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ABSTRACT. Given a compact three-manifold together with a Riemannian met-
ric, we prove the short—time existence of a solution to the renormalization group
flow, truncated at the second order term, under a suitable hypothesis on the
sectional curvature of the initial metric.

1. Introduction. The renormalization group (RG) arises in modern theoretical
physics as a method to investigate the changes of a system viewed at different
distance scales. Since its introduction in the early ’50, this set of ideas has given rise
to significant developments in quantum field theory (QFT) and opened connections
between contemporary physics and Riemannian geometry. In spite of this, the RG
still lacks of a strong mathematical foundation.

In this paper we deal with a particular example from string theory, the flow
equation for the world—sheet nonlinear sigma-models, and we try to analyze the
contribution given from its second order truncation. More precisely, let .S be the
classical (harmonic map) action

S(p) tra(0*g) dpn

o dra »

where ¢ : ¥ — M™ is a smooth map between a surface (X,h) and a Riemannian
manifold (M", g) of dimension n > 3. The quantity a > 0 is the so—called string
coupling constant. Roughly speaking, in order to control the path integral quantiza-
tion of the action S, one introduces a cut—off momentum A which parametrizes the
spectrum of fluctuations of the theory as the distance scale is changed according to
1/A — 1/A’. This formally generates a flow (the renormalization group flow) in the
space of actions which is controlled by the induced scale-dependence in (M™, g).
Setting 7 := —In(A/A’), one thus considers the so—called beta functions 3, associ-
ated with the renormalization group of the theory and defined by the formal flow
g(7) satisfying

aggc(T) — B

T

In the perturbative regime (that is, when a|Riem(g)| < 1) the beta functions §;;, can
be expanded in powers of a, with coefficients which are polynomial in the curvature
tensor of the metric g and its derivatives. As the quantity a|Riem(g)| is supposed
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to be very small, the first order truncation should provide a good approximation of
the full RG—flow 5

% = —aRy; +o(a),
asa— 0.

Hence, the first order truncation (with the substitution 7 = ¢/2a) coincides with
the Ricci flow 0,9 = —2Ric, as noted by Friedan [12, 13] and Lott [22], see also [6].

It is a well-known fact that generally the Ricci flow becomes singular in finite
time and in [20] Hamilton proved that at a finite singular time 7' > 0, the Riemann
curvature blows up. Then, near a singularity, the Ricci flow is no longer a valid
approximation of the behavior of the sigma—model. From the physical point of view,
it appears then relevant to possibly consider the coupled flow generated by a more
general action, as in [5, 25].

Another possibility could be to consider also the second order term in the ex-
pansion of the beta functions, whose coefficients are quadratic in the curvature and
therefore are (possibly) dominating, even when a|Riem(g)| — 0. The resulting flow
is called two—loop RG—flow
2
889;;@ = —aRy, — %RijlmRkstugjsgltgmua (1)
see [21]. We refer to it as RG*%flow.

In [24] Oliynyk investigates the behavior of such flow in dimension two, proving
that it can differ substantially from the Ricci flow. In [19] Guenther and Oliynyk
prove the existence and the stability of the two—loop RG—flow on the n—dimensional
torus, while in negative constant curvature they prove stability for a modified RG—
flow by diffeomorphism and scaling. In [17] Gimre, Guenther and Isenberg study
the flow on n—dimensional compact manifolds with constant sectional curvature,
observing that in negative curvature, the asymptotic behavior of the flow depends
on the value of the coupling constant a and of the sectional curvature. In the same
paper, the authors also focus on three-dimensional locally homogeneous spaces,
where the strong assumptions on the geometry of the initial metric allow to reduce
the PDE to a system of ODEs.

The curvature tensor of a Riemannian manifold (M™, g) is defined, as in [15], by

Riem(X,Y)Z =VyVxZ - VxVyZ +Vixy|Z,

while the associated (4, 0)—tensor is defined by Riem(X,Y, Z,T) = g(Riem(X,Y)Z,
T). In local coordinates, we have
o 9J0y\ 0 0
R — (im0 2 0y
ikt = I\ Bt 92 ) 9k 9!
the Ricci tensor is then obtained by tracing R;; = gleijkl.

The sectional curvature of a plane m € T,M" spanned by a pair of vectors
X, Y € T,M™" is defined as

Riem(X,Y, X,Y)
9(X, X)g(Y)Y) — g(X,Y)?

K(r) = K(X,Y) =

After rescaling the flow parameter 7 — t/2a in equation (1), the RG**flow is
given by
js It _mu

Ogir = —2Rir — aRijimRistug’’ 9" g™,
which can be seen as a sort of “perturbation” of the Ricci flow 0;g;x = —2Rk-
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In the paper, we are going to consider the short-time existence of this flow for
an initial three-dimensional, smooth, compact Riemannian manifold.

In the special three—dimensional case, thanks to the algebraic decomposition of
the Riemann tensor, the evolution equation has the following expression.

dgir = —2Ry, — a(2RRyy, — 2R3, + 2|Ricl’ g — R?gir) ,
where R?k = Rinlkgjl.

Theorem 1.1. Let (M3, go) be a compact, smooth, three—dimensional Riemannian
manifold and a € R. Assume that the sectional curvature Ko of the initial metric
go satisfies

1+2aKo(X,Y) >0 (2)
for every point p € M? and vectors X,Y € T,M3. Let

js lt _mu

Lgir = —2Rsr — aRijimRistnd’ 9" g™ ,
then, there exists some T > 0 such that the Cauchy problem

0ig=Lg
{ 9(0) = go ®)

admits a unique smooth solution g(t) fort € [0,T).

Notice that, even if not physically relevant, in this theorem we also allow a < 0.
In such case the condition on the initial metric becomes
1
Ko(X,Y) < ~ %4
which is clearly satisfied by every manifold with negative curvature.
Any manifold with positive curvature satisfies instead condition (2), for every
a>0.

2. The principal symbol of the operator L. The evolution problem involves a
fully nonlinear second-order differential operator Lg, which, as for the Ricci flow,
can only be weakly elliptic, due to the invariance of the curvature tensors by the
action of the group of diffeomorphisms of the manifold M™. Hamilton in [20] proved
the short—time existence of solutions of the Ricci flow using the Nash—Moser implicit
function theorem, showing that the flow satisfies a certain first-order integrability
condition, namely the contracted second Bianchi identity. In the present paper
we establish the short-time existence using the so called DeTurck’s trick in [9, 10],
following the line of Buckland that in [4] showed the short—time existence of solutions
of the cross curvature flow (see [7]) in dimension three, via the same method.

From the general existence theory of nonlinear parabolic PDEs (see [1, Chapter 4,
Section 4], [14] or [23], for instance) it follows that the evolution equation Zg = Lg
admits a unique smooth solution for short time if the linearized operator around the
initial data DLg4(h) = % oo L(g + sh) is strongly elliptic, that is, if its principal
symbol o¢(DL,) has all the eigenvalues with uniformly positive real parts for any
cotangent vector £ # 0. We will see that, under the hypotheses of Theorem 1.1,
the principal symbol of this linearized operator is nonnegative definite and, even
if it always contains some zero eigenvalues, such zero eigenvalues come only from
the diffeomorphism invariance. This will allow us to apply DeTurck’s trick to the
RG?%flow.

We start computing the linearized operator DL, of the operator L at a metric

g.
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The Riemann and Ricci tensors have the following linearizations, see [2, Theo-
rem 1.174] or [26].

1
DRiemg(h)ijkm :5

1
DRicy(h)ix =5 ( — Ahig, — ViV tr(h) + VVhe + vkvthit) +LOT

( - V;Vhik = ViVihjm + ViV hji + Vjvk,him> +LOT

where we use the metric g to lower and upper indices and LOT stands for lower
order terms.
Then, the linearized of L around g, for every h € S2M™, is given by

DLy(h)ik
=  —2DRicy(h)ir — aDRiemgy(h);*"Rystu — aRise DRiem, (h)*" + LOT
= Ahy +V;Vi tr(h) — Vivthtk - Vkvthit
—%Rksw(vsvth;% + VRS — VOVERL — V)
—%Ristu (VEV'RY + ViV R — VOV hE — V,VPh*") + LOT
= Ahjy +V;Vy tr(h) — Vivthkt - Vkvthit
+aRpstu (vivthw — Vthh?) + aRistu (VkVthsu — stth}g) + LOT
where the last passage follows from the symmetries of the Riemann tensor (inter-
changing the last two indices makes it change sign).
Now we obtain the principal symbol of the linearized operator in the direction

of an arbitrary cotangent vector £ by replacing each covariant derivative V, with
the corresponding component &,

0e(DLg)(h)ir = &'&har + &l tr(h) — &€ hiy — E1E D
+aRkstu (§6°h"" — E2E°R}') + aRispu (§RETR™ — E°€hY) .
Since the symbol is homogeneous, we can assume that |£|, = 1, furthermore, we can
assume to do all the following computations in an orthonormal basis {e1,..., e}
of T, M™ such that £ = g(e1, ), hence, § = 0 for i # 1.
Then, we obtain,
O’E(DLQ)(h)ik = R, + 0;10K1 tr(h) — (Siléﬂhtk — 5k1(5t1hit
+aRkstu (5i15t1hsu o 5816t1 h’;i) + aRistu (5k15t1hsu o 5515t1h1];)
= hix + 0u10p1 tr(h) — dinhir — Or1ha
+aRps1u0:1h™ — aRi11uhy + aRis1u0k1 7" — aRinru b -
So far the dimension n of the manifold was arbitrary, now we carry out the com-

putation in the special case n = 3 (using again the symmetries of the Riemann
tensor),

hi1 haa(1 + 2aR1212) + h33(1 + 2aR1313) + hoz(4aRi213)
hi2 h3zaR1323 + hazaRi223
crg(DLg) hi3 _ ha2aR1232 + hazaRi332
hao haa(1 + 2aR1212) + ho32aRq213
h3s3 h33(1 + 2aR1313) + hos2aRi213

has haoaRa213 + hasaRi213 + hos(1 + aRi212 + aRazis)
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Then, we conclude that

0 0 0 1+42aRi212 14 2aRq313 4aR1213
0 0 O 0 CLR1323 CLR1223
o o0 o0 aRi232 0 aRi3s2
7cPLe) =14 ¢ o 14 2aR1212 0 2aR1213
0 0 0 0 14 2aRq313 2aR 1213
0 00 aRi213 aRi213 1+ aRi212 + aRiz13

As expected, in the kernel of the principal symbol there is at least the three—
dimensional space of forms h = £ @ v+ v ® & € S?M? where v is any cotangent
vector, that is, the variations of the metric which are tangent to the orbits of the
group of diffeomorphisms (see [8, Chapter 3, Section 2] for more details on this).

Now we use the algebraic decomposition of the Riemann tensor in dimension
three in order to simplify the computation of the other eigenvalues.

We recall that R

Riju = (Ric © g)ijue — (9 © 9)ijna

where R denotes the scalar curvature, i.e. the trace of the Ricci tensor, and the
symbol @® denotes the Kulkarni-Nomizu product of two symmetric bilinear forms p
and ¢, defined by

Poq)(X,Y,Z.T)
=p(X, Z)q(Y,T) +p(Y,T)q(X, Z) — p(X,T)q(Y, Z) — p(Y, Z)q(X.T),
for every tangent vectors X,Y, Z,T.
By means of the expression of the Riemann tensor in terms of the Ricci tensor

and since we are in an orthonormal basis, the principal symbol can be expressed in
the simpler form

0 0 0 1+ a(R — 2R33) 1+ a(R — 2R22) 4aRa3
000 0 aRiz —aRqs
10 0 0 aR13 0 —aRi2
oe(DLe) =10 o o 14 a(R — 2Rs3) 0 2aRa3
0 0 O 0 1+ a(R —2Rq2) 2aRo3
0 0 O aR23 aR23 1+ (IRH

In order to apply the argument of DeTurck, we need the weak ellipticity of the
linearized operator. To get that we have to compute the eigenvalues of the minor

1+ a(R — 2R33) 0 2(ZR23
A= 0 1 + a(R — QRQQ) 2&R23
aRa3 aRa3 1+aRqi

We claim that with a suitable orthonormal change of the basis of the plane
span{es,ea} = ei we can always get an orthonormal basis {e], e, e5} of T, M3
such that e} = e; and Rj; = Ric(e), e5) = 0.

Indeed, if {e}, €4} is any orthonormal basis of e, we can write

ey = cos ey + sin aes e5 = —sin aey + cos aes
for some « € [0, 27). Plugging this into the expression of the Ricci tensor, we obtain

2

hs = cosasina(Raz — Rag) + (cos? a — sin? ) Ras

1
= 5 sin(2a)(Rss — Raz2) + cos(2a)Ras .
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Hence, in order to have RS, = 0, it is sufficient to choose

B { 7 if Roo = Rgs,
‘T (

1 2Ro23 :
arctan(g7%—)  otherwise.

2

The matrix written above represents the symbol o¢(DL,) with respect to a generic
orthonormal basis where the first vector coincides with g(&, -), so with this change
of basis we obtain

0 0 0 1+a(R—2Rs3) 1+a(R—2Ry) 0

0 0 0 0 aRiz —aRi3

_ 0 0 O aRq3 0 —aRi2
76(DL) =10 0 0 1+a(R- 2Rs) 0 0
00 0 0 1+ a(R — 2Ry) 0

00 0 0 0 1+ aRy;

Hence, the other three eigenvalues of the matrix o¢(DL,) are the diagonal elements
of the matrix

1—|—(I(R—2R33) 0 0
A= 0 1+ a(R — 2Ra) 0 ,
0 0 1 +aR11

that is,
/\1=1+6L(R—2R33), )\2:1+G(R—2R22), A3 =14+ aRqq.

Now we recall that, if {ej }]—:1 ,,,,, n 1s an orthonormal basis of the tangent space,
the Ricci quadratic form is the sum of the sectional curvatures,

Rii = Z K(ei, ej)
J#i

and the scalar curvature R is given by

n
R= ZR” = QZK(ei,Bj).
i=1 i<j
Then, in dimension three, denoting by a = K(es,e3), 8 = K(e1,e3) and v =
K(ey, e2), we obtain that the above eigenvalues are

A1 =1+ 2avy, A2 =14 2ap, As=14a(B+7).

It is now easy to see, by the arbitrariness of the cotangent vector &, that these
three eigenvalues are positive, hence, the operator L is weakly elliptic, if and only
if all the sectional curvatures K(X,Y) of (M3, g) satisfy 1+ 2aK(X,Y) > 0. If this
expression is always positive, then there are exactly three zero eigenvalues, due to
the diffeomorphism invariance of the operator L.

Following the work of DeTurck [9, 10] (see also [3]), we show that Problem (3) is
equivalent to a Cauchy problem for a strictly parabolic operator, modulo the action
of the diffeomorphism group of M™.

Given a vector field V € TM™, we will denote the Lie derivative along V with
Ly.

Proposition 2.1 (DeTurck’s Trick — Existence part [9, 10]). Let (M™,go) be a
compact Riemannian manifold.
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Let L : S?2M™ — S2M™ and V : S2M™ — TM™ be differential operators such
that L is geometric, that is, for every smooth diffeomorphism v : M™ — M™ satis-
fying L(y*g) = ©*(Lg). If the linearized operator D(L — Ly 4, is strongly elliptic,
then the problem

{ Oig = Lyg
9(0) = go
admits a smooth solution on an open interval [0,T), for some T > 0.

The uniqueness part of the statement is more delicate. It exploits an argument
relying on existence and uniqueness of solutions of the harmonic map flow (see [8,
Chapter 3, Section 4]).

Lemma 2.2. Let V : S2M™ — TM™ be “DeTurck’s vector field”,
, : 1
Vilg) = = ', (5 tra o) — (90)ue)
1 .
= igékgpq (Vk(QO)pq - vp(go)qk - vq(go)pk) s

where gg s a Riemannian metric on M™ and gék s the matriz inverse of go.
The following facts hold true.

(i) The linearization in go of the Lie derivative in the direction V is given by
1
(DLY) gy ()it = 506"V {VRhng = Vphar = Vohyi}
1
+ §gng2{V?hpq - Vghqi - vghpi} + LOT,

where V° is the Levi-Civita connection of the metric go. Hence, its principal
symbol in the direction &, with respect to an orthonormal basis {(£)°, e, .. .,

en}, is
1 1 1
00 ... O
00 ... O
oc((DLy ) gy) = ,
3 go 0 0 0
0 0 0

expressed in the coordinates
(hit, hi2, - hin, hoo, has, oo By, hog, hoa, ooy Bt )
of any h € S>M™.
(ii) If o : (M™, g) = (M™, go) is a diffeomorphism, then V((¢™1)*g) = Ay 400,
where the harmonic map Laplacian with respect to g and gg is defined by
Aggop = trg(V(es))

with V the connection defined on T* M"™ @ p*T M™ using the Levi-Civita con-
nections of g and go (see [8, Chapter 3, Section 4] for more details).
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Proof of Theorem 1.1. Our operator Lg;i = 72R¢kfaRijlmRkstugjsg“gm“ is clearly
invariant under diffeomorphisms, hence, in order to show the smooth existence part
in Theorem 1.1 we only need to check that D(L — Ly )4, is strongly elliptic, where
V' is the vector field defined in Lemma 2.2. By the same lemma, with respect to
the orthonormal basis {e1, €}, €4} introduced above, we have

1 0 0 (L(R — 2R33) G(R — 2R22) 0
01 0 0 aRqs —aRq3
. 0 0 1 aRq3 0 —aRy2
oe(DIL=Lv)g) = |5 ¢ o 1+ 2ay 0 0
0 0 O 0 1+ 2ap 0
00 0 0 0 1+ a(B+7)

Finally, we conclude that a necessary and sufficient condition for the strong ellip-
ticity of the linear operator D(L — Ly )4, is then that all the sectional curvatures
of (M3, go) satisfy

1+ 2aKo(X,Y) >0,

for every p € M3 and vectors X,Y € T,M?3.

The uniqueness of the solution can be proven exactly in the same way as for
the Ricci flow. Let g1(t) and go(t) be solutions of the RG**flow with the same
initial data gg. By parabolicity of the harmonic map flow, introduced by Eells and
Sampson in [11], there exist 1 (t) and ps(t) solutions of

Orpi = Ay, gopi

Now we define g; = (¢; ')*g; and, using that o1 = —(p71). (L), it is easy to
show that both g7 and gs are solutions of the Cauchy problem associated to the
strong elliptic operator L — Ly and starting at the same initial metric gy, hence
they must coincide, by uniqueness. By point (ii) of Lemma 2.2, the diffeomor-
phisms ¢; also coincide because they are both the one—parameter group generated
by =V (g1) = =V (g2). Finally, g1 = ¢5(g1) = ¢5(g2) = g2 and this concludes the
proof of Theorem 1.1. O

We want to spend few words about why the vector field V' (g) in Lemma 2.2 is a
natural choice.

The linearization of a geometric operator (up to lower order terms) always con-
tains a Lie derivative term of the metric Ly (4 )9, due to the invariance by diffeo-
morphism, where

w (ga h) - 7gpq (D(F%q))g(h) .
This implies the presence of a nonvoid kernel, hence, a degeneracy of the operator.
In order to “kill” such term, one can subtract from the operator a Lie derivative of
the metric with respect to some vector field V' (g) (also depending on the metric g)
such that its linearized (up to lower order terms) is precisely W(g, h). A natural
choice is then the vector field

Vi) = =g (5, ~ T})

where f;q are the Christoffel symbols of some fixed metric (for instance, the initial
one gg). It is easy to see, after some computation, that this vector field V(g)
coincides with “DeTurck’s vector field” defined in Lemma 2.2 (for more details
see [8, Sections 3.2-3.3]).
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Finally, we mention that after solving the modified (made nondegenerate) evolu-
tion problem, the solution of the original Cauchy problem is recovered by means of
the 1-parameter group of diffeomorphisms generated by the vector field V(g) (this
argument is contained in the proof of Proposition 2.1).

3. Some remarks. In order to continue the study of this flow, it is natural to ask
if there exist some Perelman—type entropy functionals which are monotone along
the flow, as proposed by Tseytlin in [27]; another possibility is to investigate the
evolution of the curvatures along the flow under the hypothesis of Theorem 1.1 and
try to find (if there are) some preserved conditions in order to explore the long—time
behavior and the structure of the singularities at the maximal time of existence.

The analysis leading to Theorem 1.1 can be repeated step—by—step for the oper-
ator Lg, given by

Log = —aRajimRistug’*g" g™ ,

with associated RG>~ flow

js It _mu

8tgik = _aRijlmRkstug g9

In this case, along the same lines, the existence of a unique smooth evolution of an
initial metric gg is guaranteed as long as

aKo(X,Y) >0

for every point p € M3 and vectors X,Y € TpM3. That is, if a > 0 in case of an
initial metric with positive curvature and if a < 0 in the negative curvature case.
For geometrical purposes, this flow could be more interesting than the RG2?%
flow, in particular because of its scaling invariance, which is not shared by the
latter.
Another possibility in this direction is given by the squared Ricci flow, that is,
the evolution of an initial metric gy according to

O i = —aRini ,

which is scaling invariant and can be analyzed analogously, or a “mixing” with the
Ricci flow (non scaling invariant)

drgix = —2Rq, — aRyR,,

for any constant a € R, as before. ‘

Indeed, the principal symbol of the operator H = R;;R;, can be computed as in
Section 2. The linearized of the operator H around a metric g, for every h € SZM™,
is given by

DHy(h)i, = R{DRicy(h);; + R!DRic,y(h);; + LOT
- %Ri( — Ahy; — ViV, tr(h) + ViV ™y + vjvmmm)
—&-%R{ (= Ak = V;k tr(h) + V59" by + ViV "y ) + LOT .
Hence, the principal symbol in the direction of the cotangent vector &, as before, is

oe(DHg)(h)ir = —%R{; (g’"gmhij +&&tr(h) — &€ hjm — @-f’"him)
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1 .
_§R3 <§m§mhjk + &8k tr(h) = &€ Mo, — fkgm“’")
1 .
—51% (hij + 01301 tr(h) — driln; — 51J‘h1i)

1 .
—in (hjk + 6101k tr(h) — d15h1k — 51kh1j>

1

*5 (le(51i tr(h) — hh) + Ru(élk tr(h) — hlk))

1, . .
—3 (Ri(hij — d1ihay) + R (hjr — 51kh1j)> ;

where £ = g(e1,-) and {e;} is an orthonormal basis of T, M™.

Again, by specifying the initial metric to be gy and diagonalizing the restriction
of the Ricci tensor (which is still symmetric) to the hyperspace ei, we can find an
orthonormal basis {e), ..., e, } of e such that Ric(e}, e},) = 0 if i # k, the principal
symbol of the operator H, computed in the basis {e1, e}, ..., el }, is described by

re(DHy,) (W) = —5 (2Rer D)
j=2

1
o¢(DHg,) (M), = —§<2R1khkk+R1k Z hj; + Z lehjk)
J#Lk J#Lk

o¢(DHgy)(h)kk = (2Rkkhkk)

1
2
o¢(DHgy)(h)ir = —% ((Rkk + Rii)hik)

for every i,k € {2,...,n} with ¢ # k.
It is easy to see that the matrix associated to o¢(DH,,) expressed in the coordi-
nates

(h/117 h127 sty h1n7 h22a h337 ceey hnna h237 h24a ety h’n—l,n)

of S2M™ is upper triangular with n zeroes on the first n diagonal elements, then
the next (n — 1) ones are the values —Ryy, for k € {2,...,n} and finally, the last
(n—1)(n —2)/2 ones are given by —(R;; + Rix)/2 for every i,k € {2,...,n} with
1# k.

Now, applying Proposition 2.1 with the same vector field V' of Lemma 2.2, we
obtain that the squared Ricci flow

digix = —aRy;Rupg”

has a unique smooth solution for short time, when a > 0 for every initial manifold
(M™, go) with positive Ricci curvature and when a < 0, for every initial manifold
(M™, go) with negative Ricci curvature.

We conclude this discussion mentioning the cross curvature flow, introduced by
Chow and Hamilton in [7], which belongs to this “family” of quadratic flows. The
short-time existence and uniqueness of a smooth evolution of every initial metric
of a three—dimensional manifold with curvature not changing sign, was established
by Buckland in [4].

Note. Recently, Gimre, Guenther and Isenberg extended the short—time existence of
the RG**—flow, Theorem 1.1, to any dimensions in [18] (see also [16]).
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