

View

Online


Export
Citation

PERSPECTIVE |  JANUARY 23 2020

The density matrix renormalization group in chemistry and
molecular physics: Recent developments and new
challenges 
Alberto Baiardi  ; Markus Reiher  

J. Chem. Phys. 152, 040903 (2020)
https://doi.org/10.1063/1.5129672

Articles You May Be Interested In

Applying Marcus theory to describe the carrier transports in organic semiconductors: Limitations and
beyond

J. Chem. Phys. (August 2020)

The electron–phonon renormalization in the electronic structure calculation: Fundamentals, current status,
and challenges

J. Chem. Phys. (April 2023)

Subsystem density-functional theory: A reliable tool for spin-density based properties

J. Chem. Phys. (October 2022)

 20 N
ovem

ber 2024 15:36:19

https://pubs.aip.org/aip/jcp/article/152/4/040903/76348/The-density-matrix-renormalization-group-in
https://pubs.aip.org/aip/jcp/article/152/4/040903/76348/The-density-matrix-renormalization-group-in?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0001-9112-8664
javascript:;
https://orcid.org/0000-0002-9508-1565
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5129672&domain=pdf&date_stamp=2020-01-23
https://doi.org/10.1063/1.5129672
https://pubs.aip.org/aip/jcp/article/153/8/080902/1061733/Applying-Marcus-theory-to-describe-the-carrier
https://pubs.aip.org/aip/jcp/article/158/13/130901/2883239/The-electron-phonon-renormalization-in-the
https://pubs.aip.org/aip/jcp/article/157/13/130902/2841851/Subsystem-density-functional-theory-A-reliable
https://e-11492.adzerk.net/r?e=&s=kuBFv0tXkaG2OLfjgk4BcGx-TiY


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

The density matrix renormalization group
in chemistry and molecular physics: Recent
developments and new challenges

Cite as: J. Chem. Phys. 152, 040903 (2020); doi: 10.1063/1.5129672
Submitted: 30 September 2019 • Accepted: 13 December 2019 •
Published Online: 23 January 2020

Alberto Baiardi and Markus Reihera)

AFFILIATIONS
ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland

a)Author to whom correspondence should be addressed:markus.reiher@phys.chem.ethz.ch

ABSTRACT
In the past two decades, the density matrix renormalization group (DMRG) has emerged as an innovative new method in quantum chemistry
relying on a theoretical framework very different from that of traditional electronic structure approaches. The development of the quantum
chemical DMRG has been remarkably fast: it has already become one of the reference approaches for large-scale multiconfigurational calcula-
tions. This perspective discusses the major features of DMRG, highlighting its strengths and weaknesses also in comparison with other novel
approaches. The method is presented following its historical development, starting from its original formulation up to its most recent appli-
cations. Possible routes to recover dynamical correlation are discussed in detail. Emerging new fields of applications of DMRG are explored,
such as its time-dependent formulation and the application to vibrational spectroscopy.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5129672., s

I. INTRODUCTION

The last few years have witnessed a renewed interest in config-
uration interaction (CI) approaches and, in particular, in selected
CI theories pioneered by Malrieu and co-workers1–4 that are, for
instance, the foundation of the spectroscopy-oriented CI scheme
by Neese.5 Selected CI limits the cost of standard CI through
an a priori screening of the many-particle basis by evaluating
a posteriori the accuracy of this screening. Different flavors of the
selected CI are obtained by changing the criteria for these two
steps. In the heath-bath CI (HBCI) theory introduced by Umri-
gar and co-workers,6,7 the screening is based on the magnitude of
the CI matrix elements. Other options include comparisons with
a reduced-size calculation, as in the projective CI of Evangelista8

and in the selected CI scheme by Head-Gordon and co-workers,9

or are based on an n-body expansion of the correlation energy, as
investigated by Zimmermann and co-workers10,11 and by Gauss and
co-workers.12,13

These developments need to be put into the context of two
relatively new and highly efficient approaches to solve the full
CI [or complete active space (CAS) CI] problem. One is full CI

Quantum Monte Carlo (FCIQMC) by Alavi and co-workers.14,15

In FCIQMC, the diagonalization of the Hamiltonian is replaced
by a stochastic sampling of the CI space through a Monte Carlo
algorithm in the electronic-configuration space. By contrast to the
early work of Greer,16,17 the CI coefficients are constructed from so-
called walkers and the Fermion sign problem is avoided by walker
annihilation.

The other is the density matrix renormalization group
(DMRG).18–30 DMRG is an iterative optimization algorithm for
wave functions parameterized in terms of so-called matrix prod-
uct states (MPSs).22,31 Ground states of Hamiltonians featuring only
short-range interactions can be represented by particularly compact
MPSs,32 but this condition is rarely met for the full Coulomb Hamil-
tonian in electronic structure theory since each operator for the
interaction of a pair of electrons couples four orbitals in its second-
quantized form. Obviously, this situation does not at all resemble
that of a nearest-neighbor interaction Hamiltonian, which would
make DMRG iterations converge quickly. The number of variational
parameters in a compact MPS scales only polynomially with system
size, and therefore, the exponential scaling of full CI can be avoided
for some target accuracy so that the curse of dimensionality is tamed.
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The DMRG energy is a nonlinear function of the tensors defining
an MPS that are optimized iteratively during DMRG optimization.
The advantages of nonlinear expansions have already been exploited
in other contexts, as in the multifacet graphically contracted CI by
Shepard.33,34 A major advantage of MPS over other parameteriza-
tion schemes is the availability of DMRG as an efficient optimization
scheme.

Early DMRG-CI applications to few-atom molecules35–46 were
soon followed by work on optimization of the orbitals47–51 and on
perturbation theory.52–62 Within only a decade, DMRG has been
established as a reference method for electronic properties of large,
strongly correlated systems.

This perspective provides an overview of the application of
DMRG to quantum chemical (QC) problems. Section II presents
the main theoretical framework of DMRG, starting from its original
formulation18 up to the most recent developments. Section III dis-
cusses possible strategies to recover dynamical electron correlation.
Sections IV and V present the extension of DMRG to vibrational
and time-dependent (TD) problems, respectively. Section VI high-
lights the most recent applications of DMRG to challenging strongly
correlated molecular systems.

II. THE DENSITY MATRIX RENORMALIZATION
GROUP ALGORITHM

We first review the traditional presentation of DMRG with a
focus on the optimization of ground states of the electronic Hamil-
tonian. Subsequent discussions then include energy-specific vari-
ants of DMRG, targeting of excited states, and multidimensional
generalizations of DMRG.

A. Elements of DMRG
In 1992,18 DMRG was introduced by White as an improved

version of Wilson’s numerical renormalization group (NRG)
approach.63 Both NRG and DMRG approximate the ground state
of an N-particle system based on the partitioning of the full quan-
tum system into several blocks, each represented by at most m basis
functions (known as the renormalized basis). Blocks are then cou-
pled together and iteratively optimized until convergence of a state
for the complete system is reached. The block basis is truncated at
each iteration step, keeping only m elements to avoid the explosion
of the number of basis states. The parameter m is known as “bond
dimension” or “number of renormalized block states.” It tunes
both the accuracy and the computational demands of NRG and
DMRG, which however differ in the criterion to truncate the basis.
NRG keeps the m lowest energy eigenfunctions of the Schrödinger
equation, while DMRG selects the m lowest eigenfunctions of a
reduced density matrix in order to produce a reduced-dimensional
many-particle basis. This second choice has a more solid theo-
retical foundation since it provides the best approximation, in a
least-squares sense, of the ground state wave function in terms
of a linear combination of m many-particle basis functions (each
of which can be considered as iteratively refined contractions of
determinants).19 This property explains the success of DMRG over
NRG.

Since its first formulation, it has been clear that the efficiency
of DMRG is maximal for one-dimensional systems. In this context,

“one-dimensional” means that the one-particle states are sorted in
such a way that they land on neighboring positions of a lattice resem-
bling a short-range pair interaction. This sorting is known as the
“DMRG lattice” and defines a linear iteration protocol. A formal
proof of this property had been given 15 years after the introduction
of DMRG, as a corollary of a theorem known as area law.32 The area
law states that, for Hamiltonians containing only nearest-neighbor
interactions and with a finite gap between the group and the first
excited state, the entanglement entropy is constant in the limit of
infinite size. A direct consequence is that the bond dimension m
needed to represent the ground state to a given accuracy becomes
independent of the system size L.

Intuitively, the area law requires that, if the quantum system is
partitioned in two subsystems, the number of the interaction terms
that couple the two subsystems in the Hamiltonian is independent
of the total number of sites L. This implies that the entanglement
between the two subsystems is also independent of the overall size
L, and therefore, so is the bond dimension m. The success of DMRG
for strictly one-dimensional spin systems is the reason why the first
quantum chemical DMRG implementations were applied to the
study of the π electrons of conjugated polyenes, such as poly-para-
phenylene. Their electronic properties were modeled with either the
Hubbard35 or the Parisier-Parr-Pople35,64–69 Hamiltonian, the latter
being a semiempirical Hamiltonian designed for π-conjugated sys-
tems. In both cases, only nearest-neighbor interactions are included
and, therefore, the premises of the area law are met. Electronic prop-
erties are, however, governed by the full Coulomb Hamiltonian Hel,
which reads in second quantization

Hel =
L′

∑

pq
hpqâ+

p âq +
1
2

L′

∑

pqrs
⟨pq∥rs⟩â+

p â
+
q âsâr , (1)

where p, q, r, and s label different molecular orbitals and hpq and
⟨pq∥rs⟩ are one- and two-electron integrals in the molecular orbital
basis, respectively. The second term of Eq. (1) contains four-index
integrals, whose range of interaction spans the molecular system.
We highlight that the average interaction-range of a Hamiltonian,
and therefore, the efficiency of DMRG, depends on the basis in
which the Hamiltonian is expressed. For example, Legeza and co-
workers showed this effect for the two-dimensional Fermi-Hubbard
Hamiltonian that models interacting spins that are arranged on
a square lattice. The magnitude of the long-range interactions is
reduced if a momentum space-representation is adopted that leads
to an increase in the efficiency of DMRG. Similarly, orbital local-
ization can lead to a more compact representation of the Coulomb
interaction. The presence of long-range interactions made the first
applications of DMRG to quantum chemistry not as efficient as for
the model Hamiltonians in solid physics. The first DMRG imple-
mentation for the QC Hamiltonian of Eq. (1) was presented in
1999 by White and Martin.70 This work was followed by a rapid
development of quantum-chemical applications of DMRG, owing
to the work of several groups, including Mitrushenkov et al.;37,71

Daul et al.;36 Chan and co-workers;38–40,43,72 and Legeza, Hess, and
co-workers.41,42,45,73,74 Naturally, these pilot applications focused on
full-CI energies of small molecules with up to six atoms. Later
studies applied DMRG as a CAS-CI solver for active spaces with
up to 100 orbitals, and they extended its range of applicability to
large molecules. Since the nonrelativistic Schrödinger equation does
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not meet the conditions of the area law, the bond dimension m
required to obtain converged energies with a given accuracy will
depend on the lattice size L, i.e., on the number of orbitals. Never-
theless, these first quantum-chemical applications of DMRG showed
that m is largely independent of L and, therefore, DMRG renders
full- and CAS-CI calculations on systems with up to 100 orbitals
feasible. In particular, DMRG turned out to be efficient even for
compact nonlinear systems such as transition metal complexes and
clusters.46

We have already mentioned that the efficiency of DMRG is due
to the fast convergence of the energy with respect to the bond dimen-
sion m. Nevertheless, a full-CI wave function is strictly equivalent
to an MPS with a bond dimension m that grows exponentially with
L. It is therefore natural to increase the efficiency of DMRG based
on the same strategies that have already been developed for trun-
cated CI calculations. For example, the molecular orbitals can be
optimized together with the state coefficients, as in complete active
space self-consistent field (CAS-SCF) approaches. An efficient strat-
egy to couple SCF and DMRG, usually known as DMRG-SCF, was
introduced by Zgid and Nooijen47 and others.48,49,51,75

A further increase in efficiency is achieved by exploiting the
symmetry of the Hamiltonian. In standard CAS calculations, sym-
metry constraints induce a block structure of the Hamiltonian
matrix in the CI basis. Even if in DMRG this matrix is never
calculated explicitly, its local representations built at each DMRG
iteration will also have a block structure.76 This property can be
exploited to reduce the computational demands of the optimiza-
tion. For Abelian groups, such as U(1) describing the conservation
of the particles number, the development of a symmetry-adapted
DMRG algorithm requires only minor modifications to the standard
implementation.77,78 The extension to spin symmetries is less trivial
because they are described in terms of a non-Abelian group, namely,
SU(2). The first attempt to derive a spin-adapted formulation of
DMRG was proposed by Zgid and Nooijen in 2008.79,80 However,
this approach allowed only to enforce the spin symmetry a posteri-
ori, at the end of each DMRG microiteration. An SU(2) invariant
formulation of DMRG that exploits spin symmetry to reduce the
number of parameters of the MPS was introduced later by Sharma
and Chan81,82 and by Wouters and co-workers.83 As this symme-
try is difficult to implement, it has been argued84 that a broken-
symmetry wave function optimization with a subsequent spin pro-
jection can be very efficient, as considered also in traditional
approaches.85–87

The efficiency of DMRG can also be increased by tuning
DMRG-specific parameters. For example, sites (e.g., orbitals, in the
electronic-structure case) can be sorted on the DMRG lattice to
place strongly entangled ones close to one another to reduce long-
range correlations. An optimized ordering can be obtained either
from interaction measures derived from one- and two-electron inte-
grals,38 with genetic algorithms,45 or, very successfully, through a
Fiedler vector ordering based on entanglement orbital entropies,73,88

whose definition will be discussed in more detail below. Con-
verged orbital entropies can be obtained from partially converged
DMRG results, carried out with a low value of m. The result-
ing optimized sorting can be employed in more efficient DMRG
calculations.

Canonical Hartree-Fock (HF) orbitals can be strongly delo-
calized, enhancing long-range interactions. With localized orbitals

obtained by a unitary transformation of the HF orbitals, these long-
range interactions can be minimized, increasing the efficiency of
DMRG.89,90

A proper inclusion of relativistic effects requires the general-
ization of MPSs to the symmetries of the Dirac Hamiltonian.44,91

Its symmetry properties will not be described in terms of the
SU(2) group if the Hamiltonian includes spin-orbit coupling oper-
ators but in terms of double groups, coupling spatial and spin
symmetry.92

B. MPS/MPO formulation of DMRG
A main limitation of the original formulation of DMRG18,19

is the lack of a specific ansatz for the wave function |Φ⟩. How-
ever, shortly after its introduction,31,93 it was shown that DMRG
iteratively builds a wave function that can be expressed as

∣Φ⟩ =∑
σ

m

∑

a1=1
⋯

m

∑

aL−1=1
Mσ1

1,aiM
σ2
a1 ,a2⋯M

σL
aL−1 ,1∣σ1σ2⋯σL⟩, (2)

where L is the number of sites and |σ1σ2 . . . σL⟩ are occupation num-
ber vectors and equivalent to the number of orbitals L′ included in
the Hamiltonian of Eq. (1). In full CI, L is equal to the basis set size,
while for CAS-CI it is the number of orbitals in the CAS. Mσi+1

ai ,ai+1 are
three-dimensional tensors with dimensions N i+1 × m × m, where
N i+1 is the dimension of the local basis at the (i+1)-th site. The
parameterization of Eq. (2) defines an MPS. By analogy with Eq. (2),
operators can also be expressed in a corresponding format reflecting
the site structure of the DMRG lattice,76

W =∑
σ,σ′

r′1
∑

b1=1
⋯

r′L
∑

bL=1
Wσ1 ,σ′1

1,bi
Wσ2 ,σ′2

b1 ,b2
⋯WσL ,σ′L

bL−1 ,1∣σ1σ2⋯σL⟩⟨σ′1σ
′
2⋯σ

′
L∣,

(3)

known as the Matrix Product Operator (MPO) format. Unlike
Eq. (2), which represents an approximation of a wave function,
whose accuracy depends on m, Eq. (3) is exact and the r′i parameters
depend on the specific form of the operator. r′i grow with the max-
imum length of second-quantized operator strings appearing in the
definition of W. Different algorithms to construct MPO represen-
tations of operators starting from their second-quantization form
have been proposed,94–96 some of which are general enough to be
applied to the quantum chemical Hamiltonians.97,98 Equations (2)
and (3) can be combined to determine the energy expectation value
E[∣Φ⟩]. Minimization of E[∣Φ⟩] yields the best approximation of the
ground-state wave function as an MPS in a variational sense. This
minimization is carried out with respect to variations of the entries
of the tensor for site i (Mσi

ai−1ai ) while keeping all the other ones fixed.
Iterating this minimization along the lattice leads to a DMRG sweep.
Instead of optimizing a single tensor per microiteration, in the so-
called two-site optimization, two consecutive tensors are optimized
simultaneously. In practice, the energy is minimized with respect to
the entries of the two-site tensor Tσi ,σi+1

ai−1 ,ai+1 , defined as

Tσi ,σi+1
ai−1 ,ai+1 =

m

∑

ai=1
Mσi

ai−1 ,aiM
σi+1
ai ,ai+1 . (4)

After optimization, the single-site tensors (Mσi
ai−1 ,ai and Mσi+1

ai ,ai+1 )
are recovered from the singular value decomposition (SVD) of
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Tσi ,σi+1
ai−1 ,ai+1 . However, the rank of the two-site tensor after optimization

may be larger than the one of the original tensors [m in Eq. (4)] and,
therefore, the SVD must be truncated to keep the bond dimension
fixed. Alternatively, the bond dimension m can be adapted in order
to keep the truncation error fixed. This second alternative, which is
employed in the so-called dynamical block state selection (DBSS)
scheme,42 enables one to adapt the bond dimension dynamically,
based on a target accuracy for the wave function.

This alternative formulation of DMRG, usually referred to
as the MPS/MPO (or second-generation) formalism, is formally
equivalent to the original DMRG theory.22,98 Nevertheless, the
MPS/MPO formulation is a more flexible framework to apply
DMRG to complex Hamiltonians, especially when containing long-
range interactions. In fact, the original, first-generation formulation
of DMRG constructs the representation of the Hamiltonian from
the one of each elementary second-quantization operator in the sys-
tem/environment basis that is set up in each microiteration step.
This construction becomes quickly cumbersome for operators rep-
resented by long strings of elementary operators, such as H2. From
H2, the energy variance for a given state can be obtained,99 which
is a reliable metric to assess the accuracy of DMRG.100 Similarly,
we derived an MPS/MPO version101 of the SU(2)-invariant formu-
lation of DMRG originally derived in a first-generation framework.
Moreover, in the MPS/MPO formulation, the complexity of a sin-
gle microiteration step is independent of the form of the operator,
provided that it can be encoded as an MPO. The availability of a
general algorithm for constructing MPO representations of opera-
tors of arbitrary complexity therefore makes the MPS/MPO frame-
work much easier to extend beyond the calculation of ground state
energies.

MPSs have been considered also from a numerical analysis
point of view and are known in that context by the name of ten-
sor train (TT) factorization.102,103 The TT theory is not limited to
the solution of the Schrödinger equation but can be applied to solve
a wider range of equations.104,105 Some of the algorithms already
known for DMRG have been later generalized to TT theory. For
instance, the sweep-based DMRG optimization is known as alter-
nating least squares (ALS) in the TT context.106 Conversely, other
algorithms, originally devised for TTs, have been later extended to
DMRG. This is the case for the calculation of multiple eigenpairs of
an operator with ALS,107 which has been applied to optimize excited
states with DMRG.108

C. Targeting excited states with DMRG
The area law, which provides a theoretical foundation of

DMRG, implies that ground states of Hamiltonians with short-range
interactions and with a nonzero gap between the ground and the first
excited state can be represented as MPSs with a bond dimension
m that is independent of system size. Owing to the generalizations
of ALS to the simultaneous optimization of multiple eigenpairs,
excited states can be targeted with DMRG. However, the reliabil-
ity of representing excited states with compact MPSs is not guar-
anteed and, hence, neither is the fast convergence of DMRG with
respect to the bond dimension m. Recently, the area law has been
generalized to states which can be encoded as many-body local-
ized states,109,110 i.e., states which are localized on a small portion

of the DMRG lattice, and, therefore, can be described in terms of
excitations involving only a small subset of the L sites composing
the full system. Several, nonequivalent definitions of many-body
localized states have been derived. For some of them,109 it was
shown that they can be encoded as compact MPSs. For some model
Hamiltonians, it has even been postulated that any eigenstate is a
many-body localized state.111 These generalizations of the area law
has promoted the design of excited-state variants of ground-state
DMRG.

In first-generation DMRG, the ground state is iteratively
approximated as a linear combination of the eigenfunctions of local
density matrices. They are in turn obtained from the approxi-
mated wave function calculated in the previous iterations. Excited
states can be approximated by tracking higher-energy eigenstates
of the same local density matrices, but the basis in which these
states are represented is optimal, in a least-squares sense, only for
the ground state. Therefore, its accuracy may deteriorate when
applied to excited states. This problem can be alleviated by exploit-
ing state-average density matrices for the construction of the renor-
malized basis in order to produce a balanced representation of all
relevant states.112,113 However, the state-average density matrix is
not optimal for any state, and this slows down the convergence
rate of DMRG with respect to m and renders such state-average
approaches unpractical when a large number of excited states is
targeted.

In the MPS/MPO framework, the availability of a well-defined
energy functional, whose minimization provides the DMRG wave
function, renders the extension to excited-state targeting simpler.
Excited states can be, for instance, optimized sequentially with
state-specific algorithms. After the optimization of the ground state
|Φ0⟩, the first excited state is obtained from a constrained, varia-
tional optimization in the space orthogonal to the ground state.76,97

This is achieved by replacing the Hamiltonian H with its projected
counterpart Hp, defined as

Hp
= (I − ∣Φ0⟩⟨Φ0∣)H(I − ∣Φ0⟩⟨Φ0∣). (5)

All terms appearing in Eq. (5) can be encoded as MPOs,22,97

and therefore, the ground state of Hp (i.e., the first excited state of
H) can be optimized with the standard DMRG algorithm. Higher-
lying excited states are then obtained from successive constrained
optimizations.

The need to optimize the states in increasing order of the energy
restricts the algorithms introduced above to the optimization of
low-lying excited states. However, several applications require the
calculation of high-energy eigenstates. In electronic structure calcu-
lations, the simulation of X-ray spectra involves high-energy elec-
tronically excited states.114 The same requirement holds for vibra-
tional structure calculations in the fingerprint region (in the energy
range 800–2000 cm−1). The optimization of such high-energy states
may not be trivial if the diagonalization is replaced by the minimiza-
tion of the energy functional with respect to the MPS entries and if
the global minimum is associated with the ground state only. This
problem can be circumvented by mapping the Hamiltonian onto an
auxiliary operator, whose ground state is one of the excited states of
the original Hamiltonian.115–117

For example, the ground state of the shift-and-invert (S&I)
operator Ωω,
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Ωω = (ω −H)−1, (6)

is that lowest excited state of H with an energy larger than ω.
Hence, a DMRG optimization, if applied to Ωω, will approximate
the excited state with energy closest to ω. This approach, denoted
DMRG[S&I],118,119 has two limitations. First, the choice of the shift
parameter ω requires an estimate of the energy of the target state.
The accuracy of this estimate must be high in regions with a high
density of states, in which small variations of ω can lead to conver-
gence of undesired states. This limitation can be lifted by combining
the S&I scheme with a maximum-overlap (MaxO) criterion120–122

by which the state with the largest overlap with a predetermined
MPS is followed. The maximum-overlap criterion improves signif-
icantly the stability of DMRG[S&I] since states close in energy are
often localized on different parts of the DMRG lattice. The pre-
determined MPS can be chosen, for instance, from the eigenstates
of the noninteracting part of the Hamiltonian. MaxO-based for-
mulations of DMRG have been recently applied to the Hubbard
Hamiltonian,123,124 under the name DMRG-XX, and to vibrational
Hamiltonians.119

Another issue associated with DMRG[S&I] is the selection of
the operator H for Eq. (6). Choosing H to be the full Hamiltonian of
the system would require explicit inversion of MPOs. It has recently
been demonstrated118,125 that the inversion can be avoided, but the
resulting equations involve expectation values of the squared Hamil-
tonian H2. As discussed in Ref. 22, the exact evaluation of matrix
elements of H2 is simplified in an MPS/MPO-based DMRG imple-
mentation. The tensor network that must be contracted to calculate
the expectation value H2 over an MPS is given in Fig. 1. However, it
is obviously computationally more expensive than for the standard
Hamiltonian H. Analogous equations are obtained with the folded
operator ΩF

ω,

ΩF
ω = (ω −H)2, (7)

as an auxiliary operator. We recently employed this folded opera-
tor to target excited states with DMRG for vibrational problems.119

The computational cost associated with the evaluation of Eq. (7) can
be reduced if the auxiliary operators are obtained from the local
representation of the full Hamiltonian in the renormalized basis

FIG. 1. Tensor network associated with the evaluation of the expectation value
of H2 over an MPS |Φ⟩. Red circles are associated with the entries of the MPS

(Mσi
ai−1 ,ai ), and blue squares are associated with the entries of the MPO (Wσi ,σ′i

bi−1 ,bi
).

which is constructed at each DMRG microiteration step.112,126 How-
ever, as noted in Ref. 124, convergence is not guaranteed within the
latter schemes since the resulting equations do not correspond to the
minimization of any energy functional.

D. Multidimensional generalizations
The main feature of the MPS parameterization of Eq. (2) is that

only matrices centered on neighboring sites are contracted together.
We have already mentioned above that this contraction pattern is
designed to describe efficiently one-dimensional quantum systems,
represented by Hamiltonians in which the entanglement between
two sites decays with their distance on the DMRG lattice. The decay
rate of the entanglement is, however, determined by the average
length scale of the interactions in the Hamiltonian. For this rea-
son, the convergence of DMRG iterations will be slower and higher
values of m will be needed to obtain converged energies if applied
to ground states of general Hamiltonians containing long-range
interactions.

To increase the efficiency of DMRG for more complex Hamil-
tonians, the MPS parameterization can be generalized to wave func-
tions known as tensor network states (TNSs). Similar to MPSs,
a tensor is associated with each site of a lattice but of arbitrary
shape. Accordingly, these tensors can have more than two auxiliary
indices [cf. the ai in Eq. (2)] and are contracted together following
more complex patterns. For this reason, TNSs are usually viewed as
multidimensional generalizations of MPSs.

Despite the successful application of TNS in physics,127–132 their
extension to quantum chemical problems has been limited by two
issues. The success of DMRG relies on the availability of ALS, which
reduces a complex nonlinear optimization problem to a series of
standard eigenvalue problems. Generalizations of ALS to arbitrary
forms of TNSs are, however, currently not known. For this rea-
son, tensor network states are usually optimized with a stochastic
Monte Carlo evaluation of the energy integral,133–136 although this
is much less efficient than ALS. Among the TNS parameterizations
proposed in the literature, those which have been most successfully
applied to quantum chemical problems are built from so-called tree
tensor networks states (TTNS)137,138 which exploit an iterative opti-
mization scheme that resembles ALS. TTNSs map the orbitals to a
tree-structured lattice in which groups of n sites (the parameter n
is known as order of the TTNS) are first correlated together. The
resulting renormalized bases are correlated again in groups of n ele-
ments until all sites are included. TTNSs can be interpreted as a
hierarchical generalization of a MPS where n orbitals are correlated
together with standard DMRG and the resulting MPSs are employed
as a local basis for another MPS. The active space decomposi-
tion (ASD) algorithm introduced by Shiozaki and co-workers139,140

to calculate the multiconfigurational wave function for molecular
aggregates relies on a similar parametrization. ASD expresses the
wave function for the aggregate |ΨASD⟩ as

∣ΨASD⟩ = ∑

i1 ,...,inM

Ci1 ,...,inM ∣i1⋯inM⟩, (8)

where nM is the number of monomers in the aggregate and |ij⟩
is a complete basis for the jth monomer that is obtained from
CAS-SCF. Equation (8) is a full-CI expansion that suffers, for large
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aggregates, from the problem of the curse of the dimensionality.
Parker and Shiozaki suggested to tame the high computational cost
with DMRG141 by replacing Eq. (8) with a MPS, where the lattice size
is equal to the number of monomers of the aggregate, and the local
basis is the CAS-SCF basis of a single monomer. If the local basis
is obtained from DMRG instead of from standard CAS-SCF, the
resulting wave function would be an example of hierarchical DMRG
treatment. Such an approach has been exploited by Nishio and
Kurashige to calculate correlated wave functions of molecular aggre-
gates.142 The ground and low-energy excited states of each monomer
are encoded as MPSs and optimized with DMRG. The wave function
of the aggregate is then expressed as in Eq. (8) from the resulting
basis of MPSs. Unlike ASD-DMRG, which approximates Ci1 ,...,inM
as an MPS, in Ref. 142, the tensor is replaced by its rank-one fac-
torization. Such an approximation reduces significantly the num-
ber of variational parameters but does not encode efficiently strong
entanglement between the monomers. For this reason, the rank-one
factorization is particularly efficient for weakly bonded molecular
aggregates.142 Conversely, the ASD-DMRG scheme is expected to be
more effective in the presence of strong entanglement, such as for
chemically bonded monomers.

The localized active space SCF (LAS-SCF) approach introduced
by Hermes and Gagliardi143 is another example of a multilayer CAS-
SCF scheme. LAS-SCF expresses the wave function of an aggregate
as

∣ΨLAS⟩ =
nM
∏

i=1
ψ(i)CAS, (9)

where ψ(i)CAS is a CAS-SCF wave function for the ith fragment.
The entanglement between each monomer, which is included in
ASD through a full-CI expansion, might seem absent in the LAS-
SCF wave function of Eq. (9). However, the interaction between
monomers is included during the orbital optimization with the
density matrix embedding theory (DMET).144–146

Both the ASD and LAS-SCF wave functions can be applied
to any molecular system if the orbitals are partitioned in nM
groups. However, even if the choice for this partition is trivial for
molecular aggregates, it is not straightforward for more general
molecules in which the orbitals are not localized on different por-
tion of the molecule. This choice could be automatized, for example,
based on quantum-information measures, such as the two-orbital
entropy73,88,147 obtained from a partially converged DMRG calcula-
tion following the same idea as for the AutoCAS algorithm that will
be presented in Sec. VI.148

An additional limitation which has impeded a widespread
application of TNSs to quantum chemical problems has been the
lack of a parameterization providing an adequate compromise
between flexibility and computational cost of the optimization. TNSs
designed for regular interaction patterns are not general enough to
be applied to quantum chemical problems. This holds true for pro-
jected entangled pair states,129 designed to describe two-dimensional
spin lattices, which are not appropriate when applied to Hamilto-
nians without such specific, regular interaction patterns.137 More-
over, the computational cost associated with the optimization of
more general TNS parameterizations quickly becomes intractable.
This has been observed, for example, for complete graph tensor
network states.130,135,149 Such general parameterization can repro-
duce, in principle, strong entanglement between any set of orbitals,

but the price to pay is a steep increase in the variational param-
eters that then needs to be tamed by sequential optimization
schemes.149

III. A MAJOR CHALLENGE: RECOVERING
DYNAMICAL CORRELATION

Owing to the limited number of basis states of the lattice,
DMRG is usually applied as a CAS approach. As any CAS-based
approach, it efficiently recovers static correlation, i.e., the portion of
electron correlation connected to the occurrence of more than one
dominant Slater determinant in the CI wave function. For the inclu-
sion of dynamical correlation from those basis states omitted from
the CAS, DMRG must be coupled to approaches that can capture
these contributions such as perturbation theories, coupled-cluster
(CC)-based methods, and short-range density functional theory
(DFT) as will be discussed in the following.

A. MPS-based perturbation theories
Perturbation theory represents the most common way of

assessing dynamical correlation effects. Perturbation approaches dif-
fer in the choice of the reference Hamiltonian and can be derived
to different orders. CAS perturbation theory to the second order
(CASPT2)150,151 starts from the generalized Fock operator as the
reference Hamiltonian. The bottleneck of CASPT2 calculations, as
for any other multireference perturbative approach, is the evalu-
ation of three- and four-body density matrix elements. The MPS
parameterization, together with a cumulant expansion of the den-
sity matrices, has been exploited to approximate these high-order
reduced density matrices55 and to reduce the computational effort of
the perturbation step with respect to standard CASPT2. In addition
to such approximations, DMRG-PT252,53 suffers, as any perturba-
tion theory, from numerical instabilities in the presence of nearly
degenerate states (also known as intruder states). These instabilities
can be avoided by introducing level shifts in the reference Hamil-
tonian to artificially increase the energy of intruder states.152,153 A
more elegant alternative, not depending on any external shift param-
eter, is to change the zeroth-order Hamiltonian. A reliable choice has
been demonstrated to be the Dyall Hamiltonian,154 which includes,
in addition to the standard CAS contributions, the Møller-Plesset
reference Hamiltonian for the core and virtual orbitals. Perturbation
theory relying on the Dyall Hamiltonian is called n-electron valence
second-order perturbation theory (NEVPT2)155 which is more sta-
ble than standard CASPT2. Also, NEVPT2 has been built on top of
DMRG wave functions.30,56,59–61

Other perturbative approaches have been introduced that do
not require the calculation of high-order density matrices. Coupling
them with DMRG could enable one to target larger active spaces.
The driven similarity renormalization group (DSRG) by Evange-
lista156 replaces the diagonalization of the CAS Hamiltonian by a
sequence of unitary transformations which progressively decouple
the basis starting from the elements with a higher energy separation.
This algorithm will be equivalent to full CI if the sequence of trans-
formations is driven to convergence. Conversely, if it is stopped at an
intermediate decoupling degree, only determinants with significant
energy difference will be decoupled and nearly-degenerate states
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(i.e., intruder states) will be left unchanged. The resulting basis is
a reliable reference for perturbation theory not suffering from insta-
bilities.157 When applied to multideterminant wave functions, DSRG
represents a cost-effective alternative to CASPT2 and NEVPT2 since
only three-body reduced density matrices are required. However,
although the multireference generalization of DSRG is known,158

together with its coupling with second-order perturbation theory,159

its further extension to MPS wave functions has not been explored
yet. The accuracy of DSRG depends, in principle, on the degree
of coupling at which the block diagonalization is stopped. DSRG
parameterizes the unitary transformation through a flow parame-
ter s whose inverse is related to the maximum energy difference for
which states are decoupled. This would suggest that the value of the
flow parameter at which the transformation is stopped, smax, is the
DSRG equivalent of the imaginary shift of CASPT2. Pilot studies
indicated,157 however, that DSRG is significantly more stable than
CASPT2 upon changes in smax.

The random phase approximation (RPA)-based theory intro-
duced by Pernal160 represents another promising cost-effective
perturbative scheme, in which dynamical correlation is obtained
from an adiabatic connection formula. The correlation energy is
expressed as an integral of quantities depending on one- and two-
body reduced density matrices only, obtained through adiabati-
cally switching on the correlation potential. In the original work,160

two-body reduced density matrices were expressed in terms of the
one-electron transition matrices, which in turn were obtained from
extended RPA equations.161 This RPA-based theory has been gen-
eralized to multireference wave functions162 under the assump-
tion that the occupation of the CAS orbitals is approximately
constant during the adiabatic switch-on of the electron-electron
interaction. This assumption will be valid only if the CAS is big
enough to include all static correlation effects. In this respect,
the coupling of this RPA-based approach with DMRG is par-
ticularly appealing. This would require the extension of RPA to
wave functions expressed as MPSs and could be accomplished
within the recently introduced time-dependent formulation of
DMRG.163,164

Any perturbation theory can be efficiently coupled to DMRG
if the structure of MPSs can be exploited to speed-up the evalua-
tion of the perturbative correction. As we have already mentioned
above, this is not the case for CASPT2 or NEVPT2 that are based
on sum-over-states expression and require the calculation of high-
order reduced density matrices. The first-order correction to a wave
function can be calculated as the minimum of the so-called Hyller-
aas functional.165 Second-order correction to the energy can then
be obtained trivially from the well-known (2n+1) rule. The refor-
mulation of perturbation theory as a variational problem is partic-
ularly appealing in connection with DMRG because it allows one
to derive perturbative corrections by applying ALS as for ground-
state optimization. This idea, introduced by Chan and Sharma,54

has recently been applied to quasidegenerate58 and multireference
perturbation theory.60 Such a Hylleraas-based perturbative scheme
will be, however, efficient, only if the first-order correction of the
wave function can be represented as an MPS with a low bond dimen-
sion m and, as has been discussed by Chan and co-workers,166 this
is not the case for large active spaces. To reduce the size of the
first-order correction MPS, it has been first proposed to express
it as a sum of MPS, each with a smaller value of m.166 As an

alternative, the perturbative correction can be expressed as an aver-
age over the wave function probability density, as done for selected
CI,7,167 and evaluated stochastically. This second scheme is par-
ticularly appealing thanks to the availability of algorithm to sam-
ple efficiently configurations from the probability distribution of a
MPS.136,168

B. Combining the MPS with CC parameterizations
Coupled cluster (CC) is the reference method to study elec-

tronic properties of single-reference systems lacking strong static
correlation. For this reason, several recent attempts to apply CC cor-
rections to multideterminant wave functions169–172 have a natural
extension to DMRG.

Different multireference generalizations of CC have been pro-
posed. They may be classified, in broad terms, as internally con-
tracted (ic) multireference CC (MRCC) and Jeziorski-Monkhorst
CC (details about the theory can be found, for example, in a recent
review172). The former formulation applies a unique CC exponen-
tial operator onto a multireference wave function. The latter, con-
versely, applies a separate cluster operator to each configuration of
the multideterminant wave function. ic-MRCC has a natural exten-
sion to wave functions encoded as MPSs since the form of the cluster
operator does not depend on the number of terms in the CI expan-
sion of the wave function. Nevertheless, ic-MRCC has not yet been
married with DMRG. Conversely, the requirement of having a sep-
arate cluster operator for each CI elements renders the extension of
Jeziorski-Monkhorst CC theory to DMRG nontrivial. In fact, a wave
function encoded as MPS can be virtually expanded in terms of an
infinite number of basis functions.

A different strategy has instead been employed to couple CC
with large-scale CI schemes, i.e., to express the wave function as
in single-reference CC and to include multiconfigurational effects
by calculating the amplitudes involving strongly correlated orbitals
from a CI (or MPS) wave function. For example, DMRG has been
coupled with tailored CC with singles and doubles (CCSD) exci-
tations173 following this idea. In tailored CCSD, orbitals are parti-
tioned into active, inactive, and virtual as in multiconfigurational
SCF (MC-SCF) approaches. The amplitudes associated with the sin-
gle and double excitations within the active space are then extracted
from a CAS (or DMRG174) wave function. The remaining ampli-
tudes are then optimized as in standard, single-reference CC by
keeping the single- and double-excitation ones within the CAS fixed.
The main advantage of tailored CC over its multireference coun-
terpart is the computational cost, which is comparable to that of
single-reference CCSD calculations. As already mentioned in the
original paper,173 even if a part of the amplitudes is obtained from
multireference wave functions, tailored CC still represents a single-
reference CC approach and this limits its accuracy for systems dis-
playing strong static correlation, for which, however, the efficiency
of DMRG is maximal. Moreover, the relevance of triple and higher-
order excitations, which are neglected in tailored CCSD, has not
been assessed yet.

Multireference methods can be combined with CC within the
so-called externally corrected CC methods. These schemes extract
high-order amplitudes for orbitals that are included in an active
space from a CAS-SCF wave function, and optimize the full set of
singles and doubles amplitudes, both for active and inactive orbitals,
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in the presence of these triple and quadruple excitations with stan-
dard CC.175,176 A similar strategy has been employed by Piecuch and
co-workers to combine CC including up to quadruple excitations
(CCSDTQ) and FCIQMC. Unlike tailored CC, the high-order exci-
tations are obtained from a multireference method and not the low-
order ones. For FCIQMC, it was shown that the amplitude of the
triple and quadruple excitations obtained from a partially converged
FCIQMC calculation already provides nearly converged CCSDTQ
energies.177 Therefore, the same may hold true also for partially con-
verged MPSs, obtained with a low bond dimension m. We note
that FCIQMC has been combined by Piecuch and co-workers with
CC also to automatize the so-called moment correction-based CC,
which performs a CCSDTQ calculation by including triples and
quadruples amplitudes only for excitations in the active space and
estimates the effect of the remaining amplitudes by the so-called
moment correction. As any multireference method, the accuracy
of such a scheme depends strongly on the selection of the active
space. To alleviate this problem, Piecuch and co-workers proposed
to extract the predominant triples and quadruples amplitudes to be
included in the exact CCSDTQ calculation from a partially con-
verged FCIQMC propagation.178,179 FCIQMC is, therefore, a driver
that identifies the most relevant high-order cluster amplitudes to
be included in the CC expansion, while the others are treated
approximatively.

Canonical transformation (CT) theory180 differs from CC.
Whereas the wave function is parameterized using the same expo-
nential operator as in the unitary coupled cluster,181,182 the commu-
tators entering the amplitude equations are then approximated by
keeping only one- and two-particle operators in the Mukherjee and
Kultzenigg generalized normal-ordered Hamiltonian.183 Three- and
higher-order reduced density matrices are approximated through
a cumulant expansion.184 The main advantage of CT over MRCC
is the need to compute one- and two-body reduced density matri-
ces only, still including higher-order reduced density matrices in
an approximated way. However, the higher-order reduced den-
sity matrices are approximated in terms of the one- and two-
particle ones. This corresponds to retaining only the low-order
contribution to the so-called cumulant approximation. Such an
approximation is accurate for single-reference systems, but it is
known to converge much slower for strongly correlated systems,185

which are however the cases for which the efficiency of DMRG is
maximal.

C. DMRG-DFT hybrid approaches
Short-range dynamical correlation may be considered by com-

bining DMRG with DFT to alleviate the problem of the Coulomb
cusp and introduce an approximated DFT-based correlation poten-
tial. A common hurdle of all methods combining DFT with wave
function theories (WFTs)186 is the so-called double counting prob-
lem. Any multiconfigurational method will include, besides the
static correlation energy, also part of the dynamical one. This sec-
ond portion of the correlation energy should then not be included
in the subsequent DFT calculation. There is, however, no exact def-
inition of static and dynamical correlation energy, and a quantifi-
cation of this missing part of correlation is, therefore, not trivial.
This double-counting problem can be avoided187,188 by partitioning
the electron-electron interaction through range separation. In this

way, the short-range part of the interaction can be included in the
DFT treatment and the long-range part can be included in the wave
function-based calculation. The resulting theory, known as short-
range DFT (sr-DFT) long-range wave function theory,189 is for-
mally exact and does not suffer from the double-counting problem
by construction. However, it requires the knowledge of a universal
short-range exchange-correlation functional. Standard functionals,
designed to capture all electron correlation, cannot be applied for
this purpose, and new functionals must be devised. The intrinsic
approximation of this universal short-range exchange-correlation
functional makes the accuracy of sr-DFT functional-dependent,
which is a major limitation over the other approaches presented
above. However, one needs to keep in mind that multireference
perturbation theory is usually applied to second order and there-
fore not of ultimate accuracy. By contrast, an advantage of sr-DFT
approaches is that they hardly require additional computational
effort on top of the multiconfigurational calculation. The accuracy
of sr-DFT depends also on the range-separation parameter that par-
titions the Coulomb interaction into a long-range part and a short-
range one. Giner et al. recently suggested to choose this parameter
based on the difference between the exact Coulomb kernel and the
one that is obtained from a correlated wave function.190 Since, in the
limit of r12 → 0, the former diverges while the latter is finite, Giner
et al. proposed to choose the range-separation parameter so that the
long-range part of the Coulomb interaction equals the Coulomb ker-
nel obtained from an approximated wave function. The resulting
range-separation parameter is, therefore, basis set-dependent and,
as expected, tends to 0 in the complete basis set limit. Moreover, it
is not a constant but instead a function of the coordinates. Even if
this scheme has been coupled, up to now, only with selected CI,191 it
can be applied to any correlated method for which the pair density
is available, therefore including DMRG. We have combined sr-DFT
with MPSs.192 Interestingly, treating part of the electron correlation
with DFT accelerates the convergence rate of DMRG with respect to
the bond dimension m through a regularization of the active orbital
space.192

Fromager proposed to partition electron correlation in the
orbital space.193 A subset of the full set of orbitals is treated with wave
function-based approaches (including DMRG194), and their inter-
action with the remaining orbitals is described with DFT. Unlike
standard DFT, where it is a function of the coordinates only, the
density becomes orbital-dependent as well. As discussed in Ref. 193,
a consistent definition of exchange-correlation functionals in this
framework requires the design of functionals of the orbital occu-
pation, in place of the density. Exact orbital occupation-dependent
functionals can be derived for simple models, such as Hubbard
Hamiltonians.193 More recently, a strategy to extend local density
approximation functionals to this framework has been reported.195

The lack of well-established algorithms for the design of these new
functionals has, however, limited the applications of this approach
to model Hamiltonians only.

A third, formally different approach to combine WFT with
DFT is pair-DFT (pDFT)186,196 which does not rely on any parti-
tioning of the electron-electron correlation, neither in real nor in
orbital space. Instead, the energy expression contains the kinetic and
Coulomb energies from a CAS-SCF reference calculation, whereas
all exchange and correlation contributions are evaluated from
functionals of the on-top density. This energy functional is then
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evaluated only once, from the one-body and on-top densities
obtained for a CAS-SCF (or DMRG197) wave function. Evaluating
the functional only once is a computational advantage of pDFT
over sr-DFT, in which self-consistency between the WFT and DFT
parts can be reached. However, also pDFT requires the design of
new functionals, depending on both the one-body and the on-top
density. Although in Ref. 196 a strategy to design such function-
als starting from standard ones was provided, we note that these
new functionals should also include corrections associated with the
kinetic energy, which is evaluated based on a truncated wave func-
tion and is, therefore, not exact. Moreover, self interaction and dis-
persion are notoriously difficult to be included in standard func-
tional forms of density functionals. This makes the functional design
highly nontrivial.

IV. DMRG FOR THE NUCLEAR HAMILTONIAN
A. Vibrational DMRG

Within the Born-Oppenheimer approximation, molecular
vibrations are described in terms of the vibrational Schrödinger
equation,

Hvib∣Φvib⟩ = [T (Q) + V(Q)]∣Φvib⟩ = Evib∣Φvib⟩, (10)

where V(Q) is the potential energy surface (PES) operator obtained
from the solution of the electronic Schrödinger equation at differ-
ent nuclear configurations Q. Unlike the electronic Hamiltonian
in Eq. (1), for which the interaction operators are known exactly
(in the nonrelativistic limit), the PES must be approximated, either
with a Taylor series expansion about some reference geometry or
with an n-mode expansion.198 Depending on the nature of this
approximation, different second-quantized forms of the Hamilto-
nian in Eq. (10) are obtained, based either on the n-mode represen-
tation of the potential199,200 or on canonical quantization.201 Both
forms describe the vibrational motion in terms of Bose-Einstein
statistics. We note that this would not be the case for the full
molecular system, i.e., the pre-Born-Oppenheimer Hamiltonian, in
which the symmetry would be different for bosonic and fermionic
nuclei.202–205

Most of the numerical methods designed to solve the electronic
Schrödinger equation have been extended to vibrational struc-
ture, including HF,206–208 CC,209 CI,210–214 and perturbative215–218

approaches. The high computational cost of vibrational CI (VCI)
has impeded its application to systems with more than 10–20 atoms
so far and, as for the electronic-structure case, this problem can be
alleviated by DMRG. A MPS/MPO-based formulation of DMRG
for vibrational problems (referred to as vDMRG) was introduced
by us.219 We note that, unlike the electronic Coulomb potential
that is purely a two-body interaction, a many-body expansion of
a PES contains three- and higher-order couplings. As we have
already remarked and shown in the literature, the MPS/MPO-based
formulation is the ideal framework for applying DMRG to such
complex Hamiltonians. In parallel, a TT-based theory to calcu-
late the eigenvalues of vibrational Hamiltonians was proposed.220

Two related strategies have been devised to reduce the com-
putational cost of VCI: basis pruning techniques221–223 and pre-
contraction schemes.224,225 Methods of the first class reduce the

computational effort of VCI by including only a subset of the full
configurational space in the CI expansion. Conversely, precontrac-
tion schemes divide the vibrational degrees of freedom in differ-
ent subsets. The vibrational Schrödinger equation is first solved
for each subset, neglecting the coupling between them. The basis
for the final VCI calculation is then constructed from the eigen-
functions of these local Schrödinger equations.224,225 DMRG com-
bines the advantages of both schemes. As in pruning algorithms,
the CI expansion involves a reduced basis, constructed iteratively
to give the best approximation of the exact wave function in a
least-squares sense. Moreover, the full diagonalization is replaced
with the solution of a series of monodimensional eigenvalue prob-
lems. A similar strategy is followed by precontraction schemes, even
if in DMRG no partition of the vibrational degrees of freedom is
needed.

We conclude by noting that DMRG has also been applied
to the solution of the rotational Schrödinger equation.226 In this
respect, the inclusion of vibrorotational contribution in vDMRG
has not been explored yet and is required to match high-accuracy
experimental data.

B. Vibrational correlation in vDMRG
The problem of recovering dynamical correlation is not lim-

ited to electronic structure problems: vDMRG suffers from the
same limitation. The distinction between dynamical and static cor-
relation has been, however, much less discussed in the literature
in the context of vibrational structure. Static vibrational correla-
tion energy can be defined, by analogy with its electronic coun-
terpart, as the portion of the total vibrational correlation energy
associated with the absence of a predominant configuration in the
nuclear wave function expansion. Any molecule displaying a double-
well potential along an inversion coordinate will feature strong
static correlation. The exact vibrational wave function associated
with the inversion coordinate is delocalized on both sides of the
well, and therefore, it cannot be described in terms of one con-
figuration localized on a single reference geometry. Conversely, if
the vibrational wave function is accurately represented in terms of
harmonic oscillator eigenfunctions, only dynamical correlation is
present.

As for the electronic structure case, dynamical correlation is
efficiently recovered by vibrational perturbation theory, based either
on harmonic wave functions216,227 or on a vibrational SCF.215,228 To
increase the efficiency of vDMRG, it is crucial to apply the varia-
tional correction only to the vibrational degrees of freedom display-
ing strong static correlation. The effect for the remaining modes may
then be captured by perturbation theory. This procedure is the vibra-
tional counterpart of the selection of a complete active orbital space.
Low-frequency modes can be defined as strongly correlated because
they are, in most cases, strongly anharmonic, and therefore, they
require a variational treatment. Any reaction-path Hamiltonian-
based model relies on such a criterion.229–231 A single, low-frequency
mode is treated variationally, while all the other higher-frequency
modes are treated either by harmonic approximation or by pertur-
bation theory.

Energy-based criteria are usually not sufficient to detect strong
correlation. Another indicator that has found extensive applica-
tion in vibrational structure theories to detect strong correlation is
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so-called resonances. They are associated with nearly degenerate,
strongly coupled states. The well-known Fermi resonances, in which
the energy of an overtone is close to the one of a fundamen-
tal transition, lead to near-vanishing denominators in the per-
turbative energy expansion. In addition, other resonances, not
associated with any divergence of the perturbative series, are
known to be associated with strong static correlation. This is the
case, for example, for the so-called Darling-Dennison resonances,
involving near-degenerate fundamental (or overtone) transitions.
Advanced algorithms to detect resonant terms have been pro-
posed in the literature and applied to hybrid perturbative-variational
schemes.216,217,232,233

In this respect, diagnostics obtained from one- and two-mode
entropies, defined analogously to their electronic counterpart,73,88

could be used to identify strongly interacting modes and to quantify
their interaction strength. For electronic structure calculations, the
convergence of these descriptors with the bond dimension is much
faster than that of the energy. For this reason, strongly interacting
orbitals can be identified based on a fast, nonquantitative DMRG
calculation that can reproduce a qualitatively correct wave func-
tion.73,147,148 This also holds true for vDMRG. Accurate vDMRG
calculations can then be carried out only for those strongly cou-
pled modes, while the effect of the remaining ones may be recovered
from perturbation theory. Perturbative corrections can be obtained
as in the electronic-structure case, either from an explicit evalua-
tion of sum-over-states expressions or by minimizing Hylleraas-type
functionals.

V. TIME-DEPENDENT FORMULATION OF DMRG
DMRG is an optimization algorithm to minimize the energy

functional for wave functions expressed in the MPS parameter-
ization. This is equivalent to solve the time-independent (TI)
Schrödinger within the manifold of matrix product states. Solv-
ing the TI Schrödinger equation is the most natural choice to tar-
get ground-state energies and low-order properties. Other quan-
tities are, however, more easily obtained from the solution of the
TD Schrödinger equation. For instance, X-ray spectroscopy with
TI methods requires the calculation of highly excited eigenstates of
the electronic Hamiltonian and, as already highlighted in Sec. II,
this task is much more complex compared to ground state calcu-
lations. Within a TD framework, X-ray spectra are obtained from
the Fourier transformation of appropriate time-dependent autocor-
relation functions without the need of any diagonalization.234–236

Perturbation theories, including CASPT2 and NEVPT2, can also
be reformulated in the time domain237 in terms of the Fourier
transformation of time-dependent Green’s functions that do not
require the calculation of high-order reduced density matrices. Due
to these advantages, which have been described in detail in a recent
paper by Chan and co-workers,238 most of the electronic struc-
ture approaches have been reformulated in the time domain in the
last years. In broad terms, the resulting algorithms are known as
real-time electronic structure methods. Originally, the TD exten-
sion was developed for semiempirical239,240 and DFT-based mod-
els.241–243 More recently, real-time extension of wave function-based
approaches, including CAS-SCF244,245 and CC,234,246 have been
proposed.

A. Quantum dynamics with matrix product states
The exact solution of the TD Schrödinger equation is plagued,

as its TI counterpart, from the curse of dimensionality. For this
reason, real-time CAS-SCF simulations are currently feasible only
for few-atom systems.244 This limitation can be alleviated by MPSs
introduced to the TD Schrödinger equation (in Hartree atomic
units),

i
∂∣ΨMPS(t)⟩

∂t
= HΨMPS(t). (11)

Equation (11) is not an eigenvalue problem and therefore
cannot be solved with the ALS algorithm. We have already men-
tioned that applying any operator, such as the Hamiltonian H,
to an MPS (ΨMPS) increases its bond dimension. Hence, it fol-
lows from Eq. (11) that the bond dimension increases during the
propagation. This leads to an increase in the computational time
needed to evaluate HΨMPS(t) as the propagation evolves and to
a high computational cost, especially for long propagations.247 To
limit the computational demands, the bond dimension of HΨMPS(t)
can be kept fixed by building the renormalized basis at the begin-
ning of the simulation and keeping it fixed during the propaga-
tion.248 However, the renormalized basis is optimized to represent
the initial wave function, but its accuracy deteriorates with increas-
ing time. To solve this problem, the basis function can be updated
at each time step,61,249–251 to keep the accuracy fixed during the
whole propagation. These algorithms are usually known as adaptive
TD-DMRG.

A second major challenge associated with TD-DMRG is related
to the numerical integration of the differential equation itself. For-
mally, its solution reads

ΨMPS(t) = e−iHtΨMPS(0), (12)

where e−iHt is the propagator (i.e., the time-evolution operator).
To evaluate efficiently Eq. (12), the exponential operator must be
encoded as an MPO, as in Eq. (3). For Hamiltonians contain-
ing nearest-neighbor interactions only,252 such a representation
is obtained by approximating the propagator through a Suzuki-
Trotter splitting. The resulting theory, known as time-evolving
block decimation (TEBD),253 has been successfully applied to
nearest-neighbor Hamiltonians, such as the Hubbard one, but is
not general enough for QC Hamiltonians that show long-range
interactions.

Alternatively, the TD Schrödinger equation can be solved
with numerical methods such as the Runge-Kutta61,249–251 or the
Lanczos schemes,254 adapted to MPSs. The fourth-order Runge-
Kutta scheme is mostly applied in conjunction with the adap-
tive TD-DMRG introduced above because it calculates the wave
function after a time step Δt from the wave function at the ini-
tial time t and at times t + Δt/4, t + Δt/2, and t + 3Δ/4. These
intermediate wave functions can be employed to determine the
optimal renormalized basis for the final wave function at time
t + Δt.61,250,251,255

The TD Schrödinger equation can also be recast as a variational
problem by applying the well-known TD Dirac-Frenkel variational
principle (TDVP).256 Within this framework, the time evolution of
an MPS is determined by minimizing the following functional:
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F[ΨMPS(t), t] = ∥i
dΨMPS(t)

dt
−HΨMPS(t)∥

2

, (13)

where the minimization is performed over the MPSs with a fixed
bond dimension m. The resulting propagation will be approximate
since an exact solution of Eq. (11) would lead to a continuous
increase in m. However, as in standard DMRG, the full-CI limit
is recovered by systematically increasing m. Equation (13) can be
recast as

i
∂∣ΨMPS(t)⟩

∂t
= PΨMPSH∣ΨMPS(t)⟩, (14)

where PΨMPS is the projector onto the manifold of all possible MPSs
with bond dimensions m. As shown in Fig. 2, the projector ensures
that the wave function is described as an MPS of bond dimension m
during the whole propagation. This projector can be expressed as a
sum of site terms, as has been recently demonstrated in the context
of TT theory.257,258 The propagator of Eq. (12) can, therefore, be fac-
torized as a product of site terms, and its action on an MPS can be
calculated by applying the terms sequentially, as in ALS minimiza-
tion.259,260 A similar tangent space-based scheme has been recently
introduced by Bonfanti and Burghardt for the multiconfigurational

FIG. 2. Graphical representation of the tangent-space TD-DMRG approach. The
gray set represents the full-CI space (MCI), and the blue space represents
the tangent space to the manifold of the MPS with a fixed bond dimension m
[MMPS(m)] calculated at the MPS at time t1 (|Φ(t1)⟩). The exact wave func-
tion at a successive time t2 > t1 (|Φ(t2)⟩) is not an element of the tangent space.
Its projected counterpart (PΦMPS ∣Φ(t2)⟩) is the best approximation of |Φ(t2)⟩ in
MMPS(m).

time-dependent Hartree (MCTDH) scheme.261 So far, this tangent-
space formulation of TD-DMRG has been applied to model vibra-
tional Hamiltonians.262–265 However, due to its generality, the frame-
work can be applied to ab initio Hamiltonians as well. The appli-
cation of TD-DMRG to time propagations of a nuclear wavepacket
on vibronic Hamiltonians that has been introduced by us266 enables
one to simulate photochemical processes with DMRG for systems
with more than 20 vibrational degrees of freedom. In this respect,
TD-DMRG could constitute an efficient alternative to the MCTDH
algorithm,267 which is currently the reference method for quantum
dynamics simulations. MCTDH can be interpreted as the time-
dependent vibrational analog of CAS-SCF since during the prop-
agation both the CI wave function and the modals are optimized
simultaneously. As TI CAS-SCF, MCTDH suffers from the curse
of dimensionality and its computational cost scales exponentially
with the number of degrees of freedom. A multilayer formulation of
MCTDH (ML-MCTDH) has been introduced200,268–271 to limit this
increase, where vibrational coordinates are coupled according to a
hierarchical contraction scheme. In Sec. II, we discussed how some
multidimensional generalizations of the MPS parameterization can
be interpreted as a hierarchical extension of the MPS. In this respect,
we believe that ML-MCTDH is not an alternative to TD-DMRG, but
both approaches can rather be combined to improve their respective
efficiency.

A fundamental limitation of any TD-DMRG approach is that
there is no guarantee that a wave function can be represented as
a compact MPS during a propagation. This makes the assessment
of the convergence of TD-DMRG not trivial for long-time sim-
ulations, as has been discussed by Reichmann and co-worker for
spin Hamiltonians.272 We also noted that,266 if the bond dimen-
sion m is adapted dynamically during the propagation to get a
constant truncation error,42 the bond dimension increases linearly
with time. This means that fixing m introduces an error that grows
linearly with time. However, we observed266 that some observ-
ables, such as autocorrelation functions, converge quickly with m.
Absorption spectra are mostly governed by short-time propagations
and, therefore, the impact of the long-time error is expected to be
small.

Legeza and co-workers have proposed to optimize the local
basis during the propagation to improve the accuracy of TD-
DMRG. Following an algorithm originally introduced to improve
the convergence of TI-DMRG,50,273 the basis is optimized by
minimizing the entanglement entropy of the MPS,274 which
grows with the bond dimension m. The optimization is car-
ried out by applying a unitary transformation to the local basis
of two neighboring sites after each microiteration of a DMRG
sweep.

Also in MCTDH,267,275 the local basis is optimized during the
propagation, but the optimization is realized in a substantially differ-
ent way than in Ref. 274. The local basis is expressed as a linear com-
bination of a larger basis set, referred in the following as primitive
basis, in the same way as CAS-SCF molecular orbitals are expressed
in terms of an atomic basis. The coefficients of this linear combi-
nation are optimized during the propagation applying the TDVP.
Therefore, the vector space spanned by the local basis, which is a sub-
set of the space spanned by the primitive basis, changes dynamically
during the propagation. This is not true for the algorithm described
above,274 in which transformations are applied within the local basis
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to obtain a compact MPS. Kurashige276 proposed a scheme to couple
this MCTDH local basis optimization with TD-DMRG based on the
theory of Ref. 261. Even if applications of this scheme are still lim-
ited to very small systems, results suggest that this scheme could also
improve significantly the efficiency of TD-DMRG. We conclude by
noting that the two optimization schemes introduced above can, in
principle, be coupled to select the best DMRG local basis with the
MCTDH-based optimization267,275 and applying the entanglement
minimization274 to obtain the most compact MPS parameterization
within this basis set.

Interestingly, even if the TI formulation of DMRG has been
applied mostly to electronic structure problems, applications of its
TD counterpart have often been limited to vibrational Hamiltoni-
ans.251,266 TD-DMRG for ab initio electronic structure Hamiltoni-
ans enables one to simulate electron dynamics. Even if the exten-
sion of MCTDH to electronic processes has been known for more
than ten years,277 its application has been limited by the absence of
experimental reference data. Owing to the impressive development
of attosecond spectroscopic techniques,278–280 it is now possible to
probe electron dynamics in real time. There is therefore a need for
accurate electronic structure methods supporting the interpretation
of attosecond spectra. Currently, the only multireference theories
applicable to time-dependent processes are TD-CAS-SCF244,245 and
TD-CI.281–284 Their high computational cost has limited them so far
to few-atom molecules. The extension of the TD-DMRG framework
designed by us for vibrational and vibronic problems266 to the elec-
tronic Hamiltonian would extend the range of applicability of TD-
CAS-SCF, allowing to study transition metal complexes or complex
biomolecules.

B. Imaginary-time propagation of matrix
product states

An interesting further development of TD-DMRG is its exten-
sion to imaginary-time propagation. It is well-known that express-
ing the time in the complex domain allows the study of thermal
ensembles251 and open quantum systems.285 The inclusion of tem-
perature effects is particularly relevant for vibrational Hamiltonians
because the energy of nuclear motions is comparable to the thermal
energy at room temperature. Nevertheless, in the presence of low-
lying electronic states, temperature effects might become relevant
also for electrons. For this reason, some electronic structure the-
ories have been generalized to include temperature effects.286 The
same strategy can be followed to generalize TD-DMRG to thermal
ensembles.251

The particular case in which the time variable is a purely imagi-
nary number corresponds to the limit of zero temperature. In that
case, the TD propagation becomes equivalent to a ground-state
optimization. This idea is exploited in diffusion Monte Carlo,287

as well as in FCIQMC,14 where the propagation is replaced by a
stochastic dynamics. Imaginary-time propagation of MPSs is, there-
fore, an alternative to the standard, ALS-based optimization, as we
proved for vibrational Hamiltonians.266 This alternative is partic-
ularly appealing for general tensor network states, for which ALS
is not available. As already recalled above, the optimization is the
bottleneck of any calculation involving tensor network states. There-
fore, imaginary time propagation could lead to a speed-up of tensor
network state optimization compared with the currently available

algorithm. The extension of the Dirac-Frenkel principle to general
tensor networks would, however, require a closed-form expression
for the projection operator onto the tangent space, which is not
known.

A significant difference between ALS-based optimization tech-
niques and the imaginary-time propagation is that the former are
variational, while the latter is projective. As pointed out by Alavi
and co-worker,288 projective optimization techniques are particu-
larly appealing when coupled to “dressed” non-Hermitian Hamil-
tonians, obtained by non-unitary transformation of Eq. (1) to
partially include correlation effects in the definition of the Hamil-
tonian itself. Among them, the transcorrelated Hamiltonian intro-
duced by Boys and Handy289 automatically includes in its definition
a Jastrow-like factor without the need of considering it explicitly in
the wave function. The applications of the transcorrelated Hamil-
tonian to quantum chemical problems have been hampered by the
fact that it is not Hermitian, and therefore, its eigenfunctions are not
well-defined.290–292 This issue can be circumvented with projection-
based optimization techniques, such as FCIQMC,14 which do not
require any modification when dealing with non-Hermitian opera-
tors. Imaginary-time propagation would, therefore, pave the route
toward the coupling of DMRG with dressed Hamiltonians, includ-
ing the transcorrelated one.

VI. APPLICATION OF DMRG TO QUANTUM
CHEMICAL PROBLEMS
A. DMRG studies of complex multireference systems

The first implementations of DMRG to the electronic struc-
ture Hamiltonian were tested on HHeH,36 LiF,41 H2O,39 N2,43 and
CsH,44 all molecules with less than 5 atoms, for which full CI cal-
culations are still feasible. The availability of CI results made these
systems ideal to study the convergence of DMRG. Subsequent appli-
cations were mostly limited to quasi-one-dimensional molecules, for
which the efficiency of DMRG should be best (ignoring the long-
range Coulomb interaction) and fully converged results are obtained
with values of m of the order of magnitude of 100. Typical examples
include linear hydrogen chains250,293 as well as π-conjugated organic
systems294 and, in particular, polyenes.48,113,163,295 For these sys-
tems, DMRG can converge ground-state energies for active spaces
with up to 100 orbitals, a size not reachable by standard CAS
algorithms.

For more complex molecules, a higher bond dimension m is
needed to converge DMRG. However, for many (if not most) appli-
cations, a value of m lying between 1000 and 10 000 will yield
sufficiently accurate converged energies. We argued in 200846 that
relative energies of compact molecules such as transition metal
complexes can be obtained with DMRG, which initiated the appli-
cation of DMRG as a reference method in this field. A promi-
nent example is the DMRG study of the electronic properties of
synthetic Fe-S clusters, which are found as active sites in metal-
loenzymes.296 For these systems, the full-variational energy of the
lowest 10 electronic states could be obtained from DMRG calcu-
lations with m = 4000 and including up to 30 orbitals. Also, the
Mn4CaO5 cluster, which is buried in photosystem II and respon-
sible for oxygen production on Earth, was a target for DMRG
calculations.297
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However, these works suffer from common limitations. First,
the convergence is assessed for a given CAS, but the choice of the
orbitals to be included in the CAS is not discussed. Furthermore,
dynamical correlation is not included at any level. This limit is men-
tioned, for example, in Ref. 297, where it was shown that DMRG
calculations provide correct energy ordering for the first 10 excited
states of the Mn4CaO5 cluster but do not correctly reproduce the
absolute energies. By virtue of recent developments of different per-
turbation theories combined with DMRG, the most recent applica-
tions employ DMRG-CASPT2298–300 or DMRG-NEVPT259 to reli-
ably include dynamical correlation effects. Among most advanced
applications, we mention here the work of Yanai and co-workers298

where DMRG-CASPT2 is applied to the study of the catalytic
dehydrogenation of alkenes by the desaturase enzyme. This study
shows that PT can account for corrections of up to 100 kJ/mol
to the pure DMRG result, and its inclusion is, therefore, crucial
for a correct identification of the reactive intermediates of the cat-
alytic reaction. Similar considerations are reported also in a recent
DMRG study of spin-crossover metal complexes,59,300 which are
usually characterized by small singlet-triplet energy gaps. The inclu-
sion of dynamical correlation effects is again crucial to correctly
reproduce this energy gap. The reliability of modern DMRG-PT2
approaches makes them one of the “gold-standard” methods to
obtain reference data for multiconfigurational systems to design
and to test new DFT functionals for the study of transition metal
complexes.298,299

B. Automatic selection of active orbital spaces
As is true for any multiconfigurational method defined for a

chosen orbital space, the accuracy of DMRG strongly depends on the
definition of the CAS. It is a natural desire deeply rooted in scientific
objectivism to make this choice based on rigorous criteria without
any human interference. The actual practice, however, is quite dif-
ferent, and expert knowledge is considered to be key. However, the
fact that DMRG can address very large orbital spaces with iteratively
increasing accuracy holds a key to this problem. In turn, DMRG cal-
culations can be fully automated, therefore making it as black-box as
single-reference methods, such as DFT and CC.

Hence, a descriptor measuring the degree of entanglement of
states defined on a subset of orbitals must be defined, based on which
the most strongly entangled orbitals can be chosen for a CAS in a
fully automatic way. For an orbital selection scheme to be of uni-
versal applicability, some requirements must be met: (1) An orbital
selection scheme should be agnostic with respect to the type of
orbital basis from which orbitals shall be selected, (2) reliable objec-
tive (absolute) criteria for the orbital classification are necessary, (3)
as few general parameters (thresholds) as possible should be set to
demonstrate general applicability (e.g., a single decision criterion is
desirable), (4) the scheme must be able to inspect all relevant orbitals
for the process to be described (e.g., all valence orbitals if reaction
energies are a target so that the selection scales with the molecu-
lar size), (5) it must work for any type of molecule (i.e., it should be
agnostic with respect to elements from the periodic table), (6) it must
work along reaction coordinates and for excited states to be useful in
applications on chemical processes, (7) absolutely no manual inter-
ference in the whole selection process must be required if the scheme
shall be called automated, (8) the selection scheme should enable

fully automated CAS-SCF or DMRG-SCF calculations that require
as little input as is required for DFT or CC calculations, and (9) it
can be beneficial to have an absolute diagnostic for measuring static
electron correlation available.

As already discussed in the context of orbital ordering opti-
mization, measures obtained from quantum information theory are
particularly well-suited for quantifying orbital correlations. In par-
ticular, a reliable metric is the single-orbital von Neumann entropy
si(1), which measures the deviation of a spatial-orbital substate from
one of the four pure states of a spatial orbital,73,74,88

si(1) = −
4

∑

α=1
wα,i ln(wα,i), (15)

where wα,i are the eigenvalues of the one-orbital reduced density
matrix. The two-orbital entropy sij(2) can be defined analogously
to Eq. (15). The mutual information Iij between orbitals i and j is
defined in terms of si(1) and sij(2) as73,88,147

Iij =
1
2
[si(1) + sj(1) − sij(2)](1 − δij). (16)

Equation (16) has the following intuitive interpretation: if
orbitals i and j are independent, i.e., not entangled, the two-body
entropy sij(2) is just the sum of the one-orbital entropies, si(1) + sj(1);
hence, Iij = 0. Conversely, in the presence of orbital interaction, the
entanglement of the pair (i, j) decreases compared to the rest of the
system (sij(2)), and thus, Iij > 0.

Legeza and co-workers73,74 introduced these entanglement
measures calculated from a fast unconverged DMRG calculation
in a given orbital space to prepare the ordering of orbitals on the
one-dimensional DMRG lattice for a subsequent fully converged cal-
culation. It was later shown147,301 that orbitals responsible for large
static correlation effects usually have a large single-orbital entropy
and large mutual information. As the convergence of qualitatively
correct one- and two-orbital entropies is faster than the conver-
gence of the energy, a partially converged DMRG calculation, which
is comparatively fast to carry out, can deliver reliable approximate
entropy values (a potential failure of this procedure can be probed
and corrected after the fully converged results in a selected CAS are
obtained).148 Based on this idea, we proposed an automated pro-
tocol for the initial selection of orbitals for the DMRG lattice (not
just for its sorting), which can be fully automated. This automated
protocol for the CAS definition is referred to in the following as
AutoCAS.148,302–305 We implemented the AutoCAS selection algo-
rithm in a graphical user interface that is available free of charge
from our webpages. It fulfills the requirements for truly automated
orbital selection listed above.

First, the entanglement metrics are extracted from a partially
converged DMRG calculation based on a large valence active space
(if it is too large for a single-shot DMRG calculation, it can be
efficiently dissected with results patched together afterwards305).
Strongly entangled orbitals are then identified and included in a
smaller CAS representing strong static electron correlation well.
This CAS is then employed in fully converged DMRG calculations.
The single-orbital entropy, normalized with respect to its maximum
value among all orbitals of the active space, is sufficient to iden-
tify strongly entangled orbitals, and the mutual information does
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not provide any additional insight. If applied to molecules already
studied with post-HF methods, AutoCAS can lead to a different
and more accurate definition of the CAS with respect to the works
already available in the literature (see, for instance, the case of sev-
eral metallocenes302). The reliability of the one-orbital entropies only
(rather than including also the mutual information, which would be
easily possible) is due to the fact that it comprises information not
only from the one-body but also from the two-body reduced density
matrices. Although the grand-canonical one-orbital reduced density
matrix is easy to obtain in a DMRG program, it can also be obtained
in traditional CAS-type calculation from the standard one- and two-
body density matrices.306 AutoCAS was shown to work well for sys-
tems, for which hardly any complete set of standard rules for orbital
selection can be applied, such as a dinuclear iridium catalyst.307

However, its applicability range can be easily enlarged to include,
e.g., (i) excited states not governed by valence orbitals through the
consideration of Rydberg-type orbitals in the orbital selection step,
(ii) core excitations in X-ray spectroscopy, and (iii) magnetic orbitals
in antiferromagnetic couplings. In fact, the last option was discussed
in detail and shown to be a viable target for AutoCAS in a recent
paper by Stein et al.308

An alternative route to define automatically active spaces
has been proposed based on natural-orbital occupation numbers
(NOONs), which has been considered for a long time (see, e.g.,
Refs. 309–311 and the references cited therein). The difference
between the NOONs of strongly and weakly correlated orbitals
is, however, often much less pronounced than for single-orbital
entropies. We have argued148 that NOONs are less sensible to cor-
relation because of their absolute values that cluster in two distinct
regions, whereas orbital entropies show a broad spread and can be
normalized with respect to the highest value found in a molecule
under consideration.

A major limitation of AutoCAS is that a DMRG calculation in
the full valence space, even partially converged, may become pro-
hibitive for more than 60–100 orbitals. This is a common limitation
of any top-down selection scheme, including NOON-based ones,
which rely on full-valence correlated calculations. We recently pre-
sented an algorithm305 that calculates entanglement measures for
active spaces with more than 100 orbitals by partitioning the active
space into several subsets of orbitals and by carrying out DMRG
calculations in these subspaces.

In recent years, a large number of active space selection
schemes have been proposed. However, none of them is truly gener-
ally applicable and fully automated according to the list of require-
ments given above. In the following, we discuss two schemes, which
are related to our DMRG context here. One algorithm to choose an
active space is the atomic valence active space (AVAS)312 scheme
introduced by Chan and co-workers. AVAS includes in the active
space the HF orbitals with the largest overlap with a set of atomic
orbitals that are known a priori to give rise to strong correlation
effects (such as the d orbitals in a metal complex). AVAS is, however,
not fully automatic since it is heavily dependent on the choice of the
target atomic orbitals. The lack of generality is also the drawback
of the scheme proposed by Sayfutyarova and Hammes-Schiffer,313

which is tailored to π-conjugated systems.
Alternatively, Khedkar and Roemelt314 designed a bottom-

up selection scheme that builds up an active space by identify-
ing strongly correlated orbitals based on the natural occupation

number obtained from strongly contracted NEVPT2. The compu-
tational cost of this scheme is, however, governed by the expensive
NEVPT2 step, which also limits its applicability to systems with up
to about 30 orbitals.

C. Embedding schemes
The successful applications of the most recent DMRG for-

mulations, possibly coupled with PT theories, to strongly corre-
lation systems, pave the route toward even more advanced appli-
cations of DMRG. A necessary step to extend the range of appli-
cability of DMRG is the coupling with embedding schemes, to
target even larger systems, possibly in a complex environment.
Most of the embedding schemes applied to CAS-SCF can be triv-
ially extended to DMRG. This could be the case, for example, of
the polarizable continuum model (PCM),315 whose coupling with
CAS-SCF calculations is available in the literature for more than
20 years.316 PCM describes efficiently nonpolar solvents, but com-
plex environments require more refined embedding techniques.
The latter include, for example, wave function-in-DFT approaches
(WFT-in-DFT), in which the relevant portion of the molecules is
described with WFT, while the rest of the molecule is treated at
the DFT level. The DFT density introduces an external potential to
be included in the WFT-based treatment, while the WFT density
modifies the energy functional of the DFT part so that the two densi-
ties should be calculated self-consistently. Based on this idea, DFT-
based embedding schemes have been coupled with several WFTs,
including CC,317 MP2,318 and CAS-SCF.319,320 As for PCM, also
in this case, the latter theory can be straightforwardly extended to
DMRG.321 One of the main challenges of WFT-in-DFT embedding
schemes is the need of designing the so-called nonadditive contri-
bution to the kinetic energy functional. The embedding schemes
introduced by Miller and Manby322–324 bypasses this problem, e.g.,
by adding a projection operator to the Kohn-Sham operator to
enforce orthogonality between orbitals belonging to different sub-
systems. Originally developed for DFT-in-DFT, these embedding
schemes have been extended to various WFTs, including MP2325

and CC.326,327

A more detailed description of environmental effects can also
be obtained with mixed quantum/classical mechanical (QM/MM)
models, in which the environment is represented through classical
point charges.328–330 This atomistic description of the environment
is a significant improvement over PCM, in which solvent effects are
averaged. QM/MM methods can be broadly divided in nonpolariz-
able and polarizable ones, the latter being more accurate, owing to
the inclusion of mutual polarization between the QM and the MM
part. Among the various polarizable QM/MM approaches available
in the literature,331–333 only the induced dipole theory introduced in
Ref. 334 has been extended to DMRG so far.335

More recently, alternative schemes have been proposed, where
the molecular system has been partitioned in orbital space instead
of in coordinate space (see Ref. 324 and the references therein). The
starting point of all these theories is a low-level mean-field calcula-
tion, such as HF, from which a set of orbitals is defined. The orbitals
are then partitioned into different groups, each of which is treated at
a different level of theory. The accuracy of these embedding schemes
depends heavily on the partition of the system and on the a posteri-
ori inclusion of coupling effects between different blocks of orbitals.
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At the lowest level, the couplings can be simply neglected,336 hence
leading to separate, noninteracting electronic structure calculations.
Improvements are obtained by including the effects of the low-level
calculations on the higher-accuracy ones at the mean-field level, as
recently accomplished for the MRCC in the CAS-SCF embedding
scheme.337

A conceptually different embedding strategy is DMET, pro-
posed by Knizia and Chan,144,145 which relied on a mean-field
embedding in its first version. Higher-accuracy calculations can then
be performed on a smaller portion of the molecule (known as the
impurity in embedding schemes emerging from solid-state physics),
where the coupling with the remaining part of the molecule (the
bath) is treated by including only the states, which are strongly
entangled with the impurity. The system-bath separation in DMET
follows the standard construction recipe of open quantum systems.
It is also closely related to the separation of the lattice in each DMRG
microiteration step. The core of the embedding is a Schmidt decom-
position of the total state into many-particle states defined on the
system and on the environment,

∣Φ⟩ =∑
ij
Cij∣Φs

i⟩∣Φ
e
j ⟩ =∑

i
∣CiΦs

i⟩
⎛

⎝
∑

j

Cij

Ci
∣Φe

j ⟩
⎞

⎠

=∑

i
Ci∣Φs

i⟩∣Φ̃
e
i ⟩,

(17)

where ∣Φs
i⟩ and ∣Φe

j ⟩ are many-particle basis states defined on sys-
tem and environment, respectively. In this formal presentation of
the decomposition, we hide the environmental degree of freedom
j in such a way that every relevant state i on the system couples
to exactly one contracted basis state on the environment. In other
words, the double sum has been replaced by a single summation,
which has the advantage that one requires only one basis state in
the environment to couple to each basis state on the system. How-
ever, the contraction over index j highlights that each corresponding
state in the environment may be difficult to construct for the product
ansatz to be accurate.

As an embedding approach that naturally follows from open-
system quantum mechanics, an advantage of DMET is that each
portion of the molecule can, in principle, be treated at a high-level of
theory, and only couplings between different blocks are considered
on the mean-field level. A major limitation of DMET is the repre-
sentation of the bath with a single determinant that is optimized
to match the high-level one-particle density matrix (or its diago-
nal part, as proposed by Scuseria and co-workers338 in the so-called
density embedding theory). This could be overcome, in principle, by
replacing the HF wave function by an MPS with a low value of m.
However, this would require the generalization of DMET to post-
HF parameterizations of the low-level wave function, which has been
proposed recently for some electronic structure methods339 but not
for the DMRG.

The LAS-SCF method described in Sec. II represents a way
to embed a CAS-SCF wave function in a CAS-SCF environment.
This is realized by expressing the wave function as in Eq. (9), i.e.,
as a direct product of CAS-SCF wave functions localized on differ-
ent portions of the orbital space. However, the parameterization of
Eq. (9) neglects the entanglement between different orbital groups,
and therefore, as we discussed above, its accuracy will probably
strongly dependent on the partition of the orbitals. This is especially

true for cases in which this partition is not trivially deter-
mined by the molecular topology, as in dimers or in molecular
aggregates.

A limitation of DMET is that the partitioning of the orbitals
in fragments introduces an unbalanced description of orbitals, the
one in the middle of a fragment being described more accurately
than the ones lying on the boundary between two fragments. The
bootstrap embedding theory introduced by Van Voorhis and co-
workers340,341 aims at solving this problem by applying DMET to
multiple partitions of the orbitals and to constrain the one-particle
and on-top density matrices to be the one obtained with a partition,
where the orbital is in the middle. Bootstrapping embedding has
been first introduced for monodimensional spin chains, for which
it is trivial to identify the orbitals that are close to the boundary
or in the middle of the fragment. The algorithm has been recently
extended to molecular systems342 for which such identification is not
trivial.

D. DMRG for molecular spectroscopy
Another field of applications of DMRG not yet studied thor-

oughly enough concerns static and dynamical properties and spec-
troscopy. For comparatively low energies, molecular properties are
obtained as derivatives of the energy with respect to a given pertur-
bation.343 The calculation of first-order properties, such as the elec-
tric dipole moment, can be simplified with the Hellmann-Feynman
theorem, but the calculation of higher-order properties is less triv-
ial and requires, for single-reference methods, the solution of the
so-called coupled-perturbed Hartree-Fock equations. The general-
ization of linear response theory to DMRG has been proposed under
the name of linear-response DMRG (LR-DMRG) and applied to
the calculation of both static163 and dynamical164 optical proper-
ties of polyenes.163 These pilot studies show the way toward fur-
ther improvements. First, they rely on first-generation formulations
of DMRG, but an extension to the MPS/MPO formulation would
be possible within the framework introduced recently to solve the
time-dependent Schrödinger equation with DMRG.258 LR-DMRG
could also be, in principle, generalized to higher-order proper-
ties following, for example, the theory already available for CAS-
SCF wave functions.344 The LR-DMRG theory can also benefit
from generalizations proposed for other electronic structure meth-
ods including, for example, the damped response formalism,345,346

which avoids instabilities in the definition of the response func-
tion under resonance conditions. Transition properties between
electronic states of different multiplicity can be calculated within
a fully relativistic formulation of DMRG either variationally or
by optimizing the two target electronic states with nonrelativis-
tic DMRG and subsequently calculating transition properties by
applying perturbation theory. Within the latter scheme, the two
electronic wave functions (i) may be represented within the same
set of molecular orbitals347,348 but (ii) are usually optimized inde-
pendently and, therefore, are expressed in terms of different sets
of molecular orbitals. In the latter case, the calculation of transi-
tion properties between two states then requires a state-interaction
algorithm formulated in a biorthonormal basis,349 originally devel-
oped for traditional CAS-SCF and restricted active space (RAS)-
SCF state interaction (SI). We have extended this scheme toward
MPS representations of the two states and introduced MPS state
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interaction (MPS-SI) in a biorthonormal basis and applied it to
the calculation of spin-orbit couplings, g tensors, and zero-field
splittings.350

We conclude by mentioning a promising application of DMRG
to computational spectroscopy, i.e., first one concerns the calcu-
lation of X-ray absorption spectra. CAS-SCF and its restricted
extension, RAS-SCF, have been applied for the calculation of core
excitation energies of transition metal complexes. The necessity of
restricting the excitations through RAS arises from the need of
directly targeting core excited states, without optimizing all the
lower lying ones.351,352 In addition to the usual problem of select-
ing the CAS, in RAS-SCF, the orbitals must be divided into different
groups, which may affect the accuracy. DMRG could bypass these
problems in two respects. First of all, the energy-specific formula-
tions of DMRG112,118,119,124 would allow directly targeting excited
states, without the need of imposing any restriction on the excitation
degree. Furthermore, the AutoCAS algorithm described above could
automatize the selection of the active orbitals to be included in the
CAS, in this way bypassing the limits of RAS-SCF. The application
of DMRG to core excitation energies would also test the reliability
of the MPS parameterization to describe highly excited states. As
already highlighted above, the efficiency of DMRG should be max-
imal for many-body localized excited states. This condition should
be met for core excitations governed by only a small number of
orbitals.

VII. DMRG AND SELECTED CI: A POSSIBLE MATCH?
In Sec. I, we mentioned that DMRG has become, together with

selected CI approaches, a state-of-the-art method for large mul-
tireference problems. The size of the largest active space targeted
by selected CI is (118,32) for the iterative CI scheme by Zimmer-
man10 and (76,28) for the heath-bath CI of Sharma.353 For DMRG,
the largest calculations reported up to now target active spaces
with size (120,77) and (118,55).354,355 We will now discuss the fac-
tors that impede applications of these methods for larger systems
and discuss possible improvements to push them beyond these
limits.

All different flavors of selected CI approaches2,8–10,12,14 rely on
the following full CI expansion:

∣Φ⟩ =∑
σ1

. . .∑
σL

Cσ1 ,...,σL ∣σ1⋯σL⟩. (18)

The CI tensor C = {Cσ1 ,...,σL} is in most cases too large to be
optimized with standard algorithms and is assumed a priori to be
sparse. Based on this assumption, different selected CI algorithms
differ in the strategy for identifying efficiently the nonzero elements
of C. As we already highlighted, DMRG does not attempt to exploit
the sparsity of the CI tensor but parameterizes it as a TT. The
resulting wave function, the MPS, encodes efficiently strong entan-
glement effects, and this includes both sparse and nonsparse CI
expansions.

The linear relation between the occupation number vector basis
|σ1⋯σL⟩ and the wave function is the core advantage of selected CI
schemes. The representation of the nonrelativistic electronic Hamil-
tonian in this basis is sparse, and nonzero matrix elements are easily
obtained by applying the well-known Slater-Condon rules. Based on

this sparsity assumption and exploiting the fact that the Hamiltonian
couples determinants that differ by at most two excitations, the most
relevant contributions to Eq. (18) can be identified, for example, by
exploiting energy estimates obtained from perturbation theory8 or
directly from the size of the matrix elements.6,7 The screening can
also be performed via a stochastic exploration of the configurational
space, a route that is followed in FCIQMC.14,15,356 A slightly differ-
ent scheme is incremental CI10,12,13 which approximates the full CI
energy with a many-body expansion and, therefore, avoids the con-
struction of the wave function as in Eq. (18). A major advantage of
selected CI approaches is that the sampling of the CI space is, in
most cases, trivially parallelizable. Moreover, second-order pertur-
bative corrections have a rather straightforward expression and can
be evaluated either with deterministic6 or stochastic algorithms,7,353

the latter option being more appealing as it can be trivially
parallelized.

These advantages are, however, counterbalanced by several
limitations connected to the implicit assumption that the tensor
C of Eq. (18) is sparse. Based on these assumptions, any selected
CI scheme constructs iteratively the CI expansion with incremen-
tal algorithms. However, the degree of sparsity of the CI expansion,
and hence the efficiency, decreases for strongly correlated systems.
This phenomenon has been observed for incremental CI,13 where
an incremental expansion is explicitly constructed, but is expected
to have a strong impact on other selected CI schemes as well. Even
if we assume that the fraction of non-null elements in C is a con-
stant independent of system size, the number of non-null elements
of C will show the same scaling. Most selected CI schemes require
to store these elements and, therefore, the computational cost is
expected to grow quickly for large systems due to huge memory
requirements.

Unlike selected CI, DMRG optimizes a nonlinear parameteri-
zation of the wave function in terms of the CI basis |σ1⋯σL⟩. The
simple Slater-Condon rules do not apply anymore, and the cal-
culation of matrix elements of the Hamiltonian involves complex
contractions of MPSs with its MPO representation. An efficient cal-
culation of these matrix elements relies on the possibility of stor-
ing intermediate contractions between MPSs and MPOs that can be
reused within the sweep-based optimization. The memory needed to
store these contractions, which is the bottleneck of DMRG in most
cases, depends on the length of the DMRG lattice and on the size
of MPSs and MPOs. Increasing the size of a CAS clearly affects the
first parameter but has an indirect effect on the other two quanti-
ties. For large DMRG lattices, long-range Coulomb interactions are
represented with a large MPO, whose ground state is encoded, in
turn, by a less compact MPS. In practice, owing to all these factors,
the memory requirement becomes prohibitive for active spaces with
more than 100 orbitals. Despite this memory bottleneck, the scaling
of DMRG is formally polynomial in the system size for Hamilto-
nians that follow the area law. We highlighted in Sec. II that this
is not the case for quantum-chemical Hamiltonians, neither for the
electronic nor for the vibrational ones, for which the bond dimen-
sion m may scale exponentially with the system size. Nevertheless,
quantum-chemical applications of DMRG showed that the bond
dimension depends only weakly on the overall dimension. This sug-
gests that the exponential scaling of m with system size is hardly ever
encountered in practice and that tensor networks provide a signifi-
cantly more compact ansatz than a standard full CI approach. This
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makes tensor-network approaches a more reliable starting point for
the design of new multiconfigurational approaches targeting more
than, say, 100 orbitals. We highlight that the bond dimension m
depends indirectly on the system size, especially in the presence of
long-range interactions. For this reason, the MPS parameterization
might become less and less convenient when targeting very large
systems and more complex parameterizations might become more
appealing.

The design of efficient multiconfigurational schemes could
exploit the possibility of combining the advantages of selected CI
and tensor-network approaches. The CI parameterization of Eq. (18)
that simplifies the calculation of the representation of the Hamilto-
nian is intrinsically different compared to an MPS. However, recent
studies providing a thorough characterization of the MPS space with
concepts taken from differential geometry257,357,358 proved that the
set composed of all MPSs can be approximated as a linear sub-
space of the full configurational space in the vicinity of a refer-
ence MPS. Therefore, selected CI calculations may be performed
in this linear space. This idea has been already exploited in the
context of stochastic perturbation theory62 and for the calculation
of excitation energies359 with wave functions encoded as MPSs. In
addition, this linearized approximation of the MPS space can be
sampled with stochastic algorithms with, for example, FCIQMC or
heat-bath CI. The combination of DMRG with stochastic methods
would pave the route toward a massive parallelization of DMRG that
is nontrivial with standard formulations. Similar ideas have been
explored only in Ref. 360, where DMRG is coupled with auxiliary-
field quantum Monte Carlo. In this respect, several studies charac-
terizing various tensor factorizations from a mathematical perspec-
tive, based on differential geometry concepts, appeared in the litera-
ture in the last years.358,361–364 These studies could drive the design of
new, more efficient tensor networks and of algorithms alternative to
DMRG.

We already highlighted that a major advantage of stochastic
methods, including FCIQMC14 and semistochastic HBCI,353,365 is
the possibility of a massive parallelization of the critical steps of the
algorithm, i.e., the time-evolution of the walkers for FCIQMC and
the calculation of the perturbative correction for HBCI. DMRG can-
not be parallelized trivially because the sweep-based optimization is
intrinsically sequential. As discussed by Sabzevari and Sharma,366

any nonlinear wave function parameterization can be optimized
stochastically, provided that the overlap of the wave function with
a given Slater determinant |σ⟩ can be calculated efficiently. This is
the case of matrix product states, for which, however, ALS is still
more efficient than other optimization schemes. For other cases,
such as for multireference CI367 or for symmetry-projected Jastrow
mean-field wave functions,368 the stochastic optimization can be
more efficient, as well as easier to implement, than the determin-
istic one. The combination of a compact wave function parameter-
ization and a massively parallelizable optimization algorithm could
drive the design of new tensor network states that encode efficiently
dynamical correlation effects.

VIII. CONCLUSIONS
The density matrix renormalization group algorithm is cur-

rently one of the reference methods for the calculation of full-
CI energies in a space of up to about 100 spatial orbitals.

Originally applied for diagonalizing spin Hamiltonians of interest in
solid-state physics, we discussed its extension to quantum chemical
ab initio Hamiltonians. DMRG possesses most of the desirable prop-
erties of a reliable electronic structure theory. It is size consistent
and corresponds to a well-defined wave function parameterization,
the matrix product state. The accuracy and computational cost of
DMRG can be controlled by the size of the matrix product state,
which is governed by a single parameter, the bond dimension m.
In the limit of an infinitely large value for the bond dimension,
the full CI result is recovered. Converged energies are, however,
obtained with compact matrix product states with low values of the
bond dimension. Through the fixation of m based on the spectrum
of the reduced density matrix, the DMRG wave function becomes
self-adaptive to the quantum many-particle structure under
consideration.

DMRG belongs to a set of new methods that have emerged in
the last years to perform large-scale CI calculations, such as full-CI
quantum Monte Carlo14,15 or selected CI approaches.2,7,8,10,13 These
other approaches are, however, based on a standard full CI wave
function and limit the computational cost of the optimization by
avoiding the full-dimensional matrix diagonalization. This is a major
difference compared to DMRG, which is based on a parameteriza-
tion radically different from the full CI one and which replaces the
diagonalization with an iterative approximation of the full CI wave
function.

Already in its original formulations, the good convergence of
DMRG makes it considerably more efficient than the majority of
other CAS-based approaches. A further increase in efficiency has
been achieved by applying strategies borrowed from standard CAS
calculations. DMRG calculations are most efficiently performed on
orbitals exhibiting strong static correlation. The remaining dynam-
ical correlation can then be included from perturbation theory. The
combination of DMRG with perturbation theory has made it one
of the “gold standard” reference methods for multiconfigurational
molecules. The current main limitation of most DMRG perturbation
theory approaches is that the evaluation of sum-over-states expres-
sions does not exploit the compact structure of a matrix product
state and requires the calculation of high-order density matrices.
For this reason, the evaluation of the perturbative correction is in
most cases the main bottleneck of the overall calculation. Express-
ing the second-order perturbation to the energy as a variational
problem165 enables one to express the first-order correction to a
wave function as an MPS and to calculate it with a sweep optimiza-
tion.54,58,60 However, the resulting MPS has usually a large bond
dimension and work is currently in progress to obtain a compact
representation for it.62,166 In recent years, a cost-effective alterna-
tive to standard perturbative approaches has been introduced, such
as the driven similarity renormalization group approach156,369 or
the generalized RPA scheme,160,370 and their integration within the
DMRG framework would enable one to target even larger active
spaces.

The matrix-product-state parameterization has been designed
to target Hamiltonians without any long-range interaction. General-
izations of this parameterization, broadly known as tensor network
states, have been studied to provide a compact representation
of wave functions for more general Hamiltonians, comprising
both short- and long-ranged interactions. The applications of ten-
sor network states to quantum chemistry have been, however,
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rather limited due to the lack of efficient general optimization
methods.

Although DMRG is a general algorithm that can be applied
to the optimization of the ground state of any Hamiltonian, it has
been mostly applied to electronic structure problems in quantum
chemistry. Recent generalizations of DMRG include the extension
to vibrational, rotational, and vibronic Hamiltonians with remark-
able speed-ups compared to state-of-the-art variational approaches.
These results suggest that DMRG is general and robust enough to
be successfully applied to other types of Hamiltonians of interest in
quantum chemistry. The MPS/MPO-based formalism is the natu-
ral framework to be applied to such a variety of systems since most
algorithms developed to construct the MPO representation of an
operator require as unique input their second-quantized form94,97

and, once the MPO is built, the optimization algorithm is the same
independent of the Hamiltonian.

The MPS parameterization has been studied in numerical anal-
ysis under the name of “tensor train” factorization and has been
applied to a wide range of problems beyond the solution of eigen-
value equations. These recent developments have paved the way
for the application of DMRG to the time-dependent Schrödiger
equation. The success of its application to the solution of the
time-independent Schrödinger equation suggests that DMRG will
also become one of the reference methods for large-scale quantum
dynamics simulations.
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