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Abstract. We are concerned with super-Liouville equations on S2, which have varia-
tional structure with a strongly-indefinite functional. We prove the existence of non-
trivial solutions by combining the use of Nehari manifolds, balancing conditions and
bifurcation theory.
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1 Introduction

In this paper we study the super-Liouville equations, arising from Liouville field theory
in supergravity. Recall that the classical Liouville field theory describes the matter-
induced gravity in dimension two: the super-Liouville field theory is a supersymmetric
generalization of the classical one, by taking the spinorial super-partner into account, so
that the bosonic and fermionic fields couple under the supersymmetry principle. Such
models also play a role in superstring theory. For the physics of the Liouville field theory
and super-Liouville field theory as well as their relations, one can refer to [9, 39–42], and
for the applications of Liouville field theory in other models of mathematical physics [44,
46–48] and the references therein. It is almost impossible to have a complete references
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for the related theory. However, the existence theory of regular solutions of the super-
Liouville equations on closed Riemann surfaces, especially on the sphere, is still far from
satisfactory.

Liouville equations also have a relevant role in two-dimensional geometry. For ex-
ample, on a Riemannian surface (M2,g), the Gaussian curvature K of a conformal met-
ric g̃Be2ug, with u∈C∞(M), is given by

Kg̃= e−2u(Kg−∆gu). (1.1)

Conversely, we have the prescribed curvature problem: which functions K̃ can be the Gaus-
sian curvatures of a Riemannian metric conformal to g? If M is a closed surface, the
problem reduces to solving equation (1.1) in u for Kg̃=K̃ assigned. This question has been
widely studied in the last century, and the solvability of (1.1) depends on the geometry
and the topology of the surface. For a surface with nonzero genus, this can be solved
variationally, as long as K̃ satisfies some mild constraints, see [6, 32, 43]. However when
the genus is zero, namely M is a topological two-sphere, the problem has additional dif-
ficulties arising from the non-compactness of the automorphism group. Actually, since
there is only one conformal structure on S2, we can take without loss of generality the
standard round metric g= g0, which is the one induced by the embedding S2

⊂R3 with
Gaussian curvature Kg0 =1. Let x=(x1,x2,x3) be the standard coordinates of R3. It was
shown in [32] that a necessary condition for K̃ to admit a solution u of (1.1) is that∫

S2
〈∇K̃,∇x j

〉e2udvol=0, ∀ 1≤ j≤3,

where the volume form dvol and the gradient are taken with respect to g0. The above
formula shows that, for example, affine functions cannot be prescribed conformally as
Gaussian curvatures.

One of the first existence results for the problem on the sphere is due to Moser, see [38]:
he proved that there exist solutions provided that K̃ is an antipodally-symmetric function.
Other important results were proven in [12, 13], removing the symmetry condition and
replacing it with an index-counting condition or some assumption of min-max type,
see also [14]. One fundamental tool in proving such results was an improved Moser-
Trudinger inequality derived in [5] for functions satisfying a balancing condition, namely for
which the conformal volume has zero center of mass in R3 (where S2 is embedded). This
fact allowed to show that whenever solutions (or approximate solutions) of (1.1) blow-
up, they develop a single-bubbling behavior. With this information at hand, existence
results were derived via asymptotic estimates and Morse-theoretical results. We should
also mention that there are natural generalizations to higher dimensions, see e.g. [36] and
references therein.

Recently Jost et al. in [26] considered a mathematical version of the super-Liouville
equations on surfaces. Given a Riemann surface M with metric g, and S→M the spinor
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bundle with Dirac operator /D, they considered the Euler–Lagrange equations of the
functional Ĩ : H1(M)×H

1
2 (S)→R given by

Ĩ(u,ψ) :=
∫

M

(
|∇u|2+2Kgu−e2u+2

〈
(/D+eu)ψ,ψ

〉)
dvolg.

In subsequent works, they performed blow-up analysis and studied the compactness of
sequences of solutions under weak assumptions and in various settings; see e.g. [27–29]
and the references therein.

In [24], we studied the existence issue from a variational viewpoint when M is a
closed surface of genus γ> 1, with the signs of some terms adapted to the background
geometry. More precisely we consider a uniformized surface (M,g) with Kg=−1 and the
following functional

J̃ρ(u,ψ)B
∫

M

(
|∇u|2−2u+e2u+2

〈
(/D−ρeu)ψ,ψ

〉)
dvolg,

where ρ>0 is a parameter. The pair (0,0) is clearly a trivial critical point of J̃ρ. Moreover,
when ρ is not in the spectrum of the Dirac operator /D, we could find non-trivial solutions
using min-max schemes. However, the method there does not directly apply to the sphere
case, for two reasons. First, in the sphere case the trivial solution (0,0) is not isolated,
but within a continuum of solutions connecting to it which are geometrically also trivial
and induced by Möbius maps. Second, there is neither local mountain-pass geometry nor
local linking geometry in zero genus, preventing us from finding min-max critical points
starting from (0,0). Thus, the problem in the sphere case is more challenging.

In this article, we use a Morse-theoretical approach combined with bifurcation theory
to attack the problem. Taking the Gauss–Bonnet formula into account we consider the
following functional

Jρ(u,ψ)=
∫

S2

(
|∇u|2+2Kgu−e2u+2

〈
(/D−ρeu)ψ,ψ

〉)
dvolg+4π,

where g is a Riemannian metric on S2, dvolg is the induced volume form, and the last
tail-term 4π= 2πχ(S2) is simply needed to normalize the functional so that Jρ(0,0)= 0.
The Euler–Lagrange equations for Jρ are the following −∆gu= e2u

−Kg+ρeu
|ψ|2,

/Dgψ=ρeuψ.
(EL)

Let u∗ be a solution of
−∆gu∗= e2u∗−Kg,

whose existence follows from the uniformization theorem: then we have clearly a trivial
solution (u∗,0) of (EL). However, in contrast to the higher genus case, here we have
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another explicit family of solutions with nonzero spinor component and constant function
component, see below. Hence we are interested in finding non-trivial solutions with non-
constant components.

We remark that for the system (EL) to admit a solution with nonzero spinor component,
it is necessary that ρ>1. Indeed, for every solution (u,ψ) (which is smooth by regularity
theory, see [24, 26]) we can consider the metric guB e2ug on S2. The corresponding Dirac
operator /Dgu has ρ as an eigenvalue since the second equation transforms into

/Dguψu=ρψu,

whereψu=e−
1
2 uβ(ψ) for an isometric isomorphism β : Sg→Sgu on the corresponding spinor

bundles. Meanwhile, the first equation implies that the volume of the new metric gu
satisfies

Vol(S2,gu)=

∫
S2

dvolgu =

∫
S2

e2udvolg=

∫
S2

Kgdvolg−ρ

∫
S2

eu
|ψ|2dvolg≤4π.

It is known from [7] that
λ1(/Dg′)

2Vol(S2,g′)≥4π

for any metric g′ on S2. In particular, we conclude that ρ>1 if ψ is not identically zero.
Without loss of generality, we may consider the standard round sphere (S2,g0)

with Kg0≡1. This is due to the conformal covariance of the system (EL), see Section 3. Then
the trivial solutions are simply θ=(0,0)∈H1(M)×H

1
2 (S) and its Möbius transformations,

see again Section 3. On the round sphere we know that the eigenspinors corresponding
to the eigenvalue λ1=1∈Spec(/Dg0)=Z\{0} has constant length, i.e. if /Dϕ1=ϕ1, then the
function |ϕ| : S2

→R is constant. Such spinors constitute a vector space of real dimension
4. This allows us to construct another family of solutions, namely choosing u to be the
constant function such that ρeu=λ1 and then choosing ψ∈Eigen(/Dg0 ,λ1) of a length such
that the first equation of (EL) holds. Therefore, for any ρ≥1, let ϕ1 ∈Eigen(/Dg0 ,1) be an
eigenspinor of unit length: then the pair

u=−lnρ, ψ=

√
ρ2−1
ρ

ϕ1

is a solution of (EL). Note that these solutions converge to the trivial solution θ=(0,0)
as ρ→1, which highlights a bifurcation phenomenon at the first eigenvalue ρ=λ1. We
will see that this is actually a more general phenomenon. For later convenience we call a
solution (u,ψ) non-trivial if the function component u is not constant and the pair (u,ψ) is
not in the conformal orbit of constant functions. Note that u=const. implies that |ψ|=const.,
which is only the case if ψ is a Killing spinor and ρeu=1. Also, the eigenspinors for λk>1
do not have constant length, see [10, Section 2.2] and [22, Section 4.2].

Theorem 1.1. Let ρ=λk∈Spec(/D) with λk>1. Then, ρ is a bifurcation point for (EL) on S2, i.e.
there exists a sequence ρl→ρ=λk such that (EL) admits a non-trivial solution on S2 for ρ=ρl.
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The metric g in the above statement is suppressed: once we proved it for the round
metric g0, then it also holds for any other (smooth) metric g by conformal and diffeomor-
phism transformations since, as we recalled, the sphere admits only one conformal class
of metrics.

Note that there exists a 3-dimensional family of quaternionic structures on the spinor
bundle S, which are fibrewise automorphisms preserving the connection, metric and
Clifford multiplication. Thus, once we get a solution with nonzero spinor component, we
automatically get a three-dimensional family of solutions for free.

There also exists the real volume element ω= e1 ·e2, where (e1,e2) denotes a local ori-
ented orthonormal frame of S2 and the dot is the Clifford multiplication in the Clifford
bundle Cl(S2). It is readily checked that ω is globally well-defined. The endomor-
phism γ(ω)≡γ(e1)γ(e2)∈End(S) is an almost-complex structure, parallel with respect to
the spin connection, but anti-commutative with the Dirac operator: /D(γ(ω)ψ)=−γ(ω)/Dψ.
Therefore, if (u,ψ) is a solution to (EL), then the pair (u,γ(ω)ψ) solves the system −∆gu= e2u

−Kg+ρeu
|γ(ω)ψ|2,

/Dg(γ(ω)ψ)=−ρeu(γ(ω)ψ).

That is, we can allow a change of sign in front of the Dirac part in the functional Jρ(u,ψ),
without affecting the result.

The main observation is that the second equation in (EL) has the form of a weighted
eigenvalue equation. This suggests to employ a bifurcation argument to search for non-
trivial solutions. Recall that a theorem by Krasnosel’skii states that for a pure (nonlinear)
eigenvalue problem, any eigenvalue is a bifurcation point for the eigenvalue equation, see
e.g. [3, Chapter 5, Appendix] and [33] with the references therein. Here we are adopting a
Morse-theoretical approach in the spirit of [37], see also [2, Section 12], which differently
from e.g. [15] exploits the variational structure of the problem instead of information on
the multiplicity of eigenvalues, lacking here. However, note that here the presence of the
Dirac operator makes the functional strongly indefinite and the Morse-theoretical groups
are generally not well-defined, meanwhile the critical points are not isolated because of the
symmetries of the functional. To overcome these difficulties we introduce some natural
constraints, based on spectral decomposition and balancing conditions, to remove most
of the negative directions which decreases the functional and also kill the redundancy
of the conformal orbits. We also refer to [8, 16, 45] for related approaches to strongly
indefinite problems in other contexts. Restricted to this Nehari type manifold, the origin is
now an isolated critical point, and though the functional is still indefinite, we are able to
count the index of the origin within the Nehari manifold and hence get the well-defined
local critical groups. In doing so we reduce ourselves to a more classical setting and the
problem is tractable: see also [17] for related issues treated via spectral flows.

The paper is organized as follows. First we recall some preliminary facts about the
Dirac operator and set up the variational framework. Then we introduce a class of Nehari
manifolds and show that they are natural constraints. After showing the validity of the
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Palais-Smale condition, we analyze the local behavior of the functional around the origin
and define the critical groups there. In the end we use a parametrized flow to show the
bifurcation result, hence obtaining the existence of non-trivial solutions.

2 Preliminaries

Recall that S2 admits a unique conformal structure up to diffeomorphism and consider the
Riemannian metric g0 induced from the embedding S2

⊂R3. The spectrum of the Laplace
operator −∆S2 = −∆g0 is explicitly known: the eigenvalues are given by µk = k(k+1),
for k= 0,1,2,..., the multiplicity of µ0 = 0 is 1 (eigenfunctions given by constants), that
of µ1=2 is 3 (with eigenfunctions given by affine functions on R3 restricting to S2; a basis
is given by the coordinate functions {x1,x2,x3

}), with multiplicities of µk (k≥2) given by
the binomial coefficients (

2+k
2

)
−

(
k
2

)
and with eigenfunctions given by homogeneous harmonic polynomials on R3 restricted
to S2, see e.g. [1, Chapter 4].

The two-sphere admits a non-compact group of conformal automorphisms, which
constitutes the Möbius group Aut(C∪{∞})=PSL(2;C). In terms of the Riemann sphere C∪

{∞}, these are the fractional linear transformations, which are nothing but compositions of
translations, rotations, dilations and inversions. Note that with zero spinor components,
the functional

Jρ(u,0)=
∫

S2
|∇u|2+2u−e2udvolg0+4π,

is invariant under the Möbius group action. Indeed, each element ϕ ∈ PSL(2;C) is a
conformal diffeomorphism with ϕ∗g0=det(dϕ)g0. For any u∈H1(S2), set

uϕBu◦ϕ+
1
2

lndet(dϕ),

then it is a classical fact that Jρ(uϕ,0)= Jρ(u,0).
Consider the spinor bundle S→S2 associated to the unique spin structure of S2 and

let /D= /Dg0 be the Dirac operator. For basic material on spin geometry and Dirac operators,
one may refer to [18, 19, 25, 34]. Recall that the spectrum of the Dirac operator is

±(k+1); k∈N,

and the eigenvalue ±(k+1) has (real) multiplicity 4(k+1). In particular, there are no
harmonic spinors on S2, and the first positive eigenvalue is 1 with eigenspinors having
constant length (they are actually given by the Killing spinors). For more details we refer
to [19, Chapter 2 and Appendix].

We give a brief description of the Sobolev spaces H1(S2) and H
1
2 (S) which we will

employ. For basic material on Sobolev spaces and fractional Sobolev spaces, see [4, 20].
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Most recent papers on analysis of Dirac operators contain such an introductory part, and
here we only collect some necessary material.

The Sobolev space H1(S2) is equipped with the inner product

〈u,v〉H1 =

∫
S2
〈∇u,∇v〉+u·vdvol.

For smooth functions (which are dense in H1(S2)), an integration by parts gives

〈u,v〉H1 =

∫
S2
[(1−∆)u]·vdvol=

〈
(1−∆)u,v

〉
L2 =

〈
(1−∆)u,v

〉
H−1×H1 ,

where the last bracket denotes the dual pairing. Note that, in contrast to the case in [24],
here the functional u 7→ Jρ(u,0) is not coercive. At any u∈H1(S2) there are finitely-many
negative directions of the Hessian Hessu Jρ(u,0). Moreover, the functional Jρ(u,0) does
not admit local linking geometry around the trivial critical point u=0.

The fractional Sobolev space of the sections of the spinor bundle S can be defined
via the L2-spectral decomposition. Recall that /D is a first-order elliptic operator which is
essentially self-adjoint and has no kernel: counting eigenvalues with multiplicities, the
eigenvalues {λk}k∈Z∗ (where Z∗≡Z\{0}) are listed in a non-decreasing order:

−∞←···≤λ−l−1≤λ−l≤···≤λ−1<0<λ1≤···≤λk≤λk+1≤···→+∞.

Moreover, the spectrum is symmetric with respect the the origin. Let (ϕk)k be the eigen-
spinors corresponding to λk, k∈Z∗ with ‖ϕk‖L2(M)=1: they form a complete orthonormal
basis of L2(S). For any spinor ψ∈Γ(S), we have

ψ=
∑
k∈Z∗

akϕk, /Dψ=
∑
k∈Z∗

λkakϕk.

For any s>0, the operator |/D|s : Γ(S)→Γ(S) is defined as

|/D|sψ=
∑
k∈Z∗

|λk|
sakϕk.

The domain of |/D|s is given by the spinors such that the right-hand side belongs to L2(S),
i.e.

Hs(S)B
{
ψ∈L2(S) |

∫
S2

〈
|/D|sψ,|/D|sψ

〉
dvolg0 <∞

}
,

which is a Hilbert space with inner product〈
ψ,φ

〉
Hs =

〈
ψ,φ

〉
L2+

〈
|/D|sψ,|/D|sφ

〉
L2 .

For s=k∈N, Hk(S)=Wk,2(S) and the above norm is equivalent to the Sobolev Wk,2-norm.
For s<0, Hs(S) is by definition the dual space of H−s(S).



96 A. Jevnikar, A. Malchiodi and R. Wu / J. Math. Study, 54 (2021), pp. 89-122

Since S has finite rank, the general theory for Sobolev’s embedding on closed manifold
continues to hold here. In particular, for 0< s< 1 and q≤ 2

1−s , we have the continuous
embedding

Hs(S) ↪→Lq(S).

Furthermore, for q< 2
1−s the embedding is compact, see e.g. [4] for more details.

Let us now consider the case s= 1
2 . Note that forψ∈H

1
2 (S) we have /Dψ∈H−

1
2 (S), which

is defined in the distributional sense. Since /D has no kernel, we can split the spectrum
into the positive and negative parts, and accordingly we have the decomposition

H
1
2 (S)=H

1
2 ,+(S)⊕H

1
2 ,−(S).

Let ψ=ψ++ψ− with ψ±∈H
1
2 ,±(S). Then∫

S2

〈
|/D|ψ,ψ

〉
dvolg0 =

∫
S2

〈
|/D|(ψ++ψ−),ψ

〉
dvolg0

=

∫
S2

[〈
/Dψ+,ψ+

〉
−
〈

/Dψ−,ψ−
〉]

dvolg0

=‖|/D|
1
2ψ+
‖

2
L2+‖|/D|

1
2ψ−‖2L2 ,

the square root of which defines a norm equivalent to the H
1
2 -norm.

3 Conformal symmetry

We next discuss the conformal symmetries of the functional and of the equations: these
were treated for example in [24], but we recall them here for completeness. Suppose
that (u,ψ) is a solution of (EL), let v∈C∞(M) and consider the metric gvBe2vg. There exists
an isometric isomorphism β : Sg→ S̃gv of the spinor bundles corresponding to different
metrics such that

/Dgv

(
e−

v
2 β(ψ)

)
= e−

3
2 vβ(/Dgψ),

see e.g. [19, 23], where we are using the notation from [30]. Thus the pairũ=u−v,

ψ̃= e−
u
2 β(ψ),

solves the system

−∆gv ũ=−e−2v∆g(u−v)= e−2v(e2u
−Kg+ρeu

|ψ|2+∆gv)

= e2(u−v)
−e−2v(Kg−∆gv)+ρeu−v

|e−
v
2 β(ψ)|2

= e2ũ
−Kgv+ρeũ

|ψ̃|2,

/̃Dgvψ̃=ρe−
3
2 vβ(euψ)=ρeu−v

(
e−

1
2 vβ(ψ)

)
=ρeũψ̃,
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which has the same form as (EL).
The automorphisms group of the Riemann sphere S2=C∪{∞} is a family of conformal

maps that induce a natural action on Sobolev spaces of functions and spinors. Let ϕ∈
PSL(2,C)=Aut(S2) be a conformal diffeomorphism withϕ∗g0=det(dϕ)g0. For any (u,ψ),
we set uϕBu◦ϕ+ 1

2 lndet(dϕ),

ψϕB (det(dϕ))1/4β(ψ◦ϕ),

where β : S→ϕ∗S denotes the isometry of the spinor bundles. Then, not only (uϕ,ψϕ)
satisfies (EL), but also the functional on (S2,g0) stays invariant

Jρ(uϕ,ψϕ)= Jρ(u,ψ).

This generalizes [12, Prop. 2.1] in the classical Liouville case.
As consequences of such symmetries, on one hand, for any given metric on the

sphere S2, we can use a conformal diffeomorphism to reduce the problem to the case
where the metric on S2 is the standard round metric g0 with Kg0 ≡1; on the other hand,
a critical point (u,ψ) of Jρ is never isolated in H1(S2)×H

1
2 (S). Since the elements in the

orbits of the conformal transformations are geometrically the same, we will overcome
this problem by picking those elements with centers of mass at the origin.

4 A natural constraint

Due to the above conformal symmetry, without loss of generality we may consider the
problem with respect to the standard round metric g= g0. Then the functional becomes

Jρ(u,ψ)=
∫

S2

(
|∇u|2+2u−e2u+2

(〈
/Dψ,ψ

〉
−ρeu

|ψ|2
))

dvol+4π,

whose Euler–Lagrange equations take the following simple form−∆gu= e2u
−1+ρeu

|ψ|2,

/Dgψ=ρeuψ.
(EL0)

In the functional Jρ, the part involving spinors is strongly indefinite while the remain-
ing terms are invariant with respect to the Möbius group: both these properties make the
variational approach quite challenging. We therefore need to confine such defects.

For u∈H1(S2), the function e2u can be considered as a mass distribution on S2, see [12].
Let ~x=(x1,x2,x3)∈R3 be the position vector. The center of mass of e2u is defined as

C.M.(e2u)B

∫
S2~xe2udvol∫
S2 e2udvol

∈R3.
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For any u∈H1(M), there exists a ϕ∈PSL(2,C) such that C.M.(e2uϕ)=0∈R3; moreover, the
Möbius transformation can be chosen to depend on u in a continuous way [12, Lemma
4.2]. Note that such a ϕ is never unique: there is always the freedom of a SO(3)-action
which leaves |C.M.(e2u)| invariant. See [12] for the argument and more information on
the center of mass. We remark that C.M.(e2u)=0 means that the function e2u is orthogonal
to the first eigenfunctions on S2 with respect to the L2-inner product. Let

H̃1(S2)B
{
u∈H1(M) :C.M.(e2u)=0

}
.

Lemma 4.1. H̃1(S2) is a submanifold of H1(S2).

Proof. Consider the map G1 : H1(S2)→R3 defined by

G1(u)=
∫

S2
~xe2udvol=

(∫
S2

x1e2udvol,
∫

S2
x2e2udvol,

∫
S2

x3e2udvol
)
∈R3.

It suffices to show that dG1(u) is surjective for each u ∈H1(S2) and then the preim-
age H̃1(S2)=G−1

1 (0) is a submanifold.
The differential is explicitly given by

dG1(u)[v]=
∫

S2
~xe2u(2v)dvol∈R3.

Consider an affine function v of the form

v(x)=
3∑

j=1

v jx j, v j∈R, j=1,2,3.

For any ~y∈R3, we need to solve

3∑
j=1

(∫
S2

xke2ux jdvol(x)
)
(2v j)= yk, k=1,2,3.

In [12, Section 4] it has been shown that the matrix Λ(u)=(Λkj(u)), with

Λkj(u)=
∫

S2
e2uxkx jdvol(x),

is invertible. Thus there exists a unique affine function v=
∑3

j=1v jx j, which is clearly
in H1(S2), such that

dG1(u)[v]=~y∈R3.

That is, dG1(u) is surjective to R3. �
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Next, we consider weighted eigenvalues for the Dirac operator. Given u ∈H1(S2),
consider the operator e−u /Dg and write {λ j(u)} and {ϕ j(u)} for the associated eigenvalues
and eigenspinors respectively:

e−u /Dgϕ j(u)=λ j(u)ϕ j(u), ∀ j∈Z∗.

Since /Dg has no kernel, e−u /Dg also does not: the above equalities could equivalently be
viewed as weighted eigenvalue equations

/Dgϕ j(u)=λ j(u)euϕ j(u), ∀ j∈Z∗.

Furthermore these eigenspinors can be chosen to be orthonormal with respect to the
weight eu, namely, for any j,k∈Z∗,∫

S2

〈
ϕ j(u),ϕk(u)

〉
eudvol=δ jk.

Remark 4.1. If u is a smooth function, we have a conformal metric gu=e2ug with dvolgu =
e2udvolg. Moreover, writing β : Sg→Sgu for the isometric isomorphism of corresponding
spinor bundles and setting

(ϕ j)uBe−
u
2 β(ϕ j(u)), ∀ j∈Z, j,0,

the above formulas are to say that

/Dgu(ϕ j)u=λ j(u)(ϕ j)u,
∫

S2

〈
(ϕ j)u,(ϕk)u

〉
dvolgu =δ jk.

Note that the operator e−u /D has analytic dependence in u, thus the weighted eigenval-
ues

(
λ j(u)

)
and eigenspinors

(
ϕ j(u)

)
have at least C1-dependence on u, see e.g. [31, Chap.

8, Sect. 2]. Fixing now u∈H1(S2), we consider the vector space

N(u)B
{
ψ∈H

1
2 (Sg) :G2, j(ψ)≡

∫
S2

〈
/Dψ−ρeuψ,ϕ j(u)

〉
dvolg=0,∀ j<0

}
.

Since

0=
∫

S2

〈
/Dgψ−ρeuψ,ϕ j(u)

〉
dvolg=

∫
S2

〈
ψ, /Dgϕ j(u)

〉
dvolg−ρ

∫
S2

eu
〈
ψ,ϕ j(u)

〉
dvolg

=(λ j(u)−ρ)
∫

S2

〈
ψ,ϕ j(u)

〉
eudvolg

and λ j(u)<0 for j<0 while ρ≥1, we have∫
S2

〈
ψ,ϕ j(u)

〉
eudvolg=0.
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Thus N(u) is the set of spinors associated to the positive spectrum of e−u /D:

N(u)=
{
ψ∈H

1
2 (S) :P−u (ψ)=0

}
,

where P−u : H
1
2 (S)→H

1
2 (S)denotes the projection to the subspace spanned by the weighted

eigenspinors
{
ϕ j(u) : j<0

}
. Note that for j<0 (hence λ j(u)<0)∫

S2

〈
/Dgψ,ϕ j(u)

〉
dvolg=

∫
S2

〈
ψ, /Dgϕ j(u)

〉
dvolg=λ j(u)

∫
S2

〈
ψ,ϕ j(u)

〉
eudvolg=0.

For another v∈H1(S2) small in norm, the spaces N(u+v) and N(u) are isomorphic, by the
continuous dependence of the eigenspinors on the weight function. Define

NB
{
(u,ψ)∈H1(S2)×H

1
2 (S) :G1(u)=~0∈R3,ψ∈N(u)

}
⊂H̃1(S2)×H

1
2 (S).

Then N is the total space of the trivial vector bundle π : N→ H̃1(S2) with the fiber
space π−1(u)=N(u). In particular, N is a Hilbert submanifold with Hilbertian structure
induced from the space H1(S2)×H

1
2 (S).

Now let

NρB

{
(u,ψ)∈N :

?
S2
(e2u+ρeu

|ψ|2)dvolg=1
}

.

To see that it is a submanifold, we consider the following map

G3 : N→R, G3(u,ψ)B
?

S2
(e2u+ρeu

|ψ|2−1)dvolg.

Its differential is given by

dG3(u,ψ)[v,h]=
?

S2
(2ve2u+ρveu

|ψ|2+2ρeu〈ψ,h
〉
)dvolg

for (v,h)∈T(u,ψ)N. For any t∈R, ifψ=0 then one can find v∈TuH̃1(S2) such that dG3(u,0)[v,0]
= t; otherwise ψ,0, we can take v=0 and h= sψ for some s∈R such that dG3(u,ψ)[0,sψ]
= t. Thus dG3(u,ψ) : T(u,ψ)N→R is always surjective and the preimage Nρ=G−1

3 (0)⊂N
is a submanifold.

To summarize, the subset

Nρ=
{
(u,ψ)∈H1(S2)×H

1
2 (S) :G1(u)=0,G2, j(u,ψ)=0,(∀ j<0), G3(u,ψ)=0

}
is a connected infinite-dimensional manifold with an induced Hilbertian structure. Re-
stricting the functional Jρ to this submanifold Jρ|Nρ

: Nρ→R, we consider the constrained
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critical points (u,ψ)∈Nρ which satisfy the constrained Euler–Lagrange equations

−∆u+1−e2u
−ρeu

|ψ|2 (4.1)

=
3∑

j=1

α jx je2u+2
∑
k<0

µk(
〈

/Dψ−ρeuψ,δuϕk(u)
〉
−ρeu〈ψ,ϕk(u)

〉
)+2τ

(
2e2u+ρeu

|ψ|2
)
,

/Dψ−ρeuψ=
∑
k<0

µk(/Dϕk(u)−ρeuϕk(u))+τρeuψ, (4.2)

where α j,µk,τ∈R are the Lagrange multipliers†. In the equation for u the term δuϕk(u)
denotes the variation of ϕk(u) with respect to u, which exists because of the analytic
dependence of e−u /D on u, and

/Dδuϕk=δu(/Dϕk)=δu(λk(u)euϕk(u))

=(δuλk(u))euϕk(u)+λk(u)euϕk(u)+λk(u)euδuϕk(u)∈L2,

hence
‖δuϕk(u)‖H1/2 ≤C(1+ |λk(u)|)(1+‖ϕk(u)‖L2).

Lemma 4.2. If (u,ψ) is a constrained critical point of Jρ|Nρ
, then it is also an unconstrained

critical point of Jρ.

Proof. Suppose (u,ψ)∈Nρ satisfies the constrained equations (4.1)-(4.2): we need to show
that all the Lagrange multipliers vanish.

First test (4.2) against ϕk(u). By our choices this leads to µk = 0, for any k<0. Then
testing (4.1) against the constant function 1, noting that G1(u)=0 and G3(u,ψ)=0, we get

2τ
∫

S2
2e2u+ρeu

|ψ|2dvol=0,

and hence τ=0. It remains to show that if the system

−∆u+1−e2u
−ρeu

|ψ|2=
3∑

j=1

α jx je2u,

/Dψ−ρeuψ=0,

admits a solution, then α j=0 for j=1,2,3.
Recall the basic identity from [32]: given a Riemannian manifold (M,g) and two func-

tions u,F∈C∞(M), it holds that

2∆u(∇F·∇u)=div
(
2(∇F·∇u)∇u−|∇u|2∇F

)
−2(Hess(F)−(∆F)g)(∇u,∇u).

†The right-hand side is the projection of the unconstrained gradient of Jρ on the normal space at (u,ψ)∈Nρ,

hence it is well-defined in the Hilbert space H1
×H

1
2 . In particular, the series on the right-hand side converges.

The same remark applies also in the sequel.
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We will use this formula for F = x j ( j = 1,2,3), which are the eigenfunctions of −∆S2

associated to the first eigenvalue µ1(−∆S2)=2:

−∆S2F=2F, 2Hess(F)−(∆S2F)g=0.

Substituting into (4) and then integrating over M=S2, we get∫
S2

∆u(∇F·∇u)dvol=0.

In our situation, following the notational convention in [32],

∆u= 1−ρeu
|ψ|2−

1−
3∑

j=1

α jx j

e2u
≡ c−heu

− f e2u,

where we set c=1, h≡ρ|ψ|2 and f ≡1−
∑3

j=1α jx j. Thus

c
∫

S2
∇F·∇udvol=

∫
S2

heu
∇u·∇Fdvol+

∫
S2

f e2u
∇F·∇udvol.

Next we apply the argument in [32] to get

LHS=−c
∫

S2
F(∆u)dvol=−c

∫
S2

F(c−heu
− f e2u)dvol

=c
∫

S2
heuFdvol+c

∫
S2

f e2uFdvolg,

where we used the fact that
∫

S2 Fdvol=− 1
2

∫
S2 ∆Fdvol=0; meanwhile

RHS=
∫

S2
h∇(eu)·∇Fdvol+

1
2

∫
S2

f∇(e2u)·∇Fdvol

=−

∫
S2

eudiv(h∇F)dvol−
1
2

∫
S2

e2udiv( f∇F)dvol

=−

∫
S2

eu(∇h·∇F+h∆F)dvol−
1
2

∫
S2

e2u(∇ f ·∇F+ f ∆F)dvol

=−

∫
S2

eu
∇h·∇Fdvol+2

∫
S2

euhFdvol−
1
2

∫
S2

e2u
∇ f ·∇Fdvol+

∫
S2

e2u f Fdvol.

We thus get

(2−c)
∫

S2
euhFdvol+(1−c)

∫
S2

e2u f Fdvol

=

∫
S2

eu
∇h·∇Fdvol+

1
2

∫
S2

e2u
∇ f ·∇Fdvol.
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That is, for each j=1,2,3

ρ

∫
S2

eu
|ψ|2x jdvol

=ρ

∫
S2

eu
∇(|ψ|2)·∇x jdvol+

1
2

∫
S2

e2u
∇(1−

3∑
i=1

αixi)·∇x jdvol.

Combining with the following Lemma 4.3, we obtain that for each j∫
S2

e2u
∇(

3∑
i=1

αixi)·∇x jdvol=0.

Multiplying by α j and then summing over j, we obtain

∫
S2

e2u

∣∣∣∣∣∣∣
3∑

j=1

α j∇x j

∣∣∣∣∣∣∣
2

dvol=0.

It follows that
∑3

j=1α j∇x j = 0 everywhere on S2 and hence α j = 0 for each j = 1,2,3.
Therefore (u,ψ) satisfies the unconstrained Euler–Lagrange equation (EL0). �

The following lemma describes a conservation law originating from the conformal
invariance of the spinorial part of the functional Jρ. This can be viewed as a generalization
of some results in [12, 32].

Lemma 4.3. Let u∈H1(S2) be fixed and ψ∈H
1
2 (S) a spinor satisfying /Dψ−ρeuψ=0. Then for

each j=1,2,3, there holds ∫
S2

eu
∇(|ψ|2)·∇x jdvol=

∫
S2

eu
|ψ|2x jdvol.

Proof. We prove the result for j=3, the others cases being similar.
Let ϕt∈PSL(2;C) be a smooth family of Möbius transformations such that ϕ0=Id and

d
dt

∣∣∣∣
t=0
ϕt=∇x3.

Such a family can be obtained e.g. by pulling the dilation z 7→ tz on C back to the
Riemann sphere S2 via the standard stereographic projection, see [12, Section 2]. These
are conformal diffeomorphisms: (ϕ∗t g0)x =det(dϕt(x))g0x. Let β : S→S be the induced
isometric isomorphism of the spinor bundle over S2. Define the family of spinors ψtB

det(dϕt)
1
4 β(ψ◦ϕt)∈Γ(S), ψ0=ψ. Note that the Dirac action is preserved∫

S2

〈
/Dψ,ψ

〉
dvol=

∫
S2

〈
/Dψt,ψt

〉
dvol.
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Note that here the metric and hence also the volume form are fixed. Consider now the
part in the functional containing spinors, i.e.∫

S2
(
〈

/Dψ,ψ
〉
−ρeu

|ψ|2)dvol.

Along the above smooth variation we have on one hand, by hypothesis,

d
dt

∣∣∣∣
t=0

∫
S2
(
〈

/Dψt,ψt
〉
−ρeu

|ψt|
2)dvol=2

∫
S2

〈
/Dψ−ρeuψ,

d
dt

∣∣∣∣
t=0
ψt

〉
dvol=0;

on the other hand, since the Dirac action part is already invariant, it follows that

d
dt

∣∣∣∣
t=0

∫
S2
(
〈

/Dψt,ψt
〉
−ρeu

|ψt|
2)dvol=−ρ

∫
S2

eu d
dt

∣∣∣∣
t=0
|ψt|

2dvol

=−ρ

∫
S2

eu d
dt

∣∣∣∣
t=0

(
det(dϕt)

1
2 (|ψ|2◦ϕt)

)
dvol

=−ρ

∫
S2

eu
( d
dt

∣∣∣∣
t=0

det(dϕt)
1
2

)
|ψ|2dvol−ρ

∫
S2

eu
∇(|ψ|2)·

( d
dt

∣∣∣∣
t=0
ϕt

)
dvol

=−ρ

∫
S2

eu
(1
2

∆x3
)
|ψ|2dvol−ρ

∫
S2

eu
∇(|ψ|2)·∇x3dvol

=ρ

∫
S2

eu
|ψ|2x3dvol−ρ

∫
S2

eu
∇(|ψ|2)·∇x3dvol.

In the last two steps we used the fact that

d
dt

∣∣∣∣
t=0

det(dϕt)
1
2 =

1
2

∆x3=−x3,

which can be checked by an elementary calculation, see Appendix 8. The desired conclu-
sion follows. �

We proved therefore that Nρ is a Nehari-type manifold. In the rest of the paper, we will
look for critical points of Jρ|Nρ

.

5 Convergence of bounded Palais-Smale sequences

In the last sections we will need to deal with bounded Palais-Smale sequences on the
Nehari manifolds. Here we first show that any bounded (PS)c sequence (i.e. Palais-
Smale sequence at level c) admits a strongly convergent sub-sequence. We remark that,
though we will not strictly use the result in this form, later on we will crucially rely on its
proof.
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Let (ρn) be a converging sequence with limit ρ∞≥1, and let c∈R. Let (un,ψn)∈Nρn be
a sequence such that

Jρn(un,ψn)→c, ∇Nρn Jρn(un,ψn)→0, as n→∞.

More precisely, for each n≥1 there exist an affine function αn =
∑

jαn, jx j
∈ (R3)∗⊂H1(S2),

an auxiliary spinor φn=
∑

k<0µn,kϕk(un)∈H
1
2 (S), and a number τn∈R such that

−∆un+1−e2un−ρneun |ψn|
2
−αne2un−2

〈
/Dψn−ρneunψn,δuφn

〉
+2ρneun

〈
ψn,φn

〉
−2τn

(
2e2un+ρneun |ψn|

2
)
=an, (5.1)

/Dψn−ρneunψn−(/Dφn−ρneunφn)−τnρneunψn=bn, (5.2)

with an→ 0 in H−1(S2) and bn→ 0 in H−
1
2 (S). Here δuφn ≡

∑
k<0µn,kδuϕk(un) ∈H

1
2 (S).

Moreover, we assume that (un,ψn)n are bounded in H1(S2)×H
1
2 (S). By passing to a

subsequence, we may assume that (un,ψn) converges weakly to a limit (u∞,ψ∞)∈H1(S2)×

H
1
2 (S).

Lemma 5.1. Let (un,ψn), αn,τn and φn be as above. Then, by passing to a further subsequence,
we have

1. φn→0 in H
1
2 (S);

2. τn→0 in R;

3. αn→0 in R3.

Thus the Lagrange multipliers are all tending to zero in the limit n→+∞.

Proof of Lemma 5.1. We test (5.2) against φn to get that

−

∫
S2

〈
/Dφn,φn

〉
dvolg+ρn

∫
S2

eun |φn|
2dvol=

〈
bn,φn

〉
H−

1
2 ×H

1
2
≤o(1)‖φn‖

H
1
2
,

which implies

‖φn‖
H

1
2
→0,

∫
S2

eun |φn|
2dvol→0.

This is equivalent to say that (|λn,k|
1
2µn,k)k<0→0 as n→∞ in `2, and hence also δuφn→0

in H
1
2 (S).

Thus, testing (5.1) against the constant function 1 we obtain

−2τn

∫
S2
(2eun+ρneun |ψn|

2)dvol= 〈an,1〉H−1×H1+2
∫

S2

〈
/Dψn−ρneunψn,δuφn

〉
dvol.
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Since the (un,ψn)’s are assumed to be uniformly bounded and the above right-hand side
converges to zero, we conclude that τn→0 as n→∞.

Finally, testing (5.1) against αn and using that the matrix Λ(u) has eigenvalues
bounded both from above and below, we see that the αn’s are uniformly bounded in (R3)∗.
Therefore, we may assume that (αn) converges weakly to α∞∈(R3)∗. By Sobolev’s embed-
ding theorems, we see that the weak limit (u∞,ψ∞) of the sequence (un,ψn) now satisfies
the equations

−∆u∞+1−e2u∞−ρ∞eu∞ |ψ∞|
2=α∞e2u∞ ,

/Dψ∞−ρ∞eu∞ψ∞=0,

in H−1(S2)×H−
1
2 (S). Elliptic regularity theory implies that (u∞,ψ∞) is smooth and the

argument to prove that Nρ is a natural constraint can be employed to show that α∞=0.
It suffices to note that, since (R3)∗ is finite-dimensional, the weak convergence coincides
with the strong convergence, hence αn→0 in R3∗ . �

Lemma 5.2. With notation as above, (un,ψn) converges to (u∞,ψ∞) strongly in H1(S2)×H
1
2 (S).

Proof. Since (un,ψn) converges to (u∞,ψ∞) weakly in H1(S2)×H
1
2 (S), we have

etun→etu∞ in Lp(S2), ∀t∈R, ∀p∈ [1,∞),
ψn→ψ∞ in Lq(S), ∀q∈ [1,4).

Now set ũnBun−u∞ and ψ̃nBψn−ψ∞. The difference of the spinors satisfies the equation

/Dψ̃n=/Dψn− /Dψ∞

=(ρneunψn−ρ∞eu∞ψ∞)+(/Dφn−ρeunφn)+τnρneun+bn

=ρneun(ψn−ψ∞)+ρn(eun−eu∞)ψ∞+(ρn−ρ∞)eu∞ψ∞

+(/Dφn−ρeunφn)+τnρneun+bn →0 in H−
1
2 (S).

Since /D has no kernel, we see that ‖ψ̃n‖
H

1
2
→0, that is ψn→ψ∞ in H

1
2 (S).

The same strategy works for the function components. Indeed,

−∆ũn=−∆un+∆u∞

=
(
e2un−e2u∞

)
+

(
ρneun |ψn|

2
−ρ∞eu∞ |ψ∞|

2
)
+αne2un

+2
〈

/Dψn−ρneunψn,δuφn
〉
−2ρneun

〈
ψn,φn

〉
+2τn(e2un+ρneun |ψn|

2)+an.

Noting that

ρneun |ψn|
2
−ρ∞eu∞ |ψ∞|

2

=ρneun
(
|ψn|

2
−|ψ∞|

2
)
+ρn(eun−eu∞)|ψ∞|

2+(ρn−ρ∞)eu∞ |ψ∞|
2,
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which converges to zero in L
4
3 (S2), we see that −∆ũn→0 in H−1(S2). Since ‖ũn‖L2→0, we

conclude that ‖ũn‖H1(S2)→0, as desired. �

Remark 5.1. Indeed one can show that any (PS)c sequence is bounded. Combining this
with the above result, we see that the functional Jρ|Nρ

satisfies the Palais-Smale conditions.

6 Local geometry around the origin

We have seen that Nρ is a Nehari manifold for the functional Jρ and to prove existence
of solutions to (EL) it suffices to find critical points of the restricted functional Jρ|Nρ

.
We first take a closer look at the local behavior of the functional around the trivial critical
pointθ=(0,0)∈Nρ, and then compute the critical groups at the origin. Note that Jρ(0,0)=0.

The tangent space of Nρ at θ is

TθNρ=

{
(v,h)∈H1(S2)×H

1
2 (S)

∣∣∣∣∣∣
∫

S2
x jvdvol=0 ( j=1,2,3); h−=0; v̄=

?
S2

vdvol=0
}

=Eigen(−∆S2 ;{0,2})⊥⊕H
1
2 ,+(S).

Since θ∈Nρ is a critical point, the local behavior of the functional Jρ is determined by its
Hessian, which is given by

Hess(Jρ|Nρ
)[(v,h),(v,h)]=

∫
S2
[2

(
|∇v|2−2v2

)
+4

〈
/Dh−ρh,h

〉
]dvol.

Consider the case ρ<Spec(/D): on the finite-dimensional subspace

(TθNρ)
−
≡

⊕
0<λ<ρ

Eigen(/D;λ) (with l(ρ)BdimR(TθNρ)
−<∞)

the Hessian is negative-definite, while on the complement subspace (TθNρ)+ the Hessian
is positive-definite. In particular the Hessian Hess(Jρ) at θ is non-degenerate and thus θ
is an isolated critical point.

We can then define the critical groups as in [11, 37] for the functional Jρ on Nρ at the
isolated critical point θ=(0,0) as follows. Let G be a non-trivial abelian group. Let Jc

ρ

denote the sub-level {Jρ≤c}∩Nρ. The critical groups of Jρ|Nρ
at θ∈Nρ are defined by:

Ck(Jρ|Nρ
,θ)BHk(J0

ρ∩U,(J0
ρ\{θ})∩U;G),

where U is a small neighborhood such that there are no critical points in (J0
ρ\{θ})∩U,

and the right-hand side stands for the singular homology groups with coefficients in G.
These groups are well-defined and independent of the choice of U, thanks to the excision
property.
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By the above computation of the Hessian of Jρ|Nρ
at θ, we see that

Ck(Jρ|Nρ
,θ)=

G, k= l(ρ);
0, k, l(ρ).

7 Local deformation of sub-levels around non-bifurcation points

We say that ρ∗ is a bifurcation point of (EL0) if there exist a sequence of numbers (ρn) and
a sequence of non-trivial critical points (un,ψn) of Jρn such that

(un,ψn;ρn)→ (0,0;ρ∗) in H1(S2)×H1(S)×R.

In other words, (0,0;ρ∗) is an accumulation point of the set of non-trivial solutions{
(u,ψ;ρ) : (u,ψ)∈Nρ\

{
(0,0)

}
, dJρ(u,ψ)=0

}
.

Theorem 7.1. Assume that

ρ∗>1 is not a bi f urcation point o f (EL0). (*)

Then there exist a number ε1>0 and two relative open neighborhoods Uρ∗±ε1 of θ=(0,0) in the
corresponding sub-levels:

Uρ∗±ε1 ⊂

{
(u,ψ)∈Nρ∗±ε1 : Jρ∗±ε1(u,ψ)≤0

}
such that Uρ∗−ε1 is homeomorphic to Uρ∗+ε1 .

We will assume hypothesis (*) until the proof of the above theorem, and we will
take δ>0 and ε>0 sufficiently small such that there are no non-trivial critical points of Jρ
in the neighborhood Bδ(θ)∩Nρ for any ρ∈[ρ∗−ε,ρ∗+ε]. Such neighborhoods can of course
be shrunk later if necessary.

Before the proof we need to state several lemmas. We remark again that this result
may be viewed as a nonlinear version of Krasnosel’skii Theorem and the proof goes in
the spirit of [37].

Introduce the following vector fields on Bδ(θ)∩Nρ:

Y j(u)=
(
(1−∆)−1(x je2u), 0

)
, j=1,2,3;

Zk(u,ψ;ρ)=
(
(1−∆)−1(

〈
/Dψ−ρeuψ,δuϕk(u)

〉
−ρeu〈ψ,ϕk(u)

〉
),

|/D|−1(/Dϕk(u)−ρeuϕk(u))
)
, k<0;

W(u,ψ;ρ)=
(
(1−∆)−1(2e2u+ρeu

|ψ|2), |/D|−1(2ρeuψ)
)
.
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Note that

(1−∆)−1x j=
1
3

x j, j=1,2,3;

|/D|−1(euϕk(u))=
1

λk(u)
ϕk(u), ∀k<0,

with λk(u)=λk(0)+o(1) for u small, according to the analytic dependence of the eigen-
values on the parameter u.

Lemma 7.1. There exist ε>0 and δ>0 such that in the ball Bδ(θ)⊂H1(S2)×H
1
2 (S) the above

vector fields are linearly independent, for each ρ∈ [ρ∗−ε,ρ∗+ε].

Proof. We can estimate the following inner products as:

〈
Y j,Yi

〉
=

∫
S2
(1−∆)−1(x je2u)·xie2udvol

=

∫
S2
(1−∆)−1(x j+2ux j+o(u))·(xi+2uxi+o(u))dvol

=

∫
S2

1
3

x j
·xidvol+O(‖u‖)

=
4π
9
δi j+O(‖u‖);

〈Zk,Zl〉=

∫
S2
(1−∆)−1(

〈
/Dψ−ρeuψ,δuϕk(u)

〉
−ρeu〈ψ,ϕk(u)

〉
)

·(
〈

/Dψ−ρeuψ,δuϕl(u)
〉
−ρeu〈ψ,ϕk(u)

〉
)dvol

+

∫
S2

〈
|/D|−1(/Dϕk(u)−ρeuϕk(u)),(/Dϕl−ρeuϕl(u))

〉
dvol

=O(‖ψ‖2)+

∫
S2

〈
λk(u)−ρ
λk(u)

ϕk(u),(λl(u)−ρ)euϕl(u)
〉

dvol

=
(λk(u)−ρ)(λl−ρ)

λk(u)
δkl+O(‖ψ‖2);

〈W,W〉=
∫

S2
(1−∆)−1(2e2u+eu

|ψ|2)·(2e2u+ρeu
|ψ|2)dvol

+

∫
S2

〈
|/D|−1(2ρeuψ),2ρeuψ

〉
dvol

=4+O(‖u‖+‖ψ‖2);
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〈
Y j,Zk

〉
=

∫
S2
(1−∆)−1(x je2u)·(

〈
/Dψ−ρeuψ,δuϕk(u)

〉
−ρeu〈ψ,ϕk(u)

〉
)dvol=O(‖ψ‖);

〈
Y j,W

〉
=

∫
S2
(1−∆)−1(x je2u)(−ρeu〈ψ,ϕk(u)

〉
)dvol=O(‖ψ‖);

〈Zk,W〉=O(‖ψ‖).

As a consequence of the last formulas, for (u,ψ)∈Bδ(θ) with δ small, the above vector
fields are linearly independent. �

Introduce the ρ-independent functionals

J1(u,ψ)B
∫

S2
|∇u|2+2u+1−e2u+2

〈
/Dψ,ψ

〉
dvol,

J2(u,ψ)B
∫

S2
2eu
|ψ|2dvol.

Then we have

Jρ(u,ψ)= J1(u,ψ)−ρJ2(u,ψ),

dJρ(u,ψ)[v,h]=dJ1(u,ψ)[v,h]−ρdJ2(u,ψ)[v,h].

The unconstrained gradients of the Ji’s are

grad J1(u,ψ)=
(
2(1−∆)−1(−∆u+1−e2u), 4|/D|−1(/Dψ)

)
,

grad J2(u,ψ)=
(
2(1−∆)−1(eu

|ψ|2), 4|/D|−1(euψ)
)
.

To find a deformation of the sub-levels, we will focus on the level sets {Jρ=0}with ρ close
to ρ∗, as it is done in the classical Morse theory. More precisely, for δ>0 and ε>0 small, let

ΩB
{
(u,ψ;ρ) : (u,ψ)∈Nρ,ψ,0, Jρ(u,ψ)=0

}
,

ΩεB
{
(u,ψ;ρ)∈Ω :ρ∈ [ρ∗−ε,ρ∗+ε]

}
,

MεBP(Ωε),

where P : H1(S2)×H
1
2 (S)×R→H1(S2)×H

1
2 (S) is the projection onto the first two factors.

Note that (u,ψ)∈Mε implies that for some unique ρ∈ [ρ∗−ε,ρ∗+ε] such that Jρ(u,ψ)= 0
and ψ, 0. In this case we will use ρ(u,ψ) to denote the dependence whenever (u,ψ)∈
Mε∩Bδ(θ). For u∈H1(S2) we will write u= û+ū, where ū is its average.

Lemma 7.2. Let (u,ψ)∈Bδ(θ)∩Mε. Suppose J2(u,ψ)=8πr>0 with r�ε<δ. Then, there exists
a constant C>0 such that

‖∇û‖2L2+ |ū|+‖ψ‖2
H

1
2
≤Cr.
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Proof. By definition, there exists ρ∈ [ρ∗−ε,ρ∗+ε] such that (u,ψ)∈Nρ and Jρ(u,ψ)=0. In
particular by assumption?

S2
e2udvol=1−ρ

?
S2

eu
|ψ|2dvol=1−ρr.

By Jensen’s inequality,

e2ū
≤

?
S2

e2udvol=1−ρr,

thus ū≤0. On the other hand, since C.M.(e2u)=0, an improved Moser-Trudinger inequality
in [21] implies

1−ρr=
?

S2
e2udvol≤exp

(
1
2

?
S2
|∇u|2dvol+2ū

)
.

The condition Jρ(u,ψ)=0 implies?
S2
|∇u|2+2

〈
/Dψ,ψ

〉
dvol=ρr−2ū. (7.1)

Moreover, since G2,k(u,ψ)=0 for all k<0, the Dirac part is non-negative, and hence?
S2
|∇u|2dvol≤ρr−2ū.

It follows that

1−ρr≤exp
(1
2
ρr+ū

)
,

which gives a lower bound on ū:

ū≥ ln(1−ρr)−
1
2
ρr≥−2ρr.

Therefore |ū|≤2ρr so by (7.1) we see that
>

S2 |∇u|2dvol≤5ρr, and?
S2

〈
/Dψ,ψ

〉
dvol≤5ρr. (7.2)

In terms of the weighted basis {ϕ j(u)} introduced in Section 4, we can write

ψ=
∑
j>0

a j(u,ψ)ϕ j(u)

with a j(u,ψ) ∈R being the coefficients of the expansion, and
(
a j(u,ψ)|λ j(u)|1/2

)
j
∈ `2.

Then (7.2) implies
0≤

∑
j>0

a j(u,ψ)2λ j(u)≤20πρr.

Since ‖u‖2
H1 ≤Cρr we have λ j(u) close to λ j(0). It follows that ‖ψ‖2

H
1
2 (S)
≤Cρr. �
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Lemma 7.3. For δ and ε small, grad J2 is linearly independent of Y j’s, Zk’s and W on Mε∩Bδ(θ).

Proof. Suppose that

grad J2=
3∑

j=1

α jY j+
∑
k<0

µkZk+τW,

namely

2eu
|ψ|2=

∑
j=1,2,3

α jx je2u+
∑
k<0

µk(
〈

/Dψ−ρeuψ,∆uϕk(u)
〉
−ρeu〈ψ,ϕk(u)

〉
)+τ

(
2e2u+ρeu

|ψ|2
)
,

4euψ=
∑
k<0

µk(/Dϕk(u)−ρeuϕk(u))+2τρeuψ.

Testing the equation for the spinor againstϕl(u), we see thatµl=0 for each l<0. Sinceψ,0,
we conclude from the spinor equation that ρτ=2. Then testing the scalar component of
the equation against the constant function 1 we see that τ=0, a contradiction. �

Lemma 7.4. Assume (*) holds. For δ and ε small, grad J1 is linearly independent of grad J2 and
of Y j’s, Zk’s and W on Mε∩Bδ(θ).

Proof. Suppose that

grad J1=λgrad J2+
3∑

j=1

α jY j+
∑
k<0

µkZk+τW,

for some λ,α j,µk,τ∈R. Expressed in components, we have

2(−∆u+1−e2u)=2λeu
|ψ|2+

∑
j=1,2,3

α jx je2u

+
∑
k<0

µk(
〈

/Dψ−ρeuψ,∆uϕk(u)
〉
−ρeu〈ψ,ϕk(u)

〉
)+τ

(
2e2u+ρeu

|ψ|2
)
,

4 /Dψ=4λeuψ+
∑
k<0

µk(/Dϕk(u)−ρeuϕk(u))+2τρeuψ.

Testing the spinor equation against ϕk(u) we find that µk=0 for all k<0. Then testing the
scalar equation against the constant function 1, noting that G1(u)=0 and G3(u,ψ)=0, we
have

2ρ
∫

S2
eu
|ψ|2dvol=2λ

∫
S2

eu
|ψ|2dvol+τ

∫
S2

1+e2udvol. (7.3)

Since (u,ψ) ∈Bδ(θ) and δ is small, we conclude that τ= 0. Then we are in a situation
similar to that of Lemma 4.2. The same argument via Möbius invariance implies thatα j=0
for j=1,2,3. Now since ψ,0, (7.3) implies λ=ρ. Thus (u,ψ)∈Nρ is a non-trivial critical
point of Nρ, contradicting hypothesis (*). �
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The vector fields Y j’s, Zk’s and W form a local frame for the normal bundle T⊥Nρ

on Bδ(θ)∩Nρ, which are almost orthogonal. We denote the tangent parts of the gradients

of Ji, (i=1,2), by∇Nρ Ji. Next we show that the latter constrained gradients are not collinear
in a uniform sense wherever J2(u,ψ) is strictly away from zero. The collinearity of the
two constrained gradients is measured by the determinant of the following matrix

〈
∇

Nρ J1(u,ψ),∇Nρ J1(u,ψ)
〉 〈
∇

Nρ J1(u,ψ),∇Nρ J2(u,ψ)
〉

〈
∇

Nρ J2(u,ψ),∇Nρ J1(u,ψ)
〉 〈
∇

Nρ J2(u,ψ),∇Nρ J2(u,ψ)
〉
,

which is

det(J1, J2)(u,ψ;ρ)≡‖∇Nρ J1(u,ψ)‖2‖∇Nρ J2(u,ψ)‖2−
〈
∇

Nρ J1(u,ψ),∇Nρ J2(u,ψ)
〉2

,

and it is non-negative by the Cauchy-Schwarz inequality. Recall that in Mε∩Bδ(θ), ψ,0
and hence J2(u,ψ),0 and grad J2(u,ψ),0. Thus we can write

det(J1, J2)(u,ψ,ρ)=‖∇Nρ J2(u,ψ)‖2
∥∥∥∥∥∥∥∇Nρ J1(u,ψ)−

〈
∇

Nρ J1,
∇

Nρ J2

‖∇
Nρ J2‖

〉
∇

Nρ J2

‖∇
Nρ J2‖

(u,ψ)

∥∥∥∥∥∥∥
2

.

We deal with the right-hand sides separately.

Lemma 7.5. There exists a modulus of continuity κ : [0,δ]→ [0,1] such that

‖∇
Nρ J2(u,ψ)‖2≥κ(J2(u,ψ)).

Proof. We first claim that for each 0<r<δ,

κ̃(r)B inf
(u,ψ)∈Mε∩Bδ(θ)

J2(u,ψ)=r

‖∇
Nρ J2(u,ψ)‖2>0.

Otherwise, there would exist ρn∈ [ρ∗−ε,ρ∗+ε] and (un,ψn)∈Nρn with Jρn(un,ψn)=0 and

J2(un,ψn)=

∫
S2

eun |ψn|
2dvol= r, ‖∇Nρn J2(un,ψn)‖→0.

This means that there exist αn, j∈R and µn,k∈R and τn∈R such that

2eun |ψn|
2
−

3∑
j=1

αn, jx je2u
−

∑
k<0

µn,k

(〈
/Dψn−ρeunψn,δuϕk(un)

〉
−ρneun

〈
ψn,ϕk(un)

〉)
−τn(2e2un+ρneun |ψn|

2)=an→0 in H−1(S2),

4eunψn−
∑
k<0

µn,k(/Dϕk(un)−ρneunϕk(un))−2τnρneunψn=bn→0 in H−
1
2 (S).
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Reasoning as in Section 5 we can show that the Lagrange multipliers are uniformly
bounded. By passing to a subsequence we can extract weakly convergent subsequences
such that at the weak limit (u∞,ψ∞) the constrained gradient vanishes, i.e.∇Nρ J2(u∞,ψ∞)=
0. However, ∫

S2
eu∞ |ψ∞|

2dvol= lim
n→∞

∫
S2

eun |ψn|
2dvol= r

due to the compactness of the Rellich embedding and Moser-Trudinger embedding. This
contradicts Lemma 7.3. Thus the claim is confirmed.

The function κ̃(r) defined above might not be continuous and monotonically non-
decreasing, but at each 0<r<δ we may always replace the value κ̃(r) by a smaller one to
obtain a continuous, monotonically non-decreasing function κ, as desired. �

It remains to deal with

P⊥2 (∇
Nρ J1)(u,ψ)≡∇Nρ J1(u,ψ)−

〈
∇

Nρ J1,
∇

Nρ J2

‖∇
Nρ J2‖

〉
∇

Nρ J2

‖∇
Nρ J2‖

(u,ψ).

Lemma 7.6. There exists a modulus of continuity σ : [0,δ]→ [0,1] such that

‖P⊥2 (∇
Nρ J1)(u,ψ)‖2≥σ(J2(u,ψ)), ∀(u,ψ)∈Bδ(θ)∩Mε.

Proof. The proof is similar to the previous one, so we omit the details. One can first show
that the Lagrange multipliers are uniformly bounded as in Section 5, and then pass to
weakly convergent subsequences: this time the weak limits contradict Lemma 7.4. �

Summing-up, we obtained that on Mε∩Bδ(θ),

det(J1, J2)(u,ψ;ρ)≥ (κ·σ)
(∫

S2
2eu
|ψ|2dvol

)
>0. (7.4)

Lemma 7.7. Assume (*) holds. Then, for δ and ε small, there exists a C1-vector field X =

(Xu,Xψ)∈H1(S2)×H
1
2 (S) on Mε∩Bδ(θ) such that

〈
X,grad J1

〉
= J2(u,ψ)=

∫
S2

2eu
|ψ|2dvol,

〈
X,grad J2

〉
= 0,〈

X,Y j

〉
= 0, ∀ j=1,2,3,

〈X,Zk〉=

∫
S2

eu〈ψ,ϕk(u)
〉
dvol=0, ∀k<0,

〈X,W〉=
∫

S2
eu
|ψ|2dvol.
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Proof. At each (u,ψ) ∈Mε, we need to solve a linear system with the coefficient-matrix
being non-degenerate, due to the above lemmas. Such a system can thus be uniquely
solved in the space

SpanR

{
grad J1,grad J2,Y j’s,Zk’s,W

}
.

Since the coefficients of these linear systems depend on (u,ψ) in the C1 sense, so does the
solution X(u,ψ). �

In the sequel we denote by X(u,ψ;ρ) the unique vector field from the above lemma,
which has a decomposition

X(u,ψ;ρ)=X>(u,ψ;ρ)+X⊥(u,ψ;ρ)∈T(u,ψ)Nρ⊕T⊥
(u,ψ)Nρ.

Then, explicitly, at (u,ψ)∈Nρ,

X>(u,ψ;ρ)=J2(u,ψ)
‖∇

Nρ J2(u,ψ;ρ)‖2

det(J1, J2)(u,ψ;ρ)
P⊥2 (∇

Nρ J1(u,ψ)) (7.5)

and up to higher order terms,

X⊥(u,ψ;ρ)=

∫
S2 eu
|ψ|2dvol

‖W‖2
W+O(‖u‖+‖ψ‖).

Now let 0 < 2ε1 < ε < δ, and take a cut-off function η ∈ C∞c ([−ε,ε]) such that η ≡ 1
on [−2ε1,2ε1]. Then set

ω(u,ψ)Bη
(
ρ∗−

J1(u,ψ)
J2(u,ψ)

)
·η

(
‖u‖2+‖ψ‖2

)
in {(u,ψ)∈Bδ(θ) |ψ,0}.

Observe that, if (u,ψ) with ψ , 0 satisfies ω(u,ψ) , 0, then there exists a unique ρ ∈
[ρ∗−ε,ρ∗+ε] such that

Jρ(u,ψ)= J1(u,ψ)−ρJ2(u,ψ)=0,

hence (u,ψ)∈Bδ(θ)∩Mε. We define a vector field X̃(u,ψ) on Bδ(θ) by

X̃(u,ψ)=

ω(u,ψ)X(u,ψ;ρ) if ψ,0,
0 if ψ=0.

Consider the flow generated by

d
dρ

(u,ψ)= X̃(u,ψ). (7.6)

More precisely, for each (u0,ψ0)∈Bδ(θ) there exist families of trajectories (u(ρ),ψ(ρ))ρ∈R
satisfying the following properties:
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• If ψ0=0, then (u(ρ),ψ(ρ))≡ (u0,ψ0) for any ρ∈R.

• If ψ0,0 and ω(u0,ψ0)=0, then again (u(ρ),ψ(ρ))≡ (u0,ψ0) for any ρ∈R.

• If ψ0, 0 and ω(u0,ψ0), 0, then as observed above, there exists a unique ρ0 ∈ [ρ∗−
ε,ρ∗+ε] such that Jρ0(u0,ψ0)=0, then (u(ρ),ψ(ρ)) solves the ODE

d
dρ (u(ρ),ψ(ρ))= X̃(u(ρ),ψ(ρ)),

(u,ψ)|ρ=ρ0
=(u0,ψ0).

To see that the solution exists for all ρ∈R, it suffices to show that the vector field X̃
is of class C1, bounded along the trajectory and that any trajectory segment has
closure contained in the domain Bδ(θ). Since

d
dρ

J2(u(ρ),ψ(ρ))=
〈
grad J2,X̃

〉
(u,ψ)=ω(u,ψ)

〈
grad J2,X

〉
≡0,

it follows that J2(u(ρ),ψ(ρ)) = const. for any ρ ∈R wherever the flow is defined.
By (7.4) we see that X̃ is of class C1 and bounded along the trajectory. Consider the
trajectory segment {(u(ρ),ψ(ρ)) :ρ∈ [ρ0,b)}. Taking the limit ρ↗ b, the limit point
evidently lies inside Bδ(θ) since X̃ vanishes on Bδ(θ)\Bε(θ). Hence, by [37, Lemma
1.1] the flow exists globally. Note that in this case the flow never stops at finite time,
hence (u(ρ),ψ(ρ))∈supp(ω) and so (u(ρ),ψ(ρ))∈Bδ(θ)∩Mε.

We will focus on those flow lines passing through the Nehari manifolds.

Lemma 7.8. Assume (*) holds and use the above notation.

1. In case ψ0,0 and ω(u0,ψ0),0, if (u0,ψ0)∈Nρ0 with ρ0 satisfying Jρ0(u0,ψ0)=0, then
the trajectory (u(ρ),ψ(ρ)) stays inside the manifold N, namely

• G1(u(ρ))=G1(u0)=0, ∀ρ∈R;

• G2,k(u(ρ),ψ(ρ))=0, ∀ρ∈R and ∀k<0.

2. In addition, if (u0,ψ0)∈Bε1(θ)∩Mε1 , then for any ρ∈ [ρ∗−ε1,ρ∗+ε1] we have

• G3(u(ρ),ψ(ρ))=0, and in particular (u(ρ),ψ(ρ))∈Nρ;

• Jρ(u(ρ),ψ(ρ))=0.

Proof. (1) In this case (u0,ψ0)∈Mε∩Bδ(θ). For the conservation of Gi
1 (i=1,2,3): we have

G1(u(ρ0))=0, and

d
dρ

Gi
1(u(ρ))=

∫
S2

xie2u(ρ)
·2

du
dρ

dvol=ω(u(ρ),ψ(ρ))〈Yi,X〉≡0.
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Similarly, for each k<0:

d
dρ

∫
S2

〈
/Dψ−ρeuψ,ϕk(u(ρ))

〉
dvol

=ω(u(ρ),ψ(ρ))〈X,Zk〉−

∫
S2

eu(ρ)〈ψ(ρ),ϕk(u(ρ))
〉
dvol

=−
1

λk(u(ρ))−ρ

∫
S2

〈
/Dψ−ρeu(ρ)ψ(ρ),ϕk(u(ρ))

〉
dvol,

where we used the fact that 〈X,Zk〉=0 for (u,ψ)∈Mε∩Bδ(θ). Thus

d
dρ

G2,k(u(ρ),ψ(ρ))=−
1

λk(u(ρ))−ρ
G2,k(u(ρ),ψ(ρ)).

Since 〈X,Zk〉(u(ρ0),ψ(ρ0))=0 and G2,k(u(ρ0),ψ(ρ0))=G2,k(u0,ψ0)=0, it follows that

G2,k(u(ρ),ψ(ρ))≡0, ∀ρ∈R.

(2) If Jρ0(u0,ψ0)=0 for some ρ0∈ [ρ∗−ε1,ρ∗+ε1] and (u,ψ)∈Bε1(θ), then

ρ0−
J1(u0,ψ0)

J2(u0,ψ0)
=0

andω(u0,ψ0)=1. Hence there is a relatively open neighborhood V of ρ0 such that for ρ∈V,
we have

ω(u(ρ),ψ(ρ))=1,

and as a consequence

d
dρ

G3(u(ρ),ψ(ρ))=
〈
X̃,W

〉
−

∫
S2

eu(ρ)
|ψ(ρ)|2dvol= 〈X,W〉−

∫
S2

eu(ρ)
|ψ(ρ)|2dvol=0,

d
dρ

Jρ(u(ρ),ψ(ρ))=
〈
grad J1,X̃

〉
− J2(u(ρ),ψ(ρ))−ρ

〈
grad J2,X̃

〉
=

〈
grad J1,X

〉
− J2(u(ρ),ψ(ρ))=0.

Thus {ρ∈ [ρ∗−ε1,ρ∗+ε1] : Jρ(u(t),ψ(t))=0,G3(u(ρ),ψ(ρ))=0} is both an open and closed
subset of [ρ∗−ε1,ρ∗+ε1], hence it coincides with the whole interval. �

Now we can use this flow to find a deformation of the local sub-level sets.
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Proof of Theorem 7.1. Under the hypothesis (*), choose ε1 as above. Define the map

Φ : (Bε1∩Mε1)×R×R→Bδ(θ)

by Φ((u0,ψ0);ρ1,ρ2)B (u(ρ2),ψ(ρ2)), where (u(ρ),ψ(ρ)) is the flow generated by (7.6)
with initial condition (u(ρ1),ψ(ρ1))=(u0,ψ0).

We claim that the map Φ is continuous. It is clearly continuous when ψ, 0 by the
continuous dependence on the initial data, thus it remains to show that when J2(u,ψ)=8πr
is small, the flow stays close (in the spinor component) to the subspace {ψ=0}. Since the
flow line stays inside the set Bε1(θ)∩Mε1 , Lemma 7.2 guarantees that the set Bε1(θ)∩Mε1∩

{J2=8πr} is close to the origin, hence the flow is globally continuous and so is the map Φ.
Consider the set

Uρ∗−ε1BBε1(θ)∩ J0
ρ∗−ε1

,

then Φ((·,·);ρ∗−ε1,ρ∗+ε1) carries Uρ∗−ε1 to a relative neighborhood Uρ∗+ε1 of θ in J0
ρ∗+ε1

,
and the inverse map is given by Φ((·,·);ρ∗+ε1,ρ∗−ε1). �

Proof of Theorem 1.1. Let ρ∗=λk ∈Spec(/D) for some λk>1. If ρ∗ is not a bifurcation point,
then by Theorem 7.1, there are relatively open local neighborhoods Uρ∗±ε1 in the sub-level
sets of Jρ∗±ε1 respectively, which are homeomorphic to each other. Hence the local critical
groups for Jρ∗±ε1 at θ should be isomorphic.

However, in Section 6 we have seen that the local critical groups atθ for Jρ∗−ε and Jρ∗+ε1

are different, which gives a contradiction. �

8 Appendix: a conformal transformation

In this appendix we perform for the readers’ convenience the explicit computation used
in Section 4.

Consider the conformal transformation ϕt : S2
→S2 defined by the following formulas

S2

π

��

ϕt // S2

π

��

~x=(x1,x2,x3)

π
��

ϕt // ~y=(y1,y2,y3)

π−1
��

C
t // C z= x1+ix2

1−x3
t // w= tz= (tx1)+i(tx2)

1−x3

where π : S2
→C denotes the stereographic projection. Let us compute the curve ~y=~y(t).

Note that

|w|2=
(x1)2+(x2)2

(1−x3)2 t2,
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thus

y1(t)=
2

1+ |w|2
Re(w)=

2tx1(1−x3)

t2((x1)2+(x2)2)+(1−x3)2
,

y2(t)=
2

1+ |w|2
Im(w)=

2tx2(1−x3)

t2((x1)2+(x2)2)+(1−x3)2
,

y3(t)=
|w|2−1
|w|2+1

=
t2((x1)2+(x2)2)−(1−x3)2

t2((x1)2+(x2)2)+(1−x3)2
.

The t-derivatives are

d
dt

y1(t)=
2x1(1−x3)

[t2((x1)2+(x2)2)+(1−x3)2]2

[
(1−x3)2

−t2((x1)2+(x2)2)
]
=−

1
t

y1y3,

d
dt

y2(t)=
2x2(1−x3)

[t2((x1)2+(x2)2)+(1−x3)2]2

[
(1−x3)2

−t2((x1)2+(x2)2)
]
=−

1
t

y2y3,

d
dt

y3(t)=
2x1(1−x3)

[t2((x1)2+(x2)2)+(1−x3)2]2
·2(1−x3)2x=

1
t
(1−(y3)2).

Note that the gradient of the coordinate function x3 (at the point ~x∈S2) is given by

gradx3(~x)=
∂

∂x3 −

〈
∂

∂x3 ,~x
〉

R3

~x=(0,0,1)−x3(x1,x2,x3)

=
(
−x1x3,−x2x3,1−(x3)2

)
.

Since ~y|t=1=~x, we have

d
dt

∣∣∣∣
t=1
ϕt(~x)=

d
dt

∣∣∣∣
t=1
~y(t)=grad(x3).

Moreover,

d
dt

∣∣∣∣
t=1

det(dϕt)= tr
(
(dϕt)

−1 d
dt

(dϕt)
)∣∣∣t=1

=trd
( d
dt
ϕt

)∣∣∣t=1
=div(grad(x3))=∆S2x3.
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on Rn, Birkhäuser, Basel, 2006.

[2] A. Ambrosetti, and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems,
Cambridge Studies in Advanced Mathematics, 104. Cambridge University Press, Cambridge,
2007.

[3] A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Ad-
vanced Mathematics, 34. Cambridge University Press, Cambridge, 1993.

[4] B. Ammann, A variational problem in conformal spin geometry, J. Geom. Phys., 62(2) (2003),
213–223.

[5] T. Aubin, Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème
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