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We present the first nonlinear term of the higher spin curvature which is covariant with respect to de-
formed gauge transformations that are linear in the field. We consider the case of spin 3 after presenting
spin 2 as an example, and then construct the general spin s quadratic term of the de Wit–Freedman
curvature.
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1. Introduction

Geometry plays a very important role in field theory. Gen-
eral relativity is the most beautiful and obvious example to prove
this. In higher spin gauge field theory the elements of geome-
try were studied first in the classical paper by Bernard de Witt
and Daniel Freedman [1]. Geometrical interpretations of Yang–Mills
theory and general relativity hint on possible geometric structures
of higher spin gauge field theories in general [1–5]. For the well
analyzed existing theories gauge symmetry itself has a hidden ge-
ometrical origin. Since the gauge symmetry is a redundancy in the
(non-observable) variables of the physical system, the observables
of any gauge theory are gauge invariant. For electrodynamics the
observables are the components of the Maxwell tensor Fμν (cur-
vature of the electromagnetic field Aμ), for gravity these are the
components of the Riemann curvature tensor Rμνλρ (constructed
from the dynamical field, the metric tensor gμν ). In analogy with
these cases, in the higher spin gauge field theory the curvature
of the higher spin field should be observable. The linear curva-
ture as well as linearized “Cristoffel symbols” and connections for
any higher spin field are known from [1]. Taking traces of the
linearized curvature one can get geometrical free equations of mo-
tion for the unconstrained higher spin gauge field [2,6], which is

* Corresponding author at: Yerevan Physics Institute, Alikhanian Br. Str. 2, 0036
Yerevan, Armenia.

E-mail addresses: manvel@physik.uni-kl.de (R. Manvelyan), karapet@yerphi.am
(K. Mkrtchyan), ruehl@physik.uni-kl.de (W. Rühl), mtovmasyan@ysu.am
(M. Tovmasyan).
0370-2693/$ – see front matter © 2011 Published by Elsevier B.V.
doi:10.1016/j.physletb.2011.03.069
nonlocal, but can be localized with the help of partial gauge fix-
ing after which the geometrical equation coincides with Fronsdal’s
equation [7].

There are two most common covariant approaches to the task
under consideration. The first one is the frame-like formalism,
which is developed by Vasiliev and coauthors (see [8] for a re-
view). The second approach is a generalization of linearized grav-
ity — the metric-like theory of higher spin fields [7] (for recent
development see [9] and references therein). We use the second
one.

In this Letter we construct a higher spin curvature that is of
second order in the field, which can be used to find that part of
the geometric equation of motion that is quadratic in the field,
which, after the same partial gauge fixing (ruling out the trace of
the gauge parameter and the double trace of the field), may or may
not coincide with the corresponding second order of Fronsdal’s
equation of motion corresponding to the cubic Lagrangian derived
in [10]. The cubic (self)interaction Lagrangian and the correspond-
ing gauge transformation laws for Fronsdal’s fields that are of first
order on field, are known [10–18]. The connection between these
two independent constructions is a subject for future investiga-
tions. Now we are going to construct the first nonlinear term in the
higher spin curvature independently, and with no use of Fronsdal’s
constraints on the fields involved. In order to get a gauge covariant
curvature, we don’t need to impose the constraint of tracelessness
on the gauge parameter respectively the constraint of double trace-
lessness on the higher spin field. We don’t make use of Fronsdal’s
theory in this Letter, because the nonlinear curvature that we con-
struct here, describes not only Fronsdal’s (constrained) fields, but,
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if it exists to all orders in the field, gives us a possibility for the
construction of theories of Higher Spin fields alternative to Frons-
dal’s (consider the nonlinear continuation of conformal higher spin
theory [19,20] as an example).

In Section 2 we discuss a simple example: linearized gravity
and construct the second order of the Riemann curvature using
the gauge covariance condition. In Section 3 we construct the cur-
vature of second order in the field for the spin 3 gauge field. In
the final Section 4 we derive that part of the nonlinear gauge co-
variant curvature that is of second order in the field for any higher
spin field which reproduces all lower spin cases and has the same
symmetry properties as the linear curvature.

The most remarkable property of the curvature that is of sec-
ond order in the field is that it is a sum of terms, which are all
squares of the linear connection Γ (s−1) , the s minus first member
in the hierarchy of de Witt–Freedman–Christoffel symbols [1]. Us-
ing shorthands explained later, we can summarize the curvature
up to second order in the field in the following compact way

R = dΓ + Γ � Γ (1.1)

for any higher spin gauge field. It is worth noting at the end of
this introduction that our result for the second order curvature
involves only the square of generalized Christoffel symbols con-
structed from the same higher spin gauge field. In other words,
on this stage of the curvature construction there is no contribu-
tion coming from any other higher spin field which could be found
in the frame-like formulation of [5]. The explanation of this phe-
nomena is the following: Quadratic deformations of the de Witt–
Freedman curvature correspond to the cubic selfinteraction of the
higher spin gauge fields and the linear deformation of the gauge
algebra [21,13]. On the linear level the closure of the gauge trans-
formation algebra ([δ(0), δ(1)] ∼ δ(0)) needs no share of other higher
spin field transformations (see [21] for the original discussion and
[13] for additional explanations). As a result the cubic selfinter-
action can always be formulated as a local interaction for each
separate spin [13], and our second order curvature is a realization
of the same level of the gauge symmetry algebra. This nice prop-
erty ceases to hold on the next stage of curvature or selfinteraction
because the commutator of two first order gauge transformations
([δ(0), δ(2)]+[δ(1), δ(1)] ∼ δ(1)) doesn’t close without additional con-
tributions of all other higher spin fields [21,22]. What can happen
with the next order curvature and how is it connected with the
corresponding frame-like formulation involving other spin contri-
butions [5] we leave for future publications.1

2. Quadratic term of linearized Riemann curvature

We start from a consideration of the linearized Riemann curva-
ture (spin 2 case). We use the following self consistency definitions
for covariant derivatives, Christoffel symbols and curvature:

∇μVν = ∂μVν + Γ
ρ
μν Vρ (2.1)

[∇μ,∇ν ]Vλ = Rμν,λ
ρ Vρ (2.2)

Γρ,μν = gρσ Γ σ
μν = 1

2
(∂ρ gμν − ∂μgνρ − ∂ν gμρ) (2.3)

Rμν,λ
ρ = Rμν,λδ gδρ = ∂μΓ

ρ
νλ − ∂νΓ

ρ
μλ + Γ σ

μλΓ
ρ
νσ − Γ σ

νλΓ
ρ
μσ

(2.4)

Then we note that expression (2.3) is very convenient for a lin-
earization and we can obtain a linearized Christoffel symbol just

1 Discussion of a possible mixture of different spins in the next order of curvature
will follow in the future as well as possible continuation to the higher orders of
interaction and continuation to AdS. These tasks are closely related.
replacing the metric gμν by the linearized field hμν = gμν − ημν ,
where ημν is the Minkowski metric. To obtain the correspond-
ing expression for the curvature ready for linearization we can
use (2.3) and after some algebra write the full covariant curvature
Rμν,λρ in the form

Rμν,λρ = ∂μΓρ,νλ − ∂νΓρ,μλ − gσδ(Γσ ,μλΓδ,νρ − Γσ,νλΓδ,μρ)

(2.5)

Then substituting in (2.5)

gμν = ημν − hμν + hμ
σ hνσ − · · · (2.6)

2Γρ,μν = ∂ρhμν − ∂μhνρ − ∂νhμρ (2.7)

we arrive at the following expansion of the curvature up to the
third order in the field:

Rh
μν,λρ = R(1)

μν,λρ + R(2)
μν,λρ + R(3)

μν,λρ + · · · (2.8)

2R(1)
μν,λρ = ∂μ∂ρhνλ − ∂ν∂ρhμλ − ∂μ∂λhνρ + ∂ν∂λhμρ (2.9)

R(2)
μν,λρ = −ησδ(Γσ ,μλΓδ,νρ − Γσ,νλΓδ,μρ) (2.10)

R(3)
μν,λρ = hσδ(Γσ ,μλΓδ,νρ − Γσ,νλΓδ,μρ) (2.11)

Finalizing this section we note that the same expansion could
be recovered from the initial linearized curvature (2.9) and gauge
invariance of order zero in the field δ(0)hμν = ∂μεν + ∂νεμ using
the “covariant” (not invariant) Noether’s equation:

δ(1)R(1)
μν,λρ + δ(0)R(2)

μν,λρ = Lε R(1)
μν,λρ (2.12)

where Lε R(1)
μν,λρ is the Lie derivative of the first order curvature

Lε R(1)
μν,λρ = ερ∂ρ R(1)

αβ,μν + ∂αερ R(1)
ρβ,μν + ∂βερ R(1)

αρ,μν

+ ∂μερ R(1)
αβ,ρν + ∂νε

ρ R(1)
αβ,μρ (2.13)

It is easy to see that (2.10) is the solution of Eq. (2.12) with the
following gauge transformation of first order in the field:

δ(1)hμν = ελΓλ,μν + ∂μ fν(h, ε) + ∂ν fμ(h, ε) (2.14)

where fμ(h, ε) is at this stage an arbitrary vector function linear
in the field h and the parameter ε . The linearized curvature (2.9)
is invariant with respect to any gradient transformation δhμν =
∂μ fν + ∂ν fμ with the arbitrary vector parameter fμ . Neverthe-
less the next order of Noether’s procedure fixes this ambiguity,
and we obtain the well-known gravitational gauge transformation
δ(1)hμν = ερ∂ρhμν + ∂μερhνρ + ∂νε

ρhμρ ( fμ = hμρερ ) in the first
order on the field.

In the next sections we generalize this covariant Noether’s pro-
cedure for the spin 3 and the general spin s case constructing the
unknown quadratic part of the higher spin curvature.

3. The case of spin 3

To handle the spin 3 case we should introduce an additional
nonabelian charge to avoid trivialization of the theory [21]. Then
our spin three field ha

αβγ and the symmetry parameter εa
βγ carry

an additional Lie algebra basis index. Introducing the correspond-
ing zero order gauge transformation in the field

δ0
εha

αβγ = 3∂(αεa
βγ ) = ∂αεa

βγ + ∂βεa
αγ + ∂γ εa

αβ (3.1)

we define the first order curvature
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Ra(1)

αα′,ββ ′,γ γ ′

= ∂α∂β∂γ ha
α′β ′γ ′ − ∂α′∂β∂γ ha

αβ ′γ ′ − ∂α∂β ′∂γ ha
α′βγ ′

− ∂α∂β∂γ ′ha
α′β ′γ + ∂α′∂β ′∂γ ha

αβγ ′ + ∂α′∂β∂γ ′ha
αβ ′γ

+ ∂α∂β ′∂γ ′ha
α′βγ − ∂α′∂β ′∂γ ′ha

αβγ (3.2)

from the standard condition of gauge invariance

δ0
ε Ra(1)

αα′,ββ ′,γ γ ′ = 0 (3.3)

Turning to the next step we should solve the following Noether’s
equation

δ0
ε Ra(2)

αα′,ββ ′,γ γ ′ + δ1
ε Ra(1)

αα′,ββ ′,γ γ ′ = 0 + O
(

Ra(1)

αα′,ββ ′,γ γ ′ , εbμν
)

(3.4)

where O (Ra(1)

αα′,ββ ′,γ γ ′ , εbμν) represents some expression that is
linear in the first order curvature and the gauge parameter and
has two derivatives, which plays the role of the spin 3 generaliza-
tion of the Lie derivative in (2.12).

To present a solution of (3.4) we should first introduce the
spin 3 generalization of the Christoffel symbol (2.7):

Γ a
μν,αβγ = ∂μ∂νha

αβγ

− 1

2
∂α∂μha

νβγ − 1

2
∂α∂νha

μβγ − 1

2
∂β∂μha

ανγ

− 1

2
∂β∂νha

αμγ − 1

2
∂γ ∂μha

αβν − 1

2
∂γ ∂νha

αβμ

+ ∂α∂βha
μνγ + ∂α∂γ ha

μβν + ∂β∂γ ha
αμν (3.5)

This expression differs from the second generalized Christoffel
symbol of de Wit–Freedman [1] only by an additional Lie alge-
bra index. Then we can present the following expressions for the
second order curvature

Ra(2)

αα′,ββ ′,γ γ ′

= f abc(Γ bμν
αβγ Γ c

μν,α′β ′γ ′

− Γ
bμν
α′βγ Γ c

μν,αβ ′γ ′ − Γ
bμν
αβ ′γ Γ c

μν,α′βγ ′ − Γ
bμν
αβγ ′Γ c

μν,α′β ′γ

+ Γ
bμν
α′β ′γ Γ c

μν,αβγ ′ + Γ
bμν
α′βγ ′Γ c

μν,αβ ′γ + Γ
bμν
αβ ′γ ′Γ c

μν,α′βγ

− Γ
bμν
α′β ′γ ′Γ c

μν,αβγ

)
(3.6)

and the first order gauge transformation

δ1
εha

αβγ = f abc(εbμν∂μ∂νhc
αβγ

+ ∂αεbμν∂μhc
νβγ + ∂βεbμν∂μhc

ανγ + ∂γ εbμν∂μhc
αβν

+ ∂α∂βεbμνhc
μνγ + ∂α∂γ εbμνhc

μβν + ∂β∂γ εbμνhc
αμν

)
(3.7)

This form of δ1
εha

αβγ is not unique at this stage of Noether’s pro-

cedure and defined due to δ0
εha

αβγ with linearly field dependent
gauge parameter. This can be easily seen comparing (3.4) and (3.3).

Inserting (3.6) and (3.7) into Noether’s equation (3.4) we obtain
the following nice result

δ0
ε Ra(2)

αα′,ββ ′,γ γ ′ + δ1
ε Ra(1)

αα′,ββ ′,γ γ ′

= f abc(εbμν∂μ∂ν Rc(1)

αα′,ββ ′,γ γ ′ + ∂αεbμν∂ν Rc(1)

μα′,ββ ′,γ γ ′

+ ∂α′εbμν∂ν Rc(1)

αμ,ββ ′,γ γ ′ + ∂βεbμν∂ν Rc(1)

αα′,μβ ′,γ γ ′

+ ∂β ′εbμν∂ν Rc(1)
′ ′ + ∂γ εbμν∂ν Rc(1)

′ ′ ′
αα ,βμ,γ γ αα ,ββ ,μγ
+ ∂γ ′εbμν∂ν Rc(1)

αα′,ββ ′,γμ + ∂α∂βεbμν Rc(1)

μα′,νβ ′,γ γ ′

+ ∂α∂γ εbμν Rc(1)

μα′,ββ ′,νγ ′ + ∂β∂γ εbμν Rc(1)

αα′,μβ ′,νγ ′

+ ∂α′∂β ′εbμν Rc(1)

αμ,βν,γ γ ′ + ∂α′∂γ ′εbμν Rc(1)

αμ,ββ ′,γ ν

+ ∂β ′∂γ ′εbμν Rc(1)

αα′,βμ,γ ν + ∂α′∂βεbμν Rc(1)

αμ,νβ ′,γ γ ′

+ ∂α′∂γ εbμν Rc(1)

αμ,ββ ′,νγ ′ + ∂β ′∂γ εbμν Rc(1)

αα′,βμ,νγ ′

+ ∂β ′∂αεbμν Rc(1)

να′,βμ,γ γ ′ + ∂γ ′∂αεbμν Rc(1)

μα′,ββ ′,γ ν

+ ∂γ ′∂βεbμν Rc(1)

αα′,μβ ′,γ ν

)
(3.8)

So we see that interpreting the right-hand side of (3.7) as a gen-
eralization of the Lie derivative of symmetric covariant tensors, we
obtain the r.h.s. of (3.8) as constructed in the same way as “Lie
derivative” of the first order curvature Ra(1)

αα′,ββ ′,γ γ ′ with three pairs
of antisymmetrized indices. Finally note also that the first order
transformation (3.7) can be rewritten in the following form

δ1
εha

αβγ

= f abc[∂α

(
εbμν∂μhc

νβγ − εbμν∂βhc
μνγ − εbμν∂γ hc

μνβ

)
+ ∂β

(
εbμν∂μhc

νγ α − εbμν∂γ hc
μνα − εbμν∂αhc

μνγ

)
+ ∂γ

(
εbμν∂μhc

ναβ − εbμν∂αhc
μνβ − εbμν∂βhc

μνα

)
+ ∂α∂β

(
εbμνhc

μνγ

) + ∂β∂γ

(
εbμνhc

μνα

) + ∂γ ∂α

(
εbμνhc

μνβ

)
+ εbμνΓ c

μν,αβγ

]
(3.9)

and therefore we can separate in (3.9) at this stage inessential
symmetrized gradients (i.e. δ0 with field dependent parameter)
and obtain the essential part of δ1

εha
αβγ in the following elegant

form:

δ̃1
εha

αβγ = f abcεbμνΓ c
μν,αβγ (3.10)

4. The general spin s case

To start the work with general symmetric tensors we follow the
notations of our previous papers (see [23] and references therein)
and introduce an additional formal vector variable aμ to handle
rank s symmetric tensors as the monomials

h(s)(x;a) = hμ1μ2···μs (x)aμ1aμ2 · · ·aμs (4.1)

In these notes we need to define only two operations to perform
all calculations:

• Symmetrized gradient

∂(μs+1hμ1μ2···μs) ⇒ (a∇)h(s)(x;a) (4.2)

• Contraction inside the set of symmetrized indices (star prod-
uct):

T (x)μ1μ2···μs Hμ1μ2···μs (x) ⇒ T (s)(x;a) ∗a H (s)(x;a)

where ∗a = 1

(s!)2

s∏
i=1

←−
∂

μi
a

−→
∂ a

μi
(4.3)

To distinguish easily between “a” and “x” spaces we introduce for
space–time derivatives ∂

∂xμ the notation ∇μ , (a∇) = aμ∇μ .
Then using these notations we can write a zero order gauge

transformation (symmetrized gradient) in the following form:

δ(0)h
(s)(x;a) = (a∇)ε(s−1)(x;a) (4.4)



190 R. Manvelyan et al. / Physics Letters B 699 (2011) 187–191
where ε(s−1)(x;a) is a rank s − 1 symmetric tensor gauge parame-
ter for the spin s gauge field.2 Other important expressions are the
hierarchy of first order generalized Christoffel symbols introduced
in [1]. These (n, s) bitensors

Γ
(n)
(1) (x;b,a) ≡ Γ

(n)
(1) (x)ρ1···ρn,μ1···μs bρ1 · · ·bρn aμ1 · · ·aμs (4.5)

can be written in our notation in an elegant form:

Γ
(n)
(1) (x;b,a) =

n∑
k=0

(−1)k

k! (b∇)n−k(a∇)k(b∂a)
kh(s)(x;a) (4.6)

Inserting (4.4) into the latter we obtain the transformation law for
these objects:

δ(0)Γ
(n)
(1) (x;b,a) = (−1)n

n! (a∇)n+1(b∂a)
nε(s−1)(x;a) (4.7)

So we see that the last term of the hierarchy of the linearized
curvature

R(1)(x;b,a) = Γ
(s)
(1) (x;b,a)

=
s∑

k=0

(−1)k

k! (b∇)s−k(a∇)k(b∂a)
kh(s)(x;a) (4.8)

is invariant with respect to the gauge transformation (4.4):

δ(0)R(1)(x;b,a) = 0 (4.9)

Another important object for the present considerations is
the last one before the curvature Christoffel symbol Γ (x;b,a) =
Γ s−1

(1) (x;b,a) with the gauge transformation

δ(0)Γ (x;b,a) = (−1)s−1(a∇)sε(s−1)(x;b) (4.10)

It is worth to note that Γ (x;b,a) reproduces correctly (2.7) for
s = 2 and (3.5) for s = 3. The expression (4.8) can be written in
another useful form:

R(1)(x;b,a) = 1

(s!)2

[
(b∂d)(a∂e) − (b∂e)(a∂d)

]s
(d∇)sh(s)(x; e)

(4.11)

Finally using (4.6), (4.8) and (4.11) we present the connection be-
tween Γ (x;b,a) and curvature R(1)(x;b,a)[
(b∇)(a∂e) − (a∇)(b∂e)

]
Γ (x; c, e)

= 1

s + 1

[
(b∂c)(a∂e) − (a∂c)(b∂e)

]
R(1)(x; c, e) (4.12)

Now we are ready to derive the second order curvature. First we
propose the following generalization of (3.10) and (2.14) for the
essential part of the first order spin s gauge transformation:

δ(1)h
(s)(x;a) = ε(s−1)(x; c) ∗c Γ (x; c,a) (4.13)

Then we calculate the first order variation of the first order curva-
ture (4.11)

δ(1)R(1)(x;b,a)

= 1

(s!)2

[
(b∂d)(a∂e) − (b∂e)(a∂d)

]s

×
{[

(d∇)sε(s−1)(x; c)
] ∗c Γ (x; c, e)

2 We do not necessarily discuss constrained higher spin fields here (Fronsdal’s
formulation [7]), our discussion is relevant also for unconstrained higher spin fields
representing general rank s symmetric tensors.
+
s∑

k=1

(
s

k

)[
(d∇)s−kε(s−1)(x; c)

] ∗c (d∇)kΓ (x; c, e)

}
(4.14)

Applying (4.10) and (4.12) we can rewrite the latter variation in
the following way:

δ(1)R(1)(x;b,a)

= (−1)s−1

(s!)2
A(b,a; ∂d, ∂e)

sδ(0)Γ (x; c,d) ∗c Γ (x; c, e)

+ 1

(s + 1)!
s∑

k=1

(
s

k

)[
A(b,a;∇, ∂e)

]s−k
ε(s−1)(x; c) ∗c

× [
A(b,a;∇, ∂e)

]k−1
A(b,a; ∂c, ∂e)R(1)(x; c, e) (4.15)

where

A(b,a;∇, ∂e) = (b∇)(a∂e) − (a∇)(b∂e) (4.16)

A(b,a; ∂c, ∂e) = (b∂c)(a∂e) − (a∂c)(b∂e) (4.17)

So looking at (4.15) we see that after functional integration in the
first line we obtain a solution of the expected covariant Noether’s
equation:

δ(1)R(1)(x;b,a) + δ(0)R(2)(x;b,a) = Lε R(1)(x;b,a) (4.18)

where

R(2)(x;b,a) = 1

2(s!)2

[
(b∂d)(a∂e) − (b∂e)(a∂d)

]s

× Γ (x; c,d) ∗c Γ (x; c, e) (4.19)

is the second order curvature and

Lε R(1)(x;b,a)

= 1

(s + 1)!
s∑

k=1

(
s

k

)[
A(b,a;∇, ∂e)

]s−k
ε(s−1)(x; c)

× ∗c
[

A(b,a;∇, ∂e)
]k−1

A(b,a; ∂c, ∂e)R(1)(x; c, e) (4.20)

is the generalized Lie derivative or spin s reparametrization. The
formulas (4.12) and (4.19) make (1.1) obvious. It is also obvious
from (4.19) that odd spin fields require additional Yang–Mills like
internal symmetry indices for nontriviality.

To compare the results of this Letter to the ones obtained in
AdS space by Vasiliev and collaborators (see [5] and references
therein), one should continue this results from flat space to the
AdS as it was done for linear curvatures in [24,25]. The AdS con-
tinuation of the obtained second order curvature is relevant also
to AdS/CFT tasks (see [23,26–28]), and we hope to be able to do it
in near future.
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