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We study symmetries and dynamics of chiral SUðNÞ gauge theories with matter Weyl fermions in a
two-index symmetric (ψ) or antisymmetric tensor (χ) representation, together with N � 4þ p fermions in
the antifundamental (η) and p fermions in the fundamental (ξ) representations. They are known as the
Bars-Yankielowicz (the former) and the generalized Georgi-Glashow models (the latter). The conventional
’t Hooft anomaly matching algorithm is known to allow a confining, chirally symmetric vacuum in all these
models, with a simple set of massless baryonlike composite fermions describing the infrared physics.
We analyzed recently one of these models (ψηmodel), by applying the ideas of generalized symmetries and
the consequent, stronger constraints involving certain mixed anomalies, finding that the confining, chirally
symmetric, vacuum is actually inconsistent. In the present paper, this result is extended to a wider class of
the Bars-Yankielowicz and the generalized Georgi-Glashow models. It is shown that for all these models
with N and p both even, at least, the generalized anomaly matching requirement forbids the persistence of
the full chiral symmetries in the infrared if the system confines. The most natural and consistent possibility
is that some bifermion condensates form, breaking the color gauge symmetry dynamically, together with
part of the global symmetry.

DOI: 10.1103/PhysRevD.103.094016

I. INTRODUCTION

A few steps have been taken recently [1,2] to go beyond
the conventional ’t Hooft anomaly matching analysis in
understanding the infrared dynamics of chiral gauge
theories. The standard anomaly matching constraints and
other generally accepted ideas are usually not sufficient to
pinpoint what happens in the infrared, where the system
gets strongly coupled and perturbation theory has a limited
power in predicting the phase and global symmetry
realization patterns.
The tools which allow these new results come from the

idea of the generalized symmetries, of gauging some
1-form discrete center symmetries and studying the con-
sequences of mixed-’t Hooft-anomaly-matching conditions
[3–16]. Most concrete applications of these new techniques
so far refer to vectorlike gauge theories, such as pure

SUðNÞ Yang-Mills or adjoint QCD, where there is an exact
center symmetry [ZN for SUðNÞ theories], or QCD, where
the color center symmetry can be combined with Uð1ÞV to
give a color-flavor locked 1-form center symmetry. In
these, vectorlike, gauge theories, the results from the new
approach can be corroborated by the extensive literature,
based on some general theorems [17,18], on lattice sim-
ulations [19–22], on the effective Lagrangians [23–26], on
’t Hooft anomaly analysis [27], on the powerful exact
results in N ¼ 2 supersymmetrie theories [28,29], or on
some other theoretical ideas such as the space compacti-
fication combined with semiclassical analyses [30–33].
Most of these theoretical tools are, however, unavailable

for the study of strongly coupled chiral gauge theories,
except for some general wisdom, the large-N approximation,
and the ’t Hooft anomaly considerations. Together, they
offer significant, but not very stringent, information on the
infrared dynamics, phases, and symmetry realization (see
Refs. [34–47]). Such a situation is doubtlessly limiting our
capability of utilizing chiral gauge theories in the context of
realistic model building beyond the standard model, e.g.,
with composite fermions, with composite Higgs bosons, or
with dynamical composite models for dark matter, and so on.
It was these considerations that recently motivated us to

apply some of the new concepts and techniques to chiral
gauge theories, to see if new insights in the physics of these
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theories can be gained by doing so [1,2]. In particular,
in Ref. [2], a simple class of SUðNÞ gauge theories with
Weyl fermions

ψ ij; ηAi ; i; j ¼ 1;…; N; A ¼ 1;…; N þ 4; ð1:1Þ

in the direct-sum representation

ð1:2Þ

(“ψηmodel”) was studied. For even N, the (nonanomalous)
symmetry of the system is

SUðNÞ × Gf ; Gf ¼
SUðN þ 4Þ ×Uð1Þψη × ðZ2ÞF

ZN × ZNþ4

;

ð1:3Þ

where Uð1Þψη is the anomaly-free combination of Uð1Þψ
and Uð1Þη and ðZ2ÞF is the fermion parity, ψ ; η → −ψ ;−η.
In spite of the presence of fermions in the fundamental

representation of SUðNÞ, the system turns out to
possess, classically, an exact discrete ZN center 1-form
symmetry,1

ZN ⊂ SUðNÞ × fUð1Þψη × ðZ2ÞFg: ð1:4Þ

Indeed, the gauge transformation with e
2πi
N ∈ ZN ⊂ SUðNÞ,

ψ → e
4πi
N ψ ; η → e−

2πi
N η; ð1:5Þ

can be undone by the following ðZ2ÞF ×Uð1Þψη trans-
formation:

ψ → ð−1ÞeiNþ4
2

2π
Nψ ¼ e−i

N
2
2π
N ei

Nþ4
2

2π
Nψ ;

η → ð−1Þe−iNþ2
2

2π
N η ¼ ei

N
2
2π
N e−i

Nþ2
2

2π
N η: ð1:6Þ

Note that the odd elements of ZN belong to the discon-
nected component of Uð1Þψη × ðZ2ÞF, while the even
elements belong to the identity component.
The central idea is now to “gauge” this discrete, color-

flavor locked 1-form ZN symmetry. Remember that the
unfamiliar-sounding expression of gauging a discrete
symmetry means simply that field configurations related
by it are identified and the redundancy is eliminated. This
implies redefinition of the path-integral sum over the gauge
field configurations appropriately. By applying this to the
1-form ZN of an SUðNÞ gauge theory, one arrives at an
SUðNÞ
ZN

gauge system, with consequent 1
N fractional instanton

numbers.2 Concretely, this can be done by introducing the

2-form gauge fields ðBð2Þ
c ; Bð1Þ

c Þ,

NBð2Þ
c ¼ dBð1Þ

c ; ð1:7Þ

and coupling to them the SUðNÞ gauge fields a and

Uð1Þψη × ðZ2ÞF gauge fields, A and Að1Þ
2 , appropriately.

As for the SUðNÞ gauge field a, this can be achieved by
embedding it into a UðNÞ gauge field ã as

ã ¼ aþ 1

N
Bð1Þ
c ð1:8Þ

and requiring the whole system to be invariant under the
1-form gauge transformation,

Bð2Þ
c → Bð2Þ

c þ dλc; Bð1Þ
c → Bð1Þ

c þ Nλc;

ã → ãþ λc: ð1:9Þ

As the ZN is a color-flavor locked symmetry, Eq. (1.4), the
Uð1Þψη and ðZ2ÞF gauge fields must also be transformed
simultaneously:

A → A − λc; Að1Þ
2 → Að1Þ

2 þ N
2
λc: ð1:10Þ

The relation (1.7) indicates that one has now an SUðNÞ
ZN

connection rather than SUðNÞ. It implies that there are
nontrivial ’t Hooft fluxes carried by the gauge fields

1

2π

Z
Σ2

Bð2Þ
c ¼ n1

N
; n1 ∈ ZN; ð1:11Þ

in a closed two-dimensional subspace, Σ2. On topologically
nontrivial four-dimensional spacetime of Euclidean signa-
ture containing such subspaces, one has then3

1

8π2

Z
Σ4

ðBð2Þ
c Þ2 ¼ n

N2
; ð1:12Þ

where n ∈ ZN .
The fermion kinetic term with the background gauge

field is obtained by the minimal coupling procedure as4

1Let us recall that a 1-form symmetry acts on extended
operators such as closed Wilson or Polyakov loops, but not on
a local operator as in conventional (0-form) symmetries.

2In Ref. [2], we have gauged also the 1-form center symmetry
ZNþ4 ⊂ SUðN þ 4Þ, but the conclusion of the work did not
depend on it. Here and in the rest of the present work, only the
color-flavor locked ZN center symmetry will be considered.

3Throughout, a compact differential-form notation is used.
For instance, a≡ TcAc

μðxÞdxμ, F ¼ daþ a2, F2 ≡ F ∧ F ¼
1
2
FμνFρσdxμdxνdxρdxσ ¼ 1

2
ϵμνρσFμνFρσd4x ¼ FμνF̃μνd4x, and

so on.
4The ZN charges of A and Að1Þ

2 in (1.13) are determined by the
way Uð1Þψη and ðZ2ÞF together reproduce ψ → e4πi=Nψ and
η → e−2πi=Nη, as the reader can easily check. See Ref. [2].
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ψ̄γμ
�
∂ þRSðãÞ þ

N þ 4

2
Aþ A2

�
μ

PLψ

þ η̄γμ
�
∂ þRF� ðãÞ −

N þ 2

2
A − A2

�
μ

PLη; ð1:13Þ

with the obvious notation. We compute the anomalies by
applying the Stora-Zumino descent procedure starting with
a 6D anomaly functional,5

T 1 ¼
1

24π2
trRS

�
RSðFðãÞ − Bð2Þ

c Þ þ N þ 4

2
ðdAþ Bð2Þ

c Þ

þ
�
dAð1Þ

2 −
N
2
Bð2Þ
c

��
3

;

T 2 ¼
1

24π2
trR�

F

�
−ðFðãÞ − Bð2Þ

c Þ − N þ 2

2
ðdAþ Bð2Þ

c Þ

−
�
dAð1Þ

2 −
N
2
Bð2Þ
c

��
3

: ð1:14Þ

The rest of the procedure for computing the ðZ2ÞF anomaly
is standard: (i) one first integrates to get the 5D boundary

action containing Að1Þ
2 (Wess-Zumino-Witten (WZW)

action), and (ii) the variation of the form

δAð1Þ
2 ¼ 1

2
∂δAð0Þ

2 ; δAð0Þ
2 ¼ �2π ð1:15Þ

lead to, via the anomaly inflow, the sought-after anomaly in
the 4D theory. The result is

δS ¼ −N2
1

8π2

Z
Σ4

ðBð2Þ
c Þ2 1

2
δAð0Þ

2

¼ −N2 ×
Z
N2

ð�πÞ ¼ �π × Z∶ ð1:16Þ

the partition function changes sign, under ψ ; η → −ψ ;−η
[that is, there is a ðZ2ÞF anomaly]. As the ðZ2ÞF − ½ZN �2
mixed anomaly is obviously absent in the IR, we conclude
that the confining chirally symmetric vacuum, in which
conventional ’t Hooft anomalies are saturated in the infra-
red by massless composite “baryons”

BAB ¼ ψ ijηAi η
B
j ; A; B ¼ 1;…; N þ 4 ð1:17Þ

(antisymmetric in A ↔ B), is not the correct vacuum of the
system. As shown in Ref. [2], the dynamical Higgs
vacuum, characterized by bifermion condensates,

hψ ijηBi i ¼ cΛ3δjB ≠ 0; j; B ¼ 1;…N; c ∼Oð1Þ;
ð1:18Þ

is instead found to be fully consistent.
Several subtle features of the calculation and in the

interpretation of the results are discussed carefully in Ref. [2].
The purpose of the present work is to investigate if the

result found in the ψη model extends naturally to a wider
class of the so-called Bars-Yankielowicz and the general-
ized Georgi-Glashow models. The gauge group is taken to
be SUðNÞ, and the matter fermion content is (p is a natural
number)

ð1:19Þ

for the former (let us call them fS; N; pg models) and

ð1:20Þ

for the latter (fA; N; pgmodels). We will find that for all N
and p, both even, the system possesses a ðZ2ÞF symmetry,
which is nonanomalous, i.e., respected by standard instan-
tons. Also, these models all enjoy a “color-flavor locked"
ZN center symmetry, in spite of the presence of fermions in
the fundamental (or antifundamental) representation. It is
thus possible to gauge this center symmetry and study if, by
doing so, the ðZ2ÞF symmetry becomes anomalous, as
happened in the fS; N; 0g model.
The paper is organized as follows. In Sec. II, we discuss

the conventional ’t Hooft-anomaly-matching analysis in all
these models. A good part of this section is a review of
Refs. [34–40], but there are some new results, especially
concerning the Higgs phase, which we need later. As the
global symmetry group is relatively large, the fact that one
can find a set of gauge-invariant composite fermions which
satisfy all the anomaly-matching equations at all, assuming
the system to confine, is quite remarkable. Also, in all these
models, we find an alternative phase, also consistent with
the anomaly matching criterion, characterized by certain
bifermion condensates breaking color dynamically
(dynamical Higgs phase) accompanied by a partial break-
ing of the global symmetry.
In the conventional ’t Hooft anomaly matching equa-

tions, only the perturbative (local) aspect of the flavor
symmetry group matters, though nonperturbative (instan-
ton) effects of the strong SUðNÞ gauge interactions are
taken into account. In Sec. III, the symmetry of these
models is reanalyzed more carefully, taking into account
the global properties (e.g., the connectedness).
In Sec. IV, we calculate and find a mixed anomaly of the

type, ðZ2ÞF − ½ZN �2, in all models with N and p both even,
whereas such an anomaly is absent in the IR in a confining

5In going from (1.13) to (1.14), terms are arranged so that the
expression inside each bracket is 1-form gauge invariant.
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vacuum with full global symmetry—one of the candidate
vacua allowed by the conventional anomaly matching
argument. Consistency implies that these vacua cannot
be realized dynamically in the infrared, in all fS; N; pg and
fA; N; pg models, with N and p both even.
We summarize and discuss our results in Sec. V.

II. THEORIES AND POSSIBLE PHASES

A. fS;N;pg models

The first class of theories is the ψηmodel with additional
p pairs of fundamental and antifundamental fermions.
Namely, the model is an SUðNÞ gauge theory with Weyl
fermions

ψ ij; ηAi ; ξi;a ð2:1Þ

in the direct-sum representation

ð2:2Þ

The indices run as

i; j ¼ 1;…; N; A ¼ 1;…; N þ 4þ p; a ¼ 1;…; p:

ð2:3Þ

These theories (the Bars-Yankielowicz models) will be
denoted as fS; N; pg below. The ψη model corresponds to
fS; N; 0g. The first coefficient of the beta function is

b0 ¼ 11N − ðN þ 2Þ − ðN þ 4þ 2pÞ ¼ 9N − 6 − 2p;

ð2:4Þ

and p is limited by 9
2
N − 3 before asymptotic freedom (AF)

is lost. In the limitN fixed and p → ∞, we recover ordinary
QCD with p flavors, although this is outside the regime of
AF. The classical symmetry group is

SUðNÞc ×Uð1Þψ ×UðN þ 4þ pÞη ×UðpÞξ: ð2:5Þ

We discuss for the moment only 0-form symmetries,
leaving a more detailed discussion of the symmetry

group to Sec. III.6 Anomaly breaks the symmetry
group (2.5) to

p ¼ 0∶ SUðNÞc × SUðN þ 4Þη ×Uð1Þψη;
p ¼ 1∶ SUðNÞc × SUðN þ 5Þη ×Uð1Þψη × Uð1Þψξ;
p > 1∶ SUðNÞc × SUðN þ 4þ pÞη × SUðpÞξ

×Uð1Þψη × Uð1Þψξ; ð2:6Þ

where the anomaly-free combination ofUð1Þψ andUð1Þη is

Uð1Þψη∶ ψ → eiðNþ4þpÞαψ ; η → e−iðNþ2Þαη; ð2:7Þ

with α ∈ R, and the anomaly-free combination of Uð1Þψ
and Uð1Þξ is

Uð1Þψξ∶ ψ → eipβψ ; ξ → e−iðNþ2Þβξ; ð2:8Þ

with β ∈ R. The choice of the two unbroken Uð1Þ’s is
somehow arbitrary; for example, also Uð1Þηξ,

Uð1Þηξ∶ η → eipγη; ξ → e−iðNþ4þpÞγξ; ð2:9Þ

with γ ∈ R could be chosen as a generator. In Table I,
we summarize the fields and how they transform under the
symmetry group. There are also discrete unbroken sym-
metries of the three Uð1Þ’s: ðZNþ2Þψ , ðZNþ4þpÞη, and
ðZpÞξ. The relation between these discrete symmetries and
the continuous nonanomalous group Uð1Þψη ×Uð1Þψξ will
be discussed in Sec. III.

B. fA;N;pg models

The second class of models we are interested is SUðNÞ
gauge theories with Weyl fermions

χij; ηAi ; ξi;a ð2:10Þ

in the direct-sum representation

TABLE I. The multiplicity, charges, and the representation are shown for each set of fermions in the fS; N; pg model. ð·Þ stands for a
singlet representation.

SUðNÞc SUðN þ 4þ pÞ SUðpÞ Uð1Þψη Uð1Þψξ
ψ NðNþ1Þ

2
· ð·Þ NðNþ1Þ

2
· ð·Þ N þ 4þ p p

η ðN þ 4þ pÞ · ¯
□ N ·□ NðN þ 4þ pÞ · ð·Þ −ðN þ 2Þ 0

ξ p ·□ð1Þ Np · ð·Þ N ·□ 0 −ðN þ 2Þ

6To be precise, Eq. (2.5) is a covering space of the “real”
symmetry group. As the conventional ’t Hooft analysis depends
only on the algebra of the symmetry group, this is for the moment
sufficient.
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ð2:11Þ

The indices run as

i; j ¼ 1;…; N; A ¼ 1;…; N − 4þ p; a ¼ 1;…; p:

ð2:12Þ

These (the generalized Georgi-Glashow) models will be
indicated as fA; N; pg. The first coefficient of the beta
function is

b0 ¼ 11N − ðN − 2Þ − ðN − 4þ 2pÞ ¼ 9N þ 6 − 2p:

ð2:13Þ

Here, p will be assumed to be less than 9
2
N þ 3 so as to

maintain AF. The symmetry group is

SUðNÞc ×Uð1Þχ ×UðN − 4þ pÞη ×UðpÞξ: ð2:14Þ

Anomaly breaks this group to

p ¼ 0∶ SUðNÞc × SUðN − 4Þη × Uð1Þχη;
p ¼ 1∶ SUðNÞc × SUðN − 3Þη × Uð1Þχη ×Uð1Þχξ;
p > 1∶ SUðNÞc × SUðN − 4þ pÞη × SUðpÞξ

×Uð1Þχη × Uð1Þχξ; ð2:15Þ

where the anomaly-free combination ofUð1Þχ andUð1Þη is

Uð1Þχη∶ χ → eiðN−4þpÞαχ; η → e−iðN−2Þαη ð2:16Þ

and the anomaly-free combination of Uð1Þψ and Uð1Þξ is

Uð1Þχξ∶ χ → eipβχ; ξ → e−iðN−2Þβξ: ð2:17Þ

Another possible anomaly-free combination is Uð1Þηξ:

Uð1Þηξ∶ η → eipγη; ξ → e−iðN−4þpÞγξ: ð2:18Þ

In Table II, we summarize the fields and how they trans-
form under the symmetry group. There are also discrete
unbroken symmetries: ðZN−2Þψ , ðZN−4þpÞη, and ðZpÞξ.

C. Confining phase with unbroken global symmetries

The standard ’t Hooft anomaly matching conditions were
found to allow a chirally symmetric, confining vacuum in
the model first proposed in Ref. [35]. Let us assume that no
condensates form, the system confines, and the flavor
symmetry is unbroken.

1. fS;N;pg models

The candidate massless composite fermions for the
fS; N; pg models are the left-handed gauge-invariant
fields,

ðB1Þ½AB� ¼ ψ ijηAi η
B
j ; ðB2ÞaA ¼ ψ̄ ijη̄

i
Aξ

j;a;

ðB3Þfabg ¼ ψ ijξ̄i;aξ̄j;b; ð2:19Þ

the first is antisymmetric in A ↔ B, and the third is
symmetric in a ↔ b, and their charges are given in
Table III. Writing explicitly also the spin indices, they are

ðB1ÞAB;α ¼
1

2
ϵβγψ

ij;βηA;γi ηB;αj þ 1

2
ϵβγψ

ij;βηA;αi ηB;γj ;

ðB2Þa;αA ¼ ϵ _α _βψ̄
_α
ijη̄

i; _β
A ξj;a;α; ðB3Þαab ¼ ϵ _β _γψ

ij;αξ̄
_β
i;aξ̄

_γ
j;b;

ð2:20Þ

TABLE II. The multiplicity, charges, and the representation are shown for each set of fermions in the fA; N; pg model.

SUðNÞc SUðN − 4þ pÞ SUðpÞ Uð1Þχη Uð1Þχξ

χ NðN−1Þ
2

· ð·Þ NðN−1Þ
2

· ð·Þ N − 4þ p p

η ðN − 4þ pÞ · ¯
□ N ·□ NðN − 4þ pÞ · ð·Þ −ðN − 2Þ 0

ξ p ·□ Np · ð·Þ N ·□ 0 −ðN − 2Þ

TABLE III. Chirally symmetric phase of the fS; N; pg model.

SUðNÞc SUðN þ 4þ pÞ SUðpÞ Uð1Þψη Uð1Þψξ

B1
ðNþ4þpÞðNþ3þpÞ

2
· ð·Þ ðNþ4þpÞðNþ3þpÞ

2
· ð·Þ −N þ p p

B2 ðN þ 4þ pÞp · ð·Þ p ·
¯
□ ðN þ 4þ pÞ ·□ −ðpþ 2Þ −ðN þ pþ 2Þ

B3
pðpþ1Þ

2
· ð·Þ pðpþ1Þ

2
· ð·Þ N þ 4þ p 2N þ 4þ p
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all transforming under the f1
2
; 0g representation of the

Lorentz group. Table IV summarizes the anomaly matching
checks, via comparison between Tables I and III.

2. fA;N;pg models

The candidate massless composite fermions for the
fA; N; pg model are

ðB1ÞfABg ¼ χijηAi η
B
j ; ðB2ÞaA ¼ χ̄ijη̄

i
Aξ

j;a;

ðB3Þ½ab� ¼ χijξ̄i;aξ̄j;b; ð2:21Þ

the first being symmetric in A ↔ B and the third being
antisymmetric in a ↔ b. Writing the spin indices explic-
itly, they are

ðB1ÞAB;α ¼
1

2
ϵβγχ

ij;βηA;γi ηB;αj þ 1

2
ϵβγχ

ij;βηA;αi ηB;γj ;

ðB2Þa;αA ¼ ϵ _β _γ χ̄
_β
ijη̄

i;_γ
A ξj;a;α; ðB3Þab ¼ ϵ _β _γχ

ijξ̄
_β
i;aξ̄

_γ
j;b:

ð2:22Þ

All anomaly triangles are saturated by these candidate
massless composite fermions; see Table VI (Table V vs
Table II).

D. Dynamical Higgs phase in the fS;N;pg models

The broken phase for the fS; N; 0g, ψη model has also
been studied earlier [40,46]. The composite scalar ψη in the
maximal attractive channel is in the fundamental of both the
gauge group and the flavor group. All details can be found
in the references.
Something interesting happens for p > 0. Now, there is

another channel, ξη, which is gauge invariant and charged
under the flavor group. We thus have a competition between
two possible symmetry breaking channels, ψη and ξη. We
assume that both condensates occur in the following way:

hψ ijηBi i ¼ cψηΛ3δjB ≠ 0; j; B ¼ 1;…; N;

hξi;aηAi i ¼ cηξΛ3δaA ≠ 0; a ¼ 1;…; N;

A ¼ N þ 1;…; N þ p; ð2:23Þ

TABLE IV. Anomaly matching checks for the IR chiral symmetric phase of the fS; N; pg model. For N odd, the last three equalities
are consequences of other equations.

UV IR

SUðN þ 4þ pÞ3 N N þ p − p
SUðpÞ3 N N þ 4þ p − ðpþ 4Þ
SUðN þ 4þ pÞ2 − Uð1Þψη −NðN þ 2Þ −ðN þ 2þ pÞðN − pÞ − pðpþ 2Þ
SUðN þ 4þ pÞ2 − Uð1Þψξ 0 ðN þ 2þ pÞp − pðN þ pþ 2Þ
SUðpÞ2 − Uð1Þψη 0 −ðN þ 4þ pÞðpþ 2Þ þ ðpþ 2ÞðN þ pþ 4Þ
SUðpÞ2 − Uð1Þψξ −NðN þ 2Þ −ðN þ 4þ pÞðN þ pþ 2Þ þ ðpþ 2Þð2N þ pþ 4Þ
Uð1Þ3ψη NðNþ1Þ

2
ðN þ 4þ pÞ3

−NðN þ 4þ pÞðN þ 2Þ3
− ðNþ4þpÞðNþ3þpÞ

2
ðN − pÞ3 − ðN þ 4þ pÞpðpþ 2Þ3
þ pðpþ1Þ

2
ðN þ 4þ pÞ3

Uð1Þ3ψξ NðNþ1Þ
2

p3 − NpðN þ 2Þ3 ðNþ4þpÞðNþ3þpÞ
2

p3 − ðN þ 4þ pÞpðN þ pþ 2Þ3
þ pðpþ1Þ

2
ð2N þ 4þ pÞ3

Grav2 − Uð1Þψη NðNþ1Þ
2

ðN þ 4þ pÞ
−NðN þ 4þ pÞðN þ 2Þ

− ðNþ4þpÞðNþ3þpÞ
2

ðN − pÞ − ðN þ 4þ pÞpðpþ 2Þ
þ pðpþ1Þ

2
ðN þ 4þ pÞþ

Grav2 − Uð1Þψξ NðNþ1Þ
2

p − NpðN þ 2Þ ðNþ4þpÞðNþ3þpÞ
2

p − ðN þ 4þ pÞpðN þ pþ 2Þ
þ pðpþ1Þ

2
ð2N þ 4þ pÞ

SUðN þ 4þ pÞ2 − ðZNþ2Þψ 0 N þ 2þ p − p ¼ 0 mod N þ 2

SUðpÞ2 − ðZNþ2Þψ 0 −ðN þ 4þ pÞ þ pþ 2 ¼ 0 mod N þ 2

Grav2 − ðZNþ2Þψ 1 1 − 1þ 1

TABLE V. IR massless fermions in the chirally symmetric phase of the fA; N; pg model.

SUðNÞc SUðN − 4þ pÞ SUðpÞ Uð1Þχη Uð1Þχξ
B1

ðN−4þpÞðN−3þpÞ
2

· ð·Þ ðN−4þpÞðN−3þpÞ
2

· ð·Þ −N þ p p

B2 ðN − 4þ pÞp · ð·Þ p ·
¯
□ ðN − 4þ pÞ ·□ −ðp − 2Þ −ðN þ p − 2Þ

B3
pðp−1Þ

2
· ð·Þ pðp−1Þ

2
· ð·Þ N − 4þ p 2N − 4þ p
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where Λ is the renormalization-invariant scale dynamically
generated by the gauge interactions and cηξ; cψη are coef-
ficients both of order 1. According to the tumbling scenario
[34], the first condensate to occur is in the maximally
attractive channel (MAC). The strengths of the one-gluon
exchange potential for the two channels

ð2:24Þ

are, respectively,

N2 − 1

2N
−
ðN þ 2ÞðN − 1Þ

N
−
N2 − 1

2N
¼ −

ðN þ 2ÞðN − 1Þ
N

;

0 − 2
N2 − 1

2N
¼ −

N2 − 1

N
: ð2:25Þ

So, the ψη channel is slightly more attractive, but such a
perturbative argument is not really significant, and we
assume here that both types of condensates are formed.
The resulting pattern of symmetry breaking is

SUðNÞc ×SUðNþ4þpÞη×SUðpÞξ×Uð1Þψη×Uð1Þψξ
⟶
hξηi;hψηi

SUðNÞcfη ×SUð4Þη×SUðpÞηξ×Uð1Þ0ψη×Uð1Þ0ψξ:
ð2:26Þ

At the end, the color gauge symmetry is completely
(dynamically) broken, leaving color-flavor diagonal
SUðNÞcfη symmetry. Uð1Þ0ψη and Uð1Þ0ψξ are combinations,
respectively, of Uð1Þψη (2.7) and Uð1Þξη (2.8) with the
element of SUðN þ 4þ pÞη generated by

tSUðNþ4þpÞη ¼

0
B@

ð−αðpþ 2Þ − pβÞ1N×N
αðN−pÞ−βp

2
14×4

ðαþ βÞðN þ 2Þ1p×p

1
CA: ð2:27Þ

Making the decomposition of the fields in the direct sum of
representations in the subgroup, one gets Table VII. The
composite massless baryons are a subset of those in (2.19):

B½AB�
1 ¼ ψ ijηAi η

B
j ; B½AC�

2 ¼ ψ ijηAi η
C
j ;

A; B ¼ 1;…; N; C ¼ N þ 1;…; N þ 4: ð2:28Þ

TABLE VI. Anomaly matching checks for the IR chiral symmetric phase of the fA; N; pg model.

UV IR

SUðN − 4þ pÞ3 N N þ p − p
SUðpÞ3 N N − 4þ p − ðp − 4Þ
SUðN − 4þ pÞ2 − Uð1Þχη −NðN − 2Þ −ðN − 2þ pÞðN − pÞ − pðp − 2Þ
SUðN − 4þ pÞ2 − Uð1Þχξ 0 ðN − 2þ pÞp − pðN þ p − 2Þ
SUðpÞ2 − Uð1Þχη 0 −ðN − 4þ pÞðp − 2Þ þ ðp − 2ÞðN − 4þ pÞ
SUðpÞ2 − Uð1Þχξ −NðN − 2Þ −ðN − 4þ pÞðN þ p − 2Þ þ ðp − 2Þð2N − 4þ pþ 0Þ
Uð1Þ3χη NðN−1Þ

2
ðN − 4þ pÞ3

−NðN − 4þ pÞðN − 2Þ3
− ðN−4þpÞðN−3þpÞ

2
ðN − pÞ3 − ðN − 4þ pÞpðp − 2Þ3
þ pðp−1Þ

2
ðN − 4þ pÞ3

Uð1Þ3χξ NðN−1Þ
2

p3 − NpðN − 2Þ3 ðN−4þpÞðN−3þpÞ
2

p3 − ðN − 4þ pÞpðN þ p − 2Þ3
þ pðp−1Þ

2
ð2N − 4þ pÞ3

Grav2 − Uð1Þχη NðN−1Þ
2

ðN − 4þ pÞ
−NðN − 4þ pÞðN − 2Þ

− ðN−4þpÞðN−3þpÞ
2

ðN − pÞ − ðN − 4þ pÞpðp − 2Þ
þ pðp−1Þ

2
ðN − 4þ pÞ

Grav2 − Uð1Þχξ NðN−1Þ
2

p − NpðN − 2Þ ðN−4þpÞðN−3þpÞ
2

p − ðN − 4þ pÞpðN þ p − 2Þ
þ pðp−1Þ

2
ð2N − 4þ pÞ

SUðN − 4þ pÞ2 − ðZN−2Þχ 0 N − 2þ p − p ¼ 0 mod N − 2

SUðpÞ2 − ðZN−2Þχ 0 −ðN − 4þ pÞ þ p − 2 ¼ 0 mod N − 2

Grav2 − ðZN−2Þχ 1 1 − 1þ 1
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It is quite straightforward (and actually almost trivial) to
verify—we leave it to the reader as an exercise—that the
UV-IR anomaly matching continues to work, with the UV
fermions in Table VII and the IR fermions in Table VIII.

E. Dynamical Higgs phase in the fA;N;pg models

In the fA; N; pg model, there is a competition between
two possible bifermion symmetry breaking channels χη
and ξη. This time, the MAC criterion would favor the ξη

condensates against χη. Indeed, the strengths of the one-
gluon exchange potential for the two channels

ð2:29Þ

are, respectively,

N2 − 1

2N
−
ðN − 2ÞðN þ 1Þ

N
−
N2 − 1

2N
¼ −

ðN − 2ÞðN þ 1Þ
N

;

0 − 2
N2 − 1

2N
¼ −

N2 − 1

N
: ð2:30Þ

Again, these perturbative estimates are not excessively
significant, and we assume that both condensates occur as

hχijηAi i ¼ cχηΛ3δjA ≠ 0; j ¼ 1;…; N − 4; A ¼ 1;…; N − 4;

hξi;aηBi i ¼ cηξΛ3δaB ≠ 0; a ¼ 1;…; p; B ¼ N − 4þ 1;…; N − 4þ p: ð2:31Þ
The pattern of symmetry breaking is

SUðNÞc × SUðN − 4þ pÞη × SUðpÞξ ×Uð1Þχη ×Uð1Þχξ
⟶
hξηi;hχηi

SUð4Þc × SUðN − 4Þcfη × SUðpÞηξ ×Uð1Þ0χη × Uð1Þ0χξ: ð2:32Þ
Note that complementarity [48] apparently works only for p ¼ 0.
The color gauge symmetry is partially (dynamically) broken, leaving color-flavor diagonal global SUðN − 4Þcfη

symmetry and an SUð4Þc gauge symmetry. Uð1Þ0χη and Uð1Þ0χξ are a combinations, respectively, of Uð1Þχη (2.16) and
Uð1Þχξ (2.17) with the elements of SUðNÞc and SUðN − 4þ pÞη generated by

tSUðNÞc ¼
�
2
αðN−4þpÞþβp

N−4 1ðN−4Þ×ðN−4Þ
− αðN−4þpÞþβp

2
14×4

�
;

tSUðN−4þpÞη ¼
�− pðαþβÞðN−2Þ

N−4 1ðN−4Þ×ðN−4Þ
ðαþ βÞðN − 2Þ1p×p

�
: ð2:33Þ

Making the decomposition of the fields in the direct sum of representations in the subgroup, one arrives at Table IX.

TABLE VII. UV fields in the fS; N; pgmodel, decomposed as a direct sum of the representations of the unbroken
group of Eq. (2.26).

SUðNÞcfη SUð4Þη SUðpÞηξ Uð1Þ0ψη Uð1Þ0ψξ
ψ NðNþ1Þ

2
· ð·Þ NðNþ1Þ

2
· ð·Þ N þ 4þ p p

η1 N2 · ð·Þ N2 · ð·Þ −ðN þ 4þ pÞ −p

η2 4 ·
¯
□ N ·□ 4N · ð·Þ − Nþ4þp

2
− p

2

η3 p ·
¯
□ Np · ð·Þ N ·

¯
□ 0 N þ 2

ξ p ·□ Np · ð·Þ N ·□ 0 −ðN þ 2Þ

TABLE VIII. IR fields in the fS; N; pg model, the massless
subset of the baryons in Table III in the Higgs phase.

SUðNÞcfη SUð4Þη SUðpÞηξ Uð1Þ0ψη Uð1Þ0ψξ

B1
NðN−1Þ

2
· ð·Þ NðN−1Þ

2
· ð·Þ −ðN þ 4þ pÞ −p

B2 4 ·
¯
□ N ·□ 4N · ð·Þ − Nþ4þp

2
− p

2
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The composite massless baryons are a subset of those
in (2.21):

BfABg ¼ χijηAi η
B
j ; A; B ¼ 1;…; N − 4: ð2:34Þ

In the IR, these fermions saturate all the anomalies of
the unbroken chiral symmetry. This can be seen by an
inspection of Tables X and IX, with the help of the
following observation.
In fact, there is a novel feature in the fA; N; pg models,

which is not shared by the fS; N; pg models. As seen in
Table X, there is an unbroken strong gauge symmetry
SUð4Þc, with a set of fermions,

χ3; χ2; η3; η4; ξ2; ð2:35Þ

charged with respect to it. However, the pairs fχ2; η3g and
fη4; ξ2g can form massive Dirac fermions and decouple.
These are vectorlike with respect to the surviving infrared
symmetry, Eq. (2.32), and hence are irrelevant to the
anomalies.7 On the other hand, the fermion χ3 can condense

hχ3χ3i; ð2:36Þ

forming massive composite mesons, χ3χ3, which also
decouples. It is again neutral with respect to
all of

SUðN − 4Þcfη × SUðpÞηξ × Uð1Þ0χη ×Uð1Þ0χξ: ð2:37Þ

To summarize, SUð4Þc is invisible (confines) in the IR, and
only the unpaired part of the η1 fermion ( ) remains
massless, and its contribution to the anomalies is repro-
duced exactly by the composite fermions (2.34).
Comment: The massive mesons fχ2η3g, fη4ξ2g, and

fχ3χ3g are not charged with respect to the flavor symmetries
surviving in the infrared. It is tempting to regard them as a
toy-model “dark matter,” in contrast to the fermions BAB

which constitute the “ordinary, visible” sector.

III. SYMMETRIES

In the conventional ’t Hooft anomaly analysis discussed
above, only the algebra of the group matters. In this section,
the symmetry of the models will be examined with more
care, by taking into account the global aspects of the color
and flavor symmetry groups. Let us first consider the Bars-
Yankielowicz (fS; N; pg) models.
For a fS; N; pg model, the classical symmetry group of

our system is given by

Gclass ¼ Gc ×Gf

¼ SUðNÞc ×
Uð1Þψ ×UðN þ 4þ pÞη ×UðpÞξ

ZN
:

ð3:1Þ

TABLE IX. UV fields in the fA; N; pgmodel, decomposed as a direct sum of the representations of the unbroken
group of Eq. (2.32).

SUðN − 4Þcfη SUð4Þc SUðpÞηξ Uð1Þ0χη Uð1Þ0χξ

χ1 ðN−4ÞðN−5Þ
2

· ð·Þ ðN−4ÞðN−5Þ
2

· ð·Þ ðN−4þpÞN
ðN−4Þ p N

N−4

χ2 4 ·□ ðN − 4Þ ·□ 4ðN − 4Þ · ð·Þ ðN−4þpÞN
2ðN−4Þ

pN
2ðN−4Þ

χ3 6 · ð·Þ 6 · ð·Þ 0 0

η1 ðN − 4Þ2 · ð·Þ ðN − 4Þ2 · ð·Þ − ðN−4þpÞN
ðN−4Þ − pN

N−4

η2 p ·
¯
□ pðN − 4Þ · ð·Þ ðN − 4Þ · ¯

□ −2 − 2 p
N−4 N − 2 − 2p

N−4

η3 4 ·
¯
□ ðN − 4Þ · ¯

□ 4ðN − 4Þ · ð·Þ − ðN−4þpÞN
2ðN−4Þ − pN

2ðN−4Þ
η4 4p · ð·Þ p ·

¯
□ 4 ·

¯
□

N−4þp
2

N − 2þ p
2

ξ1 p ·□ pðN − 4Þ · ð·Þ ðN − 4Þ ·□ 2þ 2 p
N−4 −ðN − 2Þ þ 2p

N−4
ξ2 4p · ð·Þ p ·□ 4 ·□ − N−4þp

2
−ðN − 2Þ − p

2

TABLE X. IR field in the fA; N; pg model in the dynamical
Higgs phase.

SUðN − 4Þcfη SUðpÞηξ Uð1Þ0χη Uð1Þ0χξ
B ðN−4ÞðN−3Þ

2
· ð·Þ − ðN−4þpÞN

ðN−4Þ − pN
N−4

7Actually, with matter fermions (2.35), SUð4Þc is asymptoti-
cally free only for 50 − 2N − 2p > 0. If 50 − 2N − 2p < 0,
SUð4Þc will remain weakly coupled in the infrared, but the fact
that the fermions (2.35) do not contribute to the anomalies with
respect to the remaining flavor symmetries (2.37) stays valid.
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The color group is Gc ¼ SUðNÞc, and its center acts
nontrivially on the matter fields:

ZN∶ψ → e
4πin
N ψ ; η → e−

2πin
N η; ξ → e

2πin
N ξ ð3:2Þ

(n ∈ Z). The division by ZN in Eq. (3.1) is due to the fact
that the numerator overlaps with the center of the gauge
group (see Sec. III B). Another, equivalent way of writing
the flavor part of the classical symmetry group is

Gf ¼
SUðNþ 4þpÞ× SUðpÞ×Uð1Þψ ×Uð1Þη ×Uð1Þξ

ZN ×ZNþ4þp ×Zp
:

ð3:3Þ

Quantum mechanically, one must consider the effects of
the anomalies and SUðNÞ instantons which reduce the
flavor group down to its anomaly-free subgroup. The
instanton vertex explicitly breaks the three independent
Uð1Þ rotations for ψ, η, and ξ down to two Uð1Þ’s, to be
chosen among Uð1Þψη, Uð1Þψξ, and Uð1Þξη:

Uð1Þψη∶ ψ → eiðNþ4þpÞαψ ; η → e−iðNþ2Þαη;

Uð1Þψξ∶ ψ → eipβψ ; ξ → e−iðNþ2Þβξ;

Uð1Þηξ∶ η → eipγη; ξ → e−iðNþ4þpÞγξ ð3:4Þ

[see Eqs. (2.7)–(2.9)]. Three different discrete subgroups
left unbroken are

ðZNþ2Þψ∶ψ → e
2πik
Nþ2ψ ; ðZNþ4þpÞη∶η → e

2πik
Nþ4þpη;

ðZpÞξ∶ξ → e
2πik
p ξ: ð3:5Þ

The question is which is the correct anomaly-free sub-
group. The anomaly affects only the Uð1Þ part of the group

Uð1Þψ ×Uð1Þη ×Uð1Þξ ⟶
anomaly

H ð3:6Þ

so that the total symmetry group is broken as follows:

Gf ⟶
anomaly SUðN þ 4þ pÞ × SUðpÞ ×H

ZN × ZNþ4þp × Zp
: ð3:7Þ

A. Study of H

Clearly, Uð1Þψη, Uð1Þψξ, Uð1Þηξ, ðZNþ2Þψ , ðZNþ4þpÞη,
and ðZpÞξ are all part of the anomaly-free subgroup, but
one must find the minimal description, in order to avoid the
double-counting. H is at the bottom of the following
sequence of covering spaces:

Uð1Þψη×Uð1Þψξ×Uð1Þηξ×ðZNþ2Þψ ×ðZNþ4þpÞη×ðZpÞξ
↓

Uð1Þψη×Uð1Þψξ×ðZNþ2Þψ
↓

H:

ð3:8Þ

The first arrow can be understood as follows. Uð1Þηξ can
always be obtained by a combination of the other two
continuous groups, by choosing [using conventions for α,
β, and γ as in Eq. (3.4)]

α ¼ −
pγ

N þ 2
; β ¼ ðN þ 4þ pÞγ

N þ 2
: ð3:9Þ

Also, the fundamental element of ðZNþ4þpÞη can be
obtained by a combination of the fundamental of ðZNþ2Þψ
[k ¼ 1 in Eq. (3.5)] with the Uð1Þψη element

α ¼ −
1

ðN þ 4þ pÞðN þ 2Þ : ð3:10Þ

Similarly, ðZpÞξ can always be expressed as part
of Uð1Þψξ × ðZNþ2Þψ .
The question now (the second arrow) is whether

ðZNþ2Þψ ⊂ Uð1Þψη ×Uð1Þψξ ð3:11Þ

holds, i.e., whether the discrete part of the group can be
entirely expressed as a subgroup of the continuous Uð1Þ
groups. The requirement (3.11) is equivalent to

ðN þ 4þ pÞαþ pβ ∼
2π

N þ 2
;

−ðN þ 2Þα ∼ 0;

−ðN þ 2Þβ ∼ 0; ð3:12Þ

where ∼ means the equality with possible additional terms
of the form 2π× integer allowed. It follows from the last
two equations that

α ¼ 2πm
N þ 2

; β ¼ 2πn
N þ 2

; m; n ∈ Z; ð3:13Þ

which inserted in the first gives

2πmðN þ 4þ pÞ
N þ 2

þ 2πnp
N þ 2

∼
2π

N þ 2
; ð3:14Þ

that is,

ð2þ pÞmþ np ¼ 1þ ðN þ 2Þl; m; n;l ∈ Z: ð3:15Þ
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If one (or both) of N and p is odd, Eq. (3.15) has solutions.
That is, Eq. (3.11) is valid, and H has only one component
connected to the identity. This also means that, in the
context of the conventional anomaly matching discussion,
the anomaly matching requirement involving ðZNþ2Þψ ,
ðZNþ4þpÞη, or ðZpÞξ is automatically satisfied when the
triangles containingUð1Þψη ×Uð1Þψξ × SUðN þ pþ 4Þ ×
SUðpÞ are UV-IR matched.
Vice versa, if p and N are both even, there are no

solutions of Eq. (3.15); i.e., ðZNþ2Þψ is not entirely
contained in Uð1Þψη ×Uð1Þψξ. Only the even elements
of ðZNþ2Þψ are included:

ðZNþ2
2
Þψ ⊂ Uð1Þψη × Uð1Þψξ: ð3:16Þ

One can show, however, that for p and N both even

ðZNþ2Þψ ⊂ Uð1Þψη ×Uð1Þψξ × ðZ2ÞF; ð3:17Þ

where ðZ2ÞF is the fermion parity generated by

ψ → −ψ ; η → −η; ξ → −ξ: ð3:18Þ

In fact, admitting the presence of fermion parity, the
requirement (3.12) gets modified to

ðN þ 4þ pÞαþ pβ ∼
2π

N þ 2
þ π;

−ðN þ 2Þα ∼ π;

−ðN þ 2Þβ ∼ π; ð3:19Þ

and thus

ð2þ pÞmþ np ¼ ðN þ 2Þl; m; n;l ∈ Z; ð3:20Þ

which always has a solution.
To summarize, when p and N are both even, one has

H ¼ Uð1Þ1 × Uð1Þ2 × ðZ2ÞF; ð3:21Þ

i.e., it has two disconnected components. Uð1Þ1 and Uð1Þ2
are any two out of Uð1Þψη, Uð1Þψξ, and Uð1Þηξ. If p and/or
N is odd, instead,

H ¼ Uð1Þ1 ×Uð1Þ2; ð3:22Þ

it has only one connected component.

B. ZN ⊂ H

We focus now on the center of the color SUðNÞ group,
ZN . We first show that when N and p are both even

ZN⊄Uð1Þψη ×Uð1Þψξ: ð3:23Þ

To prove this, ab absurdo, assume that Uð1Þψη × Uð1Þψξ
does contain ZN ; that is,

ðN þ 4þ pÞαþ pβ ∼
4π

N
;

−ðN þ 2Þα ∼ −
2π

N
;

−ðN þ 2Þβ ∼ 2π

N
: ð3:24Þ

(Remember that the symbol ∼ here indicates equality
modulo terms of the form 2πn, n ∈ Z.) We first eliminate
α from the first two. As N and p are both even, multiply the
first by Nþ2

2
and the second by Nþ4þp

2
(both integers), and

add. We get

p
2
ðN þ 2Þβ ∼ 4π

N
N þ 2

2
−
2π

N
N þ 4þ p

2
∼ π −

πp
N

:

ð3:25Þ

On the other hand, multiplying the third of Eq. (3.24) by p
2

(also an integer) gives

p
2
ðN þ 2Þβ ∼ −

πp
N

: ð3:26Þ

Equations (3.25) and (3.26) contradict each other.
We next prove that if at least one of N and p is odd then

ZN ⊂ Uð1Þψη ×Uð1Þψξ; ð3:27Þ

that is, Eq. (3.24) has solutions. To prove this, we repeat
the procedure above, noting that there may be now extra
terms on the right-hand side. As a result, Eq. (3.25) is
replaced by

p
2
ðN þ 2Þβ ¼ π −

2πp
2N

þ 2πm
N þ 2

2
þ 2πn

N þ 4þ p
2

;

ð3:28Þ

while Eq. (3.26) is replaced by

p
2
ðN þ 2Þβ̃ ¼ −

2πp
2N

þ 2πl ·
p
2
; ð3:29Þ

m; n;l ∈ Z: ð3:30Þ

Now, when one or both of N and p are odd, it is always
possible to find appropriate integers m; n;l such that
the right-hand sides of Eqs. (3.28) and (3.29) are equal,
that is,

π þ 2πm
N þ 2

2
þ 2πn

N þ 4þ p
2

∼ 2πl ·
p
2
: ð3:31Þ
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When both N and p are even, exceptionally, this equality
does not hold for any choice of m; n;l, as has been
already noted.
Finally, we prove that

ZN ⊂ Uð1Þψη ×Uð1Þψξ × ðZ2ÞF; ð3:32Þ

when N and p are both even. This means that
[cf. Eq. (3.24)]

ðN þ 4þ pÞαþ pβ ∼
4π

N
þ π;

−ðN þ 2Þα ∼ −
2π

N
þ π;

−ðN þ 2Þβ ∼ 2π

N
þ π: ð3:33Þ

Let us repeat the procedure (3.24)–(3.26), by keeping the
extra terms coming from π on the right-hand sides.
Equation (3.25) is replaced by

p
2
ðN þ 2Þβ ∼ π −

πp
N

þ pþ 2

2
π; ð3:34Þ

whereas Eq. (3.26) is modified to

p
2
ðN þ 2Þβ ∼ −

πp
N

þ p
2
π: ð3:35Þ

The right-hand sides of Eqs. (3.34) and (3.35) now agree.
To sum up, we have shown that

ZN ⊂ H ð3:36Þ

for any choice of N and p, for the fS; N; pg models.

C. fA;N;pg models

So far, our analysis concentrated on the fS; N; pg
models for definiteness. For the fA; N; pg models, the
result is very similar. The symmetry group is

Gf ¼
SUðN − 4þ pÞ × SUðpÞ ×Uð1Þχ ×Uð1Þη × Uð1Þξ

ZN × ZN−4þp × Zp
;

ð3:37Þ

where the anomaly acts on the Uð1Þ part as

Uð1Þχ × Uð1Þη × Uð1Þξ⟶
anomaly

H: ð3:38Þ

Clearly, all Uð1Þχη, Uð1Þχξ, and Uð1Þηξ defined in
Eqs. (2.16)–(2.18) together with the discrete groups

ðZN−2Þχ∶χ → e
2πik
N−2χ; ðZN−4þpÞη∶η → e

2πik
N−4þpη;

ðZpÞξ∶ξ → e
2πik
p ξ ð3:39Þ

are the nonanomalous symmetry group of the system, but
we need a minimum set without redundancy. For p ¼ 0, the
χη model, the result is

N odd∶ H ¼ Uð1Þχη;
N even∶ H ¼ Uð1Þχη × ðZ2ÞF: ð3:40Þ

For greater p, as for the fS; N; pg model, H is

gcdðN; p; 2Þ ¼ 1∶ H ¼ Uð1Þ1 ×Uð1Þ2;
gcdðN; p; 2Þ ¼ 2∶ H ¼ Uð1Þ1 ×Uð1Þ2 × ðZ2ÞF; ð3:41Þ

where Uð1Þ1;2 are any two out of Uð1Þχη, Uð1Þχξ, and
Uð1Þηξ. Again,

ZN ⊂ H ð3:42Þ

for any choice of N and p. The proof for the fA; N; pg
models is entirely analogous to the one given for fS; N; pg
and is omitted.

D. Illustration

Let us illustrate the symmetry of our systems graphically,
taking a few concrete models of the type fS; N; pg.
It is convenient to introduce the following notation.

We parametrize a generic Uð1Þ ⊂ T3 ¼ Uð1Þψ ×Uð1Þη ×
Uð1Þξ with a triplet of integer numbers,

t ¼

0
B@

t1
t2
t3

1
CA ∈ Z3; ð3:43Þ

so that

Uð1Þ∶

0
B@

ψ

η

ξ

1
CA →

0
B@

eit1θψ

eit2θη

eit3θξ

1
CA; 0 ≤ θ < 2π: ð3:44Þ

ThisUð1Þ winds gcdðt1; t2; t3Þ times around the 3-torus T3.
In general, given a specific direction, we choose the
“fundamental” generator for which gcdðt1; t2; t3Þ ¼ 1 so
that periodicity in θ is exactly 2π. In these notations, the
three fundamental Uð1Þ’s are generated by

tUð1Þψ ¼

0
B@
1

0

0

1
CA; tUð1Þη ¼

0
B@
0

1

0

1
CA; tUð1Þξ ¼

0
B@
0

0

1

1
CA; ð3:45Þ
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and the nonanomalous ones are generated by

tUð1Þψη ¼

0
BB@

Nþ4þp
gcdðNþ4þp;Nþ2Þ
− Nþ2

gcdðNþ4þp;Nþ2Þ
0

1
CCA;

tUð1Þψξ ¼

0
BB@

p
gcdðp;Nþ2Þ

0

− Nþ2
gcdðp;Nþ2Þ

1
CCA;

tUð1Þηξ ¼

0
BB@

0
p

gcdðNþ4þp;pÞ

− Nþ4þp
gcdðNþ4þp;pÞ

1
CCA: ð3:46Þ

We give now specific examples for p ¼ 0, 1, 2:
(i) For p ¼ 0, the ψη model, this has been discussed in

detail in Ref. [2], and the result is

N odd∶ H ¼ Uð1Þψη;
N even∶ H ¼ Uð1Þψη × ðZ2ÞF: ð3:47Þ

(ii) For p ¼ 1, independently of N, H has only one
connected component. In Fig. 1, we show the case
N ¼ 3. One possible way to parametrize H is

H ¼ Uð1Þψξ × Uð1Þηξ: ð3:48Þ

Note that Uð1Þψξ contains ðZNþ2Þψ and Uð1Þηξ
contains ðZNþ5Þη, so together they contain the whole
discrete lattice ðZNþ2Þψ × ðZNþ5Þη. We can define
the group Ũð1Þ as the one that containsZN and is the
one generated by

tŨð1Þ ¼ 2tUð1Þψξ − tUð1Þηξ : ð3:49Þ

(iii) For p ¼ 2, N odd, H has only one connected
component. In Fig. 2, we show the graphs for the
case N ¼ 3. One possible way to parametrize H is

H ¼ Uð1Þψξ ×Uð1Þηξ
Z2

: ð3:50Þ

Note that Uð1Þψξ contains ðZNþ2Þψ × ðZ2Þξ and
Uð1Þηξ contains ðZNþ6Þη × ðZ2Þξ, so Uð1Þψξ ×
Uð1Þηξ contains Z2ðNþ2Þ × Z2ðNþ6Þ, which is twice
redundant with respect to ðZNþ2Þψ × ðZNþ6Þη ×
ðZ2Þξ. We can also see this in the following way.
Uð1Þψξ contains a nontrivial element of Uð1Þηξ. If
we take the element ofUð1Þψξ with β ¼ π, we obtain

FIG. 1. The 3-torus Uð1Þψ × Uð1Þη × Uð1Þξ broken to Uð1Þψξ × Uð1Þηξ for the fS; 3; 1g model.

FIG. 2. The 3-torus Uð1Þψ ×Uð1Þη × Uð1Þξ broken to
Uð1Þψξ×Uð1Þηξ

Z2
for the fS; 3; 2g model.
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ψ → ψ ; η → η; ξ → −ξ; ð3:51Þ

which is exactly the element of Uð1Þηξ with γ ¼ π.
This is the reason for the Z2 division in (3.50). The
group Ũð1Þ that contains ZN is the one generated by
(3.49). If we define Ûð1Þ generated by

tÛð1Þ ¼ −
1

2
tUð1Þψξ þ

1

2
tUð1Þηξ ; ð3:52Þ

we can write

H ¼ Uð1Þψξ × Ûð1Þ ¼ Uð1Þηξ × Ûð1Þ: ð3:53Þ

(iv) For p ¼ 2, N even, H has two components. In
Fig. 3, we illustrate the case N ¼ 4, p ¼ 2. One
possible way to parametrize H is

H ¼ Uð1Þψξ ×Uð1Þηξ × ðZ2ÞF: ð3:54Þ

We can define the group Ũð1Þ generated by (3.49),
but this time, it contains only ZN

2
. In general, it is not

possible to write ZN ⊂ Uð1Þ0 × ðZ2ÞF; both Uð1Þ’s
are necessary, although N ¼ 4, p ¼ 2 is an excep-
tion as we will see in the warm-up example in
Sec. IVA.

IV. MIXED ðZ2ÞF − ½ZN�2 ANOMALY

The generalized (mixed) anomaly of the type ðZ2ÞF −
½ZN �2 was studied in detail in Ref. [2] for the fS; N; 0g
(“ψη”) model. We have briefly reviewed the method and
results found there at the end of Introduction. This study is
extended below to a wider class of models discussed in
Secs. II and III. The global structure of the anomaly-free
symmetry group revealed in Sec. III teaches us that the
most interesting class of models for the present purpose is
fS; N; pg and fA; N; pg models with N and p both even,
on which our analysis below will set focus.

A. Warm-up example fS;4;2g
We first consider a simplest, nontrivial model fS; 4; 2g

and set up the calculation of the mixed anomalies, making a
brief note on some general features of the gauging of the
discrete 1-form ZN symmetry, on the idea of “ðZ2ÞF gauge
field,” and paying special attention to the way the fermions
transform nontrivially under the 1-form ZN gauge trans-
formation. The same procedure can then be easily extended
to more general cases discussed later.
Even though the fact that

ZN ⊂ Uð1Þψξ ×Uð1Þηξ × ðZ2ÞF ð4:1Þ

has been proven in general in Sec. III B, we need an explicit
solution for this model, to fix the charges of the fermion
fields under the 1-form ZN symmetry. From

Uð1Þψξ∶ ψ∶eiβ; ξ∶e−iNþ2
2
β ¼ e−3iβ;

Uð1Þηξ∶ η∶eiγ; ξ∶e−iNþ6
2
γ ¼ e−5iγ;

ZN∶ ψ∶e4πi=N ¼ eπi; η∶e−2πi=N ¼ e−iπ=2;

ξ∶e2πi=N ¼ eiπ=2;

Z2∶ ψ∶e�iπ; η∶e�iπ; ξ∶e�iπ; ð4:2Þ

we see that a simple solution in this case is to take β ¼ 0,
and γ ¼ þ π

2
. It is easily seen that ZN is realized as a

Uηξð1Þ × ðZ2ÞF transformation with

Z2∶ ψ∶eþiπ; η∶e−iπ; ξ∶eþ3iπ: ð4:3Þ

We introduce the following accordingly:
(i) A: Uð1Þηξ 1-form gauge field,
(ii) A2: ðZ2ÞF 1-form gauge field,
(iii) ã: UðNÞc 1-form gauge field,
(iv) Bð2Þ

c : ZN 2-form gauge field.
The original SUðNÞ gauge field a is embedded in a UðNÞ
gauge field ã as

ã ¼ aþ 1

N
Bð1Þ
c ; NBð2Þ

c ¼ dBð1Þ
c : ð4:4Þ

FIG. 3. The 3-torus Uð1Þψ ×Uð1Þη ×Uð1Þξ broken to Uð1Þψξ × Uð1Þηξ × ðZ2ÞF for the fS; 4; 2g model.
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As explained in Refs. [3] and [4], one defines this way a
globally well-defined SUðNÞ=ZN connection. The impo-
sition of the local, 1-form gauge invariance (4.6) below
eliminates the apparent increase of the degrees of freedom
[in going from SUðNÞ to UðNÞ] on the one hand and at the
same time allows one to “gauge away” the center ZN
variation of Polyakov or Wilson loops

ei
H

a → e2πi=Nei
H

a ð4:5Þ

on the other.
The 1-form gauge transformation acts on these fields as

Bð2Þ
c → Bð2Þ

c þ dλc; Bð1Þ
c → Bð1Þ

c þ Nλc;

ã → ãþ λc; FðãÞ → FðãÞ þ dλc; ; ð4:6Þ

A → A − λc;

A2 → A2 þ
N
2
λc ¼ A2 þ 2λc: ð4:7Þ

As we are dealing here with a ZN , which is a color-
flavor locked symmetry, the fermion fields also transform,
appropriately. Their charges above follow from Eqs. (4.2)
and (4.3).
It is perhaps not useless, before proceeding, to remind

ourselves of the meaning of a ðZ2ÞF gauge field, A2, which
formally looks like an ordinaryUð1Þ gauge field. Restoring
momentarily the suffixes for the differential forms,

2Að1Þ
2 − Bð1Þ

c ¼ dAð0Þ
2 ð4:8Þ

can be regarded as an invariant form of the ðZ2ÞF gauge field,
2Að1Þ

2 ¼ dAð0Þ
2 , where Að0Þ

2 is a 2π periodic scalar function
(angle). It is an example of an “almost flat connection”; it

satisfies 2dAð1Þ
2 −NBð2Þ

c ¼0 locally. However, it cannot be
set to zero everywhere, as a nonvanishing flux through a
closed two-dimensional surface may be present, allowing a

nontrivial ðZ2ÞF holonomy
H
Að1Þ
2 ¼ 2πm=2; m ∈ Z, along

a noncontractible closed loop. A kind of partial gauge fixing

would allow us to work with the gauge field Bð1Þ
c and gauge

function λc, satisfying always

I
Bð1Þ
c ¼ 2πn;

I
λc ¼

2πl
N

; ðn ∈ Z; l ∈ ZÞ:

ð4:9Þ

See Ref. [2] for more discussions.

The fermion kinetic terms are

ψ̄γμð∂ þRSðãÞ − A2ÞμPLψ

þ η̄γμð∂ þRF� ðãÞ þ Aþ A2ÞμPLη

þ ξ̄γμð∂ þRFðãÞ − 5A − 3A2ÞμPLξ; ð4:10Þ

each of which is indeed invariant under (4.6) and (4.7).
Note that the choice of the Z2 charges (1;−1;þ3) for (ψ , η,
ξ) fields [see Eq. (4.3)] is dictated by the requirement
that the redundancy (4.1) involving the discrete symmetries
Z2 and ZN be formally expressed as an invariance under
(4.6) with a continuous gauge function λc ¼ λμcðxÞdxμ. The
1-form gauge-invariant field tensors are, for the UV
fermions ψ , η, ξ,

RSFðãÞ − dA2;

R�
FFðãÞ þ dAþ dA2;

RFFðãÞ − 5dA − 3dA2: ð4:11Þ

By rearranging things so that each term in the bracket is
manifestly invariant under (4.6) and (4.7), this can be
rewritten as

RS

�
FðãÞ − Bð2Þ

c

�
−
�
dA2 − 2Bð2Þ

c

�
;

R�
F

�
FðãÞ − Bð2Þ

c

�
þ
�
dAþ Bð2Þ

c

�
þ
�
dA2 − 2Bð2Þ

c

�
;

RF

�
FðãÞ − Bð2Þ

c

�
− 5

�
dAþ Bð2Þ

c

�
− 3

�
dA2 − 2Bð2Þ

c

�
:

ð4:12Þ

In the confining vacuum with the full global symmetry,
discussed in Sec. II C, the infrared degrees of freedom
would be the (massless, by assumption) composite fer-
mions B1, B2, B3 (2.19). Their kinetic terms are given by

B1γ
μð∂ þ 2Aþ A2ÞμPLB1 þ B2γ

μð∂ − 6A − 3A2ÞμPLB2

þ B3γ
μð∂ þ 10Aþ 5A2ÞμPLB3: ð4:13Þ

The corresponding invariant tensors are

2
�
dAþ Bð2Þ

c

�
þ
h
dA2 − 2Bð2Þ

c

i
;

− 6
�
dAþ Bð2Þ

c

�
− 3

h
dA2 − 2Bð2Þ

c

i
;

10
�
dAþ Bð2Þ

c

�
þ 5

h
dA2 − 2Bð2Þ

c

i
; ð4:14Þ

respectively. Though this formula appears to depend on

Bð2Þ
c due to the way things have been arranged to make

each term manifestly invariant, Bð2Þ
c actually drops out
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completely, reflecting the fact that B1, B2, B3 are all color SUðNÞ singlets; there are no gauge kinetic terms in their action.
As a result, there would be no mixed anomalies in the IR due to the gauging of ZN 1-form symmetry.
Note that the same cannot be said of the formula Eq. (4.12) in the UV theory. Because, for instance,

trFðãÞ ¼ NBð2Þ
c ; ð4:15Þ

for the fundamental representation, the Bð2Þ
c dependence of the expressions in Eq. (4.12) is not exhausted by the explicit Bð2Þ

c

factors. Even though we shall use the formula (4.12) for the calculation of the mixed anomalies below, for manifest
1-form gauge invariance of our calculation step by step, the same final result can be obtained (as it should)
by working with a not-term-by-term-manifestly-invariant expression (1.14). This is shown in the Appendix. As a bonus,
the discussion there explains some interesting aspect of our results below.
The rest of the calculations follows that done in Ref. [2]. From Eq. (4.12), one finds the 6D anomaly functional in the UV

theory,8

1

24π2
trRS

hn�
FðãÞ − Bð2Þ

c

�
−
�
dA2 − 2Bð2Þ

c

�o
3
i
þ 1

24π2
trR�

F

hn�
FðãÞ − Bð2Þ

c

�
þ
�
dAþ Bð2Þ

c

�
þ
�
dA2 − 2Bð2Þ

c

�o
3
i

þ 1

24π2
trRF

hn�
FðãÞ − Bð2Þ

c

�
− 5

�
dAþ Bð2Þ

c

�
− 3

�
dA2 − 2Bð2Þ

c

�o
3
i
: ð4:16Þ

Keeping only the relevant terms, the first line (ψ) gives

1

24π2

�
−3ðN þ 2ÞtrðFðãÞ − Bð2Þ

c Þ2ðdA2 − 2Bð2Þ
c Þ − NðN þ 1Þ

2
ðdA2 − 2Bð2Þ

c Þ3
�
; ð4:17Þ

the second line (η) gives

1

24π2

�
3ðN þ 6ÞtrðFðãÞ − Bð2Þ

c Þ2
�
dA2 −

N
2
Bð2Þ
c

�
þ NðN þ 6ÞðdA2 − Bð2Þ

c þ…Þ3
�
; ð4:18Þ

and the third line (ξ) gives

1

24π2

�
−3 · 2 · 3trðFðãÞ − Bð2Þ

c Þ2
�
dA2 −

N
2
Bð2Þ
c

�
þ 2Nð−3dA2 þ Bð2Þ

c þ…Þ3
�
: ð4:19Þ

Collecting the relevant terms, one finds that the coefficient of

1

8π2
ðBð2Þ

c Þ2dA2 ð4:20Þ

is equal to

NðN þ 2Þ − NðN þ 1Þ
2

4þ ðN þ 6Þð−NÞ þ NðN þ 6Þ þ 2N3þ 2Nð−3Þ ¼ −N2 ¼ −16: ð4:21Þ

Following the usual procedure [e.g., Eqs. (1.15) and (1.16)], we find the mixed ðZ2ÞF − ½ZN �2 anomaly in 4D:

−N2
1

8π2

Z
Σ4

ðBð2Þ
c Þ2 1

2
δAð0Þ

2 ¼ −N2 ×
Z
N2

ð�πÞ ¼ �π × Z: ð4:22Þ

Namely, the partition function suffers from a sign change under the fermion parity transformation. On the other hand, one
would find no ðZ2ÞF anomaly in the IR if one were to assume the chirally symmetric vacuum with the massless baryons B1,

8Even though we follow here the Stora-Zumino descent procedure for calculating the anomalies, there is no problem obtaining the
same results à la Fujikawa [49], staying in 4D; the idea of gauging the center ZN symmetry in itself has nothing to do with the
introduction of the two extra dimensions. This was explicitly shown in Ref. [2] for the ψη model.
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B2, and B3 of Sec. II C. The contradiction can be avoided
by assuming that the system actually is in a dynamical
Higgs phase such as the one discussed in Sec. II D.

B. General fS;N;pg models with generic N and p even

Let us now discuss fS; N; pg systems with general N
and p, both even. As in the warm-up example, we verify
anew

ZN ⊂ Uð1Þψη ×Uð1Þψξ × Z2 ð4:23Þ

for N and p both even, by solving the equations9

N þ 4þ p
2

αþ p
2
β ¼ 4π

N
� π;

−
N þ 2

2
α ¼ −

2π

N
� π;

−
N þ 2

2
β ¼ 2π

N
� π ð4:24Þ

concretely. Indeed, it is sufficient to find one good solution.
A possible solution is10

α ¼ 4π

NðN þ 2Þ þ
2π

N þ 2
; β ¼ −

4π

NðN þ 2Þ −
2π

N þ 2
;

ð4:25Þ

which is a solution with the ðZ2ÞF signsþ, −, andþ for the
ψ , η, and ξ fields in Eq. (4.24), respectively. The above
solution Eq. (4.25) can be simply rewritten as

α ¼ 2π

N
; β ¼ −

2π

N
: ð4:26Þ

As in any anomaly calculation, we couple the system to the
appropriate background gauge fields,

(i) Aψη: Uð1Þψη 1-form gauge field,
(ii) Aψξ: Uð1Þψξ 1-form gauge field,
(iii) A2: ðZ2ÞF 1-form gauge field,
(iv) ã: UðNÞc 1-form gauge field,
(v) Bð2Þ

c : ZN 2-form gauge field.
Under the 1-form gauge transformation, the fields trans-
form as

Bð2Þ
c → Bð2Þ

c þ dλc; Bð1Þ
c → Bð1Þ

c þ Nλc;

ã → ãþ λc; F̃ðãÞ → F̃ðãÞ þ dλc;

Aψη → Aψη − λc;

Aψξ → Aψξ þ λc;

A2 → A2 þ
N
2
λc; ð4:27Þ

where the charges follow from (4.24) and (4.26). The
fermion kinetic terms are

ψ̄γμ
�
∂ þRSðãÞ þ

N þ 4þ p
2

Aψη þ
p
2
Aψξ þ A2

�
μ

PLψ

þ η̄γμ
�
∂ þRF� ðãÞ −

N þ 2

2
Aψη − A2

�
μ

PLη

þ ξ̄γμ
�
∂ þRFðãÞ −

N þ 2

2
Aψξ þ A2

�
μ

PLξ: ð4:28Þ

It can be checked readily that each line is invariant under
Eq. (4.27). In particular, the ðZ2ÞF charges are fixed by this
requirement.
The 1-form gauge-invariant field tensors are, for the UV

fermions ψ , η, and ξ,

T 1 ¼ RS

�
FðãÞ − Bð2Þ

c

�
þ N þ 4þ p

2

�
dAψη þ Bð2Þ

c

�

þ p
2

�
dAψξ − Bð2Þ

c

�
þ
�
dA2 −

N
2
Bð2Þ
c

�
;

T 2 ¼ R�
F

�
FðãÞ − Bð2Þ

c

�
−
N þ 2

2

�
dAψη þ Bð2Þ

c

�

−
�
dA2 −

N
2
Bð2Þ
c

�
;

T 3 ¼ RF

�
FðãÞ − Bð2Þ

c

�
−
N þ 2

2

�
dAψξ − Bð2Þ

c

�

þ
�
dA2 −

N
2
Bð2Þ
c

�
; ð4:29Þ

where appropriate factors of Bð2Þ
c are added and subtracted

so that each term in the bracket is invariant under the
1-form gauge transformations (4.27). Of course, the final
result does not depend on such a rewriting; see Appendix.
The 6D anomaly functional is

1

24π2

Z
trRS

ðT 1Þ3 þ
1

24π2

Z
trR�

F
ðT 2Þ3

þ 1

24π2

Z
trRF

ðT 3Þ3: ð4:30Þ

Let us now extract the terms relevant to the ðZ2ÞF − ½ZN �2
anomaly. From the ψ contribution, one has

9The charges here are taken half of those in (3.4). They would
really have to be chosen as in Eq. (3.46) in order to ensure that the
angles α and β take the canonical range of 2π, but the following
derivation of the mixed anomaly is not affected by the different
choices of the normalization of the charges and the angles.

10This time, we first solved the second and third of Eq. (4.24),
inserted the solutions to the first, and checked that it is indeed
satisfied, with appropriate signs for the ðZ2ÞF terms.
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1

24π2

�
3ðN þ 2ÞtrðFðãÞ − Bð2Þ

c Þ2
�
dA2 −

N
2
Bð2Þ
c

�

þ NðN þ 1Þ
2

ðdA2 þ 2Bð2Þ
c þ…Þ3

�
; ð4:31Þ

η gives

1

24π2

�
3ðN þ 4þ pÞtrðFðãÞ − Bð2Þ

c Þ2
�
dA2 −

N
2
Bð2Þ
c

�

− NðN þ 4þ pÞðdA2 þ Bð2Þ
c þ…Þ3

�
; ð4:32Þ

and the third line (ξ) gives

1

24π2

�
3ptrðFðãÞ − Bð2Þ

c Þ2
�
dA2 −

N
2
Bð2Þ
c

�

þ pNðdA2 þ Bð2Þ
c þ…Þ3

�
: ð4:33Þ

Collecting terms, one finds that the coefficient of

1

8π2
ðBð2Þ

c Þ2dA2 ð4:34Þ

is equal to

− NðN þ 2Þ þ NðN þ 1Þ
2

· 4 − NðN þ 4þ pÞ
þ NðN þ 4þ pÞ − Npþ pN ¼ N2: ð4:35Þ

A somewhat curious feature of this result [and of
Eq. (4.21)] is that only fermions in a higher representation
contribute to the anomaly. The reason for this will become
clear in an alternative derivation discussed in Appendix.
Following the usual procedure, one calculates the 4D

mixed ðZ2ÞF − ½ZN �2 anomaly. One finds an extra phase in
the partition function associated with the fermion parity
transformation in the presence of the ZN gauge fields,

N2
1

8π2

Z
Σ4

ðBð2Þ
c Þ2 1

2
δAð0Þ

2 ¼ N2 ×
Z
N2

ð�πÞ ¼ �π × Z;

ð4:36Þ

there is a ðZ2ÞF − ½ZN �2 mixed anomaly in the theory.
On the other hand, one finds no ðZ2ÞF anomaly in the IR,

if one assumes the symmetric vacuum of Sec. II C. This can
be seen, as in the warm-up example of the previous section,
by simply noting that all infrared degrees of freedom are
color singlet. We conclude that the chirally symmetric
vacuum described by the baryons B1, B2, and B3 cannot be
realized dynamically.
We note again that such an inconsistency is avoided,

assuming that the system is in the dynamical Higgs phase;

the color-flavor locked 1-form symmetry is spontaneously
broken.

C. fA;N;pg models with N and p even

The simplest of this class of models, fA; N; 0g, with
matter fermions

ð4:37Þ

(“χηmodel”) has been studied, and the result of the analysis
(unpublished) turns out to be similar to that in the ψηmodel
of Ref. [2], reviewed in Introduction. For even N, the
(nonanomalous) symmetry of the system contains a non-
anomalous ðZ2ÞF factor orthogonal to other continuous
symmetry groups. It gets anomalous under the 1-form
gauging of a ZN center symmetry. This anomaly cannot be
reproduced in the infrared, if the vacuum is assumed to be
confining and to keep the full global symmetries. Such a
vacuum cannot be realized dynamically.
Below, we study a more general class of fA; N; pg

models, with p additional pairs of fermions in .

We check first

ZN ⊂ Uð1Þχη × Uð1Þχξ × Z2: ð4:38Þ

Call α and β the angles associated with Uð1Þχη and Uð1Þχξ,

Uð1Þχη∶ χ → ei
N−4þp

2
αχ; η → e−i

N−2
2
αη;

Uð1Þχξ∶ χ → ei
p
2
βχ; ξ → e−i

N−2
2
βξ: ð4:39Þ

The condition (4.38) means that

N − 4þ p
2

αþ p
2
β ¼ 4π

N
� π;

−
N − 2

2
α ¼ −

2π

N
� π;

−
N − 2

2
β ¼ 2π

N
� π: ð4:40Þ

It turns out that any two of these imply the third; the
solution is not unique. A possible solution is

α¼ 4π

NðN−2Þ−
2π

N−2
; β¼−

4π

NðN−2Þþ
2π

N−2
; ð4:41Þ

which is a solution with the ðZ2ÞF signs in Eq. (4.40), −π,
þπ, and −π for the χ, η, and ξ fields, respectively. Actually,
the solution Eq. (4.41) is, simply,

α ¼ −
2π

N
; β ¼ 2π

N
: ð4:42Þ
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The color-flavor locked ZN transformation, Eqs. (4.40)
and (4.42), together with the normalization of the 1-form
gauge field λc, fixes the charges of the fermion fields in
Eq. (4.44) below.
We introduce the background gauge fields:
(i) Aχη: Uð1Þχη 1-form gauge field,
(ii) Aχξ: Uð1Þχξ 1-form gauge field,
(iii) A2: ðZ2ÞF 1-form gauge field,
(iv) ã: UðNÞc 1-form gauge field,
(v) Bð2Þ

c : ZN 2-form gauge field.
Under the 1-form gauge transformation,

Bð2Þ
c → Bð2Þ

c þ dλc; Bð1Þ
c → Bð1Þ

c þ Nλc;

ã → ãþ λc; F̃ðãÞ → F̃ðãÞ þ dλc;

Aχη → Aχη þ λc;

Aχξ → Aχξ − λc;

A2 → A2 þ
N
2
λc: ð4:43Þ

The fermion kinetic terms are [the charges follow from
(4.42)]

χ̄γμ
�
∂ þRAðãÞ þ

N − 4þ p
2

Aχη þ
p
2
Aχξ − A2

�
μ

PLχ

þ η̄γμ
�
∂ þRF� ðãÞ −

N − 2

2
Aχη þ A2

�
μ

PLη

þ ξ̄γμ
�
∂ þRFðãÞ −

N − 2

2
Aχξ − A2

�
μ

PLξ: ð4:44Þ

It is seen that each line is invariant under (4.43). In
particular, the ðZ2ÞF charges are fixed by this requirement.
The 1-form gauge-invariant field tensors are, for the UV

fermions χ, η, and ξ,

T 1 ¼ RAðFðãÞ − Bð2Þ
c Þ þ N − 4þ p

2
ðdAχη − Bð2Þ

c Þ þ p
2
ðdAχξ þ Bð2Þ

c Þ −
�
dA2 −

N
2
Bð2Þ
c

�
;

T 2 ¼ RF� ðFðãÞ − Bð2Þ
c Þ − N − 2

2
ðdAχη − Bð2Þ

c Þ þ
�
dA2 −

N
2
Bð2Þ
c

�
;

T 3 ¼ RFðFðãÞ − Bð2Þ
c Þ − N − 2

2
ðdAχξ þ Bð2Þ

c Þ −
�
dA2 −

N
2
Bð2Þ
c

�
: ð4:45Þ

The 6D anomaly functional is

1

24π2

Z
trRA

ðT 1Þ3 þ
1

24π2

Z
trRF� ðT 2Þ3 þ

1

24π2

Z
trRF

ðT 3Þ3: ð4:46Þ

Let us now extract the terms relevant to the ðZ2ÞF − ½ZN �2 anomaly. From the χ contribution, one has

1

24π2

�
−3ðN − 2ÞtrðFðãÞ − Bð2Þ

c Þ2
�
dA2 −

N
2
Bð2Þ
c

�
−
NðN − 1Þ

2
ðdA2 − 2Bð2Þ

c þ…Þ3
�
; ð4:47Þ

η gives

1

24π2

�
3ðN − 4þ pÞtrðFðãÞ − Bð2Þ

c Þ2
�
dA2 −

N
2
Bð2Þ
c

�
þ NðN − 4þ pÞðdA2 − Bð2Þ

c þ…Þ3
�
; ð4:48Þ

and the third line (ξ) gives

1

24π2

�
−3ptrðFðãÞ − Bð2Þ

c Þ2
�
dA2 −

N
2
Bð2Þ
c

�
− pNðdA2 − Bð2Þ

c þ…Þ3
�
: ð4:49Þ

Collecting terms, one finds that the coefficient of

1

8π2
ðBð2Þ

c Þ2dA2 ð4:50Þ

is equal to
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NðN − 2Þ − NðN − 1Þ
2

· 4þ ðN − 4þ pÞð−NÞ
þ NðN − 4þ pÞ þ Np − pN ¼ −N2: ð4:51Þ

Following the usual procedure, one calculates the 4D
mixed ðZ2ÞF − ½ZN �2 anomaly,

−N2
1

8π2

Z
Σ4

ðBð2Þ
c Þ2 1

2
δAð0Þ

2 ¼ N2 ×
Z
N2

ð�πÞ ¼ �π × Z:

ð4:52Þ

That is, the partition function changes sign under the
fermion parity, χ; η; ξ → −χ;−η;−ξ. In other words, we
found a ðZ2ÞF − ½ZN �2 mixed anomaly in the UV theory.
On the other hand, one finds no ðZ2ÞF anomaly in the IR,

assuming the chirally symmetric vacuum with the massless
baryons B1, B2, and B3. This then cannot be the correct
phase of the system.

V. CONCLUSIONS

In this work, we have extended the study of mixed
anomalies affecting a chiral discrete ðZ2ÞF symmetry,
found [2] in a simple chiral gauge theory (ψη model), to
a wider class of models, the general Bars-Yankielowicz and
the generalized Georgi-Glashow models.
Writing the effects of instantons on the three Uð1Þ’s

associated with the three fermions as

Uð1Þψ ×Uð1Þη ×Uð1Þξ⟶
anomaly

H; ð5:1Þ

the global symmetry of these models Gf can be written, for
fS; N; pg models, for instance, as

Gf⟶
anomaly SUðN þ 4þ pÞ × SUðpÞ ×H

ZN × ZNþ4þp × Zp
ð5:2Þ

and similarly for fA; N; pg models, with a replacement,
N þ 4þ p → N − 4þ p. The division by various centers
has been explained in Sec. III.
In both classes of the models, if one of N and p (or both)

is odd, H, hence Gf, has a connected structure. It can be
taken as

H ¼ Uð1Þ1 ×Uð1Þ2; ð5:3Þ

where Uð1Þ1;2 are arbitrary two among the nonanomalous
combinations, Uð1Þψη, Uð1Þψξ, and Uð1Þξη. It follows that,
once the conventional anomaly matching equations are all
satisfied with respect to GF, considering the mixed anoma-
lies involving the 1-form discrete center symmetry ZN
does not provide us with any new information about the
candidate phase of the system. The UV-IR matching
involving any new, mixed anomalies is a simple

consequence of (i.e., included in) the conventional anomaly
matching equations. This is similar to what was found in
Ref. [2] for odd N ψη models.
For this reason, the main part of our analysis here has

been focused on the models with N and p, both even. In all
cases of this type, the global symmetry Gf has two,
disconnected components, as

H ¼ Uð1Þ1 × Uð1Þ2 × ðZ2ÞF: ð5:4Þ

ðZ2ÞF is nonanomalous, as all other factors in GF, but the
fact that it is nonanomalous hinges upon the integer
instanton numbers

1

8π2

�Z
Σ4

trF2

�
∈ Z ð5:5Þ

and is not a simple result of an algebraic cancellation of the
contributions from different fermions, as is the case for the
continuous, nonanomalous symmetries Uð1Þψξ ×Uð1Þηξ.
This can be checked by inspecting Eqs. (4.13), (4.28), and
(4.44). For instance, in the warm-up example of the
fS; 4; 2g model, the effect of the chiral transformations,

ψ → e−iπψ ; η → eiπη; ξ → e−3iπξ; ð5:6Þ

[see Eq. (4.13)] is the extra phase in the partition function

f−ðNþ 2Þ þ ðNþ 6Þ− 3 · 2g 1

8π2

�Z
Σ4

trF2

�
· π ¼ −2πZ;

ð5:7Þ

which is indeed irrelevant, but only because the instanton
numbers are quantized to integers. The nonanomalous
ðZ2ÞF symmetry has thus a different status as compared
to other, continuous nonanomalous symmetries such as
Uð1Þχη; Uð1Þχξ, and Uð1Þηξ.
But this means that, once all fields are coupled to the

1-form center ZN gauge fields ðBð2Þ
c ; Bð1Þ

c Þ

NBð2Þ
c ¼ dBð1Þ

c ð5:8Þ

and fractional ’t Hooft fluxes are allowed, a mixed
ðZ2ÞF − ½ZN �2 anomaly may arise. In other words, there
may be an obstruction against gauging the 1-form center
ZN symmetry and 0-form ðZ2ÞF symmetry simultaneously.
Our calculations show that such an obstruction (a

generalized ’t Hooft anomaly) is indeed present.
On the other hand, such an obstruction could not occur

in the chirally symmetric confining vacuum of Sec. II C,
as the infrared fermions are all singlets of SUðNÞ.
Consistency requires that either the assumption of confine-
ment or that of unbroken global symmetry (no conden-
sates), or both, must be abandoned.
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There is no inconsistency in the other, possible vacua in
the infrared (dynamical Higgs phase, Secs. II D and II E),
asUð1Þχη; Uð1Þχξ, andUð1Þηξ are broken spontaneously by
the condensate, and so is the color-flavor locked 1-form
center ZN symmetry.
Note that the 0-form ðZ2ÞF symmetry itself does not

need to be, and indeed is not, spontaneously broken, since
all bifermion condensates are invariant under

ψ ; η; ξ → −ψ ;−η;−ξ: ð5:9Þ

In fact, as this fermion parity coincides with an angle 2π
space rotation, a spontaneous breaking of ðZ2ÞF would
have meant the spontaneous breaking of the Lorentz
invariance, which does not occur.
In this respect, even though the mixed anomaly ðZ2ÞF −

½ZN �2 found in Ref. [2] and confirmed here for an
extended class of models looks similar at first sight to
the mixed anomaly CP − ½ZN �2 found recently [4] in the
pure SUðNÞ Yang-Mills theory at θ ¼ π, the way the
mixed anomaly manifests itself in the infrared physics
is different. In the latter case, the new anomaly is
consistent with, or implies, the phenomenon of the double
vacuum degeneracy and the consequent spontaneous CP
breaking [50], which was known from the QCD effective
Lagrangian analysis [25,26] and also from soft supersym-
metry breaking perturbation [51,52] of the exact Seiberg-
Witten solutions [28,29] of pure N ¼ 2 supersymmetric
Yang-Mills theory.
In our case, the mixed anomaly ðZ2ÞF − ½ZN �2 means

instead that confinement and the full global chiral sym-
metries (no condensates) are incompatible: one or both
must be abandoned. The dynamical Higgs phase discussed
in Secs. II D and II E seems to be fully consistent with this
requirement.
Before concluding, let us add a few more clarifying

remarks. The first concerns the interpretation of our analysis.
In spite of the presence of fermions in the fundamental (or
antifundamental) representation, our system classically has
an exact color-flavor locked 1-formZN symmetry, as in (1.5)
and (1.6) for the ψη model and similar equivalence relations
for other models. We have decided to gauge this 1-form
symmetry, by introducing appropriate 2-form gauge field
Bð2Þ
c and gauge fields A [for Uψηð1Þ] and A2 (for Z2), by

requiring the invariance under 1-form gauge transformations
(1.9) and (1.10). We have proceeded similarly for all other
models. This fixed the form of all the fermion and gauge
kinetic terms. We find that, actually, there is an anomaly of
mixed terms ðZ2ÞF − ½ZN �2, and it means that there is an
obstruction to such a gauging. By definition, this is a ’t Hooft
anomaly, of a new kind. The rest is as in the standard ’t Hooft
anomaly analysis. We require the same anomaly be present
in the infrared. We find that if the system is in confining,
flavor symmetric vacua with no condensates and with a set

of gauge-invariant, massless composite fermions as the only
infrared degrees of freedom this anomaly “matching” fails,
as the low-energy theory cannot have the same anomaly. On
the other hand, in a dynamical Higgs phase with bifermion
condensates, the Uð1Þ symmetry which is part of the color-
flavor locked ZN symmetry, is broken spontaneously. One
may argue that this is a spontaneous breaking of the ZN
center symmetry, but the usual association of unbroken
(broken) center symmetry with confinement (Higgs) phase
in pure Yang-Mills theory is perhaps not quite adequate here.
The second remark concerns an alternative possibility for

the infrared system. When a discrete symmetry is broken
spontaneously by the gauge dynamics, it is sometimes
possible that the infrared system is described by a topo-
logical quantum field theory (TQFT). However, in the
models studies here, there are massless degrees of freedom
(Nambu-Goldstone bosons and/or massless fermions)
which are required to be present to reproduce the anoma-
lous and nonanomalous continuous symmetries of the
underlying systems. Thus, our systems cannot be a pure
TQFT in the infrared, in that simple sense. However, we
have not excluded the possibility that a TQFT plays a more
subtle role in the infrared physics of our modes, e.g.,
coupled to the massless baryons, and somehow reproduces
the mixed ðZ2ÞF − ½ZN �2 anomaly. This question will be
left for a future investigation.
To conclude, the analysis presented here confirms that

the result found in Ref. [2]—that an extended symmetry
consideration implies a dynamical Higgs phenomenon in a
class of chiral gauge theories—is not an accidental one
specific to the simplest models considered there but holds
true in a much larger class of theories. Such a result should,
in our view, be regarded as a rather general property of
strongly coupled chiral gauge theories.
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APPENDIX: MIXED ðZ2ÞF − ½ZN�2 ANOMALY:
A MASTER FORMULA

In this Appendix, we show that our results on the mixed
anomaly ðZ2ÞF − ½ZN �2 found in Sec. IV do not depend on
the rearrangement of the fermion tensors to term-by-term
manifestly invariant form, as done in Eqs. (4.12), (4.14),
(4.29), and (4.45). The result of this discussion is a sort of
master formula, which better expresses certain aspects of
our analysis.
For concreteness, let us first take the warm-up

example of Sec. IVA. The 6D anomaly functional is,
from (1.14),
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1

24π2
trRS

½fFðãÞ−dA2g3�þ
1

24π2
trR�

F
½fFðãÞþdAþdA2g3�

þ 1

24π2
trRF

½fFðãÞ−5dA−3dA2g3�: ðA1Þ

For the purpose of finding the ðZ2ÞF anomaly, we expand
these and integrate once to find the 5D WZW action
proportional to A2. The variation of the form

δA2 ¼
1

2
∂δAð0Þ

2 ; δAð0Þ
2 ¼ �2π ðA2Þ

then leads to an anomalous surface term—the anomaly in
4D theory—given by the phase

1

8π2

Z
Σ4

P
δAð0Þ

2

2
;

δAð0Þ
2

2
¼ �π; ðA3Þ

where

P ¼ −trRS
½FðãÞ2� þ ðN þ pþ 4ÞtrR�

F
½FðãÞ2�

− 3ptrRF
½FðãÞ2� ðA4Þ

(N ¼ 4, p ¼ 2), where the trace taken in a representation R
is indicated by trR. Now,

trR½ðFðãÞÞ2�¼ trR
h
ðFðãÞ−Bð2Þ

c þBð2Þ
c Þ2

i

¼ tr
h
RRðFðãÞ−Bð2Þ

c ÞþN ðRÞBð2Þ
c 1dðRÞ

i
2

¼ tr
h
RRðFðãÞ−Bð2Þ

c Þ2þN ðRÞ2ðBð2Þ
c Þ21dðRÞ

i
;

ðA5Þ

where RR indicates the matrix form appropriate for the
representation R, N ðRÞ is its N-ality, and use was made of
the fact that

trRðFðãÞ − Bð2Þ
c Þ ¼ 0; ðA6Þ

valid for an SUðNÞ element in any representation. 1dðRÞ
stands for the dðRÞ × dðRÞ unit matrix, where dðRÞ is the
dimension of the representation R. Calculating the above,
one finds

trR½ðFðãÞÞ2� ¼ DðRÞtrF½ðFðãÞ − Bð2Þ
c Þ2�

þ dðRÞN ðRÞ2ðBð2Þ
c Þ2

¼ DðRÞtrF½FðãÞ�2

þ ½−DðRÞ · N þ dðRÞN ðRÞ2�ðBð2Þ
c Þ2;

ðA7Þ

where DðRÞ is twice the Dynkin index TR,

trðtaRtbRÞ ¼ TRδ
ab; ðA8Þ

normalized as

TR ¼ 1

2
; DðRÞ ¼ 1; R ¼□ or

¯
□: ðA9Þ

Now,

1

8π2

Z
Σ4

trF½FðãÞ2� ∈ Z; ðA10Þ

and the first term in Eq. (A7) corresponds to the conven-
tional instanton contribution to the ðZ2ÞF anomaly, which
is known to be absent [for instance, see Eq. (5.7)].11

Therefore, the nonvanishing mixed ðZ2ÞF − Z2
N anomaly

comes only from the second term of Eq. (A7), containing
the 2-form gauge field. One finds that the total ðZ2ÞF − Z2

N
anomaly is given by

ΔSðMixed anomalyÞ ¼ ð�πÞ ·
X

fermions

c2ðdðRÞN ðRÞ2 − NDðRÞÞ 1

8π2

Z
Σ4

ðBð2Þ
c Þ2: ðA11Þ

c2 are the Z2 charges [the coefficients of dA2 in (A1) in the example of Sec. IVA]. This is our master formula.
Applying this formula to the fS; 4; 2g model of Sec. IVA, Eq. (A1), one gets (�π times)

1

8π2

Z
Σ4

�
−
�
4 ·

NðN þ 1Þ
2

− NðN þ 2Þ
�
þ 10ðN − NÞ − 6ðN − NÞ

	
ðBð2Þ

c Þ2 ¼ −N2

8π2

Z
ðBð2Þ

c Þ2; ðA12Þ

which is indeed the result found in Sec. IVA.

11The combination

1

8π2

Z
Σ4

ftrF̃2 − trF̃ ∧ trF̃g

is the second Chern number of UðNÞ and is an integer. The second term of the above is also an integer.
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Note that for R ¼ F (the fundamental) or R ¼ F� (antifundamental), dðRÞ ¼ N, N ðRÞ ¼ DðRÞ ¼ 1, therefore we find

dðRÞN ðRÞ2 − N ·DðRÞ ¼ 0; ðR ¼□ or
¯
□Þ; ðA13Þ

these fermions do not contribute to the ðZ2ÞF − ½ZN �2 mixed anomaly. And this explains a somewhat curious feature in the
results observed earlier in Eqs. (4.21), (4.22), and (4.51).
The formula (A11) is valid for a fermion in a generic representation, so it can be applied at once to the general fS; N; pg

and fA; N; pg models, yielding an extra phase in the partition function under the fermion parity,

ΔS ¼ �π

N2
ðdðSÞ ·N ðSÞ2 − N ·DðSÞÞ ¼ �π

N2

�
NðN þ 1Þ

2
· 4 − NðN þ 2Þ

�
¼ �π ðA14Þ

for the fS; N; pg model and

ΔS ¼ �π

N2
ðdðAÞ ·N ðAÞ2 − N ·DðAÞÞ ¼ �π

N2

�
NðN − 1Þ

2
· 4 − NðN − 2Þ

�
¼ �π ðA15Þ

for the fA; N; pg model, in agreement with the results found in Secs. IV B and IV C.
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