, allowing real-time modulation of the GARCH

parameters and thus providing enhanced adaptability. The error quantification term

captures the difference between actual and anticipated values, serving as a metric to

train the model. This foundational approach sets the stage for its enhanced variants,

which we delve into next.

The σ-Cell-N stands out due to its integration of a stochastic layer 4.6. This

addition brings depth and complexity to its predictive capabilities. The stochastic

layer introduces a component to the residuals, ensuring a continuous and coherent

propagation of uncertainty through the series. This design choice, reminiscent of

GARCH model dynamics, allows for nuanced volatility predictions. By combining

past variance, disturbances, and a stochastic layer, the σ-Cell-N offers a comprehensive

perspective on volatility dynamics 4.7, 4.8. This model exemplifies the blend of GARCH

principles with neural architecture and stochasticity.

The σ-Cell-RLTV model represents another leap in the σ-Cell approach. This model

marries the dynamic attributes of the time-varying method with the recurrent, residual

features. The approach enhances memory retention and offers heightened resistance to

specific noise disturbances. However, while it provides improved predictive capabilities,

it also has an increased computational burden and a potential to overfit, especially in

131

Chapter 5: σ-LSTM 5.5.4. σ-LSTM

sparser data data sets. This model’s integration of time-varying weights and recurrent

features showcases the potential of combining traditional volatility estimation techniques

with modern neural architectures.

5.4 σ-LSTM

Accurate and timely volatility forecasting is vital for risk assessment, asset pricing,

and investment decisions. This has spurred researchers to develop novel and effective

models to predict financial volatility. One such innovative approach is the σ-Cell type

model, a Recurrent Neural Network (RNN) cell design that integrates the principles of

Generalized Autoregressive Conditional Heteroskedasticity (GARCH), a stochastic layer,

and time-varying parameters 4.22-4.29. Our paper builds upon this foundational work

by introducing new techniques and insights to enhance the σ-Cell model’s effectiveness

and forecasting performance.

The σ-Cell model employed a simple RNN architecture, which, despite its merits,

has inherent limitations. In particular, RNNs are known to struggle with long-range

dependencies and may face difficulties in learning patterns spanning long periods of

time. Moreover, RNNs are susceptible to the gradient vanishing/exploding problem,

which can hinder their training and convergence. We make an attempt to challenge

it. We propose incorporating LSTM networks with the σ-Cell model, which we will

refer to as the σ-LSTM. LSTM networks are specifically designed to handle long-range

dependencies and alleviate the issues of gradient vanishing and exploding, making them

an ideal candidate for enhancing the σ-Cell model.

Our σ-LSTM design integrates the novel features introduced in the original σ-Cell

models, such as the GARCH principles, the stochastic layer, and the time-varying

parameters. As well, σ-LSTM model employs a log-likelihood-based loss function,

which aids in achieving a more robust and accurate volatility forecasting model 5.8.

The inputs to the σ-LSTM are directly the returns xt = rt, and the outputs are the

predicted predicted variance σ̂t
2. The cell maintains a hidden representation ht for

short-term memory and a long-term Ct volatility memory component, in line with the

LSTM structure.

132

Chapter 5: σ-LSTM 5.5.4. σ-LSTM

We aim to model asset returns xt as a function of past returns ϕ(xt−1, ..., xt−p),

where ϕ() is a differentiable non-linear function. The σ-LSTM, a modified LSTM

cell Hochreiter and Schmidhuber [1997c], is designed to capture both long and short-term

volatility. The update rules of the σ-LSTM are as follows equations from 5.1 to 5.7.

ft = σg (Wfxt + Ufht−1 + bf) (5.1)

it = σg (Wixt + Uiht−1 + bi) (5.2)

c̃t = σc (Wcxt + Ucht−1 + bc) (5.3)

ct = ft ⊙ ct−1 + it ⊙ c̃t (5.4)

ot = N (0,Wo[c
2
t]) (5.5)

ht = ot ⊙ σh (ct) (5.6)

σ̂2
t = ⟨ct⟩2 (5.7)

L =
m∑
t=1

[
− ln

(
σ̂2
t

)
− x2

t

σ̂2
t

]
(5.8)

Our work represents a natural continuation and expansion of the original σ-Cell

concept, further bridging the gap between econometric price volatility models and deep

learning techniques. It showcases the potential benefits of inheriting domain knowledge

from financial econometrics with the powerful predictive capabilities of neural networks.

The advancements in the σ-LSTM model have the potential to contribute significantly

to the ongoing quest for accurate and reliable financial volatility forecasting.

133

Chapter 5: σ-LSTM 5.5.4. σ-LSTM

Intuition

The LSTM network was a groundbreaking Recurrent Neural Networks (RNNs)

advancement. Its architecture was specifically designed to combat the challenges

of long-range dependencies and the notorious gradient vanishing/exploding problem

that plagued traditional RNNs. The LSTM’s unique cell state and gating mechanisms

(input, forget, and output gates) allowed it to maintain and manipulate information

over extended sequences, making it a powerful tool for time series forecasting.

The main idea behind σ-LSTM is to combine the strengths of LSTMs and GARCH

models. While LSTMs are good at capturing long-term dependencies in data, GARCH

models are adept at modeling the time-varying nature of volatility. By combining these

two, the σ-LSTM aims to accurately represent time series data with volatile patterns.

Traditional LSTMs have a mechanism to capture both long-term and short-term

dependencies in data. This is achieved through the cell state ct and the hidden state ht.

The cell state acts as the long-term memory, while the hidden state captures short-term

dependencies.

Equations from 5.1 to 5.4 represent the canonical LSTM gates and cell state updates.

They determine how information flows and is updated in the network.

The σ-LSTM introduces a stochastic layer, as depicted in equation 5.5. This layer,

reminiscent of GARCH models, is tailored to capture the time-varying volatility. The

quadratic dependence on ct underscores the pivotal role of the cell state in ascertaining

volatility. Unlike traditional LSTMs, which don’t inherently factor in the stochastic

nature of financial time series, the σ-LSTM, through its stochastic layer, integrates

financial markets’ inherent randomness and unpredictability.

The σ-LSTM postulates a relationship between the squared cell state (c2t) and

volatility, as evident from equation 5.5. This deviation from traditional LSTMs aligns

the model more closely with GARCH-like behavior. Further, equations 5.6 and 5.7

determine the hidden state and the network output, respectively.

The loss function, represented by 5.8, is designed to ensure that the σ-LSTM learns

to minimize the negative log-likelihood of GARCH-like process, where σ-LSTM models

time-varying volatility.

134

Chapter 5: σ-LSTM 5.5.5. Experiments

5.5 Experiments

This investigation delves into the efficacy of the proposed σ-LSTM model in gauging

and forecasting the performance of diverse financial assets, specifically encompassing

stocks, indices, and cryptocurrency. Our focal assets for this study are Apple Inc. stock,

the S&P 500 index, and the Bitcoin-USD trading pair. The analysis is anchored on

the realized volatility (RV) derived from minute-level price data, which is subsequently

aggregated on a daily basis. The returns are ascertained from the daily closing prices

5.1.

For a structured approach, the data set was partitioned into three distinct segments:

training, validation, and testing. The latter two segments, validation and testing, each

comprise 252 data points, sourced from the concluding sections of the data set. A

comprehensive statistical summary of the intraday returns for the S&P 500, Apple Inc.,

and BTCUSDT is presented in Table 5.2. This table elucidates key statistical metrics,

including mean, median, standard deviation, skewness, and kurtosis, offering insights

into the distributional characteristics of the returns.

To further enhance the understanding of the data distribution, visual representations

are provided in Figure 5.3. These graphical depictions, encompassing histograms and

box plots, illuminate the distribution, spread, and potential outliers in the returns for

the S&P 500, Apple Inc., and Bitcoin. Such visual aids are instrumental in discerning

the central tendency, variability, and overall distribution shape of the returns for the

selected assets.

In our research, we employed a variety of models to assess their forecasting

capabilities, utilizing a range of metrics and tests. We evaluated models using the

Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE), both of

which assess the magnitude of errors between predicted and observed values. The

heteroskedasticity adjusted root mean square error (HRMSE) was another metric of

interest, accounting for heteroscedasticity in the data Bollerslev and Ghysels [1996].

However, given the potential limitations of HRMSE, we also employed the QLIKE loss

function, which is robust in the context of volatility forecasting Patton [2011]. We also

explored R2 for forecasting regressions Mincer and Zarnowitz [1969].

The Negative Log-Likelihood (NLL) metric was used to quantify the fit of our

135

Chapter 5: σ-LSTM 5.5.5. Experiments

models to the observed data. To compare the performance of various forecasting models,

we utilized the Diebold-Mariano (DM) test, focusing on the Mean Squared Error (MSE)

as loss functions Diebold and Mariano [1995] through the Model Confidence Set (MCS)

test. The MCS test shows statistically significant differences between forecasting models

Hansen et al. [2011]. This test, conducted using bootstrapping, allowed us to compare

models and identify the best-performing ones with high confidence.

Table 5.1: Data Set Description for S&P 500, AAPL and BTCUSDT

Asset Time Frame From To RV Points

S&P 500 1 minute 10.03.07 01.03.22 3,800
APPL 1 minute 10.03.07 01.03.22 3,800
BTCUSDT 1 minute 01.01.13 20.04.20 2,667

Note: The table presents an overview of the data used in the
analysis, including the asset, the time frame of the data,
the date range of the data, and the number of realized
volatility (RV) points. The last 252 data points are used
for out-of-sample testing, and the preceding 252 data points
are used for validation.

Table 5.2: Statistical Summary of Returns for S&P 500, AAPL, and BTCUSDT.

Asset Mean Median STD Skewness Kurtosis

S&P 500 0.00029 0.0007 0.0128 -0.1886 13.9915
APPL 0.00104 0.0010 0.0212 -0.4026 9.17605
BTCUSDT 0.00349 0.0020 0.0466 -0.0726 14.3508

Note: The table presents key statistical metrics of the interdaily
returns for the S&P 500 index and the Bitcoin-USD
(BTCUSDT) trading pair. The metrics include mean, median,
standard deviation (STD), skewness, and kurtosis. A positive
skewness indicates a right-side heavier tail of the probability
density function, while a negative skewness indicates a left-side
heavier tail. Kurtosis measures the ”tailedness” of the
probability distribution of returns. Higher kurtosis indicates
a heavier tail, signifying a higher probability of extreme
outcomes. For the analysis, we use the entire data set without
dividing it into validation and test sets.

In the pursuit of refining the neural network’s architecture, a comprehensive

exploration of the hyperparameter space was undertaken, guided by established

methodologies Panchal et al. [2010]. Post-evaluation on both training and validation

136

Chapter 5: σ-LSTM 5.5.5. Experiments

2008 2010 2012 2014 2016 2018 2020 2022
Date

0.2

0.1

0.0

0.1

0.2

In
tra

da
y

R
et

ur
ns

 a
nd

 R
ea

liz
ed

 V
ol

at
ili

ty

Realized Volatility (offset +0.1)
Returns

0

25

50

75

100

125

150

175

P
ric

e

Price

Figure 5.1: This plot depicts the Realized Volatility, Returns, and Price of Apple Inc.
stock between 10th March 2007 and 1st March 2022. The gray solid line represents the
realized volatility (offset by +0.1), the blue dashed line represents intraday returns,
and the black dash-dot line indicates the price. Both the RV and returns, derived from
daily data, are presented on the primary y-axis, while the price is shown on a secondary
y-axis. The vertical red dashed and green dotted lines demarcate the beginnings of
the test and validation sets, respectively, with each set comprising 252 points. All
remaining data serve as the training set. For a similar analysis on the S&P 500 and
BTCUSDT, see Chapter 4, Figure 4.3, 4.5.

137

Chapter 5: σ-LSTM 5.5.5. Experiments

(a)

0 5 10 15 20 25 30
Lag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

(b)

0 5 10 15 20 25 30
Lag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

(c)

0 5 10 15 20 25 30
Lag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

(d)

0 5 10 15 20 25 30
Lag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

Figure 5.2: This plot displays the autocorrelation (ACF) and partial autocorrelation
(PACF) for the returns and volatility of Apple Inc. stock. The ACF illustrates the
extent of a linear relationship between current values and their lags, while the PACF
captures the correlation between a value and its lag that isn’t explained by shorter lags.
a) ACF for returns b) PACF for returns c) ACF for volatility d) PACF for volatility.
For a similar analysis on the S&P 500 and BTCUSDT, see Chapter 4, Figure 4.4, 4.6.

138

Chapter 5: σ-LSTM 5.5.6. Results

(a)

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15
Interdaily Returns

0

100

200

300

400

Fr
eq

ue
nc

y
(b)

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15
Interdaily Returns

Figure 5.3: This plot showcases the distribution and Box Plot of Returns for the Apple
Inc. stock. Panel (a) displays the histogram of the returns, while Panel (b) presents its
box plot, highlighting the spread of data and potential outliers. These visualizations
offer insights into the central tendency, dispersion, and shape of the return distribution.
For a similar analysis on the S&P 500 and BTCUSDT, see Chapter 4, Figure 4.7.

data sets, the selection of optimal hyperparameters was informed by the loss criterion.

Adam, which stands for Adaptive Moment Estimation, is a stochastic optimization

technique frequently employed in training deep learning models. Its popularity stems

from its efficiency and minimal memory demands. At its core, Adam adjusts learning

rates for individual parameters adaptively Kingma and Ba [2014].

5.6 Results

In the subsequent section, we present empirical results derived from our analysis. These

results are tabulated to provide a clear and concise overview of the performance metrics

associated with various forecasting models.

For the in-sample performance on the S&P 500 index, the σ-LSTM model

outperforms the σ-Cell-N model in terms of MAE, RMSE, and R2, indicating superior

precision and fit. Out-of-sample tests further validate its effectiveness, although the

LSTM-RV model, which operates on RV values, exhibits the highest efficacy. Generally,

the GARCH(1,1) and GJR-GARCH models show moderate performance across the

evaluated data sets. For the S&P 500 index, both models perform better than the

σ-Cell-N model in terms of MAE and RMSE but are outperformed by the HAR and

LSTM-RV models. Their R2 values indicate a reasonable, but not exceptional, fit to

the out-of-sample data.

139

Chapter 5: σ-LSTM 5.5.6. Results

In the case of Apple Inc. stock, the σ-LSTM model again surpasses the σ-Cell-N

model in both in-sample and out-of-sample metrics, particularly in MAE and RMSE.

The model’s HRMSE and R2 values underscore its robustness in forecasting stock

volatility. For Apple Inc. stock, the GARCH(1,1) model has higher MAE and RMSE

values compared to the GJR-GARCH model, but both are outperformed by the σ-LSTM

and LSTM-RV models in most metrics. The GJR-GARCH model shows a slightly

better R2 value compared to GARCH(1,1), suggesting a more robust in-sample fit.

For the BTCUSDT trading pair, the σ-LSTMmodel demonstrates a robust in-sample

fit, outperforming the σ-Cell-N model in RMSE and R2. In out-of-sample tests, it

exhibits the lowest HRMSE among the models, although it is slightly outperformed by

the LSTM-RV and HAR models in other metrics. For the BTCUSDT trading pair, the

GARCH(1,1) model performs relatively poorly, especially in out-of-sample tests. Its

R2 values are also lower, indicating a less robust fit. The GJR-GARCH model shows

a slightly better R2 value in out-of-sample tests. While these models offer a decent

baseline, they are generally outperformed by more complex models like LSTM-RV and

σ-LSTM in both in-sample and out-of-sample evaluations.

The LSTM-RV model demonstrates the best performance in MAE and RMSE

among the evaluated models and data sets for out-of-sample tests. It also achieves the

highest R2 value, indicating the most robust fit to the out-of-sample data. The HAR

model follows closely and suggests a reasonable fit but is not as strong as the LSTM-RV

model. Interestingly, the σ-LSTM model shows competitive performance using only

daily returns instead of realized volatility as LSTM-RV and HAR-RV. While it does

not outperform the LSTM-RV and HAR models in terms of MAE and RMSE, it is

noteworthy that the margin of difference is relatively small. Moreover, its R2 values are

closely aligned with those of the LSTM-RV and HAR models, and its HRMSE is the

lowest among the models. The QLIKE metric further underscores its strong alignment

with the out-of-sample data.

The Model Confidence Set (MCS) approach is used to identify a set of models

that, at a given confidence level, contain the best model 5.9. The p-values in the MCS

context determine if a model can be excluded from the superior set of models. A higher

p-value indicates that the model cannot be confidently excluded from the best set,

140

Chapter 5: σ-LSTM 5.5.6. Results

Table 5.3: In-Sample Performance Metrics for S&P 500 Volatility Forecasting Models

Model MAE 103 RMSE 103 HRMSE QLIKE R2

σ-Cell-N 4.2755 7.3268 3.9454 -3.37082 0.703984
σ-Cell-RLTV 4.2681 6.7396 4.6134 -3.36883 0.72224
GARCH(1,1) 5.3125 8.2736 3.349 -3.36648 0.660096
GJR-GARCH 5.1116 8.193 3.2048 -3.36603 0.667675
HAR 4.1901 7.3104 3.7523 -3.3793 0.675116
LSTM-RV 3.839 6.5666 3.566 -3.39294 0.741149
σ-LSTM 4.0836 6.6643 3.4432 -3.37075 0.739557

Note: The table presents the in-sample performance of various
volatility forecasting models applied to the S&P 500 index. The
performance metrics include Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), Heteroscedasticity-Adjusted RMSE (HRMSE),
Quasi-Likelihood (QLIKE), and the coefficient of determination (R2).
Metrics MAE, RMSE are evaluated at a scale of 103.

Table 5.4: Out-of-Sample Performance Metrics for S&P 500 Volatility Forecasting
Models

Model MAE 103 RMSE 103 HRMSE QLIKE R2

σ-Cell-N 2.7759 4.2079 2.4303 -3.85495 0.25181
σ-Cell-RLTV 2.4940 3.6792 2.1279 -3.86195 0.464835
GARCH(1,1) 2.6258 3.9908 2.6406 -3.868 0.319658
GJR-GARCH 2.4939 3.8503 2.6177 -3.87638 0.372308
HAR 2.3316 3.3896 2.6567 -3.88498 0.516026
LSTM RV 1.9963 3.0925 2.4229 -3.89967 0.626805
σ-LSTM 2.4092 3.6171 2.341 -3.87699 0.44324

Note: The table presents the out-of-sample performance of various
volatility forecasting models applied to the S&P 500 index. The
performance metrics include Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), Heteroscedasticity-Adjusted RMSE (HRMSE),
Quasi-Likelihood (QLIKE), and the coefficient of determination (R2).
Metrics MAE, RMSE are evaluated at a scale of 103.

141

Chapter 5: σ-LSTM 5.5.6. Results

Table 5.5: In-Sample Performance Metrics for AAPL Volatility Forecasting Models

Model MAE 103 RMSE 103 HRMSE QLIKE OOS Rˆ2

σ-Cell-N 6.0582 8.8993 2.7425 -2.78755 0.602733
σ-Cell-RLTV 5.5996 8.0974 2.6727 -2.79491 0.619464
GARCH(1,1) 6.7251 9.2401 2.604 -2.78454 0.57517
GJR-GARCH 5.9343 8.3618 2.6604 -2.78979 0.633342
HAR 6.2071 9.3115 2.7176 -2.77971 0.485976
LSTM-RV 5.5129 8.5075 2.5675 -2.79159 0.581793
σ-LSTM 5.5366 7.7249 2.6381 -2.79878 0.645268

Note: The table presents the in-sample performance of various volatility
forecasting models applied to the Apple Inc. stock. The
performance metrics include Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), Heteroscedasticity-Adjusted RMSE (HRMSE),
Quasi-Likelihood (QLIKE), and the coefficient of determination (R2).
Metrics MAE, RMSE are evaluated at a scale of 103.

Table 5.6: Out-of-Sample Performance Metrics for AAPL Volatility Forecasting Models

Model MAE 103 RMSE 103 HRMSE QLIKE OOS Rˆ2

σ-Cell-N 4.0946 6.0104 2.3161 -3.149 0.410853
σ-Cell-RLTV 4.4316 6.1656 2.2868 -3.1443 0.254376
GARCH(1,1) 5.3866 6.9943 2.4557 -3.1264 0.047298
GJR-GARCH 5.0156 6.7116 2.4476 -3.1333 0.115035
HAR 3.8178 5.6268 2.3846 -3.1544 0.325561
LSTM-RV 3.3902 5.122 2.2991 -3.1637 0.440552
σ-LSTM 4.0008 5.7351 2.2825 -3.1531 0.419388

Note: The table presents the out-of-sample performance of various
volatility forecasting models applied to the Apple Inc. stock. The
performance metrics include Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), Heteroscedasticity-Adjusted RMSE (HRMSE),
Quasi-Likelihood (QLIKE), and the coefficient of determination (R2).
Metrics MAE, RMSE are evaluated at a scale of 103.

142

Chapter 5: σ-LSTM 5.5.6. Results

Table 5.7: In-Sample Performance Metrics for BTCUSDT Volatility Forecasting Models

Model MAE 103 RMSE 103 HRMSE QLIKE R2

σ-Cell-N 9.5845 14.8304 2.0743 -2.40586 0.383233
σ-Cell-RLTV 9.8975 13.9467 2.2753 -2.41649 0.490842
GARCH(1,1) 10.645 15.2788 2.2737 -2.40314 0.339935
GJR-GARCH 10.4658 16.0143 2.2568 -2.39506 0.278871
HAR 8.3432 13.046 2.1962 -2.43033 0.519423
LSTM-RV 7.0565 11.3759 2.1466 -2.44429 0.636916
σ-LSTM 10.0536 14.7675 1.9886 -2.38417 0.45642

Note: The table presents the in-sample performance of various volatility
forecasting models applied to the BTCUSDT trading pair. The
performance metrics include Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), Heteroscedasticity-Adjusted RMSE (HRMSE),
Quasi-Likelihood (QLIKE), and the coefficient of determination (R2).
Metrics MAE, RMSE are evaluated at a scale of 103.

Table 5.8: Out-of-Sample Performance Metrics for BTCUSDT Volatility Forecasting
Models

Model MAE 103 RMSE 103 HRMSE QLIKE R2

σ-Cell-N 8.6526 15.0106 2.0952 -2.3861 0.54771
σ-Cell-RLTV 8.9647 15.3183 2.1562 -2.3821 0.512133
GARCH(1,1) 11.7684 20.9741 2.2144 -2.3579 0.164693
GJR-GARCH 10.316 19.6479 2.1261 -2.3712 0.561019
HAR 8.7206 16.1625 2.1609 -2.3901 0.462834
LSTM-RV 7.3282 14.1654 2.1167 -2.4046 0.598796
σ-LSTM 8.9932 14.7252 2.0425 -2.3789 0.575294

Note: The table presents the out-of-sample performance of various
volatility forecasting models applied to the BTCUSDT trading pair.
The performance metrics include Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), Heteroscedasticity-Adjusted
RMSE (HRMSE), Quasi-Likelihood (QLIKE), and the coefficient
of determination (R2). Metrics MAE, RMSE are evaluated at a scale
of 103.

143

Chapter 5: σ-LSTM 5.5.6. Results

(a)

2021-03-08 2021-05-18 2021-07-29 2021-10-08 2021-12-17 2022-03-01

0.00

0.01

0.02

0.03

0.04
Realized Volatility
GJR-GARCH

(b)

2021-03-08 2021-05-18 2021-07-29 2021-10-08 2021-12-17 2022-03-01

0.00

0.01

0.02

0.03

0.04
Realized Volatility
HAR

(c)

2021-03-08 2021-05-18 2021-07-29 2021-10-08 2021-12-17 2022-03-01

0.00

0.01

0.02

0.03

0.04
Realized Volatility
LSTM-RV

(d)

2021-03-08 2021-05-18 2021-07-29 2021-10-08 2021-12-17 2022-03-01

0.00

0.01

0.02

0.03

0.04
Realized Volatility

-Cell-N

(e)

2021-03-08 2021-05-18 2021-07-29 2021-10-08 2021-12-17 2022-03-01

0.00

0.01

0.02

0.03

0.04
Realized Volatility

-Cell-RLTV

(f)

2021-03-08 2021-05-18 2021-07-29 2021-10-08 2021-12-17 2022-03-01

0.00

0.01

0.02

0.03

0.04
Realized Volatility

-LSTM

Figure 5.4: The following plot illustrates the prediction for out-of-sample BTCUSDT
pair data for Different Forecasting Models: (a) GJR-GARCH model’s prediction. (b)
HAR model’s prediction. (c) LSTM-RV model’s prediction. (d) σ-Cell-N model’s
prediction. (e) σ-Cell-RLTV model’s prediction. (f) σ-LSTM model’s prediction.

144

Chapter 5: σ-LSTM 5.5.6. Results

(a)

2021-03-05 2021-05-17 2021-07-28 2021-10-07 2021-12-16 2022-02-28
0.00

0.01

0.02

0.03

0.04

Realized Volatility
GJR-GARCH

(b)

2021-03-05 2021-05-17 2021-07-28 2021-10-07 2021-12-16 2022-02-28
0.00

0.01

0.02

0.03

0.04

Realized Volatility
HAR

(c)

2021-03-05 2021-05-17 2021-07-28 2021-10-07 2021-12-16 2022-02-28
0.00

0.01

0.02

0.03

0.04

Realized Volatility
LSTM-RV

(d)

2021-03-05 2021-05-17 2021-07-28 2021-10-07 2021-12-16 2022-02-28
0.00

0.01

0.02

0.03

0.04

Realized Volatility
-Cell-N

(e)

2021-03-05 2021-05-17 2021-07-28 2021-10-07 2021-12-16 2022-02-28
0.00

0.01

0.02

0.03

0.04

Realized Volatility
-Cell-RLTV

(f)

2021-03-05 2021-05-17 2021-07-28 2021-10-07 2021-12-16 2022-02-28
0.00

0.01

0.02

0.03

0.04

Realized Volatility
-LSTM

Figure 5.5: The following plot illustrates the prediction for out-of-sample Apple Inc.
Stock data for Different Forecasting Models: (a) GJR-GARCH model’s prediction.
(b) HAR model’s prediction. (c) LSTM-RV model’s prediction. (d) σ-Cell-N model’s
prediction. (e) σ-Cell-RLTV model’s prediction. (f) σ-LSTM model’s prediction.

145

Chapter 5: σ-LSTM 5.5.6. Results

(a)

2019-08-15 2019-10-04 2019-11-23 2020-01-12 2020-03-02 2020-04-21

0.05

0.10

0.15

0.20

Realized Volatility
GJR-GARCH

(b)

2019-08-15 2019-10-04 2019-11-23 2020-01-12 2020-03-02 2020-04-21

0.05

0.10

0.15

0.20

Realized Volatility
HAR

(c)

2019-08-15 2019-10-04 2019-11-23 2020-01-12 2020-03-02 2020-04-21

0.05

0.10

0.15

0.20

Realized Volatility
LSTM-RV

(d)

2019-08-15 2019-10-04 2019-11-23 2020-01-12 2020-03-02 2020-04-21

0.05

0.10

0.15

0.20

Realized Volatility
-Cell-N

(e)

2019-08-15 2019-10-04 2019-11-23 2020-01-12 2020-03-02 2020-04-21

0.05

0.10

0.15

0.20

Realized Volatility
-Cell-RLTV

(f)

2019-08-15 2019-10-04 2019-11-23 2020-01-12 2020-03-02 2020-04-21

0.05

0.10

0.15

0.20

0.25
Realized Volatility

-LSTM

Figure 5.6: The following plot illustrates the prediction for out-of-sample BTCUSDT
pair data for Different Forecasting Models: (a) GJR-GARCH model’s prediction. (b)
HAR model’s prediction. (c) LSTM-RV model’s prediction. (d) σ-Cell-N model’s
prediction. (e) σ-Cell-RLTV model’s prediction. (f) σ-LSTM model’s prediction.

146

Chapter 5: σ-LSTM 5.5.6. Results

Table 5.9: MCS with 10,000 bootstraps test sample

Model S&P 500 BTCUSDT APPL
MSE 103 P-value MSE 103 P-value MSE 103 P-value

σ-Cell-N 0.0177 0.413∗∗ 0.2253 0.391∗∗ 0.0361 0.571∗∗

σ-Cell-RLTV 0.0135 0.708∗∗ 0.2346 0.132∗ 0.0380 0.332∗∗

GARCH(1,1) 0.0159 0.000 0.4399 0.005 0.0489 0.000
GJR-GARCH 0.0148 0.450∗∗ 0.3860 0.000 0.0450 0.419∗∗

HAR 0.0114 0.374∗∗ 0.2612 0.601∗∗ 0.0316 0.546∗∗

LSTM-RV 0.0095 0.600∗∗ 0.2006 0.422∗∗ 0.0262 0.127∗

σ-LSTM 0.0130 0.491∗∗ 0.2168 0.524∗∗ 0.0328 0.654∗∗

Note: The table presents the average loss over the test sample and the MCS p-values.
The realized volatility forecasts in M̂∗

90% and M̂∗
75% are indicated by one and two

asterisks, respectively. Values highlighted in bold indicate superior performance
for the given Loss metric. In cases where multiple models exhibit closely matched
performance, the top few models are highlighted to emphasize their comparative
effectiveness.

while a lower p-value suggests the opposite.

Table 5.9 presents the average loss over the test sample and the Model Confidence

Set (MCS) p-values for various volatility forecasting models across three distinct data

sets: S&P 500, BTCUSDT, and Apple Inc. (AAPL).

Models marked with two asterisks (**) cannot be confidently excluded from the set

of best models at the 90% confidence level. Similarly, models with a single asterisk (*)

are part of the superior set at the 75% confidence level.

For instance, for the S&P 500 data set, the GARCH(1,1) model, with a p-value of

0.000, can be confidently excluded from the best set of models. On the other hand,

models like the σ-LSTM, with a p-value of 0.491∗∗, remain in the superior set at the

90% confidence level.

Across the three data sets examined, the σ-LSTM model consistently demonstrated

good forecasting capabilities. It is particularly noteworthy that the σ-LSTM model

consistently outperformed the σ-Cell-N model across all data sets, highlighting the

improved predictive capabilities of the LSTM architecture. Utilizing the Model

Confidence Set (MCS) approach, it becomes evident that the σ-LSTM model frequently

ranks among the top-performing models, reinforcing its reliability across different data

sets.

The σ-LSTM model showcased a balance between accuracy and consistency in each

147

Chapter 5: σ-LSTM 5.5.6. Results

data set. The consistent performance across diverse data sets underscores the model’s

versatility and reliability in financial forecasting. Future research and applications

might consider the σ-LSTM model as a reliable counterpart for volatility forecasting

endeavors.

148

Chapter 5: σ-LSTM 5.5.7. Conclusion

5.7 Conclusion

The rapidly evolving landscape of time series forecasting has witnessed the amalgamation

of traditional volatility models with the prowess of Recurrent Neural Networks

(RNNs). This study introduces the σ-LSTM model, a specialized cell that seamlessly

integrates the stochastic layer into LSTM architectures, thereby enhancing the

predictive performance for financial volatility. Instead of approaching the LSTM

as a mere black box, our research endeavors to engineer it with a deliberate focus,

incorporating long-short volatility memory and a stochastic element, thus embedding a

physics-informed inductive bias into the model.

Our results are promising. The σ-LSTM model consistently outperforms several

established models in volatility prediction, including the robust GARCH family baseline.

This underscores the potential advantages of merging domain-specific knowledge from

financial econometrics with the computational capabilities of deep learning. Tailored

loss functions further accentuate the model’s performance, offering a more robust and

precise volatility forecasting approach.

Furthermore, using the Model Confidence Set approach, the σ-LSTM model solidifies

its position among the top-performing models across diverse data sets. This attests to

the model’s reliability and its versatility in handling different financial data sets.

In light of these findings, the σ-LSTM model bridges the gap between traditional

econometric models and modern neural network architectures, offering a solution that

capitalizes on the strengths of both parts.

As we look ahead, our future endeavors will explore more sophisticated loss functions

and other potential enhancements. The goal is to refine the σ-LSTM model further,

ensuring quicker learning convergence and even greater accuracy in volatility forecasting.

149

Chapter 6

Further research questions

The journey of this research has been both enlightening and challenging, offering a new

perspective on volatility modeling by integrating machine learning techniques—specifically,

LSTM-based recurrent neural networks—with traditional econometric models. While

the results are promising, they also lay the groundwork for future research and

development. Below are some directions for future work based on the findings of

this thesis.

Enhancing Model Efficiency and Scalability. Chapter 3 highlighted the high

computational cost associated with the large number of parameters in LSTM models.

Future work could explore model pruning techniques or more efficient architectures

that maintain predictive accuracy while reducing computational overhead. Such

improvements would make the models more scalable and applicable in real-time trading

environments where quick decision-making is crucial.

Extending the σ-Cell Framework. Chapter 4 introduced the innovative σ-Cell

framework, successfully integrating traditional econometric models like GARCH with

RNNs. Future research could extend this framework to include other well-known

econometric models, such as Stochastic Volatility models or even jump-diffusion models

Bates [1996], to capture more complex market behaviors like sudden jumps or crashes.

Loss Function and Activation Function Innovations. Chapter 4 also

highlighted the use of specialized loss and activation functions. Future work could

explore alternative loss functions and activation functions that might be better suited

for financial time-series data, aiming to optimize the training process further and

150

Chapter 6: Further research questions

improve out-of-sample predictive performance.

Expanding the σ-LSTM Model. Chapter 5 introduced the σ-LSTM model to

address potential challenges of σ-Cell with gradients. Future research could refine this

model by incorporating more complex loss functions and architectures. Additionally,

the model could be tested on additional financial data, such as options or commodities,

to assess its versatility. σ-LSTM Model is a task-specific model; the utility of the model

is highly task-specific; for the task involves modeling or predicting variances, it could

be instrumental. However, introducing stochastic elements could affect the stability

and convergence of the training process for different tasks.

The alternative update rule. The alternative equation for ot combines the

standard sigmoid-based gating mechanism with a stochastic term N (0,Wo · [c2t]),

equation 6.1.

ot = σg(Woxt + Uoht−1 + bo)⊙N (0,Wo · [c2t]) (6.1)

Multivariate time series investigation. While the primary focus of this research

has been on univariate time series data, it is worth noting that the σ-RNN and

σ-LSTM frameworks are not limited to this scope. These architectures could be

used for multivariate time series without any modifications. Financial markets are

interconnected ecosystems with multiple variables. A multivariate extension of the

σ-RNN and σ-LSTM models could capture these intricate relationships, providing a

more holistic view of market dynamics. It would be particularly useful for multi-asset

portfolio management, where understanding the correlations and covariances between

different assets is essential for effective risk diversification.

Given the potential benefits of a multivariate approach, future research could

investigate the σ-RNN and σ-LSTM frameworks to handle multivariate time series data.

One key challenge would be handling the increased complexity and computational

requirements of multivariate data. However, with advancements in computational

techniques and hardware, this is a feasible and promising direction for future research.

Experimental studies could compare the performance of the multivariate σ-RNN and

σ-LSTM models against traditional multivariate GARCH models or other machine

learning approaches in capturing asset-specific and systemic risks in financial markets.

151

Chapter 6: Further research questions

In summary, the work presented in this thesis lays a foundation for applying

RNN techniques to volatility modeling. It also identifies numerous opportunities for

future research to address the limitations and challenges that have been discussed. By

bridging the gap between traditional econometric models and modern machine learning

techniques, we can aspire to develop more accurate, efficient, and interpretable models

for financial market volatility.

152

Chapter 7

Conclusion

Volatility modeling and forecasting are critical endeavors in the financial domain, serving

as the backbone for risk assessment, derivative pricing, and investment decision-making.

The landscape of volatility prediction has been fertile ground for both traditional

econometric models and, more recently, machine learning techniques. This thesis has

aimed to bridge the gap between these two paradigms by offering an approach that

leverages the strengths of both to achieve superior predictive performance.

The first line of inquiry focused on applying Long Short-Term Memory (LSTM)

networks to predict realized volatility. We found that LSTM models, particularly those

with optimized hyperparameters and appropriate input dimensions, offer a compelling

alternative to traditional models like HAR and GARCH-family models. The LSTM-RV

model, in particular, demonstrated superior out-of-sample accuracy across different

market types, thereby confirming the utility of neural networks in capturing the

complex temporal structures inherent in financial markets. However, the black-box

nature and computational intensity of these models remain challenges that warrant

further investigation.

Our second contribution, the σ-Cell, represents a fusion of traditional econometric

models with recurrent neural networks. This hybrid approach leverages the GARCH

process and introduces time-varying recurrent parameters, thereby enhancing the

ability to capture intricate temporal dynamics. The use of specialized loss functions

and activation functions further optimized the training and generalization processes.

The σ-Cell models outperformed traditional methods in out-of-sample predictive tasks,

153

suggesting that integrating econometric models with deep learning techniques can

significantly advance the field.

Finally, the σ-LSTM model is the culmination of our research. It offers a specialized

LSTM cell incorporating a stochastic layer and a process-informed inductive bias.

This model outperforms several established models and demonstrates versatility across

diverse financial data sets. The Model Confidence Set approach further solidified its

position as a reliable and robust method for volatility forecasting.

The overarching theme of this thesis is the symbiotic relationship between traditional

econometric models and modern machine-learning techniques. While each has merits

and limitations, their integration can lead to more accurate, interpretable, and versatile

models. This is particularly important in the context of financial markets, where

dynamics are complex.

Future research should address the limitations of the current models, such

as the black-box nature of neural networks and the computational intensity of

training. Additionally, exploring more sophisticated loss functions and other potential

enhancements could refine the models, ensuring quicker learning convergence and even

greater accuracy.

In summary, this thesis contributes to the ongoing discourse on volatility modeling

by offering a nuanced approach that combines the knowledge of traditional econometric

models with the flexibility and computational power of neural networks. This

methodology is a basis for future research questions and practical applications, enriching

our understanding of financial market volatility and offering robust and adaptable

approaches.

154

Bibliography

Torben G Andersen and Tim Bollerslev. Answering the skeptics: Yes, standard volatility

models do provide accurate forecasts. International economic review, pages 885–905,

1998.

Torben G Andersen, Tim Bollerslev, Francis X Diebold, and Paul Labys. Modeling

and forecasting realized volatility. Econometrica, 71(2):579–625, 2003.

Torben G Andersen, Tim Bollerslev, and Francis X Diebold. Roughing it up: Including

jump components in the measurement, modeling, and forecasting of return volatility.

The review of economics and statistics, 89(4):701–720, 2007.

Torben G Andersen, Dobrislav Dobrev, and Ernst Schaumburg. Jump-robust volatility

estimation using nearest neighbor truncation. Journal of Econometrics, 169(1):75–93,

2012.

Timotheos Angelidis and Stavros Degiannakis. Volatility forecasting: Intra-day versus

inter-day models. Journal of International Financial Markets, Institutions and

Money, 18(5):449–465, 2008.

Timotheos Angelidis, Alexandros Benos, and Stavros Degiannakis. The use of garch

models in var estimation. Statistical methodology, 1(1-2):105–128, 2004.

Timotheos Angelidis, Stavros Degiannakis, et al. Backtesting var models: An expected

shortfall approach. SSRN, 2008.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural

networks. In International conference on machine learning, pages 1120–1128. PMLR,

2016.

155

Josip Arnerić, Tea Poklepović, and Zdravka Aljinović. Garch based artificial neural

networks in forecasting conditional variance of stock returns. Croatian Operational

Research Review, pages 329–343, 2014.

Josip Arnerić, Tea Poklepović, and Juin Wen Teai. Neural network approach in

forecasting realized variance using high-frequency data. Business Systems Research:

International journal of the Society for Advancing Innovation and Research in

Economy, 9(2):18–34, 2018.

Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent

measures of risk. Mathematical finance, 9(3):203–228, 1999.

Susan Athey and Guido W Imbens. Machine learning methods for estimating

heterogeneous causal effects. stat, 1050(5):1–26, 2015.

Louis Bachelier. Théorie de la spéculation. In Annales scientifiques de l’École normale

supérieure, volume 17, pages 21–86, 1900.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Maria Maddalena Barbieri and James O Berger. Optimal predictive model selection.

2004.

Ole E Barndorff-Nielsen and Neil Shephard. Econometric analysis of realized volatility

and its use in estimating stochastic volatility models. Journal of the Royal Statistical

Society Series B: Statistical Methodology, 64(2):253–280, 2002a.

Ole E Barndorff-Nielsen and Neil Shephard. Estimating quadratic variation using

realized variance. Journal of Applied econometrics, 17(5):457–477, 2002b.

David S Bates. Jumps and stochastic volatility: Exchange rate processes implicit in

deutsche mark options. The Review of Financial Studies, 9(1):69–107, 1996.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies

with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166,

1994.

156

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.

Journal of machine learning research, 13(2), 2012.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine

learning, volume 4. Springer, 2006.

Fischer Black. The pricing of commodity contracts. Journal of financial economics, 3

(1-2):167–179, 1976.

Fischer Black and Myron Scholes. The pricing of options and corporate liabilities.

Journal of Political Economy, 81(3):637–654, 1973.

Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of

econometrics, 31(3):307–327, 1986.

Tim Bollerslev and Eric Ghysels. Periodic autoregressive conditional heteroscedasticity.

Journal of Business & Economic Statistics, 14(2):139–151, 1996.

Tim Bollerslev, Andrew J Patton, and Rogier Quaedvlieg. Exploiting the errors: A

simple approach for improved volatility forecasting. Journal of Econometrics, 192

(1):1–18, 2016.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time

series analysis: forecasting and control. John Wiley & Sons, 2015.

Chris Brooks and Gita Persand. Volatility forecasting for risk management. Journal of

forecasting, 22(1):1–22, 2003.

Andrea Bucci. Realized volatility forecasting with neural networks. Journal of Financial

Econometrics, 18(3):502–531, 2020.

Andrea Bucci et al. Forecasting realized volatility: a review. Journal of Advanced

Studies in Finance (JASF), 8(16):94–138, 2017.

Kenneth P Burnham and David R Anderson. Multimodel inference: understanding aic

and bic in model selection. Sociological methods & research, 33(2):261–304, 2004.

157

Rodolfo C Cavalcante, Rodrigo C Brasileiro, Victor LF Souza, Jarley P Nobrega, and

Adriano LI Oliveira. Computational intelligence and financial markets: A survey

and future directions. Expert Systems with Applications, 55:194–211, 2016.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations

using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014a.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations

using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014b.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua

Bengio. Attention-based models for speech recognition. volume 28, 2015.

Peter Christoffersen, Kris Jacobs, Chayawat Ornthanalai, and Yintian Wang. Option

valuation with long-run and short-run volatility components. Journal of Financial

Economics, 90(3):272–297, 2008.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and

Yoshua Bengio. A recurrent latent variable model for sequential data. Advances in

neural information processing systems, 28, 2015.

Marc Claesen and Bart De Moor. Hyperparameter search in machine learning. arXiv

preprint arXiv:1502.02127, 2015.

Todd Clark and Michael McCracken. Advances in forecast evaluation. Handbook of

economic forecasting, 2:1107–1201, 2013.

Todd E Clark and Michael W McCracken. Tests of equal forecast accuracy and

encompassing for nested models. Journal of econometrics, 105(1):85–110, 2001.

Michael P Clements and Hans-Martin Krolzig. A comparison of the forecast performance

of markov-switching and threshold autoregressive models of us gnp. The Econometrics

Journal, 1(1):47–75, 1998.

158

Rama Cont. Empirical properties of asset returns: stylized facts and statistical issues.

Quantitative finance, 1(2):223, 2001.

Fulvio Corsi. A simple approximate long-memory model of realized volatility. Journal

of Financial Econometrics, 7(2):174–196, 2009.

Fulvio Corsi, Francesco Audrino, and Roberto Renó. Har modeling for realized volatility

forecasting. -, 2012.

Anthony Christopher Davison and David Victor Hinkley. Bootstrap methods and their

application. Number 1. Cambridge university press, 1997.

Francis X Diebold. Elements of forecasting. Citeseer, 1998.

Francis X Diebold. Comparing predictive accuracy, twenty years later: A personal

perspective on the use and abuse of diebold–mariano tests. Journal of Business &

Economic Statistics, 33(1):1–1, 2015.

Francis X Diebold and Roberto S Mariano. Com paring predictive accu racy. Journal

of Business and Economic Statistics, 13(3):253–263, 1995.

Zhuanxin Ding, Clive WJ Granger, and Robert F Engle. A long memory property of

stock market returns and a new model. Journal of empirical finance, 1(1):83–106,

1993.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic

hyperparameter optimization of deep neural networks by extrapolation of learning

curves. In Twenty-fourth international joint conference on artificial intelligence,

2015.

Kevin Dowd. Measuring market risk. John Wiley & Sons, 2007.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

Darrell Duffie, Jun Pan, and Kenneth Singleton. Transform analysis and asset pricing

for affine jump-diffusions. Econometrica, 68(6):1343–1376, 2000.

159

Dutta and Shekhar. Bond rating: a nonconservative application of neural networks.

In IEEE 1988 International Conference on Neural Networks, pages 443–450. IEEE,

1988.

Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. CRC press,

1994.

R. F. Engle. Autoregressive conditional heteroskedasticity with estimates of the variance

of united kingdom inflation. Econometrica, 50(4):987–1007, 1982a.

Robert F Engle. Autoregressive conditional heteroscedasticity with estimates of the

variance of united kingdom inflation. Econometrica: Journal of the econometric

society, pages 987–1007, 1982b.

Robert F Engle and Giampiero M Gallo. A multiple indicators model for volatility

using intra-daily data. Journal of econometrics, 131(1-2):3–27, 2006.

Robert F Engle and Kenneth F Kroner. Multivariate simultaneous generalized arch.

Econometric theory, 11(1):122–150, 1995.

Robert F Engle, Eric Ghysels, and Bumjean Sohn. Stock market volatility and

macroeconomic fundamentals. Review of Economics and Statistics, 95(3):776–797,

2013.

Bjørn Eraker, Michael Johannes, and Nicholas Polson. The impact of jumps in volatility

and returns. The Journal of Finance, 58(3):1269–1300, 2003.

Eugene F Fama. The behavior of stock-market prices. The journal of Business, 38(1):

34–105, 1965.

Eugene F Fama. Market efficiency, long-term returns, and behavioral finance. Journal

of financial economics, 49(3):283–306, 1998.

Matthias Feurer and Frank Hutter. Hyperparameter optimization. Automated machine

learning: Methods, systems, challenges, pages 3–33, 2019.

Stephen Figlewski. Estimating the implied risk neutral density. 2008.

160

Thomas Fischer and Christopher Krauss. Deep learning with long short-term memory

networks for financial market predictions. European journal of operational research,

270(2):654–669, 2018.

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential

neural models with stochastic layers. Advances in neural information processing

systems, 29, 2016.

C. Francq and J. M. Zakoian. GARCH models: structure, statistical inference and

financial applications. John Wiley & Sons, 2010.

Christian Francq and Jean-Michel Zaköıan. Risk-parameter estimation in volatility

models. Journal of Econometrics, 184(1):158–173, 2015.

Christian Francq and Jean-Michel Zakoian. GARCH models: structure, statistical

inference and financial applications. John Wiley & Sons, 2019.

Philip Hans Franses and Dick Van Dijk. Forecasting stock market volatility using

(non-linear) garch models. Journal of forecasting, 15(3):229–235, 1996.

Ana-Maria Fuertes, Marwan Izzeldin, and Elena Kalotychou. On forecasting daily stock

volatility: The role of intraday information and market conditions. International

Journal of Forecasting, 25(2):259–281, 2009.

Jim Gatheral. The volatility surface: a practitioner’s guide. jon wiley & sons. Inc.,

Hoboken, New Jersey, 2006.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual

prediction with lstm. Neural computation, 12(10):2451–2471, 2000.

Raffaella Giacomini and Halbert White. Tests of conditional predictive ability.

Econometrica, 74(6):1545–1578, 2006.

Pierre Giot. Market risk models for intraday data. The European Journal of Finance,

11(4):309–324, 2005.

161

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In

Proceedings of the fourteenth international conference on artificial intelligence and

statistics, pages 315–323, 2011.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the thirteenth international conference

on artificial intelligence and statistics, pages 249–256. JMLR Workshop and

Conference Proceedings, 2010.

Lawrence R Glosten, Ravi Jagannathan, and David E Runkle. On the relation between

the expected value and the volatility of the nominal excess return on stocks. The

journal of finance, 48(5):1779–1801, 1993a.

Lawrence R Glosten, Ravi Jagannathan, and David E Runkle. On the relation between

the expected value and the volatility of the nominal excess return on stocks. The

journal of finance, 48(5):1779–1801, 1993b.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

Klaus Greff, Rupesh K Srivastava, Jan Koutńık, Bas R Steunebrink, and Jürgen

Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural networks

and learning systems, 28(10):2222–2232, 2016.

Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt,

Bernhard Schölkopf, et al. Covariate shift by kernel mean matching. Dataset shift in

machine learning, 3(4):5, 2009.

Patrick S Hagan, Deep Kumar, Andrew S Lesniewski, and Diana E Woodward.

Managing smile risk. The Best of Wilmott, 1:249–296, 2002.

Ehsan Hajizadeh, Abbas Seifi, MH Fazel Zarandi, and IB Turksen. A hybrid modeling

approach for forecasting the volatility of s&p 500 index return. Expert Systems with

Applications, 39(1):431–436, 2012.

Shaikh A Hamid and Zahid Iqbal. Using neural networks for forecasting volatility of

s&p 500 index futures prices. Journal of Business Research, 57(10):1116–1125, 2004.

162

James D Hamilton. Time series analysis. Princeton university press, 2020.

Peter R Hansen and Asger Lunde. A forecast comparison of volatility models: does

anything beat a garch (1, 1)? Journal of applied econometrics, 20(7):873–889, 2005.

Peter R Hansen and Asger Lunde. Realized variance and market microstructure noise.

Journal of Business & Economic Statistics, 24(2):127–161, 2006.

Peter R Hansen, Asger Lunde, and James M Nason. The model confidence set.

Econometrica, 79(2):453–497, 2011.

Andrew Harvey, Esther Ruiz, and Neil Shephard. Multivariate stochastic variance

models. The Review of Economic Studies, 61(2):247–264, 1994.

David Harvey, Stephen Leybourne, and Paul Newbold. Testing the equality of prediction

mean squared errors. International Journal of forecasting, 13(2):281–291, 1997.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The

elements of statistical learning: data mining, inference, and prediction, volume 2.

Springer, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In Proceedings of

the IEEE international conference on computer vision, pages 1026–1034, 2015.

Darryll Hendricks. Evaluation of value-at-risk models using historical data. Economic

policy review, 2(1), 1996.

Steven L Heston. A closed-form solution for options with stochastic volatility with

applications to bond and currency options. The review of financial studies, 6(2):

327–343, 1993.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9

(8):1735–1780, 1997a.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997b.

163

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997c.

Yan Hu, Jian Ni, and Liu Wen. A hybrid deep learning approach by integrating

lstm-ann networks with garch model for copper price volatility prediction. Physica

A: Statistical Mechanics and its Applications, 557:124907, 2020.

D. S. Huang, X. P. Zhang, and Y. L. Zhu. Regression and Econometrics. China

Financial and Economic Publishing House, 1970.

John Hull and Alan White. The pricing of options on assets with stochastic volatilities.

The journal of finance, 42(2):281–300, 1987a.

John Hull and Alan White. The pricing of options on assets with stochastic volatilities.

The journal of finance, 42(2):281–300, 1987b.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based

optimization for general algorithm configuration. In Learning and Intelligent

Optimization: 5th International Conference, LION 5, Rome, Italy, January 17-21,

2011. Selected Papers 5, pages 507–523. Springer, 2011.

Christian Igel and Michael Hüsken. Empirical evaluation of the improved rprop learning

algorithms. Neurocomputing, 50:105–123, 2003.

Eric Jacquier, Nicholas G Polson, and Peter E Rossi. Bayesian analysis of stochastic

volatility models. Journal of Business & Economic Statistics, 20(1):69–87, 2002.

Robert Jarrow, Philip Protter, et al. A short history of stochastic integration and

mathematical finance: The early years, 1880–1970. In A festschrift for Herman

Rubin, pages 75–91. Institute of Mathematical Statistics, 2004.

Philippe Jorion. Value at risk. -, 2000.

Philippe Jorion. Value at risk: the new benchmark for managing financial risk. The

McGraw-Hill Companies, Inc., 2007.

Philippe Jorion et al. Financial risk manager handbook, volume 406. John Wiley &

Sons, 2007.

164

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of

recurrent network architectures. In International conference on machine learning,

pages 2342–2350. PMLR, 2015.

Ken-ichi Kamijo and Tetsuji Tanigawa. Stock price pattern recognition-a recurrent

neural network approach. In 1990 IJCNN international joint conference on neural

networks, pages 215–221. IEEE, 1990.

Bekir Karlik and A Vehbi Olgac. Performance analysis of various activation functions in

generalized mlp architectures of neural networks. International Journal of Artificial

Intelligence and Expert Systems, 1(4):111–122, 2011.

Gregor Kastner and Sylvia Frühwirth-Schnatter. Ancillarity-sufficiency interweaving

strategy (asis) for boosting mcmc estimation of stochastic volatility models.

Computational Statistics & Data Analysis, 76:408–423, 2014.

Md Ashraful Islam Khan. Financial volatility forecasting by nonlinear support vector

machine heterogeneous autoregressive model: evidence from nikkei 225 stock index.

International Journal of Economics and Finance, 3(4):138, 2011.

Sangjoon Kim, Neil Shephard, and Siddhartha Chib. Stochastic volatility: likelihood

inference and comparison with arch models. The review of economic studies, 65(3):

361–393, 1998.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

Christopher Krauss, Xuan Anh Do, and Nicolas Huck. Deep neural networks,

gradient-boosted trees, random forests: Statistical arbitrage on the s&p 500. European

Journal of Operational Research, 259(2):689–702, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. volume 25, 2012.

165

Nikolay Laptev, Jason Yosinski, Li Erran Li, and Slawek Smyl. Time-series extreme

event forecasting with neural networks at uber. In International conference on

machine learning, volume 34, pages 1–5, 2017.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,

Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten

zip code recognition. Neural computation, 1(4):541–551, 1989.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):

436–444, 2015.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao,

and Jiawei Han. On the variance of the adaptive learning rate and beyond. arXiv

preprint arXiv:1908.03265, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv

preprint arXiv:1711.05101, 2017.

Rui Luo, Weinan Zhang, Xiaojun Xu, and Jun Wang. A neural stochastic volatility

model. In proceedings of the AAAI conference on artificial intelligence, volume 32,

2018.

Leandro Maciel, Fernando Gomide, and Rosangela Ballini. Evolving fuzzy-garch

approach for financial volatility modeling and forecasting. Computational Economics,

48:379–398, 2016.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter

optimization through reversible learning. In International conference on machine

learning, pages 2113–2122. PMLR, 2015.

John M Maheu and Thomas H McCurdy. News arrival, jump dynamics, and volatility

components for individual stock returns. The Journal of Finance, 59(2):755–793,

2004.

Cecilia Mancini. Non-parametric threshold estimation for models with stochastic

diffusion coefficient and jumps. Scandinavian Journal of Statistics, 36(2):270–296,

2009.

166

Benoit Mandelbrot. The variation of some other speculative prices. The Journal of

Business, 40(4):393–413, 1967.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur.

Recurrent neural network based language model. In Interspeech, volume 2, pages

1045–1048. Makuhari, 2010.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černockỳ, and Sanjeev

Khudanpur. Extensions of recurrent neural network language model. In 2011

IEEE international conference on acoustics, speech and signal processing (ICASSP),

pages 5528–5531. IEEE, 2011.

Jacob A Mincer and Victor Zarnowitz. The evaluation of economic forecasts.

In Economic forecasts and expectations: Analysis of forecasting behavior and

performance, pages 3–46. NBER, 1969.

Ryotaro Miura, Lukáš Pichl, and Taisei Kaizoji. Artificial neural networks for

realized volatility prediction in cryptocurrency time series. In Advances in Neural

Networks–ISNN 2019: 16th International Symposium on Neural Networks, ISNN

2019, Moscow, Russia, July 10–12, 2019, Proceedings, Part I 16, pages 165–172.

Springer, 2019.

Jose G Moreno-Torres, Troy Raeder, Roćıo Alaiz-Rodŕıguez, Nitesh V Chawla, and

Francisco Herrera. A unifying view on dataset shift in classification. Pattern

recognition, 45(1):521–530, 2012.

Ulrich A Müller, Michel M Dacorogna, Rakhal D Davé, Olivier V Pictet, Richard B

Olsen, and J Robert Ward. Fractals and intrinsic time: A challenge to econometricians.

Unpublished manuscript, Olsen & Associates, Zürich, page 130, 1993.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th international conference on machine learning

(ICML-10), pages 807–814, 2010.

Daniel B Nelson. Stationarity and persistence in the garch (1, 1) model. Econometric

theory, 6(3):318–334, 1990.

167

Daniel B Nelson. Conditional heteroskedasticity in asset returns: A new approach.

Econometrica: Journal of the econometric society, pages 347–370, 1991.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.

Springer Science & Business Media, 2003.

T-N Nguyen, M-N Tran, and R Kohn. Recurrent conditional heteroskedasticity. arXiv

preprint arXiv:2010.13061, 2020.

T-N Nguyen, M-N Tran, D Gunawan, and R Kohn. A statistical recurrent stochastic

volatility model for stock markets. Journal of Business & Economic Statistics,

(just-accepted):1–40, 2022.

Maureen O’hara. Market microstructure theory. John Wiley & Sons, 1998.

Christopher Olah. Understanding lstm networks.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/, 2015.

Junier B Oliva, Barnabás Póczos, and Jeff Schneider. The statistical recurrent unit. In

International Conference on Machine Learning, pages 2671–2680. PMLR, 2017.

Leonard Salomon Ornstein. On the theory of the brownian motion. Physical review,

36:823–841, 1930.

Adrian Pagan. The econometrics of financial markets. Journal of empirical finance, 3

(1):15–102, 1996.

Gaurang Panchal, Amit Ganatra, YP Kosta, and Devyani Panchal. Searching

most efficient neural network architecture using akaike’s information criterion (aic).

International Journal of Computer Applications, 1(5):41–44, 2010.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training

recurrent neural networks. In International conference on machine learning, pages

1310–1318. Pmlr, 2013.

Andrew J Patton. Volatility forecast comparison using imperfect volatility proxies.

Journal of Econometrics, 160(1):246–256, 2011.

168

Andrew J Patton and Kevin Sheppard. Evaluating volatility and correlation forecasts.

In Handbook of financial time series, pages 801–838. Springer, 2009.

Andrew J Patton and Kevin Sheppard. Good volatility, bad volatility: Signed jumps

and the persistence of volatility. Review of Economics and Statistics, 97(3):683–697,

2015.

Efthymios Pavlidis, Ivan Paya, David Peel, et al. A new test for rational speculative

bubbles using forward exchange rates: The case of the interwar german hyperinflation.

Department of Economics, Lancaster university Management school, UK, 2012.

Christophe Pérignon, Zi Yin Deng, and Zhi Jun Wang. Do banks overstate their

value-at-risk? Journal of Banking & Finance, 32(5):783–794, 2008.

Dimitris N Politis and Joseph P Romano. The stationary bootstrap. Journal of the

American Statistical association, 89(428):1303–1313, 1994.

Ser-Huang Poon. A practical guide to forecasting financial market volatility. John

Wiley & Sons, 2005.

Ser-Huang Poon and Clive WJ Granger. Forecasting volatility in financial markets: A

review. Journal of economic literature, 41(2):478–539, 2003.

Joaquin Quinonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D

Lawrence. Dataset shift in machine learning. Mit Press, 2008.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions.

arXiv preprint arXiv:1710.05941, 2017.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and

beyond. arXiv preprint arXiv:1904.09237, 2019.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic

backpropagation and approximate inference in deep generative models. In

International conference on machine learning, pages 1278–1286. PMLR, 2014.

R Tyrrell Rockafellar and Stanislav Uryasev. Conditional value-at-risk for general loss

distributions. Journal of banking & finance, 26(7):1443–1471, 2002.

169

German Rodikov and Nino Antulov-Fantulin. Can lstm outperform

volatility-econometric models? arXiv preprint arXiv:2202.11581, 2022.

German Rodikov and Nino Antulov-Fantulin. Introducing the σ-cell: Unifying garch,

stochastic fluctuations and evolving mechanisms in rnn-based volatility forecasting.

arXiv preprint arXiv:2309.01565, 2023.

Raul Rosa, Leandro Maciel, Fernando Gomide, and Rosangela Ballini. Evolving hybrid

neural fuzzy network for realized volatility forecasting with jumps. In 2014 IEEE

Conference on Computational Intelligence for Financial Engineering & Economics

(CIFEr), pages 481–488. IEEE, 2014.

S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747, 2016.

Gleb Sandmann and Siem Jan Koopman. Estimation of stochastic volatility models

via monte carlo maximum likelihood. Journal of Econometrics, 87(2):271–301, 1998.

Stephen Satchell and John Knight. Forecasting volatility in the financial markets.

Elsevier, 2011.

Neil Shephard. Stochastic volatility: selected readings. OUP Oxford, 2005.

Steven E Shreve et al. Stochastic calculus for finance II: Continuous-time models,

volume 11. Springer, 2004.

Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. The performance of lstm

and bilstm in forecasting time series. In 2019 IEEE International conference on big

data (Big Data), pages 3285–3292. IEEE, 2019.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization

of machine learning algorithms. Advances in neural information processing systems,

25, 2012.

Xuanyi Song, Yuetian Liu, Liang Xue, Jun Wang, Jingzhe Zhang, Junqiang Wang,

Long Jiang, and Ziyan Cheng. Time-series well performance prediction based on

170

long short-term memory (lstm) neural network model. Journal of Petroleum Science

and Engineering, 186:106682, 2020.

Ilya Sutskever. Training recurrent neural networks. University of Toronto Toronto, ON,

Canada, 2013.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance

of initialization and momentum in deep learning. In International conference on

machine learning, pages 1139–1147. PMLR, 2013.

SJ Taylor. Financial returns modelled by the product of two stochastic processes, a

study of daily sugar prices 1961-1979. time series analysis: Theory and practice 1.

anderson od, 1982.

Chris Tofallis. A better measure of relative prediction accuracy for model selection and

model estimation. Journal of the Operational Research Society, 66:1352–1362, 2015.

Ruey S Tsay. Analysis of financial time series. John wiley & sons, 2005.

Dick Van Dijk and Philip Hans Franses. Selecting a nonlinear time series model using

weighted tests of equal forecast accuracy. Oxford Bulletin of Economics and Statistics,

65:727–744, 2003.

Dimitrios I Vortelinos. Forecasting realized volatility: Har against principal components

combining, neural networks and garch. Research in international business and finance,

39:824–839, 2017.

Ronald J Williams and Jing Peng. An efficient gradient-based algorithm for on-line

training of recurrent network trajectories. Neural computation, 2(4):490–501, 1990.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht.

The marginal value of adaptive gradient methods in machine learning. Advances in

neural information processing systems, 30, 2017.

Yue Wu, José Miguel Hernández-Lobato, and Ghahramani Zoubin. Dynamic covariance

models for multivariate financial time series. pages 558–566, 2013.

171

Jean-Michel Zakoian. Threshold heteroskedastic models. Journal of Economic Dynamics

and control, 18(5):931–955, 1994.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

Aston Zhang, Zachary C Lipton, Mu Li, and Alexander J Smola. Dive into deep

learning. arXiv preprint arXiv:2106.11342, 2021.

Zeyu Zheng, Zhi Qiao, Tetsuya Takaishi, H Eugene Stanley, and Baowen Li. Realized

volatility and absolute return volatility: a comparison indicating market risk. PloS

one, 9(7):e102940, 2014.

172

	Introduction
	Background
	Volatility Models
	GARCH family models
	Stochastic Volatility Models
	Realized Volatility
	Hybrid Approaches

	Machine Learning
	RNN
	Advanced Cells
	LSTM
	GRU
	MUT1 and MUT2
	Concluding Remarks on RNN Cell Types
	Backpropagation
	Adam Optimizer
	Hyperparameters

	Accuracy Metrics
	Volatility Forecast Evaluation Metrics
	Value at Risk
	Diebold-Mariano Test
	Model Confidence Set Test

	LSTM-RV
	Motivation
	Introduction
	Preliminaries
	Baseline Volatility Models
	LSTM Input Dimension Hyperparameter

	Experiments
	Data
	Hyperparameter Optimization and Data Preprocessing

	Results
	Conclusion

	-Cell
	Motivation
	Introduction
	Preliminaries
	Baseline Volatility Models
	Recurrent Neural Networks

	-Cell RNNs Volatility Models
	-Cell: Nonlinear GARCH-based
	-Cell-N: Integrating Stochastic Layer
	-Cell-RL: Integrating Residuals RNN Layer
	-Cell-NTV: Integrating Time-Varying Approach
	-Cell-RLTV: Integrating Time-Varying Approach
	Loss-function
	Activation Function
	Adam Optimizer
	Training

	Experimental Approach: Synthetic and Real Data
	Synthetic Data Generation
	Real Data

	Results
	Synthetic data set
	Real Data

	Conclusion
	Application: Algorithm for Volatility Prediction with -Cell-RLTV

	-LSTM
	Motivation
	Introduction
	Preliminaries
	Baseline Volatility Models
	LSTM-RV
	-Cell

	-LSTM
	Experiments
	Results
	Conclusion

	Further research questions
	Conclusion

