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Asymptotic Morse Theory for the Equation

∆v = 2vx ∧ vy

Sagun Chanillo and Andrea Malchiodi

Given a smooth bounded domain Ω ⊆ R2, we consider the equation
∆v = 2vx ∧ vy in Ω, where v : Ω → R

3. We prescribe Dirichlet
boundary datum, and consider the case in which this datum con-
verges to zero. An asymptotic study of the corresponding Euler
functional is performed, analyzing multiple-bubbling phenomena.
This allows us to settle a particular case of a question raised by H.
Brezis and J.M. Coron in [9].
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elliptic systems.

1. Introduction.

Let Ω ⊆ R
2 be a smooth bounded domain. We shall denote by v, g̃ two

maps such that v : Ω → R
3 and g̃ : ∂Ω → R

3, with g̃ smooth. Consider the
problem {

∆v = H(ξ, v,∇v)vx ∧ vy in Ω,
v = g̃ on ∂Ω,

(1)

where H is a smooth scalar function, vx, vy are the x and y-derivatives of v,
ξ = (x, y) and ∧ denotes the cross-product in R

3.
Equation (1) has been the subject of several works, see for example the

survey paper [28] by K. Steffen and the recent paper [10]. Existence of so-
lutions of (1) when g̃ ≡ 0 strongly depends on the topology of the domain.
In fact we show using a Pohozahev-type identity, see Proposition 3.1, that
equation (1) has no solution in any simply connected domain when g̃ = 0.
When H(ξ, v,∇v) ≡ H, a non-zero constant, such a result was proved by H.
Wente, [16], using reflection techniques and the Kelvin transformation. In
the same paper, Wente also showed that if Ω is an annulus then the study
of (1) can be reduced to an ordinary differential equation and (1) does have
a non-trivial solution when v = 0 on ∂Ω. Thus equation (1) presents fea-
tures similar to the Yamabe equation on domains with Dirichlet boundary
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conditions, studied in particular by A. Bahri and J.M. Coron, [4]. In fact,
part of the difficulty in studying (1) is that it is invariant under conformal
transformations. This invariance forces the associated variational problem
to exhibit non-compactness phenomena, like in the Yamabe problem on do-
mains. We point out that in our case, contrary to the Yamabe problem, sim-
ply connected domains always admit only trivial solutions. For the Yamabe
problem in dimension greater or equal than three, there are indeed examples
of contractible domains which admit non-trivial positive solutions, see [23].

From now on we consider the case of constant H, precisely H(ξ, v,∇v) ≡
2. So problem (1) reduces to{

∆v = 2vx ∧ vy, in Ω,
v = g̃ on ∂Ω.

(2)

Under the assumption ‖g̃‖∞ < 1, S. Hildebrandt, [18], constructed a solu-
tion of (2) with minimal energy called the small solution, while Brezis and
Coron, [8], K.Steffen, [27] and M. Struwe, [29], constructed a second solution,
referred to as the large solution. We remark that the assumption ‖g̃‖∞ < 1
is sharp, see [17].

Results similar to those regarding the Dirichlet problem hold for the
Plateau problem, in which one looks for solutions of ∆u = Hux ∧ uy which
are conformal and which map the boundary to a given curve (with free
parametrization). As a result one obtains surfaces with constant mean cur-
vature.

We mainly focus on the following problem{
∆v = 2vx ∧ vy, in Ω,
u = εg̃ on ∂Ω.

(3)

We will study (3) turning it into a variational problem. In view of the non-
existence result in [17], it is natural to assume that the boundary datum is
small. T. Isobe in particular, [20]-[22], analyzed the behavior of the large so-
lutions of Brezis and Coron in the limit ε→ 0 (the small solutions converges
to the trivial one v ≡ 0 as ε→ 0).

Let g denote the harmonic extension of g̃ in Ω, i.e.{
∆g = 0 in Ω;
g = g̃ on ∂Ω.

(4)

If v is a solution of (3) and if we set v = u+ ε g, the function u solves{
∆u = ∆v = 2 (ux + ε gx) ∧ (uy + ε gy) in Ω;
u = 0 on ∂Ω.

(Pε)
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Problem (Pε) admits the Euler functional Iε : H1
0 (Ω; R3) → R, which has

the following expression

Iε(u)=
1
2

∫
Ω
|∇u|2+2

3

∫
Ω
u·(ux∧uy)+ε

∫
Ω
u·(ux∧gy+gx∧uy)+2ε2

∫
Ω
u·(gx∧gy).

(5)
The aim of this paper is to develop a Morse theory for the functional Iε when
ε is small. In order to do this we take advantage of the perturbative approach
in [1]. We first recall from [9] that the fundamental solution (bubble) of the
equation

∆u = 2ux ∧ uy, in R
2 (6)

is the stereographic projection π : R
2 → S2 ⊆ R

3

π(x, y) =
(

2x
1 + x2 + y2

,
2y

1 + x2 + y2
,
x2 + y2 − 1
1 + x2 + y2

)
, (x, y) ∈ R

2. (7)

Our analysis will use translations, dilations and rotations of the function in
(7) and we set

Rδa,λ(x, y) ≡ R ◦ π(λ(x− a1, y − a2)), (8)

for R ∈ SO(3), a = (a1, a2) ∈ R
2 and λ > 0. The functions Rδa,λ are

mountain-pass critical points of the functional

I(u) =
1
2

∫
R2

|∇u|2 +
2
3

∫
R2

u · (ux ∧ uy), u ∈ D, (9)

where D denotes the functional space

D =
{
u ∈ L2

loc(R
2; R3) : ‖u‖2

D =
∫

R2

|∇u|2 +
∫

R2

|u|2
(1 + |ξ|2)2 < +∞

}
.

The space D coincides with H1(S2; R3) after inverse stereographic projec-
tion. We point out that the functionals I and Iε are well defined and smooth
on D and H1

0 (Ω,R3) respectively, see Section 2. It turns out that the man-
ifold constituted by the δ’s is non-degenerate for the functional I (modulo
constants), as proved in [21] Lemma 5.5, using an isoperimetric inequality.
Proving the non-degeneracy condition is equivalent to classify the solutions
of

∆w = 2 (wx ∧ δy + δx ∧wy) in R
2, (10)

which is the linearization of (6) around δ, and to show that the only solutions
are the tangent vectors to Z at δ, see equation (16). We remark that equation
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(6) admits solutions of the form π(zk) (in complex notation) for any integer
k, see [9]. We will refer to these solutions as higher degree bubbles. For this
reason we give in the Appendix an alternative proof of the non-degeneracy,
which we believe could adapt naturally to the higher-degree case.

To analyze the problem in Ω, it is convenient to consider the functions
Pδ = δ − ϕ, where ϕ is defined in (21). Pδ is the element of H1

0 (Ω; R3)
closest to δ in the Dirichlet norm. We may write

u =
k∑
i=1

PRiδpi,λi
+ w, (11)

where Ri ∈ O(3), λi > 0, pi ∈ R
2 for all i, and w is orthogonal to the

manifold
∑k

i=1 PRiδpi,λi
. Once we have the non-degeneracy property for

I, then it is standard to prove that for suitable values of a and λ also the
manifold of projected bubbles is non-degenerate for Iε, and the same holds
true for a finite sum of bubbles. This property allows us to solve the equation
I ′ε(u) = 0 in w (see Proposition 4.3), and thus our problem is reduced to
a finite-dimensional one which involves an auxiliary functional Ĩε(z) (see
Section 4) depending only on {pi}i, {λi}i and {Ri}i. Substituting (11) into
Iε and letting ε→ 0, we expand Ĩε(z) for large values of λi (roughly of order
ε−1).

The large solution of Brezis and Coron corresponds to a one bubble so-
lution when ε → 0, and has been studied in detail by T. Isobe, [20]-[22].
However, from Theorem 0.3 in [9] it is clear that a more complicated con-
figuration may occur. Thus to manufacture this type of solutions we are
naturally led to a variational analysis of the functional (5) for multiple bub-
bles. We point out that from the work of Brezis-Coron the bubbles will
not necessarily be all of degree 1. However the variational analysis is more
difficult if we allow bubbles of arbitrary degree, and we will return to this
point in a subsequent article.

To state our results we need some notation. Given (a, ξ) =
((a1, a2), (x, y)) ∈ Ω × Ω, let h1, h2 : Ω × Ω → R be the solutions of the
problems

{
∆ξh1(a, ξ) = 0 in Ω,
h1(a, ξ) = ξ1−a1

|ξ−a|2 on ∂Ω;

{
∆ξh2(a, ξ) = 0 in Ω,
h2(a, ξ) = ξ2−a2

|ξ−a|2 on ∂Ω,
(12)

see Remark 5.3 (b). If G(a, ξ) denotes the Green’s function of Ω, normalized
so that G(a, ξ) ∼ − log |a − ξ| for a ∼ ξ, and if H(a, ξ) denotes the regular
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part of G (G(a, ξ) = − log |a− ξ| −H(a, ξ)), then we have

h1(a, ξ) =
∂H(a, ξ)
∂a1

; h2(a, ξ) =
∂H(a, ξ)
∂a2

. (13)

Let also

H̃(a) =
(
∂h1

∂x
+
∂h2

∂y

)
|ξ=a. (14)

It has been proved in [20]-[22] (see also [26]) that the function H̃ plays a
crucial role in studying the location of blowing-up solutions of (2), when
the boundary datum converges to zero. In fact, the function H̃ appears in
the expansion of Iε(u), when u is of the form (11) with k = 1, as a self-
interaction term, see Proposition 5.1. The expansion for k = 1 is essentially
performed in the works of Isobe, but we derive it in a framework which is
convenient to treat the case of k > 1, see Section 7. We have the following
result, regarding the function H̃.

Theorem 1.1. (a) For a simply connected domain Ω there holds

H̃(a) = 2e2H(a,a), a ∈ Ω,

where H(a, ξ) is the regular part of the Green’s function of Ω.

(b) For a multiply connected domain Ω there not exist in general a func-
tion F such that H̃(a) = F (H(a, a)). In particular, for some annulus of the
form

{
ρ−1 < |z| < ρ

}
, ρ > 1, the critical points of H(a, a) and of H̃(a) do

not coincide.

Theorem 1.1 is proved in Section 6. The function H(a, a) is called the Robin
function of the domain Ω, see [6]. In dimension 2 it also appears in extremal
problems related to the Moser-Trudinger inequality, where the critical points
of H(a, a) are shown to be related to the conformal incenter of Ω. Isobe
showed that H̃ > 0 on any domain, see Remark 5.3, but did not analyze it
further. Since H̃ is defined by means of second derivatives of H, we need
to use a global argument (the Riemann mapping theorem) to compare the
two functions H and H̃. The new feature of Theorem 1.1 is that the Robin
function plays a role in concentration phenomena only for the case of simply
connected domains.

The regular part of the Green’s function plays an important role in many
problems with critical exponent in dimension larger than two, see [2], [5], [7],
[15], [24], [25]. The difference here is that the regular part does not appear
directly in the expansion, we find the above function H̃ instead, and we
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recover the regular part from the Riemann mapping Theorem. The Robin
function is also related to the notion of conformal incenter, see [14].

The expansion of Iε(u) for multiple bubbles is performed in Section 7,
see Proposition 7.4. It turns out that when λi ∼ ε−1 for all i, the mutual
interaction among the bubbles is of the same order as the interaction with the
boundary (through both the geometry of Ω and the datum g). We observe
that the interaction among the bubbles depend on their mutual orientation.

There is a by-product of the expansion in Proposition 7.4. It allows us
to settle a particular case of a question raised by Brezis and Coron, see
Section 8. In [9] the authors consider a sequence of solutions un of (1) and a
sequence gn of boundary data which converge to zero in H

1
2 (∂Ω)∩L∞(∂Ω).

Under these conditions they prove that the sequence un splits into a finite
number of bubbles, and their image converge to a finite and connected union
of spheres of radius 1. They ask whether every configuration of spheres can
be obtained as a limit of solutions un for a suitable sequence of boundary
data gn. We have an affirmative answer if all the spheres pass through the
origin.

Theorem 1.2. Let D denote the unit disk in R
2, and let A = {S1∪· · ·∪Sk}

be any configuration of unit spheres, each passing through the origin of R
3.

Then there exist a sequence g̃n : S1 → R
3 and a sequence of functions un

solving {
∆v = 2vx ∧ vy in D,

v = g̃n on ∂D,

such that the image of the function un converge to A in the Hausdorff sense.

The functions un in Theorem 1.2 are constructed studying the interactions
of the bubbles (of degree 1) with the boundary datum and among them-
selves. Choosing boundary data with an appropriate strong concentration at
k points on ∂D, we show that the self interaction among the bubbles becomes
negligible. Hence we can find solutions un which are highly concentrated at
k points close to the boundary of D and with prescribed orientations in R

3.
We remark that the order of concentration, roughly the parameter λ in (8),
turns out to be the same for all the bubbles.

The case of spheres not passing through the origin is not treated here.
We believe that it could be possible to achieve such configurations by con-
sidering bubbles with higher degree. In fact, in the recent paper by A. Bahri
and S. Chanillo, [3], the authors showed that when considering changing-
sign solutions of the Yamabe problem, the bubbles can exhibit different or-
ders of concentration. If there is an analogy between higher-degree bubbles
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and changing-sign solutions of the Yamabe equation, then one could obtain
bubbles with higher and higher concentration and with image not passing
through the origin. This will be the object of a future work.

Acknowledgments.

S.C. is supported by a NSF grant. A. M. has been supported by a Ful-
bright fellowship for the academic year 2000-2001 and by MURST, under
the project Variational Methods and Nonlinear Differential Equations. He is
also grateful to the Mathematics Department at Rutgers University and IAS
for the kind hospitality, where part this work has been accomplished. The
authors wish to thank A. Bahri for useful discussions, and are very grateful
to P. Caldiroli and R. Musina for their helpful comments.

2. Notation and preliminary facts.

In this Section we introduce some notation and preliminary facts in order to
tackle problem (3).

In the following D will denote the unit disk in R
2

D =
{
ξ = (x, y) ∈ R

2 : x2 + y2 < 1
}
.

Let I : D → R be defined by (9). From [12] the last term in I(u) is well
defined on D, together with its Frechet derivatives. This makes I a smooth
functional on D. The same argument provides regularity of the functional
Iε on H1

0 (Ω; R3).
Using a finite-dimensional reduction, we are going to treat the functional

Iε as a perturbation of I. In order to do this, it is essential to consider the
critical points of the functional I, namely the solutions of

∆u = 2ux ∧ uy in R
2, u ∈ D. (15)

The stereographic projection (7) is indeed a solution of (15), which we call
fundamental solution or bubble. By invariance its translations, dilations and
rotations are also solutions of (15). We set

Z =
{
Rδa,λ(·) = Rδλ(· − a) : λ > 0, a ∈ R

2, R ∈ SO(3)
}
. (16)

We remark that, since SO(3) is a three-dimensional manifold, Z is a six-
dimensional manifold.
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We list now some useful expressions. Note that the function δ (λ (ξ − a))
has the explicit form

δ (λ (ξ − a)) =
(

2λ(ξ − a)
1 + λ2|ξ − a|2 ,

λ2|ξ − a|2 − 1
λ2|ξ − a|2 + 1

)
,

from which, if a is bounded away from ∂Ω, one can deduce

π (λ (ξ − a)) ∼
(

2
λ

(ξ − a)
|ξ − a|2 , 1 − 2

λ2

1
|ξ − a|2

)
+O(λ−3), for λ large. (17)

Writing for brevity δ instead of δa,λ, we compute some derivatives of δ. We
emphasize that throughout the paper, unless explicitly stated, the point a
will always be bounded away from ∂Ω, namely we will assume dist(a, ∂Ω) ≥
τ0 for some fixed τ0 > 0. We have

(δx)1 = 2λ
1 + λ2(y2 − x2)

(1 + λ2(x2 + y2))2
; (δx)2 = − 4λ3xy

(1 + λ2(x2 + y2))2
;

(δx)3 =
4λ2x

(1 + λ2(x2 + y2))2
;

(18)

(δy)1 = − 4λ3xy

(1 + λ2(x2 + y2))2
; (δy)2 = 2λ

1 + λ2(x2 − y2)
(1 + λ2(x2 + y2))2

;

(δy)3 =
4λ2y

(1 + λ2(x2 + y2))2
.

From the last two formulas we deduce

(δx ∧ δy)1 = − 8λ3x

(1 + λ2(x2 + y2))3
; (δx ∧ δy)2 = − 8λ3y

(1 + λ2(x2 + y2))3
;

(19)

(δx ∧ δy)3 = 4λ2 1 − λ2(x2 + y2)
(1 + λ2(x2 + y2))3

. (20)

The functions Rδa,λ|Ω do not belong to H1
0 (Ω; R3) since they are non-zero at

the boundary. Following [2], [25], it is convenient to project these functions
on the space H1

0 (Ω; R3), by subtracting the harmonic function on Ω with the
same boundary data. Let ϕ : Ω → R

3 be the unique solution of the problem{
∆ϕ = 0 in Ω,
ϕ = δ on ∂Ω,

(21)
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and set Pδ = δ − ϕ. We will often omit the dependence of ϕ on the param-
eters a, λ,R, as for δ.

From (18) and some standard computations it is easy to find that, in the
case R = Id

ϕ=
(

2
λ
h1(ξ, a)+o(λ−1),

2
λ
h2(ξ, a)+o(λ−1), 1− 2

λ2
h3(ξ, a)+o(λ−2)

)
, (22)

and

(δ − ϕ) =

⎛
⎜⎝

2λ(x−a1)
1+λ2|ξ−a|2 − 2

λh1(ξ, a) + o(λ−1)
2λ(y−a2)

1+λ2|ξ−a|2 − 2
λh2(ξ, a) + o(λ−1)

− 2
1+λ2|ξ−a|2 + 2

λ2h3(ξ, a) + o(λ−2)

⎞
⎟⎠ , (23)

where h1 and h2 are defined in (12), and where h3 is the solution of{
∆ξh3(a, ξ) = 0 in Ω,
h3(a, ξ) = 1

|ξ−a|2 on ∂Ω.
(24)

The quantities o(λ−1) and o(λ−2) in formulas (22) and (23) denote functions
which Ck(Ω)-norm, for any k ∈ N, is of order o(λ−1) and o(λ−2) respectively.

We collect some further estimates, whose proof are trivial, and which we
will use later. Given a fixed positive constant τ ≤ τ0

2 , for λ sufficiently large
there holds∫

Bτ

|Pδ|≤ C

λ
;
∫
Bτ

|∇δ|≤C log λ
λ

;
∫
Bτ

|∇Pδ|≤C log λ
λ

;
∫
Bτ

|δ|2≤C log λ
λ2

; (25)

|Pδ|(x)+|∇δ|(x)≤ C

λ
, ∀x∈Ω\Bτ ; |ϕ−(0, 0, 1)|(x)+|∇ϕ|(x)≤ C

λ
, ∀x∈Ω.

(26)
In the following, for brevity of notation, the constant C will be allowed to
vary from formula to formula and from line to line.

For k ≥ 1 and for i, j ∈ {1, . . . , k}, i �= j, we will use the following
notation

ẽ(ε, λ1, . . . λk) = O(ε2) +
k∑
i=1

O(ελ−1
i | log λi|) +

∑
i,j

O

(
1

λiλj

)
;

e(ε, λi) = o(ε2) + o(ελ−1
i );

e(λi, λj) = O

(
(log λi + log λj)

(
1
λ3
i

+
1
λ3
j

+
1

λ2
i λj

+
1

λiλ
j
2

))
;
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e(ε, λ1, . . . , λk) = o(ε2) +
k∑
i=1

o(ελ−1
i ) +

∑
i<j

e(λi, λj) +
∑
i<j<k

O

(
1

λiλjλk

)
.

We will often make use of the identity∫
R2

1 − |ξ|2
(1 + |ξ|2)3 = 0, (27)

which is immediate to verify (the integrand is indeed the third component
of ∆δ up to a multiplicative constant).

3. A non-existence result via a Pohozahev-type identity.

In this section we prove a Pohozaev-type identity for theH-surface equation.
The proof is elementary and extends a previous result of Wente, see [31].

Proposition 3.1. Let Ω ⊆ R
2 be a smooth bounded and simply-connected

domain, and let v ∈ C2(Ω; R3) be a solution of{
∆v = H(ξ, v,∇v)vx ∧ vy, in Ω,
v = 0 on ∂Ω,

(28)

for some continuous function H(ξ, v,∇v). Then v ≡ 0 in Ω.

Proof. We assume first that the domain Ω is the unit disk D. In the spirit
of the Pohozahev identity, we consider the quantity

∑3
i=1(ξ · ∇vi)∆vi and

integrate on D. We claim that

3∑
i=1

(ξ · ∇vi)(vx ∧ vy)i = 0, ξ = (x, y). (29)

Once (29) is proved, we have

3∑
i=1

(ξ · ∇vi)∆vi ≡ 0. (30)

Integrating (30) over D and taking into account that the dimension is 2, we
find

1
2

3∑
i=1

∫
∂D

(
∂vi
∂ν

)2

=
1
2

3∑
i=1

∫
∂D

(ξ · ν)
(
∂vi
∂ν

)2

= 0,
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where ν denoted the exterior unit normal to ∂D. As a consequence we
have ∂v

∂ν = 0 on ∂D. Thus, extending v to zero on the complement of D
and also extending H continuously outside D we obtain a C1 solution of
∆v = H(ξ, v,∇v)vx∧vy in R

2. Hence, applying Theorem 1 in [16] we obtain
v ≡ 0 in D. Let us now verify (29): using simple computation we find

3∑
i=1

(ξ · ∇vi)(vx ∧ vy)i=x [(v1)x(v2)x(v3)y − (v1)x(v3)x(v2)y+(v2)x(v1)y(v3)x

− (v2)x(v1)x(v3)y + (v3)x(v1)x(v2)y − (v3)x(v2)x(v1)y]
+ y [(v1)x(v2)x(v3)y − (v1)x(v3)x(v2)y + (v2)x(v1)y(v3)x
− (v2)x(v1)x(v3)y + (v3)x(v1)x(v2)y − (v3)x(v2)x(v1)y] = 0.

This concludes the proof in the case Ω = D. For the general case of a simply-
connected domain, it is sufficient to use the Riemann Mapping Theorem and
the transformation rule of (28) under conformal mappings. We recall that
for Ω smooth, the Riemann map is also smooth up to the boundary, see [30].

4. The finite-dimensional reduction.

In this section we show how problem (3) can be reduced to a finite-
dimensional one for small values of ε. The starting point is the following
Proposition, proven in [21] (Lemma 5.5) using an isoperimetric inequality.
We give an alternative proof in the Appendix, using the stereographic pro-
jection and shifting the problem from R

2 to S2. We believe that our proof
could be naturally extended to the case of higher degree bubbles.

Proposition 4.1. There exists a constant C0 > 0 such that

I
′′(Rδa,λ)[Rδa,λ, Rδa,λ] ≤ −C0‖Rδa,λ‖2, for all Rδa,λ ∈ Z.

and

I
′′(Rδa,λ)[v, v]≥C0‖∇v‖2

L2(R2), for all Rδa,λ∈Z and v⊥
(
TRδa,λ

Z⊕{tRδaλ}t
)
.

In particular, the equation I
′′(Rδa,λ)[v] = 0 implies v− c ∈ TRδa,λ

Z for some
c ∈ R

3.
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We are going to consider now problem (15) on the domain Ω. Given C > 0
we set

Z =

{
k∑
i=1

Pδpi,λi
: dist(pi, ∂Ω) ≥ C

−1
, dist(pi, pj) ≥ C

−1 ∀i �= j,

λi ε ∈ [C−1
, C], Ri ∈ SO(3)

}
. (31)

Proposition 4.1 asserts that the manifold Z, see (16), is non-degenerate for
the functional I module translations. As a consequence, it is easy to extrem-
ize Iε in the direction perpendicular to Z. This is stated in the following
Proposition 4.3, in the same spirit as [1]. We need first a preliminary Lemma
(see also [2], Proposition 3.1).

Lemma 4.2. Let k ∈ N, C > 0, and let Z be as in (31). Then there exists
a positive constant C such that

if v ∈ H1
0 (Ω), v ⊥ TzZ, v ⊥ Pδi ∀i, then I ′′ε (z)[v, v] ≥ C−1‖v‖2

H1
0 (Ω).

Proof. For i = 1, . . . , k, let Bi be the ball of radius C
−1

2 around pi, and

let also B̃i be the ball of radius C
−1

4 around pi. Let us denote by Pi the
orthogonal projection of H1

0 (Ω) onto H1
0 (Bi), and for any v ∈ H1

0 (Ω) set
v1 = v −

∑k
i=1 Piv. It follows immediately that

‖v‖2
H1

0 (Ω) =
k∑
i=1

‖Piv‖2
H1

0 (Ω) + ‖v1‖2
H1

0 (Ω). (32)

From standard regularity results, since the function v1 is harmonic in each
Bi, and since it coincides with v on each ∂Bi, there holds

‖v1‖C2(B̃i)
≤ C‖v‖H1

0 (Ω), for all i = 1, . . . , k, (33)

where C is a constant independent of v. Since v is orthogonal to Pδi, from
(26) we deduce

(Piv, Pδi) =

⎛
⎝v − v1 −

∑
j �=i

Pjv, Pδi

⎞
⎠ = −(v1, P δi) +

∑
j �=i

O

(
1
λj

)
‖v‖H1

0 (Ω).
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To evaluate the scalar product (v1, P δi) =
∫
Ω ∇v1 · ∇Pδi, we divide the

integral in the regions B̃i and Ω \ B̃i. We have clearly
∫
Ω\B̃i

∇v1 · ∇Pδi =
O(λ−1

i )‖v‖H1
0 (Ω). On the other hand, using (25) and (33) we find

∣∣∣∣
∫
B̃i

∇v1 · ∇Pδi
∣∣∣∣ = O

(∫
B̃i

|∇Pδi|
)
‖v‖H1

0 (Ω) ≤ O

(
log λi
λi

)
‖v‖H1

0 (Ω).

Using these formulas and (26) we obtain

|(Piv, δi)|=O
(

log λi
λi

)
‖v‖H1

0 (Ω)+
∑
j �=i

O

(
1
λj

)
‖v‖H1

0 (Ω)≤Cε| log ε| ‖v‖H1
0 (Ω).

(34)
In the same way as (34), using the explicit expression of the function
δi and taking the scalar product of v with ∂δi

∂pi
, ∂δi
∂Ri

and ∂δi
∂λi

, one finds
‖ΠiPiv‖ ≤ Cε| log ε|‖v‖H1

0 (Ω), where Πi denotes the orthogonal projection
onto the space spanned by δi, ∂δi∂pi

, ∂δi
∂Ri

and ∂δi
∂λi

. The functional I ′′ε (z) is given
by

I ′′ε (z)[v, ṽ] =
∫

Ω
∇v · ∇ṽ − 2

∫
Ω
z · (vx ∧ ṽy + ṽx ∧ vy)

+ 2ε
∫

Ω
ṽ · (gx ∧ vy + vx ∧ gy) , v, ṽ ∈ H1

0 (Ω).

It follows easily from the expression of I ′′ε and from Proposition 4.1 that

I ′′ε (z)[Piv, Piv] ≥ C0‖Piv‖2
H1

0 (Ω) − Cε| log ε| ‖v‖H1
0 (Ω). (35)

For an arbitrary function v there holds

I ′′ε (z)[v, v] =
k∑
i=1

I ′′ε (z)[Piv, Piv] + I ′′ε (z)[v1, v1] + 2
k∑
i=1

I ′′ε (z)[Piv, v1]. (36)

From the orthogonality of Piv and v1 it follows that

I ′′ε (z)[Piv, v1] = −2
∫

Ω
z · ((Piv)x ∧ (v1)y + (v1)x ∧ (Piv)y)

+ 2ε
∫

Ω
Piv · (gx ∧ (v1)y + (v1)x ∧ gy)

= O

(∫
|z||∇Piv||∇v1|

)
+O(ε)‖v‖2

H1
0 (Ω).
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Dividing again the integral into the regions B̃i and Ω \ B̃i we deduce

I ′′ε (z)[Piv, v1] = O

(
log λi
λi

)
‖v‖2

H1
0 (Ω)+

∑
j �=i

O

(
1
λj

)
‖v‖2

H1
0 (Ω)+O(ε)‖v‖2

H1
0 (Ω).

(37)
Similarly, we obtain

I ′′ε (z)[v1, v1] = ‖v1‖2
H1

0 (Ω) +O

(
log λi
λi

)
‖v‖2

H1
0 (Ω) (38)

+
∑
j �=i

O

(
1
λj

)
‖v‖2

H1
0 (Ω) +O(ε)‖v‖2

H1
0 (Ω).

From (32), (35), (36), (37) and (38) the Lemma follows.

Proposition 4.3. Let C be a fixed positive constant, let k ∈ N, let ε > 0,
and Z be defined as above. Then, if ε is sufficiently small, for every z ∈ Z
there exist a function wε(z) ∈ H1(Ω; R3) and C > 0 with the following
properties

i) wε(z) is orthogonal to TzZ, for all z ∈ Z;

ii) I ′ε(z + wε(z)) ∈ TzZ, for all z ∈ Z;

iii) ‖wε(z)‖ ≤ C‖I ′ε(z)‖, for all z ∈ Z;

By i) and ii), the manifold

Zε = {z +wε(z) : z ∈ Z}

is a natural constraint for I ′ε. Namely if u ∈ Zε and I ′ε|Zε(u) = 0, then
I ′ε(u) = 0.

Proof. Given Proposition 4.1, the arguments are quite standard. For
convenience, we give a brief sketch in the case k = 1. In the proof, we
simply write δ for Rδa,λ.

Let us define Fε : Z ×H1(Ω; R3) × TzZ → H1(Ω; R3) × R by setting

Fε(z,w, q) =
(
I ′ε(z + w) − q

(w, q)

)
.

With this notation, the unknown (w, q) = (wε, I ′ε(z + wε(z))) can be im-
plicitly defined via the equation Fε(z,w, q) = (0, 0). Setting Gε(z,w, q) =
Fε(z,w, q) − ∂(w,q)Fε(z, 0, 0)[(w, q)] we have that

Fε(z,w, q) = 0 ⇔ ∂(w,q)Fε(z, 0, 0)[(w, q)] +Gε(z,w, q) = 0.
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Reasoning as in [1], using Lemma 4.2 one can prove that ∂(w,q)Fε(z, 0, 0) is
uniformly invertible for z ∈ Z and ε sufficiently small. Hence we can write

Fε(z,w, q)=0 ⇔ (w, q) =Wε(z,w, q)

:=−
(
∂(w,q)Fε(z, 0, 0)

)−1 [Fε(z, 0, 0) +Qε(z,w, q)] ,

where

Qε(z,w, q) = Fε(z,w, q) − Fε(z, 0, 0) − ∂(w,q)Fε(z, 0, 0)[(w, q)].

It is also standard to prove that Qε(z,w, q) satisfies
{
‖Qε(z,w, q)‖ ≤ C‖(w, q)‖2

‖Qε(z,w, q)−Qε(z, w̃, q̃)‖≤C(‖(w, q)‖+‖(w̃, q̃)‖) ‖(w, q)−(w̃, q̃)‖,
(39)

where ‖(w, q)‖ and where C = C(Ω, g, C) is a constant depending on Ω,
g, C, and independent of z ∈ Z and ε. Using (39) it is possible to prove
that the function Wε is a contraction in a ball of radius C̃‖Fε(z, 0, 0)‖ for
some positive constant C̃(Ω, g, C). Since ‖Fε(z, 0, 0)‖ ≤ C‖I ′ε(z)‖ for some
constant C, the conclusion follows.

We estimate now the quantity ‖I ′ε(
∑
Pδi)‖ in order to control the norm of

wε(z), see iii) in Proposition 4.3.

Lemma 4.4. Let C be a fixed positive constant, let k ∈ N, let ε > 0, and
let Z be as in (31). Then there holds

‖I ′ε(z)‖ ≤ ẽ(ε, λ1, . . . , λk), for ε sufficiently small and for all z ∈ Z,

where ẽ(ε, λ1, . . . , λk) is defined in Section 2.

Proof. Let v ∈ H1
0 (Ω; R3) and z ∈ Z. Using integration by parts we

deduce easily

I ′ε(z)[v]=
∫

Ω
∇z ·∇v+2

∫
Ω
v·(zx∧zy)+2ε

∫
Ω
z ·(vx∧gy+gx∧vy)+2ε2

∫
Ω
v·(gx∧gy).

(40)
From Hölder’s inequality we get

∣∣∣∣
∫

Ω
z(vx ∧ gy + gx ∧ vy)

∣∣∣∣ ≤ ‖g‖C1(Ω)

(∫
Ω
|z|2
) 1

2

‖v‖, for all v ∈ H1(Ω; R3).
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From (25), (26) it is easy to check that
(∫

Ω |z|2
) 1

2 ≤ C
∑k

i=1
1
λi
| log λi|

1
2 ,

hence we have∣∣∣∣ε
∫

Ω
z · (vx ∧ gy + gx ∧ vy)

∣∣∣∣ ≤ C

k∑
i=1

ε

λi
| log λi|

1
2 ‖v‖, for all v ∈ H1

0 (Ω; R3).

On the other hand, it is also immediate to verify the inequality

ε2
∣∣∣∣
∫

Ω
v · (gx ∧ gy)

∣∣∣∣ ≤ Cε2‖v‖, for all v ∈ H1
0 (Ω) and all z ∈ Z.

It remains to estimate the first two terms in (40). Writing for brevity δi =
Riδpi,λi

, we have also∫
Ω
∇z·∇v+2

∫
Ω
v·(zx∧zy)=

∫
Ω
v·
[
−∆

(∑
Pδi

)
+2
((∑

Pδi

)
x
∧
(∑

Pδi

)
y

)]
.

Using the equation ∆δi = 2((δi)x ∧ (δi)y) and the fact that ∆δi = ∆(Pδi),
the above quantity becomes

2
∫

Ω
v ·
[(∑

Pδi

)
x
∧
(∑

Pδi

)
y
−
∑

(δi)x ∧ (δi)y

]
,

which can be written as

2
∑
i�=j

∫
Ω
v·((Pδi)x∧(Pδj)y)+2

∑
i

∫
Ω
v·[(Pδi − δi)x ∧ (δi)y+(δi)x ∧ (Pδi − δi)y] .

(41)
Let us estimate first the term

∫
Ω v · (Pδi)x ∧ (Pδj)y. Let γ < 1

2C
−1 (recall

the definition of Z) be a fixed positive number and divide the integral in the
three regions Bγ(pi), Bγ(pj) and Ω \ (Bγ(pi)∪Bγ(pj)). Integrating by parts
on the balls Bγ(pi) and Bγ(pj), the quantity

∫
Ω v · (Pδi)x ∧ (Pδj)y becomes

−
∫
Bγ(pi)

vx · (Pδi∧(Pδj)y)−
∫
Bγ(pi)

v · (Pδi∧(Pδj)xy)+
∫
∂Bγ(pi)

v · (Pδi∧(Pδj)y)νx

−
∫
Bγ(pj)

vx · (Pδi∧(Pδj)y)−
∫
Bγ(pj)

v · (Pδi∧(Pδj)xy)+
∫
∂Bγ(pj)

v · (Pδi∧(Pδj)y)νx

+
∫

Ω\(Bγ (pi)∪Bγ(pj))
v · ((Pδi)x ∧ (Pδj)y) .

Hence, since δi and its derivatives are of order λ−1
i in Ω \Bγ(pi) one finds∣∣∣∣

∫
Ω
v · ((Pδi)x ∧ (Pδj)y)

∣∣∣∣ ≤ C
1

λiλj
‖v‖.
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Using similar estimates we find that the whole expression in (41) is of order
ε2. So we obtain the conclusion.

Lemma 4.5. Let C > 0 and let Z be as in (31). Then there holds

∣∣∣∣I ′′ε (z)
[
∂z

∂pi

]∣∣∣∣+
∣∣∣∣I ′′ε (z)

[
∂z

∂Ri

]∣∣∣∣ ≤ C

⎛
⎝ε+

k∑
j=1

λ−1
j

⎞
⎠ ;

∣∣∣∣I ′′ε (z)
[
∂z

∂λi

]∣∣∣∣ ≤ 1
λi
C

⎛
⎝ε+

k∑
j=1

λ−1
j

⎞
⎠ ,

for every i = 1, . . . , k.

Proof. From (40) and some integration by parts it follows that

I ′′ε (z)[v, ṽ]=
∫

Ω
∇v ·∇ṽ+2

∫
Ω
ṽ ·(zx ∧ vy + vx ∧ zy)+2ε

∫
Ω
ṽ ·(gx ∧ vy + vx ∧ gy),

where v, ṽ are arbitrary functions in H1
0 (Ω,R3). We choose now ṽ = ∂z

∂pi
,

and we let v be an arbitrary test function. We have clearly ∂z
∂pi

= ∂δi
∂pi

− ∂ϕi
∂pi

,
where ϕi is the function in (21) corresponding to δi. From the estimates in
(26) and from the explicit expression of ∂δi

∂pi
we find

ε

∣∣∣∣
∫
∂z

∂pi
· (gx ∧ vy+vx ∧ gy)

∣∣∣∣≤C ε

λi
‖v‖+Cε

∥∥∥∥∂δi∂pi

∥∥∥∥
L2(Ω)

‖v‖≤Cε‖v‖. (42)

Turning to the remaining two terms, we have∫
Ω
∇v · ∇ ∂z

∂pi
+ 2
∫

Ω

∂z

∂pi
· (zx ∧ vy + vx ∧ zy) =

∫
Ω
∇v · ∇∂δi

∂pi

+ 2
∫

Ω

∂δi
∂pi

· ((δi)x ∧ vy + vx ∧ (δi)y)

+ 2
∑
j �=i

∫
Ω

∂δi
∂pi

· ((δj)x ∧ vy + vx ∧ (δj)y) +O(λ−1
i )‖v‖. (43)

Integrating by parts and using the fact that ∇ ∂δi
∂pi

is of order λ−1
i on ∂Ω we

find∫
Ω
∇v · ∇∂δi

∂pi
+ 2
∫

Ω

∂δi
∂pi

· ((δi)x ∧ vy + vx ∧ (δi)y) =
∫
∂Ω
v · ∂

∂ν

(
∂δi
∂pi

)
= O(λ−1

i )‖v‖, (44)
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since ∂δi
∂pi

satisfies (10). To estimate
∫
Ω
∂δi
∂pi

·((δj)x ∧ vy + vx ∧ (δj)y) for j �= i,
we proceed as follows. Let Bi and Bj denote the balls of radius 1

2C
centered

at pi and pj respectively. By the definition of Z these two balls are disjoint
and moreover, by (26) ∇δi and ∇δj are of order λ−1

i and λ−1
j respectively

outside Bi and Bj. Hence we have
∣∣∣∣
∫

Ω

∂δi
∂pi

· ((δj)x ∧ vy + vx ∧ (δj)y)
∣∣∣∣ ≤ C

(
1
λi

+
1
λj

+
1

λiλj

)
‖v‖. (45)

Hence (42)-(45) imply
∣∣∣I ′′ε (z)

[
∂z
∂pi

]∣∣∣ ≤ C
(
ε+
∑k

j=1 λ
−1
j

)
. The remaining

part of the statement follows from similar arguments.

From Proposition 4.3, critical points of Iε restricted to Zε are true critical
points of Iε. We define Ĩε : Z → R as Ĩε(z) = Iε(z+wε(z)). We now analyze
the reduced functional Ĩε.

Proposition 4.6. Let C > 0, let Z be as in (31) and let wε(z) be as in
Proposition 4.3. Then we have∣∣∣Ĩε(z) − Iε(z)

∣∣∣ ≤ Cẽ2(ε, λ1, . . . , λk), ∀z ∈ Z; (46)

Moreover, for all z =
∑k

i=1RiPpi,λi
∈ Z there holds

⎧⎨
⎩
∣∣∣∂Ĩε(z)∂pi

− ∂Iε(z)
∂pi

∣∣∣+∣∣∣∂Ĩε(z)∂Ri
− ∂Iε(z)

∂Ri

∣∣∣≤(ε+∑j λ
−1
j

)
ẽ(ε, λ1, . . . , λk);∣∣∣∂Ĩε(z)∂λi

− ∂Iε(z)
∂λi

∣∣∣ ≤ 1
λi

(
ε+
∑

j λ
−1
j

)
ẽ(ε, λ1, . . . , λk)

(47)

Proof. We have

Ĩε(z) − Iε(z) = Iε(z +w) − Iε(z) =
∫ 1

0
I ′ε(z + sw)[w] ds

= I ′ε(z)[w]+
∫ 1

0
(I ′ε(z+sw)−I ′e(z))[w] ds.

Since the functional I ′′ε is locally bounded, we have the following estimate

∣∣I ′ε(z + sw) − I ′ε(z)
∣∣ ≤ ∣∣∣∣

∫ 1

0
I ′′ε (z + tsw)[w]dt

∣∣∣∣
≤ sup

t,s∈[0,1]
‖I ′′ε (z + tsw)‖‖w‖ ≤ C‖w‖
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for some fixed constant C depending on Ω, ‖g‖C2(∂Ω) and the above constant
C. Using the last three equations, Lemma 4.4 and the property iii) in
Proposition 4.3 we find∣∣∣Ĩε(z) − Iε(z)

∣∣∣ ≤ ‖I ′ε(z)‖ ‖wε(z)‖ + C‖wε(z)‖2 ≤ ẽ2(ε, λ1, . . . , λk).

This concludes the proof of (46). We just sketch the proof of (47). Differ-
entiating the equation Fε(z,w, q) = 0 with respect to pi we obtain

0 =
∂Fε
∂z

∂z

∂pi
+

∂Fε
∂(w, q)

∂(w, q)
∂pi

= I ′′ε (z + wε(z))
∂z

∂pi
+

∂Fε
∂(w, q)

∂(w, q)
∂pi

.

Similarly as before, one finds that ∂(w,q)Fε is uniformly invertible, and hence∥∥∥∥∂w∂pi
∥∥∥∥ ≤ C

∥∥∥∥I ′′ε (z + wε(z))
∂z

∂pi

∥∥∥∥ ≤ C

∥∥∥∥I ′′ε (z)
∂z

∂pi

∥∥∥∥+ C‖wε(z)‖
∥∥∥∥ ∂z∂pi

∥∥∥∥ , (48)

where we have used the fact that I ′′ε is locally Lipschitz. We have

∂Ĩε(z)
∂pi

− ∂Iε(z)
∂pi

= I ′′ε (z)
[
∂z

∂pi
, wε(z)

]

+
∫ 1

0

(
I ′′ε (z + swε(z)) − I ′′ε (z)

) [ ∂z
∂pi

, wε(z)
]
ds

+ I ′ε(z)
[
∂w

∂pi

]
+ I ′′ε (z)

[
∂w

∂pi
, wε(z)

]

+
∫ 1

0

(
I ′′ε (z + swε(z)) − I ′′ε (z)

) [∂w
∂pi

, wε(z)
]
ds. (49)

Equation (49) implies∣∣∣∣∣∂Ĩε(z)∂pi
− ∂Iε(z)

∂pi

∣∣∣∣∣ ≤ C

∥∥∥∥I ′′ε (z)
[
∂z

∂pi

]∥∥∥∥ ‖wε(z)‖
+ C‖wε(z)‖2

(∥∥∥∥ ∂z∂pi
∥∥∥∥+
∥∥∥∥∂w∂pi

∥∥∥∥
)

+ C
∥∥I ′ε(z)∥∥

∥∥∥∥∂w∂pi
∥∥∥∥+ C ‖wε(z)‖

∥∥∥∥∂w∂pi
∥∥∥∥ .

Then the estimate of ∂Ĩε(z)∂pi
− ∂Iε(z)

∂pi
in (47) follows from Lemma 4.4, (48) and

Lemma 4.5. The remaining part of (47) follows from similar estimates.
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5. The expansion for one bubble.

In this section we compute the expansion of Iε(z), with z ∈ Z, for ε small
and in the case k = 1. This is essentially performed in [20]-[21], in order
to construct blowing-up solutions of (2), and in order to characterize the
mountain-pass solutions in the limit ε → 0. We derive the expansion here,
in a form which is useful for us in the expansion for multiple bubbles in
Section 7. Let us first introduce some notation. We recall that g : Ω → R

3

denotes the solution of (4), and letting R ∈ SO(3), define dRg : Ω → R by

dRg(a) =
∂

∂x
(R ◦ g)1(a) +

∂

∂y
(R ◦ g)2(a), x ∈ Ω.

For a fixed boundary datum g̃, we are interested in expanding the functional
Iε(Pδ) as a function of the parameters a, λ, R and ε. We have the following
Proposition.

Proposition 5.1. Let C > 0 be fixed, and let a, λ,R be such that PRδa,λ ∈
Z. Then, setting

A0 =
∫

R2

|ξ|2
(1 + |ξ|2)3 ; FΩ,g(ε, a, λ,R) = 8A0

(
1
λ2
H̃(a) − ε

λ
dR−1g(a)

)
,

there holds

Iε(PRδa,λ) =
8
9
A0 + FΩ,g(a, λ,R) + o(ε2) + e(ε, λ);

∂Iε(PRδa,λ)
∂a

=
∂FΩ,g

∂a
+ e(ε, λ);

∂Iε(PRδa,λ)
∂λ

=
∂FΩ,g

∂λ
+
e(ε, λ)
λ

;

∂Iε(PRδa,λ)
∂R

=
∂FΩ,g

∂R
+ e(ε, λ),

where e(ε, λ) is defined in Section 2.

Proof. We assume that R = Id, and we write δ for δa,λ. Let also ϕ be
the solution of (21). We have

Iε(Pδ) =
1
2

∫
Ω
|∇δ|2 +

1
2

∫
Ω
|∇ϕ|2 −

∫
Ω
∇ϕ · ∇δ

+
2
3

∫
Ω
(δ − ϕ) · ((δ − ϕ)x ∧ (δ − ϕ)y)

+ ε

∫
Ω
(δ − ϕ) · ((δ − ϕ)x ∧ gy + gx ∧ (δ − ϕ)y)

+ 2ε2
∫

Ω
(δ − ϕ) · (gx ∧ gy). (50)
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Integrating by parts we can write

1
2

∫
Ω
|∇δ|2 +

1
2

∫
Ω
|∇ϕ|2 −

∫
Ω
∇ϕ · ∇δ =

∫
Ω
(ϕ− δ) · (δx ∧ δy). (51)

We expand first the expression in (51). Let us evaluate the z-component
in the scalar product of the integral on the right-hand side in (51). From
formulas (18) and (23) we deduce

(ϕ− δ)3(δx ∧ δy)3

= −
(

1 − 2
λ2
h3(a, a) −

λ2|ξ − a|2 − 1
λ2|ξ − a|2 + 1

+ o(λ−2)
)

4λ2 1 − λ2|ξ − a|2
(λ2|ξ − a|2 + 1)3

= −8λ2

(
1

λ2|ξ − a|2 + 1
− 1
λ2
h3(a, a) + o(λ−2)

)
1 − λ2|ξ − a|2

(λ2|ξ − a|2 + 1)3
.

Integrating on Ω we get∫
Ω
(ϕ− δ)3(δx ∧ δy)3 (52)

= −8λ2

∫
Ω

(
1

λ2|ξ − a|2 + 1
− 1
λ2
h3(a, a) + o(λ−3)

)
1 − λ2|ξ − a|2

(λ2|ξ − a|2 + 1)3
.

Using a change of variable we obtain

λ2

∫
Ω

1 − λ2|ξ − a|2
(λ2|ξ − a|2 + 1)4

= λ2

∫
R2

1 − λ2|ξ − a|2
(λ2|ξ − a|2 + 1)4

−λ2

∫
R2\Ω

1 − λ2|ξ − a|2
(λ2|ξ − a|2 + 1)4

=
∫

R2

1 − |ξ|2
(|ξ|2 + 1)4

+O(λ−4), (53)

and also∫
Ω

1 − λ2|ξ − a|2
(λ2|ξ − a|2 + 1)3

=
∫

R2

1 − λ2|ξ − a|2
(λ2|ξ − a|2 + 1)3

−
∫

R2\Ω

1 − λ2|ξ − a|2
(λ2|ξ − a|2 + 1)3

=
1
λ2

∫
R2

1 − |ξ|2
(|ξ|2 + 1)3

+O(λ−4) = O(λ−4). (54)

The last identity follows from (27). In conclusion, from (52), (53) and (54)
we get ∫

Ω
(ϕ− δ)3(δx ∧ δy)3 = 8

∫
R2

|ξ|2 − 1
(|ξ|2 + 1)4

+ o(λ−2). (55)
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We consider now the x and y components of the integral on the right-hand
side in (51). We have, using (17) and (19)

∫
Ω
(ϕ− δ)1(δx ∧ δy)1

= −
∫

Ω

(
2
λ
h1(ξ, a) −

2λ(x− a1)
1 + λ2|ξ − a|2 + o(λ−1)

)
8λ3(x− a1)

(1 + λ2|ξ − a|2)3 .

We can write

λ4

∫
Ω

(x− a1)2

(1 + λ2|ξ − a|2)4 =λ4

∫
R2

(x− a1)2

(1 + λ2|ξ − a|2)4 −λ
4

∫
R2\Ω

(x− a1)2

(1 + λ2|ξ − a|2)4

=
∫

R2

x2

(1 + |ξ|2)4 +O(λ−4).

From the smoothness of hi we have also∣∣∣∣
∫

Ω
(h1(ξ, a) − h1(a, a) − (ξ − a) · ∇h1(a, a))

x− a1

(1 + λ2|ξ − a|2)3

∣∣∣∣
≤ O

(∫
Ω

|ξ − a|3
(1 + λ2|ξ − a|2)3

)
.

As a consequence we deduce

∫
Ω
h1(x, a)

(x− a1)
(1 + λ2|ξ − a|2)3 =

∫
Ω
h1(a, a)

(x− a1)
(1 + λ2|ξ − a|2)3

+
∫

Ω
((ξ − a) · ∇h1(a, a))

(x− a1)
(1 + λ2|ξ − a|2)3

+O

(∫
Ω

|ξ − a|3
(1 + λ2|ξ − a|2)3

)

=
1
λ4
∂xh1(a, a)

∫
R2

x2

(1 + |ξ|2)3 + o(λ−4).

From the last equation we deduce

∫
Ω
(ϕ− δ)1(δx ∧ δy)1 = 16

∫
R2

x2

(1 + |ξ|2)4

− 16
1
λ2
∂xh1(a, a)

∫
R2

x2

(1 + |ξ|2)3 + o(λ−2). (56)
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In the same way we obtain∫
Ω
(ϕ− δ)2(δx ∧ δy)2 = 16

∫
R2

x2

(1 + |ξ|2)4

− 16
1
λ2

∂yh3(a, a)
∫

R2

x2

(1 + |ξ|2)3 + o(λ−2). (57)

From (55), (56) and (57) it follows that∫
Ω
(ϕ− δ)·(δx ∧ δy) = 8

∫
R2

|ξ|2 − 1
(1 + |ξ|2)4 + 32

∫
R2

x2

(1 + |ξ|2)4

− 16
1
λ2

(∫
R2

x2

(1 + |ξ|2)3
)(

∂h1

∂x
+
∂h2

∂y

)
(a, a) + o(λ−2).

It is standard to check that

8
∫

R2

|ξ|2 − 1
(1 + |ξ|2)4 + 32

∫
R2

x2

(1 + |ξ|2)4 =
8
3
A0,

Hence from the last two equations we find∫
Ω
(ϕ− δ) · (δx ∧ δy) =

8
3
A0 −

8
λ2
A0

(
∂h1

∂x
+
∂h2

∂y

)
(a, a) + o(λ−2). (58)

We turn now to the fourth term in (50). We have clearly∫
Ω
(δ − ϕ) · ((δ − ϕ)x ∧ (δ − ϕ)y) =

∫
Ω
(δ − ϕ) · (δx ∧ δy)

−
∫

Ω
(δ − ϕ) · (δx ∧ ϕy + ϕx ∧ δy).

Let us consider the term δx ∧ ϕy. Using the above formulae we deduce

(δx ∧ ϕy)1 =
8λ(x− a1)(y − a2)
(1 + λ2|ξ − a|2)2

(
∂h3

∂y
+O(λ−1)

)

− 8λ(x− a1)
(1 + λ2|ξ − a|2)2

(
∂h2

∂y
+O(λ−1)

)
;

(δx ∧ ϕy)2 =
8λ(x− a1)

(1 + λ2|ξ − a|2)2
(
∂h1

∂y
+O(λ−1)

)

+
4
λ

1 + λ2(y2 − x2)
(1 + λ2|ξ − a|2)2

(
∂h3

∂y
+O(λ−1)

)
; (59)

(δx ∧ ϕy)3 = 4
1 + λ2((y − a2)2 − (x− a1)2)

(1 + λ2|ξ − a|2)2

(
∂h2

∂y
+O(λ−1)

)

+
8λ2(x− a1)(y − a2)

(1 + λ2|ξ − a|2)2

(
∂h1

∂y
+O(λ−1)

)
.
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and also

(ϕx ∧ δy)1 =
8λ(y − a2)

(1 + λ2|ξ − a|2)2

(
∂h2

∂x
+O(λ−1)

)

+
4
λ

1 + λ2((x− a1)2 − (y − a2)2)
(1 + λ2|ξ − a|2)2

(
∂h3

∂x
+O(λ−1)

)
;

(ϕx ∧ δy)2 =
8λ(x− a1)(y − a2)
(1 + λ2|ξ − a|2)2

(
∂h3

∂x
+O(λ−1)

)

− 8λ(y − a2)
(1 + λ2|ξ − a|2)2

(
∂h1

∂x
+O(λ−1)

)
; (60)

(ϕx ∧ δy)3 = 4
1 + λ2((x− a1)2 − (y − a2)2)

(1 + λ2|ξ − a|2)2
(
∂h1

∂x
+O(λ−1)

)

+
8λ2(x− a1)(y − a2)

(1 + λ2|ξ − a|2)2
(
∂h2

∂x
+O(λ−1)

)
.

The functions ∂hi
∂xj

in the last formulas, as before, are evaluated at the point
(a, a). Using (23), (59) and (60) we find

∫
Ω
(δ − ϕ) · (δx ∧ ϕy) ∼ −32

1
λ2

(∫
R2

x2

(1 + |ξ|2)3

)
∂h2

∂y
(a, a) + o(λ−2), (61)

and similarly
∫

Ω
(δ − ϕ) · (ϕx ∧ δy) ∼ −32

1
λ2

(∫
R2

x2

(1 + |ξ|2)3
)
∂h1

∂x
(a, a) + o(λ−2),

Since |(ϕx ∧ ϕy)1| , |(ϕx ∧ ϕy)1| ≤ O(λ−3) and |(ϕx ∧ ϕy)3| ≤ O(λ−2), one
can check that ∫

Ω
(δ − ϕ) · (ϕx ∧ ϕy) = o(λ−2).

Let us now turn to the fifth term in (50). The quantity (δ−ϕ)·((δ − ϕ)x ∧ gy)
can be estimated as(

2λ(x− a1)
1 + λ2|ξ − a|2 − 2

λ
h1

)[(
−4λ3(x− a1)(y − a2)

(1 + λ2|ξ − a|2)2 − 2
λ
∂xh2

)
(g3)y

−
(

4λ2(x− a1)
(1 + λ2|ξ − a|2)2 +

2
λ2
∂xh3

)
(g2)y

]

+
(

2λ(y − a2)
1 + λ2|ξ − a|2 − 2

λ
h2

)[(
4λ2(x− a1)

(1 + λ2|ξ − a|2)2 +
2
λ2
∂xh3

)
(g1)y
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−
(

2λ
1 + λ2((y − a2)2 − (x− a1)2)

(1 + λ2|ξ − a|2)2 − 2
λ
∂xh1

)
(g3)y

]

+
(

2
λ2
h3 −

2
1+λ2|ξ − a|2

)[(
2λ

1+λ2((y − a2)2−(x− a1)2)
(1 + λ2|ξ − a|2)2 − 2

λ
∂xh1

)
(g2)y

+
(

4λ3(x− a1)(y − a2)
(1 + λ2|ξ − a|2)2 +

2
λ
∂xh2

)
(g1)y

]
.

Integrating on Ω and reasoning as before we get∫
Ω
(δ − ϕ) · ((δ − ϕ)x ∧ gy) = −16

λ

∫
R2

x2

(1 + |ξ|2)3 (g2)y +O(λ−2), (62)

and similarly∫
Ω
(δ − ϕ) · (gx ∧ (δ − ϕ)y) = −16

λ

∫
R2

x2

(1 + |ξ|2)3 (g1)x +O(λ−2). (63)

Finally, the last term in (50) is easily seen to be of order o(ε2). This concludes
the proof in the case of R = Id. For a generic rotation R it is sufficient, by
invariance, to consider the boundary datum R−1g and to substitute (g1)x +
(g2)y with dR−1g.

Remark 5.2. Propositions 4.6 and 5.1 allow us to find critical points of Iε
extremizing the reduced functional Ĩε on Z. Differentiating with respect to
R, λ, a we get

∂

∂R
dR−1g = 0; 2H̃(a) − ε λdR−1g = 0;

1
λ2

∇H̃(a) − ε

λ
∇dR−1g = 0. (64)

Using the second and third equations in (64) we deduce

∇ log H̃(a) = 2∇ log dR−1g(a).

The extremization with respect to R (the first equation in (64)) is performed
in [21] Lemma 5.4 and [20] Lemma 3.1.2 and, requiring dR−1g to be positive
(from the second equation in (64)) yields

∂

∂R
dR−1g = 0 ⇒ dR−1g =

(
|∇g|2 ± 2|gx ∧ gy|

) 1
2 . (65)

Hence, under the conditions ∇g �= 0, the extremization in (64) becomes

λ =
2
ε

H̃(a)
dR−1g(a)

;
∂

∂R
divπRg = 0; ∇|∇g|2 ± 2|gx ∧ gy|

H̃
(a) = 0. (66)
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In particular the mountain-pass solution of (3) (see [21]) has minimal energy
on Z, and one has to chose the + sign in (65)-(66), and the last function in
(66) is maximized on Ω.

Remark 5.3. (a) We point out that the expansions in (51) and (58) yield

‖Pδ‖2
H1(Ω) = ‖δ‖2

D − 16A0

λ2
H̃(a) + o(λ−2).

Since the norm of Pδ, being the projection of δ, is smaller than the norm of
δ, the above formula implies H̃ ≥ 0 on Ω. A little more calculation shows
that indeed H̃ > 0, as proved in [21].

(b) The functions h1, h2, and h3 defined in (12), (24) are related to the
boundary values of δ. Since h1 and h2 are of order λ−1, while h2 is of order
λ−2, h3 appears in the expansion only as a lower order term.

6. The role of the Robin function.

In this Section we investigate the relation between the Robin function H and
the function H̃ defined in (14). Since H̃ consists of second derivatives of the
regular part of the Green’s function, while the Robin function involves the
regular part itself, we need to use global arguments, based on the Riemann
mapping theorem. See [6] for some properties of the Robin function.

6.1. Simply connected domains.

In this subsection we prove the first assertion of Theorem 1.1.

Proposition 6.1. Let Ω ⊆ R
2 be a smooth simply connected domain.

Then, if f : Ω → D is a Riemann map, there holds

e2H(a,a) =
|f ′(a)|2

(1 − |f ′(a)|2)2
; H̃(a) = 2

|f ′(a)|2

(1 − |f ′(a)|2)2
. (67)

Proof. The first part of the statement is well-known, see e.g. [6], Table 2.
Letting GD(a, ξ) denote the Green’s function for D, and letting ϕ : D → R

being any smooth function with compact support, we have

ϕ(a′) =
∫
D
GD(a′, ξ)∆ϕ(ξ)dξ, a′ ∈ D.
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Let ψ : Ω → R be defined by ψ = ϕ ◦ f . We have ∆ψ(ξ) = 1
|f ′(ξ)|2 ∆ϕ(ξ) and

hence, letting G(a, ξ) be the Green’s function for Ω and using a change of
variables we get

ψ(a)=ϕ(f(a))=ϕ(a′)=
∫
D
GD(a′, ξ)∆ϕ(ξ)dξ=

∫
Ω
GD(f(a), f(ξ))∆ψ(ξ)dξ,

where a′ = f(a). Hence, from the explicit expression of GD it turns out that

G(a, z) = GD(f(a), f(z)) = −1
2

log
|f(z) − f(a)|2

|1 − f(z)f(a)|2
; a, z ∈ Ω,

where we have identified ξ with the point z in the complex plane. It follows
that

H(a, z) =
1
2

[
log |z − a|2 − log

|f(z) − f(a)|2

|1 − f(z)f(a)|2

]
; a, z ∈ Ω.

The last expression can be rewritten as

H(a, z) =
1
2

[
log |1 − f(z)f(a)|2 − log

|f(z) − f(a)|2
|z − a|2

]
; a, z ∈ Ω.

In particular, taking the limit z → a, we deduce immediately the first equal-
ity in (67).

Using complex notation, we have

∂

∂a1
=
(
∂

∂a
+

∂

∂a

)
;

∂

∂a2
= i

(
∂

∂a
− ∂

∂a

)
;

∂

∂x
=
(
∂

∂z
+

∂

∂z

)
;

∂

∂y
= i

(
∂

∂z
− ∂

∂z

)
.

It follows that

∂

∂x

∂

∂a1
+

∂

∂y

∂

∂a2
= 2

∂

∂z

∂

∂a
+ 2

∂

∂z

∂

∂a
= 4Re

∂

∂z

∂

∂a
:= L. (68)

To derive the expression of H̃, recall (13), we apply L to H(a, z) and evaluate
at z = a. We have, still in complex notation

∂

∂a
H(a, z) = −1

2
f(z)f ′(a)

1 − f(z)f(a)
− 1

2
∂

∂a
log

f(z) − f(a)
z − a

.



214 S. Chanillo and A. Malchiodi

When we apply the operator ∂
∂z the second term vanishes and we get

∂

∂z

∂

∂a
H(a, z) = −1

2
f ′(a)f ′(z)

(1 − f(z)f(a))2
.

Taking the real part we find

4Re
∂

∂z

∂

∂a
H(a, z) = −

[
f ′(a)f ′(z)

(1 − f(z)f(a))2
+

f ′(a)f ′(z)
(1 − f(a)f(z))2

]
.

Choosing z = a in the last formula, we obtain the second identity in (67).
This concludes the proof.

Remark 6.2. (a) The expression of H̃ in (67) does not depend on the choice
of the conformal map f of Ω into D.

(b) From the explicit description of H̃ in Proposition 6.1 we obtain
H̃(a) → +∞ as a → ∂Ω. This is true for any domain, as proved in [21],
Lemma 5.7.

(c) In the case of simply connected domains, the function H̃ coincides
with the square of the reciprocal of the conformal radius and the hyperbolic
radius, see [6], Definitions 1, 7 and Theorem 8. See also Remark 6.4.

(e) Since every convex domain has a single conformal incenter, see [14]
Proposition 11, it follows that H̃ possesses a unique critical point in this case.
For a general simply connected domain H̃ will have multiple critical points,
see [14] page 483. We also point out that, even if a conformal transformation
of the domain affects the number of critical points of H̃, the topology of
critical points at infinity (see [2]) at the first level of non-compactness should
be an invariant.

6.2. Multiply connected domains.

In this subsection we derive a general formula for H̃ on multiply connected
domains. This formula makes use of the covering map and the deck trans-
formation.

Let us recall that the Green’s function in the unit disk with pole z0 ∈ D
is given by

GD(z, z0) = − log
∣∣∣∣ z − z0
1 − z0z

∣∣∣∣ , z, z0 ∈ D.



Asymptotic Morse Theory 215

Let us pick a point w ∈ Ω and consider the Green’s function for Ω with pole
at a. From [6], Theorem 4, one has

GΩ(a,w) = −
∑
k

log
∣∣∣∣ zk − z

1 − zkz

∣∣∣∣ , where f(z) = w, f(zk) = a for all k.

Thus the regular part GΩ(a,w) is

HΩ(a,w) = log |f(z0) − f(z)| −
∑
k

log |zk − z| +
∑
k

log |1 − zkz|. (69)

Now, as in the previous subsection, it is sufficient to apply the operator L
defined in (68). The first two terms vanish when L is applied. To handle the
third term, note that f−1 is a local diffeomorphism. So f−1 is defined from
f−1 : U → Vk, where U is a neighborhood of a and Vk is a neighborhood of
zk. Thus we have

∂H

∂a
=
∂H

∂zk

∂zk
∂a

=
1

f ′(zk)
∂H

∂zk
.

Similarly, there holds

∂2H

∂w∂a
=

1
f ′(zk)

1
f ′(z)

∂2H

∂z∂zk
. (70)

Hence, using (69) and (70) we find

4Re
∂2H

∂w∂a
|w=a = −2Re

∑
k

1
f ′(zk)f ′(z0)

1
(1 − zkz0)2

.

Let Tk be the Mobius (deck) transformation that maps z0 into zk. We have

f = f ◦ Tk ⇒ f ′(z0) = f(zk)T ′
k(z0).

Using the last equation and factoring the term (1 − |z0|2)2, we deduce

2Re
∂2H

∂w∂a
|w=w1 = −2

1
|f ′(z0)|2(1 − |z0|2)2

Re
∑
k

T ′
k(z0)(1 − |z0|2)2

(1 − zkz0)2
. (71)

From (71) we obtain immediately the following result.

Proposition 6.3. Let Ω ⊆ R
2 be a multiply connected domain, and let

f : D → Ω be a conformal covering map. Given a ∈ Ω, let {zk}k be the
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pre-image of the point a under the map f , and let Tk : D → D denote the
deck transformation mapping z0 into zk. Then there holds

H̃(a)=
1

|f ′(z0)|2(1−|z0|2)2
∑
k

(
T ′
k(z0)(1−|z0|2)2

(1−zkz0)2
+
T ′
k(z0)(1−|z0|2)2

(1−zkz0)2

)
.

(72)

We note that when f−1(a) = {z0} we recover the formula for the simply
connected domain.

6.3. Some numerical computation.

In this subsection we prove that in general, for a multiply connected domain,
the two functions H̃ and 2e2H do not coincide (this is the case for simply
connected domains, see Proposition 6.1). We consider in particular the case
of an annulus of inner radius 1

ρ and outer radius ρ, where ρ > 1. Our
numerical computations show that the critical points of these two functions
do not coincide, hence we obtain the statement (b) in Theorem 1.1.

For ρ > 1 we set

Aρ =
{

(x, y) :
1
ρ2

< x2 + y2 < ρ2

}
; Sρ = {(x, y) : − log ρ < x < log ρ} .

It is clear that Sρ is a covering of Aρ through the exponential map. We also
define α ∈ C, hρ : Sρ → D and fρ : D → Aρ by

α=− iπ

2 log ρ
; hρ(w)=

eαw − 1
eαw + 1

, h−1
ρ (z)=

1
α

log
(

1 + z

1 − z

)
, f=exp ◦h−1

ρ .

where w ∈ Sρ and z ∈ D. Our aim is to compute formula (72) for this
particular case. Fixing z0 ∈ D, the points zk and the corresponding points
wk = h−1

ρ zk are given by

zk =
e2kπiα

(
1+z0
1−z0

)
− 1

e2kπiα
(

1+z0
1−z0

)
+ 1

; wk =
1
α

log
(

1 + z0
1 − z0

)
+ 2kπi.

Using some elementary computations we obtain

zk =
z0 +Mk

z0Mk + 1
; where Mk = tanh

(
kπ2

2 log ρ

)
.
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If Tk denotes as before the deck transformation, then there holds

Tk(z) =
z +Mk

zMk + 1
; T ′

k(z) =
1 −M2

k

(1 +Mkz)2
.

By symmetry, it is sufficient to compute (71) for f(z0) real and positive. It
is convenient to use the following parametrization for the points a ∈ Aρ and
z0 ∈ D

a = log x; z0 = −i tan
(

π

4 log ρ
log x

)
, x ∈ (− log ρ, log ρ).

Using this notation, from equation (72) we are left with

H̃(a) =
1

|f ′(z0)|2(1 − |z0|2)2
∑
k

(
(1 −M2

k )(1 − |z0|2)2
(1 +Mkz0)2(1 − zkz0)2

+
(1 −M2

k )(1 − |z0|2)2
(1 +Mkz0)2(1 − zkz0)2

)
.

From the above formuls it follows

H̃(a)=
2

|f ′(z0)|2(1−|z0|2)2
∑
k

(1−M2
k )(1−|z0|2)2

(
(1−|z0|2)2−4|z0|2M2

k

)
(
(1 − |z0|2)2 + 4|z0|2M2

k

)2 .

From [6] we have

e2H(a,a) =
1

|f ′(z0)|2(1 − |z0|2)2
∏
zk �=z0

∣∣∣∣ zk − z0
1 − zkz0

∣∣∣∣
2

.

Using elementary computations it turns out that

H̃(a) =
π2

8(log ρ)2
1

cos2
(

π
2 log ρ log x

)
|x|2

(
1 + 2

∞∑
k=1

W (k, x)

)
; (73)

2e2H(a,a) =
π2

8(log ρ)2
1

cos2
(

π
2 log ρ log x

)
|x|2

∞∏
k=1

Z(k, x)2, (74)

where

W (k, x) =
(

1 − tanh2

(
kπ2

2 log ρ

))2(
1 − tan2

(
π

4 log ρ
log x

))2

×

(
1 − tan2

(
π

4 log ρ log x
))2

− 4 tanh2
(

kπ2

2 log ρ

)
tan2

(
π

4 log ρ log x
)

((
1−tan4

(
π

4 log ρ log x
))2

+4 tanh2
(

kπ2

2 log ρ

)
tan2

(
π

4 log ρ log x
))2 , k ≥ 1;
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Figure 1: the functions 2e2H and H̃ for ρ = e, full picture
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Figure 2: the functions 2e2H and H̃ for ρ = e, detail

Z(k, x)=
tanh2

(
kπ2

2 log ρ

)
sec4

(
π

4 log ρ log x
)

(
1−tan4

(
π

4 log ρ log x
))2

+4 tanh2
(

kπ2

2 log ρ

)
tan2

(
π

4 log ρ log x
) , k ≥ 1.

In Figures 1-3 we plot the functions 2e2H and H̃ (modulo the irrelevant
factor π2

8(log ρ)2
) for ρ = e and for ρ = e3.5. We note that, roughly, W (k, x) ∼

e−
2kπ2

log ρ and Z(k, x) ∼ 1−e−
kπ2

log ρ so for small values of ρ the terms with k �= 0
are almost negligible. This accounts for the fact that for ρ = e the graphs
are very similar, see Figure 1, even on a fine scale, see Figure 1. For large
values of ρ the difference between the two functions is mpre pronounced, see
Figure 3.

Remark 6.4. We recall that the harmonic and hyperbolic radii are defined
by

rhar(ξ) = e−H(ξ,ξ); rhyp(f(z)) = |f ′(z)|(1 − |z|2),
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Figure 3: the functions 2e2H and H̃ for log ρ = 3.5

where f : D → Ω denotes a conformal covering map. See [6] Definition 1
and page 15. Note that the function H̃, in the case of general non-simply
connected domains, do not even coincide with r−2

hyp. However, in the case of
small annuli, numerical computation show that rhar and rhyp are very close,
see [6] Figure 8. We also point out that the harmonic radius is related to
the Bergman kernel, see [6] Section 8.4.

7. The expansion for multiple bubbles.

In this section we consider the case of multiple bubbles. We begin considering
only two bubbles R1δa,λ1 and R2δb,λ2 , which we denote for simplicity by δ1
and δ2 respectively. We assume that R1 = Id, namely the first bubble is not
rotated, and we simply write R for R2.

For C > 0, k = 2 and Pδ1 +Pδ2 ∈ Z, our aim is to expand the functional
Iε (see (Pε)) on Z in terms of the parameters a = p1, b = p2, λ1, λ2 and R.
In the following, for brevity, we set (see Section 2)

σ = b− a, e(λ1, λ2) = O

(
(log λ1 + log λ2)

(
1
λ3

1

+
1
λ3

2

+
1

λ2
1λ2

+
1

λ1λ2
2

))
.

We recall the explicit form of the functional Iε(u), for u ∈ H1
0 (Ω; R3)

Iε(u)=
1
2

∫
Ω
|∇u|2+

2
3

∫
Ω
u·(ux∧uy)+ε

∫
Ω
u·(ux∧gy+gx∧uy)+2ε2

∫
Ω
u·(gx∧gy).

7.1. Interaction with g.

We consider first the interaction term ε
∫
Ω u(ux ∧ gy + gx ∧ uy) in (Pε), with

u = Pδ1 + Pδ2. We recall that throughout this section we assume that
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C
−1
λ−1
i ≤ ε ≤ Cλ−1

i for some fixed constant C and for i = 1, 2. We have∫
Ω
u · (ux ∧ gy + gx ∧ uy)

=
∫

Ω
(Pδ1 + Pδ2) · [((Pδ1)x + (Pδ2)x) ∧ gy + gx ∧ ((Pδ1)y + (Pδ2)y)]

=
∫

Ω
Pδ1 · ((Pδ1)x ∧ gy + gx ∧ (Pδ1)y)+

∫
Ω
Pδ1 · ((Pδ2)x ∧ gy + gx ∧ (Pδ2)y)

(75)

+
∫

Ω
Pδ2 · ((Pδ2)x ∧ gy + gx ∧ (Pδ2)y)+

∫
Ω
Pδ2 · ((Pδ1)x ∧ gy + gx ∧ (Pδ1)y).

The first term in (75) has been estimated in Section 5, formulas (62)-(63),
and gives

ε

∫
Ω
Pδ1((Pδ1)x∧gy+gx∧(Pδ1)y) = −16

ε

λ1

∫
Ω

x2

(1 + |ξ|2)3 dIdg(a)+O(λ−2
1 ).

(76)
The third term in (75) can be estimated similarly, using the invariance of
the problem under rotation, and gives

ε

∫
Ω
Pδ2((Pδ2)x∧gy+gx∧(Pδ2)y) = −16

ε

λ2

∫
Ω

x2

(1 + |ξ|2)3 dR−1g(b)+O(λ−2
2 ).

(77)
Let us compute now the remaining two terms in (75), starting from the
fourth. We write a = (a1, a2) and b = (b1, b2). Up to an error of order ε2,
we have

(Pδ1)x ∧ gy = (78)⎛
⎜⎜⎜⎝
(
−4λ3

1(x−a1)(y−a2)

(1+λ2
1|ξ−a|2)2

− 2
λ1
∂xh2

)
(g3)y −

(
4λ2

1(x−a1)

(1+λ2
1|ξ−a|2)2

+ 2
λ2
1
∂xh3

)
(g2)y(

4λ2
1(x−a1)

(1+λ2
1|ξ−a|2)2

+ 2
λ2
1
∂xh3

)
(g1)y−

(
2λ1

1+λ2
1((y−a2)2−(x−a1)2)

(1+λ2
1|ξ−a|2)2

− 2
λ1
∂xh1

)
(g3)y(

2λ1
1+λ2

1((y−a2)2−(x−a1)2)

(1+λ2
1|ξ−a|2)2

− 2
λ1
∂xh1

)
(g2)y+

(
4λ3

1(x−a1)(y−a2)

(1+λ2
1|ξ−a|2)2

+ 2
λ1
∂xh2

)
(g1)y

⎞
⎟⎟⎟⎠

and

Pδ2 =

⎛
⎝r11 r12 r13
r21 r22 r23
r31 r32 r33

⎞
⎠
⎛
⎜⎜⎝

2λ2(x−b1)
1+λ2

2|ξ−b|2
− 2

λ2
h1(b, ξ)

2λ2(y−b2)
1+λ2

2|ξ−b|2
− 2

λ2
h2(b, ξ)

2
λ2
2
h3 − 2

1+λ2
2|ξ−b|2

⎞
⎟⎟⎠ ,

where rij are the entries of the matrix R. We are going to prove that∫
Ω
Pδ2((Pδ1)x ∧ gy + gx ∧ (Pδ1)y) = O

(
ε2| log ε|

)
. (79)
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If one uses (78) and (79), the integrals involved in the above expression are
of the form

λ3
1λ2

∫
Ω

(x− a1)(y − a2)(x− b1)(
1 + λ2

1|ξ − a|2
)2 (1 + λ2

2|ξ − b|2
) ;

(80)

λ3
1λ2

∫
Ω

(x− a1)(y − a2)(y − b2)(
1 + λ2

1|ξ − a|2
)2 (1 + λ2

2|ξ − b|2
) ;

λ3
1

∫
Ω

(x− a1)(y − a2)(
1 + λ2

1|ξ − a|2
)2 (1 + λ2

2|ξ − b|2
) ; λ3

1

λ2

∫
Ω

(x− a1)(y − a2)(
1 + λ2

1|ξ − a|2
)2 ;

(81)

λ3
1

λ2
2

∫
Ω

(x− a1)(y − a2)(
1 + λ2

1|ξ − a|2
)2

λ2
1λ2

∫
Ω

(x− a1)(x− b1)(
1 + λ2

1|ξ − a|2
)2 (1 + λ2

2|ξ − b|2
) ;

(82)

λ2
1λ2

∫
Ω

(x− a1)(y − b2)(
1 + λ2

1|ξ − a|2
)2 (1 + λ2

2|ξ − b|2
) ;

λ2
1

∫
Ω

(x− a1)(
1 + λ2

1|ξ − a|2
)2 (1 + λ2

2|ξ − b|2
) ;

(83)

λ2
1

λ2

∫
Ω

(x− a1)(
1 + λ2

1|ξ − a|2
)2 ;

λ2
1

λ2
2

∫
Ω

(x− a1)(
1 + λ2

1|ξ − a|2
)2

λ1λ2

∫
Ω

1 + λ2
1((y − a2)2 − (x− a1)2)(x− b1)(

1 + λ2
1|ξ − a|2

)2 (1 + λ2
2|ξ − b|2

) ;

(84)

λ1λ2

∫
Ω

1 + λ2
1((y − a2)2 − (x− a1)2)(y − b2)(

1 + λ2
1|ξ − a|2

)2 (1 + λ2
2|ξ − b|2

) ;
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λ1

∫
Ω

1 + λ2
1((y − a2)2 − (x− a1)2)(

1 + λ2
1|ξ − a|2

)2 (1 + λ2
2|ξ − b|2

) ;
(85)

λ1

λ2

∫
Ω

1 + λ2
1((y − a2)2 − (x− a1)2)(

1 + λ2
1|ξ − a|2

)2 ;

λ1

λ2
2

∫
Ω

1 + λ2
1((y − a2)2 − (x− a1)2)(

1 + λ2
1|ξ − a|2

)2 ;
λ2

λ1

∫
Ω

x− b1(
1 + λ2

2|ξ − b|2
) ;

(86)
λ2

λ1

∫
Ω

y − b2(
1 + λ2

2|ξ − b|2
) ;

1
λ1

∫
Ω

1(
1 + λ2

1|ξ − b|2
) ; ∫

Ω

1
λ1λ2

;
∫

Ω

1
λ1λ

2
2

;
λ2

λ2
1

∫
Ω

x− b1(
1 + λ2

2|ξ − b|2
) ; (87)

λ2

λ2
1

∫
Ω

y − b2(
1 + λ2

2|ξ − b|2
) ; 1

λ2
1

∫
Ω

1(
1 + λ2

2|ξ − b|2
) ; ∫

Ω

1
λ2

1λ2
;
∫

Ω

1
λ2

1λ
2
2

. (88)

The errors in the expressions of (Pδ1)x ∧ gy and Pδ2 are negligible with
respect to the quantities listed in (80)-(88), hence it is sufficient to consider
the above expressions.

Estimate of (80). Using the rescaling ξ �→ λ1(ξ − a) and setting Ωλ1,a =
λ1(Ω − a), we get

λ3
1λ2

∫
Ω

(x− a1)(y − a2)(x− b1)(
1 + λ2

1|ξ − a|2
)2 (1 + λ2

2|ξ − b|2
)

=
λ2

λ2
1

∫
Ωλ1,a

x2y

(1 + |ξ|2)2
(
1 + λ2

2

λ2
1
|ξ − λ1σ|2

)
+
λ2

λ1
σ1

∫
Ωλ1,a

xy

(1 + |ξ|2)2
(
1 + λ2

2

λ2
1
|ξ − λ1σ|2

) . (89)

Let us consider the first integral. We divide Ωλ1,a into the regions |ξ| ≤ λ1σ
2



Asymptotic Morse Theory 223

and |ξ| ≥ λ1σ
2 . If |ξ| ≤ λ1σ

2 , then |ξ − λ1σ|2 ≥ λ2
1|σ|2
4 , so we have

λ2

λ2
1

∣∣∣∣∣∣
∫
|ξ|≤λ1σ

2

x2y

(1 + |ξ|2)2
(
1 + λ2

2

λ2
1
|ξ − λ1σ|2

)
∣∣∣∣∣∣ ≤

Cλ2

λ2
1λ

2
2|σ|2

∫
|ξ|leqλ1σ

2

|ξ|3
(1 + |ξ|2)2

≤ Cλ1λ2

λ2
1λ

2
2|σ|2

,

where C is a positive constant depending only on Ω. When |ξ| ≥ λ1|σ|
2 then

for λ1 large there holds |ξ|3
(1+|ξ|2)2 ≤ 2

λ1|σ| . As a consequence, using also the

change of variables λ2
λ1

(ξ − λ1σ) �→ ξ, we deduce

λ2

λ2
1

∣∣∣∣∣∣
∫
|ξ|≥λ1σ

2

x2y

(1 + |ξ|2)2
(
1 + λ2

2

λ2
1
|ξ − λ1σ|2

)
∣∣∣∣∣∣ ≤

Cλ2

λ3
1|σ|

(
λ1

λ2

)2 ∫
Ωλ2,b

1
(1 + |ξ|2)

≤ C
log λ2

λ1λ2|σ|
.

Turning to the second integral in the r.h.s. of (89), we again divide the
domain into two regions |ξ| ≤ λ1σ

2 and |ξ| ≥ λ1σ
2 . Reasoning as before we

find

λ2

λ1
σ1

∣∣∣∣∣∣
∫
|ξ|≤λ1σ

2

xy

(1+|ξ|2)2
(
1+ λ2

2

λ2
1
|ξ−λ1σ|2

)
∣∣∣∣∣∣ ≤C

λ2σ1

λ1λ2
2|σ|2

∫
|ξ|≤λ1σ

2

|ξ|2
(1+|ξ|2)2

≤ C
|σ1|
|σ|2

log λ1

λ1λ2
;

λ2

λ1
σ1

∣∣∣∣∣∣
∫
|ξ|≥λ1σ

2

xy

(1+|ξ|2)2
(
1+ λ2

2

λ2
1
|ξ−λ1σ|2

)
∣∣∣∣∣∣ ≤C

λ2σ1

λ3
1|σ|2

(
λ1

λ2

)2∫
Ωλ2,b

1
(1+|ξ|2)

≤ C
|σ1|
|σ|2

λ2 log λ2

λ3
1

.

Since in the definition of Z we assume dist(pi, pj) ≥ C
−1, |σ| is uniformly

bounded from below, the last formulas imply

λ3
1λ2

∣∣∣∣∣
∫

Ω

(x− a1)(y − a2)(x− b1)(
1 + λ2

1|ξ − a|2
)2 (1 + λ2

2|ξ − b|2
)
∣∣∣∣∣ ≤ Cε2| log ε|.
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The second expression in (80) can be estimated in the same way.

Estimate of (81)-(88). We just treat some particular cases, since many
terms are similar to each-other. First of all, all the terms for which the
quantity

(
1 + λ2

1|ξ − a|2
)2 (1 + λ2

2|ξ − b|2
)

appears in the denominator can
be treated as before.

Next, we consider for example the second term in (85) and the last term
in (86). Using the changes of variable λ1(ξ − a) �→ ξ and λ2(ξ − b) �→ ξ we
find

λ1

λ2

∫
Ω

1 + λ2
1((y − a2)2 − (x− a1)2)(

1 + λ2
1|ξ − a|2

)2 =
1

λ1λ2

∫
Ωλ1,a

1 + y2 − x2

(1 + |ξ|2)2
≤C log λ1

λ1λ2

≤Cε2| log ε|;

λ2

λ1

∫
Ω

y − b2(
1 + λ2

2|ξ − b|2
) =

1
λ1λ2

2

∫
Ωλ2,b

|ξ|
1 + |ξ|2 ≤ C

1
λ1λ2

≤ Cε2.

Conclusion. Using the estimates of (80) and those of (81)-(88), we obtain
(79). In the same way, one can prove that∫

Ω
Pδ1((Pδ2)x ∧ gy + gx ∧ (Pδ2)y) = O

(
ε2| log ε|

)
. (90)

Hence, from equations (76), (77), (79) and (90) we deduce

Lemma 7.1. For u = Pδ1 + Pδ2 ∈ Z there holds

ε

∫
Ω
u(ux∧gy+gx∧uy) = −8A0dIdg(a)−8A0dR−1g(b)+O

(
ε2| log ε|

)
. (91)

7.2. Mixed terms in Pδ1 and Pδ2.

For u = Pδ1 +Pδ2, we consider the first and the second integrals in (5). We
are interested in the terms involving both Pδ1 and Pδ2, namely∫

Ω
∇Pδ1 · ∇Pδ2+

2
3

∫
Ω
Pδ1 · ((Pδ2)x ∧ (Pδ2)y)+

2
3

∫
Ω
Pδ1 · ((Pδ2)x ∧ (Pδ1)y)

+
2
3

∫
Ω
Pδ1 · ((Pδ1)x ∧ (Pδ2)y) +

2
3

∫
Ω
Pδ2 · ((Pδ2)x ∧ (Pδ1)y)

+
2
3

∫
Ω
Pδ2 · ((Pδ1)x ∧ (Pδ2)y) +

2
3

∫
Ω
Pδ2 · ((Pδ1)x ∧ (Pδ1)y) .
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Integrating by parts it is easy to we see that the last expression becomes

∫
Ω
∇Pδ1 ·∇Pδ2+2

∫
Ω
Pδ2 ·((Pδ1)x ∧ (Pδ1)y)+2

∫
Ω
Pδ1 ·((Pδ2)x ∧ (Pδ2)y) .

Integrating by parts the first term we get

∫
Ω
∇Pδ1 · ∇Pδ2 = −

∫
Ω

∆Pδ2 · Pδ1 = −2
∫

Ω
Pδ1 · ((δ2)x ∧ (δ2)y),

so we are left with

2
∫

Ω
Pδ2 ((Pδ1)x ∧ (Pδ1)y) + 2

∫
Ω
Pδ1 ((Pδ2)x ∧ (Pδ2)y − (δ2)x ∧ (δ2)y) .

Lemma 7.2. For Pδ1 + Pδ2 ∈ Z, there holds

2
∫

Ω
Pδ2 ((Pδ1)x ∧ (Pδ1)y) + 2

∫
Ω
Pδ1 ((Pδ2)x ∧ (Pδ2)y − (δ2)x ∧ (δ2)y)

= 2
∫

Ω
Pδ2 ((δ1)x ∧ (δ1)y) + e(λ1, λ2). (92)

Proof. Since the difference between the l.h.s. and the r.h.s. of (92) is

2
∫

Ω
Pδ1 ((Pδ2)x ∧ (Pδ2)y − (δ2)x ∧ (δ2)y)

+ 2
∫

Ω
Pδ2 ((Pδ1)x ∧ (Pδ1)y − (δ1)x ∧ (δ1)y) ,

it is sufficient by symmetry to estimate one of the two terms in the last
expression. We have

∫
Ω
Pδ1 ((Pδ2)x ∧ (Pδ2)y − (δ2)x ∧ (δ2)y)

=
∫

Ω
Pδ1 · [(ϕ2)x ∧ (ϕ2)y − (ϕ2)x ∧ (δ2)y − (δ2)x ∧ (ϕ2)y] .
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Using equations (25)-(26), choosing τ ≤ 1
4C and setting Ωa,b = Ω \ (Bτ (a)∪

Bτ (b)), we find∣∣∣∣
∫

Ω
Pδ1 · ((ϕ2)x ∧ (ϕ2)y)

∣∣∣∣ ≤ C

λ1λ
2
2

;

∣∣∣∣
∫

Ω
Pδ1 · ((ϕ2)x ∧ (δ2)y)

∣∣∣∣ ≤ C

λ2

[∫
Bτ (a)

|Pδ1| |(δ2)y| +
∫
Bτ (b)

|Pδ1| |(δ2)y|

+
∫

Ωa,b

|Pδ1| |(δ2)y|
]

≤ C

λ2

[
C

λ1λ2
+ C

log λ2

λ1λ2
+

C

λ1λ2

]
,

and an analogous estimate for the term Pδ1 · ((δ2)x ∧ (ϕ2)y). This concludes
the proof.

Lemma 7.3. For Pδ1 + Pδ2 ∈ Z, there holds

2
∫

Ω
Pδ2 · ((δ1)x ∧ (δ1)y)

=
16A0

λ1λ2
r11

(
σ2

1 − σ2
2

|σ|4 +
∂h1

∂x
(a, b)

)
+

16A0

λ1λ2
r22

(
σ2

2 − σ2
1

|σ|4 +
∂h2

∂y
(a, b)

)

+
16A0

λ1λ2
r12

(
2
σ1σ2

|σ|4 +
∂h1

∂y
(a, b)

)
+

16A0

λ1λ2
r21

(
2
σ1σ2

|σ|4 +
∂h2

∂x
(a, b)

)
(93)

+ e(λ1, λ2).

Proof. The left-hand side of (93) is given explicitly by

2
∫

Ω
Pδ2 · ((δ1)x ∧ (δ1)y) = 2

3∑
i,j=1

rij

∫
Ω
(δ2)j · ((δ1)x ∧ (δ1)y)i

− 2
3∑

i,j=1

rij

∫
Ω
(ϕ2)j · ((δ1)x ∧ (δ1)y)i, (94)

where {rij} are the entries of the matrix R. We are now going to estimate
these integrals. We recall that, by (22)

ϕ2(ξ)=
(

2
λ2
h1(ξ, b)+O(λ−2

2 ),
2
λ2
h2(ξ, b)+O(λ−2

2 ), 1− 2
λ2

2

h3(ξ, b)+O(λ−3
2 )
)
.
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Taking this into account, we find that the terms in (94) involving the coef-
ficients r11, r12, r13, r31 and r33 are given respectively by

− 32λ3
1λ2

∫
Ω

(x− b1)(x− a1)
(1 + λ2

1|ξ − a|2)3(1 + λ2
2|ξ − b|2)

+ 32λ3
1

∫
Ω

(λ−1
2 h1(ξ, b) +O(λ−2

2 ))(x1 − a1)
(1 + λ2

1|ξ − a|2)3 ; (95)

− 32λ3
1λ2

∫
Ω

(x− b1)(y − a2)
(1 + λ2

1|ξ − a|2)3(1 + λ2
2|ξ − b|2)

+ 32λ3
1

∫
Ω

(λ−1
2 h1(ξ, b) +O(λ−2

2 ))(y − a2)
(1 + λ2

1|ξ − a|2)3 ; (96)

16λ2
1λ2

∫
Ω

(x− b1)
(
1 − λ2

1|ξ − a|2
)

(1 + λ2
1|ξ − a|2)3(1 + λ2

2|ξ − b|2)−

16λ2
1

∫
Ω

(λ−1
2 h1(ξ, b) +O(λ−2

2 ))
(
1 − λ2

1|ξ − a|2
)

(1 + λ2
1|ξ − a|2)3 ; (97)

16λ3
1

∫
Ω

(
2

1 + λ2
2|ξ − b|2 − 2

λ2
2

h3(ξ, b) +O(λ−3
2 )
)

(x− a1)
(1 + λ2

1|ξ − a|2)3 ; (98)

−8λ2
1

∫
Ω

(
2

1 + λ2
2|ξ − b|2 − 2

λ2
2

h3(ξ, b) +O(λ−3
2 )
)

(1 − λ2
1|ξ − a|2)

(1 + λ2
1|ξ − a|2)3 . (99)

The terms involving the other coefficients of the matrix R can be estimated
using the above ones, and will be taken into account later.

Estimate of (95). Using the change of variables λ1(ξ − a) �→ ξ, equation
(95) becomes

− 32
λ2

λ1

∫
Ωλ1,a

x(x− λ1σ1)

(1 + |ξ|2)3
(
1 + λ2

2

λ2
1
|ξ − λ1σ|2

)
+ 32

∫
Ωλ1,a

(λ−1
2 h1(λ−1

1 ξ + a, b) +O(λ−2
2 ))x

(1 + |ξ|2)3 . (100)

We estimate the first term in (100). Consider the following subsets of the
domain of integration

B1 =
{
ξ ∈ Ωλ1,a : |ξ| ≤ λ1|σ|

4

}
, B2 =

{
ξ ∈ Ωλ1,a : |ξ − λ1σ| ≤

λ1|σ|
4

}
,

B3 = Ωλ1,a \ (B1 ∪ B2).
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We can write

(
1 +

λ2
2

λ2
1

|ξ − λ1σ|2
)−1

= (1 + λ2
2|σ|2)−1

⎛
⎝1 +

λ2
2

λ2
1
|ξ|2 − 2λ

2
2
λ1
ξ · σ

(1 + λ2
2|σ|2)

⎞
⎠

−1

. (101)

On the set B1 we have the following inequality∣∣∣∣λ2
2

λ2
1

|ξ|2 − 2
λ2

2

λ1
ξ · σ

∣∣∣∣ ≤ λ2
2|σ|2
16

+
λ2

2|σ|2
2

≤ 3
4
λ2

2|σ|2

hence, from a Taylor expansion, we obtain the following uniform estimate∣∣∣∣∣∣∣
⎛
⎝1 +

λ2
2

λ2
1
|ξ|2 − 2λ

2
2
λ1
ξ · σ

(1 + λ2
2|σ|2)

⎞
⎠

−1

− 1 +

λ2
2

λ2
1
|ξ|2 − 2λ

2
2
λ1
ξ · σ

(1 + λ2
2|σ|2)

∣∣∣∣∣∣∣
≤ C

(
|ξ|4
λ4

1|σ|4
+

|ξ|2
λ2

1|σ|2

)
, ξ ∈ B1. (102)

Using equation (102) and some elementary computations we find∫
B1

x(x− λ1σ1)

(1 + |ξ|2)3
(
1 + λ2

2

λ2
1
|ξ − λ1σ|2

)

=
∫
B1

x(x− λ1σ1)
(1 + |ξ|2)3(1 + λ2

2|σ|2)

⎛
⎝1 +

2λ
2
2
λ1
ξ · σ − λ2

2

λ2
1
|ξ|2

1 + λ2
2|σ|2

⎞
⎠

+ e(λ1, λ2) =
A0

2
1

(1 + λ2
2|σ|2)

− A0

2
2σ2

1

(1 + λ2
2|σ|2)|σ|2

+ e(λ1, λ2) (103)

=
A0

2
1

λ2
2|σ|2

(
1 − 2

σ2
1

|σ|2

)
+ e(λ1, λ2) =

A0

2
σ2

2 − σ2
1

λ2
2|σ|4

+ e(λ1, λ2).

On the set B2 we have

|ξ| ≥ λ1|σ| − |ξ − λ1σ| ≥
3
4
λ1|σ|,

and hence we deduce easily∫
B2

|ξ||x− λ1σ1|
(1 + |ξ|2)3

(
1 + λ2

2

λ2
1
|ξ − λ1σ|2

) ≤ C

λ4
1|σ|4

∫
Bλ1|σ|

4

1

1 + λ2
2

λ2
1
|ξ|2

≤ C
log λ1

λ4
1|σ|4

. (104)
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In B3 we have |ξ| ≥ λ1|σ|
4 and |ξ − λ1σ| ≥ λ1|σ|

4 , and hence

∫
B3

|ξ||x− λ1σ1|
(1 + |ξ|2)3

(
1 + λ2

2

λ2
1
|ξ − λ1σ|2

)≤C|Ωλ1,a|
1

λ5
1|σ|5

1
λ1|σ|

≤C 1
λ4

1|σ|6
. (105)

Let us now treat the second term in (100). Reasoning as above we find

32
∫

Ωλ1,a

(λ−1
2 h1(λ−1

1 ξ+a, b)+O(λ−2
2 ))x

(1+|ξ|2)3 =
1

λ1λ2

A0

2
∂h1

∂x
(a, b)+e(λ1, λ2). (106)

Hence, using formulas (103)-(106), we are able to estimate (95), and we find

2
∫

Ω
(Pδ2)1 ((δ1)x ∧ (δ1)y)1 =

16A0

λ1λ2

(
σ2

1−σ2
2

|σ|4 +
∂h1

∂x
(a, b)

)
+e(λ1, λ2). (107)

Estimate of (96). The proofs of the estimates of this and the remaining
terms will only be sketched, since they are similar to that of (95). Using the
usual change of variables, equation (96) becomes

− 32
λ2

λ1

∫
Ωλ1,a

x(y − λ1σ2)

(1 + |ξ|2)3
(
1 + λ2

2

λ2
1
|ξ − λ1σ|2

)
+ 32

∫
Ωλ1,a

(λ−1
2 h1(λ−1

1 ξ + a, b) +O(λ−2
2 ))y

(1 + |ξ|2)3 . (108)

To treat the first integral in (108) we begin by dividing again Ωλ1,a into the
above sets B1, B2, B3. Reasoning as before and neglecting the higher-order
terms we find

λ2

λ1

∫
B1

x(y − λ1σ2)

(1 + |ξ|2)3
(
1 + λ2

2

λ2
1
|ξ − λ1σ|2

) = −A0
σ1σ2

λ1λ2|σ|4
+ e(λ1, λ2);

∫
Ωλ1,a

(λ−1
2 h1(λ−1

1 ξ + a, b) +O(λ−2
2 ))y

(1 + |ξ|2)3 =
1

λ1λ2

A0

2
∂h1

∂y
(a, b) + e(λ1, λ2).

Hence, using the last two equations we deduce

2
∫

Ω
(Pδ2)1 ((δ1)x ∧ (δ1)y)2 =

A0

λ1λ2

(
32
σ1σ2

|σ|4 +16
∂h1

∂y
(a, b)

)
+e(λ1, λ2). (109)
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Estimate of (97). We turn now to the term involving the coefficient r13,
(97), which can be written as

16
λ2

λ1

∫
Ωλ1,a

(1 − |ξ|2)(x1 − λ1σ1)

(1 + |ξ|2)3
(
1 + λ2

2

λ2
1
|ξ − λ1σ|2

)
− 16

∫
Ωλ1,a

(λ−1
2 h1(λ−1

1 ξ + a, b) +O(λ−2
2 ))(1 − |ξ|2)

(1 + |ξ|2)3
(
1 + λ2

2

λ2
1
|ξ − λ1σ|2

) . (110)

Using (27), (102) and reasoning as in (103) one finds

∫
B1

(1 − |ξ|2)(x1 − λ1σ1)

(1 + |ξ|2)3
(
1 + λ2

2

λ2
1
|x− λ1σ|2

) = e(λ1, λ2).

Similar estimates hold if one integrates on the sets B2 and B3. Moreover,
using (27) and elementary computations one finds

∫
Ωλ1,a

(λ−1
2 h1(λ−1

1 ξ + a, b) +O(λ−2
2 ))(1 − |ξ|2)

(1 + |ξ|2)3
(
1 + λ2

2

λ2
1
|ξ − λ1σ|2

) = e(λ1, λ2).

From the last two equations we deduce

2
∫

Ω
(Pδ2)1 ((δ1)x ∧ (δ1)y)3 = e(λ1, λ2). (111)

Estimate of (98). The expression in (98) becomes

32
∫

Ωλ1,a

⎛
⎝ 1

1 + λ2
2

λ2
1
|ξ − λ1σ|2

− 1
λ2

2

h3(λ−1
1 ξ + a, b) +O(λ−3

2 )

⎞
⎠ x

(1 + |ξ|2)3 .

Reasoning as above, we obtain

∫
B1

⎛
⎝ 2

1+ λ2
2

λ2
1
|ξ − λ1σ|2

− 2
λ2

2

h3(λ−1
1 ξ + a, b) +O(λ−3

2 )

⎞
⎠ x

(1 + |ξ|2)3 =e(λ1, λ2),

and that the integrals on the sets B2 and B3 are also of order e(λ1, λ2). Hence
we find

2
∫

Ω
(Pδ2)3 ((δ1)x ∧ (δ1)y)1 = e(λ1, λ2). (112)
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Estimate of (99). We turn now to the term involving r33. Using the above
change of variables, (99) becomes

−16
∫

Ωλ1,a

⎛
⎝ 1

1 + λ2
2

λ2
1
|ξ − λ1σ|2

− 1
λ2

2

h3(λ−1
1 ξ + a, b) +O(λ−3

2 )

⎞
⎠ 1 − |ξ|2

(1 + |ξ|2)3 .

Using equation (27) and reasoning as above one finds

2
∫

Ω
(Pδ2)3 ((δ1)x ∧ (δ1)y)3 = e(λ1, λ2). (113)

Other estimates. From the estimates of the terms (95)-(99) one can deduce
also those involving the coefficients r22, r12, r23 and r32. In fact, it is sufficient
to permute the coordinates x and y in a suitable way. Thus one finds

2
∫

Ω
(Pδ2)2 ((δ1)x ∧ (δ1)y)2 =

16A0

λ1λ2

(
σ2

2 − σ2
1

|σ|4 +
∂h2

∂y
(a, b)

)
+e(λ1, λ2). (114)

2
∫

Ω
(Pδ2)2 ((δ1)x ∧ (δ1)y)1 =

16A0

λ1λ2

(
2
σ1σ2

|σ|4 +
∂h2

∂x
(a, b)

)
+e(λ1, λ2). (115)

2
∫

Ω
(Pδ2)3 ((δ1)x ∧ (δ1)y)2 =e(λ1, λ2). 2

∫
Ω
(Pδ2)2 ((δ1)x ∧ (δ1)y)3 =e(λ1, λ2).

(116)

Hence the conclusion follows from (107), (109), (111), (112), (113), and
(114)-(116).

7.3. Expansion for k bubbles.

In this subsection we consider the case of k masses. When k = 2, from
Proposition 5.1, and Lemmas (7.1) 7.2, 7.3 we find

Iε(u) =
16
9
A0 + 8A0

(
1
λ2

1

H̃(a) +
1
λ2

2

H̃(b) − ε

λ1
dIdg(a) −

ε

λ2
dR−1g(a)

)

+
16A0

λ1λ2

[
r11

(
σ2

1 − σ2
2

|σ|4 +
∂h1

∂x
(a, b)

)
+ r22

(
σ2

2 − σ2
1

|σ|4 +
∂h2

∂y
(a, b)

)
(117)

+ r12

(
2
σ1σ2

|σ|4 +
∂h1

∂y
(a, b)

)
+ r21

(
2
σ1σ2

|σ|4 +
∂h2

∂x
(a, b)

)]
+ e(ε, λ1) + e(ε, λ2) + e(λ1, λ2).
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where u = Pδ1 + Pδ2 and rij are the entries of the matrix R.
We consider now the more general case of k masses. Given two bubbles δi =
Riπ and δk = Rkπ (we recall the definition of the stereographic projection π
in Section 2), where Ri, Rk ∈ SO(3), we denote by Rik the matrix R−1

i ◦Rk.
By invariance under rotation, it is clear that the interaction between δi and
δk is the same as the interaction between π and R−1

i δk = R−1
i Rkπ.

In the expansion of the Euler functional for k masses, since Iε is cubic in
u, we are going to find mixed terms of the form

∫
Ω Pδi · (Pδj ∧ Pδk), where

i, j and k are all different. Since we are assuming that the distance of the
points pi, pj and pk is uniformly bounded from below, there holds∫

Ω
Pδi · (Pδj ∧ Pδk) ≤ C

1
λiλjλk

, i �= j �= k, i �= k. (118)

It follows that the interaction among three distinct bubbles in Z is negligible
with respect to the interactions with g,Ω and the interaction between two
bubbles.

We recall the definition of the quantity e(ε, λ1, . . . , λk) in Section 2. Using
equation (118), and omitting some straightforward but tedious computations
we obtain the following Proposition.

Proposition 7.4. Let C > 0, let k ∈ N and let Z be defined by (31). For
i �= j let us set

FΩ(pi, pj, Ri, Rj) = 16A0 (119)

×
[
(Rij)11

(
(pj − pi)21 − (pj − pi)22

|pj − pi|4
+
∂h1

∂x
(pi, pj)

)

+ (Rij)22

(
(pj − pi)22 − (pj − pi)21

|pj − pi|4
+
∂h2

∂y
(pi, pj)

)

+ (Rij)12

(
2
(pj − pi)1(pj − pi)2

|pj − pi|4
+
∂h1

∂y
(pi, pj)

)

+(Rij)21

(
2
(pj − pi)1(pj − pi)2

|pj − pi|4
+
∂h2

∂x
(pi, pj)

)]

and

ΣΩ,g(ε, p1, . . . , pk, λ1, . . . , λk, R1, . . . , Rk) =
k∑
i=1

FΩ,g(pi, λi, Ri)

+
∑
i<j

FΩ(ε, pi, pj, Ri, Rj)
λiλj

.
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Then there holds

Iε (u) =
8k
9
A0 + ΣΩ,g + e(ε, λ1, . . . , λk);

and

∂Iε(u)
∂pi

=
∂ΣΩ,g

∂pi
+ e(ε, λ1, . . . , λk);

∂Iε(u)
∂λi

=
∂ΣΩ,g

∂λi
+

1
λi
e(ε, λ1, . . . , λk);

∂Iε(u)
∂Ri

=
∂ΣΩ,g

∂Ri
+ e(ε, λ1, . . . , λk),

where u =
∑k

i=1 P Riδpi,λi
.

7.4. Some remarks.

In this subsection we consider the expansion for 2 masses with zero boundary
data. Our goal is to extremize the functional in (117) with respect to a, b,
λ1
λ2

and R. Letting G denote the Green’s function of Ω and setting

G1(a, ξ) =
∂G

∂a1
(a, ξ); G2(a, ξ) =

∂G

∂a2
(a, ξ)

there holds(
σ2

1 − σ2
2

|σ|4 +
∂h1

∂x
(a, b)

)
=
∂G1

∂x
(a, b);

(
2
σ1σ2

|σ|4 +
∂h1

∂y
(a, b)

)
=
∂G1

∂y
(a, b);(

2
σ1σ2

|σ|4 +
∂h2

∂x
(a, b)

)
=
∂G2

∂x
(a, b);

(
σ2

2 − σ2
1

|σ|4 +
∂h2

∂y
(a, b)

)
=
∂G2

∂y
(a, b).

Using these expressions, the expansion of Iε(u), with u = Pδ1 + RPδ2 be-
comes

Iε(u) =
16
9
A0 + 8A0

(
1
λ2

1

(
∂h1

∂x
+
∂h2

∂y

)
(a, a) +

1
λ2

2

(
∂h1

∂x
+
∂h2

∂y

)
(b, b)

)

+
16A0

λ1λ2

[
r11

∂G1

∂x
(a, b)+r12

∂G1

∂y
(a, b)+r21

∂G2

∂x
(a, b)+r22

∂G2

∂y
(a, b)

]
+e(λ1, λ2).

The entries ri3 and r3i of the matrix R appear as lower order in the above
formula, see Remark 5.3 (b). We can write

r11
∂G1

∂x
(a, b) + r12

∂G1

∂y
(a, b) + r21

∂G2

∂x
(a, b) + r22

∂G2

∂y
(a, b)

= e1 ·R∇G1(a, b) + e2 · R∇G2(a, b).
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As in [21], Lemma 5.4, the extremization with respect to R gives

e1 ·R∇G1(a, b) + e2 ·R∇G2(a, b) = ±
(
|∇G1(a, b)|2 + |∇G1(a, b)|2

±2|∇G1(a, b) ∧∇G2(a, b)|)
1
2 .

Hence, setting H̃ = (h1)x + (h2)y, we are left with

Iε(u) =
16
9
A0 + 8A0

(
1
λ2

1

H̃(a) +
1
λ2

2

H̃(b)
)

± 16A0

λ1λ2

[(
∂G1

∂x
± ∂G2

∂y

)2

(a, b) +
(
∂G2

∂x
∓ ∂G1

∂y

)2

(a, b)

] 1
2

+ e(λ1, λ2),

where the + and − signs inside the square brackets are opposite (hence there
are four different possibilities). Iε(u) has the form c+a11ξ

2
1+a22ξ

2
2±2a12ξ1ξ2,

with aij > 0. Thus if we consider the case c + a11ξ
2
1 + a22ξ

2
2 + 2a12ξ1ξ2,

we notice that minimizing
∑
aijξiξj/|ξ|2 we necessarily need to select ξ =

(ξ1, ξ2) with ξ1ξ2 ≤ 0 and so this case does not arise. Thus the only case
that remains after extremizing is

Iε(u) =
16
9
A0 + 8A0

(
1
λ2

1

H̃(a) +
1
λ2

2

H̃(b)
)

(120)

− 16A0

λ1λ2

[(
∂G1

∂x
± ∂G2

∂y

)2

(a, b) +
(
∂G2

∂x
∓ ∂G1

∂y

)2

(a, b)

] 1
2

+ e(λ1, λ2).

8. Proof of Theorem 1.2.

In this Section we prove Theorem 1.2. We begin with the following Lemma,
proved in [26] and which follows from straightforward computations.

Lemma 8.1. Let ω ∈ (0, 1), and let aω = (ω, 0) ∈ D. Define also g̃ω :
∂D → R

3 as

g̃ω(x, y) =
(

x− ω

(x− ω)2 + y2
,

y

(x− ω)2 + y2
, 0
)
, (x, y) ∈ ∂D.

Then, letting gω be the harmonic extension on D of g̃ω, there holds

gω(x, y) =
(

x− ω(x2 + y2)
(1 − ωx)2 + (ωy)2

,
y

(1 − ωx)2 + (ωy)2
, 0
)
, (x, y) ∈ D, (121)

and

|∇gω|2 + 2|(gω)x ∧ (gω)y| =
4

((1 − ωx)2 + ω2y2)2
, (x, y) ∈ D. (122)
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By equation (66), the concentration points of blowing-up solutions as ε→ 0
are critical points of the function |∇g|2±2|gx∧gy |

H̃
. In the next Lemma we

describe the critical points of this function in the case of gω.

Lemma 8.2. Let ω ∈ (0, 1), and let gω be as in Lemma 8.1. Then one has

Wω :=
(
|∇g|2 ± 2|gx ∧ gy|

H̃

)1
2

=
√

2
(1 − x2 − y2)

(1 − ωx)2 + (ωy)2
.

The point (ω, 0) is a non-degenerate global maximum for Wω and

Wω(ω, 0) =
√

2
1 − ω2

. (123)

The Hessian of Wω at (ω, 0) is given by

D2Wω(ω, 0) = −2
√

2

(
1

(1−ω2)3
0

0 1
(1−ω2)3

)
. (124)

Remark 8.3. From equation (124), the fact that ∇g(ω, 0) �= 0, and from
Theorem D in [22] it follows that problem (3) admits a solution concentrating
at (ω, 0) as ε → 0. The image of these solutions converges to a sphere of
radius 1 centered at (0, 0,−1), since ϕa,λ → (0, 0,−1) as ε→ 0, see (22).

Note that, from (123) and (124), Wω attains a sharp maximum with
highly non-degenerate hessian when ω is close to 1. We will use this fact
to glue k single bubbles showing that, for a suitable boundary datum, the
interaction of this datum with the bubbles is stronger than the interaction
among different bubbles. In the next Lemma we give quantitative estimates
of the gradient of FD,gω (see Proposition 5.1) in a suitable neighborhood of
one of its critical points.

It is classical to represent a rotation R0 ∈ SO(3) using the Euler angles in
the following way

R0 =
(

cosψ cos φ− cos θ sinφ sinψ cosψ sinφ+ cos θ cos φ sinψ sinψ sin θ
− sinψ cosφ− cos θ sinφ cosψ − sinψ sinφ+ cos θ cosφ cosψ cosψ sin θ

sin θ sinφ − sin θ cosφ cos θ

)
,

where θ ∈ (0, π), ψ, φ ∈ (0, 2π). For us it is convenient to use coordinates
different from the Euler angles, in order to have a smooth parametrization
near the identity matrix. A rotation R will be parameterized as

R−1 =
(

cosψ cosφ− cos θ sinφ sinψ cosψ sinφ+ cos θ cosφ sinψ sinψ sin θ
− sin θ sinφ sin θ cosφ − cos θ

− sinψ cos φ− cos θ sinφ cosψ − sinψ sinφ+ cos θ cos φ cosψ cosψ sin θ

)
,

(125)
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namely as

R−1 =

⎛
⎝1 0 0

0 0 −1
0 1 0

⎞
⎠R0.

R is the identity matrix for θ = π
2 , and φ = ψ = 0, and the angles θ, ψ, φ are

smooth coordinates near the identity. In fact there holds

∂R−1

∂θ
=

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ ;

∂R−1

∂ψ
=

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ ;

∂R−1

∂φ
=

⎛
⎝ 0 1 0
−1 0 0
0 0 0

⎞
⎠ ,

when θ = π
2 , ψ = φ = 0. We will show that the identity matrix is critical

with respect to the rotations for the quantity dR−1gω(ω, 0). There holds

dR−1gω = (cosψ cosφ− cos θ sinφ sinψ)
∂(gω)1
∂x

+ (cosψ sinφ+ cos θ cosφ sinψ)
∂(gω)2
∂x

− (sin θ sinφ)
∂(gω)1
∂y

+ (sin θ cosφ)
∂(gω)2
∂y

.

From simple computations one finds

∂(gω)1
∂x

=
∂(gω)2
∂y

=
(1 − ωx)2 − ω2y2

((1 − ωx)2 + ω2y2)2
;

∂(gω)1
∂y

= −∂(gω)2
∂x

= −2
(1 − ωx)ωy

((1 − ωx)2 + ω2y2)2
,

and hence

dR−1gω = (cosψ cosφ− cos θ sinφ sinψ + sin θ cosφ)
(1 − ωx)2 − ω2y2

((1 − ωx)2 + ω2y2)2

+2(cosψ sinφ+cos θ cosφ sinψ+sin θ sinφ)
(1 − ωx)ωy

((1−ωx)2+ω2y2)2
. (126)

In the next Lemma we study the critical points of FD,gω for ξ ∼ (ω, 0),
R ∼ Id, λ ∼ 2ε−1 and ε small. We use below the coordinates θ, ψ, φ in (125)
to parametrize the matrix R.
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Lemma 8.4. Let ω ∈ (0, 1) and let gω be as above. Then, for fixed ε,
the point x = ω, y = 0, λ = 2

ε , θ = π
2 , ψ = 0, φ = 0 is critical for

FD,gω(ε, ξ, λ, θ, ψ, φ). For µ > 0 define the set

Tµ =
{
|x− ω| ≤ µ(1 − ω2), |y| ≤ µ(1 − ω2),

∣∣∣∣λ− 2
ε

∣∣∣∣ ≤ µ

ε
,∣∣∣θ − π

2

∣∣∣ ≤ µ, |ψ| ≤ µ, |φ| ≤ µ
}
.

Then for µ sufficiently small and ω sufficiently close to 1, there exists a
universal constant C0 independent of ε, µ and ω such that

∇FD,gω(ε, χ) · χ≥C−1
0

ε2µ2

(1 − ω2)2
on ∂Tµ, and hence deg(∇FD,gω ,Tµ, 0)=1,

(127)
where χ denotes the set of variables x, y, λ, θ, ψ, φ, and the gradient is taken
with respect to χ.

Proof. We recall that the functional FD,gω is defined by

FD,gω(ε, ξ, λ,R) =
1
λ2

[
H̃(ξ) − ελdR−1gω(ξ)

]
, where H̃(ξ) =

2
(1 − |ξ|2)2 ,

and where dR−1gω(ξ) is given by (126). In particular there holds

∇FD,gω

(
ε, ω, 0,

2
ε
,
π

2
, 0, 0

)
= 0;

HessFD,gω

(
ε, ω, 0,

2
ε
,
π

2
, 0, 0

)
= 2

ε2

(1 − ω2)2
Aω,ε,

where

Aω,ε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(1−ω2)

+ 3ω2

(1−ω2)2
0 −1

2
εω

(1−ω2)
0 0 0

0 1
(1−ω2) + 3ω2

(1−ω2)2 0 0 0 − ω
(1−ω2)

−1
2

εω
(1−ω2)

0 1
8ε

2 0 0 0
0 0 0 1

4 0 0
0 0 0 0 1

4 0
0 − ω

(1−ω2)
0 0 0 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We point out that the matrix Aω,ε is positive-definite and non-degenerate.
Using simple but tedious computations, one finds

|∇FD,gω(ε, χ) · χ−Aω,εχ| ≤ C
µ3ε2

(1 − ω2)2
, for x, y, λ, θ, ψ, φ ∈ Tµ. (128)
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Then the conclusion follows from the fact that ω, 0, 2
ε ,

π
2 , 0, 0 is a critical

point of FD,gω , from (128), and from the fact that Aω,ε is positive definite.

Now we are in position to prove Theorem 1.2. For the main idea see Remark
8.3.
Proof of Theorem 1.2 Let A = {S1 ∪ · · · ∪ Sk} be as in Theorem 1.2,
and let {v1, . . . ,vk} ⊆ R

3 denote the centers of S1, . . . , Sk respectively. Note
that, since all the spheres have radius 1 and since they all pass through the
origin, one has |vj | = 1, for all j = 1, . . . , k. Let R1, . . . ,Rk ∈ SO(3) satisfy

Rj(0, 0,−1) = vj, for all j = 1, . . . , k, (129)

see Remark 8.3. Let ω ∈ (0, 1) and define G̃k,ω : ∂D → R
3 by

G̃k,ω(x, y) =
k∑
j=1

Rj g̃j,ω, (x, y) ∈ ∂D,

where

g̃j,ω(x, y)= g̃ω

((
cos

2πj
k

)
x+
(

sin
2πj
k

)
y,−
(

sin
2πj
k

)
x+
(

cos
2πj
k

)
y

)
.

It is clear that the harmonic extension Gk,ω of G̃k,ω to the interior of D is
given by

Gk,ω(x, y) =
k∑
j=1

Rigj,ω(x, y)

=
k∑
j=1

Rigω

((
cos

2πj
k

)
x+
(
sin

2πj
k

)
y,−
(
sin

2πj
k

)
x+
(
cos

2πj
k

)
y

)
, (x, y)∈D.

(130)

where gω is given by (121). Our goal is now to study the critical points of
the functional ΣD,Gk,ω

defined in Proposition 7.4.
We introduce coordinates θj, ψj and φj parameterizing a rotation Rj

(note that this is a generic rotation, which differs from the fixed rotation
Rj) in the following way

(
cosψj cosφj − cos θj sinφj sinψj cosψj sinφj + cos θj cosφj sinψj sinψj sin θj

− sin θj sinφj sin θj cosφj − cos θj

− sinψj cosφj − cos θj sinφj cosψj − sinψj sinφj + cos θj cosφj cosψj cosψj sin θj

)
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= R−1
j Rj . (131)

The choice of this parametrization will become clear below. Note that for
θj ∼ π

2 and ψj , φj close to 0, these angles are a smooth parametrization of
SO(3) near Rj . Define also the set

T j
µ =

{∣∣∣∣(xj, yj) − ω

(
cos

2πj
k
, sin

2πj
k

)∣∣∣∣ ≤ µ(1 − ω2),
∣∣∣∣λj − 2

ε

∣∣∣∣ ≤ µ

ε
,∣∣∣θj − π

2

∣∣∣ ≤ µ, |ψj | ≤ µ, |φj | ≤ µ
}
.

We are going to prove that for ε sufficiently small and for ω sufficiently close
to 1, the functional ΣD,Gk,ω

has a critical point with xj, yj , λj , θj, ψj , φj ∈ T j
µ

for all j = 1, . . . , k.
By Proposition 7.4 and by the definition of FD,Gk,ω

we have

ΣD,Gk,ω
=

k∑
j=1

FD,Gk,ω
(ε, pj , λj , Rj) +

∑
l<j

FD(pl, pj , Rl, Rj)
λlλj

= FD,Rkgk,ω
(ε, pk, λk, Rk) − 8

ε

λk
A0

∑
j �=k

dR−1
k
gω,j(pk)

+
∑
j �=k

FD,Gk,ω
(ε, pj , λj, Rj) +

∑
l<j

FD(pl, pj , Rl, Rj)
λlλj

. (132)

By invariance we can write

FD,Rkgk,ω
(ε, pk, λk, Rk) =

1
λ2
k

[
H̃(ξk) − ελkdR−1

k
Rkgω(ξk)

]

=
1
λ2
k

[
H̃(ξk) − ελdR−1

k
Rkgω(ξ)

]
= FD,gω(ε, pk, λk,R−1

k Rk)
= FD,gω(ε, xk, yk, λk, θk, ψk, φk). (133)

We remark that the function in (133) is exactly the one studied in Lemma
8.4. This justifies the choice of the coordinates θj, ψj, φj in (131).

There holds

∂

∂xk
ΣD,Gk,ω

=
∂

∂xk
FD,gω(ε, xk, yk, λk, θk, ψk, φk)

− 8
ε

λk
A0

∑
j �=k

∂

∂xk
dR−1

k
gω,j(pk) +

∑
l �=k

∂

∂xk

FD(pl, pk, Rl, R)
λlλk

.
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Since all the λi’s are of order ε−1, and since the mutual distance between the
points pj’s is bounded from below, it is easy to check that for µ sufficiently
small

(pi, λi, Ri) ∈ T i
µ∀ i ⇒

ε

λk

∣∣∣∣ ∂∂xk dR−1
k
gω,j(pk)

∣∣∣∣+
∣∣∣∣ ∂∂xk

FD(pj , pk, Rj , Rk)
λjλk

∣∣∣∣ ≤ Cε2 j �= k,

where C is a positive constant independent of ε, ω and µ. Hence the last
formula and (132) imply∣∣∣∣ ∂∂xkΣD,Gk,ω

− ∂

∂xk
FD,gω(ε, xk, yk, λk, θk, ψk, φk)

∣∣∣∣ ≤ Cε2

if (pj , λj , Rj) ∈ T j
µ for all j = 1, . . . , k.

Using similar estimates we find{∣∣∇ζΣD,Gk,ω
−∇ζFD,gω(ε, xk, yk, λk, θk, ψk, φk)

∣∣ ≤ Cε2;∣∣∣ ∂
∂λk

ΣD,Gk,ω
− ∂

∂λk
FD,gω(ε, xk, yk, λk, θk, ψk, φk)

∣∣∣ ≤ Cε3,
(134)

provided (pj , λj , Rj) ∈ T j
µ for all j = 1, . . . , k, Here ζ denotes the set of

variables xk, yk, θk, ψk, φk, and where C is a positive constant independent
of ε, ω and µ.

Let us fix µ and ε sufficiently small such that (127) and (134) hold. Then
we have

∇χΣD,Gk,ω
·χ ≥ C−1

0

ε2µ2

(1 − ω2)2
−Cε2, χ ∈ ∂T k

µ ; if (pj, λj , Rj) ∈ T j
µ for all j,

where C and C0 are independent of ε, ω and µ. Now, choosing ω sufficiently
close to 1, depending on C, C0 and µ, and reasoning in the same way for
the indexes different from k we obtain

∇χjΣD,Gk,ω
· χj ≥

C−1
0

2
ε2, deg(∇χjΣD,Gk,ω

,T j
µ , 0) = 1,

if (pj , λj , Rj) ∈ T j
µ for all j,

where χj denotes the set of variables xj , yj, λj , θj, ψj , φj . For the above
choices of µ and ω, let IGk,ω(µ),ε denote the Euler functional Iε corresponding
to the boundary datum G̃k,ω(µ). By Proposition 4.6, for ε sufficiently small
we obtain

∇χj ĨD,Gk,ω,ε · χj ≥
C−1

0

2
ε2, deg(∇χj ĨD,Gk,ω,ε,T j

µ , 0) = 1,

if (pj, λj , Rj) ∈ T j
µ for all j.
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Then, by Proposition 4.3 and Lemma 8.5 below, letting ε → 0, we find a
family of solutions uε,µ of I ′Gk,ω(µ),ε

= 0 satisfying, up to a subsequence

uε,µ(D) → Aµ = {S1,µ, . . . , Sk,µ} in the Hausdorff sense as ε→ 0,

where S1,µ, . . . , Sk,µ are spheres of radius 1 passing through the origin and
lying in a neighborhood of order µ of S1, . . . , Sk respectively. Now we can
choose µ(ε) → 0 sufficiently small as ε→ 0, and find a corresponding ω(ε) →
1 such that the solution uε,µ(ε) of I ′Gk,ω(µ(ε)),ε

= 0 obtained with the above
method satisfies

uε,µ(D) → A = {S1, . . . , Sk} in the Hausdorff sense as ε→ 0.

This concludes the proof of the Theorem.

Lemma 8.5. Let g̃ : ∂Ω → R
3 be a smooth function, let k ∈ N, C > 0, and

let Z be defined as in (31). Let u be a solution of (Pε) of the form

u =
k∑
i=1

PRiδpi,λi
+w; with

k∑
i=1

PRiδpi,λi
∈ Z, and ‖w‖H1

0 (Ω) → 0 as ε→ 0.

Then ‖w‖L∞(Ω) → 0 as ε→ 0.

Proof. In the following we simply write δi for Riδpi,λi
, and we let ϕi be

the function in (21) corresponding to δi. The function w satisfies⎧⎪⎪⎨
⎪⎪⎩

∆w = 2 (
∑

i(δi − ϕi) + w + εg)x ∧
(∑

j(δj − ϕj) + w + εg
)
y

−
∑

i(δi)x ∧ (δi)y, in Ω,
w = 0 on ∂Ω.

where g, as before, denotes the harmonic extension of g̃ to Ω. Expanding the
wedge produce on the right-hand side we obtain (as before Pδi = δi − ϕi)

∆w = 2
∑
i�=j

(Pδi)x ∧ (Pδj)y + 2
∑
i

[(Pδi)x ∧ wy + wx ∧ (Pδi)y]

+ 2ε
∑
i

[(Pδi)x ∧ gy+gx ∧ (Pδi)y]−2
∑
i

[(δi)x ∧ (ϕi)y+(ϕi)x ∧ (δi)y]

+
∑
i

(ϕi)x ∧ (ϕi)y + 2wx ∧ wy + 2ε(wx ∧ gy + gx ∧wy) (135)

+ ε2gx ∧ gy.
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Using (25), (26) and some elementary computations, for any p > 1 the first
term in the right hand side can be estimated in the following way

‖(Pδi)x ∧ (Pδj)y‖Lp(Ω) ≤ C(C, p)

⎛
⎜⎝ 1
λiλj

+
λ

p−2
p

j

λi
+
λ

p−2
p

i

λj

⎞
⎟⎠

≤ C(C, p) ε
2
p , i �= j.

From standard elliptic estimates it follows that∥∥(∆)−1 ((Pδi)x ∧ (Pδj)y)
∥∥
L∞(Ω)

≤ C(C, p) ε
2
p , i �= j,

where (∆)−1 denotes the Green’s operator for ∆ in Ω with Dirichlet bound-
ary conditions. Let us focus now on the second term in (135). Writing for
brevity ψ = Pδi, one has

(ψx ∧ wy + wx ∧ ψy) = [J(w2, ψ3) + J(ψ2, w3)]i + [J(w1, ψ3) + J(ψ1, w3)]j
+ [J(w1, ψ2) + J(ψ1, w2)]k,

where J(F,G) = FxGy − FyGx is the Jacobian function. By the result in
[12] there holds∥∥(∆)−1 (ψx ∧ wy +wx ∧ ψy)

∥∥
L∞(Ω)

≤ C‖Pδi‖H1
0 (Ω) ‖w‖H1

0 (Ω) → 0 as ε→ 0.
(136)

The remaining terms in (135) can be estimated as in (136).

Remark 8.6. With an easy modification of the above arguments we can
obtain the limit configuration {S1, . . . , Sk} with a boundary datum of the
form εG̃, for some fixed function G̃ on ∂D independent of ε.

Remark 8.7. We remark that to obtain L∞ estimates on the solutions
of (Pε), we use in a crucial way that these solutions satisfy the H-surface
equation with H ≡ constant. Such estimates are not available for general
Palais-Smale sequences, as exhibited in [11].

In Figure 4 we indicate the location of the points pj in D when ω is close to 1,
see the definition of T j

µ . We also plot the boundary datum εgω,j , which lies
in a plane, and the corresponding bubble (as in Remark 8.3) whose center
vj is, roughly, perpendicular to the plane of gω,j . We note that the image
of g̃ω is a great circle (the Kelvin inversion of ∂D w.r.t. the point (ω, 0)).
In Figure 5 we plot the configuration of bubbles generated by the function
εGk,ω. Each bubble is nearly perpendicular to some gj , ω (whose sum is
Gk,ω).
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ω

p
1

p
2

D

p
3

jv

εg
j, ω

Figure 4: the points pj on the disk D and the bubble generated by gω,j

v

v

2

3

v1

ω3,Gε

Figure 5: the boundary datum εGk,ω and the corresponding configuration
of spheres
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9. Appendix.

This Appendix is devoted to the characterization of the solutions of the
equation I

′′(δa,λ)[w] = 0. We can suppose by invariance that a = 0 and
λ = 1, and we set δa,λ = π, see Section 2. If a function w ∈ D satisfies
I
′′(δ)[w] = 0, then it solves the linearization of (15), namely

∆w = 2 (wx ∧ δy + δx ∧wy) , in R
2, w ∈ D. (137)

After inverse stereographic projection, equation (137) can be equivalently
viewed on S2 as follows

∆g0w = 2(sinϕ)−1 (wθ ∧ δϕ + δθ ∧ wϕ) , in S2, w ∈ H1(S2; R3). (138)

where (θ, ϕ), 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π, are spherical coordinates on S2 and
∆g0 is the Laplacian with respect to standard metric on S2.

To analyze (138) we shall use some properties of spherical harmonics that
we now recall. Let Pn(x), x ∈ (−1, 1), denote the n-th Legendre function.
We define the associated Legendre function P kn (x) by

P kn (x) = (−1)k(1 − x2)
k
2
dk

dxk
Pn(x), k ≥ 0. (139)

The spherical harmonics are defined by

Yn,k(θ, ϕ) = cn,|k|P |k|
n (cosϕ)eikθ, −n ≤ k ≤ n, (140)

where the normalization constant cn,|k|, see [13] equation (21), p.171, is given
by

cn,|k| =
(

2n+ 1
4π

) 1
2

√
(n− |k|)!
(n+ |k|)! . (141)

From (139) we easily have, by differentiation

P k+1
n (cosϕ) = − sinϕ(P kn )′(cosϕ) −m cotϕP kn (cosϕ), (142)

and from equation (41), p.107 in [19],

P k+2
n (cosϕ) + 2(m+ 1) cotϕP k+1

n (cosϕ) + (n− k)(n+ k+ 1)P kn (cosϕ) = 0.
(143)

From (141) we also have, for 0 ≤ k ≤ n, n ≥ 2,

dn,k :=
cn,k
cn,k+1

≤
√

3/2n, en,k := (n− k)(n + k + 1)
cn,k
cn,k−1

≤
√

3/2n.

(144)
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In the sequel we will often write P kn (ϕ) for P kn (cosϕ).
We define the finite-dimensional subspace Hn to be the linear span of

Yn,k, −n ≤ k ≤ n, and Hn the subspace of L2(S2; R3) consisting of vectors
w = (f1, f2, f3) with fi ∈ Hn, i = 1, 2, 3. Recall that any function w ∈
L2(S2; R3) can be decomposed orthonormally as w =

∑∞
n=0wn, with wn ∈

Hn. We have

Lemma 9.1. Let w : S2 → R
3 be a solution of (138), and let w =

∑∞
n=0wn,

with wn ∈ Hn. Then wn = 0 for n ≥ 4.

Proof. We first claim that for any F ∈ Hn there holds

Γ(F ) := ∆g0F − 2
sinϕ

(Fθ ∧ δϕ + δθ ∧ Fϕ) ∈ Hn. (145)

If our claim is verified, to prove the Lemma it will be enough to pick a
solution w to (138) in Hn and to show that wn = 0 for n ≥ 4.

We now prove our claim. W.l.o.g. pick F ∈ Hn of the form

F =
(
αk1cn,k1P

k1
n (ϕ)eik1θ, βk2cn,k2P

k2
n (ϕ)eik2θ, γk3cn,k3P

k3
n (ϕ)eik3θ

)
= (αk1Yn,k1, βk2Yn,k2, γk3Yn,k3)

Next we have δϕ = (cosϕ cos θ, cosϕ sin θ,− sinϕ) and δθ =
(− sinϕ sin θ, sinϕ cos θ, 0). We will show that Γ(F ) = −n(n + 1)F − 2v,
where

v =( −ik2βk2Yn,k2 + 1/2dn,k3γk3Yn,k3+1 − 1/2en,k3γk3Yn,k3−1

ik1αk1Yn,k1 − i/2dn,k3γk3Yn,k3+1 − i/2en,k3γk3Yn,k3−1

i/2dn,k2βk2Yn,k2+1 − i/2en,k2βk2Yn,k2−1 − 1/2dn,k1αk1Yn,k1+1 + 1/2en,k1αk1Yn,k1−1

)
.

(146)
Since v ∈ Hn, our claim follows. It is evident that ∆g0F = −n(n + 1)F ,
thus it is enough to show that the second expression in (145) is 2v. This
follows by noting that

Fθ ∧ δϕ =

(
−ik2βk2cn,k2 sinϕP k2

n (ϕ)eik2θ − ik3gk3cn,k3 cosϕ sin θP k3
n (ϕ)eik3θ

ik3gk3cn,k3 cosϕ sin θP k3
n (ϕ)eik3θ + ik1αk1cn,k1 sinϕP k1

n (ϕ)eik1θ

ik1αk1cn,k1 cosϕ sin θP k1
n (ϕ)eik1θ − ik2βk2cn,k2 sinϕP k2

n (ϕ)eik2θ

)
;

δθ ∧ Fϕ =

(
−gk3cn,k3 sin2 ϕ cos θ(P k3

n )′(ϕ)eik3θ

−γk3cn,k3 sin2 ϕ sin θ(P k3
n )′(ϕ)eik3θ

βk2cn,k2 sin2 ϕ sin θ(P k2
n )′(ϕ)eik2θ + αk1cn,k1 sin2 ϕ cos θ(P k1

n )′(ϕ)eik1θ

)
.



246 S. Chanillo and A. Malchiodi

Using (142) and (143) it is easily verified that (sinϕ)−1 [Fθ ∧ δϕ + δθ ∧ Fϕ] =
v. Then from (146) and integrating the equation Γ(w) ·w = 0 on S2 we find

−n(n+ 1)

⎛
⎝A2

B2

C2

⎞
⎠ (147)

=−2
∑
k

⎛
⎝ −ikβkαk + 1/2dn,kγkαk+1 − 1/2en,kγkαk−1

ikαkβk − i/2dn,kγkβk+1 − i/2en,kγkβk−1

i/2dn,kβkγk+1−i/2en,kβkγk−1−1/2dn,kαkγk+1+1/2en,kαkγk−1

⎞
⎠,

where w =
∑

k(αkYn,k, βkYn,k, γkYn,k) and where A2 =
∑

|αk|2, B2 =∑
|βk|2, C2 =

∑
|γk|2. Using (144), (147) and the Cauchy-Schwartz in-

equality we find

n(n+ 1)|(A2, B2, C2)|

≤ 2n
∣∣∣(AB +

√
3/2AC,AB +

√
3/2BC

√
3/2(BC +AC)

)∣∣∣
≤ 2n

(
9 +

√
6

2

) 1
2 (
A4 +B4 + C4

)1/2
.

Thus n+ 1 ≤
(
18 +

√
24
) 1

2 , which implies n ≤ 3.

Lemma 9.2. The solutions of equation (138) are of the form

w = c+

⎛
⎝ αx2 + βx3

−αx1 + γx3

−βx1 − γx2

⎞
⎠+ (α′x1 + β′x2 + γ′x3)

⎛
⎝x1

x2

x3

⎞
⎠

where c ∈ R
3 and α, β, γ, α′, β′, γ′ ∈ R are arbitrary.

Proof. We denote by J(w) the r.h.s. of (138). From the proof of Lemma
9.1 it follows that J preserves the degree of spherical harmonic functions.
Equivalently, J preserves the degree of polynomial functions in R

3 restricted
to S2. By this reason and by Lemma 9.1, we can confine ourselves to study
J just on polynomials of order 1, 2 and 3. Since the computations involved
in the proof are straightforward, we just give a simple sketch below, omitting
some details.

Using simple computations, we obtain

J(x1, 0, 0)=(0, 2x2 , 2x3); J(x2, 0, 0)=(0,−2x1 , 0); J(x3, 0, 0)=(0, 0,−2x1).
(148)
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With a permutation of coordinates one also finds

J(0, x2, 0)=(2x1, 0, 2x3); J(0, x3, 0)=(0, 0,−2x2); F (0, x1, 0)=(−2x2, 0, 0);
(149)

F (0, 0, x3)=(2x1, 2x2, 0); F (0, 0, x1)=(−2x3, 0, 0); F (0, 0, x2)=(0,−2x3, 0).
(150)

Hence, letting w = (a1x1 +a2x2+a3x3, b1x1+b2x2+b3x3, c1x1+c2x2+c3x3)
we find

J(w)=2

⎛
⎝−b1x2 + b2x1 − c1x3 + c3x1

a1x2 − a2x1 − c2x3 + c3x2

a1x3 − a3x1 + b2x3 − b3x2

⎞
⎠ ; ∆w=−2

⎛
⎝a1x1 + a2x2 + a3x3

b1x1 + b2x2 + b3x3

c1x1 + c2x2 + c3x3

⎞
⎠,

The system of equations ∆w = J(w) admits the following solutions;⎛
⎝a1 a2 a3

b1 b2 b3
c1 c2 c3

⎞
⎠ =

⎛
⎝ 0 α β
−α 0 γ
−β −γ 0

⎞
⎠ , (151)

with α, β, γ arbitrary real numbers.
Let us now consider the homogeneous second order polynomials. We

have ∆x2
i = 2(1 − 3x2

i ) and ∆(xixj) = −6xixj. Using the Leibnitz rule and
(148)-(150), we can compute J(w) when w has the form;

w =

⎛
⎝a1x

2
1 + a2x1x2 + a3x

2
2 + a4x1x3 + a5x2x3 + a6x

2
3

b1x
2
1 + b2x1x2 + b3x

2
2 + b4x1x3 + b5x2x3 + b6x

2
3

c1x
2
1 + c2x1x2 + c3x

2
2 + c4x1x3 + c5x2x3 + c6x

2
3

⎞
⎠

From the relation ∆w = J(w), and using elementary computations we obtain

w = (αx1 + βx2 + γx3) + (δ, η, σ),

where α, β, γ, δ, η, σ are arbitrary real numbers.
Let us now turn to the third order polynomials. We have

∆x3
i = 6xi(1 − 2x2

1); ∆(x2
i xj) = 2xj(1 − 6x2

i ); ∆(xixjxk) = −12xixjxk.

Again, the values of F on the third order polynomials can be computed with
the Leibnitz rule and (148)-(150).

Letting
w =(

a1x3
1+a2x2

1x2 + a3x2
1x3 + a4x1x2x3 + a5x1x2

2 + a6x1x2
3 + a7x3

2 + a8x3
3 + a9x2

2x3+a10x2x2
3

b1x3
1 + b2x2

1x2 + b3x2
1x3 + b4x1x2x3 + b5x1x2

2 + b6x1x2
3 + b7x3

2 + b8x3
3 + b9x2

2x3 + b10x2x2
3

c1x3
1 + c2x2

1x2 + c3x2
1x3 + c4x1x2x3 + c5x1x2

2 + c6x1x2
3 + c7x3

2 + c8x3
3 + c9x2

2x3 + c10x2x2
3

)
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and equating the coefficients in the expressions for ∆w and J(w), we find a
system decoupled into four parts. The first part consists of seven equations
involving the seven terms a2, a7, a10, b1, b5, b6 and c4. Using simple compu-
tations one finds a2 = a7 = a10 = α, b1 = b5 = b6 = −α, c4 = 0, for some
α ∈ R.

The second part consists of seven equations involving the seven terms
a3, a8, a9, b4 and c1, c5, c6. Using simple computations one finds a3 = a8 =
a9 = β, c1 = c5 = c6 = −β, b4 = 0, for some β ∈ R.

The third part consists of seven equations involving the seven terms a4,
b3, b8, b9, and c2, c7, c10. Using simple computations one finds b3 = b8 = b9 =
γ, c2 = c7 = c10 = −γ, a4 = 0, for some γ ∈ R.

The fourth part consists in nine equations involving the terms a1, a5, a6,
b2, b7, b10 and c3, c8, c9. Using simple computations one finds a1 = a5 = a6 =
b2 = b7 = b10 = c3 = c8 = c9 = 0.

The solution obtained in this way represent just the linear functions in
(151), taking into account of the identity x2

1 + x2
2 + x2

3 = 1 on S2. This
concludes the proof.

Proof of Proposition 4.1. Coming back to the space D, and using some
elementary computation, the proof of the last statement follows immedi-
ately from Lemma 9.2. The first inequality is immediate to check. The
second inequality follows from the proof of Lemma 9.2 when v ∈ ⊕n≥4Hn.
When v has some non-zero components in ⊕n≤3Hn, then it is sufficient to use
straightforward computations, since we have to deal with finite combinations
of spherical harmonics. Alternatively note that, since δ is a mountain-pass
critical point of I, the linearized operator possesses only one negative eigen-
value (with corresponding eigenvector δ), hence if v ⊥ δ and v ⊥ KerI

′′(δ),
v must be a combination of positive eigenvectors.
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sults via a variational approach, Ann. Inst. Henri. Poincaré Analyse
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