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Abstract. Since the Stanford pioneering work of Paik in the 1970s, cryogenic resonant-mass 
gravitational wave detectors have used resonant transducers, which have the effect of 
increasing both the detector sensitivity and bandwidth. Now nanotechnology is opening new 
possibilities towards the construction of ultra-high sensitivity klystron cavity transducers. It 
might be feasible to construct TeraHz/micron parametric transducers in a near future. They 
would be so sensitive that there would be no need for multimode resonant transducers. The 
resonant-antenna would act as a broadband detector for gravitational waves. A spherical 
antenna, such as Schenberg or Mini-Grail, could add to this quality the advantage of wave 
position and polarity determination. Here we propose an extreme geometry for a re-entrant 
klystron cavity (df/dg ~ 1018 Hz/m, where f stands for the microwave pump frequency and g 
for variations in the cavity gap), obtaining a frequency response for the strain sensitivity of the 
Schenberg gravitational wave detector such that its bandwidth increases from 50 Hz (using the 
so-called resonant mode coupling) to ~4000 Hz when operating @ 20 mK, and, when 
compared to LIGO experimental curve, shows a competitive band of about 2000 Hz. We also 
study some of the technological complications that can be foreseen to design such a resonant 
cavity. 

PACS numbers: 04.80.Nn, 95.55.Ym 
 

1.  Introduction 
Pioneered by Weber in the 1960s, resonant-mass gravitational wave detectors were the first devices 
developed for the purpose of detecting propagative perturbations of the space-time metric. Since then, 
there have been many similar devices developed throughout the world, with the geometry of bars and 
spheres. This work is part of the Brazilian group’s resonant-mass detector program to improve the 
sensibility of the Schenberg detector, which had its first data run in September 2006 [1]. 

All resonant-mass detectors in operation [1] have narrow bandwidths when compared to 
interferometric detectors, such as LIGO [2]. This is due to large electronic noise of the transductance 
mechanism that converts the motion of the detector to an electronic signal. In order to enhance the 
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bandwidth, it was proposed by Paik [4] that the transducer could be constructed from coupled 
harmonic oscillators, with masses in such a progression that there would be high amplitude gain of the 
antenna motion with the frequency response naturally leading to a higher bandwidth by raising the 
signal above the electronic transducer noise. However, the trade-off is that this technique creates an 
intrinsic bandwidth due to the mechanical thermal noise added by the transducer modes, which cannot 
be surpassed and is still much lower than the typical interferometer bandwidth. 

We will propose here a novel approach to the problem. New nanotechnologies have been enhanced 
during the past years and can now produce extremely smooth surfaces; such that just a few nanometers 
of roughness can be produced. In such a scenario, we propose a nanometric-gap reentrant klystron 
cavity, such that, when operated at extremely low temperature (@20 mK) will give such low 
electronic noise that the resonant-mass transducer may be dispensed with, and a bandwidth 
competitive to interferometer gravitational wave detectors may be obtained. 

In section two, we give an overview of the klystron cavity, the noise analysis which is responsible 
for the strain sensitivity of the detector, and the design parameters that give the expected behavior, and 
compare our obtained curve with the one obtained from LIGO I fourth run of data [2].  In section 3 we 
outline a method to build this nano-cavity, together with possible problems in its operation and 
fabrication. 

2.  The Klystron Cavity Transducer and Noise Analysis 
The klystron cavity has a reentrant geometry which is depicted in Figure 1. Its characteristics are well-
known for electronics engineers since Hansen’s work [5]. The gap, whose dimension is g, determines 
the dominant mode, i.e., the well-known klystron mode, which makes the gap resemble a capacitor, 
with the electric field lines running across the gap spacing between the top of the conical post to the 
top of the cavity and vice-versa, with the magnetic field lines circulating the region around the conical 
post (this is the inductive region of the cavity). 

 

 

Figure 1. The klystron cavity transducer geometry and its relevant dimensions. The cavity 
that we devise is depicted to scale in a 3D perspective. 
 
The sensitivity of the detector is due to four main types of noise (we neglect the effect of seismic 

noise, as our lowest frequency of interest is about 2 kHz); these are the transducer series noise, the 
oscillator phase noise, the back-action noise and mechanical thermal noise [6]. Some electrical 
parameters that are directly related to the noise sources are the electrical Q-factor, and the cavity 
dominant frequency dependence on the gap dimension, df/dg. When using superconducting niobium 
and a gap of tenths of µm, we have usual values of: df/dg~f0/g~1015 and Qe~105 [1] (f0 is the klystron 
mode frequency assumed to be 10 GHz). 
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Our proposal is to adjust these two factors to extremely high values, so that the noise produced by 
the klystron cavity transducer is sufficiently low that mechanical amplification of the gravitational 
wave signal via a multi-mode transducer is not necessary. This will eliminate the necessity of having 
the top of the cavity made of an oscillating membrane tuned to the sphere frequency. Instead we need 
to design an inertial mass. 

To design this cavity, we used the work from Fujisawa [7]. For small gaps (which is, indeed, our 
case) he derived some semi-analytical expressions for cavity frequency as function of its geometry, 
using a lumped circuit analogous to the cavity. Using a Mathematica® notebook, we could design the 
transducer to maintain its dominant mode at 10 GHz and have the desired df/dg of about 1018 Hz/m. 
The cavity dimensions found are listed below. 
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Assuming these parameters and operation at 20 mK, we investigate what will happen to the strain 
noise curve of the Schenberg detector when subjected to these conditions. 

The behavior of the detector under these transducer conditions is depicted in Figure 2. It shows the 
known noise components of the Schenberg’s sensitivity curve, and why it becomes broadband: the 
transducer phase and series noise components are greatly decreased by the increase of df/dg, so that 
the resonant peak becomes much less relevant to the final curve, which has just a little concavity in the 
resonance region. 

 
 

Figure 2. The Schenberg detector sensitivity curve is depicted in a black, thick, curvy line 
(the flat line just below it represents the thermal noise and the other flat line the back-
action noise). The gray line with a dip represents series and phase noises when viewed at 
the sphere input (the same port where the gravitational wave arrives). The blue line is an 
interpolation from LIGO October 2006 sensitivity curve [2]. 
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From Figure 2, we can see in the band from 2500 Hz to 4500 Hz Schenberg would have a better 
sensitivity than LIGO, and in the band from 2000 Hz to 6000 Hz Schenberg would be comparable and 
only lose in sensitivity by a factor of at most 2.  

The observation of sources such as stellar black holes and neutron stars would benefit from this 
sensitivity enhancement of spherical antennas in comparison with interferometric techniques. 

There is, however, a great technological challenge in order to obtain such a cavity. In the following 
section we outline our proposed method to obtain the nanometre gap, and list some of the difficulties 
that will eventually arise during the process of its fabrication. 

3.  Building a nanometric Klystron Cavity Transducer 
Nanotechnology deals with tiny distances, on the nanometre scale. But what we wish to do is to give 
birth to an extremely little gap even for nanotechnology procedures. Our proposed technique is as 
follows. 

The bulk of the cavity is composed of silicon, in whose surface is deposited a niobium layer, which 
is superconductor at the extremely low temperatures of Schenberg operation (today, Schenberg 
operates at 4K, being cooled by liquid helium). There is thermal contraction of those materials during 
cooling. The thermal contraction of niobium is about ten times larger than the one for silicon and as 
result the differential contraction coefficient of niobium related to silicon from room temperature to 4 
K is about one part in a thousand, which means that, if there is a niobium layer 0.5 micrometer thick 
on the top of the cavity post, which, on the other hand, is touching another 0.5 micrometer thick layer 
deposited on the membrane above, at 300 K, when cooled down to 4 K, both niobium layers will 
suffer a differential contraction of 1/1000, making our desired gap, of 1 nanometre. This situation is 
depicted in Figure 3. 

  

Figure 3: The klystron cavity is made of two pieces of silicon, which are green in the figure. 
Both of them have a niobium layer of 0.5 micrometer (in red), and then they are put in 
contact, and sealed by silicon plates (in blue). When cooled down to ~4K, the niobium layer 
contracts one part in a thousand while the silicon one only contracts a part in ten 
thousand, therefore a gap of about one nanometre opens between the two niobium layers. 
In the picture at the right side, we show schematically those layers, at an electrically 
irrelevant point, that is, the point of contact between the cavity and the silicon plate. 
 

There are several problems related to the construction of the cavity, and we list some of them below, 
proposing some ways to solve each problem. 
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3.1.  Casimir Force 
The Casimir force between the plates can be a serious problem because it can prevent the gap from 
appearing during the cooling of the cavity. Calculating Casimir forces analytically can be quite a 
problem if the geometry is irregular like ours, and if you don’t know a general expression for the 
cavity eigenmodes. The cavity vacuum state in Fock space becomes dependent of numerical 
parameters, and the ordinary way to calculate the vacuum energy is by using some regularization 
procedure, which involves the knowledge of the analytical expression for all the modes that can 
populate the cavity. 

We will make a detailed analysis of the consequences of the Casimir force in a future paper. 

3.2.  Surface Roughness 
The surface of the niobium must be very well polished, to a precision of a few tenths of nanometers, 
which is ten times better than we can achieve with present technology. So, there is a technological 
need to improve those methods by making surfaces roughness become lesser than half a nanometre, 
which is a big challenge because we begin to deal with the atomic scale. 

3.3.  Island Weight 
The island is placed on the middle of the membrane to make it oscillate at much lower frequency than 
the quadrupole modes of the sphere. In order to make this membrane as an inertial reference body, we 
construct the island in such a way that the membrane oscillates at a frequency about ten times lower 
than the resonant frequencies of the quadrupole modes of the sphere, that is, ~ 320 Hz. 

If we compare the restoring force from the membrane plus island to its weight, knowing that it can 
bend no more than tenths of nanometres, we come to the conclusion that the only way to maintain the 
gap opened without the interference of the membrane plus island weight is by keeping it in a vertical 
position. 

During operation of the detector, it would be necessary to have a closed loop control of the vertical 
position of the cavity, where our actuator would be a piezoelectric device controlled by a noiseless DC 
voltage. 

3.4.  Electric Field Breakdown 
This will not be a problem, as we can maintain the relation of the applied voltage to the gap of the 
cavity a constant throughout the operation, maintaining it in a value much lower than the threshold 
value to break the vacuum dielectric. Fortunately the electrical mechanical coupling is independent of 
the gap as long as voltage/gap ratio is maintained. 

4.  Conclusion 
In this paper, we proposed a method to give resonant-mass detectors the ability to probe the 
gravitational universe in a wider range of frequencies. If this investigation really turns into a practical 
result, gravitational wave observation can become most easily accessible to groups throughout the 
world, as the costs are much lower for the resonant-mass techniques. 

There remain many technological obstacles, and the existence of an attractive Casimir Force can be 
a potential problem to construct the nanometre gap by differential thermal contraction. In such a case, 
a new technique must be developed, maybe using the weight of the island to make it bend before 
thermal contraction begins. 

Further work in a deeper analysis of the technical problems of the process of fabrication of the 
nanometre cavity, as well as a most realistic strain noise sensitivity curve, including the seismic effects 
and the other modes of vibration of the sphere remain to be done. 
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