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Chapter 1

Introduction

1.1 The Perona-Malik equation

We consider the following initial boundary value problem





ut(t, x) = div

( ∇u(t, x)
1 + |∇u(t, x)|2

)
∀(t, x) ∈ (0, T )× Ω,

∂νu(t, x) = 0 ∀(t, x) ∈ (0, T )× ∂Ω,

u(0, x) = u0(x) ∀x ∈ Ω,

(1.1)

where Ω ⊂ Rd is an open set and T > 0 is a positive number.

This equation was introduced by Perona and Malik in [64] in the context of image
processing and, starting from this equation, researchers have developed various numer-
ical schemes which are quite effective in improving the quality of real images.

The heuristic idea that motivates the introduction of this equation is the following.
Suppose that Ω ⊂ R2 is a rectangle in the plane and that the function u describes the
gray-scale level of an image. Then it was well-known that forward diffusion (like the
heat equation) is an efficient tool for removing noise. However, this has an important
drawback, namely it blurs the contours of the figures. The idea of Perona and Malik was
to reverse the diffusion in regions where |∇u| is large, which should correspond to the
boundaries of the figures, in order to avoid blurring, and actually enhance these edges.
Indeed, equation (1.1) can be rewritten as

ut =
1

1 + |∇u|2∇
2u ·

(
Id− 2∇u⊗∇u

1 + |∇u|2
)
.

The matrix multiplying the Hessian is positive definite where |∇u| < 1 (the so-called
subcritical region) while has a negative eigenvalue in the direction of ∇u where |∇u| > 1
(the so-called supercritical region), and this corresponds to reversing the diffusion from
forward to backward in the direction of the gradient. For this reason this model is
sometimes called anisotropic diffusion.
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More generally, the same happens if one considers equations like





ut(t, x) = div

(
ϕ′(|∇u(t, x)|) ∇u(t, x)

|∇u(t, x)|

)
∀(t, x) ∈ (0, T )× Ω,

∂νu(t, x) = 0 ∀(t, x) ∈ (0, T )× ∂Ω,

u(0, x) = u0(x) ∀x ∈ Ω,

(1.2)

where ϕ : [0,+∞) → [0,+∞) is a non-decreasing C2 function with derivative vanishing
at infinity, that is convex in a neighborhood of the origin and concave elsewhere. In this
setting, equation (1.1) corresponds to the choice ϕ(p) = log(1 + p2)/2.

This equation is formally the gradient-flow with respect to the metric of L2(Ω) of
the energy functional

PM(u) :=

∫

Ω

ϕ(|∇u(x)|) dx. (1.3)

However, the lack of convexity and the sublinear growth at infinity of the Lagrangian
ϕ imply that the functional is not lower semicontinuous, and actually its relaxation is
identically null in any reasonable functional space, so that the interpretation of (1.2) as
a gradient-flow can not be made rigorous.

From the PDE viewpoint, (1.2) is a quasilinear forward-backward parabolic equation,
and it is well-known that backward parabolic equations are ill-posed, in the sense that
a classical solution might not exist even if the initial datum u0 is smooth. In [54] and
[46] it was proved that the situation is the same also with the Perona-Malik equation.

This discrepancy between the good properties exhibited by numerical schemes and
the bad behavior of the equation in any rigorous mathematical framework is usually
called Perona-Malik paradox after [55].

Solving the paradox would mean to find a suitable notion of solution, that exists
for a sufficiently large class of initial data, is consistent with the stability of numerical
schemes, and to which these converge. At present, however, such a theory seems out of
reach, even if many attempts have been made in the last three decades.

1.1.1 Classical solutions

Classical solutions are the most natural notion of solution in every PDE problem, so it
is not surprising that many authors considered the problem in this framework.

The first paper in this direction is [54], where many different results were proved,
most of which apply also to weak solutions of class C1 (which are defined as usual
via integration by parts, as we explain in the next section). In particular we have
a maximum principle [54, Theorem 2.1], a comparison principle for one-dimensional
solutions separated by a subcritical function or with disjoint supercritical regions [54,
Theorem 4.1], and a uniqueness result under suitable assumptions [54, Theorem 5.1].

Further a priori estimates for classical solutions of (1.2) in the one-dimensional case
were proved in [42, Theorem 2.2]. Let us state precisely some of them.

Theorem 1.1.1 (Theorem 2.2 in [42]). Let Ω = (a, b) be an interval and let u : [0, T )×
[a, b] → R be a C2 solution of (1.2). Then we have the following estimates.
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• The function t 7→ max{u(t, x) : x ∈ [a, b]} is non-increasing, while the function
t 7→ min{u(t, x) : x ∈ [a, b]} is non-decreasing.

• The function t 7→ ‖ux(t, x)‖L1([a,b]) is non-increasing.

• Let us set M(t) := max{ux(t, x) : x ∈ [a, b]}. If ϕ′′(M(0)) > 0, then M(t) is
non-increasing, while if ϕ′′(M(0)) < 0, then M(t) is non-decreasing.

In the higher dimensional case the maximum principle continues to hold, while the
properties involving derivatives can not be extended (see [42, Theorem 2.17]).

In any case, despite the good properties that they exhibit, at least in the one-
dimensional case, it turns out that classical solutions are too rigid to describe the phe-
nomena observed in simulations, as shown by a series of results that we outline now.

First of all, we have the following global existence result for subcritical initial data.

Theorem 1.1.2 (Theorem 6.1 in [54]). Let Ω be a convex open set of class C2,α for
some α ∈ (0, 1), and let us assume that u0 ∈ C2,α(Ω), that ∂νu0 = 0 on ∂Ω and that
|∇u0(x)| < p0, for some p0 > 0 such that ϕ′′(p) > 0 for p ∈ [0, p0). Then for every
T > 0 there exists a unique classical solution of the problem (1.2).

Actually, in [54] the assumptions on Ω are not clearly specified, but in some more
recent works (see [56, Theorem 1.2] and the subsequent discussion) it was pointed out
that convexity is probably necessary.

In any case, this result is not satisfactory because, in the context of images, subcrit-
ical initial data correspond to images with no edges (hence with no figures), and the
Perona-Malik equation was introduced exactly to deal with the edges.

Unfortunately, outside the subcritical regime, things become much more complicated,
because the backward regime becomes relevant and existence of solutions for backward
parabolic equation is notoriously problematic. Indeed, in the model case of the backward
heat equation, the existence of a classical solution requires a fast decay of the Fourier
coefficients of the initial datum.

The following result obtained in [46], which applies also to C1 solutions, shows that
the situation for the Perona-Malik equation is even worse, at least in the one-dimensional
case.

Theorem 1.1.3 (Theorem 5.1 in [46]). Let Ω = (a, b) be an interval and let u0 ∈
C1([a, b]) be such that u′0(a) = u′0(b) = 0. If there exists x0 ∈ (a, b) such that u′0(x0) > 1,
then problem (1.1) has no global (weak) solutions of class C1.

On the other hand, the next theorem, which was proved in [43], shows that local
classical solutions could exist also for non-subcritical initial data.

Theorem 1.1.4 (Theorem 1.1 in [43]). Let Ω = (a, b) be an interval and let R ⊂
C1([a, b]) be the set of initial data u0 for which there exist a number T > 0 and a
function u ∈ C1,2([0, T ]× [a, b]) satisfying (1.1). Then R is dense in C1([a, b]).

Finally, it turns out that the situation is even more complicated in higher dimensions,
since surprisingly Theorem 1.1.3 can not be extended, as shown by the following theorem
(see also [45] for further differences in the evolution of subcritical regions in the one-
dimensional case and in the higher dimensional case).
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Theorem 1.1.5 (Theorem 1.1 in [44]). Let Ω := {x ∈ R2 : 1 < |x| < 5} be an annulus.
Then there exists a (radially symmetric) function u0 ∈ C2(Ω) such that {|∇u0(x)| >
1} = {x ∈ Ω : 2 < |x| < 4} and the problem (1.1) admits a global classical (radially
symmetric) solution u ∈ C1,2([0,+∞)× Ω).

Moreover, u becomes subcritical in finite time, namely there exists a positive time
t0 > 0 such that |∇u(t, x)| < 1 for every (t, x) ∈ (t0,+∞)× Ω.

1.1.2 Weak solutions

Since the notion of classical solutions is too strong to effectively describe the phenomena
observed in numerical simulations, the next natural attempt is to require the existence
of one less space derivative and to consider the usual notion of weak (distributional)
solution for the problem (1.2), namely functions u : [0, T ) × Ω → R that admit one
derivative in space and time for which

∫ T

0

∫

Ω

[
utψ +

ϕ′(|∇u|)
|∇u| ∇u · ∇ψ

]
dxdt = 0 ∀ψ ∈ C∞

0 ([0, T ]× Ω).

Of course, one has also to specify in which sense the derivatives of u exist and, if
the spatial gradient is not continuous, in which sense the Neumann boundary condi-
tions are satisfied. In fact, it turns out that the behavior of weak solutions depends
strongly on their regularity. As we anticipated in the previous section, if one requires
that u ∈ C1((0, T ) × Ω), then many properties of smooth solutions, and in particular
Theorem 1.1.3, continue to hold, so C1 weak solutions share the same drawbacks of
classical ones.

Surprisingly, as soon as we relax a bit this condition, we end up in a completely
different situation. Indeed, it turns out that if one only requires that u ∈ W 1,∞((0, T )×
Ω), namely that u is Lipschitz continuous, then for every smooth and non-constant
initial datum there exists infinitely many different weak solutions. This result was first
established in [71] in the one-dimensional case, and then extended in [56, 57, 58, 59] to
the higher dimensional case. The precise statement is the following.

Theorem 1.1.6 (see [71, 56, 57, 58, 59]). Let Ω ⊂ Rd be a bounded open convex set
of class C2,α for some α ∈ (0, 1) and u0 ∈ C2,α(Ω) be a non-constant function with
∂νu0 = 0 on ∂Ω.

Then there exists infinitely many functions u ∈ W 1,∞((0, T )× Ω) satisfying

∫ T

0

∫

Ω

[
uψt −

ϕ′(|∇u|)
|∇u| ∇u · ∇ψ

]
dxdt =

∫

Ω

[u(T, x)ψ(T, x)− u0(x)ψ(0, x)] dx,

for every ψ ∈ C∞([0, T ]× Ω).

Moreover, if d = 1 and Ω = (a, b), these solutions are classical solution near ∂Ω and
they satisfy the Neumann boundary conditions ux(t, a) = ux(t, b) = 0 in the classical
sense, while if Ω is a ball and u0 is radially symmetric, there exists infinitely many
radial and non-radial solutions.
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We point out that this theorem holds also if the initial datum is subcritical, namely
in the setting of Theorem 1.1.2, in which the problem is well-posed from the classical
point of view.

As a consequence, the notion of weak solutions is too weak to provide a satisfactory
explanation of the paradox.

1.1.3 Regularizations

Since neither classical nor weak solutions seem suitable to solve the Perona-Malik para-
dox, researchers tried to approach the problem in a different way, by introducing various
regularized versions of the problem and trying to pass to the limit. We outline below
the main approximations that have been introduced in the literature, with a particular
focus on two of them, the discrete approximation and the singular perturbation, that
have been the object of our research that is illustrated in details in the next chapters.

Semi-discrete approximation

In analogy with the numerical scheme actually proposed by Perona and Malik (which
requires a space-time discretization), one can try to approximate the problem (1.2) by
discretizing only the space variable.

To be more precise, let us assume for simplicity that Ω = (0, 1)d is the unit square,
and let us fix a positive integer n. Then we restrict the space variable to the lattice
Ωn := Zd/n ∩ Ω = {0, 1/n, . . . , 1}d and we consider functions u : [0, T ) × Ωn → R. We
now rewrite the problem (1.2) as

ut =
d∑

i=1

D−
i

(
ϕ′(|D+

i u|)
D+

i u

|D+
i u|

)
,

where D±
i denotes the difference quotient in the positive or negative i-th direction.

Since the space variable is restricted to a finite set, the equation can actually be
considered as a system of ordinary differential equations, where the variables are the
functions t 7→ u(t, x) with x ∈ Ωn.

Hence it is easy to prove that for every initial datum u0n : Ωn → R there exists a
unique global solution of the discretized equation. Therefore, the problem now becomes
how to pass to the limit as n→ +∞.

This problem has been studied by many researchers with various different rescalings,
both form the point of view of the discretized energy functional in the framework of
Gamma-convergence (see [61, 30, 19, 66]) and of the differential equation (see [40, 41,
16, 42, 18, 17, 37, 47]). However, most of the results have been obtained only in the
one-dimensional case, in which it is possible to prove the monotonicity of the maximum
and the total variation basically with the same arguments that work in the setting of
Theorem 1.1.1. In particular, the compactness of the sequence of the solutions to the
discretized equations (without any rescaling) is still an open problem in the case d ≥ 2.

We discuss more details on the state of the art concerning the dynamics of the
semi-discrete approximation in Chapter 5, where we describe the content of the paper
[47].
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Singular perturbation

The regularization by singular perturbation is obtained by adding a term depending
on higher order derivatives, multiplied by a small coefficient, to the equation and the
functional, so that the non-convexity is confined into lower order terms. In the one-
dimensional case Ω = (a, b), the easiest way to do this is by considering, for ε > 0, the
energy functional

PMε(u) =

∫ b

a

[
εu′′(x)2 + ϕ(u′(x))

]
dx, (1.4)

where ϕ is extended to R as an even function. The L2 gradient-flow of PMε is the
equation

ut = −εuxxxx + (ϕ′(ux))x,

and now the gradient-flow structure is not only formal, because the functional is lower
semicontinuous, coercive, and convex with respect to the highest order variable.

This approximation was proposed by De Giorgi in [39], where he conjectured that
the solutions of the singularly perturbed problem converge to a limit evolution as ε→ 0.
The validity of this conjecture, however, is still an open problem, and very few progresses
have been made toward a confirmation or a confutation of it.

The main results that are available for this regularization concern the Gamma-
convergence of a suitable rescaling of the energy functionals (see [2, 14, 12]) and the
study of their minimizers when a fidelity term is added, which is the content of Chap-
ter 2 (in which we describe the paper [49]), Chapter 3 and Chapter 4 (in which we
present further developments that are not yet published).

We quote also [15], which contains also numerical simulations, and [21], where a
different higher order perturbation is considered.

Other regularizations

Here we briefly recall other possible regularizations that have been considered in the
literature. The first one, which was proposed in [36] (see also [3]), is obtained by
regularizing the gradient through convolution with the heat kernel, so that the equation
becomes

ut(t, x) = div

(
ϕ′(|∇(Gσ ∗ u)(t, x)|)
|∇(Gσ ∗ u)(t, x)|

∇u(t, x)
)
,

where Gσ(x) = (4πσ)−d/2 exp(−|x|2/4σ) and σ > 0 is a fixed parameter. The equation is
now well-posed, but the convergence of solutions as σ → 0 has never been investigated.

Another interesting regularization was proposed in [4] and is obtained by a convolu-
tion in time, namely

ut(t, x) = div

(
ϕ′(|∇(θ ∗ u)(t, x)|)
|∇(θ ∗ u)(t, x)| ∇u(t, x)

)
,

where θ(t) is a fixed function that depends only on the time variable like, for example,
θ(t) = δ−1

1(0,δ)(t), for some δ > 0. These introduce a time-delay in the equation, namely
the gradient is now replaced by its average over an interval of preceding times (instead
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of a spatial average as in the previous approximation). Also in this case, the equation
is well-posed for every δ > 0, but the convergence as δ → 0 has never been studied.

Other possible regularizations were considered in [52, 50] and involve fractional
derivatives, but also in this case the convergence as the regularization parameter van-
ishes has not been investigated.

Finally, we mention the series of paper [11, 68, 69, 70, 22, 23, 24, 25, 26, 27], where
the authors considered the equation

vt = ∆ϕ′(v), (1.5)

and its pseudoparabolic regularization

vt = ∆ϕ′(v) + ε∆[ψ(v)]t, (1.6)

with various different choices of the function ψ : R → R.
This equation is still of forward-backward type and is strongly related to (1.2), with

the difference that here the direction of the diffusion is determined by the values of u
instead of |∇u|. This relation is even clearer in the one-dimensional case, since u is a
solution of (1.2) if and only if v = ux is a solution of (1.5). Hence (1.6) provides another
possible regularization of the Perona-Malik equation.

1.2 Further problems that I have studied

During the period of my PhD course I also continued to investigate the problems that
I had studied for my bachelor and master thesis projects, namely non-local functionals
related with Sobolev and BV norms and the phase-field (or Allen-Cahn) approximation
of surface energies and flows.

1.2.1 Non-local functionals and constant functions

In this section we briefly describe the content of the papers [8, 9, 10, 48, 65], which
concern some characterizations of Sobolev and BV spaces or of constant functions by
means of non-local functionals.

The origin of this research is the following result, known as BBM formula after [28].

Theorem 1.2.1. Let Ω ⊂ Rd be a bounded Lipschitz open set or the whole space and
p ∈ [1,+∞) be a real number. Let ρ : [0,+∞) → [0,+∞) be an integrable function and
for every ε > 0 let us set ρε(x) = ε−dρ(ε−1x).

Let us consider the functionals

Gε,p(u) :=

∫∫

Ω×Ω

( |u(y)− u(x)|
|y − x|

)p

ρε(|y − x|) dx dy,

and

G0,p(u) :=





∫
Ω
|∇u(x)|p dx if p > 1 and u ∈ W 1,p(Ω),

|Du|(Ω) if p = 1 and u ∈ BV (Ω),

+∞ otherwise.
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Then there exists a constant C(d, p) > 0 such that

Γ− lim
ε→0+

Gε,p(u) = lim
ε→0+

Gε,p(u) = C(d, p)‖ρ‖L1(0,+∞)G0,p(u) ∀u ∈ Lp(Ω).

As a corollary of this result, Brezis obtained in [32] the following characterization of
constant functions.

Proposition 1.2.2. Let Ω ⊂ Rd be an open set and p ∈ [1,+∞) be a real number. Let
u : Ω → R be a measurable function. Then it turns out that

u is (essentially) constant ⇐⇒
∫∫

Ω×Ω

( |u(y)− u(x)|
|y − x|

)p
1

|y − x|d dx dy < +∞.

Several generalizations of this result have been proposed. One of these concerns the
functional

Fω(u) =

∫∫

Ω×Ω

ω

( |u(y)− u(x)|
|y − x|

)
1

|y − x|d dx dy,

where ω : [0,+∞) → [0,+∞) is a continuous function.
In [53] Ignat investigated the problem of determining necessary and/or sufficient

conditions on the functions ω and u so that the following implication holds

u is (essentially) constant ⇐⇒ Fω(u) < +∞.

In [48] we considered this problem and we answered, at least partially, to many
of the questions raised in [53]. In particular, we found an example that shows that a
condition proposed in [53] is not sufficient to ensure the validity of the implication above
for every measurable function u, but becomes sufficient if one assumes in addition that
u is bounded and approximately differentiable almost everywhere, or if ω satisfies some
additional conditions.

Another problem originated from the BBM formula concerns the functionals

Λδ,p(u) :=

∫∫

Ω×Ω

φ

( |u(y)− u(x)|
δ

)
δp

|y − x|d+p
dx dy. (1.7)

In [63] (after many other papers that are quoted therein) the asymptotic behavior
of Λδ,p was studied in the case φ(t) = 1(1,+∞)(t), and the following result was proved.

Theorem 1.2.3. Let Ω ⊂ Rd be a bounded Lipschitz open set or the whole space and
let us consider the functionals (1.7) with φ(t) = 1(1,+∞)(t).

If p ∈ (1,+∞), then there exist two constants C(d, p) > 0 and k(d, p) ∈ (0, 1) such
that

lim
δ→0+

Λδ,p(u) = C(d, p)G0,p(u) ∀u ∈ Lp(Ω),

and
Γ− lim

δ→0+
Λδ,p(u) = C(d, p)k(d, p)G0,p(u) ∀u ∈ Lp(Ω).

If p = 1, then there exist two constants C(d, 1) > 0 and k(d, 1) ∈ (0, 1) such that

lim
δ→0+

Λδ,1(u) = C(d, 1)G0,1(u) ∀u ∈ C1
c (Ω),
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and

Γ− lim
δ→0+

Λδ,1(u) = C(d, 1)k(d, 1)G0,1(u) ∀u ∈ L1(Ω),

but there exists a function u ∈ W 1,1(Ω) such that

lim
δ→0+

Λδ,1(u) = +∞.

The paper [34] extended this result to more general functions φ : [0,+∞) → [0,+∞),
at least in the case p = 1. The result is the following.

Theorem 1.2.4. Let Ω ⊂ Rd be a bounded Lipschitz open set or the whole space and let
φ : [0,+∞) → [0,+∞) be a bounded, non-decreasing and lower semicontinuous function
such that

φ(t) ≤ at2 and

∫ +∞

0

φ(t)

t2
dt = 1.

Then there exist two constants C(d) > 0 and k(d, φ) ∈ (0, 1] such that

lim
δ→0+

Λδ,1(u) = C(d)G0,1(u) ∀u ∈ C1
c (Ω),

and

Γ− lim
δ→0+

Λδ,1(u) = C(d)k(d, φ)G0,1(u) ∀u ∈ L1(Ω).

In [9] we gave a new proof of the Gamma-convergence result in Theorem 1.2.3, which
provides the explicit value of the constant k(d, p), which is independent of d and was only
conjectured in [63], since this constant was defined implicitly through a cell problem.
In particular, we were able to solve the cell problem, and this made our proof much
simpler than the previous one, because we could provide explicit recovery sequences.

Moreover, in [10] we extended our arguments to more general functions φ and as a
consequence we were able to answer some open questions raised in [34] concerning the
dependence of k(d, φ) on the shape of φ.

Our approach consists in reducing the liminf inequality of the Gamma-convergence
first to the one-dimensional case, then to functions which take values in a finite set
and finally to piecewise constant functions with steps of equal length. At this point
we exploit a combinatorial rearrangement inequality to further reduce ourselves to a
minimization problem on monotone step functions, which can be easily solved. In this
way we obtain the liminf inequality with an explicit value of the constant in front of the
limit functional, so the limsup inequality can be proved just by providing an explicit
recovery sequence for which we obtain the required explicit value, and the structure
of this recovery sequence is suggested by the argument developed for the proof of the
liminf inequality (see also [8] for a short summary of our techniques).

More recently, Brezis, Seeger, Van Schaftingen and Yung introduced in [35] the
following family of non-local functionals

Fγ,λ,p(u) :=

∫∫

Eγ,λ,p(u)

λp|y − x|d−γ dx dy, (1.8)
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where γ ∈ R and

Eγ,λ,p(u) :=
{
(x, y) ∈ Ω× Ω : |u(y)− u(x)| ≥ λ|y − x|1+γ/p

}
.

We point out that when γ = −p (and λ = δ) these functionals coincide with the
functionals defined in (1.7) with φ(t) = 1(1,+∞)(t).

Motivated also by [31], in [65] we considered the case p = 1 and we proved some
estimates for the pointwise limit as λ→ +∞ of Fγ,λ,1(u) in the case in which u ∈ BV (Rd)
and γ > 0. This gave a (very) partial answer to some of the questions raised in [35, 31].
However, many interesting problems concerning the functionals (1.8) are still open, and
we plan to continue this research in the future.

1.2.2 De Giorgi’s approximation of the Willmore functional

In this section we briefly describe the content of the paper [13], in which we have studied
the following conjecture posed by De Giorgi in [38, Conjecture 4].

Conjecture 1.2.5. Let n ≥ 2 be an integer number and let E ⊂ Rn be a set whose
boundary Σ := ∂E is a hypersurface of class C2. For any open set Ω ⊂ Rn and any
positive number λ > 0 let us consider the following family of functionals, indexed by the
parameter ε > 0,

DGε(u,Ω) :=

∫

Ω

[(
2ε∆u− sin u

ε

)2

+ λ

] [
ε|∇u|2 + 1− cos u

ε

]
dx, (1.9)

if u ∈ W 2,1(Ω), and DGε(u) := +∞, if u ∈ L1(Ω) \W 2,1(Ω).
Then there exists a constant k ∈ R such that

Γ(L1(Ω))− lim
ε→0+

DGε(2πχE,Ω) = cλHn−1(Σ ∩ Ω) + k

∫

Σ∩Ω

H2dHn−1,

where χE is the characteristic function of the set E (that is equal to one inside E and
null outside), c = 8

√
2, H(y) is the mean curvature of Σ at the point y and Hn−1 stands

for the (n− 1)-dimensional Hausdorff measure in Rn.

We point out that we have added a factor 2 in front of the laplacian so that, if
u ∈ W 2,2(Ω), the squared term is really the L2-gradient of the Allen-Cahn energy, that
is the functional

Eε(u,Ω) :=

∫

Ω

[
ε|∇u|2 + W (u)

ε

]
dx, (1.10)

if u ∈ W 1,2(Ω), and Eε(u) := +∞, if u ∈ L1(Ω) \W 1,2(Ω). Here W : R → [0,+∞) is a
multiple-well potential, like W (u) = 1− cosu, as in the conjecture of De Giorgi, or the
more popular double-well potential W (u) = (1− u2)2.

The Γ-convergence of the family Eε is the object of the celebrated Modica-Mortola
theorem which in this case says that

Γ(L1(Ω))− lim
ε→0+

Eε

(
χa,b
E ,Ω

)
= σa,b

W Per(E,Ω),
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where now E has finite perimeter Per(E,Ω) in Ω, a < b are two consecutive zeros of W ,
χa,b
E is a suitable modification of the characteristic function, defined as

χa,b
E (x) :=

{
a if x /∈ E,

b if x ∈ E,
(1.11)

and

σa,b
W := 2

∫ b

a

√
W (u) du. (1.12)

We observe that in the case W (u) = 1 − cosu it turns out that σ0,2π
W = c, so

De Giorgi’s conjecture is actually saying that the functional

Gε(u,Ω) :=

∫

Ω

[
2ε∆u− W ′(u)

ε

]2 [
ε|∇u|2 + W (u)

ε

]
dx (1.13)

is an approximation for a multiple of the Willmore functional

W(Σ,Ω) :=

∫

Σ∩Ω

H2dHn−1,

provided Σ is of class C2.
This seems reasonable because the mean curvature is known to represent the first

variation of the perimeter and the term 2ε∆u−W ′(u)/ε represents the gradient of the
functional Eε. Moreover, if {uε} is a family of functions that converges to χa,b

E in L1,
then the energy densities, that are the (normalized) measures

µε :=
1

σa,b
W

[
ε|∇uε|2 +

W (uε)

ε

]
L

n, (1.14)

where L n is the n-dimensional Lebesgue measure, in the limit should be larger than or
equal to the measure Hn−1 Σ, as a consequence of the Γ-convergence of Eε.

In the caseW (u) = (1−u2)2, it was proved in [20] that this is what actually happens
when one considers the usual recovery sequences for the Γ-limit of Eε. More specifically,
an estimate from above for the Γ-lim sup of DGε with a positive constant k > 0 was
proved. Moreover, the authors of [20] proposed to investigate the functional

Ĝε(u,Ω) :=

∫

Ω

1

ε

(
2ε∆u− W ′(u)

ε

)2

dx,

in place of Gε, in order to simplify the problem, and they proved a Γ-lim sup estimate
(with a positive constant k > 0) also for the functionals Eε + Ĝε.

The modification is motivated by the fact that the second factor in the integrand of
Gε should be proportional to ε−1 near Σ, while the contribution of both factors far from
this boundary should not be relevant for the Γ-limit.

However, the Γ-lim inf estimate turned out to be much more involved and, after
some partial results, the problem has been solved in dimensions 2 and 3 by Röger and
Schätzle [67], while it is still open in higher dimensions. More precisely, in the special
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case W (u) = (1− u2)2 and n ∈ {2, 3}, Röger and Schätzle were able to prove that if Σ
is of class C2 then

Γ(L1(Ω))− lim
ε→0+

(Eε + Ĝε)
(
χ−1,1
E ,Ω

)
= σ−1,1

W Hn−1(Σ ∩ Ω) + k

∫

Σ∩Ω

H2 dHn−1,

for some positive constant k > 0. Moreover, they also proved (see Theorem 4.1 and
Theorem 5.1 in [67]) that if {uε} ⊂ W 2,2(Ω) is a family of functions for which

Eε(uε,Ω) + Ĝε(uε,Ω) ≤ C,

then any weak* limit point of the measures {µε} is an integral (n− 1)-varifold.
Our main result in [13] is a proof that, surprisingly, De Giorgi’s conjecture holds true

with k = 0. This means that, as opposite to Ĝε, the functional Gε does not contribute
to the Γ-limit of DGε that, instead, turns out to be the same as the one obtained with
the functionals λEε alone, and this holds with a quite general class of potentials W .
This also implies that Conjecture 5 in [38] does not hold, because the perimeter alone,
if considered as a function of Ω, is clearly subadditive.

The proof of course consists in finding a family {uε} ⊂ W 2,1
loc (R

n) of functions con-

verging in L1 to χa,b
E for which

lim
ε→0+

Eε(uε,R
n) = σa,b

W · Hn−1(Σ) and lim
ε→0+

Gε(uε,R
n) = 0.

We construct these functions by perturbing the classical recovery sequences for Eε

in such a way that the two factors in the functional Gε concentrate in different regions,
so that their product becomes small.

We recall that in the functional Ĝε the second factor has been replaced by the
constant ε−1, so our strategy, that allows the first factor to be very large in regions
where the other one is small, is not effective in decreasing the value of the modified
functional, because in this case such regions do not exist (actually Ĝε(uε,R

n) → +∞
for our choice of {uε}).

As a corollary of our main result, we obtain that the limit of the energy densities µε

is not necessarily (n− 1)-rectifiable, even if the functionals are equibounded. In fact, it
can also happen that these measures converge to a Dirac mass or, more generally, to a
measure that is not absolutely continuous with respect to Hn−1.

In the opposite direction, despite this unexpected result, it seems that the bound-
edness of the family {Gε(uε,R

n)} still carries some information on the behavior of
the energy densities. Indeed, in the toy model of radial symmetry, we proved that
if {uε} ⊂ W 2,1

loc (R
n) ∩W 1,2

loc (R
n) is a family of functions with

Eε(uε,R
n) +Gε(uε,R

n) ≤ C,

then any weak* limit of µε is an integral (n− 1)-varifold if restricted to Rn \ {0}, which
of course in this case is simply a union of concentric spheres. The proof of this fact is
based on a blow-up argument.

We observe that the radial symmetry and the removal of the origin (where a Dirac
mass could appear) automatically imply that the limit measure is absolutely continuous
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with respect to Hn−1, but these assumptions do not prevent a priori that this measure
may be supported on sets with larger dimension. In particular, if one only assumes the
boundedness of the energies Eε(uε,R

n), without additional assumptions on Gε(uε,R
n),

then the limit of the energy densities can be any positive finite radially symmetric
measure, so the integrality of the limit measure is not trivial.

We point out that the radial symmetry is not even ruling out the “pathology” that
leads to the disappearance of Gε in the limit, since the recovery sequence for the Γ-limit
of DGε when E is a ball can be made of radially symmetric functions.

1.3 Structure of the thesis

This thesis is organized as follows. In Chapter 2 we describe the paper [49], which
deals with minimizers of the singularly perturbed Perona-Malik functional, and we also
extend some results to a slightly more general setting. Chapter 3 contains some original
(not yet published) results concerning higher order blow-up of the minimizers considered
in Chapter 2. In Chapter 4 we present a partial extension of the results in Chapter 2
to the higher dimensional case. Finally, in Chapter 5 we describe the preprint [47], in
which we proved some monotonicity results for a general class of evolution curves in
dimension one, which includes any limit of the discrete approximation of the Perona-
Malik equation and also any weak solution. In section 5.5 and section 5.6 we also extend
some of the results in [47] to a more general setting, and we deduce some monotonicity
properties of level sets of generalized solutions.
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Chapter 2

Singular perturbation: first order
blow-up

2.1 Introduction

In this chapter we describe the content of the paper [49], so we consider the minimum
problem for the one-dimensional functional

PMF(u) :=

∫ 1

0

log
(
1 + u′(x)2

)
dx+ β

∫ 1

0

(u(x)− f(x))2 dx, (2.1.1)

where β > 0 is a real number, and f ∈ L2((0, 1)) is a given function that we call
forcing term. The second integral is a sort of fidelity term, tuned by the parameter β,
that penalizes the distance between u and the forcing term f . The principal part of
(2.1.1) is one-dimensional version of the functional (1.3) with the original Perona-Malik
lagrangian ϕ(p) := log(1 + p2). As a consequence, we know that

inf
{
PMF(u) : u ∈ C1([0, 1])

}
= 0 ∀f ∈ L2((0, 1)).

Singular perturbation of the Perona-Malik functional Let us consider the following
version of (1.4),

PMFε(u) :=

∫ 1

0

{
ε10| log ε|2u′′(x)2 + log

(
1 + u′(x)2

)
+ β(u(x)− f(x))2

}
dx, (2.1.2)

where we have added the fidelity term, and the bizarre form of the ε-dependent coefficient
is just aimed at preventing the appearance of decay rates defined in an implicit way in
the sequel. For every choice of ε ∈ (0, 1) and β > 0 the model is well-posed, in the
sense that the minimum problem for (2.1.2) admits at least one minimizer of class
C2 for every choice of the forcing term f ∈ L2((0, 1)). Our goal is to investigate the
asymptotic behavior of minima and minimizers as ε→ 0+. Before describing our results,
it is useful to discuss a related problem that has already been studied in the literature.

19
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The Alberti-Müller model Let us consider the functional

AMε(u) :=

∫ 1

0

{
ε2u′′(x)2 + (u′(x)2 − 1)2 + β(x)u(x)2

}
dx, (2.1.3)

where β ∈ L∞((0, 1)) is positive for almost every x ∈ (0, 1). The minimizers of (2.1.3)
with periodic boundary conditions were studied by G. Alberti and S. Müller in [1] (see
also [62]). In this model the forcing term f is identically 0, and the dependence on
first order derivatives is described by the double-well potential ϕ(p) := (p2 − 1)2. As
in (2.1.2) the function ϕ(p) is non-convex, but in this case its convex envelope vanishes
just for |p| ≤ 1, while it coincides with ϕ(p) elsewhere, and in particular it is coercive.

From the heuristic point of view, minimizers to (2.1.3) would like to be identically 0,
but with constant derivative equal to ±1. Of course this is not possible if we think
of u and u′ as functions, but it becomes possible if we consider u as a function whose
“derivative” u′ is a Young measure. More formally, given a family {uε} of minimizers
to (2.1.3), one can show that uε → 0 uniformly, u′ε ⇀ 0 weakly in L4((0, 1)), and more
precisely u′ε converges to the Young measure that in every point x ∈ (0, 1) assumes the
two values ±1 with probability 1/2.

The next step consists in analyzing the asymptotic profile of minimizers. The in-
tuitive idea is that minimizers develop a microstructure at some scale ω(ε), and this
microstructure resembles a triangular wave (sawtooth function). In other words, one
expects minimizers to be of the form

uε(x) ∼ ω(ε)φ

(
x

ω(ε)
+ b(ε)

)
, (2.1.4)

where

• the function φ that describes the asymptotic profile of minimizers is a triangular
wave with slopes ±1, for example the function defined by φ(x) := |x|− 1 for every
x ∈ [−2, 2], and then extended by periodicity to the whole real line,

• ω(ε) is a suitable scaling factor that vanishes as ε→ 0+ and is proportional to the
asymptotic “period” of minimizers (which, however, are not necessarily themselves
periodic),

• b(ε) is a sort of phase parameter, that can be assumed to be less than the period
of φ.

We point out that the limit of u′ε as a Young measure carries no information con-
cerning the asymptotic behavior of ω(ε), and it does not even imply the existence of
any form of asymptotic period or asymptotic profile.

The first big challenge is giving a rigorous formal meaning to an asymptotic expansion
of the form (2.1.4). In [1] the formalization relies on the notion of Young measure with
values in compact metric spaces. In a nutshell, starting from every minimizer uε, the
authors consider the function that associates to every x ∈ (0, 1) the rescaled function

y 7→ uε(x+ ω(ε)y)

ω(ε)
,
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where ω(ε) = ε1/3. This new function is interpreted as a Young measure on the interval
(0, 1) with values in L∞(R), which is a compact metric space with respect to the distance
according to which gn converges to g∞ if and only if arctan(gn) converges to arctan(g∞)
with respect to the weak* convergence in L∞(R). The result is that this family of
Young measures converges (in the sense of Young measures with values in a compact
metric space) to a limit Young measure that in almost every point is concentrated in
the translations of the triangular wave. This statement is a rigorous, although rather
abstract and technical, formulation of expansion (2.1.4).

From Young measures to varifolds There are some notable differences between our
model and (2.1.3). The first one is that in our case the trivial forcing term f ≡ 0 would
lead to the trivial solution uε ≡ 0 for every ε ∈ (0, 1). Therefore, here a nontrivial
forcing term is required if we want nontrivial solutions.

The second difference lies in the growth of the convex envelope of ϕ(p). In the case
of (2.1.3) the convex envelope grows at infinity as p4, and this guarantees a uniform
bound in L4((0, 1)) for the derivatives of all sequences with bounded energy. In our
case the convex envelope vanishes identically, and therefore there is no hope to obtain
bounds on derivatives in terms of bounds on the energies.

The third, and more relevant, difference lies in the construction of the convex en-
velope. In the case of (2.1.3) the convex envelope of ϕ vanishes in the interval [−1, 1]
because every p in this interval can be written as a convex combination of ±1, and
ϕ(1) = ϕ(−1) = 0. This is the ultimate reason why the derivatives of minimizers tend
to stay close to the two values ±1 when ε is small enough.

In our case the convex envelope of ϕ vanishes identically on the whole real line, but
no real number p can be written as the convex combination of two distinct points where
ϕ vanishes. Roughly speaking, the vanishing of the convex envelope is achieved only in
the limit, in some sense by writing every real number p as a convex combination of 0
and ±∞, depending on the sign of p. This implies that minimizers uε tend to assume a
staircase-like shape, with regions where they are “almost horizontal” and regions where
they are “almost vertical” (as described in the left and central section of Figure 2.1).
From the technical point of view, this means that there is no hope that the family {u′ε}
admits a limit in the sense of Young measures.

This is the point in which varifolds come into play, because varifolds allow “functions”
whose graph has in every point a mix of horizontal and vertical “tangent” lines.

Our results In our analysis of the asymptotic behavior of minima and minimizers, we
restrict ourselves to forcing terms f that are more regular than just L2, and we prove
three main results.

• The first result (Theorem 2.2.2) concerns the asymptotic behavior of minima when
f ∈ H1((0, 1)). We prove that the minimum mε of (2.1.2) over H

2((0, 1)) satisfies

mε ∼ c0ε
2| log ε|

∫ 1

0

|f ′(x)|4/5 dx

for a suitable real constant c0. This is a slight generalization of the result obtained
in [49], where we considered only the case f ∈ C1([0, 1]).
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• The second result (Theorem 2.2.9) concerns the asymptotic behavior of minimizers
uε when f ∈ C1([0, 1]). To this end, for every family xε → x0 ∈ (0, 1) we consider
the families of functions

y 7→ uε(xε + ω(ε)y)− f(xε)

ω(ε)
and y 7→ uε(xε + ω(ε)y)− uε(xε)

ω(ε)
, (2.1.5)

which correspond to the intuitive idea of zooming the graph of a minimizer uε in
a neighborhood of (xε, f(xε)) and (xε, uε(xε)) at scale ω(ε). We show that, when
ω(ε) = ε| log ε|1/2, these functions converge (up to subsequences) in a rather strong
sense (strict convergence of bounded variation functions, see Definition 2.2.6) to
a piecewise constant function, a sort of staircase with steps whose height and
length depend on f ′(x0). This result provides a quantitative description of the
staircase-like microstructure of minimizers, with a notion of convergence that is
much stronger than weak* convergence in L∞(R), and without the technical ma-
chinery of Young measures with values in metric spaces (see Remark 2.2.12).

• The third result (Theorem 2.2.14) shows that uε → f first in the sense of uniform
convergence, then in the sense of strict convergence of bounded variation functions,
and finally in the sense of varifolds, provided that we consider the graph of f as
a varifold with a suitable density and a suitable combination of horizontal and
vertical tangent lines in every point.

The three results described above are only the first order analysis of what is ulti-
mately a multi-scale problem. In chapter 3, we investigate higher-resolution zooms of
minimizers (from the center to the right of Figure 2.1), in order to reveal the exact
structure of the horizontal and vertical parts of each step of the staircase.

Figure 2.1: description of the multi-scale problem at three levels of resolution. Left:
staircasing effect around the forcing term. Center: zoom of the staircase in a region.
Right: cubic transition between two consecutive steps.

Overview of the technique Our analysis relies on Gamma-convergence techniques. The
easy remark is that minimum values of (2.1.2) tend to 0, and minimizers tend to the
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forcing term in L2((0, 1)). This is because the unstable character of (1.3) comes back
again when ε → 0+, and forces the Gamma-limit of the family of functionals (2.1.2) to
be identically 0.

More delicate is finding the vanishing order of minimum values, and the fine structure
of minimizers as ε→ 0+. The starting observation is that, if vε(y) denotes the blow-up
defined in (2.1.5) on the left, with ω(ε) = ε| log ε|1/2, then vε(y) minimizes a rescaled
version of (2.1.2), namely the functional

RPMFε(v) :=

∫

Iε

{
ε6(v′′)2 +

1

ε2| log ε| log
(
1 + (v′)2

)
+ β (v − gε)

2

}
dy, (2.1.6)

where the new forcing term gε(y) is a suitable blow-up of f(x), and the new integration
interval Iε depends on the blow-up center xε, but in any case its length is equal to
ω(ε)−1, and therefore diverges.

If f(x) is of class C1, then gε(y) → f ′(x0)y when xε → x0. Moreover, the results
of [2, 14] suggest that, if we consider the functional (2.1.6) restricted to a finite fixed
interval (a, b), its Gamma-limit has the form

α0J1/2(v) + β

∫ b

a

(v(y)− f ′(x0)y)
2
dy, (2.1.7)

where α0 is a suitable positive constant, and the functional J1/2(v) is finite only if v is a
“pure jump function” (see Definition 2.3.1), and in this class it coincides with the sum
of the square roots of the jump heights of v.

At the end of the day, this means that the minimum problem for (2.1.2) can be
approximated, at a suitable small scale, by a family of minimum problems for functionals
such as (2.1.7), and these minimum problems, due to the simpler form and to the linear
forcing term, can be solved almost explicitly.

However, things are not so simple. A first issue is that the integration intervals Iε in
(2.1.6) invade the whole real line. This forces us to work with local minimizers (namely
minimizers up to perturbations with compact support) instead of global minimizers. So
we have to adapt the classical Gamma-convergence results in order to deal with local
minimizers, and we need also to classify all local minimizers to (2.1.7). These local
minimizers are characterized in Proposition 2.4.5, and they turn out to be staircases
whose steps have length and height that depend on f ′(x0).

The second issue is compactness. We observed before that a bound on PMε(uε) does
not provide compactness of the family {uε} in any reasonable space. After rescaling
and introducing (2.1.6), on the one hand the good news is that a classical coerciveness
result implies that a uniform bound on RPMFε(vε) is enough to deduce that the family
{vε} is relatively compact, for example in L2. On the other hand, the bad news is that
an asymptotic estimate of the form PMε(uε) ∼ c0ω(ε)

2 yields only a uniform bound on
ω(ε) RPMFε(vε), which does not exclude that RPMFε(vε) might diverge as ε→ 0+.

We overcome this difficulty by showing that a bound of this type in some interval
yields a true uniform bound for RPMFε(vε) in a smaller interval, and this is enough
to guarantee the compactness of local minimizers. This improvement of the bound
(see Proposition 2.6.5) requires a delicate iteration argument in a sequence of nested
intervals, which probably represents the technical core of [49].
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Possible extensions In order to keep the length of this presentation reasonable, we
decided to focus only on the singular perturbation (2.1.2) of the original functional
with the logarithm. Nevertheless, many parts of the theory can be extended to more
general models. In particular, in [66] we obtained similar results starting from the
discrete approximation of the Perona-Malik functional. We discuss further possible
generalizations in section 2.7.

Dynamic consequences We hope that our variational analysis could be useful in the
investigation of solutions to the evolution equation (1.1). Numerical experiments with
different approximating schemes seem to suggest that solutions develop instantaneously
a staircase-like pattern consistent with the results of this paper. Due to its instantaneous
character, this phase of the dynamic is usually referred to as “fast time” (see [15]).

The connection between the dynamic and the variational behavior is hardly surpris-
ing if we think of gradient-flows as limits of discrete-time evolutions, as in De Giorgi’s
theory of minimizing movements. In this context the minimum problem for (2.1.1) with
forcing term f equal to the initial datum is just the first step in the construction of the
minimizing movement. Transforming this intuition into a rigorous statement concerning
the fast-time behavior of solutions to (1.1) is a challenging problem.

Another issue is that the staircasing effect seems to appear only in the so-called
supercritical regions of u0(x), namely where u′0(x) falls in the concavity region of ϕ(p)
(see the simulations in [41, 15, 52, 50, 51]). The variational analysis can not produce
this effect, in some sense because the convexification involves a “global procedure”, and
therefore it is very likely that an explanation should rely also on dynamical arguments.

Structure of the chapter This chapter is organized as follows. In section 2.2 we intro-
duce the notations and we state the main results concerning the asymptotic behavior
of minima and minimizers for (2.1.2). In section 2.3 we state the results that we need
concerning the rescaled functionals (2.1.6) and their Gamma-limit. In section 2.4 we
recall the notion of local minimizers, both for (2.1.2) and for the Gamma-limit, and
we state their main properties. In section 2.5 we show that our main results follow
from the properties of local minimizers, that we prove later in section 2.6. Finally, in
section 2.7 we mention some different models to which our theory can be extended, and
in section 2.8 we present some open problems. We also add an appendix with a proof of
the results stated in section 2.3, some of which are apparently missing, or present with
flawed proofs, in the literature.

2.2 Statements

For every ε ∈ (0, 1) let us set

ω(ε) := ε| log ε|1/2. (2.2.1)

Let β > 0 be a real number, let Ω ⊆ R be an open set, and let f ∈ L2(Ω) be a
function that we call forcing term. In order to emphasize the dependence on all the
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parameters, we write (2.1.2) in the form

PMFε(β, f,Ω, u) :=

∫

Ω

{
ε6ω(ε)4u′′(x)2 + log

(
1 + u′(x)2

)
+ β(u(x)− f(x))2

}
dx.

(2.2.2)
The first result that we state concerns existence and regularity of minimizers, and

their convergence to the fidelity term in L2((0, 1)). We omit the proof because it is a
standard application of the direct method in the calculus of variations, and of the fact
that the convex envelope of the function p 7→ log(1 + p2) is identically 0.

Proposition 2.2.1 (Existence and regularity of minimizers). Let ω(ε) be defined by
(2.2.1), and let PMFε(β, f, (0, 1), u) be defined by (2.2.2), where ε ∈ (0, 1) and β > 0
are two real numbers, and f ∈ L2((0, 1)) is a given function.

Then the following facts hold true.

(1) (Existence) There exists

m(ε, β, f) := min
{
PMFε(β, f, (0, 1), u) : u ∈ H2((0, 1))

}
. (2.2.3)

(2) (Regularity) Every minimizer belongs to H4((0, 1)), and in particular to C2([0, 1]).

(3) (Minimum value vanishes in the limit) It turns out that m(ε, β, f) → 0 as ε→ 0+.

(4) (Convergence of minimizers to the fidelity term) If {uε} is any family of minimizers
for (2.2.3), then uε → f in L2((0, 1)) as ε→ 0+.

In the sequel we assume that the forcing term f is more regular. In the case f ∈
H1((0, 1)), our first result concerns the asymptotic behavior of minima.

Theorem 2.2.2 (Asymptotic behavior of minima). Let ω(ε) be defined by (2.2.1), and
let PMFε(β, f, (0, 1), u) be defined by (2.2.2), where ε ∈ (0, 1) and β > 0 are two real
numbers, and f ∈ H1([0, 1]) is a given function.

Then the minimum value m(ε, β, f) defined in (2.2.3) satisfies

lim
ε→0+

m(ε, β, f)

ω(ε)2
= 10

(
2β

27

)1/5 ∫ 1

0

|f ′(x)|4/5 dx. (2.2.4)

The asymptotic behavior of m(ε, β, f) under weaker regularity assumptions on f is
a largely open problem. We refer to section 2.8 for further details.

Now we investigate the asymptotic behavior of minimizers. The intuitive idea is
that they tend to develop a staircase structure. In order to formalize this idea, we need
several definitions. To begin with, we define some classes of “staircase-like functions”.

Definition 2.2.3 (Canonical staircases). Let S : R → R be the function defined by

S(x) := 2

⌊
x+ 1

2

⌋
∀x ∈ R,

where, for every real number α, the symbol ⌊α⌋ denotes the greatest integer less than
or equal to α. For every pair (H, V ) of real numbers, with H > 0, we call canonical
(H, V )-staircase the function SH,V : R → R defined by

SH,V (x) := V · S(x/H) ∀x ∈ R. (2.2.5)
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Roughly speaking, the graph of SH,V is a staircase with steps of horizontal length
2H and vertical height 2V . The origin is the midpoint of the horizontal part of one of
the steps. The staircase degenerates to the null function when V = 0, independently of
the value of H.

Definition 2.2.4 (Translations of the canonical staircase). Let (H, V ) be a pair of real
numbers, with H > 0, and let SH,V be the function defined in (2.2.5). Let v : R → R

be a function.

• We say that v is an oblique translation of SH,V , and we write v ∈ Obl(H, V ), if
there exists a real number τ0 ∈ [−1, 1] such that

v(x) = SH,V (x−Hτ0) + V τ0 ∀x ∈ R.

• We say that v is a graph translation of horizontal type of SH,V , and we write
v ∈ Hor(H, V ), if there exists a real number τ0 ∈ [−1, 1] such that

v(x) = SH,V (x−Hτ0) ∀x ∈ R. (2.2.6)

• We say that v is a graph translation of vertical type of SH,V , and we write v ∈
Vert(H, V ), if there exists a real number τ0 ∈ [−1, 1] such that

v(x) = SH,V (x−H) + V (1− τ0) ∀x ∈ R. (2.2.7)

Remark 2.2.5. Let us interpret translations of the canonical staircase in terms of graph
(see Figure 2.2).

• Oblique translations correspond to taking the graph of the canonical staircase
SH,V (x) and moving the origin along the line Hy = V x, namely the line that
connects the midpoints of the steps.

• Graph translations of horizontal type correspond to moving the origin to some
point in the horizontal part of some step.

• Graph translations of vertical type correspond to moving the origin to some point
in the vertical part of some step.

We observe that graph translations of horizontal type with τ0 = ±1 coincide with
graph translations of vertical type with the same value of τ0. In those cases the origin
is moved to the “corners” of the graph.

In the sequel BV ((a, b)) denotes the space of functions with bounded variation in
the interval (a, b) ⊆ R. For every function u in this space, Du denotes its distributional
derivative, which is a signed measure, and |Du|((a, b)) denotes the total variation of u
in (a, b). We call jump points of u the points x ∈ (a, b) where u is not continuous. As
usual, BVloc(R) denotes the set of all functions u : R → R whose restriction to every
interval (a, b) belongs to BV ((a, b)). The staircase-like functions we have introduced
above are typical examples of elements of the space BVloc(R).

Our result for the asymptotic behavior of minimizers involves smooth functions con-
verging to staircases. The strongest sense in which this convergence is possible is the
so-called strict converge. We recall here the definitions (see [6, Definition 3.14]).
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2V

H

(a) (b) (c) (d)

Figure 2.2: (a) Canonical staircase. (b) Oblique translation. (c) Graph translation of
horizontal type. (d) Graph translation of vertical type. In all translations the parameter
is τ0 = 1/2.

Definition 2.2.6 (Strict convergence in an interval). Let (a, b) ⊆ R be an interval. A
sequence of functions {un} ⊆ BV ((a, b)) converges strictly to some u∞ ∈ BV ((a, b)),
and we write

un   u∞ in BV ((a, b)),

if
un → u∞ in L1((a, b)) and |Dun|((a, b)) → |Du∞|((a, b)).

Definition 2.2.7 (Locally strict convergence on the whole real line). A sequence of
functions {un} ⊆ BVloc(R) converges locally strictly to some u∞ ∈ BVloc(R), and we
write

un   u∞ in BVloc(R),

if un   u∞ in BV ((a, b)) for every interval (a, b) ⊆ R whose endpoints are not jump
points of the limit u∞.

Both definitions can be extended in the usual way to families depending on real
parameters. For example, uε   u0 in BV ((a, b)) as ε → 0+ if and only if uεn   u0 in
BV ((a, b)) for every sequence εn → 0+.

In the following remark we recall some consequences of strict convergence.

Remark 2.2.8 (Consequences of strict convergence). Let us assume that un   u∞ in
BV ((a, b)). Then the following facts hold true.

(1) It turns out that {un} is bounded in L∞((a, b)), and un → u∞ in Lp((a, b)) for
every p ≥ 1 (but not necessarily for p = +∞).

(2) For every x ∈ (a, b), and every sequence xn → x, it turns out that

lim inf
y→x

u∞(y) ≤ lim inf
n→+∞

un(xn) ≤ lim sup
n→+∞

un(xn) ≤ lim sup
y→x

u∞(y),

and in particular un(xn) → u∞(x) whenever u∞ is continuous in x, and the con-
vergence is uniform in (a, b) if the limit u∞ is continuous in (a, b).
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(3) It turns out that un   u∞ in BV ((c, d)) for every interval (c, d) ⊆ (a, b) whose
endpoints are not jump points of the limit u∞.

(4) The positive and negative part of the distributional derivatives converge separately
in the closed interval (see [6, Proposition 3.15]). More precisely, if D+un and D−un
denote, respectively, the positive and negative part of the signed measure Dun,
and similarly for u∞, then for every continuous test function φ : [a, b] → R it turns
out that

lim
n→+∞

∫

[a,b]

φ(x) dD+un(x) =

∫

[a,b]

φ(x) dD+u∞(x),

and similarly with D−un and D−u∞.

In our second main result we consider any family {uε} of minimizers to (2.2.2) and
any family of points xε → x0 ∈ (0, 1), and we investigate the asymptotic behavior of
the family of fake blow-ups (we call them “fake” because in the numerator we subtract
f(xε) instead of uε(xε)) defined by

wε(y) :=
uε(xε + ω(ε)y)− f(xε)

ω(ε)
∀y ∈

(
− xε
ω(ε)

,
1− xε
ω(ε)

)
, (2.2.8)

and the asymptotic behavior of the family of true blow-ups defined by

vε(y) :=
uε(xε + ω(ε)y)− uε(xε)

ω(ε)
∀y ∈

(
− xε
ω(ε)

,
1− xε
ω(ε)

)
. (2.2.9)

When f ∈ C1([0, 1]), we prove that both families are relatively compact in the sense
of locally strict convergence, and all their limit points are suitable staircases.

Theorem 2.2.9 (Blow-up of minimizers at standard resolution). Let ω(ε) be defined by
(2.2.1), and let PMFε(β, f, (0, 1), u) be defined by (2.2.2), where ε ∈ (0, 1) and β > 0
are two real numbers, and f ∈ C1([0, 1]) is a given function.

Let {uε} ⊆ H2((0, 1)) be a family of functions with

uε ∈ argmin
{
PMFε(β, f, (0, 1), u) : u ∈ H2((0, 1))

}
∀ε ∈ (0, 1),

and let xε → x0 ∈ (0, 1) be a family of points. Let us consider the canonical (H, V )-
staircase with parameters

H :=

(
24

β2|f ′(x0)|3
)1/5

, V := f ′(x0)H, (2.2.10)

with the agreement that this staircase is identically equal to 0 when f ′(x0) = 0.
Then the following statements hold true.

(1) (Compactness of fake blow-ups). The family {wε(y)} defined by (2.2.8) is rela-
tively compact with respect to locally strict convergence, and every limit point is
an oblique translation of the canonical (H, V )-staircase.

More precisely, for every sequence {εn} ⊆ (0, 1) with εn → 0+ there exist an
increasing sequence {nk} of positive integers and a function w∞ ∈ Obl(H, V ) such
that

wεnk
(y)  w∞(y) in BVloc(R).
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(2) (Compactness of true blow-ups). The family {vε(y)} defined by (2.2.9) is relatively
compact with respect to locally strict convergence, and every limit point is a graph
translation of the canonical (H, V )-staircase.

More precisely, for every sequence {εn} ⊆ (0, 1) with εn → 0+ there exist an
increasing sequence {nk} of positive integers and a function v∞ ∈ Hor(H, V ) ∪
Vert(H, V ) such that

vεnk
(y)  v∞(y) in BVloc(R).

(3) (Realization of all possible oblique translations). Let w0 ∈ Obl(H, V ) be any
oblique translation of the canonical (H, V )-staircase.

Then there exists a family {x′ε} ⊆ (0, 1) such that

lim sup
ε→0+

|x′ε − xε|
ω(ε)

≤ H, (2.2.11)

and
uε(x

′
ε + ω(ε)y)− f(x′ε)

ω(ε)
 
 w0(y) in BVloc(R). (2.2.12)

(4) (Realization of all possible graph translations). Let v0 ∈ Hor(H, V ) ∪ Vert(H, V )
be any graph translation of the canonical (H, V )-staircase.

Then there exists a family {x′ε} ⊆ (0, 1) satisfying (2.2.11) and

uε(x
′
ε + ω(ε)y)− uε(x

′
ε)

ω(ε)
 
 v0(y) in BVloc(R).

Let us make some comments about Theorem 2.2.9 above. To begin with, we consider
the special case of stationary points, and the special case of blow-ups in boundary points.

Remark 2.2.10 (Stationary points of the forcing term). In the special case where
f ′(x0) = 0, the canonical (H, V )-staircase is identically equal to 0, and it coincides with
all its oblique or graph translations. In this case the whole family of fake blow-ups and
the whole family of true blow-ups converge to 0, without any need of subsequences.

Remark 2.2.11 (Internal vs boundary blow-ups). For the sake of shortness, we stated
the result in the case where x0 ∈ (0, 1). The very same conclusions hold true, with
exactly the same proof, even if x0 ∈ {0, 1}, provided that

lim
ε→0+

min{xε, 1− xε}
ω(ε)

= +∞. (2.2.13)

When x0 ∈ {0, 1} and (2.2.13) fails, we can again characterize the limits of fake and
true blow-ups, more or less with the same techniques. This requires a one-sided variant
of the canonical staircases that we discuss later in section 2.4. We refer to Remark 2.5.1
for further details.
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In the following remark we present the result from two different points of view.

Remark 2.2.12 (Further interpretations of Theorem 2.2.9). Let us consider any dis-
tance in the space X := BVloc(R) that induces the locally strict convergence. Given any
minimizer uε to (2.2.2), we extend it to a continuous function ûε : R → R by setting

ûε(x) :=





uε(0) if x ≤ 0,

uε(x) if x ∈ [0, 1],

uε(1) if x ≥ 1.

Then we consider the function Uε : (0, 1) → X defined by

[Uε(x)](y) :=
ûε(x+ ω(ε)y)− f(x)

ω(ε)
∀y ∈ R,

namely the function that associates to every x ∈ (0, 1) the fake blow-up of ûε with center
in x at scale ω(ε).

Finally, for every x ∈ (0, 1) we consider the set T (x) ⊆ X consisting of all oblique
translations of the canonical (H, V )-staircase with parameters given by (2.2.10). We
observe that T (x) is homeomorphic to the circle S1 if f ′(x) 6= 0, and T (x) is a singleton
if f ′(x) = 0.

Then “Uε(x) converges to T (x)” in the following senses.

(1) (Hausdorff convergence). For every interval [a, b] ⊆ (0, 1) we consider the graph
of Uε over [a, b], namely

Gε(a, b) := {(x, w) : x ∈ [a, b], w = Uε(x)} ⊆ [a, b]× X,

and the graph of the multi-function T (x), namely the set

G0(a, b) := {(x, w) : x ∈ [a, b], w ∈ T (x)} ⊆ [a, b]× X.

Then it turns out that Gε → G0 as ε→ 0+ with respect to the Hausdorff distance
between compact subsets of (0, 1)× X.

This convergence result is a direct consequence of statements (1) and (3) of The-
orem 2.2.9. It can also be extended to true blow-ups, just by defining T (x) as the
set of graph translations instead of oblique translations.

(2) (Young measure convergence). Let us consider Uε as a Young measure νε in (0, 1)
with values in X. Let ν0 denote the Young measure that associates to every
x ∈ (0, 1) the probability measure in T (x) that is invariant by oblique translations.
Then it turns out that

νε ⇀ ν0 as ε→ 0+,

where the convergence is in the sense of X-valued Young measures in (0, 1). We
point out that the strict convergence induced by the distance in our space X is
much stronger than the convergence in [1], where the distance just induces the
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weak* topology in a ball of L∞. For this reason, our space X is not compact,
but we could easily recover the compactness by restricting ourselves to the subset
consisting of all blow-ups of all minimizers for ε in some interval (0, ε0] ⊆ (0, 1),
together with all their possible limits as ε→ 0+.

This convergence in the sense of Young measures follows from the Hausdorff con-
vergence and the invariance of ν0 by oblique translations, which in turn follows
from a remake of [1, Proposition 3.1 and Lemma 2.7]. The argument is how-
ever analogous to the proof of statement (3) of Theorem 2.2.9. The idea is that
any translation of the blow-up point of order ω(ε) delivers a proportional oblique
translation of the limit.

In the case of true blow-ups we expect the limit Young measure ν0 to be uniformly
concentrated only on graph translations of horizontal type, while graph transla-
tions of vertical type should have zero measure because they correspond to a very
special choice of the blow-up points.

Theorem 2.2.9 shows that minimizers develop a microstructure at scale ω(ε). As a
consequence, this microstructure does not appear if we consider blow-ups at a coarser
scale, as in the following statement.

Corollary 2.2.13 (Low-resolution blow-ups of minimizers). Let ε, ω(ε), β, f , uε, x0 be
as in Theorem 2.2.9. Let {xε} ⊆ (0, 1) be a family of real numbers such that xε → x0,
and let {αε} be a family of positive real numbers such that αε → 0 and ω(ε)/αε → 0.

Then it turns out that

uε(xε + αεy)− uε(xε)

αε
 
 f ′(x0)y in BVloc(R),

and therefore also uniformly on bounded subsets of R.

The second consequence of Theorem 2.2.9 is an improvement of statement (4) in
Proposition 2.2.1, at least in the case where the forcing term f(x) is of class C1. In
this case indeed we obtain that minimizers converge to f also in the sense of strict
convergence. Moreover, as uε(x) converges to f(x), its derivative u

′
ε(x) converges to a

mix of 0 and ±∞, and this mix is “in the average” equal to f ′(x). We state the result
using an elementary language, and then we interpret it in the formalism of varifolds.

Theorem 2.2.14 (Convergence of minimizers to the forcing term). Let ε, β, f , uε be
as in Theorem 2.2.9.

Then the family {uε} of minimizers converges to f in the following senses.

(1) (Strict convergence). It turns out that uε   f in BV ((0, 1)), and therefore also
uniformly in [0, 1].

(2) (Convergence as varifolds). Let us set

V +
0 := {x ∈ [0, 1] : f ′(x) > 0} , V −

0 := {x ∈ [0, 1] : f ′(x) < 0} . (2.2.14)
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Then for every continuous test function

φ : [0, 1]× R×
[
−π
2
,
π

2

]
→ R

it turns out that

lim
ε→0+

∫ 1

0

φ
(
x, uε(x), arctan(u

′
ε(x))

)√
1 + u′ε(x)

2 dx =

∫ 1

0

φ(x, f(x), 0) dx

+

∫

V −

0

φ
(
x, f(x),−π

2

)
|f ′(x)| dx+

∫

V +

0

φ
(
x, f(x),

π

2

)
|f ′(x)| dx. (2.2.15)

The conclusions of Theorem 2.2.14 is weaker than Theorem 2.2.9, because it does
not carry so much information about the asymptotic profile of minimizers. Just for
comparison, the counterpart of this result in the Alberti-Müller model is the convergence
of u′ε to a Young measure that in every point assumes the two values ±1 with equal
probability. Therefore, we suspect that the same conclusion might be true under weaker
assumptions on the forcing term f , and we refer to section 2.8 for further discussion.

Remark 2.2.15 (Varifold interpretation). Let us limit ourselves for a while to test
functions such that φ(x, s, π/2) = φ(x, s,−π/2) for all admissible values of x and s. Let
us observe that the function p 7→ arctan(p) is a homeomorphism between the projective
line and the interval [−π/2, π/2] with the endpoints identified. Under these assumptions
we can interpret the two sides of (2.2.15) as the action of two suitable varifolds on the
test function φ.

In the left-hand side we have the varifold associated to the graph of uε in the canonical
way, namely with “weight” (projection into R2) equal to the restriction of the one-
dimensional Hausdorff measure to the graph of uε, and “tangent component” in the
direction of the derivative u′ε. In the right-hand side we have a varifold with

• “weight” equal to the one-dimensional Hausdorff measure restricted to the graph
of f , multiplied by the density

1 + |f ′(x)|√
1 + f ′(x)2

,

which in turn coincides with the push-forward of the Lebesgue measure through
the map x 7→ (x, f(x)) multiplied by 1 + |f ′(x)|,

• “tangent component” in the point (x, f(x)) equal to

1

1 + |f ′(x)| δ(1,0) +
|f ′(x)|

1 + |f ′(x)| δ(0,1),

where δ(1,0) and δ(0,1) are the Dirac measures concentrated in the horizontal direc-
tion (1, 0) and in the vertical direction (0, 1), respectively.

It follows that statement (2) of Theorem 2.2.14 above is a reinforced version of
varifold convergence. The reinforcement consists in considering the vertical tangent line
in the direction (0, 1) as different from the vertical tangent line in the direction (0,−1).
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Remark 2.2.16 (Minimality is essential). In Theorem 2.2.9 and Theorem 2.2.14 we
can not replace the requirement that {uε} is a family of minimizers by weaker “almost
minimality” conditions such as

lim
ε→0+

PMFε(β, f, (0, 1), uε)

m(ε, β, f)
= 1. (2.2.16)

Indeed, one can check that the cost of adding an isolated bump that simulates
two opposite jumps in a neighborhood of some point is proportional to ω(ε)5/2 (see also
(2.8.1) below). Since the denominator in (2.2.16) is proportional to ω(ε)2, this condition
does not even imply a uniform bound on the total variation of uε.

2.3 Functional setting and Gamma-convergence

This section deals with the rescaled version of the Perona-Malik functional (2.2.2) and
its Gamma-limit. The results are somewhat classical, and rather close to similar results
in the literature. On the other hand, in some cases they are not stated in the literature
in the form we need, and in some other cases the proofs that we found in the literature
do not work. Therefore, for the convenience of the reader we include at least a sketch
of the proofs in an appendix at the end of the chapter.

Functional setting Let us consider the functional

RPMε(Ω, u) :=

∫

Ω

{
ε6u′′(x)2 +

1

ω(ε)2
log
(
1 + u′(x)2

)}
dx (2.3.1)

defined for every real number ε ∈ (0, 1), every open set Ω ⊆ R, and every function
u ∈ H2(Ω). This functional is a rescaled version of the principal part of (2.2.2). When
we add the usual “fidelity term”, depending on a real parameter β > 0 and on a forcing
term f ∈ L2(Ω), we obtain the rescaled Perona-Malik functional with fidelity term

RPMFε(β, f,Ω, u) := RPMε(Ω, u) + β

∫

Ω

(u(x)− f(x))2 dx. (2.3.2)

The Gamma-limit of (2.3.1) as ε → 0+ turns out to be finite only in the space of
“pure jump functions”, defined as finite or countable linear combination of Heaviside
functions. More formally, the notion is the following.

Definition 2.3.1 (Pure jump functions). Let (a, b) ⊆ R be an interval. A function
u : (a, b) → R is called a pure jump function, and we write u ∈ PJ((a, b)), if there exist
a real number c, a finite or countable set Su ⊆ (a, b), and a function J : Su → R \ {0}
such that ∑

s∈Su

|J(s)| < +∞ (2.3.3)

and
u(x) = c+

∑

s∈Su

J(s)1(s,b)(x) ∀x ∈ (a, b), (2.3.4)
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where 1(s,b) : R → {0, 1} is the indicator function of the interval (s, b), defined as

1(s,b)(x) :=

{
1 if x ∈ (s, b),

0 otherwise.

The set Su is called the jump set of u, every element s ∈ Su is called a jump point
of u, and |J(s)| is called the height of the jump of u in s.

We call boundary values of u the numbers

u(a) := lim
x→a+

u(x) = c and u(b) := lim
x→b−

u(x) = c+
∑

s∈Su

J(s). (2.3.5)

Pure jump functions can be defined in an alternative way as those functions in
BV ((a, b)) whose distributional derivative is a finite or countable linear combination
of atomic measures. In particular, it can be verified that the representation (2.3.4) is
unique, and defines a function u ∈ BV ((a, b)) whose total variation is the sum of the
series in (2.3.3), and whose distributional derivative Du is the sum of Dirac measures
concentrated in the points of the set Su with weight J(s). Moreover, Su coincides with
the set of discontinuity points of u, and

J(s) = lim
x→s+

u(x)− lim
x→s−

u(x) ∀s ∈ Su.

We can now introduce the functional

J1/2(Ω, u) :=
∑

s∈Su∩Ω

|J(s)|1/2, (2.3.6)

defined for every u ∈ PJ((a, b)) and every open subset Ω ⊆ (a, b). Of course the
convergence of the series in (2.3.3) does not imply the convergence of the series in
(2.3.6), and therefore at this level of generality it may happen that J1/2(Ω, u) = +∞ for
some choices of u and Ω.

Gamma-convergence The following result concerns the convergence of the family RPMε

to a multiple of J1/2. The compactness statement is similar to [14, Theorem 4.1], while
the Gamma-convergence statement coincides with [14, Theorem 4.4] in the special case
φ(p) = log(1 + p2). Unfortunately, even if it applies to a quite general class of La-
grangians, the proof in [14] relies on [14, Lemma 3.1], which is clearly false for this
choice of φ(p). In the appendix at the end of the paper we present a specific proof for
this case.

Theorem 2.3.2 (Gamma-convergence, compactness, properties of recovery sequences).
Let (a, b) ⊆ R be an interval, let us consider the functionals defined in (2.3.1) and
(2.3.6), and let us set

α0 :=
16√
3
. (2.3.7)

Then the following statements hold true.
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(1) (Gamma convergence) Let us extend the functionals (2.3.1) and (2.3.6) to the
space L2((a, b)) by setting them equal to +∞ outside their original domains.

Then with respect to the metric of L2((a, b)) it turns out that

Γ– lim
ε→0+

RPMε((a, b), u) = α0 J1/2((a, b), u) ∀u ∈ L2((a, b)).

(2) (Compactness) Let {εn} ⊆ (0, 1) be any sequence such that εn → 0+, and let
{un} ⊆ H2((a, b)) be any sequence such that

sup
n∈N

{
RPMεn((a, b), un) +

∫ b

a

un(x)
2 dx

}
< +∞. (2.3.8)

Then there exist an increasing sequence {nk} of positive integers, and a function
u∞ ∈ PJ((a, b)) such that unk

→ u∞ in L2((a, b)) as k → +∞.

(3) (Strict convergence of recovery sequences) Let u ∈ PJ((a, b)) be a pure jump
function with J1/2((a, b), u) < +∞. Let {εn} ⊆ (0, 1) be any sequence such that
εn → 0+, and let {un} ⊆ H2((a, b)) be any sequence such that un → u in L2((a, b)),
and

lim
n→+∞

RPMεn((a, b), un) = α0 J1/2((a, b), u). (2.3.9)

Then actually un   u in BV ((a, b)), according to Definition 2.2.6.

(4) (Recovery sequences with given boundary data) Let {εn} and u be as in the pre-
vious statement, and let {A0,n}, {A1,n}, {B0,n}, {B1,n} be four sequences of real
numbers such that

lim
n→+∞

(A0,n, A1,n, B0,n, B1,n) = (u(a), 0, u(b), 0),

where the boundary values of u are intended as usual in the sense of (2.3.5).

Then there exists a sequence {un} ⊆ H2((a, b)) with boundary data

(
un(a), u

′
n(a), un(b), u

′
n(b)

)
= (A0,n, A1,n, B0,n, B1,n) ∀n ∈ N (2.3.10)

such that un → u in L2((a, b)) and (2.3.9) holds true.

Remark 2.3.3. The choice of the ambient space L2((a, b)) is not essential in Theo-
rem 2.3.2, and actually it can be replaced with Lp((a, b)) for any real exponent p ≥ 1
(but not for p = +∞, at least in statements (2) and (4)).

Convergence of minima and minimizers Since the fidelity term in (2.3.2) is continuous
with respect to the metric of L2(Ω), and Gamma-convergence is stable with respect to
continuous perturbations, we deduce that the Gamma-limit of (2.3.2) is the functional

JF1/2(α, β, f,Ω, u) := α J1/2(Ω, u) + β

∫

Ω

(u(x)− f(x))2 dx, (2.3.11)



36 The Perona-Malik problem

with α equal to the constant α0 defined in (2.3.7). Now we concentrate on the special
case where Ω = (0, L) and the forcing term is the linear function f(x) = Mx, for
suitable real numbers L > 0 and M , and we consider the following minimum values
without boundary conditions

µε(β, L,M) := min
u∈H2((0,L))

RPMFε(β,Mx, (0, L), u), (2.3.12)

µ0(α, β, L,M) := min
u∈PJ((0,L))

JF1/2(α, β,Mx, (0, L), u). (2.3.13)

Then we introduce boundary conditions. In the case of (2.3.2) we call H2((0, L),M)
the set of all functions v ∈ H2((0, L)) such that v(0) = 0, v(L) = ML, and v′(0) =
v′(L) = 0. In the case of (2.3.11) we call PJ((0, L),M) the set of all functions v ∈
PJ((0, L)) such that v(0) = 0 and v(L) =ML, where these boundary values are intended
in the sense of (2.3.5). At this point we consider the following minimum values with
boundary conditions

µ∗
ε(β, L,M) := min

u∈H2((0,L),M)
RPMFε(β,Mx, (0, L), u), (2.3.14)

µ∗
0(α, β, L,M) := min

u∈PJ((0,L),M)
JF1/2(α, β,Mx, (0, L), u). (2.3.15)

The following result contains the properties of these minimum values that we exploit
in the sequel (a sketch of the proof is in the appendix).

Proposition 2.3.4 (Asymptotic analysis of minima with linear forcing term). The
minimum values defined in (2.3.12) through (2.3.15) have the following properties.

(1) (Existence). The minimum problems (2.3.12) through (2.3.15) admit a solution
for every (ε, α, β, L,M) ∈ (0, 1)× (0,+∞)3 × R.

(2) (Symmetry, continuity and monotonicity with respect toM). For every admissible
value of ε, α, β, L the four functions

M 7→ µε(β, L,M), M 7→ µ∗
ε(β, L,M),

M 7→ µ0(α, β, L,M), M 7→ µ∗
0(α, β, L,M),

are even, continuous in R, and nondecreasing in [0,+∞).

Moreover, we also have that

µ∗
ε(β, L,M2) ≤

(
M2

M1

)2

µ∗
ε(β, L,M1), (2.3.16)

for every 0 < M1 ≤M2.

(3) (Monotonicity with respect to L). For every admissible value of ε, α, β, M , the
three functions

L 7→ µε(β, L,M), L 7→ µ0(α, β, L,M), L 7→ µ∗
0(α, β, L,M)
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are nondecreasing with respect to L in (0,+∞). As for µ∗
ε, it turns out that

µ∗
ε(β, L2,M) ≤

(
L2

L1

)3

µ∗
ε(β, L1,M) (2.3.17)

for every 0 < L1 ≤ L2.

(4) (Pointwise convergence). For every admissible value of β, M and L it turns out
that

lim
ε→0+

µε(β, L,M) = µ0(α0, β, L,M), (2.3.18)

and
lim
ε→0+

µ∗
ε(β, L,M) = µ∗

0(α0, β, L,M), (2.3.19)

where α0 is the constant defined in (2.3.7).

(5) (Uniform convergence). The limits (2.3.18) and (2.3.19) are uniform for bounded
values of M , in the sense that for every positive value of β and L it turns out that

lim
ε→0+

sup
|M |≤M0

|µε(β, L,M)− µ0(α0, β, L,M)| = 0 ∀M0 > 0, (2.3.20)

and

lim
ε→0+

sup
|M |≤M0

|µ∗
ε(β, L,M)− µ∗

0(α0, β, L,M)| = 0 ∀M0 > 0. (2.3.21)

2.4 Local minimizers

In this section we state the key tools for the proof of our main results. The key idea is
that also local minimizers for functionals of the form (2.3.2) converge to local minimizers
for functionals of the form (2.3.11). This extends the Gamma convergence results of the
previous section.

The notion of local minimizers can be introduced in a very general framework by
asking minimality with respect to compactly supported perturbations. In many concrete
examples this is equivalent to saying that a given function is a minimizer with respect
to its own boundary conditions. Of course the number and the form of these boundary
conditions depend on the nature of the functional, as we explain below.

Definition 2.4.1 (Local minimizers in intervals). Let (a, b) ⊆ R be an interval, and let
F(u) be a functional defined in some functional space S((a, b)).

• Let us assume that S((a, b)) = H2((a, b)). A local minimizer is any function
u ∈ H2((a, b)) such that F(u) ≤ F(v) for every function v ∈ H2((a, b)) such that

(
v(a), v′(a), v(b), v′(b)

)
=
(
u(a), u′(a), u(b), u′(b)

)
.

• Let us assume that S((a, b)) = PJ((a, b)). A local minimizer is any function
u ∈ PJ((a, b)) such that F(u) ≤ F(v) for every function v ∈ PJ((a, b)) such
that (v(a), v(b)) = (u(a), u(b)), where boundary values of pure jump functions are
intended in the sense of (2.3.5).
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In both cases we write

u ∈ argminloc {F(u) : u ∈ S((a, b))} .

We observe that in Definition 2.4.1 the two endpoints of the interval play the same
role. In the sequel we need also the following notion of one-sided local minimizer, where
we focus just on one of the endpoints.

Definition 2.4.2 (One-sided local minimizers in an interval). Let (a, b) ⊆ R be an
interval, and let F(u) be a functional defined in some functional space S((a, b)).

• Let us assume that S((a, b)) = H2((a, b)). A right-hand local minimizer is any
function u ∈ H2((a, b)) such that F(u) ≤ F(v) for every function v ∈ H2((a, b))
such that (v(b), v′(b)) = (u(b), u′(b)).

• Let us assume that S((a, b)) = PJ((a, b)). A right-hand local minimizer is any
function u ∈ PJ((a, b)) such that F(u) ≤ F(v) for every function v ∈ PJ((a, b))
such that v(b) = u(b).

In both cases we write

u ∈ argminR-loc {F(u) : u ∈ S((a, b))} .

Left-hand local minimizers are defined in a symmetric way, just focusing on the
endpoint a.

Definition 2.4.3 (Entire and semi-entire local minimizers). Let us consider functionals
F(I, u) defined for every interval I and every u in some function space S(I).

• An entire local minimizer is a function u : R → R such that, for every interval
(a, b) ⊆ R, the restriction of u to (a, b) is a local minimizer in (a, b).

• A right-hand semi-entire local minimizer is a function u : (0,+∞) → R such that,
for every real number L > 0, the restriction of u to (0, L) is a right-hand local
minimizer in (0, L).

• A left-hand semi-entire local minimizer is a function u : (−∞, 0) → R such that,
for every real number L > 0, the restriction of u to (−L, 0) is a left-hand local
minimizer in (−L, 0).

The following result is crucial both in the proof of Theorem 2.2.2, and as a prelimi-
nary step toward the characterization of entire and semi-entire local minimizers to the
limiting functional (2.3.11).

Proposition 2.4.4 (Estimates for minima of the limit problem). For every choice of
the parameters (α, β, L,M) ∈ (0,+∞)3×R the minimum values defined in (2.3.13) and
(2.3.15) satisfy

c1|M |4/5L− c2|M |1/5 ≤ µ0(α, β, L,M) (2.4.1)

≤ µ∗
0(α, β, L,M) ≤ c1|M |4/5L+ c3|M |1/5, (2.4.2)
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where

c1 :=
5

4

(
α4β

3

)1/5

, c2 := 20

(
2α6

3β

)1/5

, c3 :=
5

4

(
3α6

β

)1/5

. (2.4.3)

We are now ready to state the first main result of this section, namely the charac-
terization of all entire and semi-entire local minimizers for the functional (2.3.11).

Proposition 2.4.5 (Classification of entire and semi-entire local minimizers). For every
choice of the real numbers (α, β,M) ∈ (0,+∞)2 × R let us consider the functional
JF1/2(α, β,M,R, v) defined in (2.3.11). Let us consider the canonical (H, V )-staircase
SH,V with parameters

H :=
1

2

(
9α2

β2|M |3
)1/5

, V :=MH, (2.4.4)

and the understanding that SH,V ≡ 0 when M = 0.
Then the following statements hold true.

(1) (Entire local minimizers). The set of entire local minimizers coincides with the set
of the oblique translations of the canonical (H, V )-staircase SH,V , as introduced in
Definition 2.2.3 and Definition 2.2.4.

(2) (Semi-entire local minimizers). The unique right-hand semi-entire local minimizer
is the function w : (0,+∞) → R defined by

w(x) :=

{
Mz0 if x ∈ (0, z0),

SH,V (x− z0) +Mz0 if x ≥ z0,
(2.4.5)

where z0 := (5/3)1/2H (if M = 0 the value of z0 is not relevant).

The unique left-hand semi-entire local minimizer is the function w(−x).
In words, the right-hand semi-entire local minimizer is an oblique translation of the

canonical (H, V )-staircase, but with a first step that is longer. Intuitively, this is due to
the fact that the “jump at the origin” has no cost in terms of energy.

The second main result of this section is the convergence of local minimizers for
(2.3.2) to local minimizers for (2.3.11). Let us start with the symmetric case.

Proposition 2.4.6 (Convergence to entire local minimizers). Let M and β be real
numbers, with β > 0. For every positive integer n, let εn ∈ (0, 1) and An < Bn be real
numbers, let gn : (An, Bn) → R be a continuous function, and let wn ∈ H2((An, Bn)).

Let us assume that

(i) as n→ +∞ it turns out that εn → 0+, An → −∞, and Bn → +∞,

(ii) gn(x) →Mx uniformly on bounded subsets of R,

(iii) for every positive integer n it turns out that

wn ∈ argminloc

{
RPMFεn(β, gn, (An, Bn), w) : w ∈ H2((An, Bn))

}
,
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(iv) there exists a positive real number C0 such that

RPMFεn(β, gn, (An, Bn), wn) ≤
C0

εn
∀n ≥ 1. (2.4.6)

Then there exists an increasing sequence {nk} of positive integers such that

wnk  
 w∞ in BVloc(R),

where w∞ is an entire local minimizer for the functional (2.3.11) with α given by (2.3.7).

The result for one-sided local minimizers is analogous. We state it in the case of
right-hand local minimizers.

Proposition 2.4.7 (Convergence to semi-entire local minimizers). Let M and β be real
numbers, with β > 0. For every positive integer n, let εn ∈ (0, 1) and Ln > 0 be real
numbers, let gn : (0, Ln) → R be a continuous function, and let wn ∈ H2((0, Ln)).

Let us assume that

(i) as n→ +∞ it turns out that εn → 0+ and Ln → +∞,

(ii) gn(x) →Mx uniformly on bounded subsets of (0,+∞),

(iii) for every positive integer n it turns out that

wn ∈ argminR-loc

{
RPMFεn(β, gn, (0, Ln), w) : w ∈ H2((0, Ln))

}
,

(iv) there exists a positive real number C0 such that

RPMFεn(β, gn, (0, Ln), wn) ≤
C0

εn
∀n ≥ 1.

Let w∞ denote the unique right-hand semi-entire local minimizer for the functional
(2.3.11) with α given by (2.3.7), namely the function defined by (2.4.5).

Then for every L > 0 that is not a jump point of w∞ it turns out that

wn  
 w∞ in BV ((0, L)).

2.5 Proofs of main results

In this section we assume that the results stated in section 2.3 and section 2.4 are valid,
and using them we prove all the main results of section 2.2 concerning the behavior of
minima and minimizers. We hope that this presentation allows to highlight the main
ideas without focusing on the technical details that will be presented in the next section.
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2.5.1 Asymptotic behavior of minima (Theorem 2.2.2)

The proof of Theorem 2.2.2 consists of two main parts. In the first part (estimate from
below) we consider any family {uε} ⊆ H2((0, 1)) and we show that

lim inf
ε→0+

PMFε(β, f, (0, 1), uε)

ω(ε)2
≥ 10

(
2β

27

)1/5 ∫ 1

0

|f ′(x)|4/5 dx. (2.5.1)

In the second part (estimate from above) we construct a family {uε} ⊆ H2((0, 1))
such that

lim sup
ε→0+

PMFε(β, f, (0, 1), uε)

ω(ε)2
≤ 10

(
2β

27

)1/5 ∫ 1

0

|f ′(x)|4/5 dx. (2.5.2)

Estimate from below

Interval subdivision and approximation of the forcing term Let us fix two real numbers
L > 0 and η ∈ (0, 1). For every ε ∈ (0, 1) we set

Nε,L :=

⌊
1

Lω(ε)

⌋
and Lε :=

1

Nε,Lω(ε)
. (2.5.3)

We observe that Nε,L is an integer, and that Lε → L when ε→ 0+. We observe also
that [0, 1] is (up to a finite number of points) the disjoint union of the Nε,L intervals of
length Lεω(ε) defined by

Iε,k := ((k − 1)Lεω(ε), kLεω(ε)) ∀k ∈ {1, . . . , Nε,L}, (2.5.4)

and we consider the piecewise affine function fε,L : [0, 1] → R that interpolates the
values of f at the endpoints of these intervals, namely the function defined by

fε,L(x) :=Mε,L,k(x− (k − 1)Lεω(ε)) + f((k − 1)Lεω(ε)) ∀x ∈ Iε,k, (2.5.5)

where

Mε,L,k :=
f(kLεω(ε))− f((k − 1)Lεω(ε))

Lεω(ε)
.

From the H1 regularity of f we deduce that the family {fε,L} converges to f in the
sense that

lim
ε→0+

1

ω(ε)2

∫ 1

0

(f(x)− fε,L(x))
2 dx = 0. (2.5.6)

Moreover, we deduce also that f ′
ε,L → f ′ in L2((0, 1)), and in particular

lim
ε→0+

Lεω(ε)

Nε,L∑

k=1

φ(Mε,L,k) = lim
ε→0+

∫ 1

0

φ(f ′
ε,L(x)) dx =

∫ 1

0

φ(f ′(x)) dx, (2.5.7)

for every continuous function φ : R → R that grows at most quadratically, namely such
that

|φ(p)| ≤ C1 + C2 p
2,
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for some positive constants C1, C2 > 0.
Finally, from the inequality

(a+ b)2 ≥ (1− η)a2 +

(
1− 1

η

)
b2 ∀η ∈ (0, 1), ∀(a, b) ∈ R

2,

we obtain the estimate
∫ 1

0

(uε − f)2 dx ≥ (1− η)

∫ 1

0

(uε − fε,L)
2 dx+

(
1− 1

η

)∫ 1

0

(f − fε,L)
2 dx,

from which we conclude that

PMFε(β, f, (0, 1), uε) ≥ (1− η)PMFε(β, fε,L, (0, 1), uε)

+

(
1− 1

η

)
β

∫ 1

0

(f(x)− fε,L(x))
2 dx. (2.5.8)

Reduction to a common interval We prove that

PMFε(β, fε,L, (0, 1), uε) ≥ ω(ε)3
Nε,L∑

k=1

µε(β, L,Mε,L,k), (2.5.9)

where µε(β, L,Mε,L,k) is defined by (2.3.12). To this end, we begin by observing that

PMFε(β, fε,L, (0, 1), uε) =

Nε,L∑

k=1

PMFε(β, fε,L, Iε,k, uε). (2.5.10)

Each of the terms of the sum can be reduced to the common interval (0, Lε) by
introducing the function vε,L,k : (0, Lε) → R defined by

vε,L,k(y) :=
uε((k − 1)Lεω(ε) + ω(ε)y)− f((k − 1)Lεω(ε))

ω(ε)
∀y ∈ (0, Lε). (2.5.11)

Indeed, with the change of variable x = (k − 1)Lεω(ε) + ω(ε)y, we obtain that
∫

Iε,k

(uε(x)− fε,L(x))
2 dx = ω(ε)3

∫ Lε

0

(vε,L,k(y)−Mε,L,k y)
2 dy

and ∫

Iε,k

{
ε6ω(ε)4u′′ε(x)

2 + log
(
1 + u′ε(x)

2
)}
dx = ω(ε)3RPMε((0, Lε), vε,L,k),

and therefore

PMFε(β, fε,L, Iε,k, uε) = ω(ε)3RPMFε(β,Mε,L,k x, (0, Lε), vε,L,k)

≥ ω(ε)3µε(β, Lε,Mε,L,k)

≥ ω(ε)3µε(β, L,Mε,L,k),

where in the last inequality we exploited that Lε ≥ L, and µε is monotone with respect
to the length of the interval. Plugging this inequality into (2.5.10) we obtain (2.5.9).
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Convergence to minima of the limit problem For every M0 > 0 there exists ε0 ∈ (0, 1)
such that

µε(β, L,Mε,L,k) ≥ µε(β, L,min{|Mε,L,k|,M0}) ≥ µ0(α0, β, L,min{|Mε,L,k|,M0})− η
(2.5.12)

for every ε ∈ (0, ε0) and every k ∈ {1, . . . , Nε,L}, where the function µ0 is defined
according to (2.3.13), and α0 is defined by (2.3.7).

Indeed, this estimate follows from Proposition 2.3.4, and in particular from the
symmetry and monotonicity of µε with respect to M , and the uniform convergence
(2.3.20).

Conclusion Thanks to the estimate from below in (2.4.1) we know that

µ0(α0, β, L,min{|Mε,L,k|,M0}) ≥ c1 min{|Mε,L,k|,M0}4/5L− c2 min{|Mε,L,k|,M0}1/5,

where c1 and c2 are given by (2.4.3), and therefore in particular

c1 :=
5

4

(
α4
0β

3

)1/5

= 10

(
2β

27

)1/5

. (2.5.13)

Summing over k, from (2.5.9) and (2.5.12) we obtain that

PMFε(β, fε,L, (0, 1), uε)

ω(ε)2
≥ ω(ε)

Nε,L∑

k=1

µε(β, L,Mε,L,k)

≥ ω(ε)

Nε,L∑

k=1

µ0(α0, β, L,min{|Mε,L,k|,M0})− ηω(ε)Nε,L

≥ c1Lω(ε)

Nε,L∑

k=1

min{|Mε,L,k|,M0}4/5 − c2ω(ε)Nε,LM
1/5
0 − ηω(ε)Nε,L.

Finally, plugging this estimate into (2.5.8) we deduce that

PMFε(β, f, (0, 1), uε)

ω(ε)2
≥ (1− η)c1

L

Lε

· Lεω(ε)

Nε,L∑

k=1

min{|Mε,L,k|,M0}4/5

− ω(ε)Nε,L · (1− η)
(
c2M

1/5
0 + η

)

+

(
1− 1

η

)
β

ω(ε)2

∫ 1

0

(f(x)− fε,L(x))
2 dx.

Now we let ε→ 0+, and we exploit (2.5.7) in the first line, the fact that ω(ε)Nε,L →
1/L in the second line, and (2.5.6) in the third line. We conclude that

lim inf
ε→0+

PMFε(β, f, (0, 1), uε)

ω(ε)2
≥ (1− η)

{
c1

∫ 1

0

min{|f ′(x)|,M0}4/5 dx−
c2M

1/5
0 + η

L

}
.
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Letting η → 0+ and L→ +∞, we deduce that

lim inf
ε→0+

PMFε(β, f, (0, 1), uε)

ω(ε)2
≥ c1

∫ 1

0

min{|f ′(x)|,M0}4/5 dx.

Finally, letting also M0 → +∞ and recalling that c1 is given by (2.5.13), we obtain
exactly (2.5.1).

Estimate from above

We show the existence of a family {uε} ⊆ H2((0, 1)) for which (2.5.2) holds true. This
amounts to proving the asymptotic optimality of all the steps in the proof of the estimate
from below.

Interval subdivision and approximation of the forcing term Let us fix again two real
numbers L > 0 and η ∈ (0, 1), and for every ε ∈ (0, 1) let us define Nε,L and Lε as in
(2.5.3), the intervals Iε,k as in (2.5.4), and the piecewise affine function fε,L : (0, 1) → R

as in (2.5.5). Then we exploit the inequality

(a+ b)2 ≤ (1 + η)a2 +

(
1 +

1

η

)
b2 ∀η ∈ (0, 1), ∀(a, b) ∈ R

2,

and for every u ∈ H2((0, 1)) we obtain the estimate

PMFε(β, f, (0, 1), u) ≤ (1 + η)PMFε(β, fε,L, (0, 1), u)

+

(
1 +

1

η

)
β

∫ 1

0

(f(x)− fε,L(x))
2 dx.

Reduction to a common interval We claim that there exists uε ∈ H2((0, 1)) such that

PMFε(β, fε,L, (0, 1), uε) = ω(ε)3
Nε,L∑

k=1

µ∗
ε(β, Lε,Mε,L,k)

≤
(
Lε

L

)3

ω(ε)3
Nε,L∑

k=1

µ∗
ε(β, L,Mε,L,k),

where µ∗
ε is defined by (2.3.14), and the inequality follows from (2.3.17).

To this end, in analogy with the previous case we observe that the equalities

PMFε(β, fε,L, (0, 1), uε) =

Nε,L∑

k=1

PMFε(β, fε,L, Iε,k, uε)

= ω(ε)3
Nε,L∑

k=1

RPMFε(β,Mε,L,k x, (0, Lε), vε,L,k)
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hold true for every uε ∈ H2((0, 1)), provided that uε(x) and vε,L,k(x) are related by
(2.5.11). At this point it is enough to choose uε in such a way that vε,L,k coincides with
a minimizer in the definition of µ∗

ε(β, Lε,Mε,L,k) for every admissible choice of k.

Due to the boundary conditions in (2.3.14), the resulting function uε(x) coincides
with the forcing term f(x) in the nodes of the form x = kLεω(ε), its derivative vanishes
in the same points, and the profile in each subinterval is (up to homotheties and trans-
lations) a minimizer to (2.3.14). As a consequence, the different pieces glue together in
a C1 way, and thus the resulting function belongs to H2((0, 1)).

Convergence to minima of the limit problem As in the case of the estimate from below
we rely on Proposition 2.3.4 in order to deduce that for every M0 > 0 there exists
ε0 ∈ (0, 1) such that

(
Lε

L

)3

µ∗
ε(β, L,Mε,L,k) ≤

( |Mε,L,k|
min{|Mε,L,k|,M0}

)2(
Lε

L

)3

µ∗
ε(β, L,min{|Mε,L,k|,M0})

≤
( |Mε,L,k|
min{|Mε,L,k|,M0}

)2

(µ∗
0(α0, β, L,min{|Mε,L,k|,M0}) + η)

for every ε ∈ (0, ε0) and every k ∈ {1, . . . , Nε,L}. We can absorb the cubic factor into
η because Lε → L, and µ∗

ε(β, L,min{|Mε,L,k|,M0}) is uniformly bounded for ε small
because of the continuity of the limit µ∗

0 with respect to M .

Conclusion Now we exploit the estimate from above in (2.4.2), and we find that

µ∗
0(α0, β, L,min{|Mε,L,k|,M0}) ≤ c1min{|Mε,L,k|,M0}4/5L+ c3 min{|Mε,L,k|,M0}1/5,

where again c1 is given by (2.5.13), and as in the previous case we conclude that

PMFε(β, f, (0, 1), uε)

ω(ε)2
≤ (1 + η)c1

L

Lε

Lεω(ε)

Nε,L∑

k=1

|Mε,L,k|2
min{|Mε,L,k|,M0}6/5

+ (1 + η)
c3
Lε

Lεω(ε)

Nε,L∑

k=1

|Mε,L,k|2
min{|Mε,L,k|,M0}9/5

+ (1 + η)
η

Lε

Lεω(ε)

Nε,L∑

k=1

|Mε,L,k|2
min{|Mε,L,k|,M0}2

+

(
1 +

1

η

)
β

ω(ε)2

∫ 1

0

(f(x)− fε,L(x))
2 dx.

Letting ε → 0+ and exploiting again (2.5.6) and (2.5.7), we obtain that this family
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{uε} satisfies

lim sup
ε→0+

PMFε(β, f, (0, 1), uε)

ω(ε)2
≤ (1 + η)c1

∫ 1

0

|f ′(x)|2
min{|f ′(x)|,M0}6/5

dx

+ (1 + η)
c3
L

∫ 1

0

|f ′(x)|2
min{|f ′(x)|,M0}9/5

dx

+ (1 + η)
η

L

∫ 1

0

|f ′(x)|2
min{|f ′(x)|,M0}2

dx.

Now we observe that the right-hand side tends to the right-hand side of (2.5.2) when
η → 0+, L → +∞ and M0 → +∞. Therefore, with a standard diagonal procedure we
can find a family {uε} ⊆ H2((0, 1)) for which exactly (2.5.2) holds true.

2.5.2 Blow-ups at standard resolution (Theorem 2.2.9)

The proof of Theorem 2.2.9 consists of three main steps. In the first two steps we address
the compactness of fake and true blow-ups. In the final step we show how to achieve all
possible translations of the canonical staircase.

Compactness of fake blow-ups and oblique translations

Let us set for simplicity xn := xεn , and let wn(y) := wεn(y) denote the corresponding
fake blow-ups, defined in the interval (An, Bn) with

An := − xn
ω(εn)

, Bn :=
1− xn
ω(εn)

. (2.5.14)

We need to show that the sequence {wn} has a subsequence that converges locally
strictly in BVloc(R) to some oblique translation of the canonical (H, V )-staircase. To
this end, we introduce the function gn : (An, Bn) → R defined by

gn(y) :=
f(xn + ω(εn)y)− f(xn)

ω(εn)
∀y ∈ (An, Bn). (2.5.15)

We are now in a position to apply Proposition 2.4.6. Let us check the assumptions.

• Since xn → x0 ∈ (0, 1), passing to the limit in (2.5.14) we see that An → −∞ and
Bn → +∞.

• Since the forcing term f is of class C1, passing to the limit in (2.5.15) we see that
gn(y) → f ′(x0) · y uniformly on bounded subsets of R.

• With the change of variable x = xn + ω(εn)y we obtain that

PMFεn(β, f, (0, 1), uεn) = ω(εn)
3 · RPMFεn(β, gn, (An, Bn), wn). (2.5.16)

Since uεn(x) is a minimizer of the original functional u 7→ PMFεn(β, f, (0, 1), u),
it follows that wn(y) is a minimizer of w 7→ RPMFεn(β, gn, (An, Bn), w).
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• Due to (2.5.16), estimate (2.4.6) follows from Theorem 2.2.2 as soon as | log εn| ≥ 1.

At this point, from Proposition 2.4.6 we deduce that the sequence {wn} converges
locally strictly in BVloc(R), at least up to subsequences, to an entire local minimizer of
the limiting functional (2.3.11), with α given by (2.3.7). Finally, from Proposition 2.4.5
we know that all these entire local minimizers are oblique translations of the canonical
(H, V )-staircase, with parameters given by (2.2.10).

Remark 2.5.1 (Back to Remark 2.2.11). Let consider the case where xε → x0 ∈ {0, 1}.
If (2.2.13) holds true, then again An → −∞ and Bn → +∞ for every sequence εn → 0+,
and hence the previous proof still works. If (2.2.13) fails, then when x0 = 0 it may
happen that An → A∞ ∈ (−∞, 0] and Bn → +∞ for some sequence εn → 0+.

In this case it is convenient to introduce the translated functions

ŵn(y) := wn(y + An)− f ′(0)An and ĝn(y) := gn(y + An)− f ′(0)An.

We observe that these functions are defined in the interval (0, Ln) with Ln := Bn−An,
so that Ln → +∞. We observe also that

ŵn ∈ argminR-loc

{
RPMFεn(β, ĝn, (0, Ln), v) : v ∈ H2((0, Ln))

}
,

and that ĝn(y) → f ′(0) · y uniformly on bounded subsets of (0,+∞).

This means that we are in the framework of Proposition 2.4.7, from which we deduce
that the whole sequence {ŵn} converges to the unique semi-entire local minimizer in
(0,+∞) of the limiting functional (2.3.11), with α given by (2.3.7). This semi-entire
local minimizer is given by (2.4.5), and the convergence is strict in BV ((0, L)) for every
L > 0 that is not a jump point of the limit. This is a rigorous way of saying that wn(y)
converges to w(y−A∞)+f ′(0)A∞, and the latter is the oblique translation of the unique
semi-entire local minimizer that “starts in y = A∞”.

The case where x0 = 1, and for some sequence εn → 0+ it happens that An → −∞
and Bn → B∞ ∈ [0,+∞), is symmetric.

Compactness of true blow-ups and graph translations

Let us define xn and wn(y) as before, and let vn(y) := vεn(y) denote the corresponding
true blow-ups. We observe that true blow-ups are related to the fake blow-ups by the
equality

vn(y) = wn(y)− wn(0) ∀y ∈ (An, Bn), (2.5.17)

and therefore the asymptotic behavior of the sequence {vn} can be deduced from the
asymptotic behavior of the sequence {wn}. More precisely, let us assume that

wnk
(y)  SH,V (y −Hτ0) + V τ0 in BVloc(R)

for some sequence nk → +∞ and some τ0 ∈ [−1, 1]. Then we distinguish two cases.
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• Let us assume that |τ0| < 1. In this case y = 0 is not a discontinuity point
of the limit of fake blow-ups, and hence the strict convergence implies pointwise
convergence (see statement (2) in Remark 2.2.8), so that

lim
k→+∞

wnk
(0) = SH,V (−Hτ0) + V τ0 = V τ0.

Therefore, from (2.5.17) we deduce that vnk
(y)  SH,V (y−Hτ0) in BVloc(R), and

we conclude by observing that the limit is a graph translation of horizontal type
of the canonical (H, V )-staircase, as required.

• Let us assume that τ0 = ±1, and hence τ0 = 1 without loss of generality (because
oblique translations corresponding to τ0 = 1 and τ0 = −1 coincide). In this case
y = 0 is a discontinuity point of the limit of fake blow-ups, and hence strict
convergence (see statement (2) in Remark 2.2.8) implies only that

−V ≤ lim inf
k→+∞

wnk
(0) ≤ lim sup

k→+∞
wnk

(0) ≤ V.

As a consequence, up to a further subsequence (not relabeled), wnk
(0) tends to

some value in [−V, V ] that we can always write in the form V τ1 for some real
number τ1 ∈ [−1, 1]. Therefore, from (2.5.17) we deduce that, along this further
subsequence,

vnk
(y)  SH,V (y −H) + V − V τ1 in BVloc(R),

and we conclude by observing that the limit is a graph translation of vertical type
of the canonical (H, V )-staircase, as required.

Realization of all possible oblique/horizontal/vertical translations

In the constructions we can assume, without loss of generality, that f ′(x0) 6= 0, because
otherwise all families of fake or true blow-ups converge to the trivial staircase that is
identically 0, in which case there is nothing to prove.

Canonical staircase We show that there exists a family x′ε → x0 satisfying (2.2.11),
and (2.2.12) with w0(y) := SH,V (y). The natural idea is to look for the fake blow-ups
that minimize some distance from the desired limit. To this end, for every ε ∈ (0, 1)
small enough we consider the function

ψε(x) :=

∫ H

−H

∣∣∣∣
uε(x+ ω(ε)y)− f(x)

ω(ε)

∣∣∣∣ dy.

It is a continuous function of x, and therefore it admits at least one minimum point
x′ε in the interval [xε −Hω(ε), xε +Hω(ε)]. We claim that {x′ε} is the required family.
To begin with, we observe that (2.2.11) is automatic from the definition, and we call

wε(y) :=
uε(x

′
ε + ω(ε)y)− f(x′ε)

ω(ε)
(2.5.18)
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the corresponding fake blow-ups. If we assume by contradiction that {wε} does not
converge to SH,V , then from the compactness result we know that there exists a sequence
εn → 0+ such that wεn converges locally strictly in BVloc(R) to some oblique translation
z0 of SH,V , different from SH,V itself, and in particular

lim
n→+∞

ψεn(x
′
εn) = lim

n→+∞

∫ H

−H

|wεn(y)| dy =

∫ H

−H

|z0(y)| dy > 0.

On the other hand, since z0 is an oblique translation, it can be written in the form

z0(y) = SH,V (y −Hτ1) + V τ1

for a suitable τ1 ∈ [−1, 1], with τ1 6= 0. Now for every positive integer n we set

x′′εn := x′εn + (2kn + τ1)Hω(εn),

where kn ∈ {−1, 0, 1} is chosen in such a way that

xεn −Hω(εn) ≤ x′′εn < xεn +Hω(εn)

(we point out that there is always exactly one possible choice of kn). We claim that

uεn(x
′′
εn + ω(εn)y)− f(x′′εn)

ω(εn)
 
 SH,V (y) in BVloc(R), (2.5.19)

and in particular the convergence is also in L1((−H,H)). This implies that ψεn(x
′′
εn) →

0, and hence ψεn(x
′′
εn) < ψεn(x

′
εn) when n is large enough, thus contradicting the min-

imality of x′εn . In order to prove (2.5.19), up to subsequences (not relabeled) we can
always assume that kn is actually a constant k∞. Now we observe that

uεn(x
′′
εn + ω(εn)y)− f(x′′εn)

ω(εn)
= wεn(y + (2k∞ + τ1)H)− f(x′′εn)− f(x′εn)

ω(εn)
,

so that in particular

wεn(y + (2k∞ + τ1)H)  z0(y + (2k∞ + τ1)H) = SH,V (y + 2k∞H) + V τ1,

and

lim
n→+∞

f(x′′εn)− f(x′εn)

ω(εn)
= (2k∞ + τ1)H · f ′(x0) = (2k∞ + τ1)V.

It follows that

uεn(x
′′
εn + ω(εn)y)− f(x′′εn)

ω(εn)
 
 SH,V (y + 2k∞H)− 2k∞V,

and we conclude by observing that the latter coincides with SH,V (y). This completes
the proof of (2.5.19).



50 The Perona-Malik problem

All oblique translations Let x′ε → x0 be the family that we found in the previous
paragraph, namely a family satisfying (2.2.11), and (2.2.12) with w0(y) := SH,V (y). If
we need to obtain a different oblique translation of the form w0(y) = SH,V (y−Hτ0)+V τ0
for some τ0 ∈ (−1, 1], then it is enough to consider the family

x′′ε := x′ε −Hτ0ω(ε) + 2kεHω(ε),

where kε ∈ {−1, 0, 1} is chosen in such a way that x′′ε ∈ [xε−Hω(ε), xε+Hω(ε)]. Indeed,
it is enough to observe that

uε(x
′′
ε + ω(ε)y)− f(x′′ε)

ω(ε)
= wε(y + (2kε − τ0)H)− f(x′′ε)− f(x′ε)

ω(ε)
, (2.5.20)

where wε is the family of fake blow-ups with centers in x′ε. At this point, if needed we
split the family into three subfamilies according to the value of kε. In the subfamily
where kε is equal to some constant k0 we obtain that

wε(y + (2kε − τ0)H)  SH,V (y + (2k0 − τ0)H),

and
f(x′′ε)− f(x′ε)

ω(ε)
→ (2k0 − τ0)H · f ′(x0) = (2k0 − τ0)V.

This implies that the left-hand side of (2.5.20) converges locally strictly to

SH,V (y + (2k0 − τ0)H)− (2k0 − τ0)V,

which is equal to SH,V (y −Hτ0) + V τ0, independently of k0, as required.

Graph translations of horizontal type In this paragraph we show that any graph trans-
lation of the form SH,V (y − Hτ0), with τ0 ∈ [−1, 1], can be obtained as the limit of a
suitable family of true blow-ups whose centers satisfy (2.2.11).

To begin with, we observe that the set of possible limits is closed with respect to
the locally strict convergence in BVloc(R), and therefore it is enough to obtain all limits
with τ0 in the open interval (−1, 1). In this case, we claim that we can take the same
family x′ε → x0 whose fake blow-ups converge to SH,V (y − Hτ0) − V τ0, with the same
value of τ0. Indeed, we observe again that

uε(x
′
ε + ω(ε)y)− uε(x

′
ε)

ω(ε)
= wε(y)− wε(0), (2.5.21)

where wε(y) is defined by (2.5.18). Now we know that wε(y)   SH,V (y −Hτ0) − V τ0.
Moreover, if τ0 ∈ (−1, 1) the limit function is continuous in y = 0, and therefore the
strict convergence implies also that wε(0) → SH,V (−Hτ0)−V τ0 = −V τ0. Plugging these
two results into (2.5.21) we obtain that the left-hand side converges to SH,V (y −Hτ0),
as required.
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Graph translations of vertical type In this final paragraph we show that any graph
translation of the form SH,V (y −H) + (1− τ0)V , with τ0 ∈ [−1, 1], can be obtained as
the limit of a suitable family of true blow-ups whose centers satisfy (2.2.11). To begin
with, as in the case of graph translations of horizontal type we reduce ourselves to the
case where τ0 ∈ (−1, 1).

In this case we consider the family x′ε → x0 whose fake blow-ups wε(y) defined by
(2.5.18) converge to SH,V (y). Since SH,V (y) is continuous in y = −2H and y = 2H, the
strict convergence implies in particular that

lim
ε→0+

wε(−2H) = −2V and lim
ε→0+

wε(2H) = 2V.

Recalling that wε(y) is continuous in y and vanishes for y = 0, this means that when
ε ∈ (0, 1) is small enough there exist aε ∈ (−2H, 0) and bε ∈ (0, 2H) such that

wε(aε) = (−1 + τ0)V and wε(bε) = (1 + τ0)V. (2.5.22)

These two conditions imply in particular that

lim
ε→0+

aε = −H and lim
ε→0+

bε = H, (2.5.23)

because a limit of blow-ups can be different from an integer multiple of 2V only in the
jump points of the limit function SH,V .

Now we set

x′′ε :=

{
x′ε + ω(ε)aε if x′ε ≥ xε,

x′ε + ω(ε)bε if x′ε < xε,

and we claim that this is the required family. Indeed, from the definition it follows that

|x′′ε − xε|
ω(ε)

≤ max

{ |x′ε − xε|
ω(ε)

,−aε, bε
}
,

and therefore (2.2.11) for x′′ε follows from (2.2.11) for x′ε and (2.5.23).
In order to compute the limit of the true blow-ups with center in x′′ε , we consider the

two subfamilies where x′′ε is defined using aε or bε. In the first case from (2.5.22) and
(2.5.23) we deduce that

uε(x
′′
ε + ω(ε)y)− uε(x

′′
ε)

ω(ε)
= wε(y + aε)− wε(aε),

 
 SH,V (y −H)− (−1 + τ0)V,

as required. Analogously, in the second case we obtain that

uε(x
′′
ε + ω(ε)y)− uε(x

′′
ε)

ω(ε)
 
 SH,V (y +H)− (1 + τ0)V,

which again coincides with SH,V (y −H) + (1− τ0)V , as required.
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2.5.3 Convergence of minimizers to the forcing term

Strict convergence (statement (1) of Theorem 2.2.14)

Since the limit f is continuous, we know that uniform convergence in [0, 1] follows from
strict convergence (see statement (2) in Remark 2.2.8). As for strict convergence, we
already know from Proposition 2.2.1 that uε → f in L2((0, 1)). Therefore, it remains to
show that (the opposite inequality is trivial)

lim sup
ε→0+

∫ 1

0

|u′ε(x)| dx ≤
∫ 1

0

|f ′(x)| dx. (2.5.24)

Let us assume by contradiction that this is not the case, and hence there exist a
positive real number η0 and a sequence {εn} ⊆ (0, 1) such that εn → 0+ and

∫ 1

0

|u′εn(x)| dx ≥
∫ 1

0

|f ′(x)| dx+ η0 ∀n ∈ N. (2.5.25)

For every fixed positive real number L, in analogy with (2.5.3) we set

Nn :=

⌊
1

Lω(εn)

⌋
and Ln :=

1

Nnω(εn)
,

and we consider the intervals In,k := ((k − 1)Lnω(εn), kLnω(εn)) with k ∈ {1, . . . , Nn}.
Since we can rewrite (2.5.25) in the form

Nn∑

k=1

∫

In,k

(
|u′εn(x)| − |f ′(x)|

)
dx ≥ η0,

we deduce that for every n ∈ N there exists an integer kn such that
∫

In,kn

(
|u′εn(x)| − |f ′(x)|

)
dx ≥ η0

Nn

. (2.5.26)

Now we set xn := (kn−1)ω(εn)Ln, and we consider the corresponding fake blow-ups

wn(y) :=
uεn(xn + ω(εn)y)− f(xn)

ω(εn)
. (2.5.27)

With the change of variable x = xn + ω(ε)y, we can rewrite (2.5.26) in the form

∫ Ln

0

(
|w′

n(y)| − |f ′(xn + ω(εn)y)|
)
dy ≥ η0

Nnω(εn)
≥ η0L. (2.5.28)

Up to subsequences (not relabeled) we can always assume that xn converges to some
x∞ ∈ [0, 1]. Let us assume now that x∞ ∈ (0, 1). From the continuity of f ′ we deduce
that f ′(xn + ω(εn)y) → f ′(x∞) uniformly on bounded subsets of R and in particular,
since Ln → L, we obtain that

lim
n→+∞

∫ Ln

0

|f ′(xn + ω(εn)y)| dy = |f ′(x∞)|L. (2.5.29)
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Moreover, from statement (1) of Theorem 2.2.9 we deduce that, up to a further
subsequence (not relabeled), wn   w∞ in BVloc(R), where w∞ is an oblique translation
of a canonical staircase with parameters depending on β and f ′(x∞). As a consequence,
from statement (3) of Remark 2.2.8 we obtain that

lim sup
n→+∞

∫ Ln

0

|w′
n(y)| dy ≤ lim

n→+∞

∫ b

a

|w′
n(y)| dy = |Dw∞|((a, b))

for every interval (a, b) ⊇ [0, L] whose endpoints a and b are not jump points of w∞. If
we consider any sequence of such intervals whose intersection is [0, L], we deduce that

lim sup
n→+∞

∫ Ln

0

|w′
n(y)| dy ≤ |Dw∞|([0, L]). (2.5.30)

From (2.5.28), (2.5.29) and (2.5.30) we conclude that

|Dw∞|([0, L])− |f ′(x∞)|L ≥ η0L. (2.5.31)

Now we observe that the left-hand side is the difference between the total variation
of w∞ in [0, L] and the total variation of the line y 7→ |f ′(x∞)|y in the same interval.
Since w∞(y) is a staircase with the property that the midpoints of the vertical parts
of the steps lie on the same line, the left-hand side of (2.5.31) is bounded from above
by the height of each step of the staircase. Now both w∞ and x∞ might depend on L,
but in any case the height of the steps depends only on β and |f ′(x∞)|, and the latter
is bounded independently on L because f is of class C1. In conclusion, the left-hand
side of (2.5.31) is bounded from above independently of L, and this contradicts (2.5.31)
when L is large enough.

Let us consider next the case where x∞ = 0 (the case x∞ = 1 is symmetric). In this
case we consider the sequence {kn}. If it is unbounded, then up to subsequences we
can assume that it diverges to +∞. In this case the intervals where the functions wn

of (2.5.27) are defined invade eventually the whole real line, and therefore the previous
argument works without any change (see also Remark 2.2.11).

If the sequence {kn} is bounded, then up to subsequences we can assume that it is
equal to some fixed positive integer k∞. In this case the functions wn(y) are all defined
in the same half-line y > y∞ with y∞ := −(k∞−1)L, and in this half-line they converge
to a limit staircase w∞(y) (see Remark 2.5.1). The convergence is strict in every interval
of the form (y∞, b), where b is not a jump point of w∞, and of course also in all intervals
of the form (a, b) where a and b are not jump points of w∞. Moreover, the function
w∞ is the unique semi-entire right-hand local minimizer of JF1/2 with the appropriate
parameters in this half-line, namely the suitable oblique translation of the function
defined in (2.4.5), which is again a staircase with the property that the midpoints of the
vertical parts of the steps lie on the line f ′(x∞)y.

At the end of the day, we obtain that (2.5.31) holds true also in this case, and as
before the right-hand side depends only on the difference between the “values” of w∞(y)
and of the line f ′(x∞)y at the two endpoints. This difference is bounded from above by
the height of the steps of w∞. These steps could be either the “ordinary steps” or the
“initial step”, which is higher, but in any case their height is independent of L.
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Varifold convergence (statement (2) of Theorem 2.2.14)

Notations and splitting of the graph In analogy with (2.2.14), for every ε ∈ (0, 1) we
set

V +
ε := {x ∈ [0, 1] : u′ε(x) > 0} and V −

ε := {x ∈ [0, 1] : u′ε(x) < 0}.

From statement (4) of Remark 2.2.8 we know that the strict convergence of uε to f
implies in particular that

lim
ε→0+

∫

V +
ε

g(x)u′ε(x) dx =

∫

V +

0

g(x)f ′(x) dx (2.5.32)

for every continuous function g : [0, 1] → R, and similarly with V −
ε and V −

0 .
We observe also that the strict convergence uε   f in BV ((0, 1)) implies that the

family {uε} is bounded in L∞((0, 1)), and therefore there exist real numbers ε0 ∈ (0, 1)
and M0 ≥ 0 such that

|φ(x, uε(x), arctan p)| ≤M0 ∀(x, p) ∈ [0, 1]× R ∀ε ∈ (0, ε0). (2.5.33)

Now for every a ∈ (0, 1) we define the three sets

Ia := {(x, s, p) ∈ [0, 1]× R× R : |s− f(x)| ≤ a, |p| ≤ a} ,
I+a := {(x, s, p) ∈ [0, 1]× R× R : |s− f(x)| ≤ a, p ≥ 1/a} ,
I−a := {(x, s, p) ∈ [0, 1]× R× R : |s− f(x)| ≤ a, p ≤ −1/a} ,

and the corresponding three constants

Γa := max {|φ(x, s, arctan p)− φ(x, f(x), 0)| : (x, s, p) ∈ Ia} ,

Γ+
a := max

{
|φ(x, s, arctan p)− φ(x, f(x), π/2)| : (x, s, p) ∈ I+a

}
,

Γ−
a := max

{
|φ(x, s, arctan p)− φ(x, f(x),−π/2)| : (x, s, p) ∈ I−a

}
.

We observe that, due to the boundedness of f(x) and the uniform continuity of φ in
bounded sets, these constants satisfy

lim
a→0+

Γa = lim
a→0+

Γ+
a = lim

a→0+
Γ−
a = 0. (2.5.34)

Finally, for every ε ∈ (0, 1) and every a ∈ (0, 1), we write the interval [0, 1] as the
disjoint union of the four sets

Ha,ε := {x ∈ [0, 1] : |u′ε(x)| ≤ a} , (2.5.35)

V +
a,ε := {x ∈ [0, 1] : u′ε(x) ≥ 1/a} , V −

a,ε := {x ∈ [0, 1] : u′ε(x) ≤ −1/a} , (2.5.36)

Ma,ε := {x ∈ [0, 1] : a < |u′ε(x)| < 1/a} , (2.5.37)
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and accordingly we write

∫ 1

0

φ
(
x, uε(x), arctan(u

′
ε(x))

)√
1 + u′ε(x)

2 dx = IHa,ε + I+a,ε + I−a,ε + IMa,ε,

where the four terms in the right-hand side are the integrals over the four sets defined
above. We observe that

PMFε(β, f, (0, 1), uε) ≥
∫ 1

0

log
(
1 + u′ε(x)

2
)
dx

≥ log
(
1 + a2

) (
|V +

a,ε|+ |V −
a,ε|+ |Ma,ε|

)
,

and, since the left-hand side tends to 0, we deduce that

lim
ε→0+

|V +
a,ε| = lim

ε→0+
|V −

a,ε| = lim
ε→0+

|Ma,ε| = 0 ∀a ∈ (0, 1),

and as a consequence

lim
ε→0+

|H+
a,ε| = 1 ∀a ∈ (0, 1).

We claim that for every fixed a ∈ (0, 1) it turns out that

lim sup
ε→0+

∣∣∣∣I
H
a,ε −

∫ 1

0

φ(x, f(x), 0) dx

∣∣∣∣ ≤M0

(√
1 + a2 − 1

)
+ Γa, (2.5.38)

lim
ε→0+

IMa,ε = 0, (2.5.39)

lim sup
ε→0+

∣∣∣∣∣I
+
a,ε −

∫

V +

0

φ(x, f(x), π/2) · f ′(x) dx

∣∣∣∣∣ ≤ Γ+
a

∫ 1

0

|f ′(x)| dx+M0a, (2.5.40)

lim sup
ε→0+

∣∣∣∣∣I
−
a,ε −

∫

V −

0

φ(x, f(x),−π/2) · |f ′(x)| dx
∣∣∣∣∣ ≤ Γ−

a

∫ 1

0

|f ′(x)| dx+M0a. (2.5.41)

If we prove these claims, then we let a → 0+ and from (2.5.34) we obtain exactly
(2.2.15).

In words, this means that the integral in the left-hand side of (2.2.15) splits into the
four integrals over the regions (2.5.35), (2.5.36), (2.5.37), which behave as follows.

• The integral over the “intermediate” region Ma,ε disappears in the limit.

• The integral over the “horizontal” region Ha,ε tends to the first integral in the
right hand side of (2.2.15), in which the “tangent component” is horizontal.

• The integrals over the two “vertical” regions V +
a,ε and V

−
a,ε tend to the two integrals

over V +
0 and V −

0 in the right hand side of (2.2.15). In this two integrals the
“tangent component” is vertical.
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Estimate in the intermediate regime From (2.5.33) we know that

|φ(x, uε(x), arctan(u′ε(x)))|
√
1 + u′ε(x)

2 ≤M0

√
1 +

1

a2
∀x ∈Ma,ε,

and therefore

|IMε,a| ≤M0

√
1 +

1

a2
· |Ma,ε|.

Since |Ma,ε| → 0 as ε→ 0+, this proves (2.5.39).

Estimate in the horizontal regime In order to prove (2.5.38), we observe that

IHa,ε −
∫ 1

0

φ(x, f(x), 0) dx =

∫

Ha,ε

φ
(
x, uε(x), arctan(u

′
ε(x))

) (√
1 + u′ε(x)

2 − 1
)
dx

+

∫

Ha,ε

{
φ
(
x, uε(x), arctan(u

′
ε(x))

)
− φ(x, f(x), 0)

}
dx,

+

∫

Ha,ε

φ(x, f(x), 0) dx−
∫ 1

0

φ(x, f(x), 0) dx.

The absolute value of the first line in the right-hand side is less than or equal to
M0

(√
1 + a2 − 1

)
. The absolute value of the second line is less than or equal to Γa

provided that
|uε(x)− f(x)| ≤ a ∀x ∈ [0, 1], (2.5.42)

and this happens whenever ε is small enough. The third line tends to 0 because |Hε,a| →
1 as ε→ 0+. This is enough to establish (2.5.38).

Estimate in the vertical regime In order to prove (2.5.40), we observe that

I+a,ε −
∫

V +

0

φ(x, f(x), π/2) · f ′(x) dx =

=

∫

V +
a,ε

φ
(
x, uε(x), arctan(u

′
ε(x))

) (√
1 + u′ε(x)

2 − u′ε(x)
)
dx

+

∫

V +
a,ε

{
φ
(
x, uε(x), arctan(u

′
ε(x))

)
− φ(x, f(x), π/2)

}
u′ε(x) dx,

+

∫

V +
a,ε

φ(x, f(x), π/2)u′ε(x) dx−
∫

V +
ε

φ(x, f(x), π/2)u′ε(x) dx

+

∫

V +
ε

φ(x, f(x), π/2)u′ε(x) dx−
∫

V +

0

φ(x, f(x), π/2)f ′(x) dx

=: L1 + L2 + L3 + L4.

Let us consider the four lines separately. The first line can be estimated as

|L1| ≤M0 max
{√

1 + p2 − p : p ≥ 1/a
}
|V +

a,ε| ≤M0 ·
a

2
· |V +

a,ε|,



Singular perturbation: first order blow-up 57

and this tends to 0 when ε→ 0+. The second line can be estimated as

|L2| ≤ Γ+
a ·
∫ 1

0

|u′ε(x)| dx

whenever (2.5.42) holds true, namely when ε is small enough. For the third line we
observe that V +

ε \ V +
a,ε ⊆ Ha,ε ∪Ma,ε, and therefore

|L3| ≤
∫

Ha,ε

|φ(x, f(x), 0)| · |u′ε(x)| dx+
∫

Ma,ε

|φ(x, f(x), 0)| · |u′ε(x)| dx

≤ M0a+M0 ·
1

a
· |Ma,ε|.

Finally, we observe that L4 → 0 as ε → 0+ because of (2.5.32). Recalling (2.5.24)
and the fact that |Ma,ε| → 0 as ε→ 0+, from the previous estimates we conclude that

lim sup
ε→0+

|L1 + L2 + L3 + L4| ≤ lim sup
ε→0+

Γ+
a ·
∫ 1

0

|u′ε(x)| dx+M0a

= Γ+
a

∫ 1

0

|f ′(x)| dx+M0a,

which proves (2.5.40). The proof of (2.5.41) is analogous.

2.5.4 Low resolution blow-ups (Corollary 2.2.13)

The pointwise convergence for y = 0 is trivial, and therefore it is enough to check the
convergence of total variations, which in turn reduces to

lim sup
ε→0+

∫ b

a

|u′ε(xε + αεy)| dy ≤ |f ′(x0)|(b− a) (2.5.43)

for every interval (a, b) ⊆ R. If we assume by contradiction that (2.5.43) fails, than the
same argument we exploited in the proof of (2.5.24) shows that there exist a positive
real number η0, a sequence {εn} ⊆ (0, 1) such that εn → 0+, and a sequence of positive
integers kn such that

∫ Ln

0

|u′εn(x̂n + ω(εn)y)| dy − |f ′(x0)|Ln ≥ η0 ·
αεn

ω(εn)Nn

, (2.5.44)

where now

Nn :=

⌊
(b− a)αεn

Lω(εn)

⌋
, Ln :=

(b− a)αεn

Nnω(εn)
, x̂n := xεn + aαεn + Lnω(εn)(kn − 1),

and kn ∈ {1, . . . , Nn}. The integral in the left-hand side of (2.5.44) coincides with the
total variation in the interval (0, Ln) of the fake blow-up of uεn , at the standard scale
ω(εn), with center in x̂n. Since x̂n → x0 (here we exploit again that kn ≤ Nn and
ω(ε)/αε → 0), we know that these fake blow-ups converge strictly (up to subsequences)
to some staircase w∞. Therefore, passing to the limit in (2.5.44) we deduce that

|Dw∞|([0, L])− |f ′(x0)|L ≥ η0L

b− a
,

and we conclude exactly as in the proof of (2.5.24).
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2.6 Asymptotic analysis of local minimizers

This section is the technical core of the chapter. Here we prove all the results that we
stated in section 2.4.

2.6.1 Preliminary lemmata

Lemma 2.6.1. Let C0 and C1 be two positive real numbers. Let us consider the function
ϕ : (0, 1) → R defined by

ϕ(t) := C0

(√
t+

√
1− t

)
+ C1

(
t3 + (1− t)3

)
,

and let us assume that there exists t0 ∈ (0, 1) such that ϕ(t) ≥ ϕ(t0) for every t ∈ (0, 1).
Then it turns out that t0 = 1/2.

Proof. With the variable change t = sin2 θ, we can restate the claim as follows. Let us
consider the function g : (0, π/2) → R defined by

g(θ) := C0 (cos θ + sin θ) + C1

(
cos6 θ + sin6 θ

)
;

if there exists θ0 ∈ (0, π/2) such that

g(θ) ≥ g(θ0) ∀θ ∈ (0, π/2), (2.6.1)

then necessarily θ0 = π/4.
In order to prove this claim, we observe that the derivative of g is

g′(θ) = (cos θ − sin θ) (C0 − 6C1 cos θ sin θ(cos θ + sin θ)) . (2.6.2)

Let us consider the function ψ(θ) := cos θ sin θ(cos θ + sin θ), whose derivative is

ψ′(θ) = (cos θ − sin θ)(1 + 3 cos θ sin θ).

It follows that ψ is increasing in [0, π/4] and decreasing in [π/4, π/2], and its maxi-
mum values is ψ(π/4) = 1/

√
2. Now we distinguish two cases.

• If C0

√
2 ≥ 6C1, then the sign of g′(θ) coincides with the sign of cos θ − sin θ. It

follows that π/4 is the unique stationary point of g in (0, π/4), but it is a maximum
point, and therefore in this case there is no θ0 ∈ (0, π/2) for which (2.6.1) holds
true.

• If C0

√
2 < 6C1, then also the second term in the right-hand side of (2.6.2) changes

its sign in two points of the form π/4 ± θ1 for some θ1 ∈ (0, π/4). In this case it
turns out that g has three stationary points in (0, π/2), namely π/4±θ1 (which are
maximum points) and π/4, which is a minimum point (local or global depending
on C0 and C1).

In any case, if g has a minimum point in (0, π/2), this is necessarily π/4.
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Lemma 2.6.2. Let (a, b) ⊆ R be an interval, and let A0, A1, B0, B1 be four real
numbers. Let us consider the minimum problem

min

{∫ b

a

w′′(y)2 dy : w ∈ H2((a, b)),
(
w(a), w′(a), w(b), w′(b)

)
= (A0, A1, B0, B1)

}
.

Then the unique minimum point is the function

w0(y) = P

(
y − a+ b

2

)
,

where P (x) = c0 + c1x+ c2x
2 + c3x

3 is the polynomial of degree three with coefficients

c0 :=
A0 + B0

2
− B1 − A1

8
(b− a), c1 :=

3(B0 − A0)

2(b− a)
− A1 +B1

4
,

c2 :=
B1 − A1

2(b− a)
, c3 := −2(B0 − A0)

(b− a)3
+
A1 + B1

(b− a)2
.

As a consequence, the minimum value is

(B1 − A1)
2

b− a
+

12

(b− a)3

[
(B0 − A0)−

A1 + B1

2
(b− a)

]2
,

and the minimum point satisfies the pointwise estimates

|w0(y)| ≤
3(|A0|+ |B0|)

2
+

|A1|+ |B1|
2

(b− a) ∀y ∈ [a, b],

and

|w′
0(y)| ≤

3|B0 − A0|
b− a

+
3(|A1|+ |B1|)

2
∀y ∈ [a, b].

Proof. From the Euler-Lagrange equation we know that minimizers are polynomials of
degree three, and w0 is the unique such polynomial that fits the boundary conditions.

Lemma 2.6.3. Let (a, b) ⊆ R be an interval, and let D and H be positive real numbers.
Let ε ∈ (0, 1) be a real number such that

2ε2
(√

H + ε2D
)
< (b− a) (2.6.3)

and
2

| log ε| log
(
1 +

45

2ε4

(√
H + ε2D

)2)
≤ 18. (2.6.4)

Then for every (A0, B0) ∈ [−H,H]2 and every (A1, B1) ∈ [−D,D]2 there exists a
function w ∈ H2((a, b)) satisfying the boundary conditions

(
w(a), w′(a), w(b), w′(b)

)
= (A0, A1, B0, B1), (2.6.5)

and the estimates

RPMε((a, b), w) ≤ 80
(√

H + ε2D
)
, (2.6.6)

∫ b

a

w(x)2 dx ≤ 10ε2
(√

H + ε2D
)5
. (2.6.7)
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Proof. For every real number η ∈ (0, (b− a)/2), let us consider the function

w(x) :=





ϕ1(x) if x ∈ [a, a+ η],

0 if x ∈ [a+ η, b− η],

ϕ2(x) if x ∈ [b− η, b],

where ϕ1 is the unique polynomial of degree three such that

ϕ1(a) = A0, ϕ′
1(a) = A1, ϕ1(a+ η) = ϕ′

1(a+ η) = 0,

and ϕ2 is the unique polynomial of degree three such that

ϕ2(b) = B0, ϕ′
2(b) = B1, ϕ2(b− η) = ϕ′

2(b− η) = 0.

We observe that w belongs to H2((a, b)), and fulfills the boundary conditions (2.6.5).
From Lemma 2.6.2 we deduce that w satisfies the integral estimate

∫ a+η

a

w′′(x)2 dx ≤ D2

η
+

12

η3

(
H +

D

2
η

)2

≤ 7D2

η
+

24H2

η3
,

and the pointwise estimates

|w(x)| ≤ 3H

2
+
Dη

2
and |w′(x)| ≤ 3H

η
+

3D

2

for every x ∈ [a, a+ η], from which we deduce that

∫ a+η

a

w(x)2 dx ≤ 9H2η

2
+
D2η3

2
,

and ∫ a+η

a

log
(
1 + w′(x)2

)
dx ≤ η log

(
1 +

18H2

η2
+

9D2

2

)
.

Analogous estimates hold true in the interval [b − η, b], while of course there is no
contribution from the central interval [a+ η, b− η]. It follows that

RPMε((a, b), w) ≤
η

ε2

{(
14D2

η2
+

48H2

η4

)
ε8 +

2

| log ε| log
(
1 +

18H2

η2
+

9D2

2

)}
,

(2.6.8)
and ∫ b

a

w(x)2 dx ≤ 9H2η +D2η3. (2.6.9)

Now we set η := ε2
(√

H + ε2D
)
. This choice is admissible because η < (b − a)/2

due to (2.6.3). We observe also that η4 ≥ ε8H2 and η2 ≥ ε8D2. As a consequence, from
(2.6.9) we conclude that

∫ b

a

w(x)2 dx ≤ 9H2η +D2η3 ≤ 10η5

ε8
,



Singular perturbation: first order blow-up 61

which proves (2.6.7). Similarly, we obtain that
(
14D2

η2
+

48H2

η4

)
ε8 ≤ 62,

and
2

| log ε| log
(
1 +

18H2

η2
+

9D2

2

)
≤ 2

| log ε| log
(
1 +

45

2

η2

ε8

)
≤ 18,

where in the last inequality we exploited (2.6.4). Plugging these estimates into (2.6.8)
we obtain (2.6.6).

2.6.2 Proof of Proposition 2.4.4 and Proposition 2.4.5

In this subsection we prove the two propositions simultaneously. The common idea is
that every local minimizer to the functional (2.3.11) is a staircase where all the steps
have the same length and the same height, and this staircase intersects the graph of
the forcing term Mx in the midpoint of every horizontal step. This structure applies to
entire local minimizers, but also to minimizers to (2.3.13), with the possible exception
that the length of the two steps at the boundary might be different. Once this structure
has been established, we only need to optimize with respect to the length of the steps
in both cases.

The proof of the structure result is rather lengthy, because we need first to show that
the jump set is discrete, then that the steps are symmetric with respect to the forcing
term, and finally that all the steps have the same length.

Since the parameters α, β and M are fixed once and for all, for the sake of shortness
in the sequel the functional (2.3.11) is denoted only by JF(Ω, w). When needed, we also
assume that M > 0 (the case M < 0 is symmetric, and the easier case M = 0 is treated
in the last paragraph of the proof).

The jump set of local minimizers is discrete Let us assume that w0 is a local minimizer
for the functional JF((a, b), w) in some interval (a, b) ⊆ R. We prove that the set of
jump points of w0 in (a, b) is finite.

To this end, let us assume by contradiction that this is not the case. Due to the
structure of the elements of the space PJ((a, b)), we know that there exist a sequence
{sk} ⊆ (a, b) of distinct real numbers, a real number c0, and a sequence {Jk} of real
numbers different from zero such that

∞∑

k=1

|Jk| < +∞

and

w0(x) = c0 +
∞∑

k=1

Jk1(sk,b)(x) ∀x ∈ (a, b). (2.6.10)

For every integer n ≥ 2 we consider the real number

Rn :=
∞∑

k=n+1

|Jk|,



62 The Perona-Malik problem

and the function wn : (a, b) → R defined by

wn(x) := c0 +

(
J1 +

∞∑

k=n+1

Jk

)
1(s1,b)(x) +

n∑

k=2

Jk1(sk,b)(x) ∀x ∈ (a, b). (2.6.11)

We observe that Rn → 0, and the function wn has a finite number of jumps located
at the arguments s1, . . . , sn, and the jump in s1 has “absorbed” all the heights of the
jumps in si with i ≥ n + 1 (the jump height in s1 might also vanish). In this way it
turns out that

lim
x→a+

wn(x) = lim
x→a+

w0(x) = c0 and lim
x→b−

wn(x) = lim
x→b−

w0(x) = c0 +
∞∑

k=1

Jk,

and therefore w0 and wn have the same “boundary data”. As a consequence, due to the
minimality of w0 this implies that

JF((a, b), wn) ≥ JF(a, b), w0) ∀n ≥ 2. (2.6.12)

On the other hand, from (2.6.10) and (2.6.11) we obtain that

J1/2((a, b), w0)− J1/2((a, b), wn) =
∞∑

k=n+1

|Jk|1/2 + |J1|1/2 −
∣∣∣∣∣J1 +

∞∑

k=n+1

Jk

∣∣∣∣∣

1/2

.

Due to the subadditivity of the square root, the first term can be estimated as

∞∑

k=n+1

|Jk|1/2 ≥
(

∞∑

k=n+1

|Jk|
)1/2

= (Rn)
1/2,

while for the second and third term it turns out that

|J1|1/2 −
∣∣∣∣∣J1 +

∞∑

k=n+1

Jk

∣∣∣∣∣

1/2

≥ |J1|1/2 − (|J1|+Rn)
1/2 ≥ − Rn

2|J1|1/2
.

From these two inequalities it follows that

J1/2((a, b), w0)− J1/2((a, b), wn) ≥ (Rn)
1/2 − Rn

2|J1|1/2
. (2.6.13)

Moreover, from (2.6.11), we obtain also that

|w0(x)− wn(x)| ≤ Rn ∀x ∈ (a, b)

and

|wn(x)−Mx| ≤ |c0|+
∞∑

k=1

|Jk|+M max{|a|, |b|} =: V∞ ∀x ∈ (a, b),
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and therefore

∫ b

a

(w0(x)−Mx)2 dx ≥
∫ b

a

[
(wn(x)−Mx)2 + 2(wn(x)−Mx)(w0(x)− wn(x))

]
dx

≥
∫ b

a

(wn(x)−Mx)2 dx− 2(b− a)V∞Rn (2.6.14)

for every n ≥ 2. From (2.6.13) and (2.6.14) we conclude that

JF((a, b), w0)− JF((a, b), wn) ≥ α(Rn)
1/2 − αRn

2|J1|1/2
− 2β(b− a)V∞Rn

When Rn → 0+ the right-hand side is positive, and this contradicts (2.6.12).

Existence of jump points and intersections Let us assume that M > 0, and let us set

L0 :=

(
64α2

β2M3

)1/5

. (2.6.15)

We claim that, if w0 is a local minimizer in some interval (a, b) ⊆ R with length
b−a > L0, then w0 has either at least one jump point in (a, b) or at least one intersection
with the line Mx, namely there exists z0 ∈ (a, b) such that w0(z0) =Mz0.

Indeed, let us assume by contradiction that this is not the case. Then in (a, b) the
function w0 is a constant of the form Ma− c or Mb+ c for some real number c ≥ 0. In
both cases it turns out that

JF((a, b), w0) =

(
M2

3
(b− a)3 +M(b− a)2c+ (b− a)c2

)
β. (2.6.16)

For every real number τ with 0 < 2τ < b − a, let us consider the function wτ :
(a, b) → R defined by

wτ (x) :=





M(a+ b)

2
if a+ τ < x < b− τ,

w0(x) if x ∈ (a, b) \ (a+ τ, b− τ).
(2.6.17)

Since wτ coincides with w0 in a neighborhood of the boundary, from the minimality
of w0 we deduce that JF((a, b), wτ ) ≥ JF((a, b), w0) for every admissible value of τ , and
in particular

lim
τ→0+

JF((a, b), wτ ) ≥ JF((a, b), w0). (2.6.18)

The right-hand side is given by (2.6.16). As for the left-hand side, we observe that wτ

has two equal jumps of height c+M(b− a)/2, while the integral term can be computed
starting from the explicit expression (2.6.17). We obtain that

lim
τ→0+

JF((a, b), wτ ) = 2α

(
c+

M(b− a)

2

)1/2

+
βM2

12
(b− a)3. (2.6.19)
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Plugging (2.6.19) and (2.6.16) into (2.6.18) we conclude that

2α

(
c+

M(b− a)

2

)1/2

≥ βM2

4
(b− a)3 + βM(b− a)2c+ β(b− a)c2. (2.6.20)

We claim that this is impossible if c ≥ 0 and b − a > L0. To this end, we write
(2.6.15) in the equivalent form β2M3L5

0 = 64α2, from which we deduce that

β2M3(b− a)5 > 64α2 (2.6.21)

because b− a > L0. Now we distinguish two cases.

• Let us assume that c ≤M(b−a)/2. Multiplying (2.6.21) by M(b−a), and taking
the square root, we obtain that

βM2(b− a)3 > 8α[M(b− a)]1/2,

and therefore

2α

(
c+

M(b− a)

2

)1/2

≤ 2α[M(b− a)]1/2 <
βM2

4
(b− a)3.

Since the latter is less than or equal to the right-had side of (2.6.20), we have
reached a contradiction in this case.

• Let us assume that c ≥ M(b − a)/2, and, in particular, that c is positive. We
observe that this condition can be rewritten as

2
√
2 c3/2 ≥M3/2(b− a)3/2,

while (2.6.21) can be rewritten in the form

β(b− a) >
8α

M3/2(b− a)3/2
.

Since c > 0, from these inequalities it follows that

β(b− a)c2 >
8α

M3/2(b− a)3/2
· c2 ≥ 2α

√
2c ≥ 2α

(
c+

M(b− a)

2

)1/2

.

Since the first term is less than or equal to the right-had side of (2.6.20), we have
reached a contradiction also in this case.
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Symmetry of jumps Let w0 be a local minimizer in some interval (a, b) ⊆ R, and let
s ∈ (a, b) be a jump point of w0. From the first step we already know that s is isolated
and therefore, up to restricting to a smaller interval, we can assume that w0(x) is equal
to some constant A in (a, s), and to some constant B 6= A in (s, b). We claim that

Ms− A = B −Ms (2.6.22)

and that, if M 6= 0, the two terms have the same sign as M .
To this end, for every τ ∈ (a, b) we consider the function wτ : (a, b) → R that is

equal to A in (a, τ), and equal to B in (τ, b), and we set

ϕ(τ) := JF((a, b), wτ ) = α
√
B − A+ β

∫ τ

a

(A−Mx)2 dx+ β

∫ b

τ

(B −Mx)2 dx.

Since wτ coincides with w0 in a neighborhood of the boundary of the interval, from
the minimality of w0 we deduce that ϕ(τ) attains its minimum in (a, b) when τ = s.
This implies in particular that

0 = ϕ′(s) = β
[
(Ms− A)2 − (B −Ms)2

]
(2.6.23)

and
0 ≤ ϕ′′(s) = 2βM [(Ms− A) + (B −Ms)]. (2.6.24)

Since β > 0 and B 6= A, equality (2.6.23) implies (2.6.22). If in addition M 6= 0,
then (2.6.24) implies that the two terms in (2.6.22) have the same sign as M .

Equipartition of intersections Let us assume that M > 0, let w0 be a local minimizer
in some interval (a, b) ⊆ R, and let

a < z1 < z2 < . . . < zn < b

denote the intersections in (a, b) of w0(x) with the line Mx, namely the solutions to
the equation w0(x) = Mx. We observe that between any two intersections there is
necessarily at least one jump point, and therefore from the previous steps we know that
their number is finite. We claim that

z2 − z1 = z3 − z2 = . . . = zn − zn−1.

In order to show the claim it is enough to show that, if z1 < z2 < z3 are three
consecutive intersections, then z2 − z1 = z3 − z2. To this end, we restrict to the interval
(z1, z3) and we observe that, due to the previous steps, it turns out that

w0(x) =





Mz1 if x ∈ (z1, (z1 + z2)/2),

Mz2 if x ∈ ((z1 + z2)/2, (z2 + z3)/2),

Mz3 if x ∈ ((z2 + z3)/2, z3).

For every τ ∈ (z1, z3) we consider the function wτ : (z1, z3) → R defined by

wτ (x) =





Mz1 if x ∈ (z1, (z1 + τ)/2),

Mτ if x ∈ ((z1 + τ)/2, (τ + z3)/2),

Mz3 if x ∈ ((τ + z3)/2, z3).
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From this explicit expression it follows that

JF((z1, z3), wτ ) = α
√
M
(√

τ − z1 +
√
z3 − τ

)
+
βM2

12

{
(τ − z1)

3 + (z3 − τ)3
}
.

Since wτ coincides with w0 in a neighborhood of the boundary of the interval, from
the minimality of w0 we deduce that this function of τ attains its minimum in (z1, z3)
when τ = z2. With the change of variable τ = z1+ t(z3− z1) this is equivalent to saying
that the function

ϕ(t) := C0

(√
t+

√
1− t

)
+ C1

(
t3 + (1− t)3

)
,

where

C0 := α
√
M

√
z3 − z1 and C1 :=

βM2

12
(z3 − z1)

3,

attains its minimum in (0, 1) when t = (z2 − z1)/(z3 − z1). On the other hand, from
Lemma 2.6.1 we know that the only possible minimum point is t = 1/2, and this implies
that z2 is the midpoint of (z1, z3).

Estimate from below for the minimum We are now ready to prove the estimate from
below in (2.4.1). Again we consider the case where M > 0.

To begin with, we observe that this estimate is trivial when L ≤ 8L0, because in
this case the left-hand side is nonpositive. If L > 8L0, then from the previous steps we
know that any minimizer w0 ∈ PJ((0, L)) intersects the line Mx in at least one point
a0 ∈ (0, 4L0), and in at least one point b0 ∈ (L − 4L0, L). Indeed, we know that in
(0, 2L0) there exists at least one intersection or jump (because the length of the interval
is greater than L0), and the same in (2L0, 4L0), and in any case between any two jumps
there exists at least one intersection because of the symmetry of jumps.

Now we know that the interval (a0, b0) is divided into n ≥ 1 intervals of equal length
whose endpoints are intersections. Moreover, w0 has exactly one jump point in the
midpoint between any two consecutive intersection. As a consequence, the shape of w0

in (a0, b0) depends only on n, and with an elementary computation we find that

JF((0, L), w0) ≥ JF((a0, b0), w0)

= n

{
α

√
M(b0 − a0)

n
+
βM2

12

(
b0 − a0
n

)3
}
.

Therefore, from the inequality

A+ B ≥ 5

(
A4B

44

)1/5

∀(A,B) ∈ [0,+∞)2

we conclude that

JF((0, L), w0) ≥
5

4

(
α4βM4

3

)1/5

(b0 − a0) ≥
5

4

(
α4βM4

3

)1/5

(L− 8L0).

Plugging (2.6.15) into this inequality we obtain the estimate from below in (2.4.1).
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Estimate from above for the minimum Let us prove the estimate from above in (2.4.1).

Let n := ⌈L/(2H)⌉ denote the smallest integer greater than or equal to L/(2H),
where H is defined by (2.4.4), and let us consider the function w0 ∈ PJ((0, 2nH)) that
has intersections with the line Mx in 0, 2H, 4H, . . . , 2nH, and jumps in the midpoints
of the intervals between consecutive intersections. Since w0 is a competitor for the
minimum problem (2.3.15) in the interval (0, 2nH), from the monotonicity of µ∗

0 with
respect to L we deduce that

µ∗
0(α, β, L,M) ≤ µ∗

0(α, β, 2nH,M)

≤ JF((0, 2nH), w0)

= n

(
α
√
2MH +

2βM2

3
H3

)

≤
(
L

2H
+ 1

)(
α
√
2MH +

2βM2

3
H3

)
, (2.6.25)

and we conclude by remarking that the last term coincides with the right-hand side of
(2.4.2) when H is given by (2.4.4).

Structure of entire local minimizers Let w0 be an entire local minimizer. From the
previous steps applied in every interval of the form (−L,L), with L → +∞, we know
that the set of intersection points of w0(x) with Mx is discrete and divides the line into
segments of the same length 2h > 0, whose midpoints are the unique jump points of w0.
This is enough to conclude that w0 is an oblique translation of some staircase with steps
of horizontal length 2h and vertical height 2Mh. It remains only to show that h = H,
where H is given by (2.4.4).

Up to an oblique translation, we can always assume that the intersections are the
points of the form 2zh with z ∈ Z. Let us consider the interval (0, 2nh), where n is a
positive integer. Applying (2.6.25) with L = 2nh we deduce that

n

(
α
√
2Mh+

2βM2

3
h3
)

= JF((0, 2nh), w0)

= µ∗
0(α, β, 2nh,M)

≤
(
2nh

2H
+ 1

)(
α
√
2MH +

2βM2

3
H3

)
.

Dividing by nh, and letting n→ +∞, we conclude that

α

√
2M√
h

+
2βM2

3
h2 ≤ α

√
2M√
H

+
2βM2

3
H2,

and this inequality is possible if and only if h = H, because H is the unique minimum
point of the left-hand side as a function of h > 0.
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Structure of semi-entire local minimizers Let w0 : (0,+∞) → R be a right-hand semi-
entire local minimizer. Let z0 < z1 < z2 < . . . denote the intersection points of w0.
Arguing as in the case of entire local minimizers we can show that zk+1 − zk = 2H for
every k ≥ 0. It remains to find the value of z0. To this end, for every real number τ we
consider the function

wτ (x) := w0(x) +Mτ1(0,z0+H)(x) ∀x > 0.

If we restrict to the interval (0, z1) = (0, z0 + 2H), then wτ and w0 have the same
boundary value in z1, and therefore by the minimality of w0 we know that the function
ϕ(τ) := JF1/2((0, z1), wτ ) has a minimum point in τ = 0. On the other hand an easy
computation reveals that

ϕ(τ) = α
√
M(2H − τ) + β

∫ z0+H

0

M2(z0 + τ − x)2 dx+ β

∫ z1

z0+H

M2(z1 − x)2 dx,

and therefore

0 = ϕ′(0) = − α
√
M

2
√
2H

+ βM2
(
z20 −H2

)
. (2.6.26)

Finally, we observe that the definition of H in (2.4.4) implies that

α
√
M

2
√
2H

=
2βM2

3
H2.

Plugging this identity into (2.6.26) we obtain that z0 = (5/3)1/2H, as required.

Existence of entire and semi-entire local minimizers Up to this point we have just
shown that, if entire or semi-entire local minimizers exist, then they have the prescribed
form. It remains to show that all oblique translations of the canonical (H, V )-staircase
are actually entire local minimizers, and that the function w defined by (2.4.5) is actually
a right-hand semi-entire local minimizer.

The argument is rather standard, and therefore we limit ourselves to sketching the
main steps in the case of the canonical (H, V )-staircase SH,V (the case of its oblique
translations and of semi-entire minimizers is analogous). It is enough to show that, for
every positive integer n, the function SH,V minimizes JF1/2((−2nH, 2nH), u) among all
functions u ∈ PJ((−2nH, 2nH)) that coincide with SH,V at the endpoints. To begin
with, we show that the minimum exists. This follows from a standard application of
the direct method in the calculus of variations, as in the proof of statement (1) of
Proposition 2.3.4. Once we know that the minimum exists, we go back through all the
previous steps in order to show that the minimum has only a finite number of equi-spaced
intersections points, and their number is the one we expect.

The case M = 0 When the forcing term vanishes, the estimates of Proposition 2.4.4
are actually trivial. As for Proposition 2.4.5, we have to show that the function w0 ≡ 0
is the unique entire or semi-entire local minimizer. This can be proved in the following
way. Let w0 be any entire or semi-entire local minimizer.



Singular perturbation: first order blow-up 69

• We show that the jump set of w0 is discrete. This can be done as in the general
case, since in that paragraph we never used that M 6= 0.

• We show the symmetry of jumps (2.6.22) as in the general case, since that equality
was proved without using that M 6= 0. As a consequence, we deduce that |w0| is
constant.

• We show that w0 vanishes identically. Indeed, when we consider a long enough
interval, any function w0 with |w0| constant and different from 0 is worse (due to
the overwhelming cost of the fidelity term) than a function with the same boundary
values that has two jump points close to the boundary and vanishes elsewhere.

This completes the proof also in this special case.

Remark 2.6.4. The existence of entire and semi-entire local minimizers follows also as
a corollary of Proposition 2.4.6 and Proposition 2.4.7.

2.6.3 Compactness and convergence of local minimizers

In this subsection we prove Proposition 2.4.6 and Proposition 2.4.7. The key point in
the argument is the following result, where we show that an estimate of order ε−1 for the
energy RPMFε in some interval implies an ε-independent estimate for the same energy
in a smaller interval.

Proposition 2.6.5 (Boundedness of the energy in a smaller interval). Let L, Γ0, β be
positive real numbers.

Then there exists two real numbers ε0 ∈ (0, 1) and Γ1 > 0 for which the following
statement holds true. Let f : [−(L+ 1), L+ 1] → R be a continuous function such that

|f(x)| ≤ Γ0 ∀x ∈ [−(L+ 1), L+ 1], (2.6.27)

let ε ∈ (0, ε0), and let

w ∈ argminloc

{
RPMFε(β, f, (−(L+ 1), L+ 1), w) : w ∈ H2((−(L+ 1), L+ 1))

}

(2.6.28)
be a local minimizer such that

RPMFε(β, f, (−(L+ 1), L+ 1), w) ≤ Γ0

ε
. (2.6.29)

Then in the smaller interval (−L,L) the local minimizer w satisfies

RPMFε(β, f, (−L,L), w) ≤ 4Γ1. (2.6.30)

Proof. Let us consider the expression

Γ2 :=
Γ
1/4
1

β1/4
+ Γ

1/2
0 + 1.
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We observe that it is possible to choose a real number Γ1 ≥ Γ0 in such a way that

(80 + 20β)Γ2 + 4β(L+ 1)Γ2
0 ≤ Γ1, (2.6.31)

and it is possible to choose a real number ε0 ∈ (0, 1/4) such that the inequalities

Γ1ε
1/2| log ε| ≤ log 2, ε3/2 Γ2 ≤ L, (2.6.32)

2

| log ε| log
(
1 +

45

2ε5
· Γ2

2

)
≤ 18, ε5/8 Γ4

2 ≤ 1 (2.6.33)

hold true for every ε ∈ (0, ε0).
In the sequel we show that the statement holds true with these values of ε0 and Γ1.
Since ε ∈ (0, ε0) and ε0 < 1/4, there exists a unique positive integer n such that

1

42n
=

1

22n+1
≤ ε <

1

22n
. (2.6.34)

For every k ∈ {0, 1, . . . , n} we set

Ln,k := L+ 1− 1

2n−k
,

and we observe that for every k ∈ {0, 1, . . . , n− 1} it turns out that

L ≤ Ln,k+1 < Ln,k < L+ 1,

Ln,k − Ln,k+1 =
1

2n−k
, (2.6.35)

and

2n−k ≤ 22
n−k−1

=
{(

22
n)1/2}2−k

<

(
1

ε1/2

)2−k

. (2.6.36)

We claim that

RPMFε(β, f, (−Ln,k, Ln,k), w) ≤
Γ1

ε2−k ∀k ∈ {0, 1, . . . , n}. (2.6.37)

The case k = 0 follows from assumption (2.6.29) because the interval (−Ln,0, Ln,0)
is contained in the interval (−(L + 1), L + 1) and Γ1 ≥ Γ0. Since Ln,n = L, the case
k = n implies (2.6.30) because of the estimate from below in (2.6.34).

Now we prove (2.6.37) by finite induction on k. Let us assume that (2.6.37) holds
true for some k ∈ {0, 1, . . . , n− 1}, and let us prove that it holds true also for k+1. To
begin with, we focus on the interval (Ln,k+1, Ln,k), and we observe that

Γ1

ε2−k ≥ RPMFε(β, f, (−Ln,k, Ln,k), w)

≥ RPMFε(β, f, (Ln,k+1, Ln,k), w)

≥
∫ Ln,k

Ln,k+1

{
1

ω(ε)2
log
(
1 + w′(y)2

)
+ β(w(y)− f(y))2

}
dy

≥ (Ln,k − Ln,k+1) ·

·min

{
1

ω(ε)2
log
(
1 + w′(y)2

)
+ β(w(y)− f(y))2 : y ∈ [Ln,k+1, Ln,k]

}
.
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If bk,ε ∈ [Ln,k+1, Ln,k] is any minimum point, recalling (2.6.35), (2.6.36), and the first
inequality in (2.6.32), this proves that

log
(
1 + w′(bk,ε)

2
)
≤ Γ1

ε2−k · ω(ε)2 · 2n−k ≤ Γ1

(ε3/2)
2−k · ω(ε)2 ≤ Γ1ε

1/2| log ε| ≤ log 2,

and

β(w(bk,ε)− f(bk,ε))
2 ≤ Γ1

ε2−k · 2n−k ≤ Γ1

(ε3/2)
2−k .

From these two inequalities and (2.6.27) we deduce that |w′(bk,ε)| ≤ 1 and

|w(bk,ε)| ≤
Γ
1/2
1

β1/2 (ε3/4)
2−k + Γ0 ≤

(Γ1/β)
1/2 + Γ0

(ε3/4)
2−k .

With an analogous argument, we can show that there exists ak,ε ∈ [−Ln,k,−Ln,k+1]
such that

|w′(ak,ε)| ≤ 1 and |w(ak,ε)| ≤
(Γ1/β)

1/2 + Γ0

(ε3/4)
2−k .

Now we exploit that w minimizes RPMFε in the interval (ak,ε, bk,ε) with respect to
its boundary conditions, and we estimate the minimum value by applying Lemma 2.6.3
with

(a, b) = (ak,ε, bk,ε), D := 1, H :=
(Γ1/β)

1/2 + Γ0

(ε3/4)
2−k .

We observe that

√
H + ε2D ≤

[
(Γ1/β)

1/2 + Γ0

]1/2

(ε3/8)
2−k + 1 ≤ Γ2

(ε3/8)
2−k ,

and in particular from the second inequality in (2.6.32) we obtain that

ε2
(√

H + ε2D
)
≤ ε3/2Γ2 ≤ L <

bk,ε − ak,ε
2

,

which shows that assumption (2.6.3) is satisfied, while from the first inequality in (2.6.33)
we obtain that

2

| log ε| log
(
1 +

45

2ε4

(√
H + ε2D

)2)
≤ 2

| log ε| log
(
1 +

45

2ε4
· Γ

2
2

ε

)
≤ 18.

which shows that assumption (2.6.4) is satisfied. Therefore, from Lemma 2.6.3 we
deduce the existence of wk,ε ∈ H2((ak,ε, bk,ε)), with the same boundary values (function
and derivative) as w, satisfying

RPMε((ak,ε, bk,ε), wk,ε) ≤ 80
Γ2

(ε3/8)
2−k ≤ 80

Γ2

ε2−k−1
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and
∫ bk,ε

ak,ε

wk,ε(x)
2 dx ≤ 10ε2

Γ5
2

(ε15/8)
2−k = 10

ε11/8

(ε15/8)
2−k ·

(
ε5/8Γ4

2

)
· Γ2 ≤ 10

Γ2

ε2−k−1
,

where the last inequality follows from the second relation in (2.6.33). From the last two
estimates and the minimality of w we conclude that

RPMFε(β, f, (−Ln,k+1, Ln,k+1), w)

≤ RPMFε(β, f, (ak,ε, bk,ε), w)

≤ RPMFε(β, f, (ak,ε, bk,ε), wk,ε)

≤ RPMε((ak,ε, bk,ε), wk,ε) + 2β

∫ bk,ε

ak,ε

wk,ε(x)
2 dx+ 2β

∫ bk,ε

ak,ε

f(x)2 dx

≤ (80 + 20β)
Γ2

ε2−k−1
+ 2β(2L+ 2)Γ2

0

≤ Γ1

ε2−k−1
,

where the last two inequalities we exploited (2.6.27) and (2.6.31), respectively. This
completes the inductive step, and hence also the proof.

Remark 2.6.6. Proposition 2.6.5 can be extended in a straightforward way to one-
sided local minimizers. To this end, it is enough to replace in the statement the interval
(−L,L) with (0, L), the interval (−(L+1), L+1) with (0, L+1), and “loc” with “R-loc”.
The proof is analogous and somewhat simpler, because we just need to work on one side
of the interval.

Proof of Proposition 2.4.6

Existence of a limit We prove that there exist a function w∞ : R → R and an increasing
sequence {nk} of positive integers such that, for every L > 0, the restriction of w∞ to
the interval (−L,L) belongs to PJ((−L,L)) and wnk

→ w∞ in L2((−L,L)).
To this end, it is enough to prove that, for every fixed real number L > 0, it holds

that

sup

{
RPMεn((−L,L), wn) +

∫ L

−L

wn(x)
2 dx : n ∈ N

}
< +∞. (2.6.38)

Indeed, once this uniform bound has been established (the supremum might depend
on L, of course), the compactness result of statement (2) in Theorem 2.3.2 implies that
the sequence {wn} is relatively compact in L2((−L,L)) for this fixed value on L, and
any limit function lies in PJ((−L,L)). At this point we apply the result to a sequence of
intervals (−Lk, Lk) with Lk → +∞, and with a classical diagonal procedure we obtain
the subsequence that converges in all bounded intervals.

In order to prove (2.6.38), we begin by observing that, due to assumption (ii), there
exists a constant ML such that

|gn(x)| ≤ML ∀x ∈ [−(L+ 1), L+ 1], ∀n ∈ N.
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We now apply Proposition 2.6.5 with

w(x) := wn(x), f(x) := gn(x), Γ0 := max{ML, C0}.
This is possible because assumptions (2.6.28) and (2.6.29) are satisfied for trivial

reasons as soon as [−(L+1), L+1] ⊆ (An, Bn) and | log εn| ≥ 1. From Proposition 2.6.5
we obtain that there exists a constant Γ1 such that

RPMFεn(β, gn, (−L,L), wn) ≤ 4Γ1 (2.6.39)

when n is large enough. This implies (2.6.38) because the left hand-side of (2.6.39)
controls the first term in the left-hand side of (2.6.38), while the integral can be estimated
as ∫ L

−L

wn(x)
2 dx ≤ 2

∫ L

−L

(wn(x)− gn(x))
2 dx+ 2

∫ L

−L

gn(x)
2 dx,

where the first integral is controlled again by the left hand-side of (2.6.39), and the
second integral is controlled because of the uniform bound on gn.

Characterization of the limit Let w∞ be any limit function identified in the first para-
graph of the proof. We claim that w∞ is an entire local minimizer for the functional
(2.3.11) with α defined by (2.3.7).

The function w∞ is by definition the limit in L2
loc(R) of some sequence wnk

, and from
the uniform bounds (2.6.39) we deduce also that log(1 + (w′

nk
)2) → 0 in L1

loc(R). Up to
further subsequences (not relabeled) we can assume that in both cases the convergence is
also pointwise for almost every x ∈ R. Now let us consider any interval (a, b) ⊆ R whose
endpoints are not jump points of w∞, and such that wnk

(x) → w∞(x) and w′
nk
(x) → 0

for x ∈ {a, b}.
Let v ∈ PJ((a, b)) be any function with the same boundary conditions of w∞ in

the usual sense. From statement (4) of Theorem 2.3.2 applied with the quadruple of
boundary data

(wnk
(a), w′

nk
(a), wnk

(b), w′
nk
(b)) → (w∞(a), 0, w∞(b), 0) = (v(a), 0, v(b), 0)

we obtain a recovery sequence {vk} ⊆ H2((a, b)) for v that has the same boundary
conditions as wnk

in a and b (both on the function and on the derivative). From the
minimality of wnk

we deduce that

RPMFεnk
(β, gnk

, (a, b), wnk
) ≤ RPMFεnk

(β, gnk
, (a, b), vk)

for every positive integer k. Letting k → +∞, and recalling statement (1) in Theo-
rem 2.3.2, we conclude that

JF1/2(α0, β,M, (a, b), w∞) ≤ lim inf
k→+∞

RPMFεnk
(β, gnk

, (a, b), wnk
)

≤ lim
k→+∞

RPMFεnk
(β, gnk

, (a, b), vk)

= JF1/2(α0, β,M, (a, b), v).

Since v is arbitrary, this proves that w∞ is a local minimizer of the limiting functional
in the interval (a, b). Since intervals of this type exhaust the real line, this proves that
w∞ is an entire local minimizer for the limiting functional, as required.
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Strict convergence In the special case where v ≡ w∞ in (a, b), the argument of the
previous paragraph gives that

lim
k→+∞

RPMεnk
((a, b), wnk

) = α0 J1/2((a, b), w∞), (2.6.40)

namely {wnk
} is a recovery sequence for w∞ in the interval (a, b). At this point, from

statement (3) in Theorem 2.3.2, we conclude that wnk  
 w∞ in BV ((a, b)). Since

intervals of this type exhaust the real line, this completes the proof.

Proof of Proposition 2.4.7

The proof is analogous to the proof of Proposition 2.4.6, and hence we limit ourselves
to sketching the argument.

In the first step we show that there exist a function w∞ : (0,+∞) → R and an
increasing sequence {nk} of positive integers such that

• the restriction of w∞ to the interval (0, L) belongs to PJ((0, L)) for every L > 0,

• wnk
→ w∞ in L2((0, L)) and log(1 + (w′

nk
)2) → 0 in L1((0, L)) for every L > 0,

• wnk
(x) → w∞(x) and w′

nk
(x) → 0 for almost every x > 0.

The argument relies on the one-sided version of Proposition 2.6.5 (see Remark 2.6.6),
and on the compactness result of statement (2) of Theorem 2.3.2.

In the second step we consider intervals of the form (0, L), where L is any positive real
number in which we have the pointwise convergence wnk

(L) → w∞(L) and w′
nk
(L) → 0,

and such that L is not a jump point of w∞ (both conditions hold true for almost every
point in the half-line). Then we consider any function v ∈ PJ((0, L)) such v(L) =
w∞(L), where boundary values are intended in the usual sense. From statement (4) of
Theorem 2.3.2, applied with the quadruple of initial data

(v(0), 0, wnk
(L), w′

nk
(L)) → (v(0), 0, w∞(L), 0) = (v(0), 0, v(L), 0),

we obtain a recovery sequence {vk} ⊆ H2((0, L)) for v that has the same boundary
conditions as wnk

in x = L. Thus from the minimality of wnk
in (0, L) we deduce, as in

the previous case, that

JF1/2(α0, β,M, (0, L), w∞) ≤ JF1/2(α0, β,M, (0, L), v).

Since L can be chosen to be arbitrarily large, this is enough to conclude that w∞ is
a right-hand minimizer in (0,+∞).

Finally, in the third step we conclude as before that the convergence is strict in every
interval (0, L) such that L is not a jump point of w∞.
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2.7 Possible extensions

Our proof of Theorem 2.2.2 relies just on the Gamma-convergence results for the rescaled
functionals (2.3.1), and on the estimates of Proposition 2.4.4 for the minima of the
limiting functional with linear forcing term. Our proofs of Theorems 2.2.9 and 2.2.14
rely on the characterization of local minima for the limiting functional, and on the
compactness result that follows from Proposition 2.6.5. For these reasons, we expect
that these results can be extended to more general models by just extending the tools
that we exploited here. For example, it is possible to consider more general fidelity
terms of the form ∫ 1

0

β(x)|u(x)− f(x)|p dx,

for suitable choices of the exponent p ≥ 1 (but also every p > 0 should be fine) and of
the coefficient β(x), provided that it is continuous and strictly positive.

In the sequel we focus on less trivial generalizations that involve the principal part,
and we discuss three possibilities.

Different convex-concave Lagrangians We can replace the function ϕ(p) := log(1+ p2)
with more general functions. This leads to functionals with principal part of the form

PMε(u) :=

∫ 1

0

{
ε6ω(ε)4u′′(x)2 + ϕ(u′(x))

}
dx,

where now ω(ε) := εϕ(1/ε2)1/2. Under rather general assumptions on ϕ, the blow-ups
of minimizers at scale ω(ε) are local minimizers for the rescaled functionals

RPMε(Ω, v) :=

∫

Ω

{
ε6v′′(x)2 +

1

ω(ε)2
ϕ(v′(x))

}
dx,

and this family Gamma-converges to a suitable multiple of the functional Jσ(Ω, v),
which is the natural generalization of (2.3.6) obtained by replacing 1/2 with a different
exponent σ ∈ (0, 1) that depends on the growth at infinity of ϕ (actually in this case we
obtain only exponents in [1/2, 1)). All the results of this paper can be easily extended,
more or less with the same techniques.

Higher order singular perturbation We can replace second order derivatives with deriva-
tives of higher order. This leads to functionals with principal part of the form

PMε(u) :=

∫ 1

0

{
ε4k−2ω(ε)2ku(k)(x)2 + log

(
1 + u′(x)2

)}
dx,

where u(k) denotes the derivative of u of order k ≥ 2, and ω(ε) is defined as in (2.2.1).
Also in this case the rescaled functionals

RPMε(Ω, v) :=

∫

Ω

{
ε4k−2v(k)(x)2 +

1

ω(ε)2
log
(
1 + v′(x)2

)}
dx



76 The Perona-Malik problem

Gamma-converges to a suitable multiple of Jσ(Ω, v), now with σ = 1/k. Therefore, it
seems reasonable that the results of this paper can be extended, even if some steps (for
example the iteration argument in the compactness result) might require some extra
work.

Of course, one can also combine a higher order singular perturbation with a different
choice of ϕ, and/or choose a different exponent for the higher order derivative.

Space discretization In a different direction, it is possible to consider a space discretiza-
tion of the problem where derivatives are replaced by finite differences. This leads to
functionals of the form

PMn(u) :=

∫ 1−1/n

0

log

(
1 +

(
u(x+ 1/n)− u(x)

1/n

)2
)
dx,

possibly defined in the space of functions that are piecewise constant with steps of length
1/n. This is equivalent to considering the original functional (1.3), depending on true
derivatives, but restricted to the space of functions that are piecewise affine, again with
respect to some grid with size 1/n. The natural rescaling corresponds to blow-ups at
scale ωn, and leads to the sequence of functionals

RPMn(Ω, v) :=
1

ωn

∫

Ω

log

(
1 +

(
v(x+ δn)− v(x)

δn

)2
)
dx,

defined on functions that are piecewise constant with steps of length δn, where

ωn =

(
log n

n

)1/3

and δn =
1

nωn

=
1

n2/3(log n)1/3
.

The Gamma-limit turns out to be a multiple of the functional J0(Ω, v), namely the
functional that simply counts the number of jumps of v in Ω, regardless of jump heights.
Again it is possible to extend the results of this paper, and some of them can also be
proved for more general forcing terms (see [66]).

2.8 Future perspectives and open problems

In this final section we present some questions that remain open, and that may deserve
further investigation.

The first one concerns uniqueness of minimizers, which is always a challenging ques-
tion when the Lagrangian is non-convex. We recall that, for the model (2.1.3), unique-
ness is known in some cases (see [62, Theorem 1.1 and subsequent Remark 4]), but, in
that case, the forcing term is rather special and there are periodic boundary conditions.

Open problem 1 (Uniqueness of minimizers). Let us consider the minimum problem
(2.2.3), under the same assumptions of Proposition 2.2.1. Determine whether the min-
imizer is unique, at least when ε is small enough and/or the forcing term f is smooth
enough.
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Concerning Theorem 2.2.2, it may be interesting to investigate the asymptotic be-
havior of minima under weaker regularity assumptions on the forcing term f .

Open problem 2 (Existence of the limit of rescaled minimum values). Characterize
all functions f ∈ L2((0, 1)) such that the limit in (2.2.4) exists, or exists and is a real
number, or exists and coincides with the right-hand side, up to defining f ′ in a suitable
way.

The question is largely open. It is also conceivable that the vanishing order of
m(ε, β, f) as ε → 0+ depends on the regularity of f in terms of Hölder continuity,
Sobolev exponents or even fractional Sobolev spaces, which motivates the following
question.

Open problem 3 (Vanishing order of minima vs regularity of the forcing term). Find
any connection between the vanishing order of m(ε, β, f) as ε → 0+ and the regularity
of the forcing term f .

Here we present the results that we know at the present time.

• For every f ∈ PJ((0, 1)) with a finite number of jumps it turns out that

lim
ε→0+

m(ε, β, f)

ω(ε)5/2
= 4

(
2

3

)1/2

53/4 · J1/2((0, 1), f). (2.8.1)

The same should be true when J1/2((0, 1), f) < +∞.

• Heuristically, when minimizing (2.3.2) we can replace the rescaled Perona-Malik
functional (2.3.1) by its Gamma-limit (2.3.6). This leads to a minimization prob-
lem in the class of pure jump functions, that we can further simplify by restricting
to competitors whose jump points are equally spaced at some fixed distance δ, to
be optimized with respect to ε. By formalizing this idea we obtain the following
two estimates from above.

– If f is a-Hölder continuous for some a ∈ (0, 1] and some constant H, then it
turns out that

lim sup
ε→0+

m(ε, β, f)

ω(ε)10a/(3a+2)
≤ caH

4/(3a+2).

– If f ∈ W 1,p((0, 1)) for some p ∈ [1, 2], then it turns out that

lim sup
ε→0+

m(ε, β, f)

ω(ε)(15p−10)/(7p−4)
≤ cp‖f ′‖(5p−2)/(7p−4)

Lp((0,1)) .

• The set of forcing terms f ∈ L2((0, 1)) for which the limit in (2.2.4) exists has
empty interior, even if we allow the limit to be +∞, and even if we restrict
ourselves to a sequence εn → 0+. Indeed, for every fixed εn ∈ (0, 1), the function
f → m(εn, β, f) is continuous in L

2((0, 1)), and therefore also the function

Ψn(f) := arctan

(
m(εn, β, f)

ω(εn)2

)
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is continuous in the same space. Let us assume by contradiction that Ψn(f)
converges to some Ψ∞(f) for every f in some open set U ⊆ L2((0, 1)). Since U is a
Baire space, and Ψ∞ is the pointwise limit of continuous functions, then necessarily
Ψ∞ is continuous in some Gδ subset V ⊆ U . Now on the one hand we know from
(2.8.1) that Ψ∞(f) = 0 for every piecewise constant function with a finite number
of jumps, and this class is dense in L2((0, 1)), and therefore Ψ∞(f) = 0 for every
f ∈ V . On the other hand, also functions of class C1 with right-hand side of
(2.2.4) greater than 1 are dense in L2((0, 1)), which implies that Ψ∞(f) ≥ 1 for
every f ∈ V .

As for the convergence of minimizers, on the one hand we expect that the C1 regular-
ity of f is required in order to characterize the blow-ups of minimizers with ε-dependent
centers as we did in Theorem 2.2.9. On the other hand, the statement of Theorem 2.2.14
seems to require less regularity on f , in contrast with our proof that heavily relies on
Theorem 2.2.9 (see [66, Theorem 2.5]).

Open problem 4 (Strict and varifold convergence of minimizers). Extend the results
of Theorem 2.2.14 to less regular forcing terms, and in particular determine whether the
results hold true for every f ∈ BV ((0, 1)) (up to a suitable extension of identity (2.2.15)
to bounded variation functions, as in [66, Theorem 2.5]).

Finally, since we considered the Perona-Malik functional in dimension one, we con-
clude with the following natural and challenging question.

Open problem 5 (Any space dimension). Extend the results of this chapter to higher
dimensions.

Some partial results in this directions are described in Chapter 4.
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Appendix to Chapter 2

In this final appendix we prove the results stated in section 2.3. To this end, we need
three preliminary technical lemmata. The first one is the classical estimate from below
for the rescaled Perona-Malik functional in an interval where |u′(x)| is “large” (the
argument is analogous to a step in the proof of [2, Proposition 3.3]).

Lemma A.0.1 (Basic estimate from below). Let (α, β) ⊆ R be an interval, and let
u ∈ H2((α, β)). Then the following statements hold true.

(1) Let us assume that there exists a real number D > 0 such that |u′(x)| ≥ D for
every x ∈ (α, β), and such that either |u′(α)| = D or |u′(β)| = D.

Then for every ε ∈ (0, 1) it holds that

RPMε((α, β), u) ≥
M(ε,D)

21/2
(
|u(β)− u(α)| −D(β − α)

)1/2
. (A.0.1)

where

M(ε,D) := 4

(
2

3

)1/2(
log(1 +D2)

| log ε|

)3/4

. (A.0.2)

(2) Let us assume that there exists a real number D > 0 such that |u′(x)| ≥ D for
every x ∈ (α, β), and such that both |u′(α)| = D and |u′(β)| = D.

Then for every ε ∈ (0, 1) it holds that

RPMε((α, β), u) ≥M(ε,D)
(
|u(β)− u(α)| −D(β − α)

)1/2
, (A.0.3)

where M(ε,D) is again defined by (A.0.2).

Proof. Let us observe that our assumptions imply that either u′(x) ≥ D for every
x ∈ (α, β), or u′(x) ≤ −D for every x ∈ (α, β). In both cases it turns out that u′(x) has
the same sign at the two endpoints of the interval.

Up to a change of sign and a reflection, we can assume that u′(x) ≥ D for every
x ∈ (α, β) and that u′(α) = D, while C := u′(β) ≥ D. As a consequence we have that

|u(β)− u(α)| = u(β)− u(α) ≥ D(β − α).

79
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From Lemma 2.6.2 we obtain that
∫ β

α

u′′(x)2 dx ≥ (C −D)2

β − α
+

12

(β − α)3

(
u(β)− u(α)− C +D

2
(β − α)

)2

.

We estimate the right-hand side from below by its minimum with respect to C, which
is attained when

C =
3

2

u(β)− u(α)

β − α
− D

2
.

We conclude that
∫ β

α

u′′(x)2 dx ≥ 3

(β − α)3
(u(β)− u(α)−D(β − α))2 ,

and therefore

RPMε((α, β), u) ≥
3ε6

(β − α)3
(
u(β)− u(α)−D(β − α)

)2
+
β − α

ω(ε)2
log
(
1 +D2

)
.

Applying the classical inequality

A+ B ≥ 4

33/4
(
AB3

)1/4 ∀(A,B) ∈ [0,+∞)2,

we obtain exactly (A.0.1).
The proof of (A.0.3) is analogous, with the only difference that now C = D by

assumption. In this case from Lemma 2.6.2 it follows that

∫ β

α

u′′(x)2 dx ≥ 12

(β − α)3
(u(β)− u(α)−D(β − α))2 ,

from which we obtain an additional factor 21/2 in the numerator.

The second lemma shows that for every function u ∈ H2((a, b)) one can find a
function z ∈ PJ((a, b)) that is close to u in terms of the Lp norm and in total variation,
and such that the RPMε energy of u is controlled from below by the J1/2 energy of z.
An analogous result is proved in [2, Proposition 3.3].

Lemma A.0.2 (Substitution lemma). Let (a, b) ⊆ R be an interval, let εn ⊆ (0, 1) be a
sequence such that εn → 0+, and let {un} ⊆ H2((a, b)) be a sequence of functions such
that

sup {RPMεn((a, b), un) : n ≥ 1} < +∞. (A.0.4)

Then there exist a sequence of functions {zn} ⊆ PJ((a, b)), and a sequence of inter-
vals (an, bn) ⊆ (a, b) with endpoints an → a+ and bn → b−, with the following properties.

(1) For every positive integer n the points an and bn are not jump points of the function
zn, and when n is large enough it turns out that

RPMεn((a, b), un) ≥Mn ·
{
J1/2((an, bn), zn) +

J1/2((a, an) ∪ (bn, b), zn)

21/2

}
, (A.0.5)
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where

Mn := 4

(
2

3

)1/2{
1

| log εn|
log

(
1 +

1

ε4n| log εn|8
)}3/4

∀n ≥ 1. (A.0.6)

(2) The function zn is asymptotically close to un in the sense that

lim
n→+∞

‖un − zn‖Lp((a,b)) = 0 ∀p ∈ [1,+∞). (A.0.7)

(3) The total variation of zn is asymptotically close to the total variation of un in the
sense that

lim
n→+∞

∫ b

a

|u′n(x)| dx− |Dzn|((a, b)) = 0. (A.0.8)

Proof. Let us consider the set

An :=

{
x ∈ (a, b) : |u′n(x)| >

1

ε2n| log εn|4
}
.

Since An is an open set, we can write it as a finite or countable union of open disjoint
intervals (its connected components), namely in the form

An =
⋃

i∈In

(αn,i, βn,i),

where In is a suitable index set.
Let wn : [a, b] → R be the function of class C1 such that wn(a) = un(a), and

w′
n(x) :=




0 if x ∈ (a, b) \ An,

u′n(x)−
sign(u′n(x))

ε2n| log εn|4
if x ∈ An.

We observe that w′
n(x) is the difference between u′n(x) and the truncation of u′n(x)

between the two values±ε−2
n | log εn|−4. We deduce that in each of the intervals (αn,i, βn,i)

the sign of w′
n(x) is constant and coincides with the sign of u′n(x) in the same interval,

and, in any case, it holds that

|wn(βn,i)− wn(αn,i)| = |un(βn,i)− un(αn,i)| −
βn,i − αn,i

ε2n| log εn|4
. (A.0.9)

Finally, for every i ∈ In we consider the midpoint γn,i := (αn,i + βn,i)/2 of the
interval (αn,i, βn,i), and we introduce the function zn ∈ PJ((a, b)) whose jump points are
located at these midpoints, and have height that amounts to the variation of wn in the
corresponding intervals, and translated vertically so that zn(a) = wn(a) = un(a). Such
a function is given by

zn(x) := un(a) +
∑

i∈In

(wn(βn,i)− wn(αn,i))1(γn,i,b)(x) ∀x ∈ (a, b).

With these definitions, we are now ready to prove the required estimates.
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Statement (1) Let us assume for a while that

a < αn,i < βn,i < b ∀i ∈ In. (A.0.10)

In this case it turns out that necessarily |u′n(x)| = D := ε−2
n | log εn|−4 at both the

endpoints of each interval (αn,i, βn,i), and hence from statement (2) of Lemma A.0.1 we
deduce that

RPMεn((αn,i, βn,i), un) ≥ Mn

(
|un(βn,i)− un(αn,i)| −

βn,i − αn,i

ε2n| log εn|4
)1/2

= Mn |wn(βn,i)− wn(αn,i)|1/2

= Mn |Jzn(γn,i)|1/2 (A.0.11)

for every i ∈ In. Summing over all indices we conclude that

RPMεn((a, b), un) ≥ RPMεn(An, un)

=
∑

i∈In

RPMεn((αn,i, βn,i), un)

≥ Mn

∑

i∈In

|Jzn(γn,i)|1/2

= Mn J1/2((a, b), zn),

which proves (A.0.5) with (an, bn) := (a, b).
If (A.0.10) is not true, it means that either An = (a, b), or one or two of the connected

components of An have exactly one endpoint which is either a or b. At the beginning of
the proof of the second statement below we show that the measure of An tends to 0 as
n→ +∞, and this rules out the possibility that An = (a, b) when n is large enough.

In the other case we denote the “lateral components” by (a, an) and (bn, b), with
the understanding that a = an or b = bn if there is only one such component, and we
call I ′n ⊆ In the set of indices corresponding to the remaining components. Now the
estimate (A.0.11) remains true for every i ∈ I ′n, while in the “lateral components” we
can apply statement (1) of Lemma A.0.1 because |u′| is equal to D in at least one of
the endpoints. In this way we obtain that

RPMεn

(
(a, an) ∪ (bn, b), un

)
≥ Mn

21/2
J1/2

(
(a, an) ∪ (bn, b), zn

)
,

while as before
RPMεn

(
(an, bn), un

)
≥Mn J1/2((an, bn), zn).

Adding the last two inequalities we obtain (A.0.5) also in this last case.

Statement (2) In order to prove (A.0.7), we show that

un(x)− wn(x) → 0 uniformly in [a, b] (A.0.12)
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and that for every p ∈ [1,+∞) it follows that

wn − zn → 0 in Lp((a, b)). (A.0.13)

In order to prove (A.0.12) we introduce the sets

Bn :=

{
x ∈ (a, b) :

1

| log εn|
≤ |u′n(x)| ≤

1

ε2n| log εn|4
}

and

Cn :=

{
x ∈ (a, b) : |u′n(x)| <

1

| log εn|

}
.

Let us estimate the measure of An, Bn, Cn. For Cn we consider the trivial estimate
|Cn| ≤ b− a. As for An and Bn we consider the term with the logarithm in (2.3.1) and
obtain that

|An| ≤
ε2n| log εn|

log(1 + ε−4
n | log εn|−8)

RPMεn((a, b), un)

and

|Bn| ≤
ε2n| log εn|

log(1 + | log εn|−2)
RPMεn((a, b), un).

Recalling (A.0.4), these estimates imply that

lim
n→+∞

|An|
ε2n| log εn|4

= lim
n→+∞

|Bn|
ε2n| log εn|4

= 0.

Now let us consider the function u′n − w′
n. In An it holds that

∫

An

|u′n(x)− w′
n(x)| dx =

∫

An

1

ε2n| log εn|4
dx =

|An|
ε2n| log εn|4

.

In Bn and Cn it holds that w′
n(x) = 0, and hence

∫

Bn

|u′n(x)− w′
n(x)| dx =

∫

Bn

|u′n(x)| dx ≤ |Bn|
ε2n| log εn|4

and ∫

Cn

|u′n(x)− w′
n(x)| dx =

∫

Cn

|u′n(x)| dx ≤ |Cn|
| log εn|

≤ b− a

| log εn|
.

From all these estimates we conclude that

lim
n→+∞

∫ b

a

|u′n(x)− w′
n(x)| dx = 0, (A.0.14)

which implies (A.0.12) because un(a) = wn(a) = 0 for every n ≥ 1.
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In order to prove (A.0.13), we begin by observing that for every x ∈ (a, b) \ An it
holds that

wn(x) = wn(a) +

∫ x

a

w′
n(t) dt

= un(a) +
∑

{i∈In:βn,i≤x}

∫ βn,i

αn,i

w′
n(t) dt

= un(a) +
∑

{i∈In:βn,i≤x}

(wn(βn,i)− wn(αn,i))

= zn(x),

which implies that wn(x) − zn(x) = 0 when x 6∈ An. On the other hand, when x ∈ An

it holds that

|wn(x)− zn(x)| ≤ |wn(βn,i)− wn(αn,i)| = |Jzn(γn,i)| ≤
(
J1/2((a, b), zn)

)2
,

and therefore from (A.0.5) we conclude that

∫ b

a

|wn(x)− zn(x)|p dx =
∑

i∈In

∫ βi,εn

αi,εn

|wn(x)− zn(x)|p dx

≤
∑

i∈In

(βi,εn − αi,εn) ·
(
J1/2((a, b), zn)

)2p

= |An| ·
(
J1/2((a, b), zn)

)2p

≤ |An| ·
(
21/2

Mn

RPMεn((a, b), un)

)2p

,

which implies (A.0.13) because RPMεn((a, b), un) is bounded from above,Mn is bounded
from below, and |An| → 0.

Statement (3) It remains to prove (A.0.8). To this end, we just observe that

|Dzn|((a, b)) =
∑

i∈In

|wn(βn,i)− wn(αn,i)| =
∫

An

|w′
n(x)| dx =

∫ b

a

|w′
n(x)| dx,

and ∣∣∣∣
∫ b

a

|u′n(x)| dx−
∫ b

a

|w′
n(x)| dx

∣∣∣∣ ≤
∫ b

a

|u′n(x)− w′
n(x)| dx,

and conclude thanks to (A.0.14).

The last preliminary result is the classical lower semicontinuity of J1/2 (see for ex-
ample [6, Theorems 4.7 and 4.8]). Here we include an elementary proof in the one
dimensional case, different from the original proof in [5], because we need to deduce
the stronger statement (true in dimension one) that convergence of the energies implies
strict convergence of the arguments.
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Lemma A.0.3 (Lower semicontinuity of J1/2). Let (a, b) ⊆ R be an interval, and let
{zn} ⊆ PJ((a, b)) be a sequence with the following properties:

(i) there exists a constant M such that

J1/2((a, b), zn) ≤M ∀n ≥ 1, (A.0.15)

(ii) there exists p ≥ 1 and z∞ ∈ Lp((a, b)) such that zn → z∞ in Lp((a, b)).

Then the following two statements hold true.

(1) (Lower semicontinuity). It turns out that z∞ ∈ PJ((a, b)) and

lim inf
n→+∞

J1/2((a, b), zn) ≥ J1/2((a, b), z∞). (A.0.16)

(2) (Strict convergence). If, in addition, we assume that

lim
n→+∞

J1/2((a, b), zn) = J1/2((a, b), z∞), (A.0.17)

then actually zn   z∞ in BV ((a, b)).

Proof. For every n ≥ 1, let us write zn(x) in the form

zn(x) = cn +
∞∑

i=1

Jn(i)1(sn(i),+∞)(x) ∀x ∈ (a, b), (A.0.18)

where cn := zn(a) (the boundary value is intended in the usual sense), {sn(i)}i≥1 ⊆ (a, b)
is a sequence of distinct points, and {Jn(i)}i≥1 is a sequence of real numbers such that
|Jn(i + 1)| ≤ |Jn(i)| for every i ≥ 1. We observe that, even when the function zn has
only a finite number of jump points, we can always write it in the form (A.0.18) by
introducing infinitely many “jumps” of vanishing height.

From assumptions (i) and (ii) we derive two types of estimates.

• (Uniform bounds). From assumption (i) and the subadditivity of the square root
we deduce that

∞∑

i=1

|Jn(i)| ≤
(

∞∑

i=1

|Jn(i)|1/2
)2

≤M2 ∀n ≥ 1. (A.0.19)

Combined with assumption (ii), this implies that there exists a constant M1 such
that

|cn| ≤M1 ∀n ≥ 1. (A.0.20)

Finally, from (A.0.19) and (A.0.20) we deduce that there exists a constant M2

such that
‖zn‖L∞((a,b)) ≤M2 ∀n ≥ 1. (A.0.21)
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• (Uniform smallness of the tails). We claim that for every ε > 0 there exists a
positive integer iε such that

∞∑

i=iε

|Jn(i)| ≤M
√
ε ∀n ≥ 1. (A.0.22)

Indeed, if we define iε as the smallest integer greater that M/
√
ε, then from

(A.0.15) it holds that |Jn(i)| ≤ ε for at least one index i ≤ iε. At this point,
from the monotonicity of |Jn(i)| we conclude that

|Jn(i)| ≤ ε ∀n ≥ 1, ∀i ≥ iε,

and therefore

∞∑

i=iε

|Jn(i)| =
∞∑

i=iε

|Jn(i)|1/2 · |Jn(i)|1/2 ≤
√
ε ·

∞∑

i=iε

|Jn(i)|1/2 ≤
√
ε ·M,

which proves (A.0.22).

From the uniform bounds we obtain that, up to subsequences (not relabeled), the
following limits exists as n→ +∞:

cn → c∞, Jn(i) → J∞(i), sn(i) → s∞(i) ∈ [a, b].

From these limits we deduce that

lim inf
n→+∞

J1/2((a, b), zn) = lim inf
n→+∞

∞∑

i=1

|Jn(i)|1/2 ≥
∞∑

i=1

|J∞(i)|1/2, (A.0.23)

and, due to the uniform smallness of the tails,

lim
n→+∞

|Dzn|((a, b)) = lim
n→+∞

∞∑

i=1

|Jn(i)| =
∞∑

i=1

|J∞(i)|. (A.0.24)

We can now introduce the function

ẑ∞(x) := c∞ +
∞∑

i=1

J∞(i)1(s∞(i),+∞)(x) ∀x ∈ (a, b). (A.0.25)

Exploiting again (A.0.22) we can show that zn(x) → ẑ∞(x) for every x ∈ (a, b) that
does not appear in the sequence {s∞(i)}. This almost everywhere pointwise convergence,
together with the uniform bound (A.0.21), implies that zn → ẑ∞ in Lp((a, b)) for every
p ∈ [1,+∞), and hence in particular that z∞ = ẑ∞.

Now we use the representation (A.0.25) in order to compute the total variation of
z∞ and J1/2((a, b), z∞). This is not immediate, because in the representation (A.0.25)
the points s∞(i) are not necessarily distinct, and some of them might even coincide with
the endpoints of the interval (a, b), in which case they do not contribute to the total
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variation or to J1/2. In any case, the function defined by (A.0.25) belongs to PJ((a, b)),
and its jump set is contained in the image of the sequence {s∞(i)} intersected with the
open interval (a, b). Moreover, for every s in this set, the jump height of z∞ in s is given
by

Jz∞(s) =
∑

{i≥1:s∞(i)=s}

J∞(i),

where of course the sum (or series) might also vanish. In particular, for every jump
point s of z∞ we obtain that

|Jz∞(s)| ≤
∑

{i≥1:s∞(i)=s}

|J∞(i)|, (A.0.26)

with equality if and only if all terms in the sum have the same sign. Analogously, we
obtain that

|Jz∞(s)|1/2 ≤
∑

{i≥1:s∞(i)=s}

|J∞(i)|1/2,

with equality if and only if at most one term in the sum is different from 0 (here we
make use of the fact that the square root is strictly subadditive).

From (A.0.26) it follows that

|Dz∞|((a, b)) =
∑

s∈Sz∞

|Jz∞(s)| ≤
∞∑

i=1

|J∞(i)|, (A.0.27)

with equality if and only if s∞(i) ∈ (a, b) for every i ≥ 1 such that J∞(i) 6= 0, and
J∞(i) · J∞(j) ≥ 0 for every pair (i, j) of distinct positive integers such that s∞(i) =
s∞(j) ∈ (a, b).

Analogously, it holds that

J1/2((a, b), z∞) =
∑

s∈Sz∞

|Jz∞(s)|1/2 ≤
∞∑

i=1

|J∞(i)|1/2, (A.0.28)

with equality if and only if s∞(i) ∈ (a, b) for every i ≥ 1 such that J∞(i) 6= 0, and
J∞(i) · J∞(j) = 0 for every pair (i, j) of distinct positive integers such that s∞(i) =
s∞(j) ∈ (a, b). In particular, in all cases where equality occurs in (A.0.28), then equality
occurs also in (A.0.27).

At this point we are ready to complete the proof. Indeed, (A.0.16) follows from
(A.0.23) and (A.0.28), provided that we start with the subsequence of {zn} that realizes
the liminf in (A.0.16). As for the strict convergence, under assumption (A.0.17) we have
necessarily equality both in (A.0.23) and in (A.0.28), and hence we have equality also
in (A.0.27). At this point from (A.0.24) and (A.0.27) we conclude that |Dzn|((a, b)) →
|Dz∞|((a, b)) (to be overly pedantic, what we actually proved is that every subsequence
of {zn} has a further subsequence with this property), which is what we need in order
to conclude that the convergence is strict.

Remark A.0.4. The only properties of the square root that we need for Lemma A.0.3
are that it is a nonnegative function that is strictly sub-additive and satisfies

√
σ/σ →

+∞ as σ → 0+.
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A.1 Proof of Theorem 2.3.2

Statement (1) Let us start with the liminf inequality. We need to prove that

lim inf
n→+∞

RPMεn((a, b), un) ≥ α0 J1/2((a, b), u) (A.1.29)

for every sequence {un} ⊆ H2((a, b)) such that un → u in L2((a, b)), and every sequence
{εn} ⊆ (0, 1) such that εn → 0+. Up to subsequences (not relabeled), we can assume
that the left-hand side is bounded and that the liminf is actually a limit, and in par-
ticular that the sequence {RPMεn((a, b), un)} is bounded. When this is the case, from
Lemma A.0.2 we obtain a sequence {zn} ⊆ PJ((a, b)) such that zn → u in L2((a, b))
and

RPMεn((a, b), un) ≥Mn · J1/2((an, bn), zn) ∀n ≥ 1.

Now we consider any interval (a′, b′) whose closure is contained in (a, b). Since
an → a+ and bn → b−, and since Mn → α0 as n → +∞, from the lower semicontinuity
of J1/2 (with respect to any Lp convergence) we conclude that

lim inf
n→+∞

RPMεn((a, b), un) ≥ lim inf
n→+∞

Mn · J1/2((an, bn), zn) ≥ α0 J1/2((a
′, b′), u).

Letting a′ → a+ and b′ → b− we obtain (A.1.29).
For the limsup inequality, we refer to the proof of [14, Theorem 4.4]. The idea is

rather classical. First of all, we reduce ourselves to the case where u has only a finite
number of jump points, because this class is dense in L2((a, b)) with respect to the energy
J1/2. Given any function u ∈ PJ((a, b)) with a finite number of jumps, we consider the
function uε that coincides with u outside some small intervals that contain a single
jump point, and in each of these small intervals coincides with the cubic polynomial
that interpolates the values at the boundary of the interval. From Lemma 2.6.2 we
obtain the exact value of the integral of u′′ε(x)

2, and an estimate from above for the
integral of log(1 + u′ε(x)

2). If we optimize the length of each small interval in terms of
ε and of the jump height, the resulting family is the required recovery family.

We stress that, in the case where u has a finite number of jumps, there exists a
recovery family that coincides with u in a fixed neighborhood of the boundary points
x = a and x = b.

Statement (2) Let us apply again Lemma A.0.2. We obtain a sequence {zn} ⊆
PJ((a, b)) satisfying (A.0.7) and

RPMεn((a, b), un) ≥
Mn

21/2
· J1/2((a, b), zn)

when n is large enough. In particular, since Mn is bounded from below by a positive
constant, from (2.3.8) we deduce that this sequence satisfies

sup
n∈N

{
J1/2((a, b), zn) +

∫ b

a

zn(x)
2 dx

}
< +∞.
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From the classical compactness result for the functional J1/2 (whose proof in dimen-
sion one is more or less contained in the proof of Lemma A.0.3 above), it follows that
{zn} is relatively compact in Lp((a, b)) for every p ∈ [1,+∞). Due to (A.0.7), the same
is true for {un}.

Statement (3) Let us apply again Lemma A.0.2. The resulting sequence {zn} converges
to u. Now let us fix any interval (a′, b′) whose closure is contained in (a, b). From the
lower semicontinuity of J1/2, estimate (A.0.5), and assumption (2.3.9), we deduce that

J1/2((a
′, b′), u) ≤ lim inf

n→+∞
J1/2((a

′, b′), zn)

≤ lim inf
n→+∞

J1/2((an, bn), zn)

≤ lim inf
n→+∞

{
RPMεn((a, b), un)

Mn

− J1/2

(
(a, an) ∪ (bn, b), zn

)

21/2

}

≤ lim sup
n→+∞

RPMεn((a, b), un)

Mn

− lim sup
n→+∞

J1/2

(
(a, an) ∪ (bn, b), zn

)

21/2

=
1

α0

· α0 J1/2((a, b), u)−
1

21/2
lim sup
n→+∞

J1/2

(
(a, an) ∪ (bn, b), zn

)
,

which implies that

lim sup
n→+∞

J1/2

(
a, an) ∪ (bn, b), zn

)
≤ 21/2

{
J1/2((a, b), u)− J1/2((a

′, b′), u)
}
.

Letting a′ → a+ and b′ → b− we conclude that

lim
n→+∞

J1/2

(
(a, an) ∪ (bn, b), zn

)
= 0.

Now we observe that

J1/2((a, b), u) ≤ lim inf
n→+∞

J1/2((a, b), zn)

≤ lim sup
n→+∞

J1/2((a, b), zn)

= lim sup
n→+∞

{
J1/2((an, bn), zn) + J1/2

(
(a, an) ∪ (bn, b), zn

)}

= lim sup
n→+∞

J1/2((an, bn), zn)

≤ lim sup
n→+∞

1

Mn

RPMεn((a, b), un)

≤ J1/2((a, b), u),

and hence J1/2((a, b), zn) → J1/2((a, b), u). At this point from Lemma A.0.3 we conclude
that zn   u in BV ((a, b)), and therefore also un   u in BV ((a, b)) because of (A.0.8).
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Statement (4) As in the proof of the limsup inequality for the Gamma-convergence
result, we can assume that u is a pure jump function with a finite number of jump
points. When this is the case, we already know that there exists a recovery sequence
ûn → u that coincides with u in a neighborhood of the boundary, namely there exists
η > 0 such that for every n ≥ 1 it holds that ûn(x) = u(x) = u(a) for every x ∈ (a, a+η),
and similarly ûn(x) = u(x) = u(b) for every x ∈ (b− η, b).

Now the idea is to modify ûn in the two lateral intervals (a, a + η) and (b− η, b) in
order to fulfill the given boundary conditions (2.3.10). To this end, we set

un(x) :=





u(a) + w1,n(x) if x ∈ (a, a+ η],

ûn(x) if x ∈ [a+ η, b− η],

u(b) + w2,n(x) if x ∈ [b− η, b).

where w1,n is the function given by Lemma 2.6.3 applied to the interval (a, a+ η) with
boundary data

(
w1,n(a), w

′
1,n(a), w1,n(a+ η), w′

1,n(a+ η)
)
= (A0,n − u(a), A1,n, 0, 0),

and w2,n is the function given by Lemma 2.6.3 applied in the interval (b − η, b) with
boundary data

(
w2,n(b− η), w′

2,n(b− η), w2,n(b), w
′
2,n(b)

)
= (0, 0, B0,n − u(b), B1,n).

We observe that un ∈ H2((a, b)) and

RPMεn((a, b), un) = RPMεn((a, a+ η), w1,n)

+RPMεn((a+ η, b− η), ûn)

+RPMεn((b− η, b), w2,n).

The second term coincides with RPMεn((a, b), ûn), and therefore it converges to
α0 J1/2((a, b), u) when n → +∞. Therefore, it is enough to show that the other two
terms vanish in the limit. To this end, we observe that in the interval (a, a + η) the
assumptions of Lemma 2.6.3 are satisfied with

H = Hn := |A0,n − u(a)| and D = Dn := |A1,n|.

Since Hn and Dn tend to 0, we conclude that

lim
n→+∞

RPMεn((a, a+ η), w1,n) ≤ lim
n→+∞

80
(√

Hn + ε2nDn

)
= 0.

In the same way we obtain that

lim
n→+∞

RPMεn((b− η, b), w2,n) = 0,

which completes the proof.
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A.2 Proof of Proposition 2.3.4

Statement (1) In the case of µε, µ
∗
ε and µ0, existence is a standard application of

the direct method in the calculus of variations. The case of µ∗
0 is less trivial because

boundary conditions in PJ((0, L)) do not pass to the limit, for example, with respect
to L2 convergence. This issue, however, can be fixed in a rather standard way. To this
end, we relax boundary conditions by allowing “jumps at the boundary”, namely we
minimize

α J1/2((0, L), v) + β

∫ L

0

(v(x)−Mx)2 dx+ α
(
|v(0)|1/2 + |v(L)−ML|1/2

)

over PJ((0, L)), without boundary conditions. In this case the direct method works,
and we claim that any minimizer v satisfies v(0) = 0 and v(L) = ML. Indeed, let v
be any minimizer, and let us consider the value in x = 0 (the argument in x = L is
symmetric). Let us assume that M > 0 (the case M = 0 is trivial, and the case M < 0
is symmetric). Arguing as in the beginning of section 2.6.2 we can show that the set of
jump points of v is finite, and comparing with a competitor vτ (x) which is equal to 0 in
(0, τ), and equal to v(x) elsewhere, we can conclude that v(0) = 0.

Statement (2) We prove the result in the case of µε, but the argument is analogous in
the other three cases.

The symmetry follows from the simple remark that, if v is a minimizer for some M ,
then −v is a minimizer for −M .

Continuity follows from the fact that, if Mn → M∞, then the fidelity term in
RPMFε(β,Mnx, (0, L), v) converges to the fidelity term in RPMFε(β,M∞x, (0, L), v)
uniformly on bounded subsets of L2((a, b)).

As for monotonicity, let us consider any pair 0 ≤ M1 < M2. Let us choose any
minimizer v2 ∈ H2((0, L)) in the definition of µε(β, L,M2), and let us consider the
function v1(x) := (M1/M2)v2(x). Elementary computations show that

RPMε((0, L), v1) ≤ RPMε((0, L), v2),

and
∫ L

0

(v1(x)−M1 x)
2 dx =

M2
1

M2
2

∫ L

0

(v2(x)−M2 x)
2 dx ≤

∫ L

0

(v2(x)−M2 x)
2 dx,

and therefore

µε(β, L,M1) ≤ RPMFε(β,M1x, (0, L), v1)

≤ RPMFε(β,M2x, (0, L), v2)

= µε(β, L,M2).

Finally, if we reverse the argument, namely we start from a minimizer v1 ∈ H2((0, L))
in the definition of µε(β, L,M1), and we consider the function v2(x) := (M2/M1)v1(x),
we obtain that ∫ L

0

v′′2(x)
2 dx =

(
M2

M1

)2 ∫ L

0

v′′1(x)
2 dx,
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∫ L

0

(v2(x)−M1 x)
2 dx =

(
M2

M1

)2 ∫ L

0

(v1(x)−M1 x)
2 dx,

and ∫ L

0

log(1 + v′2(x)
2) dx ≤

(
M2

M1

)2 ∫ L

0

log(1 + v′1(x)
2) dx,

because of the inequality

log(1 + λt) ≤ λ log(1 + t) ∀λ ≥ 1 ∀t ≥ 0.

Therefore we have that

µε(β, L,M2) ≤ RPMFε(β,M2x, (0, L), v2)

≤
(
M2

M1

)2

RPMFε(β,M1x, (0, L), v1)

=

(
M2

M1

)2

µε(β, L,M1),

that is exactly (2.3.16).

Statement (3) Let us consider any pair 0 < L1 < L2, and let us examine separately
the behavior of the four functions.

In the case of µε, let v2 be any minimizer for µε(β, L2,M). Then the restriction of
v2 to (0, L1), which we call v1, is a competitor in the definition of µε(β, L1,M), and
therefore as before we conclude that

µε(β, L1,M) ≤ RPMFε(β,Mx, (0, L1), v1)

≤ RPMFε(β,Mx, (0, L2), v2)

= µε(β, L2,M).

The same argument works in the case of µ0.
In the case of µ∗

0 we have to take into account boundary conditions, and therefore
we define

v1(x) =
L1

L2

v2

(
L2x

L1

)
∀x ∈ (0, L1), (A.2.30)

and we observe that J1/2((0, L1), v1) ≤ J1/2((0, L2), v2) and

∫ L1

0

(v1(x)−Mx)2 dx =

(
L1

L2

)3 ∫ L2

0

(v2(x)−Mx)2 dx,

which again implies the conclusion.
Finally, the monotonicity of µ∗

ε with respect to L is in general false (the minimum
diverges when L→ 0+ due to the term with second order derivatives). In this case the
natural definition (A.2.30), that preserves the boundary conditions (both on the function
and on the derivative), reduces the fidelity term and the term with the logarithm, but
increases the term with second order derivatives. What we do in this case is the opposite.
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We consider a minimizer v1 in the definition of µ∗
ε(β, L1,M), and we define a function

v2 in (0, L2) in such a way that (A.2.30) holds true. With a simple change of variable
we see that ∫ L2

0

v′′2(x)
2 dx =

L1

L2

∫ L1

0

v′′1(x)
2 dx,

∫ L2

0

log
(
1 + v′2(x)

2
)
dx =

L2

L1

∫ L1

0

log
(
1 + v′1(x)

2
)
dx,

and ∫ L2

0

(v2(x)−Mx)2 dx =

(
L2

L1

)3 ∫ L1

0

(v1(x)−Mx)2 dx,

so that in particular

RPMFε(β, (0, L2),Mx, v2) ≤
(
L2

L1

)3

RPMFε(β, (0, L1),Mx, v1).

Since v2 is a competitor in the definition of µ∗
ε(β, L2,M), this is enough to establish

(2.3.17).

Statement (4) Pointwise convergence, namely convergence of minima, is a rather stan-
dard consequence of Gamma-convergence and equi-coerciveness. We point out that in
the case of (2.3.14) and (2.3.15) the functionals have to take the boundary conditions
into account (the usual way is to set the functionals equal to +∞ when the argument
does not satisfy the boundary conditions), and in this case the limsup inequality in the
Gamma-convergence result is slightly more delicate because it requires the control of
boundary conditions for recovery sequences.

Statement (5) The pointwise convergence (2.3.18) is actually uniform with respect to
M (on bounded sets) because of the continuity and monotonicity with respect to M of
both µε and µ0. An analogous argument applies in the case of (2.3.19).
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Chapter 3

Singular perturbation: higher
resolution blow-up

3.1 Introduction

This chapter is devoted to the study of higher resolution blow-up of minimizers for the
functional PMFε defined in (2.1.1). Our goal is to show that minimizers develop the
multi-scale structure illustrated in Figure 2.1.

To this end, we consider any sequence {uε} of minimizers for the functional (2.1.1)
on the interval (0, 1), a sequence xε → x0 ∈ (0, 1), and the functions vε defined in (2.2.9).
From Theorem 2.2.9 we know that {vε} converges up to subsequences to some graph
translations of a suitable staircase SH,V , and for each graph translation v0 of SH,V we
can move slightly the points {xε} in such a way that vε   v0.

The first main result of this chapter states that in this setting, if v0 is the graph
translation of vertical type, then the functions obtained by rescaling horizontally vε by
a factor ε2 converge in a very strong sense to a specific function, which is the cubic poly-
nomial that interpolates the constants v0(−H) and v0(H) in a prescribed neighborhood
of the origin. This result identifies the rightmost function in Figure 2.1, thus revealing
the exact form of the transitions between consecutive steps of the staircases.

The second main result of this chapter, instead, improves the convergence of min-
imizers in the horizontal parts of the staircase. Indeed, we show that if v0 is a graph
translation of horizontal type of the canonical staircase, then the C1 norm of minimizers
is of order ω(ε)2 on every closed interval that is contained in the step of the staircase
that contains the origin. This means that minimizers are actually flat far from the jumps
of the staircase.

As in the previous chapter, we first state precisely our main results in section 3.2.
Then we prove them in section 3.3 and section 3.4, exploiting some technical lemmata
that we prove later in section 3.5.

95
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3.2 Statements

In order to state precisely our results, let us introduce some notation to describe the
cubic transitions arising around the jump points of the staircase.

Definition 3.2.1 (Cubic connection). Let C : R → R be the function defined by

C(x) :=





−1 if x ≤ −1,

3

2
x− 1

2
x3 if x ∈ [−1, 1],

1 if x ≥ 1.

(3.2.1)

• For every pair (Λ, V ) of positive real numbers we call canonical (Λ, V )-cubic con-
nection the function CΛ,V : R → R defined by

CΛ,V (x) := V C(x/Λ) ∀x ∈ R. (3.2.2)

• For every τ0 ∈ (−1, 1) we call graph translation of the canonical (Λ, V )-cubic
connection the function CΛ,V,τ0 : R → R defined by

CΛ,V,τ0(x) := CΛ,V (x+ x0)− τ0V ∀x ∈ R,

where x0 ∈ (−Λ,Λ) is the unique real number such that CΛ,V (x0) = τ0V .

In words, the (Λ, V )-cubic connection is the unique polynomial of degree three that
interpolates the constants −V and +V in a C1 way in the interval [−Λ,Λ]. Every graph
translation corresponds to taking the graph of CΛ,V (x) and moving the origin to a point
of the cubic.

The following theorem contains both the main results of this chapter, concerning
higher order blow-ups of minimizers for the functional PMFε(β, f, (0, 1), u).

Theorem 3.2.2 (High-resolution blow-ups of minimizers). Let β > 0 be a positive
number, let f ∈ C1([0, 1]) be a function, and let x0 ∈ (0, 1) be a point with f ′(x0) 6= 0.
Let εn → 0+ be a sequence of positive real numbers, and let {xn} ⊆ (0, 1) be a sequence
such that xn → x0 ∈ (0, 1). For every positive integer n, let

un ∈ argmin
{
PMFεn(β, f, (0, 1), u) : u ∈ H2((0, 1))

}
, (3.2.3)

where PMFε(β, f, (0, 1), u) is the family of functionals defined in (2.2.2). Let

H :=

(
24

β2|f ′(x0)|3
)1/5

, V := f ′(x0)H,

be as in (2.2.10), and let us set

Λ :=

√
3

2
·
√
2V . (3.2.4)
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Let ω(ε) := ε| log ε|1/2 be as in (2.2.1) and let us assume that the sequence

vn(y) :=
un(xn + ω(εn)y)− un(xn)

ω(εn)

of blow-ups at canonical scale converges locally strictly in BVloc(R) to some v∞ that, due
to Theorem 2.2.9, belongs to the family Hor(H, V ) ∪ Vert(H, V ) of Definition 2.2.4.

Then the following statements hold true.

(1) (Vertical parts of the steps). Let us assume that v∞ ∈ Vert(H, V ) \ Hor(H, V ),
and more precisely that v∞(y) is given by (2.2.7) for some τ0 ∈ (−1, 1), and let
CΛ,V,τ0(y) be the corresponding translated cubic connection introduced in Defini-
tion 3.2.1. Then it turns out that

vn(ε
2
ny) → CΛ,V,τ0(y) strongly in H2

loc(R).

(2) (Horizontal parts of the steps). Let us assume that v∞ ∈ Hor(H, V ) \Vert(H, V ),
and more precisely that v∞(y) is given by (2.2.6) for some τ0 ∈ (−1, 1). Then for
every closed interval [a, b] ⊆ ((τ0 − 1)H, (1 + τ0)H) it turns out that

lim sup
n→+∞

1

ω(εn)2
·max

{
|v′n(y)| : y ∈ [a, b]

}
< +∞. (3.2.5)

As a consequence, for every sequence {αn} ⊂ (0, 1) such that αn = o(ω(εn)) we
deduce that

un(xn + αny)− un(xn)

αn

→ 0 uniformly on bounded subsets of R.

Remark 3.2.3. We recall that the locally strict convergence of the sequence {vn} to a
staircase v∞ is ensured by Theorem 2.2.9, at least up to subsequences or up to a slight
modifications of the centers {xn}.

Therefore, there are only two situations in which higher resolution blow-ups are not
characterized by Theorem 3.2.2: when v∞ ∈ Hor(H, V ) ∩ Vert(H, V ), namely when
v∞(y) = SH,V (y ±H), and when f ′(x0) = 0.

In the first case, it can be seen that the behavior of {vn} could be both ”horizontal-
like” and ”vertical-like”, because a sequence {xn} such that v∞ ∈ Hor(H, V )∩Vert(H, V )
can be obtained with a diagonal procedure both starting from sequences generating
staircases in Hor(H, V ) \Vert(H, V ) and in Vert(H, V ) \Hor(H, V ). As a consequence,
also some intermediate behavior could arise, and we can not exclude that other non
trivial blow-ups might exist at a different scale.

The situation in the second case is similar, at least if f ′ does not vanish identically
in a neighborhood of x0. Indeed, also in this case {xn} can be obtained with a diagonal
procedure starting from sequences such that the corresponding blow-ups exhibit different
behaviors.
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3.3 Vertical parts (Theorem 3.2.2, statement (1))

In this section we prove Statement (1) in Theorem 3.2.2, which is a direct consequence
of the following result about the rescaled functionals RPMε defined in (2.3.1). We point
out that the assumption (3.3.2) follows from the proof of Theorem 2.2.9, and more
precisely from (2.6.40) and (2.5.17).

Theorem 3.3.1. Let L > 0 be a positive real number, let εn → 0+ be a sequence of
positive real numbers, and let {vn} ⊆ H2((−L,L)) be a sequence of functions such that
vn(0) = 0 for every n ∈ N. Let us assume that there exist real numbers V > 0 and
τ0 ∈ (−1, 1) such that

vn(y)  V (sign(y)− τ0) strictly in BV ((−L,L)), (3.3.1)

and
lim

n→+∞
RPMεn((−L,L), vn) ≤ α0

√
2V , (3.3.2)

where α0 is the constant defined in (2.3.7)
Let us set wn(y) := vn(ε

2
ny), and let Λ := (

√
3/2)

√
2V be as in (3.2.4).

Then wn(y) converges up to order 2 to the cubic connection CΛ,V,τ0(y) introduced in
Definition 3.2.1, in the sense that

lim
n→+∞

max
{
|wn(y)− CΛ,V,τ0(y)| : |y| ≤ L/ε2n

}
= 0,

and for every bounded interval (a, b) ⊆ R it turns out that

w′
n(y) → C ′

Λ,V,τ0
(y) uniformly in (a, b)

and
w′′

n(y) → C ′′
Λ,V,τ0

(y) strongly in L2((a, b)).

Proof. We divide the proof in several steps. First, we introduce some notation, then
we show that the transition from −(1 + τ0)V and (1− τ0)V occurs in a single interval,
and finally we show that in this interval we have some precise estimates that allow us
to characterize the limit.

Notation and definitions We observe that wn(y) is defined for every |y| < L/ε2n, and
with a variable change in the integral we obtain that it satisfies

RPMεn((−L,L), vn) = RPMVεn((−L/ε2n, L/ε2n), wn), (3.3.3)

where

RPMVε(Ω, u) :=

∫

Ω

{
u′′(x)2 +

1

| log ε| log
(
1 +

u′(x)2

ε4

)}
dx.

Since strict convergence implies uniform convergence in compact sets that do not
contain jump points of the limit, from (3.3.1) we deduce that for every a ∈ (0, L) it
turns out that

lim
n→+∞

max
{
|vn(y)− V (sign(y)− τ0)| : y ∈ [−L,L] \ (−a, a)

}
= 0.
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Since a is arbitrary, with a standard diagonal procedure we can find a sequence
an → 0+ such that

lim
n→+∞

max
{
|vn(y)− V (sign(y)− τ0)| : y ∈ [−L,L] \ (−an, an)

}
= 0. (3.3.4)

Without loss of generality, we can always assume that an ≥ εn. Therefore, if we set
Ln := an/ε

2
n, then Ln → +∞ and (3.3.4) is equivalent to

lim
n→+∞

max
{
|wn(y)− V (1− τ0)| : y ∈ [Ln, L/ε

2
n]
}
=

= lim
n→+∞

max
{
|wn(y) + V (1 + τ0)| : y ∈ [−L/ε2n,−Ln]

}
= 0,

so that in particular

wn(−Ln) → −V (1 + τ0) and wn(Ln) → V (1− τ0). (3.3.5)

Now let us choose a sequence {Mn} of real numbers such that

Mn → +∞, Mnε
2
n → 0, LnMnε

2
n → 0. (3.3.6)

We observe that the third condition implies the second one, and a possible choice
for this sequence is Mn := a

−1/2
n . Following [2] (as we did in Lemma A.0.2), for every

n ∈ N we consider the open set

An :=

{
y ∈ (−Ln, Ln) : |w′

n(y)| >
1

| log εn|

}
,

and we write it as a union of intervals of the form

An =
⋃

i∈In

(αn.i, βn,i),

where In is a finite or countable set of indices. For every n ∈ N and every i ∈ In, we
observe that w′

n(y) has constant sign in (αn,i, βn,i), and we set

∆n,i := |wn(βn,i)− wn(αn,i)| =
∫ βn,i

αn,i

|w′
n(y)| dy,

and

∆̂n,i := ∆n,i −
βn,i − αn,i

| log εn|
=

∫ βn,i

αn,i

(
|w′

n(y)| −
1

| log εn|

)
dy ≥ 0.

Identification of the “big jump” We claim that for every n ∈ N there exists an index
i(n) ∈ In such that

lim
n→+∞

∆n,i(n) = lim
n→+∞

∫ Ln

−Ln

|w′
n(y)| dy = 2V. (3.3.7)

In words, this means that asymptotically the whole total variation of wn is realized in
a single special interval (αn,i(n), βn,i(n)). This is the key point of the proof, and requires
seven steps.
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• In the first step we show that

lim sup
n→+∞

|An| < +∞, (3.3.8)

and in particular |An| is bounded.
To this end, it is enough to observe that

1

| log εn|
log

(
1 +

1

| log εn|ε4n

)
|An| ≤ RPMVεn((−Ln, Ln), wn),

so that from (3.3.2) and (3.3.3) we deduce that

4 lim sup
n→+∞

|An| ≤ lim sup
n→+∞

RPMVεn((−Ln, Ln), wn)

≤ lim sup
n→+∞

RPMVεn((−L,L), vn)

=
16√
3

√
2V ,

which implies (3.3.8).

As a consequence, up to choosing a slightly larger Ln (between the original Ln

and Ln + 4(2V )1/2), we can assume that none of the intervals (αn,i, βn,i) lies at
the boundary of (−Ln, Ln), so that |w′

n(αn,i)| = |w′
n(βn,i)| = 1/| log εn| for every

i ∈ In, at least if n is large enough.

• In the second step we show that

lim
n→+∞

∫

Ac
n

|w′
n(y)| dy = 0. (3.3.9)

where Ac
n denote the complement set of An in (−Ln, Ln).

To this end, we consider the set

Bn :=
{
y ∈ Ac

n : |w′
n(y)| ≤Mnε

2
n

}
,

and we observe that

lim sup
n→+∞

log (1 +M2
n)

| log εn|
|Ac

n \Bn| ≤ lim sup
n→+∞

RPMVεn((−Ln, Ln), wn) < +∞.

Therefore we have that

∫

Ac
n

|w′
n(y)| dy ≤Mnε

2
n · |Bn|+

|Ac
n \Bn|

| log εn|
≤ 2LnMnε

2
n +

|Ac
n \Bn| log (1 +M2

n)

| log εn| log (1 +M2
n)

,

(3.3.10)
and the conclusion follows from the first and the third condition in (3.3.6).
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• In the third step we show that

lim inf
n→+∞

∑

i∈In

∆n,i ≥ 2V. (3.3.11)

To this end, we observe that

|wn(Ln)− wn(−Ln)| ≤
∫ Ln

−Ln

|w′
n(y)| dy =

∫

Ac
n

|w′
n(y)| dy +

∑

i∈In

∆n,i,

and we conclude by exploiting (3.3.9) and (3.3.5).

• In the fourth step we show that

lim inf
n→+∞

∑

i∈In

∆̂n,i ≥ 2V. (3.3.12)

Indeed, from the definition we obtain that

∑

i∈In

∆̂n,i =
∑

i∈In

(
∆n,i −

βn,i − αn,i

| log εn|

)

=
∑

i∈In

∆n,i −
1

| log εn|
∑

i∈In

(βn,i − αn,i)

=
∑

i∈In

∆n,i −
|An|

| log εn|
, (3.3.13)

and we conclude by exploiting (3.3.11) and (3.3.8).

• In the fifth step we show that

lim sup
n→+∞

∑

i∈In

(
∆̂n,i

)1/2
≤

√
2V . (3.3.14)

To this end, for every i ∈ In we apply Lemma 3.5.5 in the interval (αn,i, βn,i) with
M = 1/| log εn|, so we obtain that

RPMVεn((αn,i, βn,i), wn) ≥ 4

√
2

3

(
1

| log εn|
log

(
1 +

1

ω(εn)4

))3/4 (
∆̂n,i

)1/2
,

and therefore

RPMVεn((−Ln, Ln), wn) ≥ 4

√
2

3

(
1

| log εn|
log

(
1 +

1

ω(εn)4

))3/4∑

i∈In

(
∆̂n,i

)1/2
.

Letting n→ +∞, from (3.3.2) and (3.3.3) we conclude that

16√
3

√
2V = α0

√
2V ≥ 16√

3
lim sup
n→+∞

∑

i∈In

(
∆̂n,i

)1/2
,

which is equivalent to (3.3.14).
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• In the sixth step we show that

lim
n→+∞

∑

i∈In

∆n,i = lim
n→+∞

∑

i∈In

∆̂n,i = 2V (3.3.15)

and

lim
n→+∞

∑

i∈In

(
∆̂n,i

)1/2
=

√
2V . (3.3.16)

To this end, we combine (3.3.12), (3.3.14), and the subadditivity of the square
root, and we obtain that

√
2V ≥ lim sup

n→+∞

∑

i∈In

(
∆̂n,i

)1/2
≥ lim sup

n→+∞

(
∑

i∈In

∆̂n,i

)1/2

≥ lim inf
n→+∞

(
∑

i∈In

∆̂n,i

)1/2

=

(
lim inf
n→+∞

∑

i∈In

∆̂n,i

)1/2

=
√
2V .

This means that all inequalities are actually equalities, which proves (3.3.16) and
the second equality in (3.3.15). At this point, the first inequality in (3.3.15) follows
again by letting n→ +∞ in (3.3.13).

• In the last step we apply Lemma 3.5.2 to the index set In and the function f(i) :=

∆̂n,i. We deduce that

0 ≤
(
∑

i∈In

∆̂n,i −max
i∈In

∆̂n,i

)1/2

≤ 3
∑

i∈In

(
∆̂n,i

)1/2
− 3

(
∑

i∈In

∆̂n,i

)1/2

The right-hand side tends to 0 because of (3.3.16) and the second equality in
(3.3.15). This is enough to establish the existence of i(n) ∈ In such that

lim
n→+∞

∆̂n,i(n) = 2V.

Now we know that

2V = lim
n→+∞

∑

i∈In

∆n,i ≥ lim
n→+∞

∆n,i(n) ≥ lim
n→+∞

∆̂n,i(n) = 2V,

and therefore all inequalities are actually equalities. This proves the first part of
(3.3.7). The second part follows from the equality

∫ Ln

−Ln

|w′
n(y)| dy = ∆n,i(n) +

∑

i∈In\{i(n)}

∆n,i +

∫

Ac
n

|w′
n(y)| dy,

since now we know that the last two terms tend to 0.
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Uniform estimates in the special interval Let us set for simplicity αn := αn,i(n) and
βn := βn,i(n). We claim that

• the sequence wn(y) tends to −V (1 + τ0) uniformly in [−Ln, αn] and to V (1− τ0)
uniformly in [βn, Ln], in the sense that

lim
n→+∞

(
max

y∈[−Ln,αn]
|wn(y) + V (1 + τ0)|+ max

y∈[βn,Ln]
|wn(y)− V (1− τ0)|

)
= 0,

(3.3.17)
and in particular

wn(αn) → −V (1 + τ0), wn(βn) → V (1− τ0), (3.3.18)

while we already know that

|w′
n(αn)| = |w′

n(βn)| =
1

| log εn|
→ 0. (3.3.19)

• when n is large enough it turns out that

−|An| < αn < 0 < βn < |An|,

and in particular the sequences {αn} and {βn} are bounded,

• for every bounded interval (a, b) ⊆ R it turns out that

{wn} is bounded in H2((a, b)), (3.3.20)

of course with a bound that depends on the interval.

Let us prove these claims. To begin with, from (3.3.7) we know that

lim
n→+∞

∫ αn

−Ln

|w′
n(y)| dy +

∫ Ln

βn

|w′
n(y)| dy = 0.

Keeping (3.3.5) into account, this is enough to establish (3.3.17). In particular, from
this uniform convergence we deduce that

wn(y) ≤ −V (1 + τ0)

2
< 0 ∀y ∈ [−Ln, αn]

when n is large enough. Since wn(0) = 0 for every n ∈ N, we conclude that αn < 0, and
also

βn = αn + (βn − αn) ≤ αn + |An| < |An|.
In a symmetric way we obtain that βn > 0 and αn > −|An|.
Finally, the bound on RPMVεn((−Ln, Ln), wn) yields immediately a uniform bound

on the norm of w′′
n in L2((−Ln, Ln)). Together with the pointwise bounds coming from

(3.3.18) and (3.3.19), this is enough to obtain a uniform bound on wn in H2((a, b)) for
every bounded interval (a, b) ⊆ R.
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Passing to the limit We are now ready to prove our convergence results. Since the
sequences {αn} and {βn} are bounded, up to subsequences (not relabeled) we can assume
that αn → α∞ and βn → β∞. Moreover, if we fix an interval (a, b) ⊇ (α∞, β∞), then
from (3.3.20) we can also assume that there exists w∞ ∈ H2((a, b)) such that

wn → w∞ and w′
n → w′

∞ uniformly in [a, b],

and
w′′

n ⇀ w′′
∞ weakly in L2((a, b)).

We claim that w∞ is the cubic connection. To prove this, we observe that since
wn(0) = 0 we have that w∞(0) = 0, while from (3.3.18) and (3.3.19) we obtain that

w∞(α∞) = −V (1 + τ0), w∞(β∞) = V (1− τ0), w′
∞(α∞) = w′

∞(β∞) = 0. (3.3.21)

Therefore, from Lemma 2.6.2 we deduce that
∫ β∞

α∞

w′′
∞(y)2 dy ≥ 12(2V )2

(β∞ − α∞)3
.

Now we consider the chain of inequalities

16√
3

√
2V ≥ lim sup

n→+∞
RPMVεn((−Ln, Ln), wn)

≥ lim sup
n→+∞

{∫ βn

αn

1

| log εn|
log

(
1 +

w′
n(y)

2

ε4n

)
dy +

∫ b

a

w′′
n(y)

2 dy

}

≥ lim sup
n→+∞

{
1

| log εn|
log

(
1

ε4n| log εn|2
)
(βn − αn) +

∫ b

a

w′′
n(y)

2 dy

}

= 4(β∞ − α∞) + lim sup
n→+∞

∫ b

a

w′′
n(y)

2 dy

≥ 4(β∞ − α∞) +

∫ b

a

w′′
∞(y)2 dy (3.3.22)

≥ 4(β∞ − α∞) +

∫ β∞

α∞

w′′
∞(y)2 dy (3.3.23)

≥ 4(β∞ − α∞) + 12
(2V )2

(β∞ − α∞)3
(3.3.24)

≥ 16√
3

√
2V . (3.3.25)

Since the first and last term coincide, all inequalities are actually equalities, and each
of them gives us some piece of information.

• The equality in (3.3.25) implies that β∞−α∞ = 2Λ, where Λ is defined by (3.2.4).

• The equality in (3.3.24) implies that w∞ is the unique polynomial of degree three
that interpolates the boundary data (3.3.21). Combining with the previous point
and the fact that w∞(0) = 0, we conclude that w∞ coincides with CΛ,V,τ0 in the
interval (α∞, β∞) = (−Λ− x0,Λ− x0), where x0 is as in Definition 3.2.1.
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• The equality in (3.3.23) implies that w′′
∞(y) vanishes outside (α∞, β∞). Since

w′
∞(α∞) = w′

∞(β∞) = 0, this is enough to conclude that w∞ is constant both in
(a, α∞) and in (β∞, b).

• The equality in (3.3.22) implies that actually w′′
n → w′′

∞ strongly in L2((a, b)).

Finally, we observe that the previous steps characterize in a unique way the possible
limits of subsequences, and this is enough to conclude the convergence of the whole
sequence.

3.4 Horizontal parts (Theorem 3.2.2, statement (2))

Let [a, b] ⊆ ((−1 + τ0)H, (1 + τ0)H) be a fixed interval. In the first part of the proof we
show that

lim sup
n→+∞

1

ω(εn)2
max{|vn(y)| : y ∈ [a, b]} < +∞, (3.4.1)

and then in the second part we prove (3.2.5)

3.4.1 Estimate on the functions

Let us set

gn(y) :=
f(xn + ω(εn)y)− un(xn)

ω(εn)
=
f(xn + ω(εn)y)− f(xn)

ω(εn)
− un(xn)− f(xn)

ω(εn)
.

We observe that the functions gn are uniformly bounded on bounded sets because

f(xn + ω(εn)y)− f(xn)

ω(εn)
→ f ′(x0)y

uniformly on bounded sets, and

un(xn)− f(xn)

ω(εn)

is equal to the value in 0 of the fake blow-up of un with center in xn, which is defined
(2.2.8), hence is uniformly bounded because of Theorem 2.2.9.

We also recall that

PMFεn(β, f, (0, 1), un) = ω(εn)
2
RPMFεn(β, gn, (−xn/ω(εn), (1− xn)/ω(εn)), vn),

and hence (3.2.3) implies that

vn ∈ argminloc{RPMFεn(β, gn, (a, b), v) : v ∈ H2((a, b))},

for every bounded interval (a, b) ⊂ R.
Now the proof of (3.4.1) consists of three main steps.
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• (Isolation of horizontal and vertical parts). In the first step we define three se-
quences {an}, {bn} and {cn} such that

an → (−1 + τ0)H, vn(an) → 0, |v′n(an)| ≤ 1, (3.4.2)

bn → (1 + τ0)H, vn(bn) → 0, |v′n(bn)| ≤ 1, (3.4.3)

cn → (1 + τ0)H, vn(cn) → 2V, |v′n(cn)| ≤ 1, (3.4.4)

and

|cn − bn| = O(ω(εn)
2). (3.4.5)

Moreover, we set

mn := max{|vn(y)| : y ∈ [an, bn]},

and we prove that mn → 0 as n→ +∞.

• (Estimate from below). In the second step we prove that there exists a constant
c0 > 0 such that

RPMεn((an, bn), vn) ≥ c0min

{√
mn,

m2
n

ω(εn)2

}
. (3.4.6)

• (Estimate from above). In the third step we prove that

RPMFεn(β, gn, (an, cn), vn) ≤ RPMεn((bn, cn), vn) + β

∫ bn

an

gn(y)
2 dy

+O(mn) +O(ω(εn)
2), (3.4.7)

Given the three steps, we can conclude as follows. We observe that

∫ bn

an

(vn(y)− gn(y))
2 dy =

∫ bn

an

gn(y)
2 dy +O(mn)

because |vn(y)| ≤ mn in (an, bn), and that

∫ cn

bn

(vn(y)− gn(y))
2 dy = O(ω(εn)

2)

because of (3.4.5) and the uniform boundedness of gn(y) and vn(y) on every bounded
set, and in particular in (bn, cn).
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As a consequence, by combining (3.4.7) and (3.4.6) we obtain that

RPMεn((bn, cn), vn) + β

∫ bn

an

gn(y)
2 dy +O(mn) +O(ω(εn)

2)

≥ RPMFεn(β, gn, (an, cn), vn)

= RPMεn((an, bn), vn) + RPMεn((bn, cn), vn)

+β

∫ bn

an

(vn(y)− gn(y))
2 dy + β

∫ cn

bn

(vn(y)− gn(y))
2 dy

≥ Γ0 min

{√
mn,

m2
n

ω(εn)2

}
+ RPMεn((bn, cn), vn)

+β

∫ bn

an

gn(y)
2 dy +O(mn) +O(ω(εn)

2),

from which we deduce that

c0 min

{√
mn,

m2
n

ω(εn)2

}
≤ O(mn) +O(ω(εn)

2). (3.4.8)

This inequality implies that mn = O(ω(εn)
2), which in turn implies (3.4.1). In-

deed, if this is not the case, then there exists a subsequence (not relabeled) such that
mn/ω(εn)

2 → +∞. Since eventually mn 6= 0 along this subsequence, we can divide
(3.4.8) by mn and obtain that

Γ0min

{
1√
mn

,
mn

ω(εn)2

}
≤ O(mn)

mn

+
O(ω(εn)

2)

ω(εn)2
· ω(εn)

2

mn

,

which is absurd because the left-hand side tends to +∞ when n → +∞, while the
right-hand side remains bounded.

Isolation of horizontal and vertical parts Let us start by constructing bn and cn. The
idea is that the limit of vn(y) is a piecewise constant function that jumps from 0 to 2V
in the point H(1 + τ0), and we know from Statement (1) of Theorem 3.2.2 that this
jump is entirely achieved in an interval whose length is O(ε2n). In addition, we need
a uniform bound on v′n at the endpoints of this short interval, for which we exploit a
bound on the energies to deduce that on every interval whose length is O(ω(εn)

2) there
exists at least a point in which v′n is bounded.

In order to pursue this path, we begin by observing that vn(0) = 0 for every n ∈ N,
and vn(2H) → 2V . Therefore, there exists zn ∈ (0, 2H) such that vn(zn) = V . From
the strict convergence we deduce that zn → H(1 + τ0), because the latter is the unique
point in (0, 2H) where the limit of vn can be different from an integer multiple of 2V .

Now we set yn := xn + ω(εn)zn, and we observe that

un(yn + ω(εn)y)− un(yn)

ω(εn)
= vn(y + zn)− vn(zn)  SH,V (y +H)− V.
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Since the limit function is a graph translation of vertical type of the canonical (H, V )-
staircase, from the result for the vertical parts of the steps we know that

wn(y) :=
un(yn + ω(εn)ε

2
ny)− un(yn)

ω(εn)
→ CΛ,V (y),

where CΛ,V (y) is the canonical (Λ, V )-cubic connection introduced in Definition 3.2.1
with Λ given by (3.2.4), and the convergence is uniform in the sense that

lim
n→+∞

max
{
|wn(y)− CΛ,V (y)| : |y| ≤ L/ε2n

}
= 0 (3.4.9)

for every L ∈ (0, 2H).
Now we recall that

RPMFεn(β, gn, (−2H, 2H), vn) ≤ E0, (3.4.10)

for some positive constant E0, because of Proposition 2.6.5. Let us consider the interval

In :=

[
zn − Λε2n −

E0

log 2
ω(εn)

2, zn − Λε2n

]
.

Since |In| = (E0/ log 2)ω(εn)
2, we deduce that

E0 ≥ RPMFεn(β, gn, In, vn)

≥ 1

ω(εn)2

∫

In

log(1 + v′n(y)
2) dy

≥ E0

log 2
min

{
log(1 + v′n(y)

2) : y ∈ In
}
.

This implies the existence of bn ∈ In such that log(1+v′n(bn)
2) ≤ log 2, and therefore

|v′n(bn)| ≤ 1. Moreover, bn → H(1 + τ0) because both endpoints of In tend to the same
limit of zn. Finally, we show that vn(pn) → 0 for every sequence of points {pn} such that
pn ∈ [0, bn], so in particular vn(bn) → 0. To this end, we write pn in the form zn + ε2nβn
for some βn ∈ [−zn/ε2n,−Λ], and we observe that

vn(pn) = wn(βn) + vn(zn) = wn(βn) + V,

and we conclude by exploiting (3.4.9) and by remarking that CΛ,V (y) = −V when
y ≤ −Λ.

In the same way we construct the points cn satisfying (3.4.4) starting from the
interval

In :=

[
zn + Λε2n, zn + Λε2n +

E0

log 2
ω(εn)

2

]
.

Of course in this case we exploit that cn is of the form yn + ε2nγn with γn ≥ Λ, so
that wn(γn) → V .

Finally, we construct an in the same way of bn, but starting with the point z′n ∈
(−2H, 0) such that vn(z

′
n) → −V which implies that z′n → (−1 + τ0)H. As before, we
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can show that |v′n(an)| ≤ 1 and that vn(pn) → 0 for every sequence of points {pn} such
that pn ∈ [an, 0], and in particular vn(an) → 0.

We conclude the proof of the first step by observing that (3.4.5) is an immediate
consequence of the definition of bn and cn, which implies that

0 ≤ cn − bn ≤ 2E0

log 2
ω(εn)

2,

and that mn → 0 because we have proved that vn(pn) → 0 for every sequence {pn} such
that pn ∈ [an, bn].

Estimate from below We set Mn := min{√mn,m
2
n/ω(εn)

2} and we prove that

lim inf
n→+∞

1

Mn

RPMεn((an, bn), vn) > 0, (3.4.11)

which in turn implies (3.4.6). To this end, for every n ∈ N we define v̂n(y) in such a
way that vn(y) = mnv̂n(y), and we observe that

RPMεn((an, bn), vn) =

∫ bn

an

{
ε6nm

2
nv̂

′′
n(y)

2 +
1

ω(εn)2
log
(
1 +m2

nv̂
′
n(y)

2
)}

dy, (3.4.12)

and that

v̂n(0) = 0 and max{|v̂n(y)| : y ∈ [an, bn]} = 1.

Now we observe that the sequence of intervals (an, bn) and the sequence of functions
v̂n ∈ H2((an, bn)) fit into the framework of Lemma 3.5.6 with L := 2H and J := 1, and
we claim that the liminf in (3.4.11) is greater than or equal to the constant c(2H, 1)
provided by Lemma 3.5.6. It is enough to prove this along the two subsequences where
Mn takes either of the values in the minimum, and therefore we distinguish two cases
(without relabeling subsequences).

• If Mn = m2
n/ω(εn)

2, namely
√
mn ≥ m2

n/ω(εn)
2, then we have that ω(εn)

8 ≥ m6
n.

Therefore, at least if n is large enough, we deduce that

| logmn| ≥
4

3
| logω(εn)| =

4

3

(
| log εn| −

1

2
log | log εn|

)
≥ | log εn|,

which implies that ε6nω(εn)
2 ≥ m6

n/| logmn|3. As a consequence, from (3.4.12) we
obtain that

1

Mn

RPMεn(an, bn), vn) ≥ RPMHmn((an, bn), v̂n),

where the functional RPMH is defined according to (3.5.6).

Since mn → 0 and we know that |v̂′n(an)| ≤ 1/mn and |v̂′n(bn)| ≤ 1/mn, the result
follows from Lemma 3.5.6.
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• If Mn =
√
mn, namely

√
mn ≤ m2

n/ω(εn)
2, then we have that m2

n ≥ ω(εn)
2√mn.

Thus, from (3.4.12) we obtain that

1

Mn

RPMεn((an, bn), vn) ≥ min

{
1,

| log(ω(εn)m1/4
n )|3

| log εn|3

}
RPMH

ω(εn)m
1/4
n

((an, bn), v̂n),

and the result follows again from Lemma 3.5.6 because ω(εn)m
1/4
n → 0, the bound-

ary values satisfy

|v̂′n(an)| ≤
1

mn

≤ 1

ω(εn)m
1/4
n

and |v̂′n(bn)| ≤
1

mn

≤ 1

ω(εn)m
1/4
n

,

and it holds that

lim inf
n→+∞

| log(ω(εn)m1/4
n )|3

| log εn|3
≥ lim inf

n→+∞

| log(ω(εn))|3
| log εn|3

= 1.

Estimate from above In this paragraph we prove (3.4.7). Since

vn ∈ argminloc

{
RPMFεn(β, gn, (an, cn), v) : v ∈ H2((an, cn))

}
,

it is enough to exhibit a function ṽn ∈ H2((an, cn)), with the same boundary conditions
(both on function and on the derivative) of vn, such that RPMFεn(β, gn, (an, cn), ṽn) is
bounded from above by the right-hand side of (3.4.7). One would like to choose ṽn as
the function identically equal to vn(an) in the horizontal part (an, bn), and equal to a
suitable homothety of vn in the vertical part (bn, cn). This choice, however, does not fit
the boundary conditions and is not of class H2. Therefore, we have to smooth out the
connections. To this end, we observe that

an < an + ε3nω(εn) < bn − ε3nω(εn) < bn < cn

when n is large enough, so that we can partition [an, cn] into four intervals

I1,n := [an, an + ε3nω(εn)], I2,n := [an + ε3nω(εn), bn − ε3nω(εn)],

I3,n := [bn − ε3nω(εn), bn], I4,n := [bn, cn].

Then we consider the constant

Bn :=
vn(bn)− vn(an)

vn(cn)− vn(bn)− (cn − bn)v′n(cn)
,

and we observe that Bn = O(mn) because |vn(bn)−vn(an)| ≤ 2mn and the denominator
tends to 2V . At this point we define ṽn in a piecewise way as follows.

• In I1,n we define ṽn(x) as the cubic polynomial with boundary conditions

ṽn(an) = ṽn(an + ε3nω(εn)) = vn(an), ṽ′n(an) = v′n(an), ṽ′n(an + ε3nω(εn)) = 0.
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• In I2,n we define ṽn(x) ≡ vn(an).

• In I3,n we define ṽn(x) as the cubic polynomial such that

ṽn(bn − ε3nω(εn)) = ṽn(bn) = vn(an), ṽ′n(bn − ε3nω(εn)) = 0,

and

ṽ′n(bn) = v′n(bn) + Bn(v
′
n(bn)− v′n(cn)).

• In I4,n we set

ṽn(y) := vn(y) +Bn

(
vn(y) + (cn − y)v′n(cn)− vn(cn)

)
.

This definition guarantees that the connections in the intermediate points are of class
C1, so ṽn ∈ H2((an, cn)), and that the values of ṽn(y) and ṽ

′
n(y) for y = an and y = cn

coincide with the corresponding values of vn(y) and v′n(y). We claim that the fidelity
term satisfies

∫ cn

an

|ṽn(y)− gn(y)|2 dy =

∫ bn

an

|gn(y)|2 dy +O(ω(εn)
2) +O(mn). (3.4.13)

As for the terms of RPMεn of course in I2,n it holds that RPMεn(I2,n, ṽn) = 0.
Moreover, in I1,n and I3,n it turns out that

RPMεn(I1,n, ṽn) = O(ε3n/ω(εn)) = O(ω(εn)
2), (3.4.14)

and

RPMεn(I3,n, ṽn) = O(ε3n/ω(εn)) = O(ω(εn)
2), (3.4.15)

while in I4,n it turns out that

∫ cn

bn

ε6nṽ
′′
n(y)

2 dy =

∫ cn

bn

ε6nv
′′
n(y)

2 dy +O(mn) (3.4.16)

and

∫ cn

bn

1

ω(εn)2
log
(
1 + ṽ′n(y)

2
)
=

∫ cn

bn

1

ω(εn)2
log
(
1 + v′n(y)

2
)
+O(mn) (3.4.17)

These claims, if true, are enough to establish (3.4.7).

Let us start with (3.4.13). We recall that the sequence {gn} is uniformly bounded
on bounded sets, hence it is uniformly bounded in [an, cn].

On the other hand, also the sequence {ṽn(y)} is uniformly bounded in [an, cn]. This
is trivial in I2,n, while in I1,n and in I3,n it follows from Lemma 2.6.2 and the uniform
boundedness of the boundary values, and in I4,n it follows from the uniform bounds on
vn. We point out that in this point it is essential to have an estimate on v′n(bn) and
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v′n(cn). Since the measure of [an, cn] \ I2,n is O(ω(εn)
2) and |ṽn(y)| = |vn(an)| ≤ mn in

I2,n, it follows that
∫ cn

an

|ṽn(y)− gn(y)|2 dy =

∫

I2,n

|ṽn(y)− gn(y)|2 dy +O(ω(εn)
2)

=

∫

I2,n

|gn(y)|2 dy +O(mn) +O(ω(εn)
2)

=

∫ bn

an

|gn(y)|2 dy +O(mn) +O(ω(εn)
2),

that is exactly (3.4.13).
In order to estimate the terms with second order derivatives, in the intervals I1,n and

I3,n we apply again Lemma 2.6.2, and we obtain that
∫

I1,n

ε6nṽ
′′
n(y)

2 dy = 4v′n(an)
2 ε3n
ω(εn)

,

and ∫

I3,n

ε6nṽ
′′
n(y)

2 dy = 4
[
v′n(bn) + Bn(v

′
n(bn)− v′n(cn))

]2 ε3n
ω(εn)

,

while for first order derivatives it turns out that
∫

I1,n

1

ω(εn)2
log(1 + ṽ′n(y)

2) dy ≤ 1

ω(εn)2
log

(
1 +

9

4
v′(an)

2

)
|I1,n| = O(ε3n/ω(εn)),

and similarly in I3,n. This is enough to establish (3.4.14) and (3.4.15). It remains to
consider I4,n = [bn, cn], where

ṽ′n(y) = (1 + Bn)v
′
n(y)−Bnv

′
n(cn) and ṽ′′n(y) = (1 + Bn)v

′′
n(y).

In particular it turns out that
∫ cn

bn

ε6nṽ
′′
n(y)

2 dy =

∫ cn

bn

ε6nv
′′
n(y)

2 dy + (2Bn + B2
n)

∫ cn

bn

ε6nv
′′
n(y)

2 dy,

and this implies (3.4.16) because Bn = O(mn) and the last integral is bounded by E0

thanks to (3.4.10).
Finally, since |Bn| ≤ 1/2 if n is large enough, from Lemma 3.5.1 applied with

x := v′n(y), b := Bn, d := −Bnv
′
n(cn)

we obtain that
∫ cn

bn

1

ω(εn)2
log(1 + ṽ′n(y)

2) =

∫ cn

bn

1

ω(εn)2
log(1 + v′n(y)

2) +Rn,

where

|Rn| ≤
5

ω(εn)2
· |Bn| · (cn − bn).

Recalling that Bn = O(mn) and cn − bn = O(ω(εn)
2), we obtain (3.4.17).
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3.4.2 Estimate on the derivatives

In this part of the proof we prove (3.2.5).
Let [a, b] ⊆ ((−1 + τ0)H, (1 + τ0)H) be any interval. Let us choose a′ and b′ with

(−1 + τ0)H < a′ < a < b < b′ < (1 + τ0)H.

Let us define wn(y) in such a way that vn(y) = ω(εn)
2wn(y). From the results of the

previous section we know that there exists a constant Γ0 such that

|wn(y)| ≤ Γ0 ∀y ∈ [a′, b′], ∀n ∈ N. (3.4.18)

In addition, from the mean value theorem applied in the intervals [a′, a] and [b, b′],
we deduce that there exist an ∈ (a′, a) and bn ∈ (b, b′) such that

|w′
n(an)| ≤

2Γ0

a− a′
and |w′

n(bn)| ≤
2Γ0

b′ − b
. (3.4.19)

In the sequel we consider the interval (an, bn), and our claim becomes that

lim sup
n→+∞

max{|w′
n(y)| : y ∈ (an, bn)} < +∞. (3.4.20)

We observe that

RPMFεn(β, gn, (an, bn), vn) = RPMεn((an, bn), ω(εn)
2wn)

+

∫ bn

an

(
ω(εn)

4wn(y)
2 − 2ω(εn)

2gn(y)wn(y) + gn(y)
2
)
dy,

so that we can consider wn as a minimizer to the right-hand side subject to its own
boundary conditions, and we already know from (3.4.18) and (3.4.19) that these bound-
ary conditions satisfy a bound of the form

|wn(an)|+ |wn(bn)|+ |w′
n(an)|+ |w′

n(bn)| ≤ Γ1 (3.4.21)

for a suitable real constant Γ1. Since the integral of gn(y)
2 plays no role in the mini-

mization process, we can neglect it and divide by ω(εn)
2. In this way we obtain that

wn ∈ argminloc

{
Fn((an, bn), w) : w ∈ H2((an, bn))

}
,

where the sequence of functionals Fn is defined by

Fn(Ω, w) :=

∫

Ω

(
ε6nω(εn)

2w′′(y)2 +
1

ω(εn)4
log
(
1 + ω(εn)

4w′(y)2
))

dy

+

∫

Ω

(
ω(εn)

2w(y)2 − 2gn(y)w(y)
)
dy.

One could prove that, if gn → g∞ in L2, the Gamma-limit of Fn is of the form
∫

Ω

(
w′(y)2 − 2g∞(y)w(y)

)
dy.
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Therefore, it is reasonable to expect that wn(y) behaves for large n as a minimizer
to the limit problem, which is a standard quadratic functional. This is what actually
happens, but the proof is delicate for many reasons, including the lack of convexity
of the approximating functionals, defined on intervals that depend also on n, and the
boundary layers due to the loss of the boundary conditions on the derivative when the
functionals of order two converge to a functional of order one. In particular, we cannot
expect the sequence {w′

n(y)} to converge uniformly, and we cannot expect all recovery
sequences to have bounded derivatives, which forces us to exploit the minimality of
wn(y) to some extent.

The key tool in our analysis is a comparison between wn(y) and minimizers to a
suitable first order functional with a convex Lagrangian, defined as follows. Let us
consider the function

ϕn(σ) :=
1

ω(εn)4
log(1 + ω(εn)

4σ2) ∀σ ∈ R.

An elementary calculation shows that

ϕ′′
n(σ) ≥ 1 ∀σ ∈

[
− 1

3ω(εn)2
,

1

3ω(εn)2

]
.

Now we consider the function ψn : R → R such that ψn(0) = ψ′
n(0) = 0 and

ψ′′
n(σ) := max{ϕ′′

n(σ), 1} ∀σ ∈ R. (3.4.22)

This function satisfies

• ψn ∈ C2(R),

• ψ′′(σ) ≥ 1 for every σ ∈ R,

• σ2/2 ≤ ψn(σ) ≤ σ2 for every σ ∈ R,

• ψn(σ) = ϕn(σ) for every σ ∈ [−1/3ω(εn)
2, 1/3ω(εn)

2].

At this point we can consider the functional

Gn(Ω, z) :=

∫

Ω

(
ψn(z

′(y)) + ω(εn)
2z(y)2 − 2gn(y)z(y)

)
dy (3.4.23)

and an element

zn ∈ argmin
{
Gn((an, bn), z) : z ∈ H1((an, bn)), zn(an) = wn(an), zn(bn) = wn(bn)

}
.

(3.4.24)
We point out that we do not impose any boundary condition on derivatives, because

the Lagrangian of Gn is of order one. At this point the proof proceeds as follows.

• (Uniform bounds on zn). In the first step we show that there exist real numbers
Γ2 and Γ3 such that

Gn((an, bn), zn) ≤ Γ2, (3.4.25)

and
|zn(y)|+ |z′n(y)|+ |z′′n(y)| ≤ Γ3 ∀y ∈ (an, bn). (3.4.26)
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• (Estimates from above). In the second step we show that

Fn((an, bn), wn) ≤ Gn((an, bn), zn) +O(ε3nω(εn)). (3.4.27)

• (The contribution of high derivatives is negligible). In the third step we introduce
the regions with high derivative

An :=

{
y ∈ (an, bn) : |w′

n(y)| >
1

4ω(εn)2

}
,

and their contribution to the total variation

∆n :=

∫

An

|w′
n(y)| dy.

We show that they are both negligible, and more precisely that

|An| = O(ω(εn)
4) and ∆n = O(ε2n| log εn|5/2). (3.4.28)

• (Estimates from below in regions with “small” derivative). In the fourth step we
show that

Fn(A
c
n, wn) ≥ Gn((an, bn), zn)−O(ω(εn)

4)−O(∆n), (3.4.29)

where Ac
n denotes the complement of An in (an, bn).

• (Reduction to the convexity zone). In the fifth step we show that

|w′
n(y)| ≤

1

3ω(εn)2
∀y ∈ (an, bn) (3.4.30)

when n is large enough. This seems to be a weak progress toward (3.4.20), but
actually it is a crucial step, because it implies that eventually wn stays in the
region where ϕn(σ) coincides with ψn(σ), and hence in the convex regime.

• (Conclusion). Finally, in the sixth step we show that wn(y)− zn(y) tends to zero
with respect to the C0 norm, and it is bounded in C1 norm (but not necessarily
vanishing, due to the boundary layers). Since zn is bounded in the C1 norm, this
is enough to establish (3.4.20).

Uniform bounds on zn The proof of (3.4.25) and (3.4.26) is a straightforward applica-
tion of Lemma 3.5.3. We just need to check that the functional Gn defined in (3.4.23)
fits into the assumptions, which in turn follow from the properties of ψn.
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Estimate from above In this paragraph we prove (3.4.27). To this end, we observe
that wn is a solution to a minimum problem, and therefore it is enough to exhibit a
competitor for the minimum problem whose energy is bounded by the right-hand side
of (3.4.27). A natural choice for this competitor would be zn(t), which however does
not necessarily satisfy the boundary conditions on the derivative. Therefore, we need
to modify zn(t) in a neighborhood of the boundary. To this end, we write [an, bn] as the
union of three intervals

I1,n := [an, an+ε
3
nω(εn)], I2,n := [an+ε

3
nω(εn), bn−ε3nω(εn)], I3,n := [bn−ε3nω(εn), bn],

and we consider the function ŵn : [an, bn] → R defined as follows.

• In I1,n we define ŵn as the cubic polynomial with boundary conditions

ŵn(an) = wn(an) = zn(an), ŵ′
n(an) = w′

n(an),

ŵn(an + ε3nω(εn)) = zn(an + ε3nω(εn)),

ŵ′
n(an + ε3nω(εn)) = z′n(an + ε3nω(εn)).

• In I2,n we set ŵn(y) := zn(y).

• In I3,n we define ŵn as the cubic polynomial with boundary conditions

ŵn(bn − ε3nω(εn)) = zn(bn − ε3nω(εn)),

ŵ′
n(bn − ε3nω(εn)) = z′n(bn − ε3nω(εn)),

ŵn(bn) = wn(bn) = zn(bn), ŵ′
n(bn) = w′

n(bn).

This definition guarantees that the connections in the intermediate points are of class
C1, so that the resulting function belongs to H2((an, bn)), and that the values of ŵn(y)
and ŵ′

n(y) for y = an and y = bn coincide with the corresponding values of wn(y) and
w′

n(y).
Now we show that an estimate of the form (3.4.27) holds true separately in each of

the three intervals.

• In the interval I1,n we claim that

Fn(I1,n, ŵn) = O(ε3nω(εn)) and Gn(I1,n, zn) = O(ε3nω(εn)), (3.4.31)

and hence in particular

Fn(I1,n, ŵn)−Gn(I1,n, zn) = O(ε3nω(εn)).

Regarding ŵn, we apply Lemma 2.6.2 with

A0 := wn(an), B0 := zn(an + ε3nω(εn)),

A1 := w′
n(an), B1 := z′n(an + ε3nω(εn)).
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We observe that (3.4.21) and (3.4.26) guarantee that all these values are bounded
and that

|B0−A0| = |zn(an+ε3nω(εn))−wn(an)| = |zn(an+ε3nω(εn))−zn(an)| = O(ε3nω(εn)),

Thus from Lemma 2.6.2 we obtain that∫

I1,n

ε6nω(εn)
2ŵ′′

n(y)
2 dy = O(ε3nω(εn)),

and the existence of a constant Γ4 such that

|ŵn(y)|+ |ŵ′
n(y)| ≤ Γ4 ∀y ∈ I1,n, ∀n ∈ N.

Since |I1,n| = ε3nω(εn), this implies that
∫

I1,n

1

ω(εn)4
log
(
1 + ω(εn)

4ŵ′
n(y)

2
)
dy ≤

∫

I1,n

ŵ′
n(y)

2 dy = O(ε3nω(εn)),

and ∫

I1,n

(
ω(εn)

2ŵn(y)
2 − 2gn(y)ŵn(y)

)
dy = O(ε3nω(εn)

3).

All these estimates imply the first relation in (3.4.31).

Regarding zn, it is enough to observe that
∫

I1,n

ψn(z
′
n(y)) dy ≤

(
max
σ∈R

ψ′′
n(σ)

)∫

I1,n

z′n(y)
2

2
dy ≤ O(ε3nω(εn)),

and ∫

I1,n

(
ω(εn)

2zn(y)
2 − 2gn(y)zn(y)

)
dy = O(ε3nω(εn)

3),

because of the uniform bounds on zn and gn.

• In an analogous way, we can show that

Fn(I3,n, ŵn)−Gn(I3,n, zn) = O(ε3nω(εn)).

• In the interval I2,n we claim that

Fn(I2,n, ŵn)−Gn(I2,n, zn) = O(ε6nω(εn)
2).

Indeed, the uniform bound on z′n(t) implies that

|z′n(y)| ≤
1

3ω(εn)4
∀y ∈ I2,n

when n is large enough. For these values of n it follows that

ψn(z
′
n(y)) =

1

ω(εn)4
log
(
1 + ω(εn)

4z′n(y)
2
)

∀y ∈ I2,n,

and therefore

Fn(I2,n, ŵn) = Fn(I2,n, zn) = ε6nω(εn)
2

∫

I2,n

z′′n(y)
2 dy +Gn(I2,n, zn),

and we conclude by exploiting the uniform bounds on z′′n(y).
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The contribution of high derivatives is negligible To begin with, from (3.4.25), (3.4.27)
and the uniform bounds on wn and gn, we deduce that

∫

An

(
ε6nω(εn)

2w′′
n(y)

2 +
1

ω(εn)4
log
(
1 + ω(εn)

4w′
n(y)

2
))

dy

≤ Fn((an, bn), wn) + 2

∣∣∣∣
∫ bn

an

gn(y)wn(y) dy

∣∣∣∣ ≤ Γ5, (3.4.32)

for a suitable constant Γ5. This implies in particular that

Γ5 ≥
1

ω(εn)4

∫

An

log
(
1 + ω(εn)

4w′
n(y)

2
)
dy ≥ 1

ω(εn)4
log

(
17

16

)
|An|,

which in turn implies that |An| = O(ω(εn)
4). In addition, from Lemma 3.5.5, we deduce

that

∫

An

(
ε6nω(εn)

2w′′
n(y)

2 +
1

ω(εn)4
log
(
1 + ω(εn)

4w′
n(y)

2
))

dy

≥ 4
√
2/3

εn| log εn|5/4
(
log

(
17

16

))3/4(
∆n −

|An|
4ω(εn)2

)1/2

.

Combining this estimate with (3.4.32) we obtain that

Γ5

4
√

2/3

(
log

(
17

16

))−3/4

≥ 1

εn| log εn|5/4
(
∆n −

|An|
4ω(εn)2

)1/2

≥ (∆n −O(ω(εn)
2))

1/2

εn| log εn|5/4
,

from which we conclude that ∆n = O(ε2n| log εn|5/2).

Estimates from below in regions with “small” derivative In order to prove (3.4.29), we
introduce the functions w̃n ∈ H1((an, bn)) such that w̃n(an) = wn(an) and

w̃′
n(y) :=

{
w′

n(y) if x ∈ Ac
n,

0 if x ∈ An.

For every y ∈ [an, bn] it turns out that

|wn(y)− w̃n(y)| ≤
∫ bn

an

|w′
n(s)− w̃′

n(s)| ds =
∫

An

|w′
n(s)| ds = ∆n,

and in particular |w̃n(y)| is bounded, independently of y and n.
Then we introduce the function z̃n that minimizes Gn with respect to the same

boundary conditions of w̃n, namely

z̃n ∈ argmin
{
Gn((an, bn), z) : z ∈ H1((an, bn)), z(an) = w̃(an), z(bn) = w̃(bn)

}
.

We claim that

Fn(A
c
n, wn) ≥ Gn((an, bn), w̃n)−O(ω(εn)

4)−O(∆n),
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and

Gn((an, bn), z̃n) = Gn((an, bn), zn)−O(∆n).

Since Gn((an, bn), w̃n) ≥ Gn((an, bn), z̃n) due to the minimality of z̃n, these two
claims, if proved, imply (3.4.29).

In order to prove the first claim, we begin by observing that

∫

Ac
n

1

ω(εn)4
log
(
1 + ω(εn)

4w′
n(y)

2
)
dy =

∫ bn

an

1

ω(εn)4
log
(
1 + ω(εn)

4w̃′
n(y)

2
)
dy

=

∫ bn

an

ψn(w̃
′
n(y)) dy,

and therefore

Fn(A
c
n, wn) ≥

∫

Ac
n

[
1

ω(εn)4
log
(
1 + ω(εn)

4w′
n(y)

2
)
+ ω(εn)

2wn(y)
2 − 2gn(y)wn(y)

]
dy

=

∫ bn

an

(
ψn(w̃

′
n(y)) + ω(εn)

2w̃n(y)
2 − 2gn(y)w̃n(y)

)
dy

−
∫

An

(
ω(εn)

2w̃n(y)
2 − 2gn(y)w̃n(y)

)
dy

−
∫

Ac
n

[
ω(εn)

2
(
w̃n(y)

2 − wn(y)
2
)
− 2gn(y) (w̃n(y)− wn(y))

]
dy.

The first line after the equality sign is exactly Gn((an, bn), w̃n). The second line is
O(|An|), and therefore O(ω(εn)

4), due to the uniform bounds on gn(y) and w̃n(y). For
the same reason, the third line is O(‖w̃n − wn‖∞), and hence O(∆n).

The second claim is a straightforward application of Lemma 3.5.4 to the functional
Gn. We just need to observe that the difference between the boundary values of zn and
z̃n is O(∆n).

Reduction to the convexity zone Let us show that (3.4.30) holds true whenever n is large
enough. Indeed, let us assume by contradiction that this is false. Then along a suitable
subsequence (not relabeled) there exists cn ∈ (an, bn) such that |w′

n(cn)| > (3ω(εn)
2)−1.

Since cn ∈ An, there exists a point dn ∈ (an, bn) such that

|w′
n(dn)| =

1

4ω(εn)2
,

and that the open interval whose endpoints are cn and dn is contained in An, so it holds
that

|dn − cn| ≤ |An| = O(ω(εn)
4).

Let us assume, without loss of generality, that dn > cn (the other case is symmetric).
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Then it turns out that

∫ dn

cn

ε6nω(εn)
2w′′

n(y)
2 dy ≥ ε6nω(εn)

2 1

dn − cn

(∫ dn

cn

w′′
n(y) dy

)2

= ε6nω(εn)
2 1

dn − cn
(w′

n(dn)− w′
n(cn))

2

≥ ε6nω(εn)
2 1

dn − cn

(
1

12ω(εn)2

)2

.

Recalling the uniform bounds on wn and gn, we obtain that

Fn(An, wn) ≥
∫ dn

cn

ε6nω(εn)
2w′′

n(y)
2 dy − 2

∫

An

|gn(y)| · |wn(y)| dy

≥ 1

144

ε6n
(dn − cn)ω(εn)2

−O(An).

=
1

144

ε6n
(dn − cn)ω(εn)2

−O(ω(εn)
4).

Combining with (3.4.27) and (3.4.29) we deduce that

Gn((an, bn), zn) +O(ε3nω(εn)) ≥ Fn((an, bn), wn)

= Fn(An, wn) + Fn(A
c
n, wn)

≥ 1

144

ε6n
(dn − cn)ω(εn)2

−O(ω(εn)
4)

+Gn((an, bn), zn)−O(ω(εn)
4)−O(∆n),

and therefore

ε6n
O(ω(εn)6)

≤ ε6n
(dn − cn)ω(εn)2

≤ O(∆n) +O(ω(εn)
4).

Multiplying both sides by | log εn|3 this relation leads to a contradiction when n →
+∞, because the left-hand side has a positive liminf, while the right-hand side tends
to 0 thanks to the second relation in (3.4.28).

Conclusion In this final paragraph of the proof we define the reminder rn(y) in such a
way that wn(y) = zn(y) + rn(y), and we show that r′n(y) is uniformly bounded.

To begin with, from (3.4.26) and (3.4.30) we know that both w′
n(y) and z

′
n(y) lie in

the interval where ϕn(σ) coincides with the convex function ψn(σ), at least when n is
large enough. Recalling that ψ′′(σ) ≥ 1 for every σ ∈ R we obtain that

ϕn(w
′
n(y)) = ψn(z

′
n(y) + r′n(y)) ≥ ψn(z

′
n(y)) + ψ′

n(z
′
n(y)) · r′n(y) +

1

2
r′n(y)

2.
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From this inequality we obtain that

Fn((an, bn), wn) ≥ Gn((an, bn), zn)

+

∫ bn

an

(
ψ′
n(z

′
n(y)) · r′n(y) + 2ω(εn)

2zn(y)rn(y)− 2gn(y)rn(y)
)
dy

+

∫ bn

an

ε6nω(εn)
2
(
z′′n(y)

2 + 2z′′n(y)r
′′
n(y)

)
dy

+

∫ bn

an

(
ε6nω(εn)

2r′′n(y)
2 +

1

2
r′n(y)

2 + ω(εn)
2rn(y)

2

)
dy.

The second line vanishes because it is the first variation of the functional Gn in
the minimum point zn, computed with respect to the variation rn, which is admissible
because rn(an) = rn(bn) = 0. For the third line we exploit the inequality

a2 + 2ab ≥ −b
2

2
− a2 ∀(a, b) ∈ R

2,

and, recalling that z′′n(y) is uniformly bounded by (3.4.26), we obtain that
∫ bn

an

ε6nω(εn)
2
(
z′′n(y)

2 + 2z′′n(y)r
′′
n(y)

)
dy ≥ −1

2

∫ bn

an

ε6nω(εn)
2r′′n(y)

2 dy −O(ε6nω(εn)
2).

Combining with (3.4.27) we deduce that

Gn((an, bn), zn) +O(ε3nω(εn)) ≥ Fn((an, bn), wn)

≥ Gn((an, bn), zn) +
1

2

∫ bn

an

(
ε6nω(εn)

2r′′n(y)
2 + r′n(y)

2
)
dy −O(ε6nω(εn)

2),

and therefore ∫ bn

an

(
ε6nω(εn)

2r′′n(y)
2 + r′n(y)

2
)
dy ≤ O(ε3nω(εn)).

We are now ready to conclude. Since rn vanishes at the boundary, there exists
yn ∈ (an, bn) such that r′n(yn) = 0. From the inequality between arithmetic mean ad
geometric mean we obtain that

ε3nω(εn)
d

ds
[r′n(s)

2] = 2ε3nω(εn)r
′
n(s)r

′′
n(s) ≤ ε6nω(εn)

2r′′n(y)
2 + r′n(s)

2,

and therefore

ε3nω(εn)r
′
n(y)

2 = ε3nω(εn)
(
r′n(y)

2 − r′n(yn)
2
)

=

∣∣∣∣
∫ y

yn

ε3nω(εn)
d

ds
[r′n(s)

2] ds

∣∣∣∣

≤
∫ y

yn

(
ε6nω(εn)

2r′′n(s)
2 + r′n(s)

2
)
ds

≤
∫ bn

an

(
ε6nω(εn)

2r′′n(s)
2 + r′n(s)

2
)
ds

≤ O(ε3nω(εn)).

Dividing by ε3nω(εn) we obtain the uniform bound on r′n(y).
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3.5 Some lemmata

I this section we prove some lemmata that we exploited in the proof of the main results.
The first one is an elementary inequality for the logarithm.

Lemma 3.5.1. It turns out that

∣∣log
(
1 + [(1 + b)x+ d]2

)
− log

(
1 + x2

)∣∣ ≤ 4|b|+ |d| ∀(b, d, x) ∈
[
−1

2
,
1

2

]
× R

2.

Proof. We observe that the function ψ(σ) := log(1 + σ2) is Lipschitz continuous, with
Lipschitz constant equal to 1, and in particular

∣∣log
(
1 + [(1 + b)x+ d]2

)
− log

(
1 + (1 + b)2x2

)∣∣ ≤ |d|,

so that it is enough to prove that
∣∣log

(
1 + (1 + b)2x2

)
− log

(
1 + x2

)∣∣ ≤ 4|b|. (3.5.1)

To this end we observe that

∣∣log
(
1 + (1 + b)2x2

)
− log

(
1 + x2

)∣∣ =
∣∣∣∣log

(
1 + (2b+ b2)

x2

1 + x2

)∣∣∣∣

and the right-hand side is a nondecreasing function of x2, for every fixed b ∈ R. This
implies that

∣∣∣∣log
(
1 + (2b+ b2)

x2

1 + x2

)∣∣∣∣ ≤
∣∣log

(
1 + 2b+ b2

)∣∣ ∀b 6= −1 ∀x ∈ R.

Now we exploit the fact that b ∈ [−1/2, 1/2] and we observe that the function
φ(σ) := log(1+ σ) is Lipschitz continuous on [−1/2, 1/2], with Lipschitz constant equal
to 2, so we obtain that

∣∣log
(
1 + 2b+ b2

)∣∣ = 2 |log (1 + b)| ≤ 4|b| ∀b ∈
[
−1

2
,
1

2

]
.

This completes the proof of (3.5.1).

The next lemma is a quantitative version of the subadditivity of the square root.

Lemma 3.5.2 (Quantitative subadditivity of the square root). Let I be a finite or
countable nonempty set, and let f : I → [0,+∞) be a function. Let us assume that the
following three quantities are finite:

S :=
∑

i∈I

f(i), R :=
∑

i∈I

√
f(i), M := max{f(i) : i ∈ I}.

Then it turns out that √
S −M ≤ 3

(
R−

√
S
)
. (3.5.2)

Proof. We distinguish two cases.
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Case 1: M ≥ S/2 Let i0 ∈ I be such that f(i0) = M , and let I ′ := I \ {i0}. From
the subadditivity of the square root we deduce that

R =
√
f(i0) +

∑

i∈I′

√
f(i) ≥

√
f(i0) +

(
∑

i∈I′

f(i)

)1/2

=
√
M +

√
S −M.

Now we observe that the function ϕ(x) := 1 +
√
x −

√
1 + x is increasing, and

therefore

1 +
√
x−

√
1 + x ≥ 2−

√
2 ≥ 1

3
∀x ≥ 1.

Setting x :=M/(S −M) (which is greater than or equal to 1 in this case), from the
combination of these two inequalities we conclude that

R−
√
S ≥

√
S −M +

√
M −

√
S ≥ 1

3

√
S −M,

which proves (3.5.2) in this case.

Case 2: M ≤ S/2 In this case there exists I1 ⊆ I such that

S1 :=
∑

i∈I1

f(i) ∈
[
1

4
S,

3

4
S

]
.

Setting I2 := I \ I1, as before from the subadditivity of the square root we obtain
that

R =
∑

i∈I1

√
f(i) +

∑

i∈I2

√
f(i) ≥

(
∑

i∈I1

f(i)

)1/2

+

(
∑

i∈I2

f(i)

)1/2

≥
√
S1 +

√
S − S1.

Now we observe that ψ(x) :=
√
x +

√
1− x − 1 is a concave function with equal

values in 1/4 and 3/4, and in particular

√
x+

√
1− x− 1 ≥

√
3− 1

2
≥ 1

3
∀x ∈

[
1

4
,
3

4

]
.

Setting x := S1/S (which lies in the interval [1/4, 3/4]), from the combination of
these two inequalities we conclude that

R−
√
S ≥

√
S1 +

√
S − S1 −

√
S ≥ 1

3

√
S ≥ 1

3

√
S −M,

which proves (3.5.2) in this case.

Let us consider the minimum problem

min

{∫ b

a

L(x, u(x), u′(x)) dx : u ∈ H1((a, b)), u(a) = A, u(b) = B

}
, (3.5.3)

where (a, b) ⊆ R is an interval, L : [a, b] × R2 → R is a continuous function called
Lagrangian, and (A,B) ∈ R2 is a pair of Dirichlet data.

Let us assume that there exist positive real numbers M1, . . . , M9 such that
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(i) the length of the interval satisfies

M1 ≤ b− a ≤M2,

(ii) There exists two functions ψ ∈ C2(R) and f ∈ C1([a, b]× R) such that

L(x, s, p) = ψ(p) + f(x, s) ∀(x, s, p) ∈ [a, b]× R
2.

(iii) The functions ψ and f satisfy the following conditions

M3 ≤ ψ′′(p) ≤M4 and M5p
2 ≤ ψ(p) ≤M6p

2 ∀p ∈ R,

−M7(1+|s|) ≤ f(x, s) ≤M7(1+s
2) and |fs(x, s)| ≤M8(1+|s|) ∀(x, s) ∈ [a, b]×R.

(iv) the boundary conditions satisfy

(A,B) ∈ [−M9,M9]
2.

The first result is that minima and minimizers are bounded, and the bound depends
only on the constants M1, . . . , M9.

Lemma 3.5.3. Let us consider problem (3.5.3) under assumptions (i)–(iv) described
above.

Let u(x) ∈ H1((a, b)) be any minimizer. Then actually u ∈ C2([a, b]), and there exist
real numbers C1 and C2, depending only on M1, . . . , M9, such that

∫ b

a

L(x, u(x), u′(x)) dx ≤ C1,

and
|u(x)|+ |u′(x)|+ |u′′(x)| ≤ C2 ∀x ∈ [a, b]. (3.5.4)

Proof. The energy estimate follows simply by using the affine function interpolating the
boundary conditions as a competitor for the minimum problem.

The regularity and the estimate (3.5.4) follow from the Euler-Lagrange equation
solved by minimizers.

The second result is that minima depend in a Lipschitz way on the Dirichlet boundary
conditions.

Lemma 3.5.4. Let us consider problem (3.5.3) under assumptions (i)–(iv) described
above. Let us assume in addition that

(v) the Lagrangian is locally Lipschitz continuous with respect to the pair (s, p), and
more precisely there exists a positive real number M10 such that

|L(x, s1, p1)− L(x, s2, p2)| ≤M10(|s1 − s2|+ |p1 − p2|)
for every

(x, s1, s2, p1, p2) ∈ [a, b]×[−C2−4M9, C2+4M9]
2×[−C2−4M9/M1, C2+4M9/M1]

2,

where C2 is the constant in (3.5.4).
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Then there exists a positive real number C3, depending only on M1, . . . , M10, with
the following property. If u1(x) and u2(x) are minimizer with boundary data (A1, B1) ∈
[−M9,M9]

2 and (A2, B2) ∈ [−M9,M9]
2, respectively, then

∣∣∣∣
∫ b

a

L(x, u1(x), u
′
1(x)) dx−

∫ b

a

L(x, u2(x), u
′
2(x)) dx

∣∣∣∣ ≤ C3(|A1 − A2|+ |B1 − B2|).

Proof. We observe that the function

v(x) = u2(x) + (A1 − A2)
b− x

b− a
+ (B1 −B2)

x− a

b− a

is a competitor for the minimum problem with boundary conditions (A1, B1), and that

|v(x)− u2(x)| ≤ |A1 − A2|+ |B1 −B2|,

and

|v′(x)− u′2(x)| ≤
|A1 − A2|
b− a

+
|B1 −B2|
b− a

.

Therefore from the minimality of u1 and assumptions (i) and (v) we deduce that

∫ b

a

L(x, u1(x), u
′
1(x)) dx ≤

∫ b

a

L(x, v(x), v′(x)) dx

≤
∫ b

a

L(x, u2(x), u
′
2(x)) dx

+M10

(
1 +

1

M1

)
(|A1 − A2|+ |B1 −B2|).

The remaining inequality can be proved by exchanging the role of u1 and u2.

Finally, we prove two estimates from below for rescaled versions of the singularly
perturbed Perona-Malik funcitonals.

Lemma 3.5.5. Let α, β, γ,M > 0 be positive real numbers and let us consider the
functional

Fα,β,γ(Ω, u) :=

∫

Ω

(
αu′′(x) + β log(1 + γu′(x)2)

)
dx,

defined for every open set Ω ⊂ R and every u ∈ H2(Ω).
Let (a, b) ⊂ R be an interval and let w ∈ H2(a, b) be a function such that |w′(a)| ≤M

and |w′(b)| ≤M . Let us consider the set

AM := {x ∈ (a, b) : |w′(x)| > M},

and let us set

∆M :=

∫

AM

|w′(x)| dx.

Then it turns out that

Fα,β,γ(AM , w) ≥ 4

√
2

3
α1/4β3/4(log(1 + γM2))3/4

√
∆M −M |AM | (3.5.5)
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Proof. Since AM is an open set, we can write it as a finite or countable union of open
disjoint intervals (its connected components), namely in the form

AM =
⋃

i∈I

(ai, bi),

where I is a suitable index set.
We observe that w′ has constant sign in each of the intervals (ai, bi), and therefore

∆M =
∑

i∈I

∫ bi

ai

|w′(x)| dx =
∑

i∈I

|u(bi)− u(ai)|

Moreover, we have that |w′(ai)| = |w′(bi)| = M for every i ∈ I, because w′ is
continuous and all the points ai and bi are internal to (a, b), since |w′(a)| < M and
|w′(b)| < M .

As a consequence, from Lemma 2.6.2 we deduce that

∫ bi

ai

w′′(x)2 dx ≥ 12

(bi − ai)3
(|u(bi)− u(ai)| −M(bi − ai))

2,

and hence

Fα,β,γ((ai, bi), w) ≥
12α

(bi − ai)3
(|u(bi)− u(ai)| −M(bi − ai))

2 + β log(1 + γM2)(bi − ai)

≥ 4

√
2

3
α1/4β3/4(log(1 + γM2))3/4

√
|u(bi)− u(ai)| −M(bi − ai),

where the last inequality follows from the inequality

a+ b ≥ 4

33/4
(ab3)1/4 ∀(a, b) ∈ [0,+∞)2.

Summing over i and exploiting the subadditivity of the square root we obtain (3.5.5).

Lemma 3.5.6. Let (an, bn) be a sequence of intervals such that bn − an → L, for some
positive number L > 0. Let also {δn} ⊂ (0,+∞) be a sequence of positive numbers such
that δn → 0 and {wn} be a sequence of functions such that wn ∈ H2((an, bn)) and

lim inf
n→+∞

osc(wn, (an, bn)) ≥ J > 0.

Let us consider the family of functionals

RPMHδ(Ω, u) :=

∫

Ω

{
δ6

| log δ|3u
′′(x)2 +

1

δ2
log
(
1 + δ2u′(x)2

)}
dx, (3.5.6)

defined for every positive number δ > 0, for every open set Ω ⊆ R and every function
u ∈ H2(Ω), and let us assume that

|w′(an)| ≤
1

δn
and |w′(bn)| ≤

1

δn
,
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for every n ∈ N.
Then there exists a positive constant c(L, J) depending only on L and J such that

lim inf
n→+∞

RPMHδn((an, bn), wn) ≥ c(L, J).

Proof. First of all, up to reducing ourselves to a subsequence, we can assume that

lim inf
n→+∞

RPMHδn((an, bn), wn) = lim
n→+∞

RPMHδn((an, bn), wn) < +∞.

For every n ∈ N let us set

An :=

{
x ∈ (an, bn) : |w′

n(x)| >
1

δ2n| log δn|3
}
, ∆A

n :=

∫

An

|w′
n(x)| dx,

Bn :=

{
x ∈ (an, bn) :

1

δn| log δn|
≤ |w′

n(x)| ≤
1

δ2n| log δn|3
}
,

Cn :=

{
x ∈ (an, bn) : |w′

n(x)| <
1

δn| log δn|

}
, ∆C

n :=

∫

Cn

|w′
n(x)| dx.

We observe that

|Bn| ≤
δ2n

log(1 + | log δn|−2)
RPMHδn((an, bn), wn),

and therefore

lim sup
n→+∞

∫

Bn

|w′
n(x)| dx ≤ |Bn|

δ2n| log δn|3
≤ lim sup

n→+∞

RPMHδn((an, bn), wn)

| log δn|3 log(1 + | log δn|−2)
= 0,

namely the contribution of Bn to the total variation of wn is asymptotically negligible.
As a consequence we obtain that

lim inf
n→+∞

∆A
n +∆C

n = lim inf
n→+∞

∫ bn

an

|w′
n(x)| dx ≥ J. (3.5.7)

Concerning An, we observe that

lim sup
n→+∞

|An|
δ2n| log δn|3

≤ lim sup
n→+∞

RPMHδn((an, bn), wn)

| log δn|3 log(1 + δ−2
n | log δn|−6)

= 0,

and that Lemma 3.5.5 yields

RPMHδn(An, wn) ≥ 4

√
2

3

(
1

| log δn|
log

(
1 +

1

δ2n| log δn|6
))3/4

√
∆A

n − |An|
δ2n| log δn|3

,

at least when n is large enough so that 1/δn ≤ 1/(δ2n| log δn|3).
Hence it holds that

lim inf
n→+∞

RPMHδn(An, wn) ≥ 8
21/4

31/2
· lim inf
n→+∞

√
∆A

n . (3.5.8)
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As for Cn, we observe that

lim inf
n→+∞

RPMHδn(Cn, wn) ≥ lim inf
n→+∞

∫

Cn

log(1 + δ2nw
′
n(x)

2)

δ2nw
′
n(x)

2
w′

n(x)
2 dx

≥ lim inf
n→+∞

| log δn|2 log(1 + | log δn|−2)

∫

Cn

w′
n(x)

2 dx

= lim inf
n→+∞

∫

Cn

w′
n(x)

2 dx

≥ lim inf
n→+∞

(∆C
n )

2

|Cn|

= lim inf
n→+∞

(∆C
n )

2

L
, (3.5.9)

where the second inequality follows form the fact that the function t 7→ log(1 + t)/t is
nonincreasing on (0,+∞).

Combining (3.5.7), (3.5.8) and (3.5.9) we obtain that

lim inf
n→+∞

RPMHδn((an, bn), wn) ≥ lim inf
n→+∞

8
21/4

31/2
·
√
∆A

n +
(∆C

n )
2

L

≥ min

{
8
21/4

31/2

√
A+

C2

L
: (A,C) ∈ [0,+∞)2, A+ C ≥ J

}
.

We conclude by remarking that

c(L, J) := min

{
8
21/4

31/2

√
A+

C2

L
: (A,C) ∈ [0,+∞)2, A+ C ≥ J

}
> 0

for every (L, J) ∈ (0,+∞)2.



Chapter 4

Singular perturbation: minimum
values in higher dimensions

In this chapter we show how to extend Theorem 2.2.2 to the higher dimensional case,
and we describe some difficulties in extending the other results in Chapter 2 (see Re-
mark 4.3.3).

For simplicity and to avoid too many technicalities, we limit ourselves to the case
in which Ω = (0, 1)d and the forcing term is of class C1. However, it should be clear
that the same result can be extended to the case in which Ω is a regular domain and
f ∈ H1(Ω).

Before proceeding with the proof, we need to introduce some notation to deal with
higher dimensional quantity. So, let d > 1 be a positive integer number. Given a matrix
A ∈ Rd×d we denote with ‖A‖ its operator norm, namely

‖A‖ := sup
σ∈Sd−1

Aσ · σ.

We observe that when the matrix is the hessian of a function, then its operator norm
is the maximum value of directional second derivatives, namely

‖∇2u(x)‖ = sup
σ∈Sd−1

∂2σσu(x).

Now, for every real numbers ε ∈ (0, 1) and β > 0, every open set Ω ⊂ Rd and every
couple of functions f ∈ L2(Ω) and u ∈ H2(Ω) we define the following higher dimensional
versions of the functionals (2.2.2), (2.3.1) and (2.3.2)

PMFε(β, f,Ω, u) :=

∫

Ω

[
ε6ω(ε)4‖∇2u(x)‖2 + log(1 + |∇u(x)|2) + β(u(x)− f(x))2

]
dx,

RPMε(Ω, u) :=

∫

Ω

[
ε6‖∇2u(x)‖2 + 1

ω(ε)2
log(1 + |∇u(x)|2)

]
dx,

RPMFε(β, f,Ω, u) := RPMε(u,Ω) + β

∫

Ω

(u(x)− f(x))2 dx,

where ω(ε) is defined as in (2.2.1). Our result is the following.

129
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Theorem 4.0.1. For every β > 0 and every f ∈ C1([0, 1]d) it turns out that

lim
ε→0+

1

ω(ε)2
min

u∈H2([0,1]d)
PMFε(β, f, [0, 1]

d, u) = 10

(
2β

27

)1/5 ∫

[0,1]d
|∇f(x)|4/5 dx.

In order to prove this theorem, we need to introduce the higher dimensional analogue
of the limit functionals (2.3.6) and (2.3.11), for which we need to define the higher
dimensional version of the space PJ , which requires the use of special functions of
bounded variation (see [6]). The formal definition is the following

PJ(Ω) := {u ∈ GSBV (Ω) : ∇u = 0},

where ∇u denotes the approximate gradient of u and

GSBV (Ω) := {u ∈ L1(Ω) : min{max{u,−T}, T} ∈ SBV (Ω) ∀T > 0},

is the space of functions whose truncations are special functions of bounded variation.
In the sequel we also need to consider the larger space

GBV (Ω) := {u ∈ L1(Ω) : min{max{u,−T}, T} ∈ BV (Ω) ∀T > 0}.

We recall that the measure derivative of a PJ function u is supported on a (d− 1)-
rectifiable set Su, and that for Hd−1 almost every point x ∈ Su the normal νu to Su and
two traces u±(x) of u on the two sides of Su are well-defined (see [6]).

More precisely, we have that

Du = (u+ − u−)νuHd−1 Su.

Therefore, for u ∈ PJ(Ω) we can define the higher dimensional versions of the func-
tionals (2.3.6) and (2.3.11) as

J1/2(Ω, u) =

∫

Ω∩Su

√
|u+(x)− u−(x)| dHd−1(x),

JF1/2(α, β, f,Ω, u) = α J1/2(Ω, u) + β

∫

Ω

(u(x)− f(x))2 dx.

4.1 Gamma-convergence and compactness

In [12] it is proved that for every bounded open set Ω with Lipschitz boundary it turns
out that

Γ− lim
ε→0

RPMε(Ω, u) = α0 J1/2(Ω, u),

where α0 is defined as in (2.3.7).
Here we do not need the full Gamma-convergence result, but only some estimates

related with the higher dimensional versions of the minimum problems (2.3.12) and
(2.3.13). Unfortunately, we found some issues in the proofs of the equicoerciveness and
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the liminf inequality in [12]. Indeed, in [12] it is claimed that the domain of the Gamma-
limit is contained in SBV (Ω) and that sequences with equibounded energies (and null
average) are relatively compact in BV (Ω). But the limit functional J1/2 is not lower
semicontinous on L1(Ω) or L2(Ω) if we set it equal to +∞ in GSBV (Ω) \ SBV (Ω), so
it can not be a Gamma-limit.

Furthermore, the proof of the limsup inequality that is contained in [12] (which relies
on a density result that is the most original part of that paper) shows itself that the
Gamma-limit must be finite on all functions u ∈ GSBV (Ω) with J1/2(Ω, u) < +∞,
and it is not difficult to see that there are actually functions with this property that
do not belong to SBV (Ω) (and this is the reason for which the space GSBV has been
introduced).

The problem with the argument in [12] is that it relies on [12, Lemma 3.1], which is
said to be proved in [14, Lemma 3.2]. However, looking at the proof of [14, Lemma 3.2],
it emerges that the constant C > 0 appearing in the statement actually depends on the
energy, and this can not be improved, since a functional that is converging to J1/2 can
not control the total variation of a function, without additional assumptions on the L∞

norm of that function.

We also point out that, since the functionals RPMε involve second derivatives, we
can not reduce to the L∞ case just by truncation, because the truncation of a function
of class H2 is not of class H2.

For this reason, we include here a different proof of the Gamma-liminf inequality and
of the equicoercivess (in GSBV). To this end, we need the following reformulation of
[14, Lemma 3.2], that provides explicit values of the constants, and from which it is also
clear that truncations are needed if one wants to control the total variation. The proof
is an adaptation of the argument of Lemma A.0.2 to the case in which the assumption
(A.0.4) is removed.

Lemma 4.1.1. Let (a, b) ⊆ R be an interval, let ε ∈ (0, 1) be a real number and let
uε ∈ H2(Ω) be a function.

For every positive real number T > 0, let us set uε,T := min{max{uε,−T}, T}. Then
it turns out that

∫ b

a

|u′ε,T (x)| dx ≤ b− a

| log ε| +
(
2T 1/2

M(ε)
+ ζ(ε)

)
RPMε((a, b), uε) + 2T, (4.1.1)

where

M(ε) := 4

(
2

3

)1/2{
1

| log ε| log
(
1 +

1

ε4| log |8
)}3/4

,

and

ζ(ε) :=
1

| log ε|3
(

1

log(1 + ε−4| log ε|−8)
+

1

log(1 + | log ε|−2)

)
.

Proof. We argue as in the proof of Lemma A.0.2, so we consider the sets Aε, Bε and Cε
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defined as

Aε :=

{
x ∈ (a, b) : |u′ε(x)| >

1

ε2| log ε|4
}
,

Bε :=

{
x ∈ (a, b) :

1

| log ε| ≤ |u′ε(x)| ≤
1

ε2| log ε|4
}
,

Cε :=

{
x ∈ (a, b) : |u′ε(x)| <

1

| log ε|

}
,

and we observe that

|Aε| ≤
ε2| log ε|

log(1 + ε−4| log ε|−8)
RPMε((a, b), uε), (4.1.2)

|Bε| ≤
ε2| log ε|

log(1 + | log ε|−2)
RPMε((a, b), uε). (4.1.3)

We observe that if Aε = (a, b) then u′ε has constant sign, namely uε is monotone,
and therefore ∫ b

a

|u′ε,T (x)| dx = |uε,T (b)− uε,T (a)| ≤ 2T,

so (4.1.1) holds.
Otherwise, let us write Aε as the union of its connected components, namely

Aε =
⋃

i∈I

(αi, βi),

and we know that each of the intervals (αi, βi) has at least an endpoint internal to (a, b).
Therefore |u′ε| is equal to ε−2| log ε|−4 in that endpoint, so from Lemma A.0.1 we deduce
that for every i we have

(
|uε(βi)− uε(αi)| −

βi − αi

ε2| log ε|4
)1/2

≤ 21/2

M(ε)
RPMε((αi, βi), uε).

Hence we obtain that

|uε,T (βi)− uε,T (αi)| = min

{
|uε,T (βi)− uε,T (αi)| −

βi − αi

ε2| log ε|4 +
βi − αi

ε2| log ε|4 , 2T
}

≤ min

{
|uε,T (βi)− uε,T (αi)| −

βi − αi

ε2| log ε|4 , 2T
}
+

βi − αi

ε2| log ε|4

≤ (2T )1/2
(
|uε,T (βi)− uε,T (αi)| −

βi − αi

ε2| log ε|4
)1/2

+
βi − αi

ε2| log ε|4

≤ 2T 1/2

M(ε)
RPMε((αi, βi), uε) +

βi − αi

ε2| log ε|4 .

Summing over i we get that
∫

Aε

|u′ε,T (x)| dx =
∑

i∈I

|uε,T (βi)− uε,T (αi)| ≤
2T 1/2

M(ε)
RPMε(Aε, uε) +

|Aε|
ε2| log ε|4 .
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Therefore, we can estimate the total variation of uε,T in the following way

∫ b

a

|u′ε,T (x)| dx =

∫

Aε

|u′ε,T (x)| dx+
∫

Bε

|u′ε,T (x)| dx+
∫

Cε

|u′ε,T (x)| dx

≤ 2T 1/2

M(ε)
RPMε(Aε, uε) +

|Aε|
ε2| log ε|4 +

|Bε|
ε2| log ε|4 +

|Cε|
| log ε|

≤
(
2T 1/2

M(ε)
+ ζ(ε)

)
RPMε((a, b), uε) +

b− a

| log ε| ,

where in the last line we exploited the estimates (4.1.2) and (4.1.3). This proves (4.1.1)
also in this case.

We point out that as ε → 0+ we have that M(ε) → α0 > 0, while ζ(ε) → 0, so the
only possibly unbounded quantity in (4.1.1) is the functional RPMε((a, b), uε).

In order to treat the higher dimensional case, we need to introduce some notation
to deal with one-dimensional sections of higher dimensional functions. So, let Ω ⊂ Rd

be a bounded open set, and let us fix σ ∈ Sd−1. Let πσ : Rd → σ⊥ be the orthogonal
projection and let us set Ωσ := πσ(Ω). For every x′ ∈ Ωσ we can consider the one-
dimensional section of Ω in direction σ passing through x′, namely the set Ωx′,σ := {y ∈
R : x′ + σy ∈ Ω}.

With this notation, for every function u : Ω → R, every direction σ ∈ Sd−1 and every
point x′ ∈ Ωσ, the one-dimensional section of u in direction σ passing through the point
x′ is the function ux′,σ(y) := u(x′ + σy), which is defined for every y in the set Ωx′,σ.

We can now state and prove the compactness statement.

Theorem 4.1.2 (Equicoerciveness). Let Ω ⊂ Rd be a bounded open set with Lipschitz
boundary, {εn} ⊂ (0, 1) a sequence such that εn → 0+ and {un} ⊂ H2(Ω) be a sequence
of functions such that

sup
n∈N

RPMεn(Ω, un) +

∫

Ω

|un(x)| dx < +∞. (4.1.4)

Then there exists an increasing sequence {nk} of positive integers and a function
u ∈ PJ(Ω) such that unk

(x) → u(x) for almost every x ∈ Ω and that

min{max{unk
,−T}, T} → min{max{u,−T}, T} ∀T > 0,

in L1(Ω) and in the weak sense of BV (Ω).

Proof. Let us fix σ ∈ Sd−1. We observe that

RPMεn(Ω, un) =

∫

Ωσ

dx′
∫

Ωx′,σ

[
ε6‖∇2un(x

′ + σy)‖2 + 1

ω(ε)2
log(1 + |∇un(x′ + σy)|2)

]
dy

≥
∫

Ωσ

RPMεn(Ωx′,σ, (un)x′,σ) dx
′, (4.1.5)

hence for almost every x′ ∈ Ωσ we have that RPMεn(Ωx′,σ, (un)x′,σ) < +∞ for every
n ∈ N (but the bound depend on x′ and n).
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Let us fix x′ ∈ Ωσ with this property, so that in particular (un)x′,σ ∈ H2(Ωx′,σ) for
every n ∈ N. Let us fix also T > 0 and let us set un,T = min{max{un,−T}, T}.

Let us assume for a while that Ωx′,σ is an open interval for every x′ ∈ Ωσ (this
happens for example if Ω is convex). Then, we can apply Lemma 4.1.1, so we deduce
that
∫

Ω

|∂σun,T (x)| dx =

∫

Ωσ

dx′
∫

Ωx′,σ

|(un,T )′x′,σ(y)| dy

≤
∫

Ωσ

[H1(Ωx′,σ)

| log εn|
+

(
2T 1/2

M(εn)
+ ζ(εn)

)
RPMεn(Ωx′,σ, (un)x′,σ) + 2T

]
dx′

≤ |Ω|
| log εn|

+

(
2T 1/2

M(εn)
+ ζ(εn)

)
RPMεn(Ω, un) + 2TK(Ω), (4.1.6)

where K(Ω) := sup{Hd−1(Ωσ) : σ ∈ Sd−1} < +∞.
Now, if Ω is convex, or more generally if it is convex in d different directions, namely

if there exist d linearly independent directions σ1, . . . , σd ∈ Sd−1 such that for every j
the set Ωx′,σj

is an interval for (almost) every x′ ∈ Ωσj
, then we can apply (4.1.6) in

every such direction and we deduce that the total variation of un,T is bounded.
In the general case, we can cover Ω with finitely many open subsets Ω1, . . . ,ΩN ⊆ Ω

that have this property. Indeed, it is enough to cover Ω with finitely many open cubes
Q1, . . . , QN such that each intersection Ωi := Ω ∩Qi is either Qi (namely Qi ⊆ Ω) or is
the subgraph of a Lipshitz function fi defined on a (d− 1)-dimensional cube.

In the first case Ωi is convex. In the second case, if σi
1 ∈ Sd−1 is the direction

orthogonal to the domain of fi, from the Lipschitz continuity of fi we deduce that there
exists a neighborhood Σi ⊆ Sd−1 of σi

1 such that (Ωi)x′,σ is an interval for every σ ∈ Σi.
Therefore we can complete σi

1 to a base σi
1, . . . , σ

i
d of Rd in such a way that (Ωi)x′,σi

j
is

an interval for every x′ ∈ (Ωi)σi
j
.

Hence, for every i ∈ {1, . . . , N} there exists a constant Ci (that is equal to 1 when
Ωi = Qi and depends only on the base σi

1, . . . , σ
i
d in the other case) such that

∫

Ωi

|∇un,T (x)| dx ≤ Ci

d∑

j=1

∫

Ωi

|∂σi
j
un,T (x)| dx,

so we can apply (4.1.6) and we obtain that

∫

Ωi

|∇un,T (x)| dx ≤ Cid

[ |Ω|
| log εn|

+

(
2T 1/2

M(εn)
+ ζ(εn)

)
RPMεn(Ω, un) + 2TK(Ω)

]
.

Hence, if we set C := maxiCi, summing over i we get that

∫

Ω

|∇un,T (x)| dx ≤
N∑

i=1

∫

Ωi

|∇un,T (x)| dx

≤ NCd

[ |Ω|
| log εn|

+

(
2T 1/2

M(εn)
+ ζ(εn)

)
RPMεn(Ω, un) + 2TK(Ω)

]
.
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Hence we deduce that for every T > 0 there exists a subsequence {nk} and a function
uT ∈ BV (Ω) such that unk,T → uT weakly in BV (Ω), strongly in L1(Ω) and pointwise
almost everywhere. By a diagonal argument we can find a single subsequence such that
unk,T → uT for every T ∈ N, and hence also for every T > 0. It follows that there
exists a function u ∈ GBV (Ω) for which uT = min{max{u,−T}, T}, and unk,T → uT =
min{max{u,−T}, T} for every T > 0. We point out that u ∈ L1(Ω) because

sup
T>0

∫

Ω

|uT (x)| dx ≤ sup
T>0

lim
k→+∞

∫

Ω

|unk,T (x)| dx ≤ lim sup
k→+∞

∫

Ω

|unk
(x)| dx < +∞,

and the left-hand side is equal to the L1 norm of u.
It remains to prove that u ∈ PJ(Ω). To this end, we argue again by sections, so

let us fix σ ∈ Sd−1. From the pointwise convergence, we deduce that for almost every
x′ ∈ Ωσ we have that

(unk,T )x′,σ → min{max{ux′,σ,−T}, T} in L1(Ωx′σ) ∀T > 0. (4.1.7)

Moreover, from (4.1.4), (4.1.5) and Fatou’s lemma we deduce that

∫

Ωσ

(
lim inf
k→+∞

RPMεnk
(Ωx′,σ, (unk

)x′,σ) +

∫

Ωx′,σ

|(unk
)x′,σ(y)| dy

)
dx′

≤ lim inf
k→+∞

∫

Ωσ

(
RPMεnk

(Ωx′,σ, (unk
)x′,σ) +

∫

Ωx′,σ

|(unk
)x′,σ(y)| dy

)
dx′

≤ lim inf
k→+∞

RPMεnk
(Ω, unk

) +

∫

Ω

|unk
(x)| dx < +∞.

Therefore for almost every x′ ∈ Ωσ we can find a further subsequence (not relabelled)
such that

sup
k∈N

RPMεnk
(Ωx′,σ, (unk

)x′,σ) +

∫

Ωx′,σ

|(unk
)x′,σ(y)| dy < +∞. (4.1.8)

From the L1 version of the one-dimensional compactness statement in Theorem 2.3.2
(see Remark 2.3.3) we deduce that there exists a function zx′,σ ∈ PJ(Ωx′σ) such that,
up a further subsequence, (unk

)x′,σ → zx′,σ, in L
1(Ωx′σ). Therefore, recalling (4.1.7), we

deduce that ux′,σ = zx′,σ ∈ PJ(Ωx′,σ).
We point out that the subsequence for which (4.1.8) holds does depend on x′, but

anyway it follows that for every σ ∈ Sd−1 we have that ux′,σ ∈ PJ(Ωx′,σ) for almost every
x′ ∈ Ωσ. This, together with the fact that u ∈ GBV (Ω), is enough to conclude that
u ∈ PJ(Ω), thanks to the relation between the derivatives of one-dimensional sections
and the BV differential (see [6, Theorem 3.107 and Theorem 3.108]).

At this point, the liminf inequality can be proved by standard arguments (see [29]),
exploiting the following lemma.

Lemma 4.1.3 (Proposition 1.16 in [29]). Let Ω ⊆ Rd be a bounded open set and let
A(Ω) denote the family of all open subsets of Ω. Let µ : A(Ω) → [0,+∞) be a function
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such that µ(A ∪ B) ≥ µ(A) + µ(B) for every A,B ∈ A(Ω) such that A ∩ B = ∅ and
A,B ⊆ Ω. Let also λ be a non-negative Radon measure on Ω and let {ψi} be a sequence
of non-negative Borel functions defined on Ω.

Let us assume that µ(A) ≥
∫
A
ψi dλ for every i ∈ N and every A ∈ A(Ω) and let us

set ψ(x) := supi ψi(x).
Then it turns out that µ(A) ≥

∫
A
ψ dλ for every A ∈ A(Ω).

Theorem 4.1.4 (Liminf inequality). Let Ω ⊂ Rd be a bounded open set with Lipschitz
boundary, and let {εn} ⊂ (0, 1) a sequence such that εn → 0+. Let {un} ⊂ H2(Ω) be a
sequence of functions and u ∈ L1(Ω) be a function such that un → u in L1(Ω). Then it
turns out that

lim inf
n→+∞

RPMεn(Ω, un) ≥ α0 J1/2(Ω, u),

where α0 is defined by (2.3.7) and the functional J1/2 is set by definition equal to +∞
outside PJ(Ω).

Proof. Without loss of generality, we can assume that

lim inf
n→+∞

RPMεn(Ω, un) = lim
n→+∞

RPMεn(Ω, un) < +∞.

From Theorem 4.1.2 we immediately deduce that u ∈ PJ(Ω).
Now let us fix σ ∈ Sd−1. Up to a subsequence, we can assume that (un)x′,σ → ux′,σ

in L1(Ωx′,σ) for almost every x′ ∈ Ωσ. Then by Fatou’s lemma and the one-dimensional
Gamma-convergence result in Theorem 2.3.2, for every open set A ⊆ Ω we have that

lim inf
n→+∞

RPMεn(A, un) ≥ lim inf
n→+∞

∫

Aσ

RPMεn(Ax′,σ, (un)x′,σ) dx
′

≥
∫

Aσ

lim inf
n→+∞

RPMεn(Ax′,σ, (un)x′,σ) dx
′

≥
∫

Aσ

α0 J1/2(Ax′,σ, ux′,σ) dx
′

= α0

∫

Su∩A

|u+(x)− u−(x)|1/2|νu(x) · σ| dHd−1(x).

Now let us fix T > 0 and let us set

µ(A) := lim inf
n→+∞

RPMεn(A, un), λT := α0|u+T − u−T |1/2Hd−1 Su,

where uT := min{max{u,−T}, T}. Let also {σi} ⊆ Sd−1 be a dense sequence and
ψi : Ω → R be the functions ψi(x) = |νu(x) · σi|1Su(x).

Then µ : A(Ω) → R is superadditive, λT is a Radon measure and µ(A) ≥
∫
A
ψi dλT

for every i. Hence from Lemma 4.1.3 we deduce that

lim inf
n→+∞

RPMεn(Ω, un) ≥ α0

∫

Su

(
sup
i

|νu(x) · σi|
)
|u+T (x)− u−T (x)|1/2 dHd−1(x)

= α0 J1/2(Ω, uT ),

and we conclude letting T → +∞.
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4.2 Estimate from below

Since from now on we always consider cubic domains, for every L > 0 let us set Qd
L =

(0, L)d. Similarly to (2.3.12) and (2.3.13), for every (α, β, L, ξ) ∈ (0,+∞)3 × Rd let us
consider the following minimum problems

µd
ε(β, L, ξ) := min

u∈H2(Qd
L)
RPMFε(β, ξ · x,Qd

L, u), (4.2.9)

µd
0(α, β, L, ξ) := min

u∈PJ(Qd
L)
JF1/2(α, β, ξ · x,Qd

L, u). (4.2.10)

The existence of minimizers for µd
ε and µd

0 is a standard application of the direct
method in calculus of variations. Now we prove the properties of µd

ε and µd
0 that we

need in the proof of Theorem 4.0.1.

Proposition 4.2.1. Let us fix (β, L) ∈ (0,+∞)2, let {εn} ⊂ (0, 1) be a sequence such
that εn → 0+ and let {ξn} ⊂ Rd be a bounded sequence.

Then it turns out that

lim inf
n→+∞

(µd
εn(β, L, ξn)− µd

0(α0, β, L, ξn)) ≥ 0.

Proof. Without loss of generality, we can assume that ξn → ξ∞ ∈ Rd and that the liminf
is a limit.

For every n ∈ N, let un be a minimizer for the minimum problem µd
εn(β, L, ξn). We

observe that

RPMFεn(β, ξn · x,Qd
L, un) ≤ RPMFεn(β, ξn · x,Qd

L, 0) = β

∫

Qd
L

(ξn · x)2.

As a consequence, we obtain that

sup
n∈N

RPMεn(Q
d
L, un) +

∫

Qd
L

un(x)
2 dx < +∞

Then, from Theorem 4.1.2, we deduce that there exists a subsequence nk → +∞ and
u ∈ PJ(Qd

L) such that unk
(x) → u(x) for almost every x ∈ Qd

L and unk
⇀ u in L2(Qd

L).
From [33, Exercise 4.16] it follows that unk

→ u in L1(Qd
L), and hence Theorem 4.1.4

yields

lim inf
k→+∞

RPMεnk
(Qd

L, unk
) ≥ α0 J1/2(Q

d
L, u).
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Therefore we have that

lim
k→+∞

(µd
εnk

(β, L, ξnk
)− µd

0(α0, β, L, ξnk
))

= lim
k→+∞

RPMεnk
(Qd

L, unk
) + β

∫

Qd
L

(unk
(x)− ξnk

· x)2 dx− µd
0(α0, β, L, ξnk

)

≥ lim inf
k→+∞

α0 J1/2(Q
d
L, u) + β

∫

Qd
L

(unk
(x)− ξnk

· x)2 dx− µd
0(α0, β, L, ξnk

)

= lim inf
k→+∞

JF1/2(α0, β, ξnk
· x,Qd

L, u)− µd
0(α0, β, L, ξnk

)

+ β

∫

Qd
L

(unk
(x)− ξnk

· x)2 dx− β

∫

Qd
L

(u(x)− ξnk
· x)2 dx

≥ lim inf
k→+∞

β

∫

Qd
L

(unk
(x)− ξnk

· x)2 dx− β

∫

Qd
L

(u(x)− ξnk
· x)2 dx,

and the last line is non-negative because unk
⇀ u and ξnk

· x→ ξ∞ · x in L2(Qd
L).

Proposition 4.2.2. For every (α, β, L, ξ) ∈ (0,+∞)3 × Rd it turns out that

µd
0(α, β, L, ξ) ≥ c1|ξ|4/5Ld − c2Kd|ξ|1/5Ld−1, (4.2.11)

where c1 and c2 are the constants appearing in Proposition 2.4.4 and

Kd := sup
σ∈Sd−1

{Hd−1((Qd
1)σ)}. (4.2.12)

Proof. Let u ∈ PJ(Qd
L) be a function and let us set σ = ξ/|ξ|. Then we have that

∫

Ω∩Su

√
|u+(x)− u−(x)| dHd−1(x) ≥

∫

(Qd
L)σ

J1/2(Ωx′,σ, ux′,σ) dx
′,

and ∫

Qd
L

(u(x)− ξ · x)2 dx =

∫

(Qd
L)σ

dx′
∫

(Qd
L)x′,σ

(ux′,σ(y)− |ξ|y)2 dy.

Hence, recalling the estimate (2.4.1) for the one-dimensional case, we deduce that

JF1/2(α, β, ξ · x,Qd
L, u) ≥

∫

(Qd
L)σ

JF(α, β, |ξ|y, (Qd
L)x′,σ, ux′,σ) dx

′

≥
∫

(Qd
L)σ

µ0(α, β,H1((Qd
L)x′,σ), |ξ|) dx′

≥
∫

(Qd
L)σ

[
c1|ξ|4/5H1((Qd

L)x′,σ)− c2|ξ|1/5
]
dx′

= c1|ξ|4/5Ld − c2|ξ|1/5Hd−1((Qd
L)σ)

≥ c1|ξ|4/5Ld − c2|ξ|1/5KdL
d−1.

Taking the infimum of the left-hand side over all u ∈ PJ(Qd
L) we obtain (4.2.11).
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We are now ready to prove the estimate from below for the minimum value in
Theorem 4.0.1, that is the following proposition.

Proposition 4.2.3. For every β > 0, every f ∈ C1(Qd
1) and every family of functions

{uε} ⊂ H2(Qd
1) it turns out that

lim inf
ε→0

1

ω(ε)2
PMFε(β, f,Q

d
1, uε) ≥ 10

(
2β

27

)1/5 ∫

Qd
1

|∇f(x)|4/5 dx. (4.2.13)

Proof. We divide the proof in several steps.

Domain subdivision and approximation of the forcing term Let us fix a positive real
number L > 0. For every ε ∈ (0, 1) let us set

Nε,L :=

⌊
1

Lω(ε)

⌋
, Lε :=

1

Nε,Lω(ε)
,

and

N
d
Nε,L

:=
{
(z1, . . . , zd) ∈ N

d : 1 ≤ zi ≤ Nε,L ∀i ∈ {1, . . . , d}
}
.

For every z ∈ Nd
Nε,L

let us define also

Qz :=
{
x ∈ (0, 1)d : xi ∈ ((zi − 1)Lεω(ε), ziLεω(ε)) ∀i ∈ {1, . . . , d}

}
,

and the functions fz : Qz → R as

fz(x) = f(zLεω(ε)) + ξε,L,z · (x− zLεω(ε)),

where ξε,L,z = ∇f(zLεω(ε)).
Now we can define the function fε,L : Qd

1 → R such that fε,L(x) = fz(x) for every
x ∈ Qz and we observe that

∫

Qd
1

(f − fε,L)
2 =

∑

z∈Nd
Nε,L

∫

Qz

(f − fz)
2

≤
∑

z∈Nd
Nε,L

|Qz| (diam(Qz) · sup {|∇f(x)−∇f(zLεω(ε))| : x ∈ Qz})2

≤ Nd
ε,L(Lεω(ε))

d+2d
(
sup

{
|∇f(x)−∇f(y)| : |x− y| ≤ Lεω(ε)

√
d
})2

= (Lεω(ε))
2d
(
sup

{
|∇f(x)−∇f(y)| : |x− y| ≤ Lεω(ε)

√
d
})2

,

and hence

lim
ε→0+

1

ω(ε)2

∫

Qd
1

(f − fε,L)
2 = 0, (4.2.14)

because Lε → L as ε→ 0+ and ∇f is uniformly continuous.



140 The Perona-Malik problem

Moreover we have that ∇fε,L → ∇f uniformly and this implies that

lim
ε→0+

∑

z∈Nd
Nε,L

|ξε,L,z|4/5(Lεω(ε))
d = lim

ε→0+

∫

Qd
1

|∇fε,L|4/5 =
∫

Qd
1

|∇f |4/5. (4.2.15)

Finally, for every η ∈ (0, 1), we have that

∫

Qd
1

(uε − f)2 ≥ (1− η)

∫

Qd
1

(uε − fε,L)
2 +

(
1− 1

η

)∫

Qd
1

(f − fε,L)
2,

so we conclude that

PMFε(β, f,Q
d
1, uε) ≥ (1− η)PMFε(β, fε,L, Q

d
1, uε) +

(
1− 1

η

)
β

∫

Qd
1

(f − fε,L)
2.

Recalling (4.2.14), if we divide by ω(ε)2 and we take the liminf we obtain that

lim inf
ε→0+

1

ω(ε)2
PMFε(β, f,Q

d
1, uε) ≥ (1− η) lim inf

ε→0+

1

ω(ε)2
PMFε(β, fε,L, Q

d
1, uε). (4.2.16)

Reduction to a common hypercube We prove that

PMFε(β, fε,L, Q
d
1, uε) ≥ ω(ε)d+2

∑

z∈Nd
Nε,L

µd
ε(β, L, ξε,L,z) (4.2.17)

where µd
ε is defined by (4.2.9)

To this end, let us define the functions vε,L,z : Q
d
Lε

→ R as

vε,L,z(y) :=
f(zLεω(ε))− uε(zLεω(ε)− ω(ε)y)

ω(ε)
.

Then, with a change of variable in the integrals we obtain that

PMFε(β, fε,L, Q
d
1, uε) =

∑

z∈Nd
Nε,L

PMFε(β, fz, Qz, uε)

=
∑

z∈Nd
Nε,L

ω(ε)d+2
RPMFε(β, ξε,L,z · x,Qd

Lε
, vε,L,z)

≥
∑

z∈Nd
Nε,L

ω(ε)d+2µd
ε(β, Lε, ξε,L,z)

≥
∑

z∈Nd
Nε,L

ω(ε)d+2µd
ε(β, L, ξε,L,z),

which is exactly (4.2.17). We observe that the last inequality follows from the fact that
Lε ≥ L and the monotonicity of µd

ε(β, L, ξ) with respect to L, which is trivial because
the functional RPMFε decreases if we restrict the domain.
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Convergence to minima of the limit problem We prove that there exists ε0 > 0 such
that

µd
ε(β, L, ξε,L,z) ≥ µd

0(α0, β, L, ξε,L,z)− η, (4.2.18)

for every ε ∈ (0, ε0) and every z ∈ Nd
Nε,L

.

Indeed, if (4.2.18) were false, then we could find two sequences {εn} ⊂ (0, 1) and
{ξεn,L,zn} ⊆ Rd such that εn → 0+ and

µd
εn(β, L, ξεn,L,zn) < µd

0(α0, β, L, ξεn,L,zn)− η,

but this contradicts Proposition 4.2.1, because |ξε,L,z| ≤ ‖∇f‖∞.

Conclusion Combining (4.2.17), (4.2.18) and Proposition 4.2.2 we deduce that

PMFε(β, fε,L, Q
d
1, uε) ≥ ω(ε)d+2

∑

z∈Nd
Nε,L

c1|ξε,L,z|4/5Ld

− ω(ε)d+2Nd
ε,L

(
c2Kd‖∇f‖1/5∞ Ld−1 + η

)
.

Therefore from (4.2.16) we deduce that

lim inf
ε→0+

1

ω(ε)2
PMFε(β,Q

d
1, f, uε) ≥ lim inf

ε→0+
(1− η)c1

Ld

Ld
ε

∑

z∈Nd
Nε,L

|ξε,L,z|4/5(Lεω(ε))
d

− c2Kd‖∇f‖1/5∞

L
− η

Ld

Finally, exploiting (4.2.15), we conclude that

lim inf
ε→0+

1

ω(ε)2
PMFε(β, f,Q

d
1, uε) ≥ (1− η)

[
c1

∫

Qd
1

|∇f |4/5 − c2Kd‖∇f‖1/5∞

L
− η

Ld

]

Letting η → 0+ and L → +∞, and recalling that c1 = 10(2β/27)1/5 when α = α0,
we get exactly (4.2.13).

4.3 Estimate from above

In order to estimate the minimum values from above, we have to construct an appro-
priate family of functions {uε} ⊂ H2(Qd

1) showing the asymptotic optimality of all the
steps in the estimate from below. To this end, in the one-dimensional case, we intro-
duced the minimum problems with boundary conditions (2.3.14) and (2.3.15), and we
proved some estimates based on Gamma-convergence.

Here the situation is more delicate, because in higher dimensions prescribing bound-
ary conditions is more complicated, so we use cutoff functions to ensure that the func-
tions uε coincide with the forcing term near the boundary of each of the small cubes in
which we divide our domain. In this way, when we glue together the functions defined
in each cube we do not lose regularity.
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However, this approach requires additional estimates on our approximate minimizers,
in order to control the additional terms coming from the cutoff functions, so we now
construct explicitly these approximate minimizers. To this hand, let us fix M ∈ R and
let us consider the canonical (H, V )-staircase with parameters given by (2.4.4), with
α = α0.

Let us consider also the canonical (Λ, V )-cubic connection CΛ,V defined in (3.2.2)
with parameter Λ = (3V/2)1/2 defined as in (3.2.4).

Then, for every ε ∈ (0, 1) such that Λε2 < H/2, we consider the function SM,ε : R →
R defined by

SM,ε(x) :=

{
(2z + 1)V + CΛ,V (ε

−2(x− (2z + 1)H)) if x ∈ Iz,M,ε for some z ∈ Z,

SH,V (x) otherwise,

(4.3.19)
where Iz,M,ε = [(2z + 1)H − Λε2, (2z + 1)H + Λε2] for every z ∈ Z.

We observe that SM,ε ∈ C1(R) ∩ H2
loc(R), and that SM,ε   SH,V locally strictly in

BVloc(R) as ε→ 0+.

Lemma 4.3.1. Let β,M0 > 0 be positive real numbers. Then there exist two real
numbers ε0 ∈ (0, 1] and C > 0 depending only on β andM0 such that for every ε ∈ (0, ε0)
and every ξ ∈ Rd such that |ξ| ≤M0 there exists a function wξ,ε ∈ H2

loc(R
d) such that

RPMFε(β, ξ · x,Qd
L, wξ,ε) ≤ 10

(
2β

27

)1/5

|ξ|4/5Ld + C

(
KdL

d−1 +
Ld +KdL

d−1

| log ε|

)

for every L > 0 and

|wξ,ε(x)− ξ ·x| ≤ C |∇wξ,ε(x)| ≤ C/ε2 ‖∇2wξ,ε‖ ≤ C/ε4 ∀x ∈ R
d, (4.3.20)

where Kd is defined in (4.2.12).

Proof. First of all, we observe that if ξ = 0 the function w0,ε := 0 satisfies all the
required estimates (with ε0 = 1 and C = 0).

Otherwise, if ξ 6= 0 let H, V,Λ ∈ (0,+∞) be the usual parameters defined in (2.4.4)
and (3.2.4), with α = α0 and M = |ξ|.

Let us fix ε0 ∈ (0, 1) such that Λε20 < H/2, for every |ξ| < M0. We point out that Λ
is increasing and H is decreasing with respect to |ξ|, so such ε0 exists and depends only
on β and M0.

For every ε ∈ (0, ε0) and every ξ ∈ Rd with |ξ| < M0, let S|ξ|,ε : R → R be the
function defined in (4.3.19) with M = |ξ| and let us set also σ = ξ/|ξ|.

We define the function wξ,ε : Rd → R as wξ,ε(x) := S|ξ|,ε(σ · x), so we now need to
show that this function satisfies the required estimates.

To this end, we observe that the definition of wξ,ε implies that

wξ,ε(x
′ + σy) = S|ξ|,ε(y), |∇wξ,ε(x

′ + σy)| = |S ′
|ξ|,ε(y)|, ‖∇2wξ,ε(x

′ + σy)‖ = |S ′′
|ξ|,ε(y)|,

for every x′ ∈ σ⊥ and every y ∈ R, hence we deduce that (4.3.20) holds with

C := sup
{
max{‖C ′

Λ,V ‖∞, ‖C ′′
Λ,V ‖∞} :M ≤M0

}
,
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where the supremum is actually attained at M =M0.
Moreover, using these formulas, we can compute the functional through the one-

dimensional section in direction σ, namely

RPMFε(β, ξ · x,Qd
L, wξ,ε) =

∫

(Qd
L)σ

RPMFε(β, |ξ|y, (Qd
L)x′,σ, S|ξ|,ε) dx

′

Now we observe that for every z ∈ Z we have that

RPMFε(β, |ξ|y, (2zH, 2(z + 1)H), S|ξ|,ε)

≤ RPMε((−Λε2,Λε2), CΛ,V (ε
−2y)) + β

∫ 2H

0

(SH,V − |ξ|y)2 dy

≤ 6V 2

Λ3
+ 2Λ

log(1 + ε−4V 2Λ−2‖C ′
1,1‖2∞)

| log ε| +
2

3
β|ξ|2H3

≤ 16

3
61/2V 1/2 +

Ĉ

| log ε| +
2

3
β|ξ|2H3,

= 20

(
16|ξ|
9β

)1/5

+
Ĉ

| log ε| ,

where Ĉ is a constant depending only on β and M0, and in the last line we have
substituted the values of V and H as functions of |ξ|.

Thus, if we set nx′,σ := ⌊(inf (Qd
L)x′,σ)/(2H)⌋ and Nx′,σ := ⌈(sup (Qd

L)x′,σ)/(2H)⌉,
then (Qd

L)x′,σ ⊆ (2nx′,σH, 2Nx′,σH), and hence we have that

RPMFε(β, ξ · x,Qd
L, wξ,ε) ≤

∫

(Qd
L)σ




Nx′,σ−1∑

z=nx′,σ

RPMFε(β, |ξ|y, (2zH, 2(z + 1)H), S|ξ|,ε)


 dx′

≤
∫

(Qd
L)σ

(Nx′,σ − nx′,σ)

[
20

(
16|ξ|
9β

)1/5

+
Ĉ

| log ε|

]
dx′

≤
∫

(Qd
L)σ

(H1((Qd
L)x′,σ)

2H
+ 2

)[
20

(
16|ξ|
9β

)1/5

+
Ĉ

| log ε|

]
dx′

=

∫

(Qd
L)σ

[
10

(
2β

27

)1/5

|ξ|4/5H1((Qd
L)x′,σ) + 40

(
16|ξ|
9β

)1/5
]
dx′

+
Ĉ

| log ε|

∫

(Qd
L)σ

(
H1((Qd

L)x′,σ)

2

(
β2|ξ|3/5

24

)1/5

+ 2

)
dx′

≤ 10

(
2β

27

)1/5

|ξ|4/5Ld + C̃

(
KdL

d−1 +
Ld +KdL

d−1

| log ε|

)
,

where C̃ is still a constant depending only on β and M0.

We can now prove the asymptotic estimate from above for the minima of PMFε.
The following Proposition, together with Proposition 4.2.1 completes the proof of The-
orem 4.0.1.
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Proposition 4.3.2. For every β > 0 and f ∈ C1(Qd
1) there exists a family of functions

{uε} ⊂ H2(Qd
1) such that

lim sup
ε→0+

1

ω(ε)2
PMFε(β, f,Q

d
1, uε) ≤ 10

(
2β

27

)1/5 ∫

Qd
1

|∇f(x)|4/5 dx. (4.3.21)

Proof. We divide the proof in several steps. Some of them are similar to those in the
proof of the estimate from below, but here we need a more careful approximation of the
forcing term, because we need to build a family of H2 functions.

Regularization of the forcing term Let us extend f to the whole space Rd in such a
way that f ∈ C1(Rd) and ∇f is bounded on Rd.

Let ρ ∈ C∞(Rd) be a non-negative smooth function supported in the unit ball of Rd

with
∫
Rd ρ = 1, and let us consider the family of mollifiers

ρε(x) := ε−dρ
(x
ε

)
.

Let us set fε := f ∗ ρε. We observe that the following properties hold

∫

Qd
1

(f(x)− fε(x))
2 dx ≤ ‖∇f‖∞

(∫

Rd

ρε(y)|y| dy
)2

≤ ‖∇f‖∞ε2, (4.3.22)

‖∇fε‖∞ ≤ ‖∇f‖∞ and ∇fε → ∇f uniformly, (4.3.23)

‖∇2fε‖∞ ≤ ‖∇f‖∞‖∇ρε‖L1 = ‖∇f‖∞‖∇ρ‖L1 · ε−1. (4.3.24)

Domain subdivision and approximation of the forcing term Let us fix a positive real
number L > 0. For every ε ∈ (0, 1) let us set

Nε,L :=

⌈
1

Lω(ε)

⌉
, Lε :=

1

Nε,Lω(ε)
,

and

N
d
Nε,L

:=
{
(z1, . . . , zd) ∈ N

d : 1 ≤ zi ≤ Nε,L ∀i ∈ {1, . . . , d}
}
.

For every z ∈ Nd
Nε,L

let us define also

Qz :=
{
x ∈ Qd

1 : xi ∈ [(zi − 1)Lεω(ε), ziLεω(ε)) ∀i ∈ {1, . . . , d}
}
,

and the functions fz : Qz → R as

fz(x) = fε(zLεω(ε)) + ξε,L,z · (x− zLεω(ε)),

where ξε,L,z = ∇fε(zLεω(ε)).
Now we can define the function fε,L : Qd

1 → R such that fε,L(x) = fz(x) for every
x ∈ Qz.
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We remark that the definition that we have just introduced are similar to the cor-
responding definitions in the estimate from below, but now f is replaced by its regular-
ization fε and the definition of Nε,L is slightly different, so that now Lε ≤ L.

Now we observe that, as in the estimate from below, we have that

∫

Qd
1

(fε − fε,L)
2 =

∑

z∈Nd
Nε,L

∫

Qz

(fε − fz)
2 ≤ Nd

ε,L(Lεω(ε))
d+2d δ2ε ,

where

δε := sup
{
|∇fε(x)−∇fε(y)| : |x− y| ≤ Lεω(ε)

√
d
}
, (4.3.25)

and hence

lim
ε→0+

1

ω(ε)2

∫

Qd
1

(fε − fε,L)
2 = 0,

because δε → 0 as ε→ 0+ thanks to (4.3.23).

Therefore, recalling (4.3.22), we deduce that

lim
ε→0+

1

ω(ε)2

∫

Qd
1

(f − fε,L)
2 ≤ lim

ε→0+

2

ω(ε)2

∫

Qd
1

(f − fε)
2 + (fε − fε,L)

2 = 0. (4.3.26)

Moreover we have that ∇fε,L → ∇f uniformly because of (4.3.23) and the fact that
|∇fε −∇fε,L| ≤ δε, and this implies that

lim
ε→0+

∑

z∈Nd
Nε,L

|ξε,L,z|4/5(Lεω(ε))
d = lim

ε→0+

∫

Qd
1

|∇fε,L|4/5 =
∫

Qd
1

|∇f |4/5. (4.3.27)

Finally, for every η ∈ (0, 1) and every function u ∈ H2(Qd
1), we have that

∫

Qd
1

(u− f)2 ≤ (1 + η)

∫

Qd
1

(u− fε,L)
2 +

(
1 +

1

η

)∫

Qd
1

(f − fε,L)
2,

so we conclude that

PMFε(β, f,Q
d
1, u) ≤ (1 + η)PMFε(β, fε,L, Q

d
1, u) +

(
1 +

1

η

)
β

∫

Qd
1

(f − fε,L)
2.

Recalling (4.3.26), if we divide by ω(ε)2 and we take the limsup we obtain that

lim sup
ε→0+

1

ω(ε)2
PMFε(β, f,Q

d
1, uε) ≤ (1+ η) lim sup

ε→0+

1

ω(ε)2
PMFε(β, fε,L, Q

d
1, uε), (4.3.28)

for every family of functions {uε} ⊆ H2(Qd
1).
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Definition of the family {uε} For every z ∈ Nd
Nε,L

let wz,ε be the function given by
Lemma 4.3.1 with ξ = ξε,L,z.

We observe that the numbers |ξε,L,z| are all bounded by ‖∇f‖∞, thanks to (4.3.23),
so we are in the setting of Lemma 4.3.1 with M0 = ‖∇f‖∞.

Now we would like to define uε(x) so that it coincides with a suitable translation
and homothety of wz,ε in the cube Qz. However, the function defined in this way does
not belong to H2(Qd

1), because it could have jump-type discontinuity on the boundaries
of the squares Qz, so we need to be more careful. To this end, let us introduce a family
of cut-off functions {ϑε} ⊆ C∞

c (Qd
Lε
) such that

ϑε(x) =

{
1 if dist(x, ∂Qd

Lε
) ≥ 2ε2,

0 if dist(x, ∂Qd
Lε
) ≤ ε2,

and

0 ≤ ϑε(x) ≤ 1, |∇ϑε(x)| ≤ C/ε2, ‖∇2ϑε(x)‖ ≤ C/ε4 ∀x ∈ Qd
Lε
, (4.3.29)

for some positive constant C that does not depend on ε and L.
For every z ∈ Nd

Nε,L
and every ε ∈ (0, 1) let us set

gε,L,z(y) :=
fε(zLεω(ε))− fε(zLεω(ε) + ω(ε)y)

ωε

∀y ∈ Qd
Lε
,

vε,L,z(y) := ϑε(y)wz,ε(y) + (1− ϑε(y))gε,L,z(y) ∀y ∈ Qd
Lε
.

Now we can define the functions uε by setting

uε(x) = fε(zLεω(ε))− ω(ε)vε,L,z(zLε − xω(ε)−1)

whenever x ∈ Qz for some z ∈ Nd
Nε,L

.

We observe that the functions uε ∈ H2(Qd
1) because they are of class H2 in the inte-

rior of every cube Qz and they coincide with the smooth function fε near the boundaries
of these cubes.

Reduction to a common hypercube With a change of variable we obtain that

1

ω(ε)2
PMFε(β, fε,L, Q

d
1, uε) =

1

ω(ε)2

∑

z∈Nd
Nε,L

PMFε(β, fz, Qz, uε)

= ω(ε)d
∑

z∈Nd
Nε,L

RPMFε(β, ξε,L,z · y,Qd
Lε
, vε,L,z) (4.3.30)

Estimates near the boundary Let us set Ωε,L := (2ε2, Lε−2ε2)d and Bε,L := Qd
Lε
\Ωε,L.

We prove that there exist a real number ε0 ∈ (0, 1) (that does not depend on z) and a
positive constant C (that does not depend on z, ε and L) such that

RPMFε(β, ξε,L,z · y,Bε,L, vε,L,z) ≤ CLd−1 ∀ε ∈ (0, ε0) ∀z ∈ N
d
Nε,L

. (4.3.31)
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To prove this, let us compute the functional, starting from the second order term.

‖∇2vε,L,z(y)‖ = ‖∇2ϑε(wz,ε − gε,L,z) + 2∇ϑε ⊗∇(wz,ε − gε,L,z)

+ ϑε∇2wz,ε + (1− ϑε)∇2gε,L,z‖
≤ ‖∇2ϑε‖|wz,ε − gε,L,z|+ 2|∇ϑε|(|∇wz,ε|+ |∇gε,L,z|)

+‖∇2wz,ε‖+ ‖∇2gε,L,z‖

From (4.3.20) and the mean value theorem we deduce that

|wz,ε(y)− gε,L,z(y)| ≤ |wz,ε(y)− ξε,L,z · y|+ |ξε,L,z · y − gε,L,z(y)|
≤ C + |ξε,L,z · y −∇fε(zLεω(ε) + syω(ε)y) · y|,

for some sy ∈ (0, 1). As a consequence we have that

|wz,ε(y)− gε,L,z(y)| ≤ C + δε|y| ≤ C + δεLε

√
d, (4.3.32)

where δε is defined by (4.3.25).
Moreover, we have that

∇gε,L,z(y) = ∇fε(zLεω(ε)− ω(ε)y) and ∇2gε,L,z(y) = −ω(ε)∇2fε(zLεω(ε)− ω(ε)y).

Therefore, exploiting the estimates (4.3.20), (4.3.23), (4.3.24) and (4.3.29), we obtain
that

‖∇2vε,L,z‖ ≤ C

ε4

(
C + δεLε

√
d
)
+ 2

C

ε2

(
C

ε2
+ ‖∇f‖∞

)
+
C

ε4
+ ‖∇f‖∞

‖∇ρ‖L1ω(ε)

ε
≤ C

ε4

for every ε ∈ (0, ε0). Here and in the sequel of the proof C > 0 denotes a constant (whose
value may vary from an inequality to another) that depends only on the constant β, the
space dimension d and the functions f and ρ, but not on ε, L and z, while ε0 ∈ (0, 1]
depends on β, d, f , ρ and L (because we need δεLε to be small), but not on z.

Since |Bε,L| = Ld
ε − (Lε − 4ε2)d ≤ CLd−1ε2, we deduce that

∫

Bε,L

ε6‖∇2vz,ε(y)‖2 dy ≤ CLd−1, (4.3.33)

for every ε ∈ (0, ε0).
Let us now compute the first order term

|∇vε,L,z| = |∇ϑε(wz,ε − gε,L,z) + ϑε∇wz,ε + (1− ϑε)∇gε,L,z|
≤ |∇ϑε||wz,ε − gε,L,z|+ |∇wz,ε|+ |∇gε,L,z|.

Exploiting again the estimates (4.3.20), (4.3.23), (4.3.29) and (4.3.32) we obtain that

|∇vε,L,z| ≤
C

ε2

(
C + δεLε

√
d
)
+
C

ε2
+ ‖∇f‖∞ ≤ C

ε2
,

for every ε ∈ (0, ε0).
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Since |Bε,L| ≤ CLd−1ε2, we deduce that
∫

Bε,L

1

ω(ε)2
log(1 + |∇vε,L,z(y)|2) dy ≤ CLd−1

| log ε| log
(
1 +

C

ε4

)
≤ CLd−1, (4.3.34)

for every ε ∈ (0, ε0).
Finally, we compute the fidelity term.

|vε,L,z(y)− ξε,L,z · y| = |ϑε(y)(wε,z(y)− ξε,L,z · y) + (1− ϑε(y))(gε,L,z(y)− ξε,L,z · y)|
≤ C + δεLε

√
d.

Since |Bε,L| ≤ CLd−1ε2, we deduce that the fidelity term actually vanishes as ε→ 0+,
so in particular

β

∫

Bε,L

(vε,L,z(y)− ξε,L,z · y)2 dy ≤ CLd−1, (4.3.35)

for every ε ∈ (0, ε0).
Combining (4.3.33), (4.3.34) and (4.3.35) we obtain (4.3.31).

Internal estimate We observe that vε,L,z = wz,ε in Ωε,L ⊆ Qd
Lε

⊆ Qd
L, so Lemma 4.3.1

yields

RPMFε(β, ξε,L,z · y,Ωε,L, vε,L,z)

≤ RPMFε(β, ξε,L,z · y,Qd
L, wz,ε)

≤ 10

(
2β

27

)1/5

|ξε,L,z|4/5Ld + C

(
KdL

d−1 +
Ld +KdL

d−1

| log ε|

)
. (4.3.36)

Conclusion Combining (4.3.28), (4.3.30), (4.3.31) and (4.3.36) we obtain that

lim sup
ε→0+

1

ω(ε)2
PMFε(β, f,Q

d
1, uε) ≤

(1 + η) lim sup
ε→0+

ω(ε)d
∑

z∈Nd
Nε,L

[
10

(
2β

27

)1/5

|ξε,L,z)|4/5Ld + CLd−1

]
,

where again C is a positive constant which depends only on β, the space dimension d
and the functions f and ρ, but not on ε, L and z.

Therefore, by (4.3.27) and the fact that Nd
ε,Lω(ε)

d → L−d, we deduce that

lim sup
ε→0+

1

ω(ε)2
PMFε(β, f,Q

d
1, uε) ≤ (1 + η)10

(
2β

27

)1/5 ∫

Qd
1

|∇f(x)|4/5 dx+ C(1 + η)

L
.

Since L > 0 can be chosen arbitrarily large and η > 0 can be chosen arbitrarily
small, we have proved that for every positive real number δ > 0 there exists a family of
functions {uε} ⊂ H2(Qd

1) such that

lim sup
ε→0+

1

ω(ε)2
PMFε(β, f,Q

d
1, uε) ≤ 10

(
2β

27

)1/5 ∫

Qd
1

|∇f(x)|4/5 dx+ δ.
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Hence, by a diagonal argument, we can also find a family of functions for which
(4.3.21) holds true.

Remark 4.3.3. In order to extend Theorem 2.2.9 to the higher dimensional case we
need two main ingredients: a uniform estimate for the energy of local minimizers as
in Proposition 2.6.5, and a characterization of entire local minimizers for the limit
functional JF1/2 with a linear forcing term.

The first one can be proved again by an iterative argument, in which Lemma 2.6.3
is replaced by a different estimate that can be obtained using cut-off functions instead of
cubic polynomials. This generalization is not immediate, and requires a certain amount
of computations, so we do not include it in this thesis.

The characterization of entire local minimizers for JF1/2, instead, seems to be a
challenging problem, that at present we are not able to solve completely. Indeed, even if
it can be easily proved that for every ξ ∈ Rd the functions Sξ(x) = SH,V (ξ · x) are entire
local minimizers for JF1/2 when the forcing term is f(x) = ξ ·x and the parameters H, V
are given by 2.4.4 with M = |ξ|, it turns out that these are not the only ones.

On the contrary, at least when the space dimension is d = 2, we know that there exist
entire local minimizers that are not ”one-dimensional”, namely that can not be written
as S(ξ · x) for some function S : R → R. However, we are still unable to provide a
complete characterization of entire local minimizers, and the situation is probably much
more complicated when the space dimension is higher than two.
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Chapter 5

Semi-discrete approximation and
monotonicity of the total variation

5.1 Introduction

In this chapter we describe the paper [47] and some extensions of the results contained
therein. In particular, we focus on the semi-discrete approximation of the problem (1.2)
in the one-dimensional case.

As we briefly mentioned in the introduction, in this case it is known that, for any
fixed value of the discretization parameter, both the L∞ norm and the total variation
of the solution are nonincreasing functions of time (see Theorem A). Therefore, if they
are bounded for t = 0 independently of the discretization parameter, then they remain
uniformly bounded for all positive times, and this is enough to show that a limit exists,
at least up to subsequences, and it is a bounded variation function for every t ≥ 0
(see Theorem B). At this point one can consider all possible limits of semi-discrete
approximations as generalized solutions to (1.2) (see Definition 5.2.4).

A characterization of all possible limits is still out of reach, apart from some partial
results (see Theorem C), because it is not clear how to pass to the limit in the quasi-
linear term. In particular, before [47] it was not known whether some good properties
of the approximating solutions, such as the maximum principle and the monotonicity of
the total variation, remain valid for all possible limits. We observe that these properties
are extremely reasonable for what is expected to be a denoising tool.

First main result – A counterexample We already observed that, for every fixed value
of the grid size, both the L∞ norm and the total variation of solutions are nonincreasing
functions of time. Therefore, both the maximum principle and the monotonicity of the
total variation for generalized solutions would be trivially true if we knew that “the
total variation of the limit is the limit of the total variations” or “the maximum of the
limit is the limit of the maxima”.

Unfortunately, the L2 convergence provided by the compactness result is not enough
to pass such quantities to the limit for all times, even if they pass to the limit at the
initial time. Indeed, in Theorem 5.2.6 we provide an explicit example of solutions to the

151



152 The Perona-Malik problem

semi-discrete scheme whose maximum and total variation pass to the limit at the initial
time, but do not pass to the limit for every subsequent time.

In a nutshell, what happens in that example can be described as follows. Assume
that we consider equation (1.1) in the interval (0, π), with initial datum u0(x) = c0 sin x
for some c0 ∈ (0, 1), and (for simplicity) Dirichlet boundary conditions. In this case the
problem has a unique classical solution u(t, x), which always satisfies 0 ≤ ux(t, x) ≤ c0,
and does not even realize that a backward parabolic regime exists (see Theorem 1.1.2).
As expected, the qualitative behavior of u(t, x) is similar to the behavior of the solution
of the heat equation with the same initial datum, namely it has a profile that resembles
a hill that continues to decrease until it disappears as t→ +∞.

Now let us approximate u0(x) with a sequence u0n(x) of piecewise constant functions,
and let us consider the solution un(t, x) of the semi-discrete version of (1.1) with u0n(x)
as initial datum. Then we expect that un(t, x) mimics u(t, x), but this is true only up
to some extent, and it is very sensitive to the choice of the sequence u0n. Indeed, it
is enough to modify slightly the values of u0n(x) near the maximum point, and what
happens is that those values do not follow the evolution of the rest, but they remain
rather close to the initial maximum value for large times.

It is still true that u0n(x) converges uniformly to u0(x), and also the maximum and
the total variation of u0n(x) converge to the corresponding quantities of u0(x). It is
still true that un(t, x) converges to u(t, x) in L

p((0, π)) for every t ≥ 0 and every finite
p ≥ 1. But the maximum of un(t, x) does not tend to the maximum of u(t, x) for every
t > 0, and the same for the total variation, due to the few anomalous values that remain
higher than expected.

One could interpret this pathology by saying that un(t, x) does not converge truly to
u(t, x), but to some exotic object that coincides with u(t, x) with an isolated anomalous
maximum point, and analogously u0n(x) does not converge truly to u0(x). This approach
might be viable, and we plan to explore it in some future research, but it requires the
identification of a suitable generalization of the notion of function and derivative, maybe
in the spirit of varifolds as in Theorem 2.2.14 and in [66, Theorem 2.5]. Within this
approach the dirty job is done by the definition of the exotic objects, and at the end
of the day the convergence of maxima/minima and of the total variation are enforced
in the definition, and as a consequence the maximum principle and the monotonicity of
the total variation for the limit objects are immediate.

Second main result – Monotonicity properties of generalized solutions Here we pursue
a different path. We remain in the classical setting of functions with bounded variation,
where the compactness result provides the limit, and in Theorem 5.2.7 we show that
all possible limits satisfy the expected monotonicity properties, even if we know that
the related quantities do not pass to the limit from the semi-discrete to the continuous
setting.

In order to prove this result, we exploit a weak characterization of generalized solu-
tions. It is known (see Theorem C) that they satisfy an equation of the form ut = vx
for a suitable function v. From (1.2) one would expect that

v = ϕ′(ux),
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but in general this is not true, at least if one understands ux as the standard derivative
of a function with bounded variation. Nevertheless, it remains true that v · ux ≥ 0 in
the sense of measures (note that for almost every t ≥ 0 the function v is continuous in
x, and ux is a signed measure).

This leads us to introducing a class of evolution curves that we call uv-evolutions (see
Definition 5.2.8), namely solutions to an evolution equation of the form ut = vx, with
suitable regularity requirements and the sign condition v · ux ≥ 0. Then we prove that
all our generalized solutions of the Perona-Malik equation are actually uv-evolutions
(see Proposition 5.2.11), and that all uv-evolutions satisfy the maximum principle and
the monotonicity of the total variation (see Proposition 5.2.10).

The class of uv-evolutions contains weak solutions to many parabolic equations in
divergence form, including all one-dimesnional weak solutions to the Perona-Malik equa-
tion constructed through convex integration techniques (see Theorem 1.1.6). The class
of uv-evolutions is stable under weak convergence, and therefore we are confident that
it could contain also the limits of trajectories provided by different approximations of
the Perona-Malik equation, of course when a compactness result will be available for
those models. In all these cases we have now identified a common mechanism that leads
to the maximum principle and to the monotonicity of the total variation, and we hope
that this could be useful also in different contexts.

A generalization – uvw-evolutions The results that we have just described for uv-
evolution actually hold for a more general class of evolution curves, that we call uvw-
evolutions, and consists of solutions to equations of the form ut = wvx, with suitable
regularity requirements and a suitable generalized sign condition.

This larger class is also stable under compositions of the function u with monotone
functions. This condition allows to prove further monotonicity results for this class,
and hence for generalized solutions of the Perona-Malik equations. In particular we
obtain a weak form of the monotonicity of the cardinality of level sets, which in some
cases generalizes the results for classical solutions of parabolic equations (see [7] and the
references quoted therein).

For generalized solutions of the Perona-Malik equation coming from the semi-discrete
scheme, a stronger result concerning level sets could also be obtained with a different
approach, exploiting the finite dimensional structure of the approximating problems,
but we do not include this argument in this thesis.

Finally, we conclude by mentioning a technical point in our proofs that might be
interesting in itself. Indeed, the maximum principle and the monotonicity of the total
variation seem to be two faces of the same coin. More precisely, in order to show that the
total variation of u(t, x) with respect to the space variable x ∈ (a, b) is a nonincreasing
function of time, we consider for every positive integer m the function with 2m space
variables

2m∑

i=1

(−1)iu(t, xi),

defined in the simplex a < x1 ≤ x2 ≤ . . . ≤ x2m < b, and we show that its supremum is
a nonincreasing function of time. In other words, the monotonicity of the total variation
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in dimension one can be reduced to a maximum principle in higher dimension.

Structure of the chapter This chapter is organized as follows. In section 5.2 we intro-
duce the notation and we state our main results. In section 5.3 we construct our coun-
terexample to the preservation of strict convergence for positive times. In section 5.4
we develop the theory of uv-evolutions that leads to the proof of our monotonicity re-
sults. Finally, in section 5.5 and section 5.6 we present some original research concerning
uvw-evolution and the monotonicity properties of level sets, which is not contained in
[47].

5.2 Notation and statements

For the sake of simplicity, here we consider a function ϕ : R → R with the following
properties, even if many statements could be proved also under weaker assumptions.

• (Regularity, symmetry, strict convexity in the origin). The function ϕ is an even
function of class C2 with bounded second derivative, satisfying ϕ(0) = 0 and

ϕ′′(0) > 0. (5.2.1)

• (Convex-concavity). There exists a positive real number σ1 such that

ϕ′(σ) is nondecreasing in [0, σ1] (5.2.2)

and
ϕ′(σ) is nonincreasing in [σ1,+∞). (5.2.3)

• (Sublinear growth). It turns out that

lim
σ→+∞

ϕ′(σ) = 0. (5.2.4)

We observe that these properties imply in particular that ϕ′(0) = 0 and ϕ(σ) > 0
for every σ 6= 0. In addition, σ1 is a maximum point for ϕ′(σ) and

σϕ′(σ) ≥ 0 ∀σ ∈ R. (5.2.5)

Now we recall that every function u ∈ BV ((a, b)) coincides almost everywhere with
a function that is (for example) left-continuous. Identifying u with this left-continuous
representative, the total variation of u in (a, b) is the non-negative real number

TV (u) := sup

{
m∑

i=1

|u(xi)− u(xi−1)| : m ≥ 1, a < x0 ≤ x1 ≤ . . . ≤ xm < b

}
,

and coincides with the total variation of the measure Du. The total variation of u is
the sum of the positive total variation TV +(u) of u, defined by

TV +(u) := sup

{
2m∑

i=1

(−1)iu(xi) : m ≥ 1, a < x1 ≤ x2 ≤ . . . ≤ x2m < b

}
,

and the negative total variation TV −(u) of u, defined as TV +(−u). The decomposition
TV (u) = TV +(u) + TV −(u) corresponds to the Hahn decomposition of Du.
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5.2.1 The semi-discrete scheme

Let n be a positive integer, and let u : {1, . . . , n} → R be any function. Let us extend
u by setting

u(0) = u(1) and u(n+ 1) = u(n).

We call forward discrete derivative of u with step 1/n the function D+
n u defined as

[D+
n u](i) :=

u(i+ 1)− u(i)

1/n
∀i ∈ {0, 1, . . . , n},

and we call backward discrete derivative of u with step 1/n the function D−
n u defined as

[D−
n u](i) :=

u(i− 1)− u(i)

−1/n
∀i ∈ {1, . . . , n, n+ 1}.

We observe that [D−
n u](i) = [D+

n u](i− 1) for every admissible value of i. In analogy
with the continuous setting, we set

‖u‖∞ := max{|u(i)| : i ∈ {1, . . . , n}}, (5.2.6)

and we call discrete total variation of u the number

TV (u) :=
1

n

n∑

i=1

|D+
n u(i)| =

n−1∑

i=1

|u(i+ 1)− u(i)|. (5.2.7)

A solution to the semi-discrete Perona-Malik equation with step 1/n is any function

u : [0,+∞)× {1, . . . , n} → R (5.2.8)

that is differentiable with respect to the first variable, and satisfies

u′(t, i) = D−
n

(
ϕ′
(
D+

n u(t, i)
))

∀t ≥ 0, ∀i ∈ {1, . . . , n}, (5.2.9)

with the usual understanding that

u(t, 0) = u(t, 1) and u(t, n+ 1) = u(t, n) ∀t ≥ 0. (5.2.10)

Just to avoid any ambiguity, we point out that

D−
n

(
ϕ′
(
D+

n u(t, i)
))

=
ϕ′ (D+

n u(t, i))− ϕ′ (D+
n u(t, i− 1))

1/n
,

so that equation (5.2.9) is the discrete version of (1.2), and (5.2.10) is the discrete version
of the Neumann boundary conditions.

Remark 5.2.1 (From discrete to continuum setting). One can always identify a function
u : {1, . . . , n} → R with the piecewise constant function û : (0, 1) → R defined by

û(x) := u(⌈nx⌉) ∀x ∈ (0, 1),
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where, for every real number α, the symbol ⌈α⌉ denotes the smallest integer greater than
or equal to α. Under this identification, the forward and backward discrete derivatives
D+

n u and D−
n u are actually the forward and backward difference quotients of û of step

1/n, the number ‖u‖∞ defined by (5.2.6) is the usual L∞ norm of û, and the discrete
total variation TV (u) defined by (5.2.7) is the total variation of û as a bounded variation
function.

In an analogous way, one can always associate to every semi-discrete function u as
in (5.2.8) the function û : [0,+∞)× (0, 1) → R defined by

û(t, x) := u(t, ⌈nx⌉) ∀t ≥ 0, ∀x ∈ (0, 1). (5.2.11)

In the sequel, with some abuse of notation, we use the same letter u in order to
denote the “same function” in three different flavors, namely

• the discrete function with domain and codomain as in (5.2.8),

• the piecewise constant function defined by the right-hand side of (5.2.11),

• the evolution curve from [0,+∞) to Lp((0, 1)) that associates to each t ≥ 0 the
function x 7→ u(t, ⌈nx⌉), thought as an element of Lp((0, 1)).

We hope that this abuse of notation could result less confusing than using three
different symbols.

Remark 5.2.2 (Discrete Perona-Malik functional). One can define the discrete Perona-
Malik functional with step 1/n as

DPMn(u) :=
1

n

n∑

i=1

ϕ
(
D+

n u(i)
)
. (5.2.12)

Under the identification of Remark 5.2.1, one can interpret it as a functional defined
in the space of piecewise constant functions in (0, 1) with steps of width 1/n. In this
sense it turns out that the semi-discrete Perona-Malik equation (5.2.9), with the discrete
Neumann boundary conditions (5.2.10), is the gradient flow of (5.2.12) with respect to
the metric of L2((0, 1)). For more details we refer to [42].

We observe that (5.2.9) is actually a system of n ordinary differential equations, and
therefore existence and uniqueness of solutions follow from standard theories. In the
next result we summarize the properties of solutions that we need in the sequel.

Theorem A (Existence, uniqueness, and monotonicity). For every positive integer n,
and every function u0 : {1, . . . , n} → R, the following statements hold true.

(1) (Existence and uniqueness). There exists a unique global solution to the semi-
discrete Perona-Malik equation with initial datum u0 and homogeneous Neumann
boundary conditions, namely there exists a unique function u that satisfies (5.2.8),
(5.2.9), (5.2.10), and the initial condition

u(0, i) = u0(i) ∀i ∈ {1, . . . , n}.



Semi-discrete approximation and monotonicity of the total variation 157

(2) (Monotonicity of max/min and total variation). The three functions

t 7→ max
1≤i≤n

u(t, i), t 7→ − min
1≤i≤n

u(t, i), t 7→ 1

n

n∑

i=1

|D+
n u(t, i)|

are nonincreasing.

(3) (L2 estimate on the time-derivative). It turns out that

∫ +∞

0

(
1

n

n∑

i=1

|u′(t, i)|2
)
dt ≤ DPMn(u0), (5.2.13)

where DPMn is the discrete Perona-Malik functional defined in (5.2.12).

(4) (Preservation of subcritical regions). Let σ1 be the threshold that appears in (5.2.2)
and (5.2.3). If D+

n u0(i) ≤ σ1 for some index i, then D+
n u(t, i) ≤ σ1 for every t ≥ 0.

(5) (Preservation of monotonicity). If the initial datum u0 is nondecreasing, then
u(t, i) is nondecreasing with respect to the second variable for every t ≥ 0.

The proof of the first four statements of Theorem A is contained in [42, Theorem 2.5],
while statement (5) follows from the monotonicity of the function

t 7→ 1

n

n∑

i=1

max
{
−D+

n u(t, i), 0
}
,

whose proof is analogous to the monotonicity of the total variation.
Solutions to the semi-discrete Perona-Malik equation satisfy the following compact-

ness result.

Theorem B (Compactness for the semi-discrete scheme). For every positive integer n,
let u0n : {1, . . . , n} → R be a function, and let un : [0,+∞) × {1, . . . , n} → R denote
the solution to the semi-discrete Perona-Malik equation (5.2.9), with discrete Neumann
boundary conditions (5.2.10), and initial datum u0n.

Let us assume that

sup
{
‖u0n‖∞ + TV (u0n) : n ≥ 1

}
< +∞. (5.2.14)

Then the sequence {un} is relatively compact in C0
(
[0,+∞);L2((0, 1))

)
with respect

to the compact-open topology, namely there exist a function u : [0,+∞) → L2((0, 1)),
and an increasing sequence {nk} of positive integers, such that

lim
k→+∞

sup
t∈[0,T ]

‖unk
(t, ⌈nkx⌉)− u(t, x)‖L2((0,1)) = 0 (5.2.15)

for every real number T > 0.

Remark 5.2.3. The proof of Theorem B, for which we refer to [42, Theorem 2.7] (see
also [18]), is a simple application of the classical Arzelà-Ascoli theorem. The two main
ingredients are the following.
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• For every fixed t ≥ 0, the sequence {un(t, x)} is relatively compact in L2((0, 1))
due to the maximum principle and the bound on the total variation.

• The sequence un is uniformly Hölder continuous with exponent 1/2 as a function
from [0,+∞) to L2((0, 1)). This is due to estimate (5.2.13), and the fact that
(5.2.14) implies a uniform bound on DPMn(u0n) because of the sublinear growth
of ϕ.

We observe also that in the compactness statement the L2 space can be replaced by
any Lp space with finite p ≥ 1 (but not with p = +∞).

5.2.2 Generalized solutions obtained through the SD scheme

The compactness result of Theorem B motivates the following procedure. Given any
function u0 ∈ BV ((0, 1)), we approximate it with a sequence {u0n} of piecewise constant
functions with step 1/n. For each positive integer n, we consider the solution un to
the semi-discrete Perona-Malik equation with initial datum u0n. Since u0 is a bounded
variation function, we can choose the approximating sequence in such a way that (5.2.14)
holds true, and this guarantees that the sequence {un} is relatively compact. All possible
limits, when also the approximating sequence is allowed to vary, can be considered as
some sort of “generalized solutions” to (1.2) with initial datum u0.

We observe that this procedure, when applied to the heat equation, or to any other
forward parabolic equation, delivers the unique classical solution to the equation with
initial datum u0. In the case of the Perona-Malik equation we end up with the following
notion.

Definition 5.2.4 (Generalized solutions). A generalized solution to equation (1.2) with
homogeneous Neumann boundary conditions in the interval (0, 1), obtained through
semi-discrete approximation, is any function u ∈ C0

(
[0,+∞);L2((0, 1))

)
for which there

exist an increasing sequence {nk} of positive integers, and a sequence of functions

uk : [0,+∞)× {1, . . . , nk} → R,

with the following properties.

• (Uniform bounds on initial data). There exists a real number M such that the
initial data, defined by u0k(i) = uk(0, i) for every i ∈ {1, . . . , nk}, satisfy

‖u0k‖∞ + TV (u0k) ≤M ∀k ≥ 1. (5.2.16)

• (Semi-discrete equation and discrete Neumann boundary conditions). For every
positive integer k, the function uk is differentiable with respect to the first variable,
and satisfies the semi-discrete Perona-Malik equation

u′k(t, i) = D−
nk

(
ϕ′
(
D+

nk
uk(t, i)

))
∀t ≥ 0, ∀i ∈ {1, . . . , nk},

with the usual understanding (discrete Neumann boundary conditions) that

uk(t, 0) = uk(t, 1) and uk(t, nk + 1) = uk(t, nk) ∀t ≥ 0. (5.2.17)
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• (Convergence). As k → +∞ it turns out that

uk(t, ⌈nkx⌉) → u(t, x) in C0
(
[0,+∞);L2((0, 1))

)

in the sense that (5.2.15) holds true for every real number T > 0.

Remark 5.2.5 (Restriction property). The notion of solution of Definition 5.2.4 above
is slightly more general than the notion of solution of [42, Definition 2.8]. Indeed, in the
latter there was the further requirement that initial data converge strictly in BV ((0, 1)),
namely that the total variation of the initial data u0k of the approximating solutions
converges to the total variation of the initial datum u(0, x) of the limit solution.

Dropping this extra requirement potentially enlarges the set of generalized solutions,
but it has the positive effect that now, if we restrict a solution with initial datum u0 to
some half-line [T,+∞), what we get is a solution with initial datum u(T ).

A partial characterization of generalized solutions is provided by the following result.
For a proof, we refer to [42, Theorem 2.9].

Theorem C (Regularity of generalized solution). Let u be a generalized solution to
equation (1.2) with homogeneous Neumann boundary conditions in the interval (0, 1),
obtained through semi-discrete approximation in the sense of Definition 5.2.4 with cor-
responding sequences {nk} and {uk}.

Then the following statements hold true.

(1) (H1 regularity in time). The function u admits a weak derivative ut with respect
to the variable t, and

ut ∈ L2((0,+∞)× (0, 1)).

(2) (BV regularity in space). For every t ≥ 0 the function x 7→ u(t, x) belongs to
BV ((0, 1)) and

‖u(t, x)‖∞ + TV (u(t, x)) ≤M ∀t ≥ 0,

where M is the constant that appears in (5.2.16), and both the L∞ norm and the
total variation are intended with respect to the space variable.

(3) (Remnants of the equation). Let us consider the function vk defined by

vk(t, i) := ϕ′
(
D+

nk
uk(t, i)

)
∀t ≥ 0, ∀i ∈ {1, . . . , nk}. (5.2.18)

Then there exists a measurable function v ∈ L∞((0,+∞)× (0, 1)) such that

vk(t, ⌈nkx⌉)⇀ v(t, x) weakly* in L∞((0,+∞)× (0, 1)).

Moreover, the function v admits a weak derivative vx with respect to the space
variable x. This derivative satisfies

D−
nk
vk(t, ⌈nkx⌉)⇀ vx(t, x) weakly in L2((0,+∞)× (0, 1)),

and
ut = vx as elements of L2((0,+∞)× (0, 1)).

Finally, for almost every t ≥ 0, the function x 7→ v(t, x) lies in H1((0, 1)), and
hence it is continuous up to the endpoints and satisfies the boundary conditions
v(t, 0) = v(t, 1) = 0.
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5.2.3 Main results

The L∞ norm and the total variation are lower semicontinuous with respect to conver-
gence in L2, or more generally in Lp with p < +∞. As a consequence, with the notations
of Definition 5.2.4, we know that

lim inf
k→+∞

‖uk(t, i)‖∞ ≥ ‖u(t, x)‖∞ ∀t ≥ 0, (5.2.19)

and

lim inf
k→+∞

TV (uk(t, i)) ≥ TV (u(t, x)) ∀t ≥ 0. (5.2.20)

On the other hand, we know from statement (2) of Theorem A that, for every fixed
k ≥ 1, the functions t 7→ ‖uk(t, i)‖∞ and t 7→ TV (uk(t, i)) are nonincreasing.

Unfortunately, the inequalities in (5.2.19) and (5.2.20) are not enough to deduce
that the functions t 7→ ‖u(t, x)‖∞ and t 7→ TV (u(t, x)) are nonincreasing as well. This
deduction would be possible if we had equalities instead of inequalities in (5.2.19) and
(5.2.20). This would mean that, for every fixed t ≥ 0, the convergence of uk(t, ⌈nkx⌉)
to u(t, x) could be improved from convergence in L2((0, 1)) to strict convergence in
BV ((0, 1)) in the sense of [6, Definition 3.14].

The first main result of this chapter is a counterexample to strict convergence. We
show that it may happen that initial data converge strictly, but solutions do not converge
strictly for every positive time, and as a consequence we have strict inequality in both
(5.2.19) and (5.2.20) for every t > 0.

Theorem 5.2.6 (Potential lack of strict convergence for positive times). There exists a
generalized solution u to the Perona-Malik equation (1.2) with homogeneous Neumann
boundary conditions in the interval (0, 1), obtained through semi-discrete approximation
in the sense of Definition 5.2.4 with corresponding sequences {nk} and {uk}, which has
the following properties.

(1) (Strict converge of initial data). For t = 0 we have equality in (5.2.19) and
(5.2.20).

(2) (Lack of strict convergence for positive times). For every t > 0 the inequalities in
(5.2.19) and (5.2.20) are strict.

Due to Theorem 5.2.6, it is not possible to deduce the monotonicity of the functions
t 7→ ‖u(t, x)‖∞ and t 7→ TV (u(t, x)) from the corresponding monotonicities at discrete
level. Nevertheless, the second main result of this chapter is that those monotonicities
hold true anyway.

Theorem 5.2.7 (Monotonicity results for generalized solutions). Let u be a generalized
solution to the Perona-Malik equation (1.2) with homogeneous Neumann boundary con-
ditions in the interval (0, 1), obtained through semi-discrete approximation in the sense
of Definition 5.2.4.

Then the following monotonicity results hold true.
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(1) (Maximum principle). For every t ≥ 0, let M+(t) and M−(t) denote, respectively,
the (essential) supremum and infimum of the function x 7→ u(t, x).

Then the function t 7→ M+(t) is nonincreasing, while the function t 7→ M−(t) is
nondecreasing.

(2) (Monotonicity of the total variation). For every t ≥ 0, let TV ±(t) denote the
positive/negative total variation of the function x 7→ u(t, x).

Then the functions t 7→ TV ±(t) are nonincreasing.

5.2.4 uv-evolutions

In the proof of Theorem 5.2.7 we forget that our generalized solutions are limits of solu-
tions to the semi-discrete scheme. We limit ourselves to considering them as functions
that satisfy the characterization described in Theorem C, together with a suitable sign
condition. This leads to the following notion.

Definition 5.2.8 (uv-evolution with NBC in dimension one). A uv-evolution with ho-
mogeneous Neumann boundary conditions in an interval (a, b) ⊆ R is a pair of measur-
able functions

u : (0,+∞)× (a, b) → R and v : (0,+∞)× (a, b) → R

with the following properties.

• (Time regularity). The function u admits a weak derivative ut with respect to
time, and

ut ∈ L1((0, T )× (a, b)) ∀T > 0. (5.2.21)

• (Space regularity). For almost every t > 0 it turns out that

the function x 7→ u(t, x) is in BV ((a, b)), (5.2.22)

the function x 7→ v(t, x) is in W 1,1((a, b)). (5.2.23)

• (Evolution equation). The functions u and v satisfy

ut(t, x) = vx(t, x) in (0,+∞)× (a, b). (5.2.24)

• (Neumann boundary conditions). For almost every t > 0 it turns out that

v(t, a) = v(t, b) = 0. (5.2.25)

• (Sign condition). For almost every t > 0 it turns out that

v(t, x) ·Du(t, x) ≥ 0 as a measure in (a, b). (5.2.26)

Remark 5.2.9. Let us comment on some regularity issues in Definition 5.2.8 above.
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• (Evolution equation). The evolution equation (5.2.24) can be seen both as an
equality between functions in L1((0, T )× (a, b)), and as an equality between func-
tions in L1((a, b)) for almost every t > 0.

• (Time regularity and initial datum). The time regularity assumption (5.2.21)
implies that u, as a function from (0,+∞) to L1((a, b)), is continuous, and actually
also absolutely continuous, and hence it can be extended up to t = 0. In particular,
all sections x 7→ u(t, x) are well defined as functions in L1((a, b)) for every t ≥ 0,
including the initial datum at t = 0.

• (Neumann boundary conditions). Due to the space regularity assumption (5.2.23),
for almost every t > 0 the function x→ v(t, x) is continuous up to the boundary,
and hence the pointwise values in (5.2.25) make sense.

• (Sign condition). For almost every t > 0, the left-hand side of (5.2.26) is a well
defined signed measure. Indeed, due to the space regularity assumptions (5.2.22)
and (5.2.23), it is the product of the continuous function x → v(t, x) and the
signed measure Du, which is the derivative of the BV function x→ u(t, x).

The proof of Theorem 5.2.7 follows from the combination of the following two re-
sults, where we show that uv-evolutions have some monotonicity properties, and our
generalized solutions are uv-evolutions. The formal statements are the following.

Proposition 5.2.10 (Monotonicity properties of uv-evolutions with NBC in dimension
one). Let (u, v) be a uv-evolution with Neumann boundary conditions in an interval
(a, b) ⊆ R, in the sense of Definition 5.2.8.

Then the following monotonicity results hold true (here we always consider the rep-
resentative of u that is continuous with values in L1((a, b)), see Remark 5.2.9).

(1) (Maximum principle). For every t ≥ 0, let M+(t) and M−(t) denote, respectively,
the (essential) supremum and infimum of the function x 7→ u(t, x).

Then the function t 7→ M+(t) is nonincreasing, while the function t 7→ M−(t) is
nondecreasing.

(2) (Monotonicity of the total variation). For every t ≥ 0, let TV ±(t) denote the
positive/negative total variation of the function x 7→ u(t, x).

Then the functions t 7→ TV ±(t) are nonincreasing.

Proposition 5.2.11 (Joining link). Let u be a generalized solution to equation (1.2)
with homogeneous Neumann boundary conditions in the interval (0, 1), obtained through
semi-discrete approximation in the sense of Definition 5.2.4. Let v be the function
defined in statement (3) of Theorem C.

Then the pair (u, v) is a uv-evolution with homogeneous Neumann boundary condi-
tions in (a, b) in the sense of Definition 5.2.8.

A generalization of Definition 5.2.8 and Proposition 5.2.10 is provided in section 5.5,
and some further results concerning the evolution of level sets are deduced in section 5.6.
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5.3 A counterexample to strict convergence

In this section we prove Theorem 5.2.6. Before entering into details, we give an outline
of the strategy of the proof. Due to assumption (5.2.1), there exist real numbers 0 <
λ0 ≤ Λ0 and σ0 ∈ (0, σ1) such that

λ0(α− β) ≤ ϕ′(α)− ϕ′(β) ≤ Λ0(α− β) ∀ 0 ≤ β ≤ α ≤ σ0. (5.3.1)

Now let us consider the function

u0(x) =
σ0
2
sin
(π
2
x
)

∀x ∈ [0, 1], (5.3.2)

and for every positive integer n let us consider the discrete approximation u0n of u0
defined by

u0n(i) :=





σ0
2
sin

(
π

2

i

n

)
if i ∈ {1, . . . ,mn},

σ0
2

+ Jn if i ∈ {mn + 1, . . . , n},
(5.3.3)

where Jn → 0+ is a suitable sequence of positive real numbers, and {mn} is a suitable
sequence of integers such that 0 < mn < n for every n ≥ 2, and

lim
n→+∞

mn

n
= 1. (5.3.4)

Then the following facts hold true.

(1) The sequence {u0n} converges to u0 uniformly in [0, 1] (with the usual meaning of
Remark 5.2.1), and the total variation of u0n converges to the total variation of
u0.

This is true because of (5.3.4) and the fact that Jn → 0. Roughly speaking, this
means that the perturbation for i > mn is small, both horizontally and vertically.

(2) For every positive integer n, let us consider the solution un(t, i) of the semi-discrete
equation (5.2.9), with initial datum u0n(i), and the understanding that (the first
condition mimics a Dirichlet boundary condition in x = 0, the second one a
Neumann boundary condition in x = 1)

un(t, 0) = 0 and un(t, n+ 1) = un(t, n) ∀t ≥ 0. (5.3.5)

The function un(t, i) turns out to be increasing with respect to the second variable
for every t ≥ 0, and in particular

‖un(t, i)‖∞ = TV (un(t, i)) = un(t, n) ∀t ≥ 0. (5.3.6)

(3) It turns out that

lim sup
n→+∞

un(t, ⌈nx⌉) ≤
σ0
2
sin
(π
2
x
)
· exp(−λ0t) ∀t ≥ 0, ∀x ∈ (0, 1), (5.3.7)
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and

lim inf
n→+∞

un(t, n) ≥
σ0
2

∀t ≥ 0. (5.3.8)

These are the two key points of the proof, and they are established in Proposi-
tion 5.3.4 by constructing a suitable sub/supersolution.

(4) The sequence {un} fits into the framework of Theorem B (we point out that both
Theorem A and Theorem B remain valid also with discrete Dirichlet/Neumann
boundary conditions). Any limit point u(t, x) is nondecreasing with respect to x
for every t ≥ 0. Due to (5.3.7), any limit point satisfies

‖u(t, x)‖∞ = TV (u(t, x)) = u(t, 1) ≤ σ0
2
exp(−λ0t) ∀t ≥ 0.

On the other hand, from (5.3.6) and (5.3.8) we deduce that

lim inf
n→+∞

‖un(t, i)‖∞ = lim inf
n→+∞

TV (un(t, i)) ≥
σ0
2
,

from which we conclude that there is strict inequality for every t > 0 both in
(5.2.19) and in (5.2.20). This proves the conclusions of Theorem 5.2.6 for the
problem with one Dirichlet and one Neumann boundary condition. If we want an
example with Neumann boundary conditions in both endpoints, it is enough to
reproduce the phenomenon in (−1, 1) by extending un(t, i) as an odd function for
negative values of i.

Remark 5.3.1 (Characterization of the limit). It is possible to show that the whole
sequence un converges to the unique classical solution u(t, x) to equation (1.2) with initial
datum (5.3.2) and boundary conditions (of Dirichlet type in x = 0 and of Neumann type
in x = 1)

u(t, 0) = ux(t, 1) = 0.

The convergence is in C0
(
[0,+∞);Lp((0, 1))

)
for every finite p ≥ 1, but of course

not for p = +∞, with the usual meaning of Remark 5.2.1.
This fact can be proved either by constructing more refined subsolutions and super-

solutions, or by relying on general results concerning the convergence of gradient-flows,
as in the proof of [42, Theorem 2.10].

Remark 5.3.2 (Variants of the counterexample). The example described above can
be generalized to any interval by translation and/or homothety. Moreover, u0 and
u0n can be extended by periodicity/reflection in order to obtain an example where the
anomalous behavior is not at the boundary, but in a neighborhood of some internal
maximum/minimum point, as described in the introduction.

The rest of this section is devoted to the proof of (5.3.7) and (5.3.8). The main tool
is the following comparison result for solutions to (5.2.9) (see also [17] where a similar
idea is exploited).
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Lemma 5.3.3 (Comparison principle for discrete sub/supersolutions). Let 0 < m < n
be two positive integers, and let T be a positive real number.

Let u : [0, T ]× {1, . . . , n} → R and v : [0, T ]× {1, . . . , n} → R be two functions with
the following properties, in which σ1 is the constant that appears in (5.2.2) and (5.2.3).

(i) (“Space” monotonicity). The functions u and v are nondecreasing with respect to
the second variable for every t ∈ [0, T ].

(ii) (Solution). The function u is a solution to the semi-discrete equation (5.2.9) in
the interval [0, T ], where u is extended to the “boundary” according to the discrete
Dirichlet/Neumann boundary conditions

u(t, 0) = 0 and u(t, n+ 1) = u(t, n) ∀t ∈ [0, T ]. (5.3.9)

(iii) (Relation between initial data). The initial data of u and v satisfy

u(0, i) < v(0, i) ∀i ∈ {1, . . . ,m},

and
u(0, i) > v(0, i) ∀i ∈ {m+ 1, . . . , n}.

(iv) (Subcritical condition except in m). The functions u and v are subcritical for
i 6= m, in the sense that for every t ∈ [0, T ] their discrete derivatives satisfy

D+
n u(t, i) ≤ σ1 and D+

n v(t, i) ≤ σ1 ∀i ∈ {1, . . . , n} \ {m} (5.3.10)

(v) (Supercritical condition in m). When i = m it turns out that

D+
n v(t,m)) ≥ σ1 ∀t ∈ [0, T ]. (5.3.11)

(vi) (Sub/supersolution). For every t ∈ [0, T ] the function v is a strict supersolution
of equation (5.2.12) for i ≤ m in the sense that

v′(t, i) > D−
n

(
ϕ′(D+

n v(t, i)
)

∀i ∈ {1, . . . ,m},

and a strict subsolution for i > m in the sense that

v′(t, i) < D−
n

(
ϕ′(D+

n v(t, i)
)

∀i ∈ {m+ 1, . . . , n}.

Like the function u, also the function v is extended to the “boundary” according
to the discrete Dirichlet/Neumann boundary conditions

v(t, 0) = 0 and v(t, n+ 1) = v(t, n) ∀t ∈ [0, T ]. (5.3.12)

Then for every t ∈ [0, T ] it turns out that

u(t, i) < v(t, i) ∀i ∈ {1, . . . ,m}, (5.3.13)

and
u(t, i) > v(t, i) ∀i ∈ {m+ 1, . . . , n}. (5.3.14)
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Proof. Let us set

S := sup{τ ∈ [0, T ] : (5.3.13) and (5.3.14) hold true for every t ∈ [0, τ ]}.

We observe that (5.3.13) and (5.3.14) hold true when t = 0, and therefore a conti-
nuity argument implies that S > 0. We need to show that S = T . So we assume by
contradiction that S ∈ (0, T ). Then by the maximality of S there exists i0 ∈ {1, . . . , n}
such that

v(S, i0) = u(S, i0). (5.3.15)

Moreover, since (5.3.13) and (5.3.14) hold true for every t ∈ [0, S), passing to the
limit we obtain that

v(S, i) ≥ u(S, i) ∀i ∈ {1, . . . ,m}, (5.3.16)

and

v(S, i) ≤ u(S, i) ∀i ∈ {m+ 1, . . . , n}. (5.3.17)

Due to the discrete boundary conditions (5.3.9) and (5.3.12), inequality (5.3.16) is
true also for i = 0, and inequality (5.3.17) is true also for i = n+ 1.

Now let us consider the function w(t, i) := v(t, i) − u(t, i), and let us observe that
w(S, i0) = 0 because of (5.3.15). Now we distinguish two cases.

Case i0 ∈ {1, . . . ,m} We observe that w(t, i0) > 0 for every t ∈ [0, S) because
(5.3.13) is true in that interval. It follows that w′(S, i0) ≤ 0, and hence

v′(S, i0) ≤ u′(S, i0). (5.3.18)

Concerning discrete derivatives, we claim that

ϕ′
(
D+

n v(S, i0 − 1)
)
≤ ϕ′

(
D+

n u(S, i0 − 1)
)

(5.3.19)

and

ϕ′
(
D+

n v(S, i0)
)
≥ ϕ′

(
D+

n u(S, i0)
)
. (5.3.20)

Indeed, from (5.3.15) and from (5.3.16) with i = i0 − 1 we find that

v(S, i0)− v(S, i0 − 1) = u(S, i0)− v(S, i0 − 1) ≤ u(S, i0)− u(S, i0 − 1),

and therefore when we divide by 1/n we obtain that

D+
n v(S, i0 − 1) ≤ D+

n u(S, i0 − 1).

Now from (5.3.10) we know that these discrete derivatives lie in the interval [0, σ1],
and therefore from the monotonicity assumption (5.2.2) we deduce (5.3.19).

As for (5.3.20), in the case where i0 ∈ {1, . . . ,m − 1} we can apply (5.3.15) and
(5.3.16) with i = i0 + 1. We find that

v(S, i0 + 1)− v(S, i0) = v(S, i0 + 1)− u(S, i0) ≥ u(S, i0 + 1)− u(S, i0),
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and therefore when we divide by 1/n we obtain that

D+
n v(S, i0) ≥ D+

n u(S, i0),

from which we deduce (5.3.20) by exploiting again the monotonicity of ϕ′ in [0, σ1].
Finally, in the case where i0 = m we apply (5.3.15), and (5.3.17) with i = m+ 1. In

the usual way we find that

D+
n v(S,m) ≤ D+

n u(S,m).

On the other hand, from (5.3.11) we know that these two discrete derivatives lie in
the region [σ1,+∞) where ϕ′ is nonincreasing, and therefore the last inequality implies
(5.3.20) in the case i0 = m.

Now from (5.3.20) and (5.3.19) we deduce that

D−
n

(
ϕ′(D+

n v(S, i0))
)

=
ϕ′ (D+

n v(S, i0))− ϕ′ (D+
n v(S, i0 − 1))

1/n

≥ ϕ′ (D+
n u(S, i0))− ϕ′ (D+

n u(S, i0 − 1))

1/n

= D−
n

(
ϕ′(D+

n u(S, i0))
)
.

Since u is a solution, and v is a supersolution for this value of i0, we conclude that

v′(S, i0) > D−
n

(
ϕ′(D+

n v(S, i0))
)
≥ D−

n

(
ϕ′(D+

n u(S, i0))
)
= u′(S, i0),

which contradicts (5.3.18).

Case i0 ∈ {m+1, . . . , n} In this case we observe that w(t, i0) < 0 for every t ∈ [0, S)
because (5.3.14) is true in that interval. It follows that w′(S, i0) ≥ 0, and hence

v′(S, i0) ≥ u′(S, i0). (5.3.21)

Concerning discrete derivatives, in this case it turns out that

ϕ′
(
D+

n v(S, i0 − 1)
)
≥ ϕ′

(
D+

n u(S, i0 − 1)
)

and
ϕ′
(
D+

n v(S, i0)
)
≤ ϕ′

(
D+

n u(S, i0)
)
,

and as a consequence

D−
n

(
ϕ′(D+

n v(S, i0))
)
≤ D−

n

(
ϕ′(D+

n u(S, i0))
)
.

Since u is a solution, and v is a subsolution for this value of i0, we conclude that

v′(S, i0) < D−
n

(
ϕ′(D+

n v(S, i0))
)
≤ D−

n

(
ϕ′(D+

n u(S, i0))
)
= u′(S, i0),

which contradicts (5.3.21).
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We are now ready to prove (5.3.7) and (5.3.8).

Proposition 5.3.4. There exist a sequence of positive real numbers Jn → 0+, and a
sequence of positive integers {mn}, with 0 < mn < n for every n ≥ 2, such that the
following statement holds true.

The sequence {un} of solutions to the semi-discrete equation (5.2.9), with the discrete
Dirichlet/Neumann boundary conditions (5.3.5), and initial datum defined by (5.3.3),
satisfies (5.3.7) and (5.3.8).

Proof. Before entering into details, let us describe the general strategy. We introduce
the function

vn(t, i) :=





σ0
2
sin

(
π

2

i

n

)
exp(−λ0t) + An

i

n
if i ∈ {1, . . . ,mn},

σ0
2

+ Bn − Cn

(
1− i

n

)2

− Ent if i ∈ {mn + 1, . . . , n},
(5.3.22)

where An, Bn, Cn and En are four sequences of nonnegative real numbers that tend to 0
as n → +∞, and mn is a sequence of integers that satisfies (5.3.4) and 0 < mn < n for
n large enough.

At this point we set Jn := Bn +1/n and we claim that, if the sequences An, Bn, Cn,
En, mn are chosen properly, then for every real number T > 0 there exists a positive
integer n0 such that for every n ≥ n0 and for every t ∈ [0, T ] it turns out that

un(t, i) < vn(t, i) ∀i ∈ {1, . . . ,mn}, (5.3.23)

and
un(t, i) > vn(t, i) ∀i ∈ {mn + 1, . . . , n}. (5.3.24)

These two inequalities are enough to conclude. Indeed, from (5.3.4) we deduce that
for every x ∈ (0, 1) it turns out that ⌈nx⌉ ≤ mn when n is large enough (depending on
x). At this point from (5.3.22) and (5.3.23) with i = ⌈nx⌉ it follows that

un(t, ⌈nx⌉) ≤ vn(t, ⌈nx⌉) =
σ0
2
sin

(
π

2

⌈nx⌉
n

)
exp(−λ0t) + An

⌈nx⌉
n

when n is large enough. Since An → 0, letting n → +∞ we obtain that (5.3.7) holds
true for every t ∈ [0, T ]. Since T > 0 is arbitrary, that inequality is actually true for
every t ≥ 0.

As for (5.3.8), from (5.3.22) and (5.3.24) with i = n we obtain that for n large enough
it turns out that

un(t, n) ≥ vn(t, n) =
σ0
2

+ Bn − Ent ∀t ∈ [0, T ].

Since Bn → 0 and En → 0, letting n→ +∞ we deduce that the inequality in (5.3.8)
is true for every t ∈ [0, T ], and we conclude by the arbitrariness of T .

The two key estimates (5.3.23) and (5.3.24) follow from Lemma 5.3.3, applied to the
functions un and vn, provided that we choose the sequences An, Bn, Cn, En, mn in such
a way that the assumptions of Lemma 5.3.3 are satisfied.
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Choice of parameters Let us consider a function g : [σ1,+∞) → [0, σ1] such that

ϕ′(g(σ)) = ϕ′(σ) ∀σ ≥ σ1, (5.3.25)

We observe that such a function g exists because from assumption (5.2.3) we know
that 0 ≤ ϕ′(σ) ≤ ϕ′(σ1) for every σ ≥ σ1, and from (5.2.3) we know that ϕ′ is non-
decreasing and surjective as a function from [0, σ1] to [0, ϕ′(σ1)]. We observe also that
g(σ) → 0 as σ → +∞ due to (5.2.4) and the fact that ϕ′ is strictly increasing in a
neighborhood of the origin because of (5.2.2).

Now we consider the two sequences (the key point is that hn → 0 and nhn → +∞)

hn :=
1√
n
, µn :=

⌈
n
√
g(nhn)

⌉
+ 2,

and then we set

An := ϕ′(nhn) +
σ0λ0
2n

, Cn :=
ng(nhn)

2µn − 3
, En := 2Λ0Cn +

1

n
, (5.3.26)

where λ0 and Λ0 are the constants that appear in (5.3.1), and finally

Bn := An + Cn + hn +
√
En, mn := n− µn. (5.3.27)

We observe that mn satisfies (5.3.4) because µn/n → 0, and that the sequences An,
Bn, Cn, En tend to 0. Moreover, the sequences An, Bn and En are positive, while Cn is
just nonnegative (because our assumptions admit that ϕ′(σ), and hence also g(σ), might
vanish when σ is large enough). Therefore, for every T > 0 we can choose a positive
integer n0 such that the following four inequalities

π

2

σ0
2

+ An ≤ σ0, 2Cn ≤ σ0, nhn ≥ σ1,
√
En − EnT ≥ 0 (5.3.28)

hold true for every n ≥ n0. In the sequel of the proof we check that all the assumptions
of Lemma 5.3.3 are satisfied for every n ≥ n0.

Solution and space monotonicity The function un(t, i) is by definition a solution to the
semi-discrete equation (5.2.9) with the discrete Dirichlet/Neumann boundary conditions
(5.3.9), and it is nondecreasing with respect to i because of statement (5) of Theorem A.

As for vn, from the explicit formula (5.3.22) it is immediate that vn(t, i+1) > vn(t, i)
at least when i 6= mn. In addition, when i = mn we obtain that

vn(t,mn + 1) ≥ σ0
2

+Bn − Cn − EnT and vn(t,mn) ≤
σ0
2

+ An.

Recalling the definition of Bn in (5.3.27), and the fourth relation in (5.3.28), we
conclude that

vn(t,mn + 1)− vn(t,mn) ≥ hn +
(√

En − EnT
)
≥ hn, (5.3.29)

which proves that the difference is positive also in this case.
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Relations between initial data We need to check that for n ≥ n0 it turns out that

un(0, i) < vn(0, i) ∀i ∈ {1, . . . ,mn}

and

un(0, i) > vn(0, i) ∀i ∈ {mn + 1, . . . , n}.

Since we set Jn := Bn + 1/n, both inequalities are immediate from (5.3.3) and
(5.3.22).

Subcritical condition except in m We show that for every t ∈ [0, T ] and every n ≥ n0

it turns out that

D+
n un(t, i) ≤ σ1 and D+

n vn(t, i) ≤ σ0 ≤ σ1 (5.3.30)

for every i ∈ {1, . . . , n} \ {mn}.
As for un, the estimate follows from statement (4) of Theorem A, after observing

that |D+
n u0n(i)| ≤ σ0 ≤ σ1 for all admissible indices i 6= mn.

As for vn, we distinguish two cases. When i ∈ {1, . . . ,mn − 1}, from the explicit
formula (5.3.22) and the Lipschitz continuity of the function sin σ we obtain that

D+
n vn(t, i) = n

σ0
2

{
sin

(
π

2

i+ 1

n

)
− sin

(
π

2

i

n

)}
exp(−λ0t) + An ≤ n

σ0
2

π

2n
+ An,

and the latter is less than or equal to σ0 because of the first condition in (5.3.28).

In the case where i ∈ {mn + 1, . . . , n}, from the explicit formula (5.3.22) we obtain
that

D+
n vn(t, i) = Cn

(
2− 2i+ 1

n

)
≤ 2Cn ≤ σ0,

where in the last inequality we exploited the second condition in (5.3.28).

Supercritical condition in m We show that for every n ≥ n0 it turns out that

D+
n vn(t,mn) ≥ nhn ≥ σ1 ∀t ∈ [0, T ], (5.3.31)

and as a consequence

ϕ′(D+
n vn(t,mn)) ≤ ϕ′(nhn) = ϕ′ (g(nhn)) ∀t ∈ [0, T ]. (5.3.32)

Indeed, dividing (5.3.29) by 1/n, and recalling the third condition in (5.3.28), we
obtain exactly (5.3.31). At this point, the two relations in (5.3.32) follow from (5.3.31),
assumption (5.2.3), and (5.3.25).
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Supersolution for i ∈ {1, . . . ,mn−1} We need to show that for every n ≥ n0 and every
t ∈ [0, T ] it turns out that

v′n(t, i) > D−
n

(
ϕ′(D+

n vn(t, i))
)

∀i ∈ {1, . . . ,mn − 1}. (5.3.33)

Computing the time derivative, and rearranging the terms, this inequality can be
rewritten as

n
{
ϕ′(D+

n vn(t, i− 1))− ϕ′(D+
n vn(t, i))

}
> λ0

σ0
2
sin

(
π

2

i

n

)
exp(−λ0t). (5.3.34)

From the explicit formula (5.3.22), and the concavity of the function sin σ, we find
that

D+
n vn(t, i− 1) ≥ D+

n vn(t, i).

From (5.3.30) we know that both discrete derivatives lie in the interval [0, σ0], and
hence from the estimate from below in (5.3.1) we deduce that

ϕ′(D+
n vn(t, i− 1))− ϕ′(D+

n vn(t, i)) ≥ λ0
{
D+

n vn(t, i− 1)−D+
n vn(t, i)

}
. (5.3.35)

Now from the trigonometric identity

sin(a+ h) + sin(a− h)− 2 sin(a) = −4 sin(a) sin2

(
h

2

)
,

applied with a := (π/2)(i/n) and h := (π/2)(1/n), we find that

D+
n vn(t, i− 1)−D+

n vn(t, i) = 4
σ0
2
n sin2

(
π

2

1

2n

)
sin

(
π

2

i

n

)
exp(−λ0t)

>
σ0
2n

sin

(
π

2

i

n

)
exp(−λ0t),

where in the last step we exploited that sin(π
2
x) > x for every x ∈ (0, 1).

Plugging this inequality into (5.3.35) we obtain (5.3.34).

Supersolution for i = mn We need to show that, for every n ≥ n0 and every t ∈ [0, T ],
the inequality in (5.3.33) is satisfied also for i = mn.

After computing the derivative and rearranging the terms, the inequality can be
rewritten in the form

nϕ′(D+
n vn(t,mn)) < nϕ′(D+

n vn(t,mn − 1))− σ0
2
λ0 sin

(π
2

mn

n

)
exp(−λ0t).

From the explicit formula (5.3.22), and the monotonicity of the function sin σ, we
obtain that D+

n vn(t,mn − 1) > An. Therefore, from (5.3.32) and the definition of An in
(5.3.26) we conclude that

nϕ′(D+
n vn(t,mn)) ≤ nϕ′(nhn) = nAn −

σ0
2
λ0

< nϕ′(D+
n vn(t,mn − 1))− σ0

2
λ0 sin

(π
2

mn

n

)
exp(−λ0t),

as required.
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Subsolution for i = mn+1 We need to show that for every n ≥ n0 and every t ∈ [0, T ]
it turns out that

v′n(t,mn + 1) <
ϕ′(D+

n vn(t,mn + 1))− ϕ′(D+
n vn(t,mn))

1/n
.

The left-hand side is equal to −En, and hence negative. Therefore, it is enough to
show that the right-hand side is nonnegative. To this end, from the explicit formula
(5.3.22) we obtain that

D+
n vn(t,mn + 1) = Cn

2(n−mn)− 3

n
= Cn

2µn − 3

n
.

At this point, from the definition of Cn in (5.3.26), and estimate (5.3.32), we conclude
that

ϕ′(D+
n vn(t,mn + 1)) = ϕ′

(
Cn

2µn − 3

n

)
= ϕ′(g(nhn)) ≥ ϕ′(D+

n vn(t,mn)),

as required.

Subsolution for i ∈ {mn + 2, . . . , n − 1} We need to show that for every n ≥ n0 and
every t ∈ [0, T ] it turns out that

v′n(t, i) < D−
n

(
ϕ′(D+

n vn(t, i))
)

∀i ∈ {mn + 2, . . . , n− 1}. (5.3.36)

From the explicit formula (5.3.22) we obtain that

D+
n vn(t, i) = Cn

(
2− 2i+ 1

n

)
and D+

n vn(t, i− 1) = Cn

(
2− 2i− 1

n

)
.

Exploiting the estimate from above in (5.3.1), and the definition of En in (5.3.26),
we conclude that

n
{
ϕ′(D+

n vn(t, i− 1))− ϕ′(D+
n vn(t, i))

}
≤ nΛ0

{
D+

n vn(t, i− 1)−D+
n vn(t, i)

}

= 2Λ0Cn < En,

which is equivalent to (5.3.36).

Subsolution for i = n It remains to verify that, for every n ≥ n0 and every t ∈ [0, T ],
the inequality in (5.3.36) is satisfied also for i = n. Due to the discrete Neumann
boundary condition, this inequality reduces to

−En < −nϕ′
(
D+

n vn(t, n− 1)
)
. (5.3.37)

From the explicit formula (5.3.22) we deduce that D+
n vn(t, n−1) = Cn/n. Therefore,

exploiting again the estimate from above in (5.3.1) (now with β = 0) and the definition
of En in (5.3.26), we conclude that

nϕ′
(
D+

n vn(t, n− 1)
)
= nϕ′

(
Cn

n

)
≤ Λ0Cn < En,

which proves (5.3.37).
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Remark 5.3.5 (More general setting). We observe that the same proof works if we
replace the limiting initial datum u0(x) defined by (5.3.2) by any smooth function û0(x)
such that 0 ≤ û0(x) ≤ u0(x) and 0 ≤ û0x(x) ≤ σ0 for every x ∈ (0, 1).

Concerning the nonlinearity ϕ, the essential hypotheses are (5.3.1) and (5.2.4). The
convex-concave assumption can be avoided by modifying a little the definition of vn
and by showing that the discrete derivatives of un never enter in the region where
ϕ′(σ) > ϕ′(σ0). We skip this technical point that only complicates the proof without
introducing essentially new ideas.

5.4 Monotonicity results for uv-evolutions

5.4.1 UV-evolutions in any space dimension

In order to prove Proposition 5.2.10 we need to extend the notion of uv-evolution to any
space dimension. The extension is almost straightforward, but here we need to consider
a combination of Dirichlet and Neumann boundary conditions.

Definition 5.4.1 (UV -evolution with DNBC in any dimension). Let d be a positive
integer, and let Ω ⊆ Rd be a bounded open set with Lipschitz boundary.

A UV -evolution with Dirichlet/Neumann boundary conditions in Ω is a pair of mea-
surable functions

U : (0,+∞)× Ω → R and V : (0,+∞)× Ω → R
d

with the following properties.

• (Time regularity). The function U admits a weak derivative Ut with respect to
time, and

Ut ∈ L1((0, T )× Ω) ∀T > 0. (5.4.1)

• (Space regularity). For almost every t > 0 it turns out that

the function x 7→ U(t, x) is in BV (Ω), (5.4.2)

the function x 7→ V (t, x) is in W 1,1(Ω;Rd) ∩ L∞(Ω). (5.4.3)

• (Evolution equation). The functions U and V solve the equation

Ut(t, x) = div V (t, x) in (0,+∞)× Ω. (5.4.4)

• (Sign condition). For almost every t > 0 it turns out that

〈V (t, x), DU(t, x)〉 ≥ 0 as a measure in Ω. (5.4.5)

• (Dirichlet/Neumann boundary conditions). There exists a nonincreasing function
D0 : [0,+∞) → R such that for almost every t > 0 it turns out that, for almost
every x ∈ ∂Ω (with respect to the d− 1 dimensional Hausdorff measure), at least
one of the following two conditions

U(t, x) ≤ D0(t), 〈V (t, x), ν(x)〉 = 0 (5.4.6)

holds true, where ν(x) denotes the outer normal to ∂Ω at point x.



174 The Perona-Malik problem

Remark 5.4.2. As we did in dimension one, let us comment on some delicate regularity
issues in Definition 5.4.1 above.

• (Evolution equation). As in dimension one, from (5.4.1) and (5.4.3) we know that
(5.4.4) can be seen both as an equality between functions in L1((0, T ) × Ω), and
as an equality between functions in L1(Ω) for almost every t > 0.

• (Time regularity and initial datum). As in dimension one, the time regularity
assumption (5.4.1) implies that U is absolutely continuous as a function from
(0,+∞) to L1(Ω). In particular, all sections x 7→ U(t, x) are well defined as
functions in L1(Ω) for every t ≥ 0, including the initial datum at t = 0.

• (Dirichlet/Neumann boundary conditions). From the space regularity assumptions
(5.4.2) and (5.4.3) we know that, for almost every t > 0, the functions x 7→ U(t, x)
and x 7→ V (t, x) admit a trace on ∂Ω. This implies that the two conditions in
(5.4.6) make sense.

• (Sign condition). The left-hand side of (5.4.5) is the sum of d terms that are
the product of a bounded function in W 1,1(Ω) and a signed measure. In general
this product is not well defined, but in this case the measure is the gradient of
a function in BV (Ω), and therefore it is absolutely continuous with respect to
the d − 1 dimensional Hausdorff measure Hd−1, and the precise representative of
the Sobolev function V (namely the limit as r → 0+ of its average in the ball
with radius r centered in x) is defined at Hd−1 almost every point. Under these
assumptions, the product makes sense as a vector measure.

In any case, the UV -evolutions that we consider here have the additional property
that the function t 7→ V (t, x) is continuous with respect to x for almost every
t > 0, in which case the definition of the product is less delicate.

We observe that, if we decompose the vector measure Du into its jump part DJu
and its diffuse part D̃u (see [6, Definition 3.91]), then (5.4.5) is equivalent to the
sign condition on both components, namely

〈V (t, x), D̃U(t, x)〉 ≥ 0 and 〈V (t, x), DJU(t, x)〉 ≥ 0. (5.4.7)

In the next result we show that these UV -evolutions in any dimension satisfy a
maximum principle.

Proposition 5.4.3 (Maximum principle for UV -evolutions with DNBC in any space
dimension). Let d be a positive integer, and let Ω ⊆ Rd be a bounded open set with
Lipschitz boundary.

Let (U, V ) be a UV-evolution with Dirichlet/Neumann boundary conditions in Ω, in
the sense of Definition 5.4.1, and let D0 : [0,+∞) → R be the nonincreasing function
that appears in (5.4.6).

Then the function defined by

M(t) := max
{
D0(t), (ess)sup{U(t, x) : x ∈ Ω}

}
∀t ≥ 0 (5.4.8)

is nonincreasing (in the definition of M(t) we consider the representative of U that is
continuous with values in L1(Ω), see Remark 5.4.2).
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Proof. Since we can always restrict to a smaller time interval, it is enough to show that
M(t) ≤ M(0) for every t ≥ 0. On the other hand, from the monotonicity of D0(t) it
follows that D0(t) ≤ D0(0) ≤ M(0), and hence we can limit ourselves to showing that
for every t ≥ 0 it turns out that

U(x, t) ≤M(0) for almost every x ∈ Ω. (5.4.9)

To this end, we consider a convex function ψ ∈ C2(R) that is Lipschitz continuous
with

ψ(σ) = 0 if and only if σ ≤M(0), (5.4.10)

and then we set

E(t) :=

∫

Ω

ψ(U(t, x)) dx ∀t ≥ 0. (5.4.11)

We observe that (5.4.10) and the convexity of ψ imply that ψ(σ) ≥ 0 for every σ ∈ R,
and hence

E(t) ≥ 0 ∀t ≥ 0, (5.4.12)

and in addition ψ(σ) > 0 for every σ > M(0), from which we deduce that

E(t) = 0 if and only if (5.4.9) holds true. (5.4.13)

Moreover, the function E(t) is absolutely continuous because of the boundedness of
ψ′ and the time regularity (5.4.1) of U . We claim that E ′(t) ≤ 0 for almost every t ≥ 0.
Since E(0) = 0, this claim, combined with (5.4.12), would imply that E(t) = 0 for every
t ≥ 0, and this would complete the proof because of (5.4.13).

Using (5.4.4), we can write the time-derivative of the integral (5.4.11) in the form

E ′(t) =

∫

Ω

ψ′(U(t, x))Ut(t, x) dx =

∫

Ω

ψ′(U(t, x)) div V (t, x) dx.

Now the space regularity of U and V is enough to integrate by parts, leading to (with
some abuse of notation, because the scalar product is a measure and not a function)

E ′(t) = −
∫

Ω

〈D[ψ′(U(t, x))], V (t, x)〉 dx. (5.4.14)

In the integration by parts we neglected the boundary term
∫

∂Ω

ψ′(U(t, x))〈V (t, x), ν(x)〉 dσ

which is equal to 0 for almost every t ≥ 0 because of (5.4.6). Indeed, for almost every
x ∈ ∂Ω we know that either the scalar product is equal to 0, or

U(t, x) ≤ D0(t) ≤ D0(0) ≤M(0),

in which case ψ′(U(t, x)) = 0 because of (5.4.10). Now from the chain rule for bounded
variation functions (see [6, Theorem 3.96]) we know that

D[ψ′(U(t, x))] = ψ′′(U(t, x))D̃U(t, x) +
ψ′(U+(t, x))− ψ′(U−(t, x))

U+(t, x)− U−(t, x)
DJU(t, x),
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where DU = D̃U +DJU is the usual decomposition of the vector measure DU , and U+

and U− are the traces of U on the two sides of the jump set.
Plugging this equality into (5.4.14) we deduce that (again with some abuse of nota-

tion, because the two scalar products are measures)

E ′(t) = −
∫

Ω

ψ′′(U(t, x))〈D̃U(t, x), V (t, v)〉 dx

−
∫

Ω

ψ′(U+(t, x))− ψ′(U−(t, x))

U+(t, x)− U−(t, x)
〈DJU(t, x), V (t, v)〉 dx,

and we conclude by observing that both integrals are nonnegative because of the con-
vexity of ψ and the sign conditions (5.4.7).

Remark 5.4.4 (Case with only Neumann boundary conditions). From the proof it is
clear that, when for almost every t > 0 the second condition in (5.4.6) is satisfied for
almost every x ∈ ∂Ω, then D0(t) plays no role. In particular, we do not need to consider
the maximum with D0(t) in (5.4.8), or equivalently we can take D0(t) ≡ −∞.

5.4.2 Proof of Proposition 5.2.10

Maximum principle We claim that the pair

U(t, x) := u(t, x), V (t, x) := v(t, x)

is a UV-evolution with Dirichlet/Neumann (and actually just Neumann in this case)
boundary conditions according to Definition 5.4.1 with d = 1, Ω = (a, b), and no need
of D0(t) (see Remark 5.4.4).

Indeed, all the assumption on U and V in Definition 5.4.1 follow immediately from
the corresponding assumptions on u and v in Definition 5.2.8.

At this point from Proposition 5.4.3 it follows that the function M(t) defined by
(5.4.8) is nonincreasing, but in this case M(t) coincides with the essential supremum
M+(t).

The monotonicity of M−(t) can be obtained by applying the maximum principle to
the pair (−u,−v), which is again a uv-evolution with Neumann boundary conditions.

Monotonicity of the total variation To begin with, we observe that it is enough to prove
the monotonicity of the positive total variation, because the negative total variation of
u is the positive total variation of −u, and we have already observed that (−u,−v) is
again a uv-evolution with Neumann boundary conditions.

To this end, for every positive integer m we introduce the positive m-variation

TV +
m (t) := sup

{
2m∑

i=1

(−1)iu(t, xi) : a < x1 ≤ x2 ≤ . . . ≤ x2m < b.

}
.

We observe that

TV +(t) = sup
m≥1

TV +
m (t) = lim

m→+∞
TV +

m (t)
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Therefore, if we prove that the function t 7→ TV +
m (t) is nonincreasing for every

m ≥ 1, then thesis follows. We prove the monotonicity of TV +
m (t) by induction on m.

Case m = 1 We claim that the pair defined by

U(t, x1, x2) := u(t, x2)− u(t, x1), V (t, x1, x2) := (−v(t, x1), v(t, x2))

is a UV-evolution with Dirichlet/Neumann boundary conditions in the sense of Defini-
tion 5.4.1 with

d := 2, Ω :=
{
(x1, x2) ∈ (a, b)2 : a < x1 < x2 < b

}
, D0(t) ≡ 0.

If the claim is true, then the monotonicity of TV +
1 (t) follows from Proposition 5.4.3,

because in this case the function M(t) defined by (5.4.8) coincides with TV +
1 (t).

So let us check that U and V satisfy the properties in Definition 5.4.1. The regularity
and the evolution equation follow from the corresponding properties of u and v in
Definition 5.2.8. The sign condition (5.4.5) follows from (5.2.26) because

〈V (t, x1, x2), DU(t, x1, x2)〉 = v(t, x1) ·Du(t, x1) + v(t, x2) ·Du(t, x2)

is the sum of two nonnegative measures.
Finally, we observe that Ω is a triangle, and its boundary is contained in the three

lines described by the three equalities a = x1, x1 = x2, and x2 = b.

• In the side with a = x1 the normal vector is ν(x1, x2) = (−1, 0), and hence

〈V (t, x1, x2), ν(x1, x2)〉 = v(t, x1) = v(t, a) = 0.

• In the side with x2 = b the normal vector is ν(x1, x2) = (0, 1), and hence

〈V (t, x1, x2), ν(x1, x2)〉 = v(t, x2) = v(t, b) = 0.

• In the side with x1 = x2 it turns out that

U(t, x1, x2) = 0 ≤ D0(t).

Therefore, in all the sides of ∂Ω the Dirichlet/Neumann boundary conditions (5.4.6)
are satisfied, and this completes the proof.

Inductive step We assume that TV +
m (t) is nonincreasing for some positive integer

m, and we prove that also TV +
m+1(t) is nonincreasing.

To this end, we consider the pair defined by

U(t, x) :=
2m+2∑

i=1

(−1)iu(t, xi), V (t, x) :=
2m+2∑

i=1

(−1)iv(t, xi)ei,
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where x = (x1, . . . , x2m+2), and ei denotes the i-th vector of the canonical basis of R2m+2.
We claim that this pair is a UV-evolution with Dirichlet/Neumann boundary conditions
according to Definition 5.4.1 with

d := 2m+ 2, D0(t) := TV +
m (t),

Ω :=
{
(x1, x2, . . . , x2m+2) ∈ (a, b)2m+2 : a < x1 < . . . < x2m+2 < b

}
.

If this is the case, then the monotonicity of TV +
m+1(t) follows from Proposition 5.4.3,

because

TV +
m+1(t) = sup{U(t, x1, . . . , x2m+2) : (x1, . . . , x2m+2) ∈ Ω},

and in particular the function M(t) defined by (5.4.8) in this case is exactly

M(t) = max{D0(t), TV
+
m+1(t)} = max{TV +

m (t), TV +
m+1(t)} = TV +

m+1(t).

So let us check that U and V satisfy the assumptions in Definition 5.4.1. As before,
the regularity and the evolution equation follow from the corresponding properties of u
and v in Definition 5.2.8. The sign condition (5.4.5) follows from (5.2.26) because

〈V (t, x), DU(t, x)〉 =
2m+2∑

i=1

v(t, xi) ·Du(t, xi)

is the sum of 2m+ 2 nonnegative measures.

Finally, we consider the boundary of Ω, which consists of 2m + 3 “faces” contained
in the hyperplanes corresponding to the possible equalities in the definition of Ω.

• In the face with x1 = a the normal vector is ν(x) = −e1, and hence

〈V (t, x), ν(x)〉 = v(t, x1) = v(t, a) = 0.

• In the face with x2m+2 = b the normal vector is ν(x) = e2m+2, and hence

〈V (t, x), ν(x)〉 = v(t, x2m+2) = v(t, b) = 0.

• Let us finally consider the faces where xi = xi+1 for some index i. In this case two
consecutive terms in the definition of U cancel, and what remains is a competitor
in the definition of TV +

m (t). It follows that in all these 2m+1 faces of ∂Ω it turns
out that

U(t, x1, . . . , x2m+2) ≤ TV +
m (t) = D0(t).

This proves that the Dirichlet/Neumann boundary conditions (5.4.6) are satisfied,
and thus completes the proof.



Semi-discrete approximation and monotonicity of the total variation 179

5.4.3 Proof of Proposition 5.2.11

The time and space regularity of u and v, as well as the evolution equation that they
solve and the boundary conditions, follow exactly from Theorem C. It remains to prove
that u and v satisfy the sign condition (5.2.26) for almost every t ≥ 0.

To this end, let us consider any test function φ ∈ C1([0, 1]), and its discrete sampling

φk(i) := φ

(
i

nk

)
∀i ∈ {0, 1, . . . , nk}.

From the space regularity of u and v we know that, for almost every t ≥ 0, the func-
tion x 7→ u(t, x) lies in BV ((0, 1)), while the function t 7→ v(t, x)φ(x) lies in W 1,1((0, 1))
and vanishes at the boundary. Therefore, for any such t it turns out that

∫ 1

0

Du(t, x)v(t, x)φ(x) dx = −
∫ 1

0

u(t, x)vx(t, x)φ(x) dx−
∫ 1

0

u(t, x)v(t, x)φx(x) dx.

We point out that, as usual, there is a little abuse of notation in the left-hand side
because Du is actually a measure. Integrating with respect to time we deduce that

∫ t2

t1

dt

∫ 1

0

Du(t, x)v(t, x)φ(x) dx = −
∫ t2

t1

dt

∫ 1

0

u(t, x)vx(t, x)φ(x) dx

−
∫ t2

t1

dt

∫ 1

0

u(t, x)v(t, x)φx(x) dx(5.4.15)

for every choice of the times t2 ≥ t1 ≥ 0.
Analogously, by a discrete integration by parts (which is actually an algebraic ma-

nipulation of the sums, where we exploit also the discrete Neumann boundary conditions
(5.2.17)), we obtain that

nk∑

i=1

D+
nk
uk(t, i) · vk(t, i) · φk(i)

= −
nk∑

i=1

uk(t, i) ·D−
nk
vk(t, i) · φk(i− 1)−

nk∑

i=1

uk(t, i) · vk(t, i) ·D−
nk
φk(i) (5.4.16)

for every t ≥ 0 and every positive integer k. If we integrate with respect to time, and
we rewrite the sums as integrals of piecewise constant functions, we deduce that

∫ t2

t1

dt

∫ 1

0

D+
nk
uk(t, ⌈nkx⌉) · vk(t, ⌈nkx⌉) · φk(⌈nkx⌉) dx

= −
∫ t2

t1

dt

∫ 1

0

uk(t, ⌈nkx⌉) ·D−
nk
vk(t, ⌈nkx⌉) · φk(⌈nkx⌉ − 1) dx

−
∫ t2

t1

dt

∫ 1

0

uk(t, ⌈nkx⌉) · vk(t, ⌈nkx⌉) ·D−
nk
φk(⌈nkx⌉) dx

for every positive integer k and every choice of the times t2 ≥ t1 ≥ 0.
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Now we are allowed to pass to the limit in the two double integrals of the right-hand
side, because in each of them the integrand is the product of two terms that converge
strongly (the ones with uk and φk) and one term that converges weakly in the pair (t, x)
(the one with vk). Since the limits of these two integrals are the two integrals in the
right-hand side of (5.4.15), we conclude that

lim
n→+∞

∫ t2

t1

dt

∫ 1

0

D+
nk
uk(t, ⌈nkx⌉) · vk(t, ⌈nkx⌉) · φk(⌈nkx⌉) dx

=

∫ t2

t1

dt

∫ 1

0

Du(t, x) · v(t, x) · φ(x) dx. (5.4.17)

Now we observe that, if the test function φ is nonnegative, then from (5.2.18) and
(5.2.5) we deduce that in the left-hand side we have a limit of integrals of nonnegative
functions, and hence

∫ t2

t1

dt

∫ 1

0

Du(t, x) · v(t, x) · φ(x) dx ≥ 0

for every choice of the nonnegative test function φ and of the times t2 ≥ t1 ≥ 0. Since
the times are arbitrary, we deduce that, for every nonnegative test function φ, there
exists a subset Eφ ⊆ [0,+∞) with Lebesgue measure equal to 0 such that

∫ 1

0

Du(t, x) · v(t, x) · φ(x) dx ≥ 0 ∀t ∈ [0,+∞) \ Eφ. (5.4.18)

The set Eφ might depend on φ, but we can always take a countable set D of non-
negative test functions that is dense in the nonnegative functions of C1([0, 1]), and a
common subset E ⊆ [0,+∞) with Lebesgue measure equal to 0, such that

∫ 1

0

Du(t, x) · v(t, x) · φ(x) dx ≥ 0 ∀φ ∈ D, ∀t ∈ [0,+∞) \ E,

which guarantees that the sign condition (5.2.26) is satisfied for any such t.

Remark 5.4.5. We observe that (5.4.17) is equivalent to saying that

D+
nk
uk · vk ⇀ Du · v weakly* as measures in (0,+∞)× (0, 1).

We observe also that the key point in the proof is (5.4.18). One might be tempted
to establish this relation by passing to the limit in the right-hand side of (5.4.16) before
integrating with respect to time. Indeed, for almost every t > 0 we have a bound in
L∞((0, 1)) on the function x 7→ vk(t, ⌈nkx⌉), and a bound in L2((0, 1)) on its discrete
derivative, and therefore these functions admit a weak limit up to subsequences.

The problem with this approach is that in Theorem C the function v(t, x) is defined
as the weak limit of vk in the pair (t, x), and therefore there is no guarantee that the
weak limits of the sections of vk at fixed times have anything to do with the sections of
the limit v. This forces us to pass through the double integrals.



Semi-discrete approximation and monotonicity of the total variation 181

5.5 uvw-evolutions

Let us consider the following generalization of Definition 5.2.8.

Definition 5.5.1 (uvw-evolution with NBC in dimension one). A uvw-evolution with
homogeneous Neumann boundary conditions in an interval (a, b) ⊆ R is a triple of
measurable functions

u : (0,+∞)× (a, b) → R, v : (0,+∞)× (a, b) → R, w : (0,+∞)× (a, b) → R

with the following properties.

• (Boundedness) The function u satisfies

u ∈ L∞((0, T )× (a, b)) ∀T > 0. (5.5.1)

• (Time regularity). The function u admits a weak derivative ut with respect to
time, and

ut ∈ L1((0, T )× (a, b)) ∀T > 0. (5.5.2)

• (Space regularity). For almost every t > 0 it turns out that

the function x 7→ u(t, x) is in BV ((a, b)),

the function x 7→ v(t, x) is in W 1,1((a, b)), (5.5.3)

the function x 7→ w(t, x) is in BV ((a, b)). (5.5.4)

• (Evolution equation). The functions u, v and w solve the equation

ut(t, x) = w(t, x) · vx(t, x) in (0,+∞)× (a, b). (5.5.5)

• (Neumann boundary conditions). For almost every t > 0 it turns out that

v(t, a) = v(t, b) = 0. (5.5.6)

• (Sign condition). There exists a real number α > 0 such that for almost every
t > 0 it turns out that

αw+(t, x)v(t, x)Du(t, x) ≥ |v(t, x)Dw(t, x)| (5.5.7)

and
αw−(t, x)v(t, x)Du(t, x) ≥ |v(t, x)Dw(t, x)| (5.5.8)

as measures in (a, b).

Remark 5.5.2 (Special case w ≡ 1). In the special case where w(t, x) ≡ 1, this def-
inition reduces to Definition 5.2.8. In particular, the sign condition (5.5.8) reduces to
(5.2.26), without any need of the constant α, and the boundedness assumption (5.5.1)
is unnecessary, because it follows from Proposition 5.2.10, at least if the initial datum
is bounded (and in our applications to the Perona-Malik equations we always consider
initial data with bounded variation).
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Remark 5.5.3. Let us comment on some delicate regularity issues in Definition 5.5.1
above.

• (Evolution equation). Due to (5.5.3) and (5.5.4), we know that for almost every
t ∈ (0, T ) the right-hand side of (5.5.5) is the product of a bounded function and a
function in L1((a, b)), and therefore it is itself in L1((a, b)). Recalling (5.5.2), this
means that for almost every t ∈ (0, T ) the evolution equation (5.5.5) is actually
an equality between functions in L1((a, b)).

• (Time regularity and initial datum). As for uv-evolutions, the time regularity
assumption (5.5.2) implies that u is continuous, and actually also absolutely con-
tinuous, as a function from [0,+∞) to L1((a, b)). In particular the “initial datum”
x 7→ u(0, x) is well defined as a function in L1((a, b)).

• (Neumann boundary conditions). Due to (5.5.3), for almost every t > 0 the
function x→ v(t, x) is continuous up to the boundary. In particular, the pointwise
values in (5.5.6) make sense.

• (Sign conditions). The right-hand sides of (5.5.7) and (5.5.8) are well-defined for
almost every t ∈ (0, T ) because they are the total variation of the product of the
continuous function x→ v(t, x) and the measure Dw, that is the derivative of the
BV function x→ w(t, x). Left-hand sides are more delicate, because they are the
product of a signed measure, namely the derivative of the BV function x→ u(t, x),
times the continuous function x → v(t, x), times the functions x → w±(t, x) that
in general are not continuous. Nevertheless, since x → w(t, x) is in BV ((a, b)),
the one-sided limits

w+(t, x) := lim
y→x+

w(t, y) and w−(t, x) := lim
y→x−

w(t, y)

are well-defined for every, and not just almost every, x ∈ (a, b). This is enough to
give a sense to left-hand sides.

Let us discuss now some implications of the sign conditions. To this end, it is
useful to decompose the measures Du and Dw as

Du = D̃u+DJu and Du = D̃w +DJw,

where DJu and DJw are the atomic jump parts, while D̃u and D̃w are the sum of
the absolutely continuous and the Cantor parts. When we restrict to D̃, assump-
tions (5.5.7) and (5.5.8) are equivalent to requiring that

αw(t, x)v(t, x)D̃u(t, x) ≥ |v(t, x)D̃w(t, x)| as a measure in (a, b), (5.5.9)

because w+(t, x) = w−(t, x) outside the countable set of jump points of x 7→
w(t, x).

When restricted to jump parts, assumptions (5.5.7) and (5.5.8) are equivalent to
requiring that

αw±(t, x)v(t, x)
(
u+(t, x)− u−(t, x)

)
≥ |v(t, x)| · |w+(t, x)− w−(t, x)|
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for every x in the jump set of the function x 7→ w(t, x). We observe that this
implies in particular that any jump point of w in which v(t, x) 6= 0 is necessarily
also a jump point of u.

The following definition extends the notion of uvw-evolutions to any dimension.

Definition 5.5.4 (UVW-evolution with DNBC in any dimension). Let d be a pos-
itive integer, and let Ω ⊆ Rd be a bounded open set with Lipschitz boundary (see
Remark 5.5.6 below).

A UVW-evolution with Dirichlet/Neumann boundary conditions in Ω is a triple of
measurable functions

U : (0,+∞)× Ω → R, V : (0,+∞)× Ω → R
d, W : (0,+∞)× Ω → R

d

with the following properties.

• (Boundedness) The function u satisfies

U ∈ L∞((0, T )× Ω) ∀T > 0. (5.5.10)

• (Time regularity). The function U admits a weak derivative Ut with respect to
time, and

Ut ∈ L1((0, T )× Ω,R) ∀T > 0. (5.5.11)

• (Space regularity). For almost every t > 0 it turns out that

the function x 7→ U(t, x) is in BV (Ω) ∩ L∞(Ω), (5.5.12)

the function x 7→ Vi(t, x) is in W
1,1(Ω;Rd) ∩ L∞(Ω;Rd), (5.5.13)

the function x 7→ W (t, x) is in BV (Ω;Rd) ∩ L∞(Ω;Rd). (5.5.14)

• (Evolution equation). The functions U , V , and W solve the equation

Ut(t, x) =
d∑

i=1

Wi(t, x)Dxi
V (t, x) in (0,+∞)× Ω. (5.5.15)

• (Dirichlet/Neumann boundary condition). There exists a nonincreasing function
D0 : [0,+∞) → R such that for almost every t > 0 and almost every x ∈ ∂Ω it
turns out that at least one of the following two conditions

U(t, x) ≤ D0(t),
d∑

i=1

Wi(t, x)Vi(t, x)νi(x) = 0 (5.5.16)

holds true, where ν(x) denotes the outer normal to ∂Ω at point x.
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• (Sign condition). There exists a real number α > 0 such that for almost every
t > 0 it turns out that

α

d∑

i=1

W+
i (t, x)Vi(t, x)Dxi

U ≥
∣∣∣∣∣

d∑

i=1

Vi(t, x)Dxi
Wi

∣∣∣∣∣ (5.5.17)

and

α
d∑

i=1

W−
i (t, x)Vi(t, x)Dxi

U ≥
∣∣∣∣∣

d∑

i=1

Vi(t, x)Dxi
Wi

∣∣∣∣∣ (5.5.18)

as measures in Ω, where W+
i and W−

i denote the two one-sided traces of Wi on
its jump set, and are equal to w elsewhere.

Remark 5.5.5 (Special case Wi ≡ 1). In the special case where Wi(t, x) ≡ 1 for every
i = 1, . . . , d, this definition reduces to Definition 5.4.1. In particular, the sign conditions
(5.5.7) and (5.5.8) reduces to (5.4.5), and the second condition in (5.5.16) reduces to the
standard Neumann condition 〈V (t, x), ν(x)〉 = 0 for almost every x ∈ ∂Ω. Moreover, as
in dimension one, the boundedness assumption (5.5.10) becomes unnecessary, because
it follows from Proposition 5.4.3, at least if the initial datum is bounded.

Remark 5.5.6. As we did in dimension one, let us comment on some delicate regularity
issues in Definition 5.5.4 above.

• (Regularity of the open set). In this sequel we consider UVW -evolutions in
bounded open sets that are finite intersections of half-spaces, in which case ∂Ω is
Lipschitz continuous, but not more regular. What we actually need in the proof
of Proposition 5.4.3 below is that in Ω the usual integration by parts formula

∫

Ω

f(x) divE(x) dx = −
∫

Ω

〈∇f(x), E(x)〉 dx+
∫

∂Ω

f(x)〈E(x), ν(x)〉 dσ

holds true for every function f ∈ W 1,1(Ω;Rd) ∩ L∞(Ω;Rd) and every vector field
E ∈ BV (Ω;Rd) ∩ L∞(Ω;Rd). We point out that this requires also to define the
traces on ∂Ω of f and E.

• (Evolution equation). As in dimension one, from (5.5.11) we know that the
function x 7→ Ut(t, x) is in L1(Ω,R) for almost every t ∈ (0, T ), while from
(5.5.13) and (5.5.14) we know that, for almost every t ∈ (0, T ), the function
x → Wi(t, x)Dxi

Vi(t, x) is the product of a function in L∞(Ω) and a function in
L1(Ω). As a consequence, for almost every t ∈ (0, T ) the right-hand side of (5.5.15)
is in L1(Ω), and the evolution equation is actually an equality between functions
in L1(Ω).

• (Initial datum). As in dimension one, the time regularity assumption (5.5.11)
implies that U is absolutely continuous as a function from (0,+∞) to L1(Ω). In
particular the “initial datum” x 7→ U(0, x) is well defined as a function in L1(Ω).
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• (Dirichlet/Neumann boundary conditions). From the space regularity assumption
(5.5.12) we know that, for almost every t > 0, the function x 7→ U(t, x) has
bounded variation, and therefore it admits a trace on ∂Ω. This implies that the
first condition in (5.5.16) makes sense.

Analogously, for almost every t > 0, and every index i = 1, . . . , d, the function x→
Vi(t, x) and the function x→ Wi(t, x) are bounded and have bounded variation. As
a consequence, their product has bounded variation as well (see [6, Example 3.97]),
and therefore it has a trace on ∂Ω. For this reason, also the second condition in
(5.5.16) makes sense.

• (Sign conditions). The terms in the right-hand sides of (5.5.17) and (5.5.18) are,
for almost every t > 0, the total variation measure of the scalar product between a
vector measure and a bounded vector field in W 1,1(Ω;Rd). In general this product
is not well-defined, but in this case the measure is the gradient of a function in
BV (Ω), and therefore it is absolutely continuous with respect to the d − 1 di-
mensional Hausdorff measure Hd−1. Under these assumptions, the product makes
sense.

Analogously, also the left-hand sides are the sum of products of the differential of a
function in BV (Ω) times a bounded function (the productW±

i Vi) whose pointwise
values are well-defined for Hd−1 almost every point.

In any case, as for the case of UV -evolutions, here we consider only UVW -
evolutions that come from one-dimensional uvw-evolutions, and hence are much
more regular. In this case, the definition of the quantities above is much less
problematic, and actually almost elementary.

As in dimension one, when we restrict to the absolutely continuous and Cantor
parts, assumptions (5.5.17) and (5.5.18) reduce to the unique requirement that

α

d∑

i=1

Wi(t, x)Vi(t, x)D̃xi
U ≥

∣∣∣∣∣

d∑

i=1

Vi(t, x)D̃xi
Wi

∣∣∣∣∣ as measures in Ω, (5.5.19)

again because W+
i (t, x) = W−

i (t, x) almost everywhere with respect to these mea-
sures.

When we restrict to jump parts, again we deduce that the union of the jump sets
of the functions x 7→ Vi(t, x)Wi(t, x) are contained in the jump set of the function
x 7→ U(t, x), up to a Hd−1-negligible set.

In the next results we show that uvw-evolutions in dimension one and UVW -
evolutions in any dimension share the same properties of UV -evolutions. The proofs
are similar to the ones in the previous section, the main differences being that now the
function ψ that we fix at the beginning of the proof depends on the constant α that
appears in the sign condition, and in particular we can not choose it in such a way that
it is globally Lipschitz continuous. This is the reason for which we need to add the
boundedness assumption.
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Proposition 5.5.7 (Maximum principle for UVW-evolutions with DNBC in any space
dimension). Let d be a positive integer, and let Ω ⊆ Rd be a bounded open set with
Lipschitz boundary. Let

U : [0,+∞)× Ω → R, V : [0,+∞)× Ω → R
d, W : [0,+∞)× Ω → R

d

be a UVW-evolution with DNBC in Ω according to Definition 5.5.4, and let D0 :
[0,+∞) → R be the nonincreasing function that appears in (5.5.16).

Then the function M(t) defined by (5.4.8) is nonincreasing in [0,+∞).

Proof. Since we can always restrict to a smaller time interval, it is enough to show that
M(t) ≤M(0) for every t ≥ 0.

To this end, we consider a function ψα ∈ C2(R) such that

ψα(σ) = 0 if and only if σ ≤M(0), (5.5.20)

and
ψ′′
α(σ) ≥ αψ′

α(σ) ≥ 0 ∀σ ∈ R, (5.5.21)

where α is the constant that appears in the sign conditions (5.5.17) and (5.5.18).
A possible choice is, for example, to define ψα(s) = (s −M(0))2+α

+ for every s <
M(0) + (1 + α)/α and then extend it to a C2 function on R by solving the equation
ψ′′
α(s) = αψ′

α(s), whose solution can also be written explicitly.
Then we set

E(t) :=

∫

Ω

ψα(U(t, x)) dx ∀t ∈ [0,+∞). (5.5.22)

We observe that (5.5.20) and the convexity of ψα imply that ψα(σ) ≥ 0 for every
σ ∈ R, and hence

E(t) ≥ 0 ∀t ∈ [0,+∞), (5.5.23)

and in addition ψα(σ) > 0 for every σ > M(0), from which we deduce that

E(t) = 0 if and only if M(t) ≤M(0). (5.5.24)

We observe that the function E(t) is absolutely continuous because of the bounded-
ness (5.5.10) and the time regularity (5.5.11) of U . We claim that E ′(t) ≤ 0 for almost
every t > 0. If true, this claim, combined with (5.5.23), would imply that E(t) = 0 for
every t > 0, and this would complete the proof because of (5.5.24).

In order to compute E ′(t), we derive the integral (5.5.22) with respect to time, and
using (5.5.15) we find that

E ′(t) =

∫

Ω

ψ′
α(U(t, x))Ut(t, x) dx =

d∑

i=1

∫

Ω

ψ′
α(U(t, x))Wi(t, x)Dxi

Vi(t, x) dx.

Now we integrate by parts and we obtain that (with some abuse of notation, because
what we integrate is a measure and not a function)

E ′(t) = −
d∑

i=1

∫

Ω

Dxi

(
ψ′
α(U(t, x))Wi(t, x)

)
· Vi(t, x) dx. (5.5.25)
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In this point we neglected the boundary term

∫

∂Ω

ψ′
α(U(t, x))

(
d∑

i=1

Wi(t, x)Vi(t, x)νi(x)

)
dσ

which is equal to 0 for almost every t ∈ [0, T ] because of (5.5.16). Indeed, for almost
every x ∈ ∂Ω we know that either the sum is equal to 0, or

U(t, x) ≤ D0(t) ≤ D0(0) ≤M(0),

in which case ψ′
α(U(t, x)) = 0. Now from the chain rule for bounded variation functions

we know that (for the sake of shortness we do not write explicitly the dependence on
(t, x))

Dxi

(
ψ′
α(U)Wi

)
= ψ′′

α(U)WiD̃xi
U + ψ′

α(U)D̃xi
Wi +

ψ′
α(U

+)W+
i − ψ′

α(U
−)W−

i

U+ − U−
DJ

xi
U,

at least where Vi(t, x) 6= 0, so that the jump set of Wi(t, x) is contained in the jump set
of U(t, x). Anyway, since in (5.5.25) this measure is multiplied by Vi(t, x), it is enough
to consider the points where Vi(t, x) 6= 0.

Plugging this equality into (5.5.25) we obtain that (again with some abuse of nota-
tion, because L1 and L2 are actually measures)

E ′(t) = −
∫

Ω

L1(t, x) dx−
∫

Ω

L2(t, x) dx,

where

L1 := ψ′′
α(U)

d∑

i=1

WiViD̃xi
U + ψ′

α(U)
d∑

i=1

ViD̃xi
Wi

and

L2 :=
ψ′
α(U

+)W+
i − ψ′

α(U
−)W−

i

U+ − U−
ViD

J
xi
U.

We claim that L1 and L2 are nonnegative measures in Ω. In the case of L1, from
(5.5.21) and the positivity of WiViD̃U , which follows from (5.5.19), we deduce that

L1 ≥ ψ′(U(t, x))

{
α

d∑

i=1

Wi(t, x)Vi(t, x)D̃xi
U −

∣∣∣∣∣

d∑

i=1

Vi(t, x)D̃xi
Wi

∣∣∣∣∣

}
,

and the latter is nonnegative because of (5.5.19).
In the case of L2, we observe that it can be rewritten both in the form

L2 =
d∑

i=1

ψ′(U+)Vi
W+

i −W−
i

U+ − U−
DJ

xi
U +

d∑

i=1

ψ′(U+)− ψ′(U−)

U+ − U−
W−

i ViD
J
xi
U

= ψ′(U+)
d∑

i=1

ViD
J
xi
W +

ψ′(U+)− ψ′(U−)

U+ − U−

d∑

i=1

W−
i ViD

J
xi
U,
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and in the form

L2 = ψ′(U−)
d∑

i=1

ViD
J
xi
W +

ψ′(U+)− ψ′(U−)

U+ − U−

d∑

i=1

W+
i ViD

J
xi
U.

By combining the two expressions we obtain that

L2 =
(
λψ′(U−) + (1− λ)ψ′(U+)

) d∑

i=1

ViD
J
xi
W

+
ψ′(U+)− ψ′(U−)

U+ − U−

d∑

i=1

(
λW+

i + (1− λ)W−
i

)
ViD

J
xi
U

for every Borel function λ : Ω → R. Now for every x in the jump set of U there exists
ξ(t, x) between U+(t, x) and U−(t, x) such that

ψ′(U+(t, x))− ψ′(U−(t, x))

U+(t, x)− U−(t, x)
= ψ′′(ξ(t, x)).

Since ψ′ is monotone, there exists λ(t, x) ∈ [0, 1] such that

λ(t, x)ψ′(U−(t, x)) + (1− λ(t, x))ψ′(U+(t, x)) = ψ′(ξ(t, x)).

Recalling (5.5.21), for this choice of the function x 7→ λ(t, x) we deduce that

L2 = ψ′(ξ)
d∑

i=1

ViD
J
xi
W + ψ′′(ξ)

d∑

i=1

(
λW+

i + (1− λ)W−
i

)
ViD

J
xi
U

≥ ψ′(ξ)

{
α

d∑

i=1

(
λW+

i + (1− λ)W−
i

)
ViD

J
xi
U +

d∑

i=1

ViD
J
xi
W

}

≥ ψ′(ξ)

{
α

d∑

i=1

(
λW+

i + (1− λ)W−
i

)
ViD

J
xi
U −

∣∣∣∣∣

d∑

i=1

ViD
J
xi
W

∣∣∣∣∣

}
,

and the latter is a nonnegative measure on Ω because of a convex combination of (5.5.17)
and (5.5.18) restricted to jump parts, and the fact that ψ′ is a nonnegative function.

This completes the proof.

Remark 5.5.8 (Case with only Neumann boundary conditions). As for UV -evolutions,
from the proof it is clear that, when for almost every t > 0 the second condition in
(5.5.16) is satisfied for almost every x ∈ ∂Ω, then D0(t) plays no role. In particular, we
do not need to consider the maximum with D0(t) in (5.4.8), or equivalently we can take
D0(t) ≡ −∞.

From Proposition 5.5.7 we deduce the following monotonicity properties for uvw-
evolutions in dimension one, which extend the results of Proposition 5.2.10.
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Proposition 5.5.9 (Monotonicity results for UVW-evolutions with NBC in dimension
one). Let (u, v, w) be a uvw-evolution with Neumann boundary conditions in an interval
(a, b) ⊆ R according to Definition 5.5.1.

Then the following monotonicity results hold true.

(1) (Maximum principle). For every t ∈ [0,+∞) let M+(t) and M−(t) denote, re-
spectively, the (essential) supremum and infimum of the function x 7→ u(t, x).

Then the function M+(t) is nonincreasing, while M−(t) is nondecreasing.

(2) (Monotonicity of the total variation). For every t ∈ [0,+∞) let TV ±(t) denote
the positive/negative variation of the function x 7→ u(t, x).

Then the functions TV ±(t) are nonincreasing.

(3) (Monotonicity of compositions). For every monotone and Lipschitz continuous
function g : R → R it turns out that the function g(u(t, x)) satisfies the maximum
principle and the monotonicity of the positive/negative total variation as in the
two statements above.

Proof. As we did for uv-evolutions, we reduce the one-dimensional results to the higher
dimensional maximum principle.

Maximum principle We claim that the triple

U(t, x) := u(t, x), V (t, x) := v(t, x), W (t, x) := w(t, x)

is a UVW-evolution with DNBC according to Definition 5.5.4 with d = 1, Ω = (a, b),
and no need of D0 (see Remark 5.5.8).

Indeed, all the assumption on U , V , W in Definition 5.5.4 follow immediately from
the corresponding assumptions on u, v, w in Definition 5.5.1.

At this point from Proposition 5.5.7 it follows that the function M(t) defined by
(5.4.8) is nonincreasing, but in this case M(t) coincides with the essential supremum
M+(t) because D0(t) is always less than or equal to the essential supremum.

The monotonicity of M−(t) can be obtained by applying the maximum principle
to the triple (−u,−v, w), which is again a uvw-evolution with Neumann boundary
conditions.

Monotonicity of the total variation To begin with, we observe that it is enough to
prove the monotonicity of the positive variation, because the negative variation of u is
the positive variation of −u, and we have already observed that (−u,−v, w) is again a
uvw-evolution with Neumann boundary conditions.

As in the proof of Proposition 5.2.10, for every positive integer m, we set

TV +
m (t) := sup

{
2m∑

i=1

(−1)iu(t, xi) : a ≤ x1 ≤ x2 ≤ . . . ≤ x2m ≤ b.

}
,
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and we observe that

TV +(t) = sup
m≥1

TV +
m (t) = lim

m→+∞
TV +

m (t).

Therefore, if we prove that TV +
m (t) is a nonincreasing function for every m ≥ 1, then

thesis follows. Again, we prove the monotonicity of TV +
m (t) by induction on m.

Case m = 1 We claim that the triple defined by

U(t, x1, x2) := u(t, x2)− u(t, x1),

V (t, x1, x2) := (−v(t, x1), v(t, x2)) , W (t, x1, x2) := (w(t, x1), w(t, x2)) .

is a UVW -evolution with Dirichlet/Neumann boundary conditions according to Defini-
tion 5.5.4 with

d := 2, Ω :=
{
(x1, x2) ∈ (a, b)2 : a < x1 < x2 < b

}
, D0(t) ≡ 0.

If this is the case, then the monotonicity of TV +
1 (t) follows from Proposition 5.5.7,

because in this case the function M(t) defined by (5.4.8) coincides with TV +
1 (t).

So let us check that U , V and W satisfy the properties in Definition 5.5.4. The
boundedness, the regularity and the evolution equation follow from the corresponding
properties of u, v, w in Definition 5.5.1. The sign condition (5.5.17) follows from (5.5.7)
because

∣∣∣∣∣

2∑

i=1

Vi(t, x1, x2)Dxi
Wi(t, x1, x2)

∣∣∣∣∣
= |−v(t, x1)Dw(t, x1) + v(t, x2)Dw(t, x2)|
≤ |v(t, x1)Dw(t, x1)|+ |v(t, x2)Dw(t, x2)|
≤ αw+(t, x1)v(t, x1)Du(t, x1) + αw+(t, x2)v(t, x2)Du(t, x2)

= α

2∑

i=1

W+
i (t, x1, x2)Vi(t, x1, x2)Dxi

U(t, x1, x2).

Similarly, the sign condition (5.5.18) follows from (5.5.8). Finally, we observe that
Ω is a triangle, and its boundary is contained in the three lines described by the three
equalities a = x1, x1 = x2, and x2 = b.

• In the side with a = x1 the normal vector is ν(x1, x2) = (−1, 0), and hence

2∑

i=1

Wi(t, x1, x2)Vi(t, x1, x2)νi(x1, x2) = w(t, x1)v(t, x1) = w(t, a)v(t, a) = 0.

• In the side with x2 = b the normal vector is ν(x1, x2) = (0, 1), and hence

2∑

i=1

Wi(t, x1, x2)Vi(t, x1, x2)νi(x1, x2) = w(t, x2)v(t, x2) = w(t, b)v(t, b) = 0.
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• In the side with x1 = x2 it turns out that

U(t, x1, x2) = 0 ≤ D0(t).

Therefore, in all the sides of ∂Ω the Dirichlet/Neumann boundary conditions (5.5.16)
are satisfied, and this completes the proof.

Inductive step We assume that TV +
m (t) is nonincreasing for some positive integer

m and we prove that also TV +
m+1(t) is nonincreasing. To this end, we consider the triple

defined by

U(t, x) :=
2m+2∑

i=1

(−1)iu(t, xi),

V (t, x) :=
2m+2∑

i=1

(−1)iv(t, xi)ei, W (t, x) :=
2m+2∑

i=1

w(t, xi)ei,

where x = (x1, . . . , x2m+2) and ei denotes the i-th vector of the canonical basis of R2m+2.
We claim that this triple is a UVW-evolution with Dirichlet/Neumann boundary con-
ditions according to Definition 5.5.4 with

d := 2m+ 2, D0(t) := TV +
m (t),

Ω :=
{
(x1, x2, . . . , x2m+2) ∈ (a, b)2m+2 : a < x1 < . . . < x2m+2 < b

}
.

If this is the case, then the monotonicity of TV +
m+1(t) follows from Proposition 5.5.7,

because

TV +
m+1(t) = sup{U(t, x1, . . . , x2m+2) : (x1, . . . , x2m+2) ∈ Ω}, (5.5.26)

and in particular the function M(t) defined by (5.4.8) in this case is exactly

M(t) = max{D0(t), TV
+
m+1(t)} = max{TV +

m (t), TV +
m+1(t)} = TV +

m+1(t). (5.5.27)

So let us check that U , V , W satisfy the assumptions in Definition 5.5.4. As before,
the boundedness, the regularity and the evolution equation follow from the correspond-
ing properties of u, v, w in Definition 5.5.1. The sign condition (5.5.17) follows from
(5.5.7) because

∣∣∣∣∣

2m+2∑

i=1

Vi(t, x)Dxi
Wi(t, x)

∣∣∣∣∣ =

∣∣∣∣∣

2m+2∑

i=1

(−1)iv(t, xi)Dw(t, xi)

∣∣∣∣∣

≤
2m+2∑

i=1

|v(t, xi)Dw(t, xi)|

≤ α

2m+2∑

i=1

w+(t, xi)v(t, xi)Du(t, xi)

= α

2m+2∑

i=1

W+
i (t, x)Vi(t, x)Dxi

U(t, x).
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Similarly, the sign condition (5.5.18) follows from (5.5.8). Finally, we consider the
boundary of Ω, which consists of 2m + 3 “faces” contained in the hyperplanes corre-
sponding to the possible equalities in the definition of Ω.

• In the face with x1 = a the normal vector is ν(x) = −e1, and hence

2m+2∑

i=1

Wi(t, x)Vi(t, x)νi(x) = w(t, x1)v(t, x1) = w(t, a)v(t, a) = 0.

• In the face with x2 = b the normal vector is ν(x) = e2m+2, and hence

2m+2∑

i=1

Wi(t, x)Vi(t, x)νi(x) = w(t, x2m+2)v(t, x2m+2) = w(t, b)v(t, b) = 0.

• Let us finally consider the faces where xi = xi+1 for some index i. In this case two
consecutive terms in the definition of U cancel, and what remains is a competitor
in the definition of TV +

m (t). It follows that in all these 2m+1 faces of ∂Ω it turns
out that

U(t, x1, . . . , x2m+2) ≤ TV +
m (t) = D0(t).

This proves that the Dirichlet/Neumann boundary conditions (5.5.16) are satisied.

Monotonicity of compositions Let us assume that the function g is of class C2, and
that there exists three real numbers Γ1, Γ2 and η such that

0 < η ≤ |g′(σ)| ≤ Γ1 and |g′′(σ)| ≤ Γ2 ∀σ ∈ R. (5.5.28)

We claim that the triple

û(x, t) := g(u(x, t)), v̂(x, t) := v(x, t), ŵ(x, t) := g′(u(t, x))w(x, t)

is again a uvw-evolution with Neumann boundary conditions in the sense of Defini-
tion 5.5.1. If this is the case, then the monotonicity results for g(u(x, t)) follow from
statement (1) and statement (2).

So let us check that û, v̂, ŵ satisfy the assumptions in Definition 5.5.1. The bound-
edness, the regularity, the evolution equation and the Neumann boundary conditions
follow from the corresponding properties of u, v, w. We claim that now the sign condi-
tions hold true with

α̂ :=
Γ2 + αΓ1

η2
.

To begin with, from the chain rule we know that (for the sake of shortness, here we
do not write the explicit dependence on (t, x))

Dŵ = g′′(u)wD̃u+ g′(u)D̃w +
g′(u+)w+ − g′(u−)w−

u+ − u−
DJu

= g′′(u)wD̃u+ g′(u)D̃w + g′(u−)DJw +
g′(u+)− g′(u−)

u+ − u−
w+DJu,
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at least where v 6= 0, so that the jump set of w is contained in the jump set of u.
Therefore, when we multiply by v̂ = v we obtain that

|v̂Dŵ| ≤
∣∣∣g′′(u)vwD̃u

∣∣∣+
∣∣∣g′(u)vD̃w

∣∣∣+
∣∣g′(u−)vDJw

∣∣

+

∣∣∣∣
g′(u+)− g′(u−)

u+ − u−
vw+DJu

∣∣∣∣ . (5.5.29)

Let us estimate the four measures in the right-hand side. As for the first measure,
from (5.5.28) we deduce that

∣∣∣g′′(u)vwD̃u
∣∣∣ ≤ Γ2

∣∣∣vwD̃u
∣∣∣ = Γ2vwD̃u = Γ2vw

+D̃u,

where in the two equalities we exploited that the measure vwD̃u is nonnegative (this
follows from (5.5.9)), and that w = w+ almost everywhere with respect to this measure.

As for the second measure, we exploit (5.5.28) and (5.5.9). We deduce that
∣∣∣g′(u)vD̃w

∣∣∣ ≤ Γ1

∣∣∣vD̃w
∣∣∣ ≤ Γ1αw

+vD̃u.

For the third measure we exploit (5.5.28) and the restriction of (5.5.7) to jump parts,
and we obtain that

∣∣g′(u−)vDJw
∣∣ ≤ Γ1

∣∣vDJw
∣∣ ≤ Γ1αw

+vDJu.

Finally, for the fourth measure we estimate the fraction with the second derivative
of g, and we obtain that

∣∣∣∣
g′(u+)− g′(u−)

u+ − u−
vw+DJu

∣∣∣∣ ≤ Γ2

∣∣vw+DJu
∣∣ = Γ2vw

+DJu,

where in the last equality we exploited that the measure vw+DJu is nonnegative (this
follows from (5.5.7) restricted to the jump part).

Plugging all these estimates into (5.5.29) we conclude that

|v̂Dŵ| ≤ (Γ2 + αΓ1)vw
+Du. (5.5.30)

Since vw+Du is a nonnegative measure, we have that

vw+Du = vw+D̃u+ vw+DJu

=
1

g′(u)g′(u+)
· v · g′(u+)w+ · g′(u)D̃u

+
1

g′(u+)

u+ − u−

g(u+)− g(u−)
· v · g′(u+)w+ · g(u

+)− g(u−)

u+ − u−
DJu

≤ 1

η2
· v · g′(u+)w+ ·

(
g′(u)D̃u+

g(u+)− g(u−)

u+ − u−
DJu

)

=
1

η2
· v̂ · ŵ+ ·Dû.
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Plugging this estimate into (5.5.30) we finally obtain that

|v̂Dŵ| ≤ Γ2 + αΓ1

ν2
· v̂ · ŵ+ ·Dû = α̂ · v̂ · ŵ+ ·Dû,

which proves the sign condition (5.5.7). The proof of the sign condition (5.5.7) is anal-
ogous, just starting by rewriting Dŵ in the form

Dŵ = g′′(u)wD̃u+ g′(u)D̃w + g′(u+)DJw +
g′(u+)− g′(u−)

u+ − u−
w−DJu.

Now, if g is just a monotone function of class C1, it is enough to approximate g(u)
with a sequence of functions {gn(u)} with gn as above and such that gn → g and g′n → g′

uniformly on compact sets. By the chain rule for BV functions, this is enough to deduce
that the sequence {gn(u)} converges strictly to g(u) as functions of x for every fixed t,
and hence that the total variation of g(u) is a nonincreasing function of t, because it is
the pointwise limit of a sequence of nonincreasing functions.

Finally, if g is only Lipschitz continuous, we observe that the argument used in
[6, Theorem 3.99] to prove the chain rule actually shows the existence of a sequence
{gn} of smooth monotone functions such that gn(u) converges to g(u) strictly for every
u ∈ BV (a, b). This is enough to deduce the required monotonicity properties also in
this case.

5.6 Monotonicity properties of level sets

Definition 5.6.1 (Level sets of of BV functions). Let (a, b) ⊆ R be an interval and let
f ∈ BV ((a, b)) be a function.

For every y ∈ R let us consider the following quantities.

Z(f, y) := H0

({
x ∈ (a, b) : lim inf

x′→x
f(x′) ≤ y ≤ lim sup

x′→x
f(x′)

})
, (5.6.1)

P (f, y) := Per({x ∈ (a, b) : f(x) < y}, (a, b)), (5.6.2)

L(f, y) := lim inf
n→+∞

TV (gn ◦ (f − y)), (5.6.3)

where Per(E,Ω) denotes the usual weak notion of perimeter of a set E inside Ω (namely
the total variation of the characteristic function in BV (Ω)), while

gn(s) := min{max{ns,−1/2}, 1/2}.

We recall that for one-dimensional bounded variation functions the left and right
limit are well-defined at all points, so the liminf and the limsup at any point are just
the minimum and the maximum between the two one-sided limits. Hence, for f ∈
BV ((a, b)), it is convenient to set

f ∗(x) := lim sup
x′→x

f(x′) = max

{
lim

x′→x−

f(x′), lim
x′→x+

f(x′)

}
,
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and

f∗(x) := lim inf
x′→x

f(x′) = min

{
lim

x′→x−

f(x′), lim
x′→x+

f(x′)

}
.

The three quantities defined in (5.6.1), (5.6.2) and (5.6.3) are three weak definition
for the number of solutions of the equation f(x) = y, in the case in which f is a one-
dimensional function of bounded variation. The number Z(f, y) is the more natural
definition, since it is basically the classical one, with the difference that we are including
also the jump points in which y is between the two values f∗(x) and f

∗(x). In particular,
if f is continuous, then Z(f, y) coincides with the number of elements of the set f−1(y).

The other two quantities, instead, have some drawbacks. Indeed, P (f, y) can not see
local maximum or minimum points, while L(f, y) is even more pathological, because it
is possible to find smooth functions f for which f−1(0) is a single point and L(f, 0) is
equal to an arbitrary real number larger than 1.

However, the next result shows that this pathologies are in some sense exceptionals,
namely they can occur only for a negligible set of y.

Proposition 5.6.2. Let (a, b) ⊆ R be an interval and f ∈ BV ((a, b)) be a function. Let
us consider the three quantities defined in (5.6.1), (5.6.2) and (5.6.3). Then it turns
out that

• There exists a set N ⊆ R that is at most countable such that Z(f, y) = P (f, y) for
every y ∈ R \ N .

• It holds that P (f, y) = L(f, y) for almost every y ∈ R.

Proof. We divide the proof in several steps.

Step 1 We prove that P (f, y) ≤ Z(f, y) for every y ∈ R.
To this end, we fix y ∈ R and we can assume that Z(f, y) = m ∈ N, so there exist

m points a < x1 < · · · < xm < b such that

{x ∈ (a, b) : f∗(x) ≤ y ≤ f ∗(x)} = {x1, . . . , xm}.

Now we observe that the function f(x)− y has constant sign in each of the intervals
(a, x1), (x1, x2), . . . , (xm, b). As a consequence, we deduce that the set {x ∈ (a, b) :
f(x) < y} is the union of some (or none, or all) of those intervals. It follows that
∂{x ∈ (a, b) : f(x) < y} ⊆ {x1, . . . , xm}, and therefore P (f, y) ≤ m.

Step 2 We prove that Z(f, y) ≤ P (f, y) for every y ∈ R \ N , where N is the image of
all local maximum and minimum points for f .

To be more precise, a value y ∈ R belong to N if there exist a point x ∈ (a, b) and
a positive real number r > 0 such that either

y = f ∗(x) ≥ f ∗(x) ∀x ∈ (x− r, x+ r), (5.6.4)

or
y = f∗(x) ≤ f∗(x) ∀x ∈ (x− r, x+ r).
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In the first case, we say that x is a local maximum point for f , while in the second
case we say that x is a local minimum point for f .

To prove our claim, we fix y ∈ R \ N and we can assume that P (f, y) < +∞.
By the characterization of one-dimensional finite perimeter sets (see, for example, [60,
Proposition 12.13]), we deduce that {x ∈ (a, b) : f(x) < y} is equivalent to a finite union
of intervals with different endpoints, namely there exist a non-negative integer m ∈ N

and 2m points a ≤ x1 < x2 < · · · < x2m ≤ b such that

{x ∈ (a, b) : f(x) < y} = (x1, x2) ∪ (x3, x4) ∪ · · · ∪ (x2m−1, x2m),

up to a negligible set, and P (f, y) = H0({x1, . . . , x2m} ∩ (a, b)).

So it is enough to show that

{x ∈ (a, b) : f∗(x) ≤ y ≤ f ∗(x)} ⊆ {x1, . . . , x2m} ∩ (a, b).

So let us assume by contradiction that there exists a point x belonging to the set in
the left-hand side but which is not one of the points {xi}. Then there exists an index
i ∈ {1, . . . , 2m−1} and a positive real number r > 0 such that xi < x−r < x+r < xi+1.

It follows that either f(x) < y for almost every x ∈ (x − r, x + r) (if i is odd) or
f(x) ≥ y for almost every x ∈ (x− r, x+ r) (if i is even).

In the first case, we deduce that

f ∗(x) = y > f(x)

for almost every x ∈ (x− r, x+ r), hence x is a local maximum point for f .

In the second case, we deduce that

f∗(x) = y ≤ f(x)

for almost every x ∈ (x− r, x+ r), hence x is a local minimum point for f .

In both case, we have that y ∈ N .

Step 3 We prove that N is at most countable.

Let us prove that the image of local maximum points is at most countable (the
argument for the local minimum points is the same). So, for every positive integer
n ∈ N+ let Mn be the set of points y ∈ N for which there exists a point x ∈ (a, b)
satisfying (5.6.4) with r = 1/n.

We claim that H0(Mn) ≤ 1 + (b − a)n. Indeed, if this were false, we could find
two different values y1, y2 ∈ Mn corresponding to two different maximum points x1 and
x2, which satisfy (5.6.4) with r = 1/n and such that |x2 − x1| < 1/n. But this is a
contradiction, because we would deduce that y1 = y2.

Therefore the image of maximum points is the union of countably many finite sets,
hence it is at most countable.
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Step 4 We prove the second statement, namely that P (f, y) = L(f, y) for almost every
y ∈ R.

From the BV coarea formula (see [6, Theorem 3.40]) we deduce that

TV (gn ◦ (f − y)) =

∫ +∞

−∞

Per({x ∈ (a, b) : gn(f(x)− y) < s}, (a, b)) ds

=

∫ 1/2

−1/2

Per({x ∈ (a, b) : gn(f(x)− y) < s}, (a, b)) ds

=

∫ 1/2

−1/2

Per
({
x ∈ (a, b) : f(x) < y +

s

n

}
, (a, b)

)
ds

= n

∫ y+1/2n

y−1/2n

Per({x ∈ (a, b) : f(x) < y′}, (a, b)) dy′

= n

∫ y+1/2n

y−1/2n

P (f, y′) dy′

It follows that L(f, y) = P (f, y) at every Lebesgue point of the function y 7→ P (f, y),
which is measurable and integrable for every f ∈ BV ((a, b)) thanks to the BV coarea
formula. In particular, the liminf defining L(f, y) is actually a limit for almost every
y ∈ R.

Now let (u, v, w) be a uvw-evolultion with Neumann boundary conditions in an
interval (a, b) ⊆ R. Then from Proposition 5.5.9 we deduce that the total variation
(with respect to the variable x) of the function gn(u(t, x) − y) is nonincreasing with
respect to t, and hence also L(u(t, x), y) is nonincreasing. Therefore, if we fix two
positive times 0 < t1 < t2 and a point y ∈ R such that L(u, y) = P (u, y) = Z(u, y) at
both times t1 and t2 (and in particular the liminf defining L is a limit), then we know
that Z(u(t2, x), y) ≤ Z(u(t1, x), y), and of course the same inequality holds also with P .

However, this result is not completely satisfactory, because the set of values y ∈ R

for which the inequality holds depends on the couple of times that we fixed.
On the other hand, we can also say that for almost every y ∈ R the functions t 7→

Z(u(t, x), y) and t 7→ P (u(t, x), y) coincide for almost everywhere with a nonincreasing
function, but we are still allowing many exceptions.

The problem here is that Proposition 5.5.9 lets us control only L(u(t, x), y), but this
quantity can actually differ from Z and P even if u is smooth. The only case in which
this can not happen is if we assume analiticity, because it turns out that if f : (a, b) → R

is analytic then L(f, y) = Z(f, y) for every y ∈ R, with the only exception of the two
boundary values.
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