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Abstract: Traditional auto-scaling approaches are conceived as reactive automations, typically triggered when

predefined  thresholds  are  breached  by  resource  consumption  metrics.  Managing  such  rules  at  scale  is

cumbersome, especially when resources require non-negligible time to be instantiated. This paper introduces

an  architecture  for  predictive  cloud  operations,  which  enables  orchestrators  to  apply  time-series  forecasting

techniques to estimate the evolution of relevant metrics and take decisions based on the predicted state of the

system.  In  this  way,  they  can anticipate  load peaks and trigger  appropriate  scaling  actions  in  advance,  such

that  new  resources  are  available  when  needed.  The  proposed  architecture  is  implemented  in  OpenStack,

extending the monitoring capabilities of Monasca by injecting short-term forecasts of standard metrics. We use

our  architecture  to  implement  predictive  scaling  policies  leveraging  on  linear  regression,  autoregressive

integrated  moving  average,  feed-forward,  and  recurrent  neural  networks  (RNN).  Then,  we  evaluate  their

performance on a synthetic workload, comparing them to those of a traditional policy. To assess the ability of

the  different  models  to  generalize  to  unseen  patterns,  we  also  evaluate  them  on  traces  from  a  real  content

delivery network (CDN) workload. In particular, the RNN model exhibites the best overall performance in terms

of prediction error, observed client-side response latency, and forecasting overhead. The implementation of our

architecture is open-source.
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1　Introduction

Over the last decade, information and communications
technologies (ICTs) have been evolving non-stop at an

extremely rapid pace. The ever-growing availability of
low-cost  high-bandwidth connectivity  has  been one of
the  key  enablers  paving  the  way  for  the  impressive
growth  in  the  adoption  of  distributed  computing
paradigms. Cloud computing[1] emerged as the defacto
standard  for  developing  and  deploying  large-scale
production-grade  applications.  This  paradigm  allows
for completely decoupling the management of physical
infrastructures  from  the  services  deployed  on  top  of
them, by heavily relying on virtualization. This enabled
to make a more efficient use of physical resources and
have  a  higher  resiliency  degree  for  the  hosted
applications.  However,  cloud  computing  has
significantly  evolved  and  is  not  only  limited  to  the
infrastructure-as-a-service  (IaaS)  provisioning  model,
according to which users can access compute instances
(e.g.,  virtual  machines  (VMs))  deployed  on  top  of
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shared  physical  servers  and  operated  by  the  provider.
Nowadays,  the  so-called  everything-as-a-service
(XaaS)  provisioning  model  enables  an  application
developer  to  realize  cloud-native  services,  by
leveraging  on  a  wide  range  of  orchestration,  load-
balancing,  storage,  and  monitoring  solutions,
completely managed by the provider[2].

To operate their infrastructures 24/7, cloud providers
need operation teams ready to promptly address and fix
any kind of issue that might occur, including hardware
faults  and  software  defects.  In  production-grade  cloud
infrastructures, this is only feasible when such systems
are designed following well-established practices (e.g.,
fault-independent  zones,  redundant  powering  and
cooling  infrastructures,  multi-path  networking
topologies,  etc.)  and  operated  using  appropriate  tools
(e.g., monitoring systems, resource managers, effective
automation rules, etc.).

In this regard, a key enabling factor is the presence of
fine-grained  monitoring  services,  on  top  of  which
automation rules can be built,  ensuring high reliability
for the hosted services and performance levels that are
as stable as possible,  despite sudden changes in traffic
conditions.  This  refers  to  elasticity,  which  is  the
capability of cloud services to automatically adapt their
set  of  allocated  resources  (e.g.,  VMs,  containers,  or
even  physical  nodes)  as  the  workload  changes  over
time. Elasticity is typically implemented by means of a
control loop that decides which actions to take in order
to keep the service running smoothly (e.g., scale-out or
scale-in).  Such  scaling  decisions  are  usually  made  on
the basis of system-level resource consumption metrics
(e.g.,  CPU  utilization,  network  traffic,  and  storage
load),  as  well  as  key performance indicators  (KPIs)  at
application-level  (e.g.,  response  times  and  connection
timeouts/errors).

1.1　Problem presentation

Classical auto-scaling mechanisms are inherently based
on  reactive  automation  rules  that  scale  a  service
whenever some metric breaches predefined thresholds.
Traditionally,  after  a  scaling  action  is  actually
triggered,  an  elastic  system  enters  a  cooldown  period
that  prevents  further  scaling  actions  until  it  expires.
This is done such that the elasticity controller can take
its  subsequent  decisions  by  actually  considering  the
effects  of  the  previous  one.  In  addition,  to  make  the
overall  mechanism  more  robust  with  respect  to
transient  changes  in  the  workload,  it  is  common  to

require  the  threshold  to  be  breached  for  a  few
consecutive observations before triggering any action.

Developing  and  tuning  such  automation  rules
become  particularly  cumbersome  when  dealing  with
large-scale  production  environments.  There  are  many
challenges  to  be  addressed,  like  determining  the  KPIs
to  accurately  estimate  the  status  of  the  system,  setting
the  frequency  at  which  the  scaling  decision  should  be
evaluated, adapting the scaling policy to changes in the
workload  to  prevent  unnecessary  scaling  actions,
estimating  the  amount  and  type  of  instances  to  add  to
handle  the  new  conditions,  and  taking  into  account
non-negligible  time  to  set  up  the  additional  instances.
For instance, in this work we put great emphasis on the
latter  challenge  because,  in  large-scale  production
environment,  spawning  new  instances  might  indeed
take from a few minutes to even half an hour[3]. This is
not only the time needed to instantiate and boot a new
VM  but  also  the  time  needed  to  configure  the  new
instance, possibly install any missing software, in case
the  same  image  is  re-used  as  a  base  for  a  number  of
different  roles  requiring  customized  software  set-ups,
or  just  install  some  minimally  required  security
updates,  sometimes  copy  onto  the  image  a  minimum
set  of  information  or  local  database  needed  for  the
software  to  operate  correctly,  start  the  actual  service
and register  it  into a load-balancing group,  and finally
some  further  time  is  needed  for  the  new  instance  to
progressively  pick  new  traffic.  Therefore,  in  such
settings,  anticipating  scale-out  operations  becomes
critical.  Despite  the  mentioned  precautions,  traditional
control loops are still inherently “dumb”, as they do not
factor the rich dynamic of the observed metrics in their
decisions.  For  instance,  consider  the  CPU  utilization
evolution depicted in Fig. 1.  A classical scaling policy
would treat scenarios A and B in pretty much the same
way:  as  soon  as  the  CPU  utilization  breaches  the
threshold  (i.e.,  the  red  line),  a  scaling  action  is
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Fig. 1    Overview of OpenStack key components.
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triggered.  However,  a  human  operator,  based  on  its
prior experience gained while operating such a fictional
service,  could  easily  distinguish  between  scenarios A
and B. While A might be safely ignored, it is clear that
B would require urgent actions to be taken.

In  the  context  of  large-scale  cloud  environments,
given  the  complex  relationships  among  their
components and the abundance of operational data they
generate  (e.g.,  event  logs,  application  metrics,  source
code,  etc.),  treating  operations  as  a  data  science
problem[4] seems  a  promising  approach  to  develop
“intelligent” automations.  In  particular,  time-series
forecasting  techniques  based  on  machine  learning
(ML)  may  play  a  fundamental  role  in  enhancing  the
capabilities of elasticity controllers to prevent services
from  saturating  their  capacity.  For  instance,  AWS
currently provides native support for predictive scaling
with  EC2[5],  demonstrating  the  suitability  of  this  type
of  approaches  at  supporting  cloud  operations[6].  On  a
related  note,  ML-based  approaches  have  also  been
shown  to  be  beneficial  for  efficient  and  sustainable
management of resources in cloud data centers[7].

1.2　Contribution

In  this  paper,  we  propose  an  open-source  software
architecture  for  integrating  predictive  analytics  within
an OpenStack cloud platform. The paper provides three
major  contributions.  First, a  general  architecture  for
performing  predictive  operations  on  a  cloud
infrastructure  based  on  time-series  forecasting
techniques. Second, an open-source implementation of
the  forecasting  component  within  OpenStack,
leveraging on Monasca[8],  that automatically computes
forecasts  and  makes  them  available  as  additional
metrics.  Our  implementation  also  includes  a  few
reference  implementations  of  metric  predictors,  i.e.,
linear  regression  (LR)[9],  autoregressive  integrated
moving  average  (ARIMA)[10],  multi-layer  perceptron
(MLP),  and recurrent  neural  network (RNN),  showing
that  the  proposed  architecture  is  flexible,  as  it  allows
for  easy  customization.  Third,  an  extensive
experimental validation of our architecture,  using both
synthetic  and  real  content  delivery  network  (CDN)
workload  traces,  where  we  set  up  a  synthetic  elastic
application,  exploit  the  native  capabilities  of
OpenStack,  and  compare  the  performance  of  several
predictive  elasticity  controllers  based  on  the
aforementioned  reference  predictors.  When  compared
to  related  research  in  the  field,  our  proposed

approachcan be distinguished in that it is the only work
providing an open-source architecture for extending the
orchestration  capabilities  of  OpenStack  with  modular
predictive analytics,  enabling forecast-driven decision-
making for generic elastic cloud services. More details
can be found in Section 2.

This paper extends our preliminary work appeared at
the  IEEE/ACM  UCC  2021  conference[11].  We  add  a
more  comprehensive  experimental  validation  that
includes experimentation with not only synthetic traces
as done in Ref. [11] but also real CDN workload traces
from  the  RECAP[12] EU  project.  Furthermore,  we
expand  the  set  of  predictors  and  their  configurations,
used  for  the  validation.  Indeed,  in  Ref.  [11],  we  only
considered  a  single  input  size  configuration  for  LR,
MLP,  and  RNN.  On  the  other  hand,  in  this  paper,  we
add  ARIMA  to  the  set  of  predictors  and  also
considered  3  different  input  size  configurations  for
each  of  them,  such  that  we  could  assess  how  this
parameter  influences  the  overall  performance  of  the
resulting  scaling  policies.  Also,  we  provide  additional
implementation  and  configuration  details  in  the
description of our proposed approach and significantly
extended the discussion of related research in the area.

1.3　Paper organization

This paper is organized as follows. Section 2 provides
a  detailed  overview  of  the  related  research  literature,
highlighting how the proposed technique is  positioned
in the current landscape. In Section 3,  we provide key
background concepts about OpenStack and time-series
forecasting  techniques  for  a  better  comprehension  of
the  following  material.  Section  4  describes  the
approach  proposed  in  this  paper,  while  Section  5
presents  its  experimental  validation  on  an  OpenStack
deployment.  Some  final  remarks  are  enclosed  in
Section  6,  along  with  the  discussion  of  possible  ideas
for future works on the topic.

2　Related Work

In  the  research  literature,  a  number  of  authors  applied
data-driven  techniques  to  automated  elasticity  control,
both for public and private cloud. In what follows, we
start  by  reporting  key  research  works  dealing  with
predictive  elasticity  based  on  metric  forecasting  for
public  cloud.  Then,  we  provide  a  similar  overview  of
related  research  for  private  cloud  with  a  particular
focus on network function virtualization (NFV)[13], due
to the  increasing interest  gained by ML in the  context
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of  network  service  chains.  Finally,  we  provide  a  brief
review  of  elasticity-control  solutions  based  on
reinforcement learning (RL).

2.1　Predictive elasticity in cloud computing

A  variety  of  data-driven  techniques  have  been
proposed to provide accurate short-term predictions of
workloads and resource consumption patterns of elastic
clusters  to  achieve  a  more  timely  and  fine-tuned
allocation of resources.

In  Ref.  [3],  the  authors  described  a  simple  scaling
strategy  based  on  predicting  the  aggregate  sum  of
transmitted  and  received  bytes  of  a  service  cluster,
considering  resource  setup  delays  and  limited
deployment  throughput.  The  approach  leverages  on  a
workload model to estimate a percentile of the resource
demand and a  probabilistic  function  that  describes  the
cost  of  over-/under-provisioning  the  cluster.  The
authors  presented  promising  results  by  evaluating  the
technique  against  data  from  more  than 40 000 real
services deployed as auto-scaling groups on AWS.

In Ref. [14], the authors proposed a model-predictive
control  based  approach[15],  combining  three  major
techniques:  a  2nd-order  ARMA  filter  for  workload
prediction;  a  customer  behavior  modeling  graph
(CBMG)[16],  optimized  on  web  logs,  capturing  the
behavior  of  users  while  browsing  a  web  application;
and a look-ahead optimization to trade-off between the
advantages arising from dynamic elasticity and the cost
of scaling decisions and cluster reconfiguration at each
control  period.  They  empirically  evaluated  their
technique  against  data  from the  1998  world  cup  web-
site traffic.

In Ref. [17], the authors tackled the problem of non-
instantaneous instance provisioning when using elastic
scaling  in  cloud  environments.  They  proposed  a
predictive  strategy  based  on  a  resource  prediction
model  using  ANNs  and  LR.  The  method  was  applied
on  an  e-commerce  application  scenario  emulated
through  the  TPC-W[18] workload  generator  and
benchmarking  application,  deployed  on  AWS  EC2.
ANNs improve the accuracy by reducing the MAPE by
roughly 50% compared to LR.

In Ref. [19], an ANN with a single hidden layer was
proposed  for  predicting  the  resource  utilization  and
duration  of  continuous  integration  tasks  for  several
repositories  from  the  Travis  open  data.  However,  the
evaluation focused on predicting the task duration only,
using a per-repository model using the number of files

and  the  repository  size  as  inputs.  Results  show  an
accuracy  at  least  20% and  up  to  89% better  than  a
baseline LR.

In  Ref.  [20],  the  authors  proposed  supervised
learning  methods  to  tackle  the  problem  of  predictive
auto-scaling  for  multi-tier  elastic  applications,
considering  unstable  performance  of  individual  VMs.
In  particular,  LR  is  applied  to  the  traffic  arrival  rate
time-series  to  predict  short-term  arrival  rates,  which
were  in  turn  used  to  predict  the  evolution  of  the
response  times,  using  polynomial  regression  (PR).
Such  estimates  were  then  fed  to  a  random  decision
forest  (RDF),  designed  to  learn  a  configurations  map
associating  the  order  of configurations—required to
maintain  the  specified  service-level  objective
(SLO)—to the  experienced  request  arrival  rates  and
system response  times.  The  training  data  for  the  RDF
were  generated  by  executing  a  few  system  (static)
scaling policies.

In  the  RScale  framework[21],  Gaussian  process  (GP)
regression  was  used  to  predict  end-to-end  tail-latency
of  distributed  microservices  workflows  with  generic
direct  acyclic  graph-like  topologies.  RScale  was
evaluated  on  the  Chamaleon  test-bed☆ and  achieved
similar  accuracy  but  a  smaller  predicted  uncertainty
with  respect  to  ANNs.  However,  it  exhibited  reduced
inference  overheads  and  superior  adaptability
to  dynamically  changing  workload/interference
conditions.

In Ref. [22], Bayesian networks (BNs) were used in a
predictive  framework  to  support  automatic  scaling
decisions in cloud services. The method was evaluated
on synthetic applications with exponentially distributed
duration and workload inter-arrival patterns.

In  Ref.  [23],  decision  trees  (DTs)  were  used  to
predict  CPU,  memory,  and  network  usage  of  hive-
based MapReduce queries  over  a  Hadoop cluster.  The
authors  used  a  4-machines  cluster  to  perform  queries
with  different  structures  over  a  number  of  different
datasets,  using  a  per-resource  decision  tree  to  classify
the query within the high or low resource-usage class.
The presented results give insights as to the parameters
mostly  affecting  the  consumption  level  for  each
resource.  However,  as  the  authors  used  a  fixed-size
cluster, the technique does not seem to be useful in the
context  of  elasticity  control,  albeit  the  investigation
may be useful to design effective elasticity rules.
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In  Ref.  [24],  the  authors  proposed  a  proactive  auto-
scaling mechanism for edge computing applications on
Kubernetes.  The  approach  leverages  on  ARMA  and
long  short-term  memory  (LSTM)  to  estimate  the  raw
number of additional compute instances needed, given
the  observed resource  utilization  patterns.  The authors
also  provided  a  mechanism  to  either  automatically
retrain  from  scratch  or  incrementally  update  the
underlying model.

In Ref.  [25],  the authors introduced an extensive set
of traces exported from Azure’s internal infrastructure.
They  proposed  Resource  Central,  an  approach  that
collects  VM utilization  metrics  and  periodically  trains
prediction  models  on  them  offline.  Such  models  can
then  be  queried  online  by  resource  management
systems and/or human operators. While the approach is
in theory agnostic to the underlying models, the authors
considered  RDF,  gradient  boosted  trees  (GBTs)  and
fast fourier transform (FFT) for their experiments. The
authors  validated  their  approach  by  integrating  it  with
Azure’s  VM  scheduler,  showing  performance
improvements also in over-subscription scenarios.

In  Ref.  [26],  the  authors  proposed  a  framework  to
forecast  the  workload  of  a  cloud  system,  such  that  a
resource manager can take informed scaling decisions.
Their  approach  is  based  on  self-directed  learning
(SDL),  which  consists  in  including  recent  forecast
errors in the input to the underlying model, such that it
can  be  used  as  feedback  to  improve  the  accuracy  of
future predictions.  The model  is  a  feed-forward ANN,
whose  weights  are  optimized via  an  improved version
of  the  blackhole  algorithm  proposed  by  authors.  The
authors  validated  their  approach  against  6  different
datasets exported from real systems.

In  Ref.  [27],  the  authors  proposed  a  proactive
resource scaling approach that leverages on a workload
prediction module. The underlying forecasting model is
based  on  ARIMA.  The  approach  uses  the  predicted
information  to  resize  a  cloud  application  accordingly,
e.g.,  anticipating  peaks.  The  authors  used  real  traces
exported  from  web  servers  of  Wikipedia  to  train
ARIMA to predict request patterns. They also validated
their  approach,  in  terms  of  impact  on  the  quality  of
service  (QoS)  of  a  cloud  application,  by  running
simulations on CloudSim.

In  Ref.  [28],  the  authors  proposed  CloudInsight,  a
workload  prediction  framework  that  can  be  used  to
proactively  scale  cloud  applications.  The  authors
leveraged on an  ensembling approach (i.e.,  combining
the outputs  from several  models)  to  effectively handle

irregular, dynamically changing workloads. The weight
of an individual model is continuously re-evaluated by
a mechanism based on support vector machine (SVM),
such that  the system can adapt  to  the current  shape of
the  workload.  The  authors  validated  their  approach
against 3 different classes of workloads (exported from
real systems) and compared its performance to several
baseline predictors.

In  Ref.  [29],  the  authors  proposed  LoadDynamics.
Similar  to  Ref.  [28],  they  put  the  emphasis  on  the
sensitivity  to  workload  changes  that  are  observed  in
most  workload  prediction  frameworks.  Their  solution
is  an  LSTM-based  approach  that  is  trained  and
evaluated  on  data  exported  from  real  systems,  which
describes  requests  arrival  rates  in  different  application
scenarios (e.g., public cloud, HPC, web, etc.).

There  exist  other  approaches  that  perform  dynamic
resource allocation based on instantaneous monitoring,
rather  than  on  resource  estimations.  For  instance,  the
authors  of  Ref.  [30]  proposed  a  vertical  elasticity
management  approach  for  containers,  to  dynamically
adapt  the  allocated  memory  in  Kubernetes,  to  support
the  co-location  of  containers  having  heterogeneous
QoS requirements.  However,  for  brevity,  we omit  this
type  of  approaches  from  our  overview,  as  they  fall
within  the  research  literature  on  classical  reactive
elasticity control.

2.2　Predictive elasticity for NFV services

Predictive  analytics  have  also  been  investigated  in
private cloud scenarios, notably for NFV and software
defined networks (SDNs)[31] in order to adapt and fine-
tune  the  allocation  of  virtualized  resources  to  the
conditions  of  the  network.  In  this  way,  operators  can
benefit  from  proactive  automation  mechanisms  to
ensure  QoS  for  their  cloud-native  service-chains.  In
Ref.  [32],  the  authors  highlighted  the  main  challenges
to  be  tackled  to  obtain  an  effective  predictive
mechanism:  assessment  of  the  bottleneck  components
that need to be scaled; development of mechanisms for
optimal  consolidation  of  the  virtual  resources  within
the  physical  infrastructure;  and  the  design  and
implementation of predictive models preventing under-
or over-provisioning of virtualized resources.

In Ref. [33], an ML-based approach was proposed to
realize  an  effective  auto-scaling  mechanism.  The
authors  evaluated  several  predictive  models  (e.g.,  DT,
RDF,  MLP,  and  BN)  on  load  traces  exported  from  a
real virtual network function (VNF) environment,  also
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taking into account the different costs and start-up time
related to different virtualization technologies.

RNNs  proved  to  be  a  powerful  tool  for  time-series
analysis  in  forecasting[34, 35] and  classification[36, 37]

tasks.  For  instance,  in  Ref.  [38],  LSTM  was  used  to
forecast  the  future  demand  of  deployed  VNFs.
However,  the  authors  mainly  focused  on  feature-
selection aspects rather than achievable accuracy. Also,
the  authors  of  Ref.  [39]  showed  that  the  sequence-to-
sequence  architecture,  wide-spread  in  the  natural
language  processing  (NLP)  research  field,  yields
surprisingly good results. Such architecture consists of
an  encoder  and  a  decoder  module.  In  NFV,  these
models  have  been  used  to  capture  complex
relationships  between  VNF  and  infrastructure  metric
time-series[40].  Remarkably,  since  the  encoder  and  the
decoder  only  exchange  information  consisting  in  the
hidden  state  values,  it  is  also  possible  to  use  different
sets of metrics for input and output.

Additional  information  about  the  deployed  VNFs
(e.g.,  graph-like  diagrams  depicting  the  interactions
among the VMs belonging to the same VNFs) can also
be used to boost forecasting accuracy. For instance, in
Ref.  [41],  the  authors  proposed  a  topology-aware
forecasting  approach  built  on  top  of  graph  neural
networks (GNNs)[42].

2.3　Elasticity control with reinforcement learning

Straightforward  heuristics  like  static  thresholding[43]

can yield amazing results, when dealing with elasticity
control  for  simple  systems.  However,  thresholds
require careful ad-hoc tuning, resulting in an approach
that can hardly be adopted at scale (as it will eventually
lead to over- or  under-provisioning).  Addressing these
shortcomings,  dynamic  thresholding  mechanisms,  like
the  ones  based  on  RL,  offer  the  capability  to
automatically  adapt  thresholds  to  the  current  status  of
the system.

However,  RL algorithms usually  impose  demanding
computing  requirements,  which  may  limit  their
applicability on real systems. For instance, in Ref. [44],
the  authors  described  a  Q-learning  approach  for
managing  a  real  telco  system.  The  developed  agent  is
observed  to  take  several  unexpected  decisions,  before
converging  to  an  optimal  policy.  When  deploying  the
approach in production, this is clearly not desirable. On
the  other  hand,  in  Ref.  [45],  the  authors  proposed  a
successful  RL-based  approach  to  deploy  VNF  service
chains,  which  works  by  jointly  minimizing  operation

costs  and  maximizing  requests  throughput,  and  also
took  into  consideration  heterogeneous  QoS
requirements.

In  Ref.  [46],  the  authors  proposed  an  adaptive
mechanism  to  automatically  learn  scaling  policies  for
NFV, based on Q-learning and GP. They leveraged on
GP  to  iteratively  improve  the  learned  policy  before
taking  the  final  scaling  decision,  using  the  average
response  time  of  the  system  as  reward  signal.  They
evaluated  their  approach  on  a  simulated  NFV
environment,  showing  that  it  outperforms  both  a
standard threshold based policy and a Q-learning based
one (not based on GP).

In Ref. [47], the authors proposed two different novel
auto-scaling  strategies  based  on  the  combination  of  a
fuzzy  logic  (FL)  controller  with  two  different  RL
approaches:  Q-learning  (i.e.,  off-policy  approach)  and
state  action  reward  state  action  (SARSA)  (i.e.,  on-
policy approach). According to the authors, employing
RL  algorithms  makes  the  overall  mechanism  self-
adaptive (e.g., considering the response time as reward
signal), while the FL controller enables it to work at a
higher  level  of  abstraction.  Both  strategies  are
implemented  and  integrated  with  OpenStack.  The
evaluation  is  performed  on  two  different  real  web
application workloads.

In Ref. [48], the authors proposed a strategy based on
a  deep  Q  network  (DQN)  for  tuning  the  scaling
thresholds  used  by  the  auto-scaling  rules  of
microservices  deployed  in  Kubernetes.  The
application-level  response  time  is  extracted  from  the
log files of a Twitter analytics application and used as
reinforcement signal for the RL algorithm.

In  Ref. [49],  the  authors  investigated  on  using  RL-
based  techniques  to  handle  resource  allocations  and
scaling  in  the  context  of  a  serverless  computing
framework. They focused on request-based scaling and
developed  a  mechanism  to  automatically  adapt  the
concurrency  level  of  a  serverless  application  instance
(i.e.,  the  maximum  number  of  requests  that  a  single
instance should handle).

2.4　Summary

Table 1 reports  a  schematic  comparison  among  the
major related works and our proposed approach (at the
bottom  of  the  table).  The  comparison  takes  into
account  the  following  aspects:  which  data-driven
technique  was  used  and  which  input  data was  applied
to;  whether  the  method  applied  to  generic  workloads,

    320 Big Data Mining and Analytics, June 2024, 7(2): 315−339

 



or it was designed for specific applications; which data
or  use-case was used for  validation;  whether  the work
considered  also  overheads  or  delays  related  to
spawning  new  instances;  whether  the  work  was
actually  aiming  at  realizing  elasticity-control  loops;
and  whether  the  implementation  of  the  proposed
solution  was  open-source,  such  that  other  researchers
can  reproduce  the  work  and  possibly  improve  it.
Overall,  ours  is  the  only  work  providing  an  open-
source  architecture  for  extending  the  orchestration
capabilities  of  OpenStack  with  predictive  analytics,
enablingforecast-driven  decision-making  for  generic
elastic  cloud  services.  Also,  our  implementation  is
modular,  such  that  it  can  easily  be  extended  with
custom  models  developed  using  established  modeling
frameworks  for  the  Python  language,  such  as  Scikit-
learn, Statsmodels, PyTorch, and TensorFlow.

3　Background

In this section, we provide useful background concepts
to  understand  the  approach  proposed  in  Section  4.
First,  we  provide  details  on  a  number  of  key

OpenStack components, with reference to Fig. 2. Then,
we  recall  fundamental  background  concepts  around
some time-series forecasting techniques we used in the
experimental validation described in Section 5.

3.1　OpenStack component

3.1.1　Nova, Cinder, and Glance
Nova[50] is  the  OpenStack  component  that  provides
compute resources (e.g.,  VMs, bare metal servers,  and
containers) management functionalities. It leverages on
Cinder[51] for block storage management and Glance[52]

for  image  provisioning.  The  core  of  Nova’s
architecture is the compute process, which manages the
underlying  hypervisor  (using  libvirt).  Such  process
communicates with the shared central database through
the conductor process. Finally, the scheduler process is
the  interface  between  the  compute  process  and  the
instance  placement  service.  All  processes  exchange
requests via remote procedure call (RPC).
3.1.2　Neutron
Neutron[53] is  the  OpenStack  component  that  provides
networking  functionalities.  It  offers  the  possibility  to

 

Table 1    Related works comparison (legend: G.A. = generally applicable; S.O. = spawning overhead; E. = elasticity; and O.S. =
open-source).
Reference Technique Input Validation G.A. S.O. E. O.S.

[3] Heuristic Network data 40K AWS auto-scaling groups Y Y Y N
[14] ARMA, CBMG Utilization data '98 world cup N Y Y N
[17] ANN, LR Utilization data E-commerce (TPC-W) Y Y Y N
[19] LR, MLP Utilization data CI pipeline N N Y N
[20] PR, RDF Request rate and response time E-commerce (RUBiS) N N Y N
[21] GP Utilization data Robot shop Y N Y N
[22] BN Utilization data Synthetic workload Y N Y N
[23] DT Query type and structure DB queries (Hive) N N N N
[24] ARMA, LSTM Utilization data Kubernetes edge app Y N Y N
[25] RDF, GBT, FFT Utilization data Real Azure VM traces Y Y Y N
[26] MLP, SDL, blackhole Request rate and utilization data 6 different real datasets Y N Y N
[27] ARIMA Request rate Real Wikipedia traces Y Y Y N
[28] Ensembling Request rate 3 classes of real workloads Y N Y N
[29] LSTM Request rate 3 classes of real workloads Y N Y N
[32] Heuristic Utilization data Skype traces N Y Y N
[33] DT, RDF, MLP, BN Utilization data Real VNF workload N Y Y N
[41] GNN Utilization data and topology Real VoIP workload N N N N
[44] Q-learning Utilization data Real telco system N N Y N
[46] Q-learning, GP Utilization data Synthetic VNF workload N N Y N
[47] FL, Q-learning, SARSA Utilization data '98 world-cup, Wikipedia Y N Y N
[48] DQN Utilization data Twitter analytics app N N Y N
[49] Q-learning Utilization data Synthetic serverless app Y N Y N
Ours ARIMA, LR, MLP, RNN Utilization data Synthetic and real CDN traces Y Y Y Y
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manage  per-tenant  virtual  networks  (e.g.,  having  their
own  IP  numbering  and  DHCP  settings)  and  can  be
equipped  with  security-related  features,  like  firewalls
and virtual private networks (VPNs).
3.1.3　Monasca
Monasca[8] is  an  advanced  multi-tenant,  highly
scalable,  and  fault-tolerant  monitoring  solution.  It  is
designed as a collection of microservices, including an
efficient  time-series  database  (DB),  a  streaming  alarm
engine,  a  notification  engine,  a  message  queue,  etc.
Monasca  also  provides  an  agent  module  that  is
deployed  on  the  physical  machines  hosting  the
compute  services,  such  that  it  can  collect  metrics  and
forward  them  to  the  DB  through  the  message  queue.
Monasca is also compatible with Kubernetes.
3.1.4　Senlin
Senlin[54] is the OpenStack component that offers tools
to  effectively  operate  clusters  of  homogeneous
OpenStack  resources  (e.g.,  Nova  instances).  In
particular, it is possible to define and attach policies to
such  clusters,  specifying  how  their  resources  must  be
treated under specific conditions. For instance, one can
use scaling policies to automatically resize the cluster,
load-balancing  policies  to  distribute  the  workloads,  or
health policies to handle faulty instances. Compared to
Heat[55], Senlin offers more effective operation support
tools  and  a  finer-grained  control  over  the  underlying
resources.  Indeed, Senlin is  being successfully used to
operate  large-scale  deployments,  like  the  on-line
gaming use-case reported by Ref. [56].
3.1.5　Octavia
Octavia[57] is  the  former  neutron  load-balancing-as-a-
service  (LBaaS)  and,  as  the  name  suggests,  offers
scalable  load-balancing  (LB)  functionalities.  LB  is
crucial  to  enable  fundamental  cloud  properties  like
elasticity and high-availability. An Octavia LB consists
of  a  horizontally-scalable pool  of  Nova instances (i.e.,
amphorae),  leveraging  on  HAProxy.  The  controller  is

the  core  of  Octavia’s  architecture,  consisting  in  a
number  of  sub-components  whose  jobs  include
handling requests and orchestrating the amphorae.

3.2　Time-series forecasting

In  the  empirical  evaluation,  we  confront  the
performance  of  forecasting  components  leveraging
different  data-driven  models.  The  dynamic  nature  of
the  data  involved  in  cloud  and  distributed  systems
naturally  calls  for  learning  models  which  can
effectively  tackle  time-series  data,  where  observations
are  not  assumed  to  be  independent  and  identically
distributed  but  are  rather  influenced  by  the  sequential
ordering in which they are observed. To this end, in the
following  we  review  two  fundamental  approaches  for
time-series  forecasting,  namely  autoregressive  models
and  recurrent  neural  networks.  For  the  sake  of
completeness,  in  our  empirical  analysis  we  also
consider  baseline  learning  models  which  do  not
consider  the  sequential  nature  of  time-series  data,
namely  LR  (see  Ref.  [9])  and  MLPs  (see  Ref.  [58]).
The  reader  is  referred  to  consolidated  literature
references  for  further  details  on  such  foundational
models.
3.2.1　ARIMA

{xt} t−1
x̂t

The autoregressive moving average (ARMA) model is
an  effective  tool  for  time-series  forecasting  (see  Ref.
[10]).  Given the  observations  up to  time ,  the
forecast  is given by
 

x̂t = ϕ0+

p∑
i=1

ϕixt−i+

q∑
j=1

θ jϵt− j (1)

ϕ0

{ϕi}pi=1

x̂t p {θ j}qj=1

where  is  a  constant  typically  set  to  0  if  there  is  no
evidence of a trend in the input data,  otherwise,  it  can
be  manually  set  based  on  domain  knowledge  or
automatically  learned;  are  the  learnable
parameters  regulating  the  linear  dependency  between

 and the  most  recent  observations;  and  are
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Fig. 2    Overview of OpenStack key components.
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ϵt− j ≜ x̂t− j−
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the  learnable  parameters  that  regulate  the  linear
dependency  between  and  the  errors 

 that  the  model  made  in  the  most  recent 
predictions.

d ∈ N+
x(d)

t

xt x(1)
t ≜ xt − xt−1

d = 1 x(d)
t ≜ x(d−1)

t − x(d−1)
t−1 d > 1

x̂(d)
t

The  ARIMA  model  is  an  extension  of  ARMA  that
can deal with non-stationary time-series (see Ref. [10]).
Indeed,  given  a ,  ARIMA  is  obtained  by
applying ARMA to estimate ,  which is  the d-order
differenced  signal  obtained  from  as 
for ,  and  for .  The
resulting forecasts  for the differenced signal
 

x̂(d)
t = ϕ0+

p∑
i=1

ϕix
(d)
t−i+

q∑
j=1

θ jϵ
(d)
t− j (2)

x̂t

p d q
ARIMA(p,d,q)

d
x(d)

t

t

are cumulatively summed up to reconstruct the forecast
of  the  original  signal .  Given  that  ARIMA  is
characterized  by  the  3  meta-parameters , ,  and ,
Eq. (2) is conventionally referred to as .
The meta-parameter  is typically chosen such that the
resulting  the d-order  differenced  signal  is
stationary  (i.e.,  whose  auto-correlation,  mean,  and
variance are independent of ).
3.2.2　Recurrent neural networks

I xt ∈ RI

H
s ∈ RH

Among  artificial  neural  networks  (ANNs),  RNNs  are
commonly  used  for  multi-variate  time-series  analysis
(see  Ref.  [58])  and  forecasting  in  particular.  RNNs
predict  the  one-step (or k-step)  ahead value of  a  time-
series based on the current -dimensional input 
and a compressed history of the inputs, stored in an -
dimensional  state  vector  computed  recurrently
by  the  hidden  neurons.  The  model  evolution  is
described by
 

st = fs(st−1, xt) (3)
 

ot = fo(st, xt) (4)

fs : RH+I → RH

c s x fs = tanh(Wsc+bs)
Ws bs fo :

RH+I → RO

fo = ReLU(Woc+bo) ReLU

θ = {θ j} = {Ws,Wo,bs,bo}

j k

where (1)  operates on the concatenation
 of  and , and is defined, e.g., as ,

where  is  the  weight,  and  is  the  bias;  (2) 
 is  the  output  function,  similarly  defined,

e.g.,  as ,  where  denotes  the
rectified linear unit function. The learnable parameters

 are  typically  trained  through
gradient descent on the loss function. In this work, we
consider  a  stochastic  update  rule  with  momentum,  so
that  the -th  parameter  is  updated  at  the -th
optimization step as follows:
 

µ j,k = βµ j,k−1+∇Jθ j,k (D) (5)

 

θ j,k+1 = θ j,k −λµ j,k (6)

D
∇Jθ j,k (D) Jθ j,k (D)

θ j k
β

µ j,k λ

K

where  is  a  dataset  of  input-output  pairs,  and
 is  the  gradient  of  the  loss  function 

with  respect  to  parameter  computed  at  step .  The
term  determines in which proportion the momentum

 is applied during the gradient descent step, and  is
the  learning  rate.  The  training  process  continues  until
the  validation  loss,  computed  over  the  validation
dataset  every  optimization  steps,  stops  decreasing.
The model corresponding to the minimum achieved on
the validation loss is taken as output. A particular type
of RNNs is the so-called LSTM networks[59]. LSTM is
an improved version of the standard RNN architecture,
where  the  so-called  input,  output,  and forgetting  gates
regulate  the  amount  of  information  flowing  into  the
hidden-state representation. In this way, LSTM is able
to  capture  both  long- and  short-term  dependencies
among  the  input  variables,  also  reducing  the  risk  of
incurring in numerical instability problems, such as the
vanishing gradient[60].

4　Proposed Approach

As  mentioned  in  Section  1,  conventional  scaling
techniques  are  reactive,  as  they  adjust  resources  when
certain  metrics  breach  specific  threshold  values.  They
may  be  configured  using  a  cautionary  approach,
triggering  on  very  early  degradation  signs.  Or,  they
may  use  an  optimistic  approach  by  having  thresholds
very  close  to  critical  values.  A cautionary  approach is
mostly  necessary  when  scaling  operations  need  a
significant  amount  of  time  to  become  effective.
However,  the  risk  is,  for  instance,  to  waste  resources
(i.e.,  over-provisioning)  due  to  unnecessary  scale-out
decisions.  On  the  other  hand,  an  optimistic  approach
limits resource waste but can lead to affecting the QoS
perceived  by  users  in  case  scaling  operations  do  not
take  effect  before  the  system  saturates  its  current
capacity.  Our  approach  mitigates  the  aforementioned
issues  by  adopting  a  predictive  auto-scaling  strategy
that triggers scaling actions on the basis of forecasts of
one  or  more  target  metrics.  For  instance,  given  an
imminent growth in the flow of requests, our approach
allows  for  triggering  a  scale-out  sufficiently  ahead  of
time.  We  implemented  our  approach  in  OpenStack,
specifically extending the Monasca monitoring system.
As shown in Fig. 3, we assume that the orchestration is
performed  by  Senlin  leveraging  on  our  forecasting
component  (plus  the  required  Monasca  resources)  to
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integrate  predictions  in  the  scaling  operations.  We
consider  a  cluster  of  Nova  VMs  as  the  specific
compute  instances  to  be  elastically  scaled.  However,
notice  that  our  approach  is  agnostic  with  respect  to
such  implementation  details.  Although  there  exist  two
main  scaling  strategies,  horizontal  and  vertical  (see
Ref.  [1]),  our  experimentation  focuses  on  horizontal
scaling  only.  This  is  definitely  the  most  used  strategy
in  cloud  computing,  as  it  is  simpler  to  manage  and
supports  scaling  out  to  an  arbitrary  number  of
instances,  differently  from  vertical  scaling,  which  is
limited  by  the  specific  capabilities  of  the  underlying
hardware.  Indeed,  modern  cloud  applications  are
typically  designed  such  that  their  components  can  be
highly distributed and replicated among different nodes
to  enhance  both  availability  and  resiliency.  However,
our  proposed  architecture  may  easily  be  leveraged  for
vertical scaling[61] as well,  as our approach is agnostic
with  respect  to  how  the  actual  scaling  operations  are
implemented.

Our  approach  works  as  follows.  VMs  periodically
generate  system-level  metrics,  which  are  ingested  by
Monasca.  Such  metrics  are  indicators  for  the  current
load  sustained  by  the  system.  Such  metrics  are
basically a set of time series, which is the input to our
forecasting  component.  Such  data  are  periodically
fetched by the forecasting component, whose task is to
generate  forecasts  of  the  input  metrics  over  a  given
time  window.  The  frequency  and  the  time  window  of

the forecasts, as well as the amount of historical data to
be  provided  as  input,  are  configurable.  The  generated
forecasts  are  finally  persisted and become available  to
all  the  components  of  the  infrastructure  management
system via  Monasca APIs.  In  particular,  they can also
be  visualized  by  operators  through  dashboards  (e.g.,
Grafana).  In our case,  forecasts are fed to a threshold-
based  scaling  policy,  and  scale-out  actions  are
triggered  as  soon  as  the  predicted  values  of  the
considered  KPIs  breach  the  threshold  for  a  given
number  of  subsequent  observations.  Threshold  checks
are  performed  via  the  Monasca  alerting  pipeline,  and
the scaling operations are actuated by Senlin.

The  underlying  predictors  generally  need  to  be
trained  before  use  and  constantly  updated  in  case  of
dynamic  changes  in  the  statistic  behavior  of  the  time-
series[62].  Based  on  the  specifics  of  the  metric
dynamics,  this  may  require  longer  or  shorter  training
histories  and  periodicity  of  updates.  In  this  work,  for
simplicity we assume that training is performed offline,
but  the  integration  of  automatic  model  updates  is
planned to be handled in a short future. As discussed in
Section 5, we compare four different predictors,  i.e.,  a
linear regressor, an ARIMA model (see Section 3.2.1),
an MLP, and an RNN (see Section 3.2.2).

Implementation details
Our forecasting component, also known as Monasca-

predictor,  is  implemented  in  Python,  the  main
programming  language  used  in  the  OpenStack
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Fig. 3    Architectural diagram of the proposed predictive auto-scaling approach.
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ecosystem,  and  released  under  the  Apache  2.0  open-
source  license[63].  Such  component  is  realized  in
compliance  with  the  microservice-oriented
architectural  pattern used by Monasca.  In particular,  it
is  designed  to  be  eventually  integrated  into  the
Monasca-agent (see Section 3.1.3).

Monasca-predictor is  configured using a YAML file
similar  to  the  one  shown  in Fig. 4.  The  Api  block
contains  the  information  required  to  make
authenticated  calls  to  OpenStack  APIs.  As  Monasca-
predictor  performs  tasks  similar  to  those  of  the
Monasca-agent,  it  must  be  provided  with  similar
permissions.  The  Main  block  contains  the
configurations  related  to  the  actual  predictive  tasks  of
Monasca-predictor.  Notice  that  the  forwarder_url  and
hostname fields must be filled with the pointers to the
forwarder  process  of  the  Monasca-agent.  The
inference_frequency_seconds  field  specifies  the
frequency  at  which  forecasted  values  must  be
generated. The predictions field is a list containing the
individual  configurations  for  the  different  forecasts.
For  each  item  in  the  list,  additional  fields  can  be
specified as follows. The tenant_id field must be filled
with  ID  of  the  OpenStack  project  containing  the
resources  to  be  monitored.  The  dimensions  field  is  a
map  that  specifies  additional  properties  required  to
identify such resources (e.g., the ID of the elastic group

of compute instances). The metrics field is a list of the
metrics whose measurements are to be used as input to
the predictor.  In Monasca,  a  metric  is  identified by its
name  (e.g.,  cpu.utilization_perc)  and  the  set  of
properties  (i.e.,  dimensions)  of  the  resource  that
generates  measurements  for  said  metric  (e.g.,
resource_id,  hostname,  etc.).  The  group_by  field  is  a
list  of  such properties  to  be used by Monasca API for
grouping  measurements  in  different  time-series,  when
fetching data  by metric  name.  For  instance,  one could
simply specify resource_id (or even *, standing for “all
fields”)  to  group  measurements  by  resource.
Depending  on  the  boolean  value  specified  for  the
merge_metrics  field,  the  resulting  time-series  can  also
be  merged  into  a  single  one,  with  measurements
ordered  according  to  their  timestamp.  The
time_aggregation_statistics  field  is  a  list  of  operators
(e.g., avg, sum, and max) to be applied on the retrieved
time-series  individually,  binning  their  measurements
according  to  the  resolution  specified  with  the
time_aggregation_period_seconds  field,  such  that  the
result  is  possibly  a multivariate—resampled—time-
series.  Similarly,  the space_aggregation_statistics  field
is  a  list  of  operators  to  be  applied,  on  top  of  the
temporal  aggregation  result,  in  order  to  aggregate  the
measurements of a set of monitored resources (e.g., the
compute  instances  belonging  to  the  same  elastic
group). The lookback_period_seconds field defines the
time window that measurements must fall into for them
to  be  included  in  a  Monasca  API  response,  as  a
(backward)  difference  with  respect  to  the  current
timestamp. The prediction_offset_seconds field defines
the  time  window  of  the  forecast  as  a  (forward)
difference  with  respect  to  the  timestamp  of  the  most
recent  measurement.  Notice  that,  when  persisted,  a
forecast  is  associated  with  the  very  same  timestamp,
such  that  the  forecasted  metric  appears  backward-
shifted  by  prediction_offset_seconds  with  respect  to
the  input  metric.  The  out_metric  field  is  the  metric
name  to  be  associated  with  the  generated  forecasted
values. The model_path field is the path to the dump of
the  underlying  predictive  model.  Similarly,  the
scaler_path field is the path to the dump of the scaler to
be  used  for  pre-processing  the  input  data.  At  the
moment, monasca-predictor only supports models built
using  the  following  frameworks:  Scikit-learn[64],
Statsmodels[65],  PyTorch[66],  and  TensorFlow[67].
Finally, the Logging block allows for configuring logs
management.  A  thorough  explanation  of  the  available

 

Api:
# Fill with configs similar to monasca-agent-forwarder

Main:
forwarder_url: ...
hostname: ...
inference_frequency_seconds: 60
predictions:

-tenant_id:  # Fill with OpenStack project ID
dimensions:

scale_group:  # Fill with scaling group ID
metrics: [cpu. utilization_perc]
group_by: ["*"]
merge_metrics: false
time_aggregation_statistics: [avg]
time_aggregation_period_seconds: 60
space_aggregation_statistics: [sum]
lookback_period_seconds: 1200
prediction_offset_seconds: 900
out_metric: pred. group. sum. cpu. utilization_perc
model_path: /path/to/model. dump
scaler_path: /path/to/scaler. dump

Logging:
enable_logrotate: true
disable_file_logging: false
predictor_log_file: /path/to/predictor.log
log_level: INFO 

Fig. 4    Example of forecasting component config file.

  Giacomo Lanciano et al.:  Extending OpenStack Monasca for Predictive Elasticity Control 325

 



tunables can also be found in the documentation within
the code of our forecasting component[63].

Monasca-predictor was developed as a prototype that
users  can  only  configure  via  the  YAML configuration
file  (see Fig. 4).  Such  limitation  implies  that  a  user
needs  full  administrator  privileges  for  the  OpenStack
deployment,  as  such  file  contains  both  system-wide
(e.g.,  authentication  credentials)  and  application-
specific  configurations  (e.g.,  the  details  of  the
resources  to  be  monitored).  We  plan  to  improve  the
usability of our component by separating such different
types  of  configurations,  so  that multiple—possibly
unprivileged—users can  leverage  on  the  same
forecasting  capabilities  (even  though  the  installation
must  still  be  performed  by  an  OpenStack
administrator).  Similar  to what  Monasca and the other
OpenStack projects offer, our idea is to develop both a
command-line  interface  and  a  heat  orchestration
template  (HOT)  integration  for  monasca-predictor,
such that  users can manage their  (application-specific)
configurations in the way they see fit. Independently of
the  chosen  interface,  such  configurations  will  be
eventually  persisted  in  a  database  (e.g.,  the  MySQL
instance  included  in  any  OpenStack  deployment)  to
improve the reliability of our component.

5　Experiment

This  section  includes  the  results  of  an  experimental
validation  of  the  approach  described  in  Section  4.  It
provides  a  comparison  of  the  performance  of  several
predictive  scaling  policies  with  a  traditional  reactive
one,  considering  a  synthetic  elastic  application
deployed on OpenStack.

5.1　Synthetic elastic application

We  use  distwalk[68],  an  open-source  distributed
processing  emulation  tool  developed by us,  to  test  the
proposed  predictive  auto-scaling  approach.  The  tool
consists  of  a  server  module  that  accepts  TCP/IP
connections  from  one  or  more  clients.  Clients  can
request  the  server  to  perform  computational,
networking,  and/or  input/output  (I/O)  activities,
enclosing within each request the amounts of resources
to  be  consumed.  Clients  can  submit  requests  with
constant or exponentially distributed inter-arrival time,
payload  sizes,  or  I/O  transfer  sizes.  Also,  they  may
emulate  ramp-up/ramp-down  scenarios  or  use  a  file
trace specifying the requests rate to be submitted over a
time horizon. For instance, we use this feature to replay

traces  from  a  real  CDN  workload  (see  Section  5.5).
Per-request  round-trip  response-time  can  be  measured
and  reported  in  a  log  file  on  experiment  termination.
Clients  can  also  spawn  multiple  threads  submitting
traffic  in  parallel,  and  they  can  emulate  the
establishment  of  multiple  sessions,  by  closing  and  re-
establishing their TCP/IP connections.

5.2　Experimental set-up

Our  OpenStack  deployment  is  hosted  on  a  Dell  R630
dual-socket  test-bed,  equipped  with  2  Intel  Xeon
E52640  v4  CPUs  (each  having  10  hyper-threaded
cores, i.e., 20 hyper-threads) running at 2.40 GHz (with
a  turbo-boosting  frequency  of  3.40  GHz);  64  GB  of
RAM;  Ubuntu  20.04.2  LTS  operating  system;  and
Version 5.4.0 of the Linux kernel. We use an all-in one
OpenStack  deployment  (Victoria  release),  installed
using the tools provided by Kolla[69],  resulting in each
service  being  operated  within  Docker  containers.  As
detailed in Section 4, we deploy an elastic control loop
using the following services: (1) Senlin to orchestrate a
horizontally-scalable cluster of Nova VMs; (2) Octavia
to provide the cluster with load balancing capabilities;
(3)  Monasca  to  ingest  the  system-level  metrics  and  to
trigger  the  scaling  actions;  and  (4)  the  forecasting
component,  developed  by  us,  to  enable  the  predictive
auto-scaling strategy.

The  Senlin  cluster  has  a  minimum  of  2  active
instances  and  could  expand  up  to  5.  Each  instance  is
provided with 1 vCPU and 2 GB of RAM available and
with an Ubuntu 20.04 cloud image including the server
module  of  distwalk  (see  Section  5.1).  We  artificially
impose  a  delay  of  10  min  before  starting  the  distwalk
server. The purpose is to emulate a scenario with non-
negligible set-up times for new instances, as it may be
needed  in  real  cloud  workloads,  where  it  is
commonplace  that  spawning  new  instances  may  take
from a  few  minutes  to  even  half  an  hour[3].  In  such  a
scenario, performing scale-out operations well ahead of
time becomes critical. The application server instances
are  made  reachable  through  an  Octavia  LB,  set  to
distribute  the  traffic  according  to  a  round-robin
strategy.  The  distwalk  client  is  configured  to  spawn 6
threads,  such  that  in  the  beginning  of  our  runs,  each
server  instance  has  to  handle  the  aggregated  requests
from 3  threads  on  average.  Each  thread  follows  a  4  h
long  trace  reporting  the  operation  rates  (i.e.,
requestsper second) to be maintained for an interval of
1 min each. Also, each thread is set to break its work in
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1000  sessions,  such  that  a  new  connection  is  opened
with the LB every 15 s, allowing for it to select a new
target  instance.  Monasca  is  set  such  that  new
measurements  are  collected  each  minute.  The
forecasting component is set to output a new prediction
with  the  same  interval,  leveraging  on  the  most  recent
measurements. The input to the underlying forecasting
model consists in a time-series reporting the sum of the
CPU  usage  measurements  of  the  currently  active
instances.  The  output  of  the  model  is  the  estimated
value of the same time-series in 15 min (i.e., 50% more
than how long a  new instance  takes  to  activate).  Such
output is then divided by the number of currently active
instances to get an estimate of the average CPU usage
expected in 15 min, assuming the cluster size to remain
constant and then persisted in Monasca.

The  purpose  of  our  experimentation  is  to  show  the
effectiveness  of  the  proposed  architecture  and  not  to
evaluate a novel ML model for time-series forecasting
that  can  outperform  existing  predictive  elasticity
approaches. Indeed, the novelty of our work consists in
proposing  an  open-source  scalable  architecture,
compatible  with  Monasca,  which  can  be  easily
configured by practitioners to plug virtually any type of
time-series  forecasting  model  into  their  data-driven
control loops. Therefore, we decide to stick to a simple
example where the elasticity controller uses only CPU
usage  as  input.  However,  our  component  can  be
configured  to  predict  multiple  metrics  per  monitored
instance  and/or  perform  multi-variate  time-series
forecasting.

To  implement  the  predictive  scaling  strategy,
Monasca  is  set  to  trigger  a  scale-out  whenever  the
predicted  average  CPU  usage  of  the  cluster  reached
80% for  3  times  in  a  row.  On  the  other  hand,  to
implement  the  reactive  scaling  strategy,  it  is  set  to  do
the same but consider the actual average CPU usage. In
any  case,  a  scale-in  is  triggered  whenever  the  actual
average CPU usage reached 15% for 3 times in a row.
We  choose  not  to  use  the  predicted  metric  to  decide
whether  to  trigger  scale-in  actions.  While  a  cloud
provider  may  want  to  anticipate  traffic  peaks  by
spawning additional resources in advance, disposing of
superfluous  resources  can  be  much  quicker[3] and  is
typically done after making sure that all residual traffic
has  been  drained  from  them.  Otherwise,  the  risk  is  to
overload  the  remaining  instances  in  case  they  start
taking  the  traffic  relieving  the  being-released  instance
too  early.  Predicting  such  a  condition  is  hard,  and  in

practice,  it  is  often  more  convenient  to  minimize
service-level  agreement  (SLA)  violations,  rather  than
costs.  However,  our  framework  does  not  exclude  this
possibility.  Waiting  for  3  consecutive  violations
imposes  a  delay  of  at  least  3  min  for  an  action  to  be
triggered.  However,  this  is  a  well  established  practice
in  elasticity  control  loop  design,  as  it  helps  with
making  the  mechanism  more  robust  to  fluctuations.
Each scaling action could adjust the size of the cluster
by  1  instance  only  and  could  only  take  effect  if  it  is
triggered  after  a  cooldown period  of  10  min  since  the
last  scaling  action.  The  cooldown  is  also  useful
considering  the  10-min  delay  forcibly  added  before
new instances activate.

5.3　Predictors configuration

To  implement  the  underlying  forecasting  models,  we
use:  (1)  Scikit-learn  for  the  LR;  (2)  Statsmodels  for
ARIMA;  and  (3)  PyTorch  for  MLP  and  RNN.  To
evaluate  how the  amount  of  past  information given as
input influences the prediction, we consider 3 different
settings, i.e., 5, 10, and 20 min worth of measurements
(see Section 5.4). Apart from LR, which is fitted every
time on a different input, all models are trained offline
on  the  same  synthetic  dataset  (and  on  the  same
machine  where  OpenStack  is  deployed).  Such  data
consist  of  sinusoidal  traffic  patterns,  with  different
frequencies  and  amplitudes,  to  provide  models  with
expected  behaviors  for  a  wide  range  of  operational
modes  (the  dataset  is  open-source,  see  Section  5.6).
Note  that  we  do  not  conduct  an  optimal
hyperparameters  search,  as  we  believe  such  a  process
goes beyond the scope of this work, whose focus is the
integration of time-series forecasting techniques in the
elasticity-control  loop  infrastructure,  rather  than  ML
models  development.  However,  in  what  follows  we
provide  some  indications  on  why  we  take  specific
design choices, aiming at conducting a fair comparison
among the implemented models.

p = {5,10,20} d = 1 q = 0 p
d = 1

q = 0

{5,10,20}

ARIMA  meta-parameters  are  configured  such  that
, ,  and .  While  is  somewhat

constrained by the  input  size,  we choose  for  the
stationarity  assumptions,  and  as  we  do  not
observe  any  benefit  from  using  this  feature  of  the
model.  For  ARIMA,  we  observe  an  average  training
time  of  2.89  s.  MLP  consists  of  an  input  layer  (with
units  varying  in ,  as  per  the  input  size
constraints), two hidden layers of 10 units each (as we
want to keep the complexity low), and an output layer
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of 1 unit (as we needed a scalar output). We also apply
a  leaky  ReLU  non-linearity  to  the  output  of  each
hidden  layers,  as  it  generally  speeds  up  the  training.
MLP is trained with stochastic gradient descent (SGD)
for  1000  iterations,  using  a  decaying  learning  rate
(between 0.1 and 0.001), a momentum set to 0.8, and a
batch  size  of  500  input  samples.  These  values  are
generally  considered  sensible  defaults,  and  given  the
observed performance, we do not feel the need to fine-
tune them. The 3 considered variants of MLP consist of
181, 231, and 331 learnable parameters, when the input
layer  size  is  set  to  5,  10,  and  20,  respectively.  For
MLP, we observe an average training time of 136.15 s.
RNN consists of 3 (stacked) recurrent layers, each one
composed  by  200  units  and  using  ReLU as  activation
function (i.e., PyTorch’s defaults), followed by a fully-
connected layer of 1 unit (as we need a scalar output).
Such model  is  trained with SGD for 10 000 iterations,
using  a  decaying  learning  rate  (between  0.01  and
0.001), a momentum set to 0.5, and a batch size of 300
input  samples.  With respect  to  MLP,  we have to  fine-
tune the latter parameters for the model to converge to
an  acceptable  performance.  RNN  consists  of 201 601
learnable  parameters,  independently  of  the  size  of  the
input  sequences.  For  RNN,  we  observe  an  average
training time of 436.07 s.

To facilitate comparison between models, we choose
not  to  leverage  on  the  capability  of  RNN  to  handle
variable-length  sequences  and  train  it  using  fixed-
length  input  sequences,  like  the  other  models.  Also,
during  the  runs,  all  forecasting  models  are  re-loaded
from disk each time they have to be queried (i.e., once
per  minute).  In  this  way,  we  do  not  leverage  on  the
hidden  state  of  RNN  to  be  updated  after  each  query,
which  should  theoretically  allow  the  model  to  retain
the  observed  dynamics  and  allow  for  computing
forecasts  even  when  provided  with  just  a  single  new
measurement as input.

5.4　Validation on synthetic workload

In  this  section  we  report  the  results  obtained  by
applying five different scaling strategies to a synthetic
workload  similar  to  the  one  depicted  in Fig. 1.
Distwalk is set such that the average CPU usage of the
cluster ramps up twice during a single run: first, with a
rather  soft  slope,  peaking  at  70% (around  the  60th
minute)  and  progressively  fading  out  until  the  120th
minute; then, with a much steeper slope, (theoretically)
peaking  at  120%,  exceeding  the  cluster  capacity.  The
first  peak  is  designed  to  expose  the  behavior  of  a
scaling  strategy  when  facing  a  workload  that  might
lead  to  saturation  but,  instead,  decreases  before
reaching  the  threshold  (80%).  In  that  case,  a  classical
strategy would not react, whereas a predictive one may
inaccurately forecast the evolution of the workload and
trigger  unnecessary  actions.  This  scenario  is  useful  to
assess  how  sensitive  to  fluctuations  and,  thus,  how
prone to yielding false alarms a strategy is.

In what follows, in the CPU usage plots (e.g., Fig. 5a),
the  blue  curve  represents  the  workload  that  each
distwalk  thread  exercises  on  the  cluster  (i.e.,  the  ideal
usage  we  would  observe  if  a  single  thread  submitted
requests  to  a  single  VM).  As  requests  are  submitted
through the LB, the result is that, eventually, each VM
in the cluster handles an equal share of the cumulative
workload  (see  Section  5.2).  In  other  words,  the
resource consumption curves do not closely follow the
blue curve because, in the beginning of each run, there
are 6 distwalk threads submitting requests to a total of
2  VMs  through  the  LB.  Therefore,  each  VM  initially
handles  the  aggregated  requests  coming  (on  average)
from 3  threads.  Instead,  the  red  curve  in Fig. 6a  (left)
refers  to  the  predicted  average  CPU  usage  of  the
cluster,  assuming  the  size  of  the  cluster  to  remain
constant.  On  the  other  hand,  client-side  response  time
plots  (Fig. 5b)  provide  a  view  of  the  system
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Fig. 5    Experimental results for the traditional (static) scaling policy.
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performance  as  observed  by  the  distwalk  client.  Each
plot  reports  curves  that  show  (on  the Y axis)  the
evolution of some response-time statistics (median, the
90th  percentile  (p90),  and  the  99th  percentile  (p99))
over time (on the X axis), where each data point refers
to  a  statistic  aggregated  over  the  data  of  a  moving
window of the previous 5 min.

As  shown in Fig. 5a,  the  static  scaling  strategy  fails
to scale-out the cluster on time when facing the second
peak.  Starting  from the  155th  minute,  it  is  possible  to
observe the system saturating its capacity (i.e., the CPU
usage  is  100%)  and  remaining  in  such  a  state  for
10 min. In the meantime, the requests submitted to the
cluster  pile  up  and  the  client-side  response  time  starts
growing  up  to  1  s,  as  visible  in Fig. 5b.  Such  a
performance  degradation  occurs  because  the  static
strategy  waits  for  3  consecutive  violations  of  the
threshold  before  triggering the  scale-out.  Furthermore,
due  to  the  artificial  set-up  delay,  the  new  VM  takes
10  min  before  starting  to  serve  requests.  Therefore,
while  the  scale-out  decision  happens  approximately  at

the 152nd minute,  the new VM starts  responding only
approximately  at  the  166th  minute  and  only  for  new
established sessions (occurring every 15 s, see Section
5.2).  Such  a  scenario  exposes  the  need  for  more
intelligent  strategies  that  are  able  to  take  scaling
decisions ahead of time. We use 4 different time-series
forecasting  algorithms  to  implement  different
predictive  scaling  strategies,  namely,  LR,  ARIMA,
MLP,  and  RNN.  For  each  strategy,  we  consider  3
different  values  for  the  amount  of  past  information  to
be  fed  to  the  underlying  model  (i.e.,  5,  10,  and  20
measurements,  with  minute  granularity)  when
computing  an  estimate  of  the  average  CPU  usage  in
15 min.  In  this  way,  we could assess  how sensitive to
the size of the input the predictive capability of a given
model is.

Figure 6 reports  the  results  obtained  using  an  LR-
based  policy,  which  generally  performs  a  better  job
than  the  static  policy  at  scaling  the  cluster  before  the
second peak,  as  it  correctly  predicts  the  growth  in  the
CPU  usage.  However,  this  predictor  also  tends  to  be
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Fig. 6    Experimental results for the LR-based scaling policy (left: CPU usage; right: client-side response time). Note that the
sub-pictures on the right side use a log-scale Y axis for the delay.
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overly  sensitive  to  the  noise  in  the  input  and  to  over-
estimate.  As  a  consequence,  in  all  the  runs,  the  LR-
based policy triggers an unnecessary scaling action also
before the first peak. For instance, when the input size
is  set  to  5  min  (see Fig. 6a),  even  though  the  cluster
scales on time before the second peak, the policy seems
to  be  overly  sensitive  to  even  small  variations  in  the
input,  such  that  the  resulting  prediction  is  very  noisy
and,  thus,  not  reliable  in  general.  On  the  other  hand,
when  the  input  size  is  set  to  20  min  (see Fig. 6c),  the
cluster  reaches  100% CPU  usage  for  3  min  (with
client-side  response  time  going  up  to  100  ms),  before
the scaling action takes effect (around the 159th minute).
This is  due to the input size being too large,  such that
the LR cannot detect the growth soon enough. In other
words,  at  the  beginning  of  the  ramp-up,  the
contribution of the newer measurements is outweighed

by the older ones, generating a sort of momentum that
delays the detection of the peak. We instead observe a
nice  behavior  when  reducing  the  input  size  to  10  min
(see Fig. 6b), with the scaling action taking effect when
the  average  CPU  usage  is  at  95% (around  the
155th  minute)  and  client-side  response  time  going  up
to 3 ms.

Figure 7 shows the results obtained with an ARIMA-
based policy.  Similar  to  the  LR-based one,  this  policy
seems  to  be  generally  overly  sensitive  to  small
variations in the input. In some cases (see Figs. 7b and
7c),  such  behavior  generates  unnecessary  scaling
actions before the first peak. When the input size is set
to  10  and  20  min  (see Figs. 6b  and 6c),  the  cluster  is
successfully  scaled  before  the  second  peak,  with  the
scaling  action  taking  effect  around  the  150th  minute.
However,  when  the  input  size  is  set  to  10  min,  the
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Fig. 7    Experimental results for the ARIMA-based scaling policy (left: CPU usage; right: client-side response time). Note that
the sub-pictures on the right side use a log-scale Y axis for the delay.
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behavior  of  the  policy  appears  significantly  more
noisy. On the other hand, when the input size is set to
5  min  (see Fig. 6a)  the  cluster  reaches  100% CPU for
3  min  (with  client-side  response  time  going  up  to
100 ms), before the scaling action takes effect (around
the 159th minute).

Figures 8 and 9 report  the  results  of  applying  the
MLP- and  RNN-based  policies,  respectively.  In
contrast to the LR-based one, it  is straightforward that
the  larger  the  input  size,  the  better  the  overall
performance.  Setting  the  input  size  to  5  min  (see
Figs. 8a  and 9a)  results  in  obtaining  a  policy  that  is
equivalent to the static one (see Fig. 5). As it is the case
for  the  static  policy,  the  inability  to  anticipate  the
second peak leads to a saturation of the system capacity
that persists for 10 min, with client-side response time
growing  up  to  1  s.  On  the  other  hand,  both  MLP and
RNN behave nicely  with  input  size  set  to  either  10 or

20  min.  When  the  input  size  is  set  to  10  min  (see
Figs. 8b and 9b),  both policies scale the cluster  just  in
time  to  prevent  saturation,  as  the  actions  take  effect
around the 155th minute, when the average CPU usage
is  at  99%.  However,  there  is  no  sign  of  performance
degradation from the client perspective, as the response
time  stays  below  4  ms.  Also,  both  policies  scale  the
cluster earlier when the input size is set to 20 min (see
Figs. 8c  and 9c),  even  though  the  predictions  appear
more noisy (that could lead to unexpected behaviors in
other  circumstances).  In  both  cases,  the  scaling  action
takes effect around the 151st minute and the client-side
response time stay below 3 ms. However, for the MLP-
based  policy  the  scaling  action  takes  effect  when  the
average  CPU  usage  is  at  89%,  while  for  the  RNN-
based one the same happens at 80%. Such difference is
likely the result of random fluctuations in the measured
load.  Remarkably,  the  RNN-based  policy  triggers  an
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Fig. 8    Experimental results for the MLP-based scaling policy (left: CPU usage; right: client-side response time). Note that the
sub-pictures on the right side use a log-scale Y axis for the delay.
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unnecessary  scale-out  before  the  first  peak,  as  the
predicted average CPU usage exceeds the threshold for
the  exact  amount  of  time  that  is  required.  The  same
happens  when  using  the  ARIMA-based  policy.  Such
behavior  exposes  the  need  for  properly  tuning,  beside
the  specific  forecasting  model,  also  the  other
components  of  the  scaling  strategy.  For  instance,  we
could  make  the  RNN-based  policy  more  robust  by
increasing  the  number  of  breaches  to  the  threshold
required to trigger the action. Automatically adjusting a
broader set  of tunables (e.g.,  cooldown period,  scaling
adjustment,  alarm  thresholds,  etc.)  is  among  the
engineering issues to be addressed in future extensions
of  the  proposed  architecture.  Approaches  based  on
neural  networks  are,  in  general,  able  to  capture  even
fairly  complex  non-linear  relations.  However,  in  this
case,  an  input  size  of  5  min  is  clearly  not  enough  to

provide  such  models  with  the  information  required  to
output a 15-min forecast.

Table 2 reports  the  mean  average  percentage  error
(MAPE)  made  by  each  predictor  configuration  during
our runs. The MAPE was computed by considering the
sum of the CPU usage of all VMs, as ground truth, and
the predicted values multiplied by the number of active
VMs at  each  specific  point  in  time  (i.e.,  the  predicted
sum of the CPU usage of all VMs). Such results further
support our conclusions regarding which configuration
is the best for each predictor. For instance, we can see
that  LR  performs  better  when  the  input  is  set  to  5  or
10  min  (although  the  former  leads  to  a  very  sensitive
scaling  policy).  Conversely,  in  general,  the  bigger  the
input,  the  better  the  performance  of  the  other
predictors.

Tables 3 and 4 report  the average and percentiles  of
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Fig. 9    Experimental results for the RNN-based scaling policy (left: CPU usage; right: client-side response time). Note that the
sub-pictures on the right side use a log-scale Y axis for the delay.
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the  response-time  observed  by  the  client  during  the
peaks  of  our  load profile.  From the  client  perspective,
when  facing  the  first  peak,  all  the  considered  policies
basically  guarantee  the  same  performance  level.
Remarkably,  leveraging  on  an  additional  compute
instance (e.g., as with the RNN-based policy) does not

make  any  difference,  thus  it  is  just  a  waste  of
computing  resources.  In  contrast,  by  looking  at
Table 4,  we  can  appreciate  significant  performance
degradation  for  some  specific  policies.  For  instance,
bad values of the 99.9th percentile (p99.9) are obtained
with  the  static  policy,  the  LR-based  policy  with  too

 

Table 2    Prediction errors (MAPE) observed for the considered runs.

Policy
MAPE

Input sequence length=5 min Input sequence length=10 min Input sequence length=20 min
LR 0.25 0.29 0.38

ARIMA 0.22 0.26 0.15
MLP 0.52 0.18 0.14
RNN 0.44 0.18 0.15

 

Table 3    Descriptive  statistics  of  the  client-side  response  time  observed  during  the  experimental  runs,  when  the  cluster  is
facing the first peak (0th−120th minutes) in CPU usage.

Policy
Response time (ms)

Avg p50 p90 p95 p99 p99.5 p99.9
Static 2.12 1.81 3.18 3.73 3.96 4.08 8.12
LR (5) 3.30 1.79 2.76 3.56 3.92 4.03 9.41
LR (10) 2.02 1.79 2.81 3.57 3.90 3.99 6.59
LR (20) 1.95 1.75 2.72 2.95 3.82 3.90 5.89

ARIMA (5) 2.07 1.82 2.90 3.74 3.95 4.03 7.19
ARIMA (10) 2.03 1.80 2.78 3.16 3.92 4.17 7.79
ARIMA (20) 2.02 1.80 2.79 3.49 3.91 4.02 8.52

MLP (5) 2.03 1.80 2.82 3.68 3.90 3.97 6.88
MLP (10) 2.05 1.80 2.89 3.71 3.93 4.01 7.47
MLP (20) 2.04 1.80 2.81 3.69 3.91 4.00 7.65
RNN (5) 2.07 1.79 2.97 3.72 3.94 4.04 7.78
RNN (10) 2.01 1.79 2.79 3.57 3.90 4.00 7.80
RNN (20) 2.72 1.74 2.77 3.50 3.87 3.99 14.36

 

Table 4    Descriptive  statistics  of  the  client-side  response  time  observed  during  the  experimental  runs,  when  the  cluster  is
facing the second peak (121st−220th minutes) in CPU usage.

Policy
Response time (ms)

Avg p50 p90 p95 p99 p99.5 p99.9
Static 47.06 1.80 58.12 394.05 824.53 924.59 1050.76
LR (5) 1.89 1.67 2.63 2.78 3.79 3.92 7.82
LR (10) 1.88 1.67 2.60 2.75 3.77 3.91 7.69
LR (20) 4.90 1.66 2.69 3.67 84.76 245.82 381.07

ARIMA (5) 3.42 1.72 2.76 3.72 39.48 63.80 298.10
ARIMA (10) 1.96 1.70 2.68 2.81 3.80 4.48 9.10
ARIMA (20) 1.97 1.70 2.66 2.78 3.81 4.51 11.71

MLP (5) 63.63 1.84 198.39 522.05 953.45 1051.49 1278.05
MLP (10) 1.99 1.69 2.66 2.84 3.84 4.56 11.00
MLP (20) 1.94 1.67 2.64 2.77 3.73 3.89 9.53
RNN (5) 38.04 1.78 23.17 319.82 755.57 862.19 1024.15
RNN (10) 4.50 1.68 2.65 2.82 3.78 4.03 103.55
RNN (20) 1.90 1.65 2.62 2.72 3.69 3.81 6.12
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long inputs, and both the ARIMA and the neural-based
policies  with  too  short  inputs.  On  the  other  hand,
sufficiently  good  results  are  obtained  using  the  LR-
based  policy  with  short  inputs  and  the  ARIMA- and
ANN-based models with sufficiently long inputs.

Table 5 reports  the  overhead  imposed  by  the
proposed forecasting component at each activation that,
in our experiments, happens once per minute. The total
time  includes  interacting  with  the  Monasca  APIs  to
fetch the data needed as input. Predictive policies based
on  LR,  MLP,  and  RNN  all  exhibit  quite  similar
overheads,  in  the  range  of  additional  60  ms  of
processing time every minute, which seems acceptable
in the considered scenario. On the other hand, ARIMA
exhibits  quite  heavier  overheads.  Notice  that  RNN
performance  is  measured  in  a  pessimistic  setting,  i.e.,
assuming to unfold the network on the full sequence in
order  to  obtain  a  prediction.  The  ability  of  RNN  to
keep a dynamic memory of the sequence history could
be  leveraged  on  to  compute  the  prediction  more
efficiently.  In  that  case,  computing  time  would  be
roughly equivalent to those reported in Table 5, divided
by the input sequence length.

5.5　Validation on real workload traces

Our  approach  was  also  validate  against  a  dataset
exported  from  a  real  production  environment.  We
consider  the  data  provided  by  use-case  D  of  the
RECAP[12] EU  project,  reporting  the  requests  handled
by  3  nodes  of  a  CDN  managed  by  a  British  service
provider  (from 2016 to 2017).  We convert  a  subset  of
these data to a 2 h long trace compatible with distwalk,
such  that  we  could  generate  similar  traffic  on  our
infrastructure. Similar to the previous runs, the client is

set  to spawn 6 threads,  each one maintaining the rates
specified  in  the  trace  for  an  interval  of  1  min  each.
Each  thread  is  also  forced  to  break  its  work  in  1000
sessions.

The purpose of validating our approach against a real
workload  is  twofold:  (1)  we  can  assess  the
effectiveness  of  our  approach  in  a  production-like
scenario,  and  (2)  we  can  evaluate  its  ability  to
generalize  workloads  that  do  not  quite  resemble  what
the  underlying  models  observed  during  training.
Similar  to  the  previous  runs,  we  considered  the  static
policy as a baseline and compared its performance with
the predictive ones. For brevity, we only show the plots
for  the  RNN-based  policy,  which  exhibited  the  best
overall  performance. Figure 10a  (left)  shows  that  the
static policy cannot prevent the system from saturating
for 20 min (from the 48th minute to the 69th minute).
The scaling decision is only triggered around the 42nd
minute,  which  is  too  late,  considering  the  artificial
10  min  delay  before  new  VMs  start  responding.
Conversely, Fig. 10b  shows  the  RNN-based  policy
acting  just  in  time  before  the  system  completely
saturates  (e.g.,  around  the  51st  minute  and  the  58th
minute). Also, the static policy run takes 30 min more
to terminate because, during the saturation, the system
was not able to respond to distwalk requests and caused
a  delay  for  the  client  to  start  the  subsequent  sessions.
By comparing the plots reporting the client-side delays,
we  can  see  that,  even  though  the  RNN-based  policy
induces  peaks  of  1  s,  it  does  not  lead  to  a  consistent
increase of the delays, as the static policy does. This is
also  shown in Table 6,  where  we can see  the  p99.9  in
the  static  policy  case  being  4  times  greater  than  the
RNN-based policy case. Despite the workload used for

 

Table 5    Average overhead imposed by the proposed forecasting component, for the considered predictors.
Policy Input sequence length (min) Total average overhead (ms) Processing average overhead (ms)

LR
5 182.7 58.8
10 224.5 58.4
20 356.7 71.1

ARIMA
5 181.2 71.5
10 245.2 102.9
20 59.1 218.6

MLP
5 151.9 54.0
10 213.1 60.5
20 373.0 73.9

RNN
5 171.6 66.7
10 256.6 72.8
20 340.8 80.7
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this additional validation does not quite resemble what
the RNN observed during training, the model exhibited
a reasonable generalization ability. However, to obtain
a  higher  prediction  accuracy,  one  should  have  trained
the  model  also  on  some  prior  segment  of  such  new
data, something we omit here for brevity.

5.6　Reproducibility

For  reproducibility,  this  work  comes  with  a  public
companion repository[70] including: the Heat templates
to  set  up  the  infrastructure;  the  configuration  files  for
the  different  tools  (e.g.,  the  synthetic  distwalk
workload);  the  raw  results  produced  by  our
experiments;  the  code  to  generate Figs. 5−9 and
Tables 3−5; the synthetic dataset; and the code to train
the  forecasting  models  (pre-trained  models  are  also
included).

6　Conclusion and Future Work

In this paper, we proposed an architecture that enables
predictive  operations  in  cloud  infrastructures.  We

prototyped  our  approach  using  OpenStack,  extending
Monasca  to  ingest  predictive  metrics  that  reflect  the
expected evolution of the monitored system in the near
future. Such metrics can be seamlessly combined with
the  regular  ones  to  build  operations  policies  that  go
beyond  standard  reactive  strategies.  As  a  case-study,
we  realized  a  predictive  elasticity  controller  for  a
cluster  of  VMs (managed by Senlin),  which is  able  to
anticipate  workload  changes  that  might  not  be  easily
handled  by  classical  threshold-based  rules.  The
approach  was  validated  both  on  synthetic  and  on  real
workload traces from a production CDN. Remarkably,
it  proved  to  be  particularly  useful  for  services  with
non-negligible instance spawning time, a commonplace
condition  in  production  environments[3] (e.g.,  creating
a  new  VMs  and  applying  the  required  configurations
may require tens of minutes).

Future  work. We  plan  to  better  integrate  our
forecasting component within OpenStack. For instance,
our  idea  is  to  provide  a  number  of  standard  predictor
implementations  that  can  easily  be  deployed
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Fig. 10    Experimental validation on real workload traces (left: CPU usage; right: client-side response time).

 

Table 6    Descriptive statistics of the client-side response time observed during the experimental validation on real workload
traces (focus on the peak, 45th−90th minutes).

Policy
Response time (ms)

Avg p50 p90 p95 p99 p99.5 p99.9
Static 879.01 426.26 2237.84 3019.86 3827.09 3940.71 4033.82

RNN (20) 163.64 20.62 549.91 687.74 883.46 943.71 1061.97

  Giacomo Lanciano et al.:  Extending OpenStack Monasca for Predictive Elasticity Control 335

 



by  an operator—which is  not  necessarily  an  ML
expert—through the  OpenStack  CLI.  Regarding  the
orchestration logics, we plan to explore additional ML
techniques  (e.g.,  RL)  to  experiment  with  alternative
scaling policies,  rather  than only relying on threshold-
based  approach.  However,  for  them to  be  dependable,
learning-based  policies  cannot  be  delivered  as  black-
boxes.  Therefore,  we  also  plan  to  provide  human
operators  with  the  ability  to  query  the  models  to  get
explanations  about  their  outputs[71, 72],  such  that  they
can troubleshoot and fix possible erroneous behaviors.
Regarding  the  model  training,  we  plan  to  provide
means for automatic periodic re-training on fresh data.
Additionally,  we will  introduce concept drift  detection
to trigger  model  updates  whenever  the current  version
starts exhibiting performance drops, e.g., as the authors
of Ref. [62] did. In this regard, our architecture would
certainly  benefit  from  integrating  continual  learning
techniques[73]. We will also conduct a deeper validation
of  our  architecture  by  considering  additional  datasets
from  real  production  workloads.  In  this  way,  we  will
address  scalability  issues  that  might  arise  in  massive
deployment  scenarios,  with  thousands  of  predictive
elasticity loops that control different services, possibly
throughout  a  Cloud-Fog-Edge  architecture[74].  In  this
regard,  a  promising  possibility  is  to  leverage  on
Monasca’s  scalable  analytics  processing  architecture,
which is based on Apache Storm.
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