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A B S T R A C T   

Background: There is a growing body of evidence on the effect of the local environment exposure on cancer 
susceptibility. Nonetheless, several of the associations remain controversial. Moreover, our understanding of the 
possible interaction between the local environment and the genetic variability is still very limited. 
Objective: The aim of this study was to clarify the role of the local environment and its possible interplay with 
genetics on common cancers development. 
Methods: Using the UK Biobank (UKBB) prospective cohort, we selected 12 local environment exposures: nitrogen 
oxides, nitrogen dioxides, particulate matter (10 and 2.5 μm), noise pollution, urban traffic, living distance from 
the coast, percentage of greenspace, natural environment, water, and domestic garden within 1000 m from the 
residential coordinates of each participant. All these exposures were tested for association with 17 different types 
of cancer for a total of 53,270 cases and 302,645 controls. Additionally, a polygenic score (PGS) was computed 
for each cancer, to test possible gene-environment interactions. Finally, mediation analyses were carried out. 
Results: Thirty-six statistically significant associations considering multiple testing (p < 2.19 × 10− 4) were 
observed. Among the novel associations we observed that individuals living farther from the coast had a higher 
risk of developing prostate cancer (OR = 1.13, CI95% = 1.06–1.20, P = 1.98 × 10− 4). This association was 
partially mediated by physical activity (indirect effect (IE) = -8.48 × 10− 7) and the time spent outdoor (IE =
9.07 × 10− 6). All PGSs showed statistically significant associations. Finally, genome-environment interaction 
analysis showed that local environment and genetic variability affect cancer risk independently. 
Discussion: Living close to the coast and air pollution were associated with a decreased risk of prostate cancer and 
skin melanoma, respectively. These findings from the UKBB support the role of the local environment on cancer 
development, which is independent from genetics and may be mediated by several lifestyle factors.   

1. Introduction 

Over the last years there has been a growing body of evidence linking 
the local environment (i.e., all the exposures that characterize the built 

environment in which an individual lives) and its associated pollution 
and lifestyle with cancer susceptibility (Fazeli Dehkordi et al., 2022). To 
date, numerous studies aimed at clarifying these associations, most of 
which are related to the damaging effects of air pollution on different 
types of cancer (Pourvakhshoori et al., 2020). Nevertheless, the findings 
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reported for most of these environmental variables are controversial 
(Fazeli Dehkordi et al., 2022; Zare Sakhvidi et al., 2022). 

The effect of several environmental variables on cancer risk, such as 
noise pollution or the effect of living close to the coast, has been poorly 
investigated, with most of the studies focusing only on few cancer types 
(Claeson et al., 2012; Haraldsdottir et al., 2017; Korgavkar et al., 2014; 
Reynolds et al., 2004, 2005). Similarly, studies analyzing the effect of 
urban or natural visible water bodies are almost entirely focused on 
blood malignancies, especially in children (Sánchez et al., 2022). 

Throughout the last years, the development of large-scale projects 
such as UK Biobank (UKBB) has played a key role in the understanding 
of the possible effects that the environment exerts on human health. 
Nevertheless, only a small number of studies are focused on cancer 
(Huang et al., 2021; Wang et al., 2022). 

Another challenge in studying local environment exposures is rep-
resented by understanding the possible gene-environment interactions 
for which our knowledge is currently very limited except for the effect of 
air pollution on lung cancer (Huang et al., 2021; Wang et al., 2022; Yu 
et al., 2018). 

Considering all these premises, we aimed at studying whether and to 
which extent the different exposures that characterize the local envi-
ronment affect the development of seventeen of the most frequent types 
of cancer. Moreover, using polygenic scores, we also aimed at studying 
the presence of gene-environment interactions. All analyses were con-
ducted in the UKBB participants, for a total of 355,915 individuals. 

2. Methods 

2.1. The UK Biobank cohort 

This case-control study used data from the UKBB prospective cohort. 
A detailed description of UKBB has already been provided (Sudlow et al., 
2015). In brief, more than 500,000 subjects, aged between 37 and 73 
years, have been recruited between 2006 and 2010 in the United 
Kingdom. During the assessment procedures data from each participant 
were collected by touchscreen self-completed questionnaires, blood 
sampling, physical measurement, imaging, and genotyping. Before data 
collection, each participant provided informed written consent. The 
UKBB study has received the approval from the North-West Multi-centre 
Research Ethics Committee (MREC). Environmental and genetic data of 

UKBB participants were obtained from UKBB (project ID 66591). 

2.2. Outcome ascertainment 

Starting from a population of 502,420 individuals, only participants 
with a European ethnicity were selected using UKBB field 21000 (i.e., 
white (code 1), British (code 1001), Irish (code 1002), and with any 
other white background (code 1003)), resulting in 472,622 individuals. 

Cancer cases were selected according to cancer registry data. Spe-
cifically, three different UKBB fields were used: type of cancer – ICD10 
(40006), histology of cancer tumor (40011), and behavior of cancer 
tumor (40012). To obtain better anatomically differentiated outcomes, 
the ICD codes taken from UKBB category 40006 were converted from 
version 10 to version 11 using the ICD10/ICD11 mapping by WHO 
(https://icd.who.int/browse11/l-m/en). 

The ICD11 codes were then combined with UKBB histology codes to 
obtain a unique code that determines the specific histological tumor 
subtype. Only primary malignant tumors and microinvasive tumors 
were selected. Seventeen cancers (bladder cancer, breast cancer, chronic 
lymphocytic leukemia (CLL), colorectal cancer, cancer of corpus uteri, 
diffuse large B-cell lymphoma (DLBCL), glioma, kidney cancer, lung 
cancer, melanoma, multiple myeloma, oesophageal cancer, ovarian 
cancer, pancreatic ductal adenocarcinoma (PDAC), prostate cancer, 
stomach cancer, and thyroid cancer) with more than 500 cases each 
were included in this study. Breast cancer was analyzed only in females 
because we considered that male breast cancer is a distinct disease 
(Gucalp et al., 2019). Controls were selected among all those subjects 
who did not report a code that identifies a diagnosis of cancer within 3 
different categories: cancer code, self-reported (20001), type of cancer – 
ICD10 (40006), and diagnoses – ICD10 (41270). A total of 302,645 
controls were included. The total number of cases and controls is re-
ported in Table 1 alongside age and sex distribution. 

2.3. Environmental exposure measurements and outcomes of interest 

In this study, 31 exposures that characterize the local environment 
were selected to be tested for their association with the risk of devel-
oping the 17 cancers described above. A correlation matrix using the 
Pearson correlation with a threshold of r ≤ 0.8 identified 12 indepen-
dent variables that were analyzed. The list of all exposures and the 
correlation matrix is reported in Fig. 1. The variables considered were: 
concentration in the air of nitrogen oxides (NOx), nitrogen dioxides 
(NO2), particulate matter with a diameter of 10 μm (PM10) and 2.5 μm 
(PM2.5), traffic intensity (the average total number of vehicles on the 
nearest major road per 24 h), noise pollution (measured as the day- 
evening-night noise level indicator, Lden), each participant’s living 
distance to the nearest major road (expressed as the inverse of distance, 
1/meters), living distance to the coast and percentage of greenspace, 
natural environment, water, and domestic garden in a 1000 m radius 
centered on the residential coordinates of each participant. Detailed 
information on the measurement of each variable is given as supple-
mentary methods. NOx showed a strong correlation with PM2.5 (r =
0.85), while greenspace was correlated with natural environment (r =
0.97) but were all maintained in the analysis to compare our results with 
previous studies since in the literature these variables are usually used 
individually. 

2.4. Polygenic score (PGS) selection 

All genetic data were downloaded from UKBB, using PLINK v2.0 with 
the method “extract” (Chang et al., 2015) and processed with a 
self-developed pipeline in Python v3.8.10. The code is reported as 
supplementary methods. The UKBB participants were genotyped on 
two different arrays, the Applied Biosystems UK BiLEVE Axiom Array by 
Affymetrix (49,950 individuals), and the Applied Biosystems UK Bio-
bank Axiom Array (438,427 individuals). The genotyping was followed 
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CI Confidence Interval 
CLL Chronic Lymphocytic Leukemia 
DE Direct Effect 
DLBCL Diffuse Large B-Cell Lymphoma 
GxE Gene-Environment interactions 
ICD-10 International Classification of Diseases, 10th revision 
ICD-11 International Classification of Diseases, 11th revision 
IE Indirect Effect 
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NOx Nitrogen Oxides 
NO2 Nitrogen Dioxides 
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by general quality controls, such as Principal Component Analysis 
(PCA), missing rate, heterozygosity, sex mismatches, and relatedness 
analysis. Finally, imputation of genetic data was carried out by 
combining data from different reference panels, specifically the Haplo-
type Reference Consortium (HRC) and the merged UK10K and 1000 
Genomes Phase 3. A detailed description of each procedure has been 
previously reported (Bycroft et al., 2018). 

PGSs for each cancer outcome were selected from PGS catalog 
(Lambert et al., 2021). Due to the differential computation of each PGS, 
we selected all genetic scores for every cancer included in the study 
based on the development method (e.g., LD clumping or pruning) and 
parameters (e.g., MAF≥0.01, r2 ≤ 0.1, P ≤ 5 × 10− 8) used in the original 
studies to compute the score. For each selected PGS, linkage disequi-
librium (LD) pruning was performed via the LDlink’s SNPclip tool 
(Machiela and Chanock, 2015) using the non-Finnish Europeans of the 
1000 Genomes Project retaining only one SNP for markers in high LD (r2 

> 0.8). Additionally, only SNPs with a minor frequency allele >0.05 
were included in the scores. The number of SNPs used in each PGS is 
given in Table 1. 

Each PGS was computed as the unweighted sum of the number of risk 
alleles: 

PGSi =
∑n

j=1
Xij  

where n is the number of SNPs used to build the score and Xij is the 
number of risk alleles (0, 1 or 2) for the participant i at the SNP j. 

Based on the distribution of the PGS among the controls, each PGS 
was then categorized in tertiles, therefore identifying low, intermediate, 
and high genetic risk categories. 

2.5. Statistical analyses 

Odds ratios (OR) and 95% confidence intervals (95% CI) for the as-
sociations between each environmental exposure and each cancer and 
between each PGS with its relative cancer were estimated with multi-
variable logistic regression models. Each model was adjusted for age 
and, when necessary, sex. Every environmental variable was analyzed as 
a continuous exposure and divided in quintiles. PGSs were analyzed as 
tertiles and as a continuous variable. For environmental exposures and 
PGS the reference group was quintile 1 (Q1) and tertile 1 (T1), respec-
tively. Moreover, the association between each environmental exposure 
and female-specific cancers (breast, ovarian and corpus uteri) and all 
cancers taken together were also investigated. Participants with missing 
data in at least one of the selected exposures were excluded from the 
analysis. A comparison between participants with full and missing data 
is provided as Supplementary Table S1. 

Mediation analyses were performed to explain observed significant 
associations between environmental exposures and each cancer 
outcome. These analyses were performed by fitting three regression 
models, as proposed by Baron and Kenny (Baron and Kenny, 1986). Two 
logistic and one linear model were fitted when the mediator was a 
continuous variable, while three logistic models were fitted when the 
mediator was a binary variable. 

model1 =Y ∼ A + Cs  

model2 =Y ∼ A+M + Cs  

model3 =M ∼ A + Cs 

Model 1 is the logistic model with the outcome (Y) regressed on the 
exposure (A) and the covariates (Cs); model 2 is the logistic model with 
the outcome regressed on the exposure, the covariates, and the mediator 
(M); and model 3 is the linear or logistic model with the mediator 
regressed on the exposure and the covariates. 

When two mediators were used (i.e., multi-mediator models), an 
additional regression model was included so that four regression models 
were fitted. 

model4 =M2 ∼ M1+Cs 

In this fourth model, the second mediator (M2) is regressed on the 
first mediator (M1) and the covariates. Each model was corrected with 
age and, when necessary, sex. A mediation effect was considered to be 
significant when the effects of the exposure on the mediator, the 
mediator on the outcome, and the exposure on the outcome were all 
significant under the statistical threshold of P < 0.05. Significant results 
were further investigated with a second approach. Specifically, indirect 
(IE), direct (DE) and total effects (TE), and proportion of mediation were 
computed using the “mediation” package (v4.5.0) in Rstudio (Tingley 
et al., 2014). For single mediator analyses, a nonparametric bootstrap 
with 2000 iterations was used to estimate bias-corrected and accelerated 
95% CIs (DiCiccio and Efron, 1996) and P-values. For multiple mediator 
analyses, percentile 95% CIs were computed using the “multimed” 
function, which is based on the implementation of the Imai and Yama-
moto method (Imai and Yamamoto, 2013). 

Detailed information on the mediators used is provided as supple-
mentary methods. 

Table 1 
Study subjects and number of SNPs used in each PGS.  

Cancer Cases SNPs 
used in 
PGS a Females Males Total Mean 

age [SD] 

Breast 16,199 
(100%) 

NA 16,199 
(100%) 

58.44 
[9.3] 

257 

Prostate NA 12,838 
(100%) 

12,838 
(100%) 

66.34 
[6.3] 

106 

Colorectal 2156 
(40.4%) 

3177 
(59.6%) 

5333 
(100%) 

63.96 
[8.2] 

71 

Melanoma 1675 
(44.9%) 

1379 
(45.1%) 

3054 
(100%) 

60.9 
[10.4] 

21 

Lung 1303 
(49.1%) 

1352 
(50.9%) 

2655 
(100%) 

67.76 
[6.8] 

21 

Corpus uteri 2068 
(100%) 

NA 2068 
(100%) 

62.03 
[7.8] 

17 

Kidney 627 
(36.9%) 

1073 
(63,1%) 

1700 
(100%) 

64.06 
[8.4] 

17 

Bladder 334 
(22.1%) 

1182 
(77.9%) 

1516 
(100%) 

64.79 
[9.0] 

13 

Ovary 1396 
(100%) 

NA 1396 
(100%) 

59.96 
[10.6] 

27 

DLBCL 449 
(44.8%) 

552 
(55.2%) 

1001 
(100%) 

64.63 
[8.9] 

8 

Multiple 
myeloma 

386 
(42.1%) 

531 
(57.9%) 

917 
(100%) 

65.90 
[8.1] 

21 

CLL 318 
(37.4%) 

532 
(62.6%) 

850 
(100%) 

64.65 
[7.8] 

31 

Pancreas 390 
(47.8%) 

426 
(52.2%) 

816 
(100%) 

67.54 
[6.9] 

34 

Oesophagous 128 
(15.8%) 

681 
(84.2%) 

809 
(100%) 

66.95 
[7.0] 

14 

Glioma 305 
(41.4%) 

431 
(58.6%) 

736 
(100%) 

63.01 
[10.6] 

28 

Thyroid 532 
(74.2%) 

185 
(25.8%) 

717 
(100%) 

56.83 
[11.5] 

9 

Stomach 199 
(29.9%) 

466 
(70.1%) 

665 
(100%) 

66.26 
[8.1] 

3 

Total 28,465 
(53.4%) 

24,805 
(46.6%) 

53,270 
(100%) 

63.76  

A total number of 302.645 controls (mean age = 55.63 years) was used. Among 
these subjects, a total of 161.049 females (53.2%, mean age = 55.8 years) and 
141.596 males (46.8%, mean age = 55.39 years) were included. Only men were 
used as controls for prostate cancer analyses and only women for breast, corpus 
uteri and ovarian cancers. 

a Number of single nucleotide polymorphisms (SNP) used to build the PGS for 
each cancer type. 

A. Felici et al.                                                                                                                                                                                                                                    



Environmental Research 241 (2024) 117562

4

In the gene-environment (GxE) interaction analysis NOx, NO2, PM10, 
PM2.5, and Lden were categorized as low and high exposures groups. The 
cut off points used were the median for NOx Huang et al. (2021); WHO 
2005 air quality guidelines for NO2, PM10, and PM2.5. For Lden, a 55 dB 
cut off was used according to the Environmental Noise Directive of the 
European Community. For all other variables quintiles were used. 

Multivariable logistic regression models corrected for age and sex 
(when necessary) were fitted including the interaction term: 

logit(P(Y= 1))= β0 + β1Age + β2Sex + β3E + β4PGS + β5ExPGS  

where E is the environmental exposure categorized as above and PGS is 
the unweighted PGS divided in tertiles. All multivariable logistic 
regression models were carried out using Rstudio, version 4.2.2. 

Regression results were also tested for significance under Bonferro-
ni’s correction. The threshold was calculated dividing 0.05 by the 

number of test performed for each outcome (0.05/(19 (i.e., the 17 in-
dividual cancers, plus the pan-cancer and the female cancer categories) 
x12)) and resulted in P = 2.19 × 10− 4. For PGS analysis the statistical 
threshold was P = 0.05/17 = 2.9 × 10− 3. For the GxE interaction a 
threshold of 2-sided P = 0.05/(17 × 13) = 2.26 × 10− 4 was used. 

3. Results 

3.1. Associations between environmental variables and cancer 

One hundred and eighteen associations were observed considering a 
conventional P = 0.05 threshold, while 36 were statistically significant 
also correcting for multiple testing (P < 2.19 × 10− 4). Among the latter, 
high concentration of NOx, NO2, PM10, and PM2.5 were associated with 
increased lung cancer risk, with ORs ranging from 1.75 to 1.90, and p- 

Fig. 1. Heatmap for the correlation among the selected local environment exposures. 
The local environment exposures included in this study were first selected according to their correlation coefficient. The threshold used was r ≤ 0.8. Positive and 
negative correlation are identified with gradually stronger red and blue colorations, respectively. Even if their correlation was higher than the threshold, NOx and 
PM2.5 (r = 0.85), and greenspace and natural environment (r = 0.97) were retained to study their main effect taken individually, as done in the literature. 
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values ranging from 4.42 × 10− 17 to 2.15 × 10− 22. The associations 
were statistically significant when analyzing individuals belonging to 
the highest quintile vs the lowest quintile and analyzing the variables as 
continuous (Table 2). 

When comparing the highest quintile with the lowest one, high 
concentrations of NOx were associated with oesophageal cancer risk 
(OR = 1.54, 95% CI = 1.23–1.94, P = 1.75 × 10− 4). Also, PM2.5 resulted 
strongly associated with oesophageal cancer risk in the continuous 
analysis: OR = 1.15, 95% CI = 1.08–1.23, P = 2.76 × 10− 5 per 1 μg/m3 

increase (Table 2). 
Additionally, high concentrations of NOx, NO2, PM10, and PM2.5 

were associated with a decreased risk of developing melanoma, specif-
ically NOx: OR = 0.74, 95% CI = 0.66–0.84, P = 7.54 × 10− 7; NO2: OR 
= 0.66, 95% CI = 0.59–0.74, P = 5.22 × 10− 12; PM10: OR = 0.76, 95% 
CI = 0.67–0.85, P = 2.00 × 10− 6; PM2.5: OR = 0.71, 95% CI =
0.63–0.80, P = 3.46 × 10− 8 (Table 2). 

Living near major roads was associated with lower risk of developing 
melanoma when comparing individuals in the highest quintile with in-
dividuals in the lowest quintile: OR = 0.80, 95% CI = 0.72–0.89, P =
9.27 × 10− 5, and analyzing the variable as continuous: OR = 0.93, 95% 
CI = 0.90–0.97, P = 8.39 × 10− 5 per 1% increase (Table 2). 

When comparing the highest with the lowest quintile, high per-
centage of natural environment near residential coordinates showed a 
strong protective effect for lung cancer risk (OR = 0.58, 95% CI =
0.51–0.66, P = 2.59 × 10− 16), while a high percentage of greenspace 
resulted in increased risk of melanoma (OR = 1.27, 95% CI = 1.12–1.43, 
P = 1.32 × 10− 4) (Table 2). The living distance to the coast was asso-
ciated with increased prostate cancer risk when comparing the highest 
vs lowest quintile (OR = 1.13, 95% CI = 1.06–1.21, P = 1.98 × 10− 4) 
and considering the variable as continuous (OR = 1.02, 95% CI =
1.01–1.03, P = 7.01 × 10− 7 per 10 Km increase). 

Moreover, when comparing the highest quintile with the lowest one, 
we found a significant association between the living distance to coast 
and female-specific cancers risk (OR = 1.10, 95% CI = 1.05–1.15, P =
1.70 × 10− 4). Finally, in the analysis that considered all cancer types 
together, we found a statistically significant association for both NO 2 
(OR = 1.26, 95% CI = 1.12–1.41, P = 9.95 × 10− 5 per 100 μg/m3) and 
PM10 (OR = 2.91, 95% CI = 1.72–4.94, P = 7.30 × 10− 5 per 100 μg/m3), 
and when comparing the highest quintile with the lowest one only for 
PM10 (OR = 1.06, 95% CI = 1.03–1.10, P = 1.95 × 10− 4). A statistically 
significant association was also observed between the living distance to 
the coast and all cancer risk in both continuous (OR = 1.01, 95% CI =
1.00–1.02, P = 3.62 × 10− 11 per 10 Km increase) and quintile analysis 
(OR = 1.11, 95% CI = 1.07–1.14, P = 4.55 × 10− 10). 

The results that were significant after correction for multiple testing 
are shown in Table 2. All results are shown in Fig. 2 and in Supple-
mentary Table S2. Significant results for female-specific cancer and all 
cancer analyses are shown in Supplementary Fig. S1. 

3.2. Mediation analysis 

Mediation analysis was carried out to clarify the association between 
the living distance from the coast and prostate cancer. Physical activity 
(walking, moderate, or vigorous physical activity), oily and non-oily fish 
intake, and time spent outdoor were selected as plausible mediators, as 
described by White and colleagues (White et al., 2020). In the models 
where each mediator is regressed on the exposure, the distance to coast 
significantly predicted moderate physical activity (β = 0.0051, SE =
0.0023, P = 0.024) and the time spent outdoor (β = − 0.0023, SE =
0.0002, P = 2.72 × 10− 25). When analyzing the mediator effects, 
moderate physical activity and the time spent outdoor displayed sig-
nificant but small effects on prostate cancer risk (β = − 0.0029, SE =
0.0006, P = 6.04 × 10− 7 and β = − 0.067, SE = 0.0064, P = 1.27 ×
10− 25, respectively). Finally, significant results were observed when 
analyzing the effect of the living distance from the coast on prostate 
cancer risk when adjusting for each mediator (β = 0.0024, SE = 0.0004, 

P = 2.30 × 10− 8 for moderate physical activity; β = 0.0023, SE =
0.0004, P = 1.70 × 10− 7 for time spent outdoor). In the analysis of the 
indirect effects, we found significant but very small effects exerted by 
both moderate physical activity (IE = − 8.48 × 10− 7, 95% CI = − 1.82 ×
10− 7 - − 1.87 × 10− 6, P = 0.017) and time spent outdoor (IE = 9.07 ×
10− 6, 95% CI = 6.92 × 10− 6 - 1.16 × 10− 5, P < 2 × 10− 16) on the as-
sociation between the living distance to coast and prostate cancer. We 
found no mediation effect for both oily and non-oily fish intake. 

In multi-mediator models, the effect of the time spent outdoor on 
prostate cancer risk was significantly associated with increased levels of 
vitamin D (β = 0.002, SE = 0.0006, p = 4.27 × 10− 4) and increased 
vigorous physical activity (β = 0.002, SE = 0.0006, p = 3.92 × 10− 4). 
However, for both vitamin D levels and vigorous physical activity and 
using the time spent outdoor as the main mediator, indirect effects were 
not significant (95% CI includes 0). Mediation results with the Baron and 
Kenny method are reported in Fig. 3. TEs, DEs and IEs, and proportion of 
mediation (with their respective 95% CIs and P-values) estimated for 
each mediator with the “mediation” package are reported in Supple-
mentary Table S3. For melanoma, we did not observe any mediation 
effect. 

3.3. Associations between PGSs and cancer 

All PGS showed statistically significant associations when analyzing 
the tertiles (highest vs lowest, p < 0.05). The largest effect was observed 
for CLL (OR = 4.82, 95% CI = 3.82–6.07, P = 1.93 × 10− 40), the smallest 
for stomach cancer (OR = 1.36, 95% CI = 1.12–1.65, P = 1.53 × 10− 3). 
The most significant association was observed for breast cancer (OR =
2.53, 95% CI = 2.42–2.64, P < 10− 250). All PGS showed a statistically 
significant association when analyzed as a continuous variable. The 
results of the association for each PGSs are reported in Supplementary 
Table S4. 

3.4. Gene – environment (GxE) interactions 

In GxE analysis, no results below the Bonferroni threshold of p =
2.26 × 10− 4 were found. However, an interesting but non-significant 
result was found for colorectal cancer. Specifically, when compared 
with individuals in the lowest exposure group (i.e., quintile Q1) and with 
the lowest genetic risk (i.e., PGS tertile T1), participants in the highest 
exposure group for the distance to coast (i.e., quintile Q5) and with the 
highest genetic risk (i.e., PGS tertile T3) displayed almost three times the 
risk of developing colorectal cancer (OR = 2.63, CI 95% = 1.45–4.78, P 
= 1.55 × 10− 3). The results of all GxE analysis are reported in Supple-
mentary Table S5. 

4. Discussion 

In the last decade several studies suggested that local environment 
may affect the risk of developing cancer through several pollutants 
(Fazeli Dehkordi et al., 2022). However, the associations reported are 
limited to a small number of cancers and the understanding of their 
possible interaction with the genetic background is still incomplete. In 
this study we analyzed 12 variables related to the local environment in 
relation to the risk of developing 17 cancers. We have confirmed some 
previously reported associations and identified new ones. 

We observed that living close to the coast is associated with a 
decreased risk of developing prostate cancer (p = 7.01 × 10− 7). To 
clarify this association, we used mediation analysis considering lifestyle 
factors that could be different in coastal areas compared to more central 
ones. For example, the diet may differ, and physical activity and the time 
spent outdoor are reported to be higher in coastal areas (White et al., 
2020). We found significant but very small mediation effects for physical 
activity (P = 0.017) and the time spent outdoor (P < 2 × 10− 16). 
Considering the IE scales (IE = − 8.48 × 10− 7 for moderate physical 
activity, and IE = 9.07 × 10− 6 for the time spent outdoor), these two 
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Table 2 
Statistically significant results under the Bonferroni corrected p-value (p = 2.19 × 10− 4).  

Local environment exposure Oesophagus P-value Lung P-value Melanoma P-value 

Nitrogen Oxides (NOx) NA  1.011 (1.01–1.01) 1.55 × 10− 21 0.993 (0.990–0.995) 7.83 × 10− 8 

Nitrogen Oxides (NOx) - Q2 NA  NA    
Nitrogen Oxides (NOx) - Q3 NA  NA    
Nitrogen Oxides (NOx) - Q4 NA  1.35 (1.18–1.54) 1.33 × 10− 5 0.80 (0.71–0.89) 8.78 × 10− 5 

Nitrogen Oxides (NOx) - Q5 1.54 (1.23–1.94) 1.75 × 10− 4 1.897 (1.67–2.16) 2.15 × 10− 22 0.74 (0.66–0.84) 7.54 × 10− 7 

Nitrogen dioxide (NO2) NA  1.023 (1.02–1.03) 4.30 × 10− 24 0.983 (0.979–0.987) 8.03 × 10− 14 

Nitrogen dioxide (NO2) - Q2 NA  NA  NA  
Nitrogen dioxide (NO2) - Q3 NA  NA  NA  
Nitrogen dioxide (NO2) - Q4 NA  1.468 (1.29–1.67) 1.37 × 10− 8 0.80 (0.72–0.89) 6.45 × 10− 5 

Nitrogen dioxide (NO2) - Q5 NA  1.8 (1.58–2.05) 7.63 × 10− 19 0.66 (0.59–0.74) 5.22 × 10− 12 

Particulate matter PM2.5 1.15 (1.08–1.23) 2.76 × 10− 5 1.22 (1.17–1.26) 8.84 × 10− 25 0.90 (0.86–0.93) 1.10 × 10− 8 

Particulate matter PM2.5 - Q2 NA  NA  NA  
Particulate matter PM2.5 - Q3 NA  NA  NA  
Particulate matter PM2.5 - Q4 NA  1.42 (1.24–1.63) 5.19 × 10− 7 NA  
Particulate matter PM2.5 - Q5 NA  1.85 (1.62–2.11) 1.53 × 10− 19 0.71 (0.63–0.80) 3.46 × 10− 8 

Particulate matter PM10 NA  1.10 (1.08–1.12) 3.40 × 10− 19 0.94 (0.92–0.96) 2.00 × 10− 10 

Particulate matter PM10 - Q2 NA  NA  NA  
Particulate matter PM10 - Q3 NA  NA  NA  
Particulate matter PM10 - Q4 NA  1.44 (1.26–1.65) 9.52 × 10− 8 NA  
Particulate matter PM10 - Q5 NA  1.75 (1.54–2.00) 4.42 × 10− 17 0.76 (0.67–0.85) 2.00 × 10− 6 

Natural environmenta NA  0.993 (0.991–0.994) 6.74 × 10− 18 1.04 (1.02–1.05)b 4.82 × 10− 8 

Natural environment - Q2 NA  NA  NA  
Natural environment - Q3 NA  0.77 (0.68–0.87) 2.82 × 10− 5 NA  
Natural environment - Q4 NA  0.68 (0.60–0.77) 2.21 × 10− 9 1.28 (1.13–1.44) 5.62 × 10− 5 

Natural environment - Q5 NA  0.58 (0.51–0.66) 2.59 × 10− 16 1.37 (1.21–1.54) 2.18 × 10− 7 

Greenspacea NA  0.992 (0.99–0.994) 7.70 × 10− 14 1.04 (1.02–1.05)b 9.69 × 10− 6 

Greenspace - Q2 NA    NA  
Greenspace - Q3 NA    NA  
Greenspace - Q4 NA  0.75 (0.65–0.85) 2.02 × 10− 5 NA  
Greenspace - Q5 NA  0.63 (0.55–0.73) 1.08 × 10− 10 1.27 (1.12–1.43) 1.32 × 10− 4 

Inverse distancec NA  NA  0.93 (0.90–0.97) 8.39 × 10− 5 

Inverse distance - Q2 NA  NA  NA  
Inverse distance - Q3 NA  NA  0.81 (0.73–0.91) 2.24 × 10− 4 

Inverse distance - Q4 NA  NA  0.81 (0.73–0.91) 2.16 × 10− 4 

Inverse distance - Q5 NA  NA  0.80 (0.72–0.89) 9.27 × 10− 5 

Distance to coastd NA  NA  NA  
Distance to coast - Q2 NA  NA  NA  
Distance to coast - Q3 NA  NA  0.78 (0.69–0.88) 6.95 × 10− 5 

Distance to coast - Q4 NA  NA  NA  
Distance to coast - Q5 NA  NA  NA   

Local environment exposure Prostate P-value Female-specific P-value All cancer P-value 

Nitrogen Oxides (NOx) NA  NA  NA  
Nitrogen Oxides (NOx) - Q2 NA  NA  NA  
Nitrogen Oxides (NOx) - Q3 NA  NA  NA  
Nitrogen Oxides (NOx) - Q4 NA  NA  NA  
Nitrogen Oxides (NOx) - Q5 NA  NA  NA  

Nitrogen dioxide (NO2) NA  NA  1.26 (1.12–1.41)f 9.95 × 10− 5 

Nitrogen dioxide (NO2) - Q2 NA  NA  NA  
Nitrogen dioxide (NO2) - Q3 NA  NA  NA  
Nitrogen dioxide (NO2) - Q4 NA  NA  NA  
Nitrogen dioxide (NO2) - Q5 NA  NA  NA  

Particulate matter PM2.5 NA  NA  2.91 (1.74–4.94)f 7.30 × 10− 5 

Particulate matter PM2.5 - Q2 NA  NA  NA  
Particulate matter PM2.5 - Q3 NA  NA  NA  
Particulate matter PM2.5 - Q4 NA  NA  NA  
Particulate matter PM2.5 - Q5 NA  NA  1.06 (1.03–1.10) 1.95 × 10− 4 

Particulate matter PM10 NA  NA  NA  
Particulate matter PM10 - Q2 NA  NA  NA  
Particulate matter PM10 - Q3 NA  NA  NA  
Particulate matter PM10 - Q4 NA  NA  NA  
Particulate matter PM10 - Q5 NA  NA  NA  

Natural environmenta NA  NA  NA  
Natural environment - Q2 NA  NA  NA  
Natural environment - Q3 NA  NA  NA  
Natural environment - Q4 NA  NA  NA  
Natural environment - Q5 NA  NA  NA  

Greenspacea NA  NA  NA  

(continued on next page) 
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effects could be both negligible in the association between the living 
distance to the coast and prostate cancer risk. Moreover, in 
multi-mediator models, we found that the indirect effect of the time 
spent outdoor on prostate cancer risk was not significant when vitamin 
D levels and physical activity were individually included in the models. 
Therefore, we think that the protective effect of living near the coast on 
prostate cancer risk is mediated by a complex interplay of several life-
style factors that reflect differences in lifestyle of individuals who live 
near the coast and individuals living far from it. This is the first evidence 
for an association between living near the coast and prostate cancer, 
although a lower incidence was also observed in a study carried out in 
the United States using spatial patterns and autocorrelation (Mather 
et al., 2006). Besides prostate cancer, we also found an increased risk of 
breast cancer associated with living far from the coast in both contin-
uous and quintile analyses. The living distance to the coast was also 
associated with an increased risk of female-specific cancers. Regarding 
breast cancer, our result is in line with recent findings (Haraldsdottir 
et al., 2017), where a reduced risk for breast cancer was observed for 
women who lived their puberty (i.e., up to the age of 20 years old or 
more) in coastal villages when compared with women who lived their 
puberty in the capital city of Reykjavik. However, in the present study, 
the significance level of our result (P = 1.21 × 10− 3) does not overcome 
the Bonferroni threshold (P < 2.19 × 10− 4). 

Another novel finding is that high level of NOx, NO2, PM10, and 
PM2.5 showed an inverse association with melanoma risk (P = 7.54 ×
10− 7, P = 5.22 × 10− 12, P = 2.00 × 10− 6, and P = 3.46 × 10− 8, 
respectively) that could be explained by a reduced sun exposure that 
characterizes cities, where air pollution is higher. We also found that 
living close to major roads was associated with lower melanoma risk, 
supporting the idea that the association with air pollution and mela-
noma risk is just a proxy of a lower sun exposure. We tested this hy-
pothesis in mediation analysis, using the time spent outdoor as a proxy 
for sun exposure. We found no mediation effects. This null result may be 
explained by the fact that the variable reporting the time spent outdoor 
is computed in UKBB as the self-reported average hours spent outside, 
not considering neither the period of the day nor the direct sun exposure. 

In our study, high levels of NOx were positively associated with 
oesophageal cancer risk in the quintile analysis (P = 1.75 × 10− 4), while 
PM2.5 was found to be associated in the continuous analysis (P = 2.76 ×
10− 5). The effect of NOx on oesophageal cancer risk has never been 
reported, while the effect of PM2.5 was investigated by several studies 
conducted in China and in the United States (Coleman et al., 2020; Li 

et al., 2021, 2022). The authors report an increased risk for the disease 
for individuals with more exposure to PM2.5, in agreement with our 
results. Our study is the first to be carried out in a European population. 

NOx, NO2, PM10, and PM2.5 were also associated with increased lung 
cancer risk as strongly supported by previously published epidemio-
logical evidence (Ciabattini et al., 2021). 

Moreover, even if not significant under the Bonferroni-corrected P- 
value threshold, we found significant associations between nitrogen air 
pollutants (NOx and NO2) and corpus uteri and ovarian cancer risk. In 
addition, PM10 pollution resulted associated with an increased risk of 
corpus uteri cancer in both continuous and quintile analyses, while 
PM2.5 pollution was associated with ovarian cancer only in the contin-
uous analysis. Regarding the association between NOx, NO2 and corpus 
uteri cancer risk, our results are discordant with literature findings 
(Raaschou-Nielsen et al., 2011), while an association between PM10 and 
corpus uteri cancer risk has never been reported before. Regarding 
ovarian cancer, our results are discordant with recent findings (Coleman 
et al., 2020). 

Additionally, we also observed that living close to greenspaces in-
creases the risk of melanoma and decreases the risk of lung cancer, 
reflecting the fact that individuals living close to greenspaces are 
exposed to more sunlight (Astell-Burt et al., 2014) and reduced air 
pollution (J. G. Su et al., 2011). Our results are conflictual with recent 
findings (Cao et al., 2023). 

Finally, we found a significant association between NO2 and PM10 
and all risk of cancer. Nonetheless, our result is discordant from what is 
reported in literature. Indeed, different authors found that PM10 was not 
associated with the overall risk of cancer (Radespiel-Tröger et al., 2018; 
Shin et al., 2022). As for PM10, literature results about the association 
between all cancer risk and NO2 are inconclusive (Al-Ahmadi and 
Al-Zahrani, 2013; S.-Y. Su et al., 2019). 

We observed strong effects of all PGSs on risk of the respective 
cancers, with relatively large ORs for individuals with the highest count 
of deleterious alleles compared to individuals with the least (average 
OR = 2.14) and very robust associations (p-values ranging from P =
1.53 × 10− 3 to P < 10− 250). These results are particularly interesting 
since in the gene - (local) environment interaction analysis we show that 
the two are independent from each other and therefore could be com-
bined in multifactorial risk scores to stratify high risk individuals as it 
has been done for several cancer types (Galeotti et al., 2021; Lee et al., 
2022; Torres et al., 2019). Several studies have attempted to identify 
GxE interaction in cancer, however, with very few exceptions none has 

Table 2 (continued ) 

Local environment exposure Prostate P-value Female-specific P-value All cancer P-value 

Greenspace - Q2 NA  NA  NA  
Greenspace - Q3 NA  NA  NA  
Greenspace - Q4 NA  NA  NA  
Greenspace - Q5 NA  NA  NA  

Inverse distancec NA  NA  NA  
Inverse distance - Q2 NA  NA  NA  
Inverse distance - Q3 NA  NA  NA  
Inverse distance - Q4 NA  NA  NA  
Inverse distance - Q5 NA  NA  NA  

Distance to coastd 1.02 (1.01–1.03)e 7.01 × 10− 7 NA  1.01 (1.00–1.02)e 3.62 × 10− 11 

Distance to coast - Q2 NA  NA  NA  
Distance to coast - Q3 1.14 (1.07–1.21) 1.03 × 10− 4 1.10 (1.05–1.16) 6.34 × 10− 5 1.08 (1.05–1.11) 2.48 × 10− 6 

Distance to coast - Q4 1.19 (1.11–1.27) 2.60 × 10− 7 NA  1.12 (1.08–1.15) 1.02 × 10− 11 

Distance to coast - Q5 1.13 (1.06–1.20) 1.98 × 10− 4 1.10 (1.05–1.5) 1.70 × 10− 4 1.11 (1.07–1.14) 4.55 × 10− 10 

NA is reported when the result is not significant under the Bonferroni corrected p-value threshold. 
a Natural environment and greenspace are referred to percentage levels of greenspace and natural environment in a 1000 m radius centered on the residential 

coordinates of each participant. 
b Continuous results for greenspace and natural environment are referred for a 10% increase. 
c Logarithm of the inverse distance (1/m) of each participant residential co-ordinates to the nearest major road. 
d Living distance to the coast. 
e Continuous results for distance to coast are reported for 10 Km increase. 
f Continuous results for NO2, PM10 and all cancer are reported for a 100 μg/m3 increase. 
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been found yet (Choi et al., 2021; Huang et al., 2021; Kapoor et al., 
2020). We applied a novel approach using the SNPs grouped in a score 
instead of analyzing the individual interactions with the environment. 
These results indicate that if an interaction between genetic variability 
and environmental exposure exists, it must be identified with other 
approaches, such as genome-wide interactions studies (GWIS), that 
however need sample sizes much larger than UKBB (Burns et al., 2023; 
Gref et al., 2017). 

Our study has several strengths, such as the comprehensive analysis 
of the environmental exposure, the integration of genetic data in the 
form of PGSs, and the homogeneity of the measures across the cohort. 
We are aware of possible limitations. In UKBB there are missing data on 
the variations of the concentrations of air pollutants throughout the 
years. With a longitudinal study it would have been possible to consider 
the effect of the duration of the exposures, and the possible changes in 

the environment that could happen in the lifetime of each participant. 
Another possible limitation may be given by the ethnicity and the 
geographic position, since our study was limited to persons of European 
ancestry living in the UK, and therefore our findings cannot be gener-
alized to other ethnicities and/or geographic location. 

5. Conclusions 

In conclusion, our results show that the local environment exerts an 
effect on risk of many cancer types. We confirmed several known asso-
ciations and identified for the first time the effect of living close to the 
coast on prostate cancer risk, which could be mediated by physical ac-
tivity and the time spent outdoor. 

Fig. 2. Forest plots for the associations between every selected local environment exposure and each cancer type.  
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Fig. 3. Mediation results for the living distance to coast and prostate cancer. 
Panel A and panel B report the mediation results (betas) for the living distance 
to coast and prostate in cancer in single mediator (A) and multi-mediator (B) 
analyses with the Baron and Kenny method. Only statistically significant results 
(p < 0.05) are reported. In panel A, sun exposure and physical activity resulted 
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