

Extending OpenStack Monasca for Predictive Elasticity Control

Giacomo Lanciano, Filippo Galli, Tommaso Cucinotta*, Davide Bacciu, and Andrea Passarella

Abstract: Traditional auto-scaling approaches are conceived as reactive automations, typically triggered when

predefined thresholds are breached by resource consumption metrics. Managing such rules at scale is

cumbersome, especially when resources require non-negligible time to be instantiated. This paper introduces

an architecture for predictive cloud operations, which enables orchestrators to apply time-series forecasting

techniques to estimate the evolution of relevant metrics and take decisions based on the predicted state of the

system. In this way, they can anticipate load peaks and trigger appropriate scaling actions in advance, such

that new resources are available when needed. The proposed architecture is implemented in OpenStack,

extending the monitoring capabilities of Monasca by injecting short-term forecasts of standard metrics. We use

our architecture to implement predictive scaling policies leveraging on linear regression, autoregressive

integrated moving average, feed-forward, and recurrent neural networks (RNN). Then, we evaluate their

performance on a synthetic workload, comparing them to those of a traditional policy. To assess the ability of

the different models to generalize to unseen patterns, we also evaluate them on traces from a real content

delivery network (CDN) workload. In particular, the RNN model exhibites the best overall performance in terms

of prediction error, observed client-side response latency, and forecasting overhead. The implementation of our

architecture is open-source.

Key words: elasticity control; auto-scaling; predictive operations; monitoring; OpenStack; Monasca

1　Introduction

Over the last decade, information and communications
technologies (ICTs) have been evolving non-stop at an

extremely rapid pace. The ever-growing availability of
low-cost high-bandwidth connectivity has been one of
the key enablers paving the way for the impressive
growth in the adoption of distributed computing
paradigms. Cloud computing[1] emerged as the defacto
standard for developing and deploying large-scale
production-grade applications. This paradigm allows
for completely decoupling the management of physical
infrastructures from the services deployed on top of
them, by heavily relying on virtualization. This enabled
to make a more efficient use of physical resources and
have a higher resiliency degree for the hosted
applications. However, cloud computing has
significantly evolved and is not only limited to the
infrastructure-as-a-service (IaaS) provisioning model,
according to which users can access compute instances
(e.g., virtual machines (VMs)) deployed on top of

 Giacomo Lanciano and Filippo Galli are with the Scuola

Normale Superiore, Pisa 56126, Italy. E-mail: giacomo.
lanciano@sns.it; filippo.galli@sns.it.

 Tommaso Cucinotta is with the Real-Time Systems Laboratory
(RETIS), Telecommunications, Computer Engineering, and
Photonics Institute (TeCIP), Scuola Superiore Sant’Anna, Pisa
56127, Italy. E-mail: tommaso.cucinotta@santannapisa.it.

 Davide Bacciu is with the Department of Computer Science,
University of Pisa, Pisa 56127, Italy. E-mail: davide.bacciu@
unipi.it.

 Andrea Passarella is with the National Research Council, Pisa
56127, Italy. E-mail: andrea.passarella@iit.cnr.it.

* To whom correspondence should be addressed.
 Manuscript received: 2022-10-22; revised: 2023-04-24;

accepted: 2023-06-16

BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 04/15 pp315−339
DOI: 10.26599/BDMA.2023.9020014
V o l u m e 7 , N u m b e r 2 , J u n e 2 0 2 4

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

shared physical servers and operated by the provider.
Nowadays, the so-called everything-as-a-service
(XaaS) provisioning model enables an application
developer to realize cloud-native services, by
leveraging on a wide range of orchestration, load-
balancing, storage, and monitoring solutions,
completely managed by the provider[2].

To operate their infrastructures 24/7, cloud providers
need operation teams ready to promptly address and fix
any kind of issue that might occur, including hardware
faults and software defects. In production-grade cloud
infrastructures, this is only feasible when such systems
are designed following well-established practices (e.g.,
fault-independent zones, redundant powering and
cooling infrastructures, multi-path networking
topologies, etc.) and operated using appropriate tools
(e.g., monitoring systems, resource managers, effective
automation rules, etc.).

In this regard, a key enabling factor is the presence of
fine-grained monitoring services, on top of which
automation rules can be built, ensuring high reliability
for the hosted services and performance levels that are
as stable as possible, despite sudden changes in traffic
conditions. This refers to elasticity, which is the
capability of cloud services to automatically adapt their
set of allocated resources (e.g., VMs, containers, or
even physical nodes) as the workload changes over
time. Elasticity is typically implemented by means of a
control loop that decides which actions to take in order
to keep the service running smoothly (e.g., scale-out or
scale-in). Such scaling decisions are usually made on
the basis of system-level resource consumption metrics
(e.g., CPU utilization, network traffic, and storage
load), as well as key performance indicators (KPIs) at
application-level (e.g., response times and connection
timeouts/errors).

1.1　Problem presentation

Classical auto-scaling mechanisms are inherently based
on reactive automation rules that scale a service
whenever some metric breaches predefined thresholds.
Traditionally, after a scaling action is actually
triggered, an elastic system enters a cooldown period
that prevents further scaling actions until it expires.
This is done such that the elasticity controller can take
its subsequent decisions by actually considering the
effects of the previous one. In addition, to make the
overall mechanism more robust with respect to
transient changes in the workload, it is common to

require the threshold to be breached for a few
consecutive observations before triggering any action.

Developing and tuning such automation rules
become particularly cumbersome when dealing with
large-scale production environments. There are many
challenges to be addressed, like determining the KPIs
to accurately estimate the status of the system, setting
the frequency at which the scaling decision should be
evaluated, adapting the scaling policy to changes in the
workload to prevent unnecessary scaling actions,
estimating the amount and type of instances to add to
handle the new conditions, and taking into account
non-negligible time to set up the additional instances.
For instance, in this work we put great emphasis on the
latter challenge because, in large-scale production
environment, spawning new instances might indeed
take from a few minutes to even half an hour[3]. This is
not only the time needed to instantiate and boot a new
VM but also the time needed to configure the new
instance, possibly install any missing software, in case
the same image is re-used as a base for a number of
different roles requiring customized software set-ups,
or just install some minimally required security
updates, sometimes copy onto the image a minimum
set of information or local database needed for the
software to operate correctly, start the actual service
and register it into a load-balancing group, and finally
some further time is needed for the new instance to
progressively pick new traffic. Therefore, in such
settings, anticipating scale-out operations becomes
critical. Despite the mentioned precautions, traditional
control loops are still inherently “dumb”, as they do not
factor the rich dynamic of the observed metrics in their
decisions. For instance, consider the CPU utilization
evolution depicted in Fig. 1. A classical scaling policy
would treat scenarios A and B in pretty much the same
way: as soon as the CPU utilization breaches the
threshold (i.e., the red line), a scaling action is

160
140
120
100

C
PU

 u
sa

ge
 (%

)

80
60
40

0 50

A B

100
Time (min)

150 200

Fig. 1 Overview of OpenStack key components.

 316 Big Data Mining and Analytics, June 2024, 7(2): 315−339

triggered. However, a human operator, based on its
prior experience gained while operating such a fictional
service, could easily distinguish between scenarios A
and B. While A might be safely ignored, it is clear that
B would require urgent actions to be taken.

In the context of large-scale cloud environments,
given the complex relationships among their
components and the abundance of operational data they
generate (e.g., event logs, application metrics, source
code, etc.), treating operations as a data science
problem[4] seems a promising approach to develop
“intelligent” automations. In particular, time-series
forecasting techniques based on machine learning
(ML) may play a fundamental role in enhancing the
capabilities of elasticity controllers to prevent services
from saturating their capacity. For instance, AWS
currently provides native support for predictive scaling
with EC2[5], demonstrating the suitability of this type
of approaches at supporting cloud operations[6]. On a
related note, ML-based approaches have also been
shown to be beneficial for efficient and sustainable
management of resources in cloud data centers[7].

1.2　Contribution

In this paper, we propose an open-source software
architecture for integrating predictive analytics within
an OpenStack cloud platform. The paper provides three
major contributions. First, a general architecture for
performing predictive operations on a cloud
infrastructure based on time-series forecasting
techniques. Second, an open-source implementation of
the forecasting component within OpenStack,
leveraging on Monasca[8], that automatically computes
forecasts and makes them available as additional
metrics. Our implementation also includes a few
reference implementations of metric predictors, i.e.,
linear regression (LR)[9], autoregressive integrated
moving average (ARIMA)[10], multi-layer perceptron
(MLP), and recurrent neural network (RNN), showing
that the proposed architecture is flexible, as it allows
for easy customization. Third, an extensive
experimental validation of our architecture, using both
synthetic and real content delivery network (CDN)
workload traces, where we set up a synthetic elastic
application, exploit the native capabilities of
OpenStack, and compare the performance of several
predictive elasticity controllers based on the
aforementioned reference predictors. When compared
to related research in the field, our proposed

approachcan be distinguished in that it is the only work
providing an open-source architecture for extending the
orchestration capabilities of OpenStack with modular
predictive analytics, enabling forecast-driven decision-
making for generic elastic cloud services. More details
can be found in Section 2.

This paper extends our preliminary work appeared at
the IEEE/ACM UCC 2021 conference[11]. We add a
more comprehensive experimental validation that
includes experimentation with not only synthetic traces
as done in Ref. [11] but also real CDN workload traces
from the RECAP[12] EU project. Furthermore, we
expand the set of predictors and their configurations,
used for the validation. Indeed, in Ref. [11], we only
considered a single input size configuration for LR,
MLP, and RNN. On the other hand, in this paper, we
add ARIMA to the set of predictors and also
considered 3 different input size configurations for
each of them, such that we could assess how this
parameter influences the overall performance of the
resulting scaling policies. Also, we provide additional
implementation and configuration details in the
description of our proposed approach and significantly
extended the discussion of related research in the area.

1.3　Paper organization

This paper is organized as follows. Section 2 provides
a detailed overview of the related research literature,
highlighting how the proposed technique is positioned
in the current landscape. In Section 3, we provide key
background concepts about OpenStack and time-series
forecasting techniques for a better comprehension of
the following material. Section 4 describes the
approach proposed in this paper, while Section 5
presents its experimental validation on an OpenStack
deployment. Some final remarks are enclosed in
Section 6, along with the discussion of possible ideas
for future works on the topic.

2　Related Work

In the research literature, a number of authors applied
data-driven techniques to automated elasticity control,
both for public and private cloud. In what follows, we
start by reporting key research works dealing with
predictive elasticity based on metric forecasting for
public cloud. Then, we provide a similar overview of
related research for private cloud with a particular
focus on network function virtualization (NFV)[13], due
to the increasing interest gained by ML in the context

 Giacomo Lanciano et al.: Extending OpenStack Monasca for Predictive Elasticity Control 317

of network service chains. Finally, we provide a brief
review of elasticity-control solutions based on
reinforcement learning (RL).

2.1　Predictive elasticity in cloud computing

A variety of data-driven techniques have been
proposed to provide accurate short-term predictions of
workloads and resource consumption patterns of elastic
clusters to achieve a more timely and fine-tuned
allocation of resources.

In Ref. [3], the authors described a simple scaling
strategy based on predicting the aggregate sum of
transmitted and received bytes of a service cluster,
considering resource setup delays and limited
deployment throughput. The approach leverages on a
workload model to estimate a percentile of the resource
demand and a probabilistic function that describes the
cost of over-/under-provisioning the cluster. The
authors presented promising results by evaluating the
technique against data from more than 40 000 real
services deployed as auto-scaling groups on AWS.

In Ref. [14], the authors proposed a model-predictive
control based approach[15], combining three major
techniques: a 2nd-order ARMA filter for workload
prediction; a customer behavior modeling graph
(CBMG)[16], optimized on web logs, capturing the
behavior of users while browsing a web application;
and a look-ahead optimization to trade-off between the
advantages arising from dynamic elasticity and the cost
of scaling decisions and cluster reconfiguration at each
control period. They empirically evaluated their
technique against data from the 1998 world cup web-
site traffic.

In Ref. [17], the authors tackled the problem of non-
instantaneous instance provisioning when using elastic
scaling in cloud environments. They proposed a
predictive strategy based on a resource prediction
model using ANNs and LR. The method was applied
on an e-commerce application scenario emulated
through the TPC-W[18] workload generator and
benchmarking application, deployed on AWS EC2.
ANNs improve the accuracy by reducing the MAPE by
roughly 50% compared to LR.

In Ref. [19], an ANN with a single hidden layer was
proposed for predicting the resource utilization and
duration of continuous integration tasks for several
repositories from the Travis open data. However, the
evaluation focused on predicting the task duration only,
using a per-repository model using the number of files

and the repository size as inputs. Results show an
accuracy at least 20% and up to 89% better than a
baseline LR.

In Ref. [20], the authors proposed supervised
learning methods to tackle the problem of predictive
auto-scaling for multi-tier elastic applications,
considering unstable performance of individual VMs.
In particular, LR is applied to the traffic arrival rate
time-series to predict short-term arrival rates, which
were in turn used to predict the evolution of the
response times, using polynomial regression (PR).
Such estimates were then fed to a random decision
forest (RDF), designed to learn a configurations map
associating the order of configurations—required to
maintain the specified service-level objective
(SLO)—to the experienced request arrival rates and
system response times. The training data for the RDF
were generated by executing a few system (static)
scaling policies.

In the RScale framework[21], Gaussian process (GP)
regression was used to predict end-to-end tail-latency
of distributed microservices workflows with generic
direct acyclic graph-like topologies. RScale was
evaluated on the Chamaleon test-bed☆ and achieved
similar accuracy but a smaller predicted uncertainty
with respect to ANNs. However, it exhibited reduced
inference overheads and superior adaptability
to dynamically changing workload/interference
conditions.

In Ref. [22], Bayesian networks (BNs) were used in a
predictive framework to support automatic scaling
decisions in cloud services. The method was evaluated
on synthetic applications with exponentially distributed
duration and workload inter-arrival patterns.

In Ref. [23], decision trees (DTs) were used to
predict CPU, memory, and network usage of hive-
based MapReduce queries over a Hadoop cluster. The
authors used a 4-machines cluster to perform queries
with different structures over a number of different
datasets, using a per-resource decision tree to classify
the query within the high or low resource-usage class.
The presented results give insights as to the parameters
mostly affecting the consumption level for each
resource. However, as the authors used a fixed-size
cluster, the technique does not seem to be useful in the
context of elasticity control, albeit the investigation
may be useful to design effective elasticity rules.

☆https://www.chameleoncloud.org/

 318 Big Data Mining and Analytics, June 2024, 7(2): 315−339

In Ref. [24], the authors proposed a proactive auto-
scaling mechanism for edge computing applications on
Kubernetes. The approach leverages on ARMA and
long short-term memory (LSTM) to estimate the raw
number of additional compute instances needed, given
the observed resource utilization patterns. The authors
also provided a mechanism to either automatically
retrain from scratch or incrementally update the
underlying model.

In Ref. [25], the authors introduced an extensive set
of traces exported from Azure’s internal infrastructure.
They proposed Resource Central, an approach that
collects VM utilization metrics and periodically trains
prediction models on them offline. Such models can
then be queried online by resource management
systems and/or human operators. While the approach is
in theory agnostic to the underlying models, the authors
considered RDF, gradient boosted trees (GBTs) and
fast fourier transform (FFT) for their experiments. The
authors validated their approach by integrating it with
Azure’s VM scheduler, showing performance
improvements also in over-subscription scenarios.

In Ref. [26], the authors proposed a framework to
forecast the workload of a cloud system, such that a
resource manager can take informed scaling decisions.
Their approach is based on self-directed learning
(SDL), which consists in including recent forecast
errors in the input to the underlying model, such that it
can be used as feedback to improve the accuracy of
future predictions. The model is a feed-forward ANN,
whose weights are optimized via an improved version
of the blackhole algorithm proposed by authors. The
authors validated their approach against 6 different
datasets exported from real systems.

In Ref. [27], the authors proposed a proactive
resource scaling approach that leverages on a workload
prediction module. The underlying forecasting model is
based on ARIMA. The approach uses the predicted
information to resize a cloud application accordingly,
e.g., anticipating peaks. The authors used real traces
exported from web servers of Wikipedia to train
ARIMA to predict request patterns. They also validated
their approach, in terms of impact on the quality of
service (QoS) of a cloud application, by running
simulations on CloudSim.

In Ref. [28], the authors proposed CloudInsight, a
workload prediction framework that can be used to
proactively scale cloud applications. The authors
leveraged on an ensembling approach (i.e., combining
the outputs from several models) to effectively handle

irregular, dynamically changing workloads. The weight
of an individual model is continuously re-evaluated by
a mechanism based on support vector machine (SVM),
such that the system can adapt to the current shape of
the workload. The authors validated their approach
against 3 different classes of workloads (exported from
real systems) and compared its performance to several
baseline predictors.

In Ref. [29], the authors proposed LoadDynamics.
Similar to Ref. [28], they put the emphasis on the
sensitivity to workload changes that are observed in
most workload prediction frameworks. Their solution
is an LSTM-based approach that is trained and
evaluated on data exported from real systems, which
describes requests arrival rates in different application
scenarios (e.g., public cloud, HPC, web, etc.).

There exist other approaches that perform dynamic
resource allocation based on instantaneous monitoring,
rather than on resource estimations. For instance, the
authors of Ref. [30] proposed a vertical elasticity
management approach for containers, to dynamically
adapt the allocated memory in Kubernetes, to support
the co-location of containers having heterogeneous
QoS requirements. However, for brevity, we omit this
type of approaches from our overview, as they fall
within the research literature on classical reactive
elasticity control.

2.2　Predictive elasticity for NFV services

Predictive analytics have also been investigated in
private cloud scenarios, notably for NFV and software
defined networks (SDNs)[31] in order to adapt and fine-
tune the allocation of virtualized resources to the
conditions of the network. In this way, operators can
benefit from proactive automation mechanisms to
ensure QoS for their cloud-native service-chains. In
Ref. [32], the authors highlighted the main challenges
to be tackled to obtain an effective predictive
mechanism: assessment of the bottleneck components
that need to be scaled; development of mechanisms for
optimal consolidation of the virtual resources within
the physical infrastructure; and the design and
implementation of predictive models preventing under-
or over-provisioning of virtualized resources.

In Ref. [33], an ML-based approach was proposed to
realize an effective auto-scaling mechanism. The
authors evaluated several predictive models (e.g., DT,
RDF, MLP, and BN) on load traces exported from a
real virtual network function (VNF) environment, also

 Giacomo Lanciano et al.: Extending OpenStack Monasca for Predictive Elasticity Control 319

taking into account the different costs and start-up time
related to different virtualization technologies.

RNNs proved to be a powerful tool for time-series
analysis in forecasting[34, 35] and classification[36, 37]

tasks. For instance, in Ref. [38], LSTM was used to
forecast the future demand of deployed VNFs.
However, the authors mainly focused on feature-
selection aspects rather than achievable accuracy. Also,
the authors of Ref. [39] showed that the sequence-to-
sequence architecture, wide-spread in the natural
language processing (NLP) research field, yields
surprisingly good results. Such architecture consists of
an encoder and a decoder module. In NFV, these
models have been used to capture complex
relationships between VNF and infrastructure metric
time-series[40]. Remarkably, since the encoder and the
decoder only exchange information consisting in the
hidden state values, it is also possible to use different
sets of metrics for input and output.

Additional information about the deployed VNFs
(e.g., graph-like diagrams depicting the interactions
among the VMs belonging to the same VNFs) can also
be used to boost forecasting accuracy. For instance, in
Ref. [41], the authors proposed a topology-aware
forecasting approach built on top of graph neural
networks (GNNs)[42].

2.3　Elasticity control with reinforcement learning

Straightforward heuristics like static thresholding[43]

can yield amazing results, when dealing with elasticity
control for simple systems. However, thresholds
require careful ad-hoc tuning, resulting in an approach
that can hardly be adopted at scale (as it will eventually
lead to over- or under-provisioning). Addressing these
shortcomings, dynamic thresholding mechanisms, like
the ones based on RL, offer the capability to
automatically adapt thresholds to the current status of
the system.

However, RL algorithms usually impose demanding
computing requirements, which may limit their
applicability on real systems. For instance, in Ref. [44],
the authors described a Q-learning approach for
managing a real telco system. The developed agent is
observed to take several unexpected decisions, before
converging to an optimal policy. When deploying the
approach in production, this is clearly not desirable. On
the other hand, in Ref. [45], the authors proposed a
successful RL-based approach to deploy VNF service
chains, which works by jointly minimizing operation

costs and maximizing requests throughput, and also
took into consideration heterogeneous QoS
requirements.

In Ref. [46], the authors proposed an adaptive
mechanism to automatically learn scaling policies for
NFV, based on Q-learning and GP. They leveraged on
GP to iteratively improve the learned policy before
taking the final scaling decision, using the average
response time of the system as reward signal. They
evaluated their approach on a simulated NFV
environment, showing that it outperforms both a
standard threshold based policy and a Q-learning based
one (not based on GP).

In Ref. [47], the authors proposed two different novel
auto-scaling strategies based on the combination of a
fuzzy logic (FL) controller with two different RL
approaches: Q-learning (i.e., off-policy approach) and
state action reward state action (SARSA) (i.e., on-
policy approach). According to the authors, employing
RL algorithms makes the overall mechanism self-
adaptive (e.g., considering the response time as reward
signal), while the FL controller enables it to work at a
higher level of abstraction. Both strategies are
implemented and integrated with OpenStack. The
evaluation is performed on two different real web
application workloads.

In Ref. [48], the authors proposed a strategy based on
a deep Q network (DQN) for tuning the scaling
thresholds used by the auto-scaling rules of
microservices deployed in Kubernetes. The
application-level response time is extracted from the
log files of a Twitter analytics application and used as
reinforcement signal for the RL algorithm.

In Ref. [49], the authors investigated on using RL-
based techniques to handle resource allocations and
scaling in the context of a serverless computing
framework. They focused on request-based scaling and
developed a mechanism to automatically adapt the
concurrency level of a serverless application instance
(i.e., the maximum number of requests that a single
instance should handle).

2.4　Summary

Table 1 reports a schematic comparison among the
major related works and our proposed approach (at the
bottom of the table). The comparison takes into
account the following aspects: which data-driven
technique was used and which input data was applied
to; whether the method applied to generic workloads,

 320 Big Data Mining and Analytics, June 2024, 7(2): 315−339

or it was designed for specific applications; which data
or use-case was used for validation; whether the work
considered also overheads or delays related to
spawning new instances; whether the work was
actually aiming at realizing elasticity-control loops;
and whether the implementation of the proposed
solution was open-source, such that other researchers
can reproduce the work and possibly improve it.
Overall, ours is the only work providing an open-
source architecture for extending the orchestration
capabilities of OpenStack with predictive analytics,
enablingforecast-driven decision-making for generic
elastic cloud services. Also, our implementation is
modular, such that it can easily be extended with
custom models developed using established modeling
frameworks for the Python language, such as Scikit-
learn, Statsmodels, PyTorch, and TensorFlow.

3　Background

In this section, we provide useful background concepts
to understand the approach proposed in Section 4.
First, we provide details on a number of key

OpenStack components, with reference to Fig. 2. Then,
we recall fundamental background concepts around
some time-series forecasting techniques we used in the
experimental validation described in Section 5.

3.1　OpenStack component

3.1.1　Nova, Cinder, and Glance
Nova[50] is the OpenStack component that provides
compute resources (e.g., VMs, bare metal servers, and
containers) management functionalities. It leverages on
Cinder[51] for block storage management and Glance[52]

for image provisioning. The core of Nova’s
architecture is the compute process, which manages the
underlying hypervisor (using libvirt). Such process
communicates with the shared central database through
the conductor process. Finally, the scheduler process is
the interface between the compute process and the
instance placement service. All processes exchange
requests via remote procedure call (RPC).
3.1.2　Neutron
Neutron[53] is the OpenStack component that provides
networking functionalities. It offers the possibility to

Table 1 Related works comparison (legend: G.A. = generally applicable; S.O. = spawning overhead; E. = elasticity; and O.S. =
open-source).
Reference Technique Input Validation G.A. S.O. E. O.S.

[3] Heuristic Network data 40K AWS auto-scaling groups Y Y Y N
[14] ARMA, CBMG Utilization data '98 world cup N Y Y N
[17] ANN, LR Utilization data E-commerce (TPC-W) Y Y Y N
[19] LR, MLP Utilization data CI pipeline N N Y N
[20] PR, RDF Request rate and response time E-commerce (RUBiS) N N Y N
[21] GP Utilization data Robot shop Y N Y N
[22] BN Utilization data Synthetic workload Y N Y N
[23] DT Query type and structure DB queries (Hive) N N N N
[24] ARMA, LSTM Utilization data Kubernetes edge app Y N Y N
[25] RDF, GBT, FFT Utilization data Real Azure VM traces Y Y Y N
[26] MLP, SDL, blackhole Request rate and utilization data 6 different real datasets Y N Y N
[27] ARIMA Request rate Real Wikipedia traces Y Y Y N
[28] Ensembling Request rate 3 classes of real workloads Y N Y N
[29] LSTM Request rate 3 classes of real workloads Y N Y N
[32] Heuristic Utilization data Skype traces N Y Y N
[33] DT, RDF, MLP, BN Utilization data Real VNF workload N Y Y N
[41] GNN Utilization data and topology Real VoIP workload N N N N
[44] Q-learning Utilization data Real telco system N N Y N
[46] Q-learning, GP Utilization data Synthetic VNF workload N N Y N
[47] FL, Q-learning, SARSA Utilization data '98 world-cup, Wikipedia Y N Y N
[48] DQN Utilization data Twitter analytics app N N Y N
[49] Q-learning Utilization data Synthetic serverless app Y N Y N
Ours ARIMA, LR, MLP, RNN Utilization data Synthetic and real CDN traces Y Y Y Y

 Giacomo Lanciano et al.: Extending OpenStack Monasca for Predictive Elasticity Control 321

manage per-tenant virtual networks (e.g., having their
own IP numbering and DHCP settings) and can be
equipped with security-related features, like firewalls
and virtual private networks (VPNs).
3.1.3　Monasca
Monasca[8] is an advanced multi-tenant, highly
scalable, and fault-tolerant monitoring solution. It is
designed as a collection of microservices, including an
efficient time-series database (DB), a streaming alarm
engine, a notification engine, a message queue, etc.
Monasca also provides an agent module that is
deployed on the physical machines hosting the
compute services, such that it can collect metrics and
forward them to the DB through the message queue.
Monasca is also compatible with Kubernetes.
3.1.4　Senlin
Senlin[54] is the OpenStack component that offers tools
to effectively operate clusters of homogeneous
OpenStack resources (e.g., Nova instances). In
particular, it is possible to define and attach policies to
such clusters, specifying how their resources must be
treated under specific conditions. For instance, one can
use scaling policies to automatically resize the cluster,
load-balancing policies to distribute the workloads, or
health policies to handle faulty instances. Compared to
Heat[55], Senlin offers more effective operation support
tools and a finer-grained control over the underlying
resources. Indeed, Senlin is being successfully used to
operate large-scale deployments, like the on-line
gaming use-case reported by Ref. [56].
3.1.5　Octavia
Octavia[57] is the former neutron load-balancing-as-a-
service (LBaaS) and, as the name suggests, offers
scalable load-balancing (LB) functionalities. LB is
crucial to enable fundamental cloud properties like
elasticity and high-availability. An Octavia LB consists
of a horizontally-scalable pool of Nova instances (i.e.,
amphorae), leveraging on HAProxy. The controller is

the core of Octavia’s architecture, consisting in a
number of sub-components whose jobs include
handling requests and orchestrating the amphorae.

3.2　Time-series forecasting

In the empirical evaluation, we confront the
performance of forecasting components leveraging
different data-driven models. The dynamic nature of
the data involved in cloud and distributed systems
naturally calls for learning models which can
effectively tackle time-series data, where observations
are not assumed to be independent and identically
distributed but are rather influenced by the sequential
ordering in which they are observed. To this end, in the
following we review two fundamental approaches for
time-series forecasting, namely autoregressive models
and recurrent neural networks. For the sake of
completeness, in our empirical analysis we also
consider baseline learning models which do not
consider the sequential nature of time-series data,
namely LR (see Ref. [9]) and MLPs (see Ref. [58]).
The reader is referred to consolidated literature
references for further details on such foundational
models.
3.2.1　ARIMA

{xt} t−1
x̂t

The autoregressive moving average (ARMA) model is
an effective tool for time-series forecasting (see Ref.
[10]). Given the observations up to time , the
forecast is given by

x̂t = ϕ0+

p∑
i=1

ϕixt−i+

q∑
j=1

θ jϵt− j (1)

ϕ0

{ϕi}pi=1

x̂t p {θ j}qj=1

where is a constant typically set to 0 if there is no
evidence of a trend in the input data, otherwise, it can
be manually set based on domain knowledge or
automatically learned; are the learnable
parameters regulating the linear dependency between

 and the most recent observations; and are

Horizon Dashboard Keystone

Identity
service

Octavia

Load
balancing

Senlin

Clustering

Monasca

Monitoring

Heat

Orchestration

Neutron

Networking

Cinder

Block
storage

Glance

Image
server

Nova

Compute

Fig. 2 Overview of OpenStack key components.

 322 Big Data Mining and Analytics, June 2024, 7(2): 315−339

x̂t q
{
ϵt− j ≜ x̂t− j−

xt− j
}q

j=1
q

the learnable parameters that regulate the linear
dependency between and the errors

 that the model made in the most recent
predictions.

d ∈ N+
x(d)

t

xt x(1)
t ≜ xt − xt−1

d = 1 x(d)
t ≜ x(d−1)

t − x(d−1)
t−1 d > 1

x̂(d)
t

The ARIMA model is an extension of ARMA that
can deal with non-stationary time-series (see Ref. [10]).
Indeed, given a , ARIMA is obtained by
applying ARMA to estimate , which is the d-order
differenced signal obtained from as
for , and for . The
resulting forecasts for the differenced signal

x̂(d)
t = ϕ0+

p∑
i=1

ϕix
(d)
t−i+

q∑
j=1

θ jϵ
(d)
t− j (2)

x̂t

p d q
ARIMA(p,d,q)

d
x(d)

t

t

are cumulatively summed up to reconstruct the forecast
of the original signal . Given that ARIMA is
characterized by the 3 meta-parameters , , and ,
Eq. (2) is conventionally referred to as .
The meta-parameter is typically chosen such that the
resulting the d-order differenced signal is
stationary (i.e., whose auto-correlation, mean, and
variance are independent of).
3.2.2　Recurrent neural networks

I xt ∈ RI

H
s ∈ RH

Among artificial neural networks (ANNs), RNNs are
commonly used for multi-variate time-series analysis
(see Ref. [58]) and forecasting in particular. RNNs
predict the one-step (or k-step) ahead value of a time-
series based on the current -dimensional input
and a compressed history of the inputs, stored in an -
dimensional state vector computed recurrently
by the hidden neurons. The model evolution is
described by

st = fs(st−1, xt) (3)

ot = fo(st, xt) (4)

fs : RH+I → RH

c s x fs = tanh(Wsc+bs)
Ws bs fo :

RH+I → RO

fo = ReLU(Woc+bo) ReLU

θ = {θ j} = {Ws,Wo,bs,bo}

j k

where (1) operates on the concatenation
 of and , and is defined, e.g., as ,

where is the weight, and is the bias; (2)
 is the output function, similarly defined,

e.g., as , where denotes the
rectified linear unit function. The learnable parameters

 are typically trained through
gradient descent on the loss function. In this work, we
consider a stochastic update rule with momentum, so
that the -th parameter is updated at the -th
optimization step as follows:

µ j,k = βµ j,k−1+∇Jθ j,k (D) (5)

θ j,k+1 = θ j,k −λµ j,k (6)

D
∇Jθ j,k (D) Jθ j,k (D)

θ j k
β

µ j,k λ

K

where is a dataset of input-output pairs, and
 is the gradient of the loss function

with respect to parameter computed at step . The
term determines in which proportion the momentum

 is applied during the gradient descent step, and is
the learning rate. The training process continues until
the validation loss, computed over the validation
dataset every optimization steps, stops decreasing.
The model corresponding to the minimum achieved on
the validation loss is taken as output. A particular type
of RNNs is the so-called LSTM networks[59]. LSTM is
an improved version of the standard RNN architecture,
where the so-called input, output, and forgetting gates
regulate the amount of information flowing into the
hidden-state representation. In this way, LSTM is able
to capture both long- and short-term dependencies
among the input variables, also reducing the risk of
incurring in numerical instability problems, such as the
vanishing gradient[60].

4　Proposed Approach

As mentioned in Section 1, conventional scaling
techniques are reactive, as they adjust resources when
certain metrics breach specific threshold values. They
may be configured using a cautionary approach,
triggering on very early degradation signs. Or, they
may use an optimistic approach by having thresholds
very close to critical values. A cautionary approach is
mostly necessary when scaling operations need a
significant amount of time to become effective.
However, the risk is, for instance, to waste resources
(i.e., over-provisioning) due to unnecessary scale-out
decisions. On the other hand, an optimistic approach
limits resource waste but can lead to affecting the QoS
perceived by users in case scaling operations do not
take effect before the system saturates its current
capacity. Our approach mitigates the aforementioned
issues by adopting a predictive auto-scaling strategy
that triggers scaling actions on the basis of forecasts of
one or more target metrics. For instance, given an
imminent growth in the flow of requests, our approach
allows for triggering a scale-out sufficiently ahead of
time. We implemented our approach in OpenStack,
specifically extending the Monasca monitoring system.
As shown in Fig. 3, we assume that the orchestration is
performed by Senlin leveraging on our forecasting
component (plus the required Monasca resources) to

 Giacomo Lanciano et al.: Extending OpenStack Monasca for Predictive Elasticity Control 323

integrate predictions in the scaling operations. We
consider a cluster of Nova VMs as the specific
compute instances to be elastically scaled. However,
notice that our approach is agnostic with respect to
such implementation details. Although there exist two
main scaling strategies, horizontal and vertical (see
Ref. [1]), our experimentation focuses on horizontal
scaling only. This is definitely the most used strategy
in cloud computing, as it is simpler to manage and
supports scaling out to an arbitrary number of
instances, differently from vertical scaling, which is
limited by the specific capabilities of the underlying
hardware. Indeed, modern cloud applications are
typically designed such that their components can be
highly distributed and replicated among different nodes
to enhance both availability and resiliency. However,
our proposed architecture may easily be leveraged for
vertical scaling[61] as well, as our approach is agnostic
with respect to how the actual scaling operations are
implemented.

Our approach works as follows. VMs periodically
generate system-level metrics, which are ingested by
Monasca. Such metrics are indicators for the current
load sustained by the system. Such metrics are
basically a set of time series, which is the input to our
forecasting component. Such data are periodically
fetched by the forecasting component, whose task is to
generate forecasts of the input metrics over a given
time window. The frequency and the time window of

the forecasts, as well as the amount of historical data to
be provided as input, are configurable. The generated
forecasts are finally persisted and become available to
all the components of the infrastructure management
system via Monasca APIs. In particular, they can also
be visualized by operators through dashboards (e.g.,
Grafana). In our case, forecasts are fed to a threshold-
based scaling policy, and scale-out actions are
triggered as soon as the predicted values of the
considered KPIs breach the threshold for a given
number of subsequent observations. Threshold checks
are performed via the Monasca alerting pipeline, and
the scaling operations are actuated by Senlin.

The underlying predictors generally need to be
trained before use and constantly updated in case of
dynamic changes in the statistic behavior of the time-
series[62]. Based on the specifics of the metric
dynamics, this may require longer or shorter training
histories and periodicity of updates. In this work, for
simplicity we assume that training is performed offline,
but the integration of automatic model updates is
planned to be handled in a short future. As discussed in
Section 5, we compare four different predictors, i.e., a
linear regressor, an ARIMA model (see Section 3.2.1),
an MLP, and an RNN (see Section 3.2.2).

Implementation details
Our forecasting component, also known as Monasca-

predictor, is implemented in Python, the main
programming language used in the OpenStack

Monasca pipelineSenlin cluster

VM1 metrics

VM1

Persistence
component

VMn metrics

VMn

Forecasting
component

Cluster data

Alerting
component

Forecasts

Scaling decisions

Monitored
KPIs

Fig. 3 Architectural diagram of the proposed predictive auto-scaling approach.

 324 Big Data Mining and Analytics, June 2024, 7(2): 315−339

ecosystem, and released under the Apache 2.0 open-
source license[63]. Such component is realized in
compliance with the microservice-oriented
architectural pattern used by Monasca. In particular, it
is designed to be eventually integrated into the
Monasca-agent (see Section 3.1.3).

Monasca-predictor is configured using a YAML file
similar to the one shown in Fig. 4. The Api block
contains the information required to make
authenticated calls to OpenStack APIs. As Monasca-
predictor performs tasks similar to those of the
Monasca-agent, it must be provided with similar
permissions. The Main block contains the
configurations related to the actual predictive tasks of
Monasca-predictor. Notice that the forwarder_url and
hostname fields must be filled with the pointers to the
forwarder process of the Monasca-agent. The
inference_frequency_seconds field specifies the
frequency at which forecasted values must be
generated. The predictions field is a list containing the
individual configurations for the different forecasts.
For each item in the list, additional fields can be
specified as follows. The tenant_id field must be filled
with ID of the OpenStack project containing the
resources to be monitored. The dimensions field is a
map that specifies additional properties required to
identify such resources (e.g., the ID of the elastic group

of compute instances). The metrics field is a list of the
metrics whose measurements are to be used as input to
the predictor. In Monasca, a metric is identified by its
name (e.g., cpu.utilization_perc) and the set of
properties (i.e., dimensions) of the resource that
generates measurements for said metric (e.g.,
resource_id, hostname, etc.). The group_by field is a
list of such properties to be used by Monasca API for
grouping measurements in different time-series, when
fetching data by metric name. For instance, one could
simply specify resource_id (or even *, standing for “all
fields”) to group measurements by resource.
Depending on the boolean value specified for the
merge_metrics field, the resulting time-series can also
be merged into a single one, with measurements
ordered according to their timestamp. The
time_aggregation_statistics field is a list of operators
(e.g., avg, sum, and max) to be applied on the retrieved
time-series individually, binning their measurements
according to the resolution specified with the
time_aggregation_period_seconds field, such that the
result is possibly a multivariate—resampled—time-
series. Similarly, the space_aggregation_statistics field
is a list of operators to be applied, on top of the
temporal aggregation result, in order to aggregate the
measurements of a set of monitored resources (e.g., the
compute instances belonging to the same elastic
group). The lookback_period_seconds field defines the
time window that measurements must fall into for them
to be included in a Monasca API response, as a
(backward) difference with respect to the current
timestamp. The prediction_offset_seconds field defines
the time window of the forecast as a (forward)
difference with respect to the timestamp of the most
recent measurement. Notice that, when persisted, a
forecast is associated with the very same timestamp,
such that the forecasted metric appears backward-
shifted by prediction_offset_seconds with respect to
the input metric. The out_metric field is the metric
name to be associated with the generated forecasted
values. The model_path field is the path to the dump of
the underlying predictive model. Similarly, the
scaler_path field is the path to the dump of the scaler to
be used for pre-processing the input data. At the
moment, monasca-predictor only supports models built
using the following frameworks: Scikit-learn[64],
Statsmodels[65], PyTorch[66], and TensorFlow[67].
Finally, the Logging block allows for configuring logs
management. A thorough explanation of the available

Api:
Fill with configs similar to monasca-agent-forwarder

Main:
forwarder_url: ...
hostname: ...
inference_frequency_seconds: 60
predictions:

-tenant_id: # Fill with OpenStack project ID
dimensions:

scale_group: # Fill with scaling group ID
metrics: [cpu. utilization_perc]
group_by: ["*"]
merge_metrics: false
time_aggregation_statistics: [avg]
time_aggregation_period_seconds: 60
space_aggregation_statistics: [sum]
lookback_period_seconds: 1200
prediction_offset_seconds: 900
out_metric: pred. group. sum. cpu. utilization_perc
model_path: /path/to/model. dump
scaler_path: /path/to/scaler. dump

Logging:
enable_logrotate: true
disable_file_logging: false
predictor_log_file: /path/to/predictor.log
log_level: INFO

Fig. 4 Example of forecasting component config file.

 Giacomo Lanciano et al.: Extending OpenStack Monasca for Predictive Elasticity Control 325

tunables can also be found in the documentation within
the code of our forecasting component[63].

Monasca-predictor was developed as a prototype that
users can only configure via the YAML configuration
file (see Fig. 4). Such limitation implies that a user
needs full administrator privileges for the OpenStack
deployment, as such file contains both system-wide
(e.g., authentication credentials) and application-
specific configurations (e.g., the details of the
resources to be monitored). We plan to improve the
usability of our component by separating such different
types of configurations, so that multiple—possibly
unprivileged—users can leverage on the same
forecasting capabilities (even though the installation
must still be performed by an OpenStack
administrator). Similar to what Monasca and the other
OpenStack projects offer, our idea is to develop both a
command-line interface and a heat orchestration
template (HOT) integration for monasca-predictor,
such that users can manage their (application-specific)
configurations in the way they see fit. Independently of
the chosen interface, such configurations will be
eventually persisted in a database (e.g., the MySQL
instance included in any OpenStack deployment) to
improve the reliability of our component.

5　Experiment

This section includes the results of an experimental
validation of the approach described in Section 4. It
provides a comparison of the performance of several
predictive scaling policies with a traditional reactive
one, considering a synthetic elastic application
deployed on OpenStack.

5.1　Synthetic elastic application

We use distwalk[68], an open-source distributed
processing emulation tool developed by us, to test the
proposed predictive auto-scaling approach. The tool
consists of a server module that accepts TCP/IP
connections from one or more clients. Clients can
request the server to perform computational,
networking, and/or input/output (I/O) activities,
enclosing within each request the amounts of resources
to be consumed. Clients can submit requests with
constant or exponentially distributed inter-arrival time,
payload sizes, or I/O transfer sizes. Also, they may
emulate ramp-up/ramp-down scenarios or use a file
trace specifying the requests rate to be submitted over a
time horizon. For instance, we use this feature to replay

traces from a real CDN workload (see Section 5.5).
Per-request round-trip response-time can be measured
and reported in a log file on experiment termination.
Clients can also spawn multiple threads submitting
traffic in parallel, and they can emulate the
establishment of multiple sessions, by closing and re-
establishing their TCP/IP connections.

5.2　Experimental set-up

Our OpenStack deployment is hosted on a Dell R630
dual-socket test-bed, equipped with 2 Intel Xeon
E52640 v4 CPUs (each having 10 hyper-threaded
cores, i.e., 20 hyper-threads) running at 2.40 GHz (with
a turbo-boosting frequency of 3.40 GHz); 64 GB of
RAM; Ubuntu 20.04.2 LTS operating system; and
Version 5.4.0 of the Linux kernel. We use an all-in one
OpenStack deployment (Victoria release), installed
using the tools provided by Kolla[69], resulting in each
service being operated within Docker containers. As
detailed in Section 4, we deploy an elastic control loop
using the following services: (1) Senlin to orchestrate a
horizontally-scalable cluster of Nova VMs; (2) Octavia
to provide the cluster with load balancing capabilities;
(3) Monasca to ingest the system-level metrics and to
trigger the scaling actions; and (4) the forecasting
component, developed by us, to enable the predictive
auto-scaling strategy.

The Senlin cluster has a minimum of 2 active
instances and could expand up to 5. Each instance is
provided with 1 vCPU and 2 GB of RAM available and
with an Ubuntu 20.04 cloud image including the server
module of distwalk (see Section 5.1). We artificially
impose a delay of 10 min before starting the distwalk
server. The purpose is to emulate a scenario with non-
negligible set-up times for new instances, as it may be
needed in real cloud workloads, where it is
commonplace that spawning new instances may take
from a few minutes to even half an hour[3]. In such a
scenario, performing scale-out operations well ahead of
time becomes critical. The application server instances
are made reachable through an Octavia LB, set to
distribute the traffic according to a round-robin
strategy. The distwalk client is configured to spawn 6
threads, such that in the beginning of our runs, each
server instance has to handle the aggregated requests
from 3 threads on average. Each thread follows a 4 h
long trace reporting the operation rates (i.e.,
requestsper second) to be maintained for an interval of
1 min each. Also, each thread is set to break its work in

 326 Big Data Mining and Analytics, June 2024, 7(2): 315−339

1000 sessions, such that a new connection is opened
with the LB every 15 s, allowing for it to select a new
target instance. Monasca is set such that new
measurements are collected each minute. The
forecasting component is set to output a new prediction
with the same interval, leveraging on the most recent
measurements. The input to the underlying forecasting
model consists in a time-series reporting the sum of the
CPU usage measurements of the currently active
instances. The output of the model is the estimated
value of the same time-series in 15 min (i.e., 50% more
than how long a new instance takes to activate). Such
output is then divided by the number of currently active
instances to get an estimate of the average CPU usage
expected in 15 min, assuming the cluster size to remain
constant and then persisted in Monasca.

The purpose of our experimentation is to show the
effectiveness of the proposed architecture and not to
evaluate a novel ML model for time-series forecasting
that can outperform existing predictive elasticity
approaches. Indeed, the novelty of our work consists in
proposing an open-source scalable architecture,
compatible with Monasca, which can be easily
configured by practitioners to plug virtually any type of
time-series forecasting model into their data-driven
control loops. Therefore, we decide to stick to a simple
example where the elasticity controller uses only CPU
usage as input. However, our component can be
configured to predict multiple metrics per monitored
instance and/or perform multi-variate time-series
forecasting.

To implement the predictive scaling strategy,
Monasca is set to trigger a scale-out whenever the
predicted average CPU usage of the cluster reached
80% for 3 times in a row. On the other hand, to
implement the reactive scaling strategy, it is set to do
the same but consider the actual average CPU usage. In
any case, a scale-in is triggered whenever the actual
average CPU usage reached 15% for 3 times in a row.
We choose not to use the predicted metric to decide
whether to trigger scale-in actions. While a cloud
provider may want to anticipate traffic peaks by
spawning additional resources in advance, disposing of
superfluous resources can be much quicker[3] and is
typically done after making sure that all residual traffic
has been drained from them. Otherwise, the risk is to
overload the remaining instances in case they start
taking the traffic relieving the being-released instance
too early. Predicting such a condition is hard, and in

practice, it is often more convenient to minimize
service-level agreement (SLA) violations, rather than
costs. However, our framework does not exclude this
possibility. Waiting for 3 consecutive violations
imposes a delay of at least 3 min for an action to be
triggered. However, this is a well established practice
in elasticity control loop design, as it helps with
making the mechanism more robust to fluctuations.
Each scaling action could adjust the size of the cluster
by 1 instance only and could only take effect if it is
triggered after a cooldown period of 10 min since the
last scaling action. The cooldown is also useful
considering the 10-min delay forcibly added before
new instances activate.

5.3　Predictors configuration

To implement the underlying forecasting models, we
use: (1) Scikit-learn for the LR; (2) Statsmodels for
ARIMA; and (3) PyTorch for MLP and RNN. To
evaluate how the amount of past information given as
input influences the prediction, we consider 3 different
settings, i.e., 5, 10, and 20 min worth of measurements
(see Section 5.4). Apart from LR, which is fitted every
time on a different input, all models are trained offline
on the same synthetic dataset (and on the same
machine where OpenStack is deployed). Such data
consist of sinusoidal traffic patterns, with different
frequencies and amplitudes, to provide models with
expected behaviors for a wide range of operational
modes (the dataset is open-source, see Section 5.6).
Note that we do not conduct an optimal
hyperparameters search, as we believe such a process
goes beyond the scope of this work, whose focus is the
integration of time-series forecasting techniques in the
elasticity-control loop infrastructure, rather than ML
models development. However, in what follows we
provide some indications on why we take specific
design choices, aiming at conducting a fair comparison
among the implemented models.

p = {5,10,20} d = 1 q = 0 p
d = 1

q = 0

{5,10,20}

ARIMA meta-parameters are configured such that
, , and . While is somewhat

constrained by the input size, we choose for the
stationarity assumptions, and as we do not
observe any benefit from using this feature of the
model. For ARIMA, we observe an average training
time of 2.89 s. MLP consists of an input layer (with
units varying in , as per the input size
constraints), two hidden layers of 10 units each (as we
want to keep the complexity low), and an output layer

 Giacomo Lanciano et al.: Extending OpenStack Monasca for Predictive Elasticity Control 327

of 1 unit (as we needed a scalar output). We also apply
a leaky ReLU non-linearity to the output of each
hidden layers, as it generally speeds up the training.
MLP is trained with stochastic gradient descent (SGD)
for 1000 iterations, using a decaying learning rate
(between 0.1 and 0.001), a momentum set to 0.8, and a
batch size of 500 input samples. These values are
generally considered sensible defaults, and given the
observed performance, we do not feel the need to fine-
tune them. The 3 considered variants of MLP consist of
181, 231, and 331 learnable parameters, when the input
layer size is set to 5, 10, and 20, respectively. For
MLP, we observe an average training time of 136.15 s.
RNN consists of 3 (stacked) recurrent layers, each one
composed by 200 units and using ReLU as activation
function (i.e., PyTorch’s defaults), followed by a fully-
connected layer of 1 unit (as we need a scalar output).
Such model is trained with SGD for 10 000 iterations,
using a decaying learning rate (between 0.01 and
0.001), a momentum set to 0.5, and a batch size of 300
input samples. With respect to MLP, we have to fine-
tune the latter parameters for the model to converge to
an acceptable performance. RNN consists of 201 601
learnable parameters, independently of the size of the
input sequences. For RNN, we observe an average
training time of 436.07 s.

To facilitate comparison between models, we choose
not to leverage on the capability of RNN to handle
variable-length sequences and train it using fixed-
length input sequences, like the other models. Also,
during the runs, all forecasting models are re-loaded
from disk each time they have to be queried (i.e., once
per minute). In this way, we do not leverage on the
hidden state of RNN to be updated after each query,
which should theoretically allow the model to retain
the observed dynamics and allow for computing
forecasts even when provided with just a single new
measurement as input.

5.4　Validation on synthetic workload

In this section we report the results obtained by
applying five different scaling strategies to a synthetic
workload similar to the one depicted in Fig. 1.
Distwalk is set such that the average CPU usage of the
cluster ramps up twice during a single run: first, with a
rather soft slope, peaking at 70% (around the 60th
minute) and progressively fading out until the 120th
minute; then, with a much steeper slope, (theoretically)
peaking at 120%, exceeding the cluster capacity. The
first peak is designed to expose the behavior of a
scaling strategy when facing a workload that might
lead to saturation but, instead, decreases before
reaching the threshold (80%). In that case, a classical
strategy would not react, whereas a predictive one may
inaccurately forecast the evolution of the workload and
trigger unnecessary actions. This scenario is useful to
assess how sensitive to fluctuations and, thus, how
prone to yielding false alarms a strategy is.

In what follows, in the CPU usage plots (e.g., Fig. 5a),
the blue curve represents the workload that each
distwalk thread exercises on the cluster (i.e., the ideal
usage we would observe if a single thread submitted
requests to a single VM). As requests are submitted
through the LB, the result is that, eventually, each VM
in the cluster handles an equal share of the cumulative
workload (see Section 5.2). In other words, the
resource consumption curves do not closely follow the
blue curve because, in the beginning of each run, there
are 6 distwalk threads submitting requests to a total of
2 VMs through the LB. Therefore, each VM initially
handles the aggregated requests coming (on average)
from 3 threads. Instead, the red curve in Fig. 6a (left)
refers to the predicted average CPU usage of the
cluster, assuming the size of the cluster to remain
constant. On the other hand, client-side response time
plots (Fig. 5b) provide a view of the system

100 103

102

101

100

80

60

C
PU

 u
sa

ge
 (%

)

40

20

0
0 50 100

Time (min)
(a) CPU usage (b) Client-side response time

150 200 250

D
el

ay
 (m

s)

0 50 100
Time (min)

150 200 250

5-min p50
5-min p90
5-min p99

Distwalk VM0 VM1
VM2 VM3

Fig. 5 Experimental results for the traditional (static) scaling policy.

 328 Big Data Mining and Analytics, June 2024, 7(2): 315−339

performance as observed by the distwalk client. Each
plot reports curves that show (on the Y axis) the
evolution of some response-time statistics (median, the
90th percentile (p90), and the 99th percentile (p99))
over time (on the X axis), where each data point refers
to a statistic aggregated over the data of a moving
window of the previous 5 min.

As shown in Fig. 5a, the static scaling strategy fails
to scale-out the cluster on time when facing the second
peak. Starting from the 155th minute, it is possible to
observe the system saturating its capacity (i.e., the CPU
usage is 100%) and remaining in such a state for
10 min. In the meantime, the requests submitted to the
cluster pile up and the client-side response time starts
growing up to 1 s, as visible in Fig. 5b. Such a
performance degradation occurs because the static
strategy waits for 3 consecutive violations of the
threshold before triggering the scale-out. Furthermore,
due to the artificial set-up delay, the new VM takes
10 min before starting to serve requests. Therefore,
while the scale-out decision happens approximately at

the 152nd minute, the new VM starts responding only
approximately at the 166th minute and only for new
established sessions (occurring every 15 s, see Section
5.2). Such a scenario exposes the need for more
intelligent strategies that are able to take scaling
decisions ahead of time. We use 4 different time-series
forecasting algorithms to implement different
predictive scaling strategies, namely, LR, ARIMA,
MLP, and RNN. For each strategy, we consider 3
different values for the amount of past information to
be fed to the underlying model (i.e., 5, 10, and 20
measurements, with minute granularity) when
computing an estimate of the average CPU usage in
15 min. In this way, we could assess how sensitive to
the size of the input the predictive capability of a given
model is.

Figure 6 reports the results obtained using an LR-
based policy, which generally performs a better job
than the static policy at scaling the cluster before the
second peak, as it correctly predicts the growth in the
CPU usage. However, this predictor also tends to be

100
120 4.5

3.0

2.0

2.5

1.5

80
60

C
PU

 u
sa

ge
 (%

)

40
20

0

0 50 100
Time (min)

(a) Input sequence length=5 min

150 200 250

4.0
3.5

D
el

ay
 (m

s)

0 50 100
Time (min)

150 200

5-min p50
5-min p90
5-min p99

Distwalk VM0
VM4 VM5 Prediction

VM1 VM2
VM3

100
120

3.0

2.0

2.5

1.5

80
60

C
PU

 u
sa

ge
 (%

)

40
20

0

0 50 100
Time (min)

(b) Input sequence length=10 min

150 200 250

4.0
3.5

D
el

ay
 (m

s)
0 50 100

Time (min)
150 200

5-min p50
5-min p90
5-min p99

Distwalk VM0
VM4 VM5 Prediction

VM1 VM2
VM3

100
120
140

100

101

102

103

80
60

C
PU

 u
sa

ge
 (%

)

40
20

0
−20

0 50 100
Time (min)

(c) Input sequence length=20 min

150 200 250

D
el

ay
 (m

s)

0 50 100
Time (min)

150 200 250

250

250

5-min p50
5-min p90
5-min p99

Distwalk VM0
VM4 VM5 Prediction

VM1 VM2
VM3

Fig. 6 Experimental results for the LR-based scaling policy (left: CPU usage; right: client-side response time). Note that the
sub-pictures on the right side use a log-scale Y axis for the delay.

 Giacomo Lanciano et al.: Extending OpenStack Monasca for Predictive Elasticity Control 329

overly sensitive to the noise in the input and to over-
estimate. As a consequence, in all the runs, the LR-
based policy triggers an unnecessary scaling action also
before the first peak. For instance, when the input size
is set to 5 min (see Fig. 6a), even though the cluster
scales on time before the second peak, the policy seems
to be overly sensitive to even small variations in the
input, such that the resulting prediction is very noisy
and, thus, not reliable in general. On the other hand,
when the input size is set to 20 min (see Fig. 6c), the
cluster reaches 100% CPU usage for 3 min (with
client-side response time going up to 100 ms), before
the scaling action takes effect (around the 159th minute).
This is due to the input size being too large, such that
the LR cannot detect the growth soon enough. In other
words, at the beginning of the ramp-up, the
contribution of the newer measurements is outweighed

by the older ones, generating a sort of momentum that
delays the detection of the peak. We instead observe a
nice behavior when reducing the input size to 10 min
(see Fig. 6b), with the scaling action taking effect when
the average CPU usage is at 95% (around the
155th minute) and client-side response time going up
to 3 ms.

Figure 7 shows the results obtained with an ARIMA-
based policy. Similar to the LR-based one, this policy
seems to be generally overly sensitive to small
variations in the input. In some cases (see Figs. 7b and
7c), such behavior generates unnecessary scaling
actions before the first peak. When the input size is set
to 10 and 20 min (see Figs. 6b and 6c), the cluster is
successfully scaled before the second peak, with the
scaling action taking effect around the 150th minute.
However, when the input size is set to 10 min, the

100
120
140 4.5

3.0

2.0

2.5

1.5

80
60

C
PU

 u
sa

ge
 (%

)

40
20

0

0 50 100
Time (min)

(a) Input sequence length=5 min

150 200 250

250

250

4.0
3.5

D
el

ay
 (m

s)

0 50 100
Time (min)

150 200

5-min p50
5-min p90
5-min p99

100
120
140

3.0

2.0

2.5

1.5

80
60

C
PU

 u
sa

ge
 (%

)

40
20
0

0 50 100
Time (min)

(b) Input sequence length=10 min

150 200

4.0
4.5

3.5

D
el

ay
 (m

s)

0 50 100
Time (min)

150 200

5-min p50
5-min p90
5-min p99

100
120

1.5

80
60

C
PU

 u
sa

ge
 (%

)

40
20
0

0 50 100
Time (min)

(c) Input sequence length=20 min

150 200

2.0

2.5

3.0
3.5
4.0

D
el

ay
 (m

s)

0 50 100
Time (min)

150 200 250

250

250

5-min p50
5-min p90
5-min p99

Distwalk VM0
VM4 Prediction

VM1 VM2
VM3

Distwalk VM0
Prediction

VM1 VM2
VM3

Distwalk VM0
VM4 Prediction

VM1 VM2
VM3

Fig. 7 Experimental results for the ARIMA-based scaling policy (left: CPU usage; right: client-side response time). Note that
the sub-pictures on the right side use a log-scale Y axis for the delay.

 330 Big Data Mining and Analytics, June 2024, 7(2): 315−339

behavior of the policy appears significantly more
noisy. On the other hand, when the input size is set to
5 min (see Fig. 6a) the cluster reaches 100% CPU for
3 min (with client-side response time going up to
100 ms), before the scaling action takes effect (around
the 159th minute).

Figures 8 and 9 report the results of applying the
MLP- and RNN-based policies, respectively. In
contrast to the LR-based one, it is straightforward that
the larger the input size, the better the overall
performance. Setting the input size to 5 min (see
Figs. 8a and 9a) results in obtaining a policy that is
equivalent to the static one (see Fig. 5). As it is the case
for the static policy, the inability to anticipate the
second peak leads to a saturation of the system capacity
that persists for 10 min, with client-side response time
growing up to 1 s. On the other hand, both MLP and
RNN behave nicely with input size set to either 10 or

20 min. When the input size is set to 10 min (see
Figs. 8b and 9b), both policies scale the cluster just in
time to prevent saturation, as the actions take effect
around the 155th minute, when the average CPU usage
is at 99%. However, there is no sign of performance
degradation from the client perspective, as the response
time stays below 4 ms. Also, both policies scale the
cluster earlier when the input size is set to 20 min (see
Figs. 8c and 9c), even though the predictions appear
more noisy (that could lead to unexpected behaviors in
other circumstances). In both cases, the scaling action
takes effect around the 151st minute and the client-side
response time stay below 3 ms. However, for the MLP-
based policy the scaling action takes effect when the
average CPU usage is at 89%, while for the RNN-
based one the same happens at 80%. Such difference is
likely the result of random fluctuations in the measured
load. Remarkably, the RNN-based policy triggers an

100

101

100

102

103

80

60

C
PU

 u
sa

ge
 (%

)

40

20

0
0 50 100

Time (min)
(a) Input sequence length=5 min

150 200 250

D
el

ay
 (m

s)

0 50 100
Time (min)

150 200 250

250

5-min p50
5-min p90
5-min p99

Distwalk VM0
Prediction

VM1
VM2

100
120

3.0

2.0

2.5

1.5

80
60

C
PU

 u
sa

ge
 (%

)

40
20
0

0 50 100
Time (min)

(b) Input sequence length=10 min

150 200 250

4.0
4.5
5.0

3.5

D
el

ay
 (m

s)

0 50 100
Time (min)

150 200

5-min p50
5-min p90
5-min p99

100
120

1.5

2.5

3.5
80
60

C
PU

 u
sa

ge
 (%

)

40
20

0
0 50 100

Time (min)
(c) Input sequence length=20 min

150 200 250

4.0
4.5

3.0

2.0D
el

ay
 (m

s)

0 50 100
Time (min)

150 200 250

5-min p50
5-min p90
5-min p99

Distwalk VM0
Prediction

VM1 VM2
VM3

Distwalk VM0
Prediction

VM1 VM2
VM3

Fig. 8 Experimental results for the MLP-based scaling policy (left: CPU usage; right: client-side response time). Note that the
sub-pictures on the right side use a log-scale Y axis for the delay.

 Giacomo Lanciano et al.: Extending OpenStack Monasca for Predictive Elasticity Control 331

unnecessary scale-out before the first peak, as the
predicted average CPU usage exceeds the threshold for
the exact amount of time that is required. The same
happens when using the ARIMA-based policy. Such
behavior exposes the need for properly tuning, beside
the specific forecasting model, also the other
components of the scaling strategy. For instance, we
could make the RNN-based policy more robust by
increasing the number of breaches to the threshold
required to trigger the action. Automatically adjusting a
broader set of tunables (e.g., cooldown period, scaling
adjustment, alarm thresholds, etc.) is among the
engineering issues to be addressed in future extensions
of the proposed architecture. Approaches based on
neural networks are, in general, able to capture even
fairly complex non-linear relations. However, in this
case, an input size of 5 min is clearly not enough to

provide such models with the information required to
output a 15-min forecast.

Table 2 reports the mean average percentage error
(MAPE) made by each predictor configuration during
our runs. The MAPE was computed by considering the
sum of the CPU usage of all VMs, as ground truth, and
the predicted values multiplied by the number of active
VMs at each specific point in time (i.e., the predicted
sum of the CPU usage of all VMs). Such results further
support our conclusions regarding which configuration
is the best for each predictor. For instance, we can see
that LR performs better when the input is set to 5 or
10 min (although the former leads to a very sensitive
scaling policy). Conversely, in general, the bigger the
input, the better the performance of the other
predictors.

Tables 3 and 4 report the average and percentiles of

100

101

102

103

100

80

60

C
PU

 u
sa

ge
 (%

)

40

20

0
0 50 100

Time (min)
(a) Input sequence length=5 min

150 200

D
el

ay
 (m

s)

0 50 100
Time (min)

150 200 250

5-min p50
5-min p90
5-min p99

Distwalk VM0
Prediction

VM1 VM2
VM3

100
120

3.0

2.0

2.5

1.5

80
60

C
PU

 u
sa

ge
 (%

)

40
20
0

0 50 100
Time (min)

(b) Input sequence length=10 min

150 200

4.0
4.5

3.5

D
el

ay
 (m

s)

0 50 100
Time (min)

150 200 250

5-min p50
5-min p90
5-min p99

100
120

1.5

2.0

3.5
80
60

C
PU

 u
sa

ge
 (%

)

40
20
0

0 50 100
Time (min)

(c) Input sequence length=20 min

150 200 250

250

250

4.0

2.5

3.0

D
el

ay
 (m

s)

0 50 100
Time (min)

150 200 250

5-min p50
5-min p90
5-min p99

Distwalk VM0
VM4 Prediction

VM1 VM2
VM3

Distwalk VM0
VM4 Prediction

VM1 VM2
VM3

Fig. 9 Experimental results for the RNN-based scaling policy (left: CPU usage; right: client-side response time). Note that the
sub-pictures on the right side use a log-scale Y axis for the delay.

 332 Big Data Mining and Analytics, June 2024, 7(2): 315−339

the response-time observed by the client during the
peaks of our load profile. From the client perspective,
when facing the first peak, all the considered policies
basically guarantee the same performance level.
Remarkably, leveraging on an additional compute
instance (e.g., as with the RNN-based policy) does not

make any difference, thus it is just a waste of
computing resources. In contrast, by looking at
Table 4, we can appreciate significant performance
degradation for some specific policies. For instance,
bad values of the 99.9th percentile (p99.9) are obtained
with the static policy, the LR-based policy with too

Table 2 Prediction errors (MAPE) observed for the considered runs.

Policy
MAPE

Input sequence length=5 min Input sequence length=10 min Input sequence length=20 min
LR 0.25 0.29 0.38

ARIMA 0.22 0.26 0.15
MLP 0.52 0.18 0.14
RNN 0.44 0.18 0.15

Table 3 Descriptive statistics of the client-side response time observed during the experimental runs, when the cluster is
facing the first peak (0th−120th minutes) in CPU usage.

Policy
Response time (ms)

Avg p50 p90 p95 p99 p99.5 p99.9
Static 2.12 1.81 3.18 3.73 3.96 4.08 8.12
LR (5) 3.30 1.79 2.76 3.56 3.92 4.03 9.41
LR (10) 2.02 1.79 2.81 3.57 3.90 3.99 6.59
LR (20) 1.95 1.75 2.72 2.95 3.82 3.90 5.89

ARIMA (5) 2.07 1.82 2.90 3.74 3.95 4.03 7.19
ARIMA (10) 2.03 1.80 2.78 3.16 3.92 4.17 7.79
ARIMA (20) 2.02 1.80 2.79 3.49 3.91 4.02 8.52

MLP (5) 2.03 1.80 2.82 3.68 3.90 3.97 6.88
MLP (10) 2.05 1.80 2.89 3.71 3.93 4.01 7.47
MLP (20) 2.04 1.80 2.81 3.69 3.91 4.00 7.65
RNN (5) 2.07 1.79 2.97 3.72 3.94 4.04 7.78
RNN (10) 2.01 1.79 2.79 3.57 3.90 4.00 7.80
RNN (20) 2.72 1.74 2.77 3.50 3.87 3.99 14.36

Table 4 Descriptive statistics of the client-side response time observed during the experimental runs, when the cluster is
facing the second peak (121st−220th minutes) in CPU usage.

Policy
Response time (ms)

Avg p50 p90 p95 p99 p99.5 p99.9
Static 47.06 1.80 58.12 394.05 824.53 924.59 1050.76
LR (5) 1.89 1.67 2.63 2.78 3.79 3.92 7.82
LR (10) 1.88 1.67 2.60 2.75 3.77 3.91 7.69
LR (20) 4.90 1.66 2.69 3.67 84.76 245.82 381.07

ARIMA (5) 3.42 1.72 2.76 3.72 39.48 63.80 298.10
ARIMA (10) 1.96 1.70 2.68 2.81 3.80 4.48 9.10
ARIMA (20) 1.97 1.70 2.66 2.78 3.81 4.51 11.71

MLP (5) 63.63 1.84 198.39 522.05 953.45 1051.49 1278.05
MLP (10) 1.99 1.69 2.66 2.84 3.84 4.56 11.00
MLP (20) 1.94 1.67 2.64 2.77 3.73 3.89 9.53
RNN (5) 38.04 1.78 23.17 319.82 755.57 862.19 1024.15
RNN (10) 4.50 1.68 2.65 2.82 3.78 4.03 103.55
RNN (20) 1.90 1.65 2.62 2.72 3.69 3.81 6.12

 Giacomo Lanciano et al.: Extending OpenStack Monasca for Predictive Elasticity Control 333

long inputs, and both the ARIMA and the neural-based
policies with too short inputs. On the other hand,
sufficiently good results are obtained using the LR-
based policy with short inputs and the ARIMA- and
ANN-based models with sufficiently long inputs.

Table 5 reports the overhead imposed by the
proposed forecasting component at each activation that,
in our experiments, happens once per minute. The total
time includes interacting with the Monasca APIs to
fetch the data needed as input. Predictive policies based
on LR, MLP, and RNN all exhibit quite similar
overheads, in the range of additional 60 ms of
processing time every minute, which seems acceptable
in the considered scenario. On the other hand, ARIMA
exhibits quite heavier overheads. Notice that RNN
performance is measured in a pessimistic setting, i.e.,
assuming to unfold the network on the full sequence in
order to obtain a prediction. The ability of RNN to
keep a dynamic memory of the sequence history could
be leveraged on to compute the prediction more
efficiently. In that case, computing time would be
roughly equivalent to those reported in Table 5, divided
by the input sequence length.

5.5　Validation on real workload traces

Our approach was also validate against a dataset
exported from a real production environment. We
consider the data provided by use-case D of the
RECAP[12] EU project, reporting the requests handled
by 3 nodes of a CDN managed by a British service
provider (from 2016 to 2017). We convert a subset of
these data to a 2 h long trace compatible with distwalk,
such that we could generate similar traffic on our
infrastructure. Similar to the previous runs, the client is

set to spawn 6 threads, each one maintaining the rates
specified in the trace for an interval of 1 min each.
Each thread is also forced to break its work in 1000
sessions.

The purpose of validating our approach against a real
workload is twofold: (1) we can assess the
effectiveness of our approach in a production-like
scenario, and (2) we can evaluate its ability to
generalize workloads that do not quite resemble what
the underlying models observed during training.
Similar to the previous runs, we considered the static
policy as a baseline and compared its performance with
the predictive ones. For brevity, we only show the plots
for the RNN-based policy, which exhibited the best
overall performance. Figure 10a (left) shows that the
static policy cannot prevent the system from saturating
for 20 min (from the 48th minute to the 69th minute).
The scaling decision is only triggered around the 42nd
minute, which is too late, considering the artificial
10 min delay before new VMs start responding.
Conversely, Fig. 10b shows the RNN-based policy
acting just in time before the system completely
saturates (e.g., around the 51st minute and the 58th
minute). Also, the static policy run takes 30 min more
to terminate because, during the saturation, the system
was not able to respond to distwalk requests and caused
a delay for the client to start the subsequent sessions.
By comparing the plots reporting the client-side delays,
we can see that, even though the RNN-based policy
induces peaks of 1 s, it does not lead to a consistent
increase of the delays, as the static policy does. This is
also shown in Table 6, where we can see the p99.9 in
the static policy case being 4 times greater than the
RNN-based policy case. Despite the workload used for

Table 5 Average overhead imposed by the proposed forecasting component, for the considered predictors.
Policy Input sequence length (min) Total average overhead (ms) Processing average overhead (ms)

LR
5 182.7 58.8
10 224.5 58.4
20 356.7 71.1

ARIMA
5 181.2 71.5
10 245.2 102.9
20 59.1 218.6

MLP
5 151.9 54.0
10 213.1 60.5
20 373.0 73.9

RNN
5 171.6 66.7
10 256.6 72.8
20 340.8 80.7

 334 Big Data Mining and Analytics, June 2024, 7(2): 315−339

this additional validation does not quite resemble what
the RNN observed during training, the model exhibited
a reasonable generalization ability. However, to obtain
a higher prediction accuracy, one should have trained
the model also on some prior segment of such new
data, something we omit here for brevity.

5.6　Reproducibility

For reproducibility, this work comes with a public
companion repository[70] including: the Heat templates
to set up the infrastructure; the configuration files for
the different tools (e.g., the synthetic distwalk
workload); the raw results produced by our
experiments; the code to generate Figs. 5−9 and
Tables 3−5; the synthetic dataset; and the code to train
the forecasting models (pre-trained models are also
included).

6　Conclusion and Future Work

In this paper, we proposed an architecture that enables
predictive operations in cloud infrastructures. We

prototyped our approach using OpenStack, extending
Monasca to ingest predictive metrics that reflect the
expected evolution of the monitored system in the near
future. Such metrics can be seamlessly combined with
the regular ones to build operations policies that go
beyond standard reactive strategies. As a case-study,
we realized a predictive elasticity controller for a
cluster of VMs (managed by Senlin), which is able to
anticipate workload changes that might not be easily
handled by classical threshold-based rules. The
approach was validated both on synthetic and on real
workload traces from a production CDN. Remarkably,
it proved to be particularly useful for services with
non-negligible instance spawning time, a commonplace
condition in production environments[3] (e.g., creating
a new VMs and applying the required configurations
may require tens of minutes).

Future work. We plan to better integrate our
forecasting component within OpenStack. For instance,
our idea is to provide a number of standard predictor
implementations that can easily be deployed

100

100

80

60

C
PU

 u
sa

ge
 (%

)

40

20

0
0 50 100

Time (min)
(a) Static scaling policy

150 200

101

102

103

D
el

ay
 (m

s)

0 50 100
Time (min)

150 200

5-min p50
5-min p90
5-min p99

Distwalk VM0
VM4

VM1 VM2
VM3

150

100

100

50

C
PU

 u
sa

ge
 (%

)

0

−50

Time (min)
(b) RNN-based scaling policy

101

102

103

D
el

ay
 (m

s)

0 20 40 60 80
Time (min)

100 1200 20 40 60 80 100 120 140 140

5-min p50
5-min p90
5-min p99

Distwalk VM0
VM4 VM5 VM6

Prediction

VM1 VM2
VM3

Fig. 10 Experimental validation on real workload traces (left: CPU usage; right: client-side response time).

Table 6 Descriptive statistics of the client-side response time observed during the experimental validation on real workload
traces (focus on the peak, 45th−90th minutes).

Policy
Response time (ms)

Avg p50 p90 p95 p99 p99.5 p99.9
Static 879.01 426.26 2237.84 3019.86 3827.09 3940.71 4033.82

RNN (20) 163.64 20.62 549.91 687.74 883.46 943.71 1061.97

 Giacomo Lanciano et al.: Extending OpenStack Monasca for Predictive Elasticity Control 335

by an operator—which is not necessarily an ML
expert—through the OpenStack CLI. Regarding the
orchestration logics, we plan to explore additional ML
techniques (e.g., RL) to experiment with alternative
scaling policies, rather than only relying on threshold-
based approach. However, for them to be dependable,
learning-based policies cannot be delivered as black-
boxes. Therefore, we also plan to provide human
operators with the ability to query the models to get
explanations about their outputs[71, 72], such that they
can troubleshoot and fix possible erroneous behaviors.
Regarding the model training, we plan to provide
means for automatic periodic re-training on fresh data.
Additionally, we will introduce concept drift detection
to trigger model updates whenever the current version
starts exhibiting performance drops, e.g., as the authors
of Ref. [62] did. In this regard, our architecture would
certainly benefit from integrating continual learning
techniques[73]. We will also conduct a deeper validation
of our architecture by considering additional datasets
from real production workloads. In this way, we will
address scalability issues that might arise in massive
deployment scenarios, with thousands of predictive
elasticity loops that control different services, possibly
throughout a Cloud-Fog-Edge architecture[74]. In this
regard, a promising possibility is to leverage on
Monasca’s scalable analytics processing architecture,
which is based on Apache Storm.

Acknowledgment

This work was partly supported by the PNRR-M4C2-
Investimento 1.3, Partenariato Esteso (No. PE0000
0013-FAIR).

References

 R. Buyya, J. Broberg, and A. M. Goscinski, Cloud
Computing: Principles and Paradigms. Hoboken, NJ,
USA: John Wiley & Sons, 2011.

[1]

 S. Brunner, M. Blöchlinger, G. Toffetti, J. Spillner, and T.
M. Bohnert, Experimental evaluation of the cloud-native
application design, in Proc. 2015 IEEE/ACM 8th Int. Conf.
Utility and Cloud Computing (UCC), Limassol, Cyprus,
2015, pp. 488–493.

[2]

 Q. Rebjock, V. Flunkert, T. Januschowski, L. Callot, and
J. Castellon, A simple and effective predictive resource
scaling heuristic for large-scale cloud applications,
presented at 2nd Int. Workshop on Applied AI for Database
Systems and Applications, Online Event, Tokyo, Japan,
2020.

[3]

 W. Vogels, A new era of DevOps, powered by machine
learning, https://www.allthingsdistributed.com/2021/05/

[4]

devops-powered-by-machine-learning.html, 2021.
 S. Horsfield and A. Sethi, Introducing native support for
predictive scaling with Amazon EC2 auto scaling,
https://aws.amazon.com/blogs/compute/introducing-
native-support-for-predictive-scaling-with-amazon-ec2-
auto-scaling, 2021.

[5]

 A. Sethi, Using EC2 auto scaling predictive scaling
policies with blue/green deployments, https://aws.amazon.
com/blogs/compute/retaining-metrics-across-blue-green-
deployment-for-predictive-scaling, 2021.

[6]

 S. Tuli, S. S. Gill, M. Xu, P. Garraghan, R. Bahsoon, S.
Dustdar, R. Sakellariou, O. Rana, R. Buyya, G. Casale,
et al., Hunter: AI based holistic resource management for
sustainable cloud computing, J. Systems and Software, vol.
184, p. 111124, 2022.

[7]

 OpenStack, Welcome to Monasca’s documentation,
https://docs.openstack.org/monasca, 2022.

[8]

 T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning: Data Mining, Inference, and
Prediction. New York, NY, USA: Springer, 2009.

[9]

 G. E. Box, G. M. Jenkins, and G. C. Reinsel, Time Series
Analysis: Forecasting and Control. Hoboken, NJ, USA:
John Wiley & Sons, 2018.

[10]

 G. Lanciano, F. Galli, T. Cucinotta, D. Bacciu, and A.
Passarella, Predictive auto-scaling with OpenStack
monasca, in Proc. 14th IEEE/ACM Int. Conf. Utility and
Cloud Computing, Leicester, UK, 2021, pp. 1–10.

[11]

 M. Leznik, R. G. Leiva, T. L. Duc, S. Svorobej, L. Närvä,
M. N. Mariño, P. Willis, K. M. Giannoutakis, R. Loomba,
H. Humanes, et al., RECAP artificial data traces, https://
zenodo.org/record/3458559, 2019.

[12]

 NFV Industry Specification Group, Network functions
virtualisation, Introductory White Paper, http://portal.etsi.
org/NFV/NFVWhitePaper.pdf, 2012.

[13]

 N. Roy, A. Dubey, and A. Gokhale, Efficient autoscaling
in the cloud using predictive models for workload
forecasting, in Proc. 2011 IEEE 4th Int. Conf. Cloud
Computing, Washington, DC, USA, 2011, pp. 500–507.

[14]

 S. Abdelwahed, J. Bai, R. Su, and N. Kandasamy, On the
application of predictive control techniques for adaptive
performance management of computing systems, IEEE
Trans. Netw. Serv. Manag., vol. 6, no. 4, pp. 212–225,
2009.

[15]

 V. A. F. Almeida, Capacity planning for web services
techniques and methodology, in Performance Evaluation
of Complex Systems: Techniques and Tools, M. C.
Calzarossa and S. Tucci, eds. Berlin, Germany: Springer,
2002, pp. 142–157.

[16]

 S. Islam, J. Keung, K. Lee, and A. Liu, Empirical
prediction models for adaptive resource provisioning in
the cloud, Future Gener. Comput. Syst., vol. 28, no. 1, pp.
155–162, 2012.

[17]

 TPC, TPC-W benchmark, http://www.tpc.org/tpcw/, 2021.[18]
 M. Borkowski, S. Schulte, and C. Hochreiner, Predicting
cloud resource utilization, in Proc. 9th Int. Conf. Utility
and Cloud Computing, Shanghai, China, 2016, pp. 37–42.

[19]

 W. Iqbal, A. Erradi, M. Abdullah, and A. Mahmood,
Predictive auto-scaling of multi-tier applications using
performance varying cloud resources, IEEE Trans. Cloud

[20]

 336 Big Data Mining and Analytics, June 2024, 7(2): 315−339

Comput., vol. 10, no. 1, pp. 595–607, 2022.
 P. Kang and P. Lama, Robust resource scaling of
containerized microservices with probabilistic machine
learning, in Proc. 2020 IEEE/ACM 13th Int. Conf. Utility
and Cloud Computing (UCC), Leicester, UK, 2020, pp.
122–131.

[21]

 A. Bashar, Autonomic scaling of cloud computing
resources using BN-based prediction models, in Proc.
2013 IEEE 2nd Int. Conf. Cloud Networking (CloudNet),
San Francisco, CA, USA, 2014, pp. 200–204.

[22]

 H. Tariq, H. Al-Sahaf, and I. Welch, Modelling and
prediction of resource utilization of hadoop clusters: A
machine learning approach, in Proc. 12th IEEE/ACM Int.
Conf. Utility and Cloud Computing, Auckland, New
Zealand, 2019, pp. 93–100.

[23]

 L. Ju, P. Singh, and S. Toor, Proactive autoscaling for
edge computing systems with kubernetes, in Proc. 14th

IEEE/ACM Int. Conf. Utility and Cloud Computing
Companion, Leicester, UK, 2021, pp. 1–8.

[24]

 E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M.
Fontoura, and R. Bianchini, Resource central:
Understanding and predicting workloads for improved
resource management in large cloud platforms, in Proc.
26th Symp. Operating Systems Principles, Shanghai,
China, 2017, pp. 153–167.

[25]

 J. Kumar, A. K. Singh, and R. Buyya, Self directed
learning based workload forecasting model for cloud
resource management, Inf. Sci., vol. 543, pp. 345–366,
2021.

[26]

 R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya,
Workload prediction using ARIMA model and its impact
on cloud applications’ QoS, IEEE Trans. Cloud Comput.,
vol. 3, no. 4, pp. 449–458, 2015.

[27]

 I. K. Kim, W. Wang, Y. Qi, and M. Humphrey,
CloudInsight: Utilizing a council of experts to predict
future cloud application workloads, in Proc. 2018 IEEE
11th Int. Conf. Cloud Computing (CLOUD), San
Francisco, CA, USA, 2018, pp. 41–48.

[28]

 V. K. Jayakumar, J. Lee, I. K. Kim, and W. Wang, A self-
optimized generic workload prediction framework for
cloud computing, in Proc. 2020 IEEE Int. Parallel and
Distributed Processing Symp. (IPDPS), New Orleans, LA,
USA, 2020, pp. 779–788.

[29]

 C. H. Z. Nicodemus, C. Boeres, and V. E. F. Rebello,
Managing vertical memory elasticity in containers, in
Proc. 2020 IEEE/ACM 13th Int. Conf. Utility and Cloud
Computing (UCC), Leicester, UK, 2020, pp. 132–142.

[30]

 C. Makaya, D. Freimuth, D. Wood, and S. Calo, Policy-
based NFV management and orchestration, in Proc. 2015
IEEE Conf. Network Function Virtualization and Software
Defined Network (NFV-SDN), San Francisco, CA, USA,
2016, pp. 128–134.

[31]

 X. Fei, F. Liu, H. Xu, and H. Jin, Adaptive VNF scaling
and flow routing with proactive demand prediction, in
Proc. IEEE Conf. Computer Communications, Honolulu,
HI, USA, 2018, pp. 486–494.

[32]

 S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, and B.
Mukherjee, Auto-scaling VNFs using machine learning to
improve QoS and reduce cost, in Proc. 2018 IEEE Int.

[33]

Conf. Communications (ICC), Kansas City, MO, USA,
2018, pp. 1–6.
 S. S. Rangapuram, M. Seeger, J. Gasthaus, L. Stella, Y.
Wang, and T. Januschowski, Deep state space models for
time series forecasting, in Proc. 32nd Int. Conf. Neural
Information Processing Systems, Montreal, Canada, 2018,
pp. 7796–7805.

[34]

 N. Laptev, J. Yosinski, L. E. Li, and S. Smyl, Time-series
extreme event forecasting with neural networks at Uber,
presented at ICML 2017 Time Series Workshop, Sydney,
Australia, 2017.

[35]

 H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.
A. Muller, Deep learning for time series classification: A
review, Data Min. Knowl. Discov., vol. 33, no. 4, pp.
917–963, 2019.

[36]

 P. Malhotra, V. Tv, L. Vig, P. Agarwal, and G. Shroff,
TimeNet: Pre-trained deep recurrent neural network for
time series classification, presented at 25th European
Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, Bruges, Belgium,
2017.

[37]

 Z. Zaman, S. Rahman, and M. Naznin, Novel approaches
for VNF requirement prediction using DNN and LSTM, in
Proc. 2019 IEEE Global Communications Conference
(GLOBECOM), Waikoloa, HI, USA, 2020, pp. 1–6.

[38]

 I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to
sequence learning with neural networks, in Proc. 27th Int.
Conf. Neural Information Processing Systems, Montreal,
Canada, 2014, pp. 3104–3112.

[39]

 T. Cucinotta, G. Lanciano, A. Ritacco, F. Brau, F. Galli,
V. Iannino, M. Vannucci, A. Artale, J. Barata, and E.
Sposato, Forecasting operation metrics for virtualized
network functions, in Proc. 2021 IEEE/ACM 21st Int.
Symp. on Cluster, Cloud and Internet Comp., Melbourne,
Australia, 2021, pp. 596–605.

[40]

 R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and
R. Boutaba, Topology-aware prediction of virtual network
function resource requirements, IEEE Trans. Netw. Serv.
Manag., vol. 14, no. 1, pp. 106–120, 2017.

[41]

 D. Bacciu, F. Errica, A. Micheli, and M. Podda, A gentle
introduction to deep learning for graphs, Neural Netw.,
vol. 129, pp. 203–221, 2020.

[42]

 G. A. Carella, M. Pauls, L. Grebe, and T. Magedanz, An
extensible autoscaling engine (AE) for software-based
network functions, in Proc. 2016 IEEE Conf. Network
Function Virtualization and Software Defined Networks
(NFC-SDN), Palo Alto, CA, USA, 2016, pp. 219–225.

[43]

 P. Tang, F. Li, W. Zhou, W. Hu, and L. Yang, Efficient
auto-scaling approach in the telco cloud using self-
learning algorithm, in Proc. 2015 IEEE Global
Communications Conference (GLOBECOM), San Diego,
CA, USA, 2015, pp. 1–6.

[44]

 Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang,
and J. Zhang, NFVdeep: Adaptive online service function
chain deployment with deep reinforcement learning, in
Proc. 2019 IEEE/ACM 27th Int. Symp. Quality of Service
(IWQoS), Phoenix, AZ, USA, 2019, pp. 1–10.

[45]

 C. H. T. Arteaga, F. Rissoi, and O. M. C. Rendon, An
adaptive scaling mechanism for managing performance

[46]

 Giacomo Lanciano et al.: Extending OpenStack Monasca for Predictive Elasticity Control 337

variations in network functions virtualization: A case
study in an NFV-based EPC, in Proc. 2017 13th Int. Conf.
Network and Service Management, Tokyo, Japan, 2017,
pp. 1–7.
 H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada, A
comparison of reinforcement learning techniques for fuzzy
cloud auto-scaling, in Proc. 2017 17th IEEE/ACM Int.
Symp. Cluster, Cloud and Grid Computing, Madrid, Spain,
2017, pp. 64–73.

[47]

 A. A. Khaleq and I. Ra, Development of QoS-aware
agents with reinforcement learning for autoscaling of
microservices on the cloud, in Proc. 2021 IEEE Int. Conf.
Autonomic Computing and Self-Organizing Systems
Companion, Washington, DC, USA, 2021, pp. 13–19.

[48]

 L. Schuler, S. Jamil, and N. Kühl, AI-based resource
allocation: Reinforcement learning for adaptive
autoscaling in serverless environments, in Proc. 2021
IEEE/ACM 21st Int. Symp. Cluster, Cloud and Internet
Comp., Melbourne, Australia, 2021, pp. 804–811.

[49]

 OpenStack, OpenStack compute (nova), https://docs.
openstack.org/nova, 2022.

[50]

 OpenStack, OpenStack block storage (cinder)
documentation, https://docs.openstack.org/cinder, 2022.

[51]

 OpenStack, Welcome to glance’s documentation! https://
docs.openstack.org/glance, 2022.

[52]

 OpenStack, Welcome to neutron’s documentation! https://
docs.openstack.org/neutron, 2022.

[53]

 OpenStack, Welcome to the Senlin documentation! https://
docs.openstack.org/senlin, 2022.

[54]

 OpenStack, Welcome to the heat documentation! https://
docs.openstack.org/heat, 2022.

[55]

 D. Truong and J. Cross, How blizzard entertainment uses
autoscaling with overwatch, https://www.openstack.org/
videos/summits/denver2019/how-blizzard-entertainment-
uses-autoscaling-with-overwatch, 2022.

[56]

 OpenStack, Octavia documentation, https://docs.openstack.
org/octavia, 2022.

[57]

 I. Goodfellow, Y. Bengio, and A. Courville, Deep
Learning. Cambridge, MA, USA: MIT Press, 2016.

[58]

 S. Hochreiter and J. Schmidhuber, Long short-term
memory, Neural Comput., vol. 9, no. 8, pp. 1735–1780,
1997.

[59]

 J. F. Kolen and S. C. Kremer, Gradient flow in recurrent
nets: The difficulty of learning LongTerm dependencies,
in A Field Guide to Dynamical Recurrent Networks, J. F.
Kolen and S. C. Kremer, eds. New York, NY, USA:
Wiley-IEEE Press, 2001, pp. 237–243.

[60]

 M. Turowski and A. Lenk, Vertical scaling capability of
OpenStack, in Service-Oriented Computing - ICSOC 2014
Workshops, F. Toumani, B. Pernici, D. Grigori, D.
Benslimane, J. Mendling, N. B. Hadj-Alouane, B. Blake,
O. Perrin, I. S. Moustafa, and S. Bhiri, eds. Cham,

[61]

Switzerland: Springer, 2015, pp. 351–362.
 L. Kidane, P. Townend, T. Metsch, and E. Elmroth, When
and how to retrain machine learning-based cloud
management systems, in Proc. 2022 IEEE Int. Parallel
and Distributed Processing Symp. Workshops (IPDPSW),
Lyon, France, 2022, pp. 688–698.

[62]

 G. Lanciano, Monasca-predictor, https://github.com/
giacomolanciano/monasca-predictor, 2022.

[63]

 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, et al., Scikit-learn: Machine learning in
python, J. Mach. Learn. Res., vol. 12, no. 85, pp.
2825–2830, 2011.

[64]

 S. Seabold and J. Perktold, Statsmodels: Econometric and
statistical modeling with python, in Proc. 9th Python in
Science Conf., Austin, TX, USA, 2010, pp. 92–96.

[65]

 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et
al., Pytorch: An imperative style, high-performance deep
learning library, in Proc. 33rd Conf. Neural Information
Processing Systems, Vancouver, Canada, 2019, pp. 8024–
8035.

[66]

 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C.
Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.,
TensorFlow: Large-scale machine learning on
heterogeneous systems, arXiv preprint arXiv: 1603.04467,
2015.

[67]

 T. Cucinotta, Distwalk, https://github.com/tomcucinotta/
distwalk, 2022.

[68]

 OpenStack, Welcome to Kolla’s documentation! https://
docs.openstack.org/kolla, 2022.

[69]

 G. Lanciano, F. Galli, T. Cucinotta, D. Bacciu, and A.
Passarella, Companion repo of the paper extending
OpenStack Monasca for predictive elasticity control,
https://github.com/giacomolanciano/predictive-elasticity-
monasca, 2022.

[70]

 M. Resta, A. Monreale, and D. Bacciu, Occlusion-based
explanations in deep recurrent models for biomedical
signals, Entropy, vol. 23, no. 8, p. 1064, 2021.

[71]

 B. Lim, S. Ö. Arik, N. Loeff, and T. Pfister, Temporal
fusion transformers for interpretable multi-horizon time
series forecasting, Int. J. Forecast., vol. 37, no. 4, pp.
1748–1764, 2021.

[72]

 A. Cossu, A. Carta, V. Lomonaco, and D. Bacciu,
Continual learning for recurrent neural networks: An
empirical evaluation, Neural Netw., vol. 143, pp. 607–627,
2021.

[73]

 G. Merlino, R. Dautov, S. Distefano, and D. Bruneo,
Enabling workload engineering in edge, fog, and cloud
computing through OpenStack-based middleware, ACM
Trans. Internet Technol., vol. 19, no. 2, pp. 1–22, 2019.

[74]

 338 Big Data Mining and Analytics, June 2024, 7(2): 315−339

Giacomo Lanciano received the MSc
degree in computer science from Sapienza
University of Rome, Italy in 2017. He
currently is pursuing the PhD degree in
data science at Scuola Normale Superiore,
Italy. His research interests lie at the
intersection of cloud computing and data
science, with a focus on data-driven

methods for data center operations support. He was also a
research intern at Nokia Bell Labs in Stuttgart, Germany,
working on large language models for deployment code
analysis.

Filippo Galli received the bachelor degree
in electrical engineering and the master
degree in mechatronics engineering from
Politecnico di Torino, Italy in 2014 and
2018, respectively. He currently is
pursuing the PhD degree in data science at
Scuola Normale Superiore, Italy. His
current research interests are in machine

learning, privacy, and distributed computing.

Tommaso Cucinotta received the MSc
degree in computer engineering from
University of Pisa, Italy in 2000, and the
PhD degree in computer engineering from
Scuola Superiore Sant’Anna (SSSA), Italy
in 2004, where he has been investigating
on real-time scheduling for soft real-time
and multimedia applications, and

predictability in infrastructures for cloud computing and NFV.
He has been the member of technical staff (MTS) in Bell Labs in
Dublin, Ireland, investigating on security and real-time
performance of cloud services. He has been a software engineer
in Amazon Web Services in Dublin, Ireland, where he worked
on improving the performance and scalability of DynamoDB.
He is an associate professor at SSSA, Italy since 2016 and the
head of the Real-Time Systems Laboratory (RETIS) since 2019.
He has co-authored 120+ research papers on international
conferences and journals, and 8 international patent grants. He is
a senior IEEE member.

Davide Bacciu received the PhD degree in
computer science and engineering from
IMT Lucca, Italy for which he received the
2009 E.R. Caianiello prize. He is an
associate professor at University of Pisa,
Italy, where he heads the pervasive AI lab.
Previously, he was a visiting researcher at
the Neural Computation Research Group,

LJMU, and the Cognitive Robotic Systems Laboratory, Orebro
University, Sweden. He has co-authored over 140 research
works on neural networks, generative learning, Bayesian
models, learning for graphs, continual learning, and distributed
and embedded learning systems. He is the coordinator of the
H2020 TEACHING project. He has been a secretary and board
member of the Italian Association for AI, a senior member of
the IEEE, and a member of the IEEE CIS Neural Networks
Technical Committee. He is an associate editor of IEEE
Transactions on Neural Networks and Learning Systems, and he
chairs the IEEE CIS task force on learning for structured data.

Andrea Passarella received the PhD
degree from University of Pisa, Italy in
2005. He is a research director at the
Institute for Informatics and Telematics
(IIT) of the National Research Council of
Italy (CNR). Prior to join IIT he was with
the Computer Laboratory of University of
Cambridge, UK. He has published 170+

papers on human-centric data management for self organising
networks, decentralised AI, next generation Internet, online and
mobile social networks, opportunistic, ad hoc, and sensor
networks. He received four best paper awards, including IFIP
Networking 2011 and IEEE WoWMoM 2013. He is the general
chair of IEEE PerCom 2022. He is the founding associate editor-
in-chief of the Elsevier journal Online Social Networks and
Media (OSNEM). He is the co-author of the book Online Social
Networks: Human Cognitive Constraints in Facebook and
Twitter Personal Graphs (Elsevier, 2015). He is the principal
investigator of the EU CHIST-ERA SAI (Social Explainable AI)
project.

 Giacomo Lanciano et al.: Extending OpenStack Monasca for Predictive Elasticity Control 339

