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Abstract

This dissertation explores various topics related to stochastic dynamics with jumps, which find their
initial motivation in numerical applications. It undertakes two distinct research trajectories, which
ultimately converge in the concluding chapter of the thesis, where a potential interconnection between
them is established from a theoretical perspective.

In the first line of study, the concepts of cylindrical Wiener process subordinated to a strictly
α−stable Lévy process, with α ∈ (0, 1), and of the corresponding stochastic convolution are introduced
in an infinite-dimensional, separable Hilbert space. The related Ornstein-Uhlenbeck (OU) process is
then analyzed, with a focus on the regularizing properties of the associated Markov transition semi-
group. In particular, an original formula –which is not of Bismut-Elworthy-Li’s type– for the Gateaux
derivatives of the functions generated by this semigroup is provided, together with an estimate for the
norm of their gradients.
Taking α ∈ (1

2 , 1), these results are applied to the study of semilinear, N−dimensional stochastic dif-
ferential equations (SDEs) driven by the same additive, isotropic, stable Lévy noise. An important
connection between the time-dependent Markov transition semigroup associated with their solutions
and Kolmogorov backward equations in mild integral form is established via regularization-by-noise
techniques. Such a link is the starting point for an iterative method which allows to approximate
probabilities related to the SDEs with a single batch of Monte Carlo simulations as several parameters
change, bringing a compelling computational advantage over the standard Monte Carlo approach. This
method also pertains to the numerical computation of solutions of high-dimensional integro-differential
Kolmogorov backward equations. The scheme, and in particular the first order approximation it pro-
vides, is then tested for two nonlinear vector fields in dimension N = 100 and shown to offer satisfactory
results, especially when compared with the OU approximation.
Within this analysis, one of the concepts employed is the stochastic flow generated by SDEs with additive
Lévy noise. In this dissertation, an extension to the case of multiplicative noise of some results known
in the existing literature for the additive case is presented. More specifically, the existence of a sharp
stochastic flow Xs,x

t for an SDE of Itô’s type with multiplicative noise which, P−a.s., is simultaneously
continuous in x (starting point) and càdlàg in s (starting time) and t (time) is proved. Remarkably,
the study encompasses SDEs that include both compensated and non-compensated jump components,
thereby addressing both small and large jumps, alongside a Brownian diffusion term. The theory is
further expanded to cover controlled SDEs. Using the resulting sharp stochastic flow, a new dynamic
programming principle is established with an argument that stands as an independently significant point
of interest.

The second area of research regards the theory of affine processes, which has been recently extended
to stochastic Volterra equations (SVEs) with continuous trajectories. These so-called affine Volterra
processes overcome modeling shortcomings of classical affine processes because they may possess path-
dependent features which introduce memory structures into the models. Furthermore, they can have
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trajectories whose regularity is different from the paths of Brownian motion. In particular, singular
kernels yield rough affine processes. In this thesis, a generalization of the above-mentioned theory by
considering affine SVEs with jumps is studied. This extension is not straightforward because the jump
structure together with possible singularities of the kernel may induce explosions of the trajectories.
Nonetheless, the extended framework enables to obtain semi-explicit formulas for the conditional Fourier-
Laplace transforms of the solutions via deterministic Riccati-Volterra equations. This study also provides
exponential affine expressions for the conditional transforms of marked Hawkes processes.
Building upon this analysis, an extension of the rough Heston stochastic volatility model is introduced.
In this extension, called the rough Hawkes Heston stochastic volatility model, the instantaneous spot
variance is modeled as the solution of an affine SVE of convolution type with jumps. This setting takes
into account both rough volatility and jump clustering phenomena, and employs the affine structure
of the SVE to price options on the underlying (SPX) and on the related volatility index (VIX) via
Fourier inversion techniques. A calibration of the model featuring a fractional kernel and an exponential
distribution for the jumps is carried out, demonstrating its ability to accurately and simultaneously
capture the volatility smiles of both SPX and VIX options. This is a remarkable result, especially
considering the few parameters of the proposed model, namely five for the evolution of the dynamics
and two for the term structure. Moreover, it proves the relevance, under an affine framework, of rough
volatility and self-exciting jumps in order to describe the joint evolution of SPX and VIX.

Lastly, an exploration of the theoretical interconnection between the subjects of the two preceding
areas of research is investigated. More precisely, a Volterra convolution equation in Rd perturbed with
an additive fractional Brownian motion of Riemann–Liouville type characterized by a Hurst parameter
H ∈ (0, 1) is considered. The solution of this equation is shown to satisfy a stochastic partial differential
equation (SPDE) in the Hilbert space of square-integrable functions. This particular equation serves as
the motivation for the study of an unconventional class of SPDEs, necessitating an original extension
of the drift operator and its Fréchet differentials. It is demonstrated that these SPDEs generate a
Markov stochastic flow which is twice Fréchet differentiable with respect to the initial data. This
stochastic flow is subsequently employed to solve, in the classical sense of infinite-dimensional calculus,
the path-dependent Kolmogorov equation corresponding to the SPDEs. In particular, a time-dependent
infinitesimal generator is associated with the fractional Brownian motion. Certain challenges arise in
the analysis of the mild formulation of the Kolmogorov equation for SPDEs driven by the same infinite-
dimensional noise. This issue, which is relevant to the theory of regularization-by-noise, remains an
open area for future research.
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Introduction

The objective of this dissertation is to analyze a range of concepts related to stochastic dynamics
with jumps, initially motivated by their relevance in numerical applications. The thesis pursues two
separate research directions in Part I and Part II, ultimately exploring a connection between them from
a theoretical perspective in Part III.
All the chapters of the thesis stem from a series of papers written during the PhD studies, see [34, 35,
36, 37, 38, 39].

Part I In this part, we study smoothing effect and derivative formulas for the transition semigroup
of Ornstein–Uhlenbeck (OU) processes in Hilbert spaces driven by Brownian motions subordinated
to α−stable Lévy processes. In a finite–dimensional setting, such formulas are employed to develop
an iterative scheme based on Kolmogorov equations in mild form. This scheme allows to numerically
compute probabilities related to the solutions of semilinear stochastic differential equations (SDEs)
driven by the same noise in an efficient way as several parameters of the dynamics change. Furthermore,
we analyze the regularity of the stochastic flow generated by a wider class of SDEs with multiplicative
noise and jumps. The sharp flow that we construct for controlled SDEs is then used to establish a new
dynamic programming principle.

Chapter 1 presents the results of the paper [34]. Our aim here is to analyze OU processes Zx, x ∈
H, driven by subordinated cylindrical Brownian noises, where (H, ‖·‖H) is an infinite–dimensional,
separable Hilbert space. They are defined as the H−valued, mild solutions of the linear stochastic
differential equations

dZxt = AZxt dt+
√
QdWLt , Zx0 = x ∈ H,

whereA : D (A) ⊂ H → H is a linear, selfadjoint, negative definite, unbounded operator, andQ : H → H
is a linear, bounded, nonnegative definite operator. By construction, A and Q share a common complete
orthonormal system (in short, CONS) of eigenvectors for H: it is denoted by (en)n.
The main contribution of our research consists in obtaining regularization-by-noise results and gradient
estimates for the Markov transition semigroup R = (Rt)t≥0 associated with Zx, x ∈ H, defined by

Rtφ (x) = E [φ (Zxt )] , x ∈ H, φ ∈ Bb (H) , t ≥ 0,

by means of a derivative formula which is not of Bismut–Elworthy–Li’s type. This is accomplished in
correspondence of a particular structure for the noise WL. Intuitively speaking, it can be thought of as

WLt =

∞∑
n=1

βnLten, t ≥ 0,

7



8 Introduction

where (βn)n is a sequence of independent Brownian motions and L = (Lt)t is an independent, strictly
α–stable subordinator (i.e., an increasing Lévy process) representing the random time–change, for α ∈
(0, 1). Therefore the random perturbation WL is a subordinated cylindrical Wiener process. The
rigorous investigation of the convergence of the series defining WL is detailed in Section 1.1, where we
propose a natural procedure of independent interest essentially relying on Markov’s inequality.

Similar models have been introduced, with different research purposes, by [44]. Here the authors
define the noise by directly subordinating a cylindrical Wiener process, and the stochastic convolution
by an integral with respect to a Lévy process taking values in a separable Banach space (the noise
itself). An abstract approach to cylindrical Lévy processes in separable Banach spaces and to the
theory of integration for deterministic, operator–valued integrands with respect to this type of noise is
developed in [157, 158]. However, in our setting such theories are not necessary, as the choice of an
α−stable subordinator allows to devise an original technique which is more direct, as it is based on the
one–dimensional integration theory.

In literature, the canonical case is the Gaussian one, which involves a cylindrical Wiener process
Wt =

∑∞
n=1 β

n
t en, t ≥ 0. There is a well–established theory concerning this setting, and we may refer

to the book [66] for an extensive collection of results on the subject.
Another important framework is the one proposed by [151], where the authors deal with a cylindrical,
α–stable Lévy process Zt =

∑∞
n=1 ζ

n
t en, t ≥ 0. Here (ζn)n are independent, real–valued, symmetric

α–stable Lévy processes, for α ∈ (0, 2). Despite the interesting generalization offered by this approach,
the structure of the noise could be questionable in some applications, especially in physics. Indeed,
fixing t > 0 and N ∈ N, the Galerkin projection of Zt has characteristic function

E
[
ei〈h,

∑N
n=1 ζ

n
t en〉

]
= e−tγ

α
∑N
n=1|〈h,en〉|

α

, h ∈ H,

for some constant γ > 0. Thus, unlike the Brownian case, the rotational stability of the noise, often
referred to as isotropy, is lost.

Motivated by this argument, it is worth studying the results contained in the aforementioned works
[66, 151] also for the subordinated process WL, since its Galerkin projections are 2α–stable, isotropic
Lévy processes, as we shall discuss in Section 1.1. We focus on the linear case, which corresponds to
OU processes. In this framework, a number of complications arises, the most evident being the lack of
independence of the processes (βnL)n. Generally speaking, this fact makes the techniques used in the
other cases unfeasible. Nevertheless, the structure of the noise still enables to construct the objects of our
interest and effectively advance our arguments. The intuition is that, upon conditioning with respect
to the σ−algebra FL generated by the subordinator L, we are dealing with time–shifted Brownian
motions. Thus, our strategy consists of first studying separately, in a finite–dimensional framework,
a deterministic time–change ` : R+ → R+, where ` is an increasing càdlàg function starting at 0 with
` > 0 in (0,∞). This way to proceed is customary while working with subordinated Brownian motions,
see, for instance, [127, 178], and also [69] for a related example.

The main achievement in Chapter 1 is Theorem 1.7, which establishes that, under suitable require-
ments on the operators A and Q, the map Rtφ belongs to C1

b (H) for every φ ∈ Bb(H). Furthermore,
it provides a gradient estimate for Rtφ (see (1.25)), and, when φ ∈ Cb(H), an expression for the
Gateaux derivative 〈∇Rtφ (x) , h〉, x, h ∈ H (see (1.26)). Remarkably, this formula is not of Bismut–
Elworthy–Li’s type, which is consistent with the Gaussian framework, where it is preferable to employ
the Bismut–Elworthy–Li’s formula primarily in nonlinear scenarios. It is also worth highlighting a subtle
difference between the finite– and infinite–dimensional cases: in the former, we obtain an expression for
the Gateaux derivative of Rtφ for every φ ∈ Bb(RN ), see (1.18) in Theorem 1.6.
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Assuming α ∈ (1
2 , 1), Corollary 1.8 deduces from (1.25) the following gradient estimate, which holds for

all φ ∈ Bb (H) and t > 0:

sup
x∈H
‖∇Rtφ (x)‖H ≤

C

tγ
sup
x∈H
|φ(x)| , for some C > 0 and γ ∈

[ 1

2α
, 1
)
.

This estimate is crucial, as it serves as the starting point for the analysis of the Kolmogorov equation in
mild integral form employing fixed–point arguments. In the finite–dimensional setting, such an analysis
is one of the topics discussed in Chapter 2.

Chapter 2 contains the findings of the paper [35]. Here, we consider the semilinear N−dimensional
SDE {

dXt = (AXt +B0 (t,Xt)) dt+
√
QdWLt , t ∈ [s, T ] ,

Xs = x ∈ RN ,
(I.1)

with a specific interest in the case N high. As in Chapter 1, given α ∈
(

1
2 , 1
)
, L is an α−stable

subordinator independent from (βn)n=1,...,N , which in turn are independent Brownian motions; we write

W = [β1, . . . , βN ]>. All these processes are defined in a common complete probability space (Ω,F ,P) ,

which we endow with the minimal augmented filtration generated by the subordinated Brownian motion
WL. Moreover, T > 0 is a finite time horizon and s ∈ [0, T ] is the initial time. As for A,Q ∈ RN×N , they
are diagonal matrices with A negative–definite and Q positive–definite. For our numerical experiments,
see Section 2.6, we will consider Q = σ2Id, being Id ∈ RN×N the identity matrix, so that σ > 0 is a
parameter describing the strength of the noise. The nonlinear bounded vector field B0 : [0, T ]× RN →
RN is subject to suitable regularity conditions which will be specified in the sequel and guarantee, among
other things, the existence of a pathwise unique solution of (I.1). Such a solution will be denoted by
Xs,x = (Xs,x

t )t∈[s,T ].
Connected to the SDE (I.1), we have the following Kolmogorov backward equation:

∂su (s, x)= −
〈
Ax+B0 (s, x),∇>u (s, x)

〉
−
∫
RN
[
u
(
s, x+

√
Qz
)
− u (s, x)− 1D (z)∇u (s, x)

√
Qz
]
ν (dz) , s ∈ [0, t),

u (t, x) = φ (x) , x ∈ RN ,
(I.2)

where φ : RN → R, D = {z ∈ RN , |z| ≤ 1} is the closed unit ball and we fix t ∈ [0, T ]. Here ν(dz) is
the Lévy measure of WL; up to a positive multiplicative constant, ν(dz) is of the form (see, e.g., [164,
Theorem 30.1])

ν (dz) = |z|−(N+2α) dz.

The link between Equations (I.1) and (I.2) is provided by Theorem 2.7 (ii) (see also the book [126] for
related results), where it is shown that the time–dependent Markov transition semigroup

Ps,tφ (x) = E [φ (Xs,x
t )]

associated with (I.1) satisfies (I.2) in the closed interval [0, t] for every φ ∈ C3
b

(
RN
)
. Moreover, we are

able to extend the validity of this connection in [0, t) to every function φ ∈ Bb
(
RN
)
through an original

procedure based on regularization-by-noise and a mild, integral formulation of (I.2) (see Remark 2.1 in
Section 2.2).
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In this chapter, our primary focus is precisely directed towards calculating expected values of the
solution process Xs,x. We place particular attention to the case φ (x) = 1{|x|>R}, where E [φ (Xs,x

t )] =
P (|Xs,x

t | > R), for some threshold R > 0. Consequently, our objective is to describe a method which
allows to compute probabilities related to the solution of the SDE (I.1).

Attempting to derive an estimate of these probabilities by numerically solving the integro–differential
equation (I.2) is a typical example of curse of dimensionality (CoD). Given our intention to work
in a high–dimensional context (we set N = 100 in our simulations), pursuing this strategy becomes
unfeasible. The conventional approach to tackle our problem is the Monte Carlo method. Here, multiple
paths of Xs,x are simulated using the Euler–Maruyama scheme with a small time step. Subsequently,
the average of the final points of these trajectories is computed to obtain an approximation of the desired
expected values by virtue of the strong law of large numbers. This approach is known to be free from
the CoD. However, if we were to follow this scheme, then we would have to start over the procedure
every time we change the starting point x and the starting time s, the noise strength σ and even the
nonlinearity B0. This is a very common practice in a wide range of applications including weather
forecasts and calibration of financial models, see [22] and references therein.

In order to overcome this setback, we aim at extending to our framework the ideas developed in
the papers [84, 85] for the Gaussian case. In particular, we search for an iterative scheme vns (t, x), n ∈
N∪ {0}, which relies on a single bulk of Monte Carlo simulations independent from the aforementioned
parameters such that

Ps,tφ(x) =
∞∑
n=0

vns (t, x). (I.3)

More specifically, to approximate the value of the iterates vns (t, x), we only need to simulate, in a
one–time effort, a large number of sample paths of the subordinator L and of the stochastic convolution
Z̃0
t =

∫ t
0 e

(t−r)AdWLr using the Euler–Maruyama scheme. We recall that (Z̃0
t )t∈[0,T ] is the unique (up

to indistinguishability) solution of the linear SDE

dZ̃0
t = AZ̃0

t dt+ dWLt , Z̃0
0 = 0.

The primary innovation of the approach that we propose lies in the structure of the noise WL,
which is a 2α−stable, rotation–invariant Lévy process (cfr. [164, Example 30.6]). The introduction of
L makes the framework more complex compared to the Brownian one treated in [84, 85]. This fact
leads us to develop an original procedure to obtain an expression for the iterates which is suitable for
applications. Such a procedure is based on conditioning with respect to the σ−algebra FL generated
by the subordinator, and employs the derivative formulas established in Chapter 1.

The theoretical foundation of the iterative method (I.3), namely Theorem 2.3, has a remarkable
interest on its own. Indeed, it establishes a connection between the time–dependent Markov transition
semigroup associated with (I.1) and a mild, integral formulation of (I.2) (see Equation (I.4)) that, to
the best of our knowledge, is new when it comes to isotropic, stable Lévy processes.
More precisely, given a continuous function f : [0, T ] → RN , x ∈ RN and 0 ≤ s < T , we denote by
Zs,x = (Zs,xt )t∈[s,T ] the OU process starting from x at time s, i.e., the unique solution of the linear SDE

dZs,xt = (AZs,xt + f (t)) dt+
√
QdWLt , Zs,xs = x.

The corresponding time–dependent, Markov transition semigroup R = (Rs,t) , 0 ≤ s ≤ t ≤ T , is defined
by

Rs,tφ = E
[
φ
(
Zs,·t

)]
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and enables us to write the Kolmogorov backward equation in mild integral form associated with (I.1):

uφs (t, x) = Rs,tφ (x) +

∫ t

s
Rs,r

(〈
B0 (r, ·)− f(r),∇>uφr (t, ·)

〉)
(x) dr, s ∈ [0, t] , x ∈ RN , (I.4)

where φ ∈ Bb
(
RN
)
. Under appropriate regularity assumptions on B0, Theorem 2.3 demonstrates that

Ps,tφ is the unique solution of (I.4) in a specific function Banach space. Thus, the idea of the iterative
scheme (I.3) arises from a direct study of (I.4) using a fixed–point argument, as outlined in Section 2.3.
The proof of Theorem 2.3 is based on a regularization-by-noise technique, which utilizes the Bismut–
Elworthy–Li’s type formula in [178, Theorem 1.1] as initial step. Additionally, it takes into account the
sharp stochastic flow generated by (I.1), a concept which has been studied in [149, 150]. It is worth
noting that the analysis of the sharp stochastic flow generated by a more general class of SDEs with
multiplicative noise forms the core of Chapter 3.

The final part of Chapter 2, Section 2.6, is dedicated to numerical experiments in dimensionN = 100.
Here, we test the iterative scheme for two choices of the nonlinear vector field B0, with a primary focus
on evaluating the first order approximation v0 + v1. The outcomes of these experiments show that, in
the given examples, the first iteration of (I.3) provides a computationally efficient enhancement to the
performance of the linear OU approximation.

Chapter 3 presents the results of the paper [38]. Here, we consider a Brownian motion W and a
stationary Poisson point process p with values on a measurable space (U,U) and characteristic measure
ν(dz). We denote by Np [resp., Ñp] the Poisson [resp., compensated Poisson] random measure associated
with p. Given a set U0 ∈ U such that ν(U \ U0) <∞, we study the following SDE of Itô’s type:{

dXt= b (r,Xr) dr+α (r,Xr) dWr+
∫
U0
g(Xr−, r, z) Ñp (dr, dz)+

∫
U\U0

f(Xr−, r, z)Np (dr, dz),

Xs = x ∈ Rd, 0 ≤ s ≤ t ≤ T.
(I.5)

We require the coefficients b, α, g and f to be measurable. In addition, we assume Lipschitz–type
and linear growth conditions on the x−variable of these coefficients, which ensure the existence of a
pathwise unique strong solution X = (Xs,x

t )t≥s of (I.5). We remark that the Lipschitz–assumption on
the coefficient f corresponding to the large–jumps part can be dispensed with (cfr. Section IV.9 in [106]
and see Hypothesis 3.1). We refer to [15, 30, 106, 125, 167] for the theory of SDEs with jumps; see also
Section 3.1 for more details.

In this chapter, we first deal with the problem of finding a version of the solution of (I.5) which
depends in a regular way on all the variables (s, t, x). We prove, in particular, that there is a version
of the solution X which is sharp in the following sense: there exists an almost sure event Ω′ such that,
for every ω ∈ Ω′, the map (s, x, t) 7→ Xs,x

t (ω) is càdlàg in s (for t and x fixed), càdlàg in t (for s and x
fixed) and continuous in x (for s and t fixed). Moreover, we prove the flow property

Xs,x
t (ω) = X

u,Xs,x
u (ω)

t (ω), s < u < t ≤ T, (I.6)

and the stochastic continuity in s, locally uniformly in x and uniformly in t (see (3.4)). We call this
version a sharp stochastic flow for Equation (I.5). We refer to Definition 3.1 and Theorems 3.1-3.2 for
more general assertions.

We recall that, for SDEs driven by a Brownian motion, namely Equation (I.5) with f ≡ 0 and g ≡ 0,
it is well known that there exists a stochastic flow X = (Xs,x

t )t≥s such that, for P−a.e. ω, the mapping
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(s, x, t) 7→ Xs,x
t (ω) is continuous in s, t and x, and such that the flow property (I.6) holds. This is a

consequence of the Komogorov–Chentsov test, which can be applied thanks to the estimate (see, for
instance, [126, Theorem 3.4.3])

E
[∣∣Xs,x

t −X
s′,x′

t′

∣∣p] ≤ C (|x− x′|p + |s− s′|p/2 + |t− t′|p/2
)
, p ≥ 2.

This continuous stochastic flow is deeply investigated in [124], where, in particular, it is employed to
study first order stochastic PDEs when the coefficients are sufficiently smooth.

Concerning (I.5) in the case f ≡ 0, the problem of finding a sharp version of the solution also
appears in the comment before Theorem 3.4.3 in [126]. Here, the author compares the stochastic flow
available for SDEs driven by a Brownian motion with weaker results available in the jump case (see,
in particular, [126, Theorem 3.4.1]). On this respect, note that the previous technique based on the
Komogorov–Chentsov test can only give a continuous modification. As a consequence, it cannot be
applied to SDEs with jumps in order to obtain a version of the solution which depends in a regular way
on (s, t, x).

The main challenge in analyzing the regularity of the flow with respect to (s, t, x) in the jump case
is to take care of the dependence on the initial time s. Such a problem has also been mentioned in [150,
Remark 1.2] (see also [149, Introduction]). In this regard, after the proof of [125, Theorem 3.2] and in
[126, Theorem 3.4.1], it is shown that, when s is fixed, there is a modification of the solution X with
the following property: there exists an almost sure event Ωs (possibly depending on s) such that, for
every ω ∈ Ωs, (I.6) holds and the map (x, t) 7→ Xs,x

t (ω) is càdlàg in t (for s and x fixed) and continuous
in x (for s and t fixed). However, since the regularity in s is not investigated, the resulting definition of
stochastic flow given on pages 353–354 of [125] is not satisfactory1. Our work fills this gap.

We also mention [115], which considers the SDE

dXt = l(Xt−) dZt, t ≥ s, Xs = x ∈ Rd, (I.7)

from the point of view of random dynamical systems. Here (Zt)t≥0 is an Rk−valued semimartingale
and l : Rd → Rd×k is Lipschitz continuous. Theorem 5 in [115] implies that there exists a version of
the solution Xs,x

t which is sharp in the variables (s, t, x) and satisfies the flow property (the stochastic
continuity is not investigated in [115]). This result is applicable to the SDE (I.5) only under the
assumption that the coefficients b and α are time–independent. Additionally, to apply this theorem,
it is required that both g and f have a specific form (see Remark 3.1 in Section 3.1 for more details).
Another related result is [50, Theorem 17.1.4], which investigates a general class of SDEs having the
Markov property. In this theorem, the initial time s is fixed and one proves the existence of a version
of the solution which depends in a measurable way on (t, x).

1We make some more comments on the stochastic flow for SDEs with “small jumps” studied in [125] and [126] (see
Equations (3.4) and (3.37), respectively; these are similar to (I.5) with f ≡ 0).
(i) [125, Theorem 3.2] and [126, Theorem 3.4.1] show the existence of a modification of the solution which is, P−a.s.,
continuous in the initial state x ∈ Rd and càdlàg in t: the regularity with respect to the initial time s is not considered.
On the other hand, a version of the solution which is càdlàg in s is given by [126, Proposition 3.8.2], which requires to fix
a time t. These results do not prove the simultaneous càdlàg property in s and t. Thus, the claims at the beginning of
[125, Page 354] are not completely proved.
(ii) When the flow property (I.6) is stated in [125, Pages 353–354] and [126, Page 99], the dependence of the almost sure
event on the variables s, t, x is not explicit.
One of the goals of our research consists in clarifying the points raised by (i) and (ii) with a thorough procedure. We

do not, however, discuss the homeomorphism property of (I.5), which is the subject of [125, Section 3.4].
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In Section 3.4 we argue that the sharp stochastic flow exists even when we consider more general
coefficients depending, in a Lipschitz–continuous way, on an additional parameter y ∈ Rk. This fact is
crucial for Section 3.5, where we focus on controlled SDEs and the corresponding dynamic programming
principle (DPP), which is a fundamental concept in the theory of stochastic control (see, for instance,
[27, 40, 108, 123, 145, 146, 148, 177]). In this part, we consider controlled SDEs like (I.5) where the
coefficients b, α, g and f depend, in a Lipschitz–continuous way, also on an admissible simple (or step)
control of the form

a(t, ω) =
n̄−1∑
i=0

Zti(ω)1(ti,ti+1](t), t ∈ [0, T ], ω ∈ Ω, (I.8)

for some n̄ ∈ N, 0 = t0 < t1 < · · · < tn̄ = T and suitable square–integrable random variables Zti ,
i = 0, . . . , n̄ − 1. We are able to construct a sharp stochastic flow in this framework, as well. In
particular, such a flow enables us to consider identities like

Xs,x,a
r = X

θ,Xs,x,a
θ ,a

r ,

which are meaningful even when θ is a stopping time taking values in (s, T ). This kind of identities is
useful for the proof of the DPP (see also Remark 3.5).
We prove a new DPP in the finite–horizon case, namely

v(s, x) = sup
a∈E

sup
θ∈Ts,T

E
[∫ θ

s
h (r,Xs,x,a

r , ar) dr + v
(
θ,Xs,x,a

θ

)]
, s ∈ [0, T ), x ∈ Rd,

where

v(s, x) = sup
a∈E

E
[ ∫ T

s
h (r,Xs,x,a

r , ar) dr + j
(
Xs,x,a
T

) ]
.

We refer to (3.109) and Theorem 3.27 in Section 3.5 for the complete assertion. Here E [resp., Ts,T ] is
the family of admissible simple controls [resp., stopping times with values in (s, T )]. To the best of our
knowledge, the result is new even in the case when there are no large jumps (cfr. [40, 108, 148] focusing
on special cases).

Moreover, our formulation of DPP is stronger than the usual one, which assumes the stopping time
θ to be fixed, see [145, Remark 3.3.3], [146, Remark 3.2] for classes of SDEs without jumps and Remark
3.9. We also believe that the proof of the second part of the DPP is of independent interest, see, in
particular, Step II of the proof of Theorem 3.27. Here, we consider controls as in (I.8) where ti are
dyadic numbers and Zti are linear combinations of a finite number of elements in the Hilbert bases of
suitable L2−spaces. Such special controls allow to apply a classical measurable selection theorem in
[42] (see also Remark 3.8).

Furthermore, we show that the value function v is lower semicontinuous (see Lemma 3.23). Addi-
tional properties of v might be investigated and will be the subject of a future research.

Outline of the proof of the sharp stochastic flow. To prove the existence of a sharp stochastic
flow for (I.5) (see Theorem 3.1), we first consider the case f ≡ 0 (SDEs without large–jumps component).

In this case, the result can be deduced from a stronger one (see Theorem 3.2), which shows that
the solution of (I.5) can be obtained employing a càdlàg stochastic process Z = (Zs) with values in
C(Rd;D0) (see Section 3.1-3.2 for more details). In particular, for P−a.e. ω,

[Zs(ω)](x) = Xs,x
· (ω) ∈ D0, x ∈ Rd.
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Here D0 stands for the non–separable metric space of Rd−valued, càdlàg functions endowed with the
uniform norm in [0, T ]. Indeed, we cannot use the Skorokhod topology J1 on D0 to get our results (cfr.
Remark 3.3).

In order to prove Theorem 3.2 we employ an extension of a càdlàg criterium in [28], which can be
applied to the process Z taking values in the non–separable metric space C(Rd;D0). Such an extension
is proved in the appendix (see Appendix 3.B), which also contains additional measure theoretic results
that we have not found in the literature (see in particular Appendix 3.A).

The proof of Theorem 3.2 requires also Proposition 3.8, which is a variant of Theorem 3.7, a gener-
alized Garsia–Rodemich–Rumsey type lemma due to [107]. Such proposition and its Corollary 3.9 allow
us to estimate integrals like

E
[

sup
|x|≤N

sup
s≤t≤T

∣∣∣∣∫ t

s

∫
U0

g
(
Xs,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣γ ] (I.9)

which are crucial for the proof of Theorem 3.2 given in Subsections 3.2.2-3.2.3.
In Section 3.3 we consider the full SDE (I.5), i.e., the SDE (I.5) including also the large–jumps

component determined by the coefficient f . This part is quite involved. The issue is that we cannot
follow the standard interlacing procedure, see for instance [106, Section IV.9] and [43, Section 3.2], to
preserve our sharp stochastic flow. Specifically, the main difficulty is to maintain the regularity of X
with respect to s. To overcome this challenge, we carefully modify the interlacing method using the
stochastic flow already obtained in Section 3.2. This also gives formulas for the solution of (I.5) which
could be of independent interest (see, e.g., (3.86)).

Part II In this part, we investigate affine stochastic Volterra equations of convolution type with
jumps. The focus is, in particular, on semi–explicit exponential affine formulas relying on deterministic
Riccati–Volterra equations for the conditional Fourier–Laplace transforms of the solutions, called affine
Volterra processes with jumps. These processes are then employed in a stochastic volatility model,
named the rough Hawkes Heston model, which is applied with highly satisfactory results to the problem
of the joint calibration of options on S&P 500 and VIX.

Chapter 4 contains the findings of the paper [37] and focuses on affine stochastic processes, which
constitute unquestionably the most popular multi–factor framework to model rich and flexible stochastic
dependence structures. Semi–explicit formulas for the Fourier–Laplace transform of affine processes
make them numerically tractable, as Fourier transform–based methods can be used to perform fast
calculations.

We recall that a conservative regular affine process X = (Xt)t≥0 with state space E ⊂ Rm is a
stochastically continuous conservative Markov process having sufficiently regular Fourier–Laplace trans-
forms given by exponential affine formulas in the initial state X0. Such a process X can also be seen as
a special semimartingale whose semimartingale characteristics (B,C, ν), with respect to the “truncation
function” h(ξ) = ξ, are of the form

Bt =

∫ t

0
b(Xs) ds, Ct =

∫ t

0
a(Xs) ds, ν(dt,dξ) = η(Xt,dξ) dt, (I.10)
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where, for every x ∈ E,

b(x) = b0 +
m∑
k=1

xkbk, a(x) = A0 +
m∑
k=1

xkAk, η(x,dξ) = ν0(dξ) +
m∑
k=1

xkνk(dξ). (I.11)

In (I.11) we take Ak ∈ Rm×m, bk ∈ Rm, and νk(dξ) signed measures on Rm such that νk({0}) = 0 and∫
Rm |ξ|

2|νk|(dξ) < ∞, for every k = 0, . . . ,m. Additional conditions on the parameters Ak, bk and νk
have to imposed in order to guarantee existence and invariance results depending on the state space E;
see, for instance, [74] for E = Rk+×Rl and [56] for E equal to the space of positive semidefinite matrices.
The conditional Fourier–Laplace transform of the affine process X is given by

E
[

exp

(∫ T

0
f(T − s)>Xs ds

)∣∣∣∣Ft] = exp

(
φ(T − t) +

∫ t

0
f(T − s)>Xs ds+ ψ(T − t)>Xt

)
, (I.12)

with ψ a Cm−valued function that solves the deterministic Riccati equation

ψ(t) =

∫ t

0
R (s, ψ(s)) ds, (I.13)

where

Rk (s, z) = fk (s) +
1

2
z>Akz + z>bk +

∫
Rm

(
ez
>ξ − 1− z>ξ

)
νk(dξ), k = 1, . . . ,m, (I.14)

and φ is the C−valued function

φ(t) =

∫ t

0

(
ψ(s)>b0 +

1

2
ψ(s)>A0ψ(s) +

∫
Rm

(
eψ(s)>ξ − 1− ψ(s)>ξ

)
ν0(dξ)

)
ds. (I.15)

The identity (I.12) is only valid under additional hypotheses on the Cm−valued function f and t, T ≥ 0
that imply appropriate conditions on the functions φ and ψ. 2

The theory of affine processes was recently extended in [8, 92] to the framework of stochastic Volterra
equations with continuous trajectories, where in general the semimartingale and Markov properties do
not hold. These so–called affine Volterra processes overcome modeling shortcomings of affine processes
because they may posses path–dependent features which introduce memory structures into the models.
Furthermore, they can have trajectories whose Hölder’s regularity is different from the Hölder’s regularity
of the paths of Brownian motion. More specifically, singular kernels yield rough processes in the spirit
of [21, 79, 90]. The goal of this chapter is to extend the results in [8, 92] by considering general affine
stochastic Volterra equations with jumps. This extension is not straightforward because the jump
structure together with possible singularities of the kernel may induce explosions of the trajectories.

Our study can be motivated by financial models for stock volatility, in particular by the observation
in [171] that a complete description of volatility should take into account both path roughness and
jumps. We also refer to [176] for an interesting discussion on the topic. In this chapter, however, we
concentrate on the mathematical properties of this family of processes and we address their possible
applications in Chapter 5 (see also [39]).

2One of these conditions could be, for instance, the boundedness of the right term in (I.12). On a related subject, we
also refer to [120], where the authors analyze the possible explosions of the associated Riccati equation (I.13).
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We now summarize the framework and the main results of Chapter 4. Suppose thatX is a predictable
solution of a stochastic Volterra equation of the form

Xt = g0(t) +

∫ t

0
K(t− s) dZs, P⊗ dt–a.e. (I.16)

It is defined on a filtered probability space (Ω,F , (Ft)t≥0,P) where the filtration (Ft)t≥0 satisfies the
usual conditions and has trajectories in L1

loc(R+;E), for some state space E ⊂ Rm. In (I.16) we take
g0 ∈ L1

loc(R+;Rm), K ∈ L2
loc(R+;Rm×d) a matrix–valued kernel, and Z a d−dimensional semimartin-

gale whose characteristics depend on X. In order to have an affine structure, we suppose that Z has
characteristics of the form (I.10)-(I.11), with Ak ∈ Rd×d, bk ∈ Rd, and νk signed measures on Rd such
that νk({0}) = 0 and

∫
Rd |ξ|

2|νk|(dξ) <∞. In this case, we call X an affine Volterra process with jumps.
When E = Rm, existence of weak solutions to (I.16) with trajectories in L2

loc(R+;Rm) has been estab-
lished in [3, Theorem 1.2]. For E = R+ and for a Volterra CIR–type of process with positive jumps,
results in this direction can be found in [2, Theorem 2.13].

Fix T > 0 and f ∈ C (R+;Cm). By analogy with (I.13), assume that ψ ∈ C(R+;Cd) solves the
deterministic Riccati–Volterra equation

ψ (t)> =

∫ t

0
R (s, ψ(s))>K(t− s) ds, (I.17)

with R as in (I.14), and let φ be given by (I.15).
Our first main result is Theorem 4.5, which is a generalization of [8, Theorem 4.3] and provides a semi–
explicit formula for the conditional Fourier–Laplace transform of X. This theorem shows that, in the
above–mentioned framework, if we define

Mt = exp

(
φ(T − t) +

∫ t

0
f(T − s)>Xs ds+

∫ T

t
R (T − s, ψ(T − s))> gt (s) ds

)
, (I.18)

where (gt (·))t≥0 denotes the adjusted forward process3

gt(s) = g0(s) +

∫ t

0
K (s− r) dZr, s > t, (I.19)

thenM is a local martingale. Moreover, ifM is a martingale then one has the exponential affine formula

E
[

exp

(∫ T

0
f(T − s)>Xs ds

)∣∣∣∣Ft] = Mt. (I.20)

As a consequence, under these conditions, uniqueness in law holds for the stochastic Volterra equation
(I.16).

In Subsection 4.2.1, we discuss how the arguments used to prove Theorem 4.5 can be adapted
to obtain exponential affine formulas for the conditional Fourier–Laplace transforms of the marginal
distributions of the solution process X and the semimartingale Z in (I.16). Notably, Theorem 4.6,
which investigates the marginals of Z, can be applied to obtain original expressions for the conditional
transforms of a multi–dimensional Hawkes process, see Corollary 4.7 and Remark 4.6.

3This adjusted forward process was also used in [4] and [121] to elucidate the affine structure of affine Volterra processes
with continuous trajectories.
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The second main result of Chapter 4 is Theorem 4.10, which establishes, under the assumption
m = d and additional conditions on the kernel K, an alternative formula for the local martingale Mt in
(I.18) in terms of (Xs)s≤t and Zt only, namely

log (Mt) = φ (T − t) +

∫ t

0
f (T − s)>Xs ds+

∫ T−t

0
R (s, ψ (s))> g0 (T − s) ds

+ ψ (T − t)> Zt +
(
π>T−t ∗ (X − g0)

)
(t) , (I.21)

with φ as in (I.15) and πh ∈ L1
loc(R+;Cd), h > 0, a deterministic function that depends on K and ψ.

This expression derives from a similar one for the adjusted forward process (I.19), shown in Lemma 4.9.
The identity (I.21) can be used to show that (I.12) is a particular instance of (I.20) when g0 is constant,
and K is constant and equal to the identity matrix.

In Section 4.4, see Theorems 4.13 and 4.14, using our first two main results, we give a complete
proof of the exponential affine formula (I.20) in the particular case m = d = 1, E = R+ and for a
Volterra CIR–type process with positive jumps. The argument hinges on a novel comparison result
between solutions of Riccati–Volterra equations, namely between a solution of (I.17) and a solution of
an analogous equation in which the functions ψ and R are substituted with the corresponding real parts.
This comparison result, together with the affine with respect to the past formula (I.21) of Theorem 4.10,
yields the desired conclusion, because we can bound the complex–valued local martingale M (I.18) of
Theorem 4.5 with a real–valued martingale.
It is also important at this point to mention [59], where the authors construct infinite–dimensional
Markovian lifts of affine Volterra processes, possibly with jumps, and study affine transform formulas
for these lifts. Such formulas are closely related to those of Chapter 4 within a one–dimensional setting,
although in [59] the focus is on the marginal distributions of X (see Remark 4.7 in Subsection 4.2.1
for a precise comparison). The novelty of our work stems from the approach that we propose, which is
inspired by the arguments in [8] and dispenses with the abstract infinite–dimensional theory in [59]. In
addition, we carry out a complete analysis of the associated Riccati–Volterra equations, see Section 4.4.
Furthermore, we obtain the affine with respect to the past formula (I.21), as well as new formulas for the
semimartingale Z which can be applied to derive novel expressions for the conditional Fourier–Laplace
transforms of multi–dimensional marked Hawkes processes, see Theorem 4.6 and Corollary 4.7. These
last two points also distinguish our study from [2].

Chapter 5 presents the results of the article [39]. In particular, it introduces a stochastic volatility
model, called the rough Hawkes Heston model, where the instantaneous variance σ2 satisfies a stochastic
affine Volterra equation of convolution type with jumps as in (I.16). A parsimonious specification of
this model is calibrated using S&P 500 and VIX options data, demonstrating its remarkable precision in
simultaneously replicating the behavior of implied volatility smiles for both S&P 500 and VIX options.

We now give a brief literature review to explain the choice of our framework. The Black–Scholes
model, where volatility is constant, and more generally classical local volatility models, where volatility
is a function of time and spot asset prices, fail to reproduce the dynamics of implied volatility smiles
of options written on the underlying asset. To overcome this limitation, multiple stochastic, stochas-
tic–local, and path–dependent volatility models have been developed and studied in recent years. The
complexity of volatility modeling, however, has increased with the significant growth over time of mar-
kets on volatility indices, such as the VIX. The rise in popularity of these markets is explained, in part,
by their relevance to protect portfolios [156] and has driven the standardization of contingent claims
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written on the volatility indices themselves.
Volatility index markets have very unique features that, for VIX futures and exchange–traded prod-
ucts, are investigated in [14]. The intricacy of these markets is also exemplified by the difficulty to
jointly model the behavior of the implied volatility smiles of vanilla options written on the underlying
and its volatility index, see for instance [9, 141, 142, 155]. This longstanding puzzle is known as the
S&P 500 (SPX)/VIX calibration puzzle, see [98, 99]. A growing body of literature explains the diffi-
culty arguing that “the state-of-the-art stochastic volatility models in the literature cannot capture the
S&P 500 and VIX option prices simultaneously”, see [168]. As pointed out in [99], “all the attempts
at solving the joint SPX/VIX smile calibration problem only produced imperfect, approximate fits.”
The problem is that usual stochastic models either fail to reproduce one or both shapes of the implied
volatility for S&P 500 and VIX options or, when both the shapes are coherent, the implied volatility
levels are incorrect. This modeling challenge has inspired the introduction of more sophisticated models,
e.g. [6, 7, 57, 91, 99, 101, 159], that incorporate new features to the joint dynamics of the underlying
and the volatility. In this chapter, we tackle the challenge by proposing a tractable affine model with
rough volatility and volatility jumps, see (I.22) below. These jumps not only cluster but also exhibit
an opposite direction compared to the jumps of the underlying prices, although they occur at the same
time.

The dynamics of the VIX volatility index are highly complex. In particular, they exhibit large and
systematically positive variations over very short periods, with a tendency to form clusters of spikes
during difficult periods like the 2008 financial crisis and the beginning of the COVID 19 pandemic in
2020. This is accompanied by very long periods without any large fluctuation and a less important
mean reversion speed. These observations are in line with an increasing number of studies that indicate
the presence of jumps in the volatility [73, 171], on the underlying [19], and the fact these jumps are
common to the volatility and underlying [166].

Access to high frequency data has improved our understanding of the microstructure of financial
markets and the effects on volatility. In particular, recent studies indicate that non–Markovian models
with rough volatility trajectories might be appropriate to better capture long time dependencies due to
meta orders and the large contribution of automatic orders. This is examined in [53], which provides a
general analysis of order–driven markets, in [51], which elucidates the memory–features of volatility, and
in [76, 90], which give a micro–structural justification to the newly developed rough volatility models.

From a modeling point of view, affine models provide a convenient framework because they are
flexible and, thanks to semi–explicit formulas for the Fourier–Laplace transform, fast computations
can be performed using Fourier–based techniques [74, 75, 81]. The most popular affine stochastic
volatility model is the Heston model [104], where the spot variance is a square–root mean–reverting
CIR (Cox–Ingersoll–Ross [55]) process. This model is able to reproduce some stylized features like the
mean–reverting property of the volatility and the leverage effect. It is, however, unable to reproduce
other phenomena such as extreme paths of volatility during crisis periods (even for large values of the
volatility of volatility parameter) and the at–the–money (ATM) skews of underlying options’ implied
volatility simultaneously for short and long maturities. These limitations, and the micro–structural
behavior of markets described in the previous paragraph, motivated the introduction of the rough Heston
model [78, 79]. The rough Heston model is tractable as it belongs to the class of affine Volterra models
[8], and semi–explicit formulas for the Fourier–Laplace transform are still available. Unfortunately,
this model cannot reproduce the features of options written on the volatility index and the underlying
simultaneously (see Subsection 5.5.1).

In an attempt to improve the performance of the rough Heston model, we propose an extension of it
which incorporates a self–exciting jump component. More precisely, we denote by X = (Xt)t≥0 the log
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returns of the SPX index and by σ2 = (σ2
t )t≥0 the spot variance. In order to model the joint behavior

of SPX and VIX markets, under a risk neutral probability measure Q we consider the dynamics
dXt = −

(
1
2 +

∫
R+

(
e−Λz − 1 + Λz

)
ν (dz)

)
σ2
t dt

+σt

(√
1− ρ2 dW1,t + ρ dW2,t

)
− Λ

∫
R+
z µ̃ (dt,dz) ,

σ2 = g0 +K ∗ dZ, Q⊗ dt− a.e.,

(I.22)

where K(t) = tα−1/Γ(α), α ∈ (1/2, 1], and Z is the following semimartingale having jump measure
µ(dt,dz) and compensator σ2

t dt⊗ ν(dz):

dZt = b σ2
t dt+

√
c σt dW2,t +

∫
R+

z
(
µ (dt,dz)− σ2

t dt⊗ ν (dz)
)
, Z0 = 0.

Here b ∈ R, c > 0, Λ ≥ 0, ρ ∈ [−1, 1], W1 and W2 are two independent Brownian motions, ν is
a nonnegative measure on R+ such that ν({0}) = 0 and

∫
R+
|z|2ν(dz) < ∞, and g0 is a function

representing the initial spot variance curve.
Consistently with empirical evidence discussed in the previous paragraphs, in (I.22) we add two specific
features to the usual Heston model. First, we incorporate rough volatility by adding a power kernel
proportional to tα−1, with α ∈ (1/2, 1], to the dynamics of the spot variance. Second, we postulate
common jumps for the volatility and the underlying with a negative leverage, namely −Λ. The presence
of jumps in both underlying and variance helps to reproduce a skewed implied volatility for vanilla
options as in the Barndorff–Nielsen and Shephard model [16, 17]. Inspired by the Hawkes framework,
taking into account jump–clustering and endogeneity of financial markets, we model the spot variance
to be proportional to the intensity process of the jump component appearing in the dynamics of the
spot variance itself and the log returns. For these reasons, we name our model (I.22) the rough Hawkes
Heston model, see Section 5.1.

To keep mathematical and numerical tractability, we choose an affine setting. As a result, our model
belongs to the class of affine Volterra processes [8], which has been recently extended to jump processes
in [37, 58, 59] (see also Chapter 4). In particular, the Fourier–Laplace transform of the log returns and
the square of the volatility index can be computed explicitly in terms of deterministic Riccati–Volterra
equations, see Theorems 5.3 and 5.10. We approximate the solutions of these Riccati–Volterra equations
via a multi–factor scheme as in [5], see Theorem 5.11. We leave for future study the implementation and
analysis in our framework of other methods such as the Adams method [71, 72], asymptotic formulas
inspired by forest expansions in the spirit of [10], and hybrid approximation techniques for Volterra
equations similar to those in [45]. It might be also interesting to investigate an adaptation to Ric-
cati–Volterra equations of the hybrid multi–factor approach proposed in [160] for the discretization of
stochastic Volterra equations.

The affine property is an advantage of our modeling approach compared to other recent models
proposed to solve the SPX/VIX calibration problem, such as [6, 57, 91, 102, 161], where pricing is
done via Monte Carlo or machine learning techniques. In addition, our affine framework is convenient
because variance swap rates and the square VIX index have explicit affine relations to the forward curve,
see Corollary 5.7 and Remark 5.3. This is a generalization, to the affine Volterra setting, of the affine
relation already pointed out in [118] within the classical exponential affine framework and empirically
confirmed in [132].

Our approach shares similarities with the study in [26], which demonstrates that an exponential
law for the jump size can capture upward VIX implied volatility within a Hawkes framework with an
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exponential kernel. Alternatively, other studies such as [114, 138] have explored the inclusion of more
general jump measures. The advantage of the rough Hawkes Heston model over the aforementioned
works is the possibility to achieve a joint calibration of the SPX/VIX smiles, while utilizing a simple
and parsimonious specification for the jump distribution, namely an exponential law (see Section 5.5).

Previous literature on jump–diffusion models focusing on the evolution of S&P 500 and VIX proposes
either high–dimensional models [54, 141, 166], or models based on hidden Markov chains [94, 143]. These
models require a large number of parameters and suffer from the lack of interpretability of the random
factors. Our approach to model the joint SPX/VIX dynamics is different. As in [26], we keep the number
of parameters low by assuming that the jump intensity is proportional to the variance process itself,
and jumps are common to the volatility and underlying with opposite signs. The main new ingredient
of our model, compared to [26], is the addition of a Brownian component and a power kernel to the
variance process. This generates by construction a jump clustering effect and takes into account related
findings in the rough volatility literature [11, 12, 21, 24, 76, 79, 87, 90, 91, 131]. In particular, our model
is consistent with the so–called Zumbach effect. Indeed, we suggest an extension of the rough Heston
model, which reproduces the Zumbach effect according to [77].

The rough Hawkes Heston model is able to reconcile the shapes and levels of the S&P 500 and VIX
volatility smiles. An important role is played by the parameter α characterizing the kernel, see Section
5.6. As is the case for other rough volatility models, this parameter controls the explosion rate of the
term structure of ATM skews for SPX option smiles as maturity goes to zero. We show that when α
is near to 1/2, the rate of explosion is in the range [0.5, 0.6]. This is consistent with similar findings in
the rough volatility literature [12, 21, 24, 76, 87, 90, 91]. In addition, in our framework, the parameter
α plays a crucial role because it controls the level of the implied volatility of VIX options for short
maturities. We observe that, as α approaches 1/2, the levels of S&P 500 and VIX smiles are coherent.

To summarize, the model (I.22) that we propose in Chapter 5 shares many features with other
existing models. These features are mainly: rough volatility [21, 76, 79, 87, 90, 91], jumps [16, 17, 19,
54, 97, 141, 166], the Hawkes/branching character of volatility [26, 41, 105], and the affine structure
[8, 37, 74, 75, 81, 118, 114]. Consequently, we take advantage of the low regularity and memory features
of rough volatility models, the large fluctuation of jumps, the clusters of Hawkes processes and the
explicit Fourier–Laplace transform of the affine setup. The specification that we adopt for the joint
SPX/VIX calibration is parsimonious with only five evolution–related parameters. Moreover, all the
parameters have a financial interpretation. The parameter α in the kernel controls the decay of the
volatility memory, SPX ATM skews and the level of VIX smiles. In addition, we have the classical
parameters controlling the volatility mean reversion speed and the volatility of volatility, as well as two
parameters related to the leverage effect. The latter specify the correlation between Brownian motions
and between the jumps in the asset and its volatility. Despite its robustness, the rough Hawkes Heston
stochastic volatility model captures remarkably well the implied volatility surfaces of S&P 500 and VIX
at the same time, as demonstrated by the numerical experiments in Section 5.5.

Part III In the conclusive part of this dissertation, we investigate a theoretical connection between
the subjects studied in Parts I and II. This is done in Chapter 6 by analyzing the stochastic flow
and the path–dependent Kolmogorov equation associated with an unconventional class of stochastic
partial differential equations (SPDEs). These SPDEs arise from finite–dimensional stochastic Volterra
equations driven by additive fractional Brownian motions of Riemann–Liouville type. The results of
Chapter 6 are contained in the paper [36].
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More precisely, in Chapter 6 we consider the stochastic differential equation in Rd with additive
noise

Xt = x0 +

∫ t

0
k1 (t− s) b (s,Xs) ds+

1

Γ (α)

∫ t

0
(t− s)α−1 dWs, (I.23)

where x0 ∈ Rd, α ∈ (1
2 , 1), W = (Wt)t≥0 is a standard Brownian motion in Rd, b : [0, T ] × Rd → Rd is

a measurable vector field and k1 is a locally square–integrable, R−valued kernel that is continuous in
(0,∞). This equation belongs to the class of stochastic Volterra equations (of convolution type), which
is characterized by a wide and continuously expanding body of literature, see for instance [3, 8, 37,
103, 136, 152], and also Chapter 4. The additive noise driving the SDE (I.23) is a fractional Brownian
motion (henceforth, fBm) of Riemann–Liouville type, with Hurst parameter H = α − 1

2 ∈ (0, 1
2). Our

motivation for studying this random perturbation stems from its relevance in mathematical finance,
particularly in the field of rough volatility models, see [39, 79, 91] and also Chapter 5. However, the
theory that we develop in this chapter encompasses also the case α ∈ [1, 3

2), corresponding to a fBM
with Hurst parameter H ∈ [1

2 , 1), exhibiting smoother trajectories and longer memory.
Inspired by [86], our aim is to insert the Volterra SDE (I.23) in a class of infinite–dimensional SDEs

in a separable Hilbert space (H, 〈·, ·〉H) of the form

wt = φ+

∫ t

0
B (s, ws) ds+

∫ t

0
σ (s) dWs, φ ∈ H, (I.24)

where σ : [0, T ] → L(Rd;H) and B : [0, T ] × H → H. In order to achieve this objective, we need
to consider a drift B with an unconventional structure. This motivates the study carried out in this
chapter of a novel class of SPDEs and of the associated stochastic flow’s regularity. Notably, these
SPDEs require an extension of the drift operator and its Fréchet differentials, resulting in an abstract
formulation of the problem that, to the best of our knowledge, is not covered by the existing literature.
Given Φ: H → R, we then study the following backward Kolmogorov equation associated with (I.24):{

∂tu (t, φ) +Atu (t, φ) = 0, t ∈ [0, T ] , φ ∈ H,
u (T, φ) = Φ (φ) ,

which will be interpreted in integral form, see (6.67). Here At, the time–dependent infinitesimal gener-
ator, is given by

Atu (t, φ) =
1

2
Tr
(
D2u (t, φ)σ(t)σ(t)∗

)
+ 〈B (t, φ) ,∇u (t, φ)〉H .

As in [66, Chapter 9], the approach that we adopt for the existence of classical solutions of the Kol-
mogorov equation is based on a careful analysis of (I.24) and on the formula

u (t, φ) = E
[
Φ
(
wt,φT

)]
, (I.25)

where wt0,φt , t ∈ [t0, T ], is the solution of an analogue of (I.24) starting at time t0 instead of 0.
It is worth noting that we use classical tools of infinite–dimensional calculus, such as the Frechét

derivative, when analyzing the Kolmogorov equation. This is a novelty compared to other studies
addressing path–dependent PDEs related to Volterra SDEs, particularly [174] (see also [18] for a sim-
ilar subject). In a sense, then, we unify the study of stochastic Volterra equations and fBm of Rie-
mann–Liouville type to other infinite–dimensional systems. However, the assumptions imposed on B
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are not entirely classical, resulting in an innovative abstract formulation of the problem. Consequently,
the analysis developed here is only analogous to the classical one, not included into it.

A more direct approach to the Kolmogorov equation would be also of great interest for two reasons.
Firstly, it would contribute to complete the comparison with the classical theory developed for other
classes of problems, see [66]. Secondly, it could be used to study regularization-by-noise phenomena
for SDEs driven by fractional Brownian motion, which are investigated in literature using different
techniques, see, e.g., [88, 89, 103, 136, 139]. In fact, studying the Kolmogorov equation in mild form
might allow to prove weak uniqueness of solutions of the underlying SDEs when the drift is not smooth,
see [62, 63, 82, 169, 173]. In an attempt to develop such a direct approach, we have identified obstructions
that we report in Section 6.4, so this problem remains open.
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Chapter 1

Smoothing effect and derivative formulas
for OU processes driven by subordinated
cylindrical Brownian noises

In this chapter, we study the concept of cylindrical Wiener process subordinated to an α−stable
Lévy process, with α ∈ (0, 1), in an infinite–dimensional, separable Hilbert space. We then investigate
regularization-by-noise results, derivative formulas and gradient estimates for the Markov transition
semigroup of OU processes driven by this random perturbation.

1.1 The framework

Let (H, 〈·, ·〉) be a separable Hilbert space and (en)n be a complete orthonormal system. We consider
a complete probability space (Ω,F ,P) and introduce a sequence of independent Brownian motions (βn)n
on it. Let L = (Lt)t be a strictly α–stable subordinator, i.e., an increasing Lévy process where the
distribution of L1 is characterized by

E
[
eiuL1

]
= exp

{
−c̄ |u|α

(
1− i tan

πα

2
sign (u)

)}
, u ∈ R. (1.1)

Here c̄ > 0 and α ∈ (0, 1). The Laplace transform of L1 is given by

E
[
e−uL1

]
= e−c

′uα , u ≥ 0, (1.2)

with c′ a constant depending on c̄ (for an expression of c′ we refer to [164, Example 24.12], but it is of
no use in our work). Assuming L to be independent from (βn)n, [164, Theorem 30.1] implies that the
subordinated Brownian motions (βnL)n are real–valued Lévy processes.

Denoting by N the family of F–negligible sets, we introduce the augmented σ–algebra FL :=
σ
(
FL0 ∪N

)
, where FL0 is the natural σ–algebra generated by the subordinator. Analogously, we con-

sider the augmented σ–algebras Fβn generated by the Brownian motions. Thanks to the hypotheses of
independence, we have that FL,

(
Fβn

)
n
are mutually independent.

In our context, it is natural to deal with different filtrations. Specifically, for every n ∈ N let Fn =
(
Fβ

n

t

)
t

be the minimal (i.e., smallest) augmented filtration generated by βn, that is, Fβ
n

t := σ
((
Fβ

n

0

)
t
∪N

)
for

every t ≥ 0, where
((
Fβ

n

0

)
t

)
t
is the natural filtration of the process βn. According to [153, Theorem
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I.31], Fn satisfies the usual hypotheses. Then we construct a complete filtration associated with the
subordinated Brownian motions. It is denoted by FL = (Ft)t, where we define

Ft := σ

( ⋃
n∈N
Fβ

n
L

t

)
, t ≥ 0,

with FnL =
(
Fβ

n
L

t

)
t
being the minimal augmented filtration associated with βnL.

Remark 1.1. In the finite–dimensional case, we denote by WN
L =

(
WN
Lt

)
t
the subordinated, RN–valued

Brownian motion, meaning that

WN
Lt =

[
β1
Lt
· · · βNLt

]T
, t ≥ 0.

By [164, Theorem 30.1], WN
L is an RN–valued Lévy process, and it is easy to verify that its minimal

augmented filtration
(
FW

N
L

t

)
t
coincides with FL. This fact shows that the construction that we have

carried out for FL is natural.
Using the notation we have just introduced, in the general case the σ–algebras constituting FL can

be expressed as follows:

Ft = σ

( ⋃
N∈N
FW

N
L

t

)
, t ≥ 0.

1.1.1 The Subordinated Cylindrical Wiener Process

The aim of this subsection is to give a rigorous meaning to the formal notation WLt =
∑∞

n=1 β
n
Lt
en.

First, fix h ∈ H, t > 0 and notice that the series
∑∞

n=1 β
n
Lt
〈h, en〉 converges in distribution. Indeed,

even if the random variables
(
βnLt
)
n∈N are not independent due to the presence of the subordinator,

we can still exploit the mutual independence of the σ–algebras
(
Fβn

)
n
by conditioning with respect to

FL, which in turn is independent from the previous ones. In order to do so, we use the law of total
expectation together with (1.2) to get, for every u ∈ R,

E

[
exp

{
iu

N∑
n=1

βnLt 〈h, en〉

}]
= E

E
exp

{
iu

N∑
n=1

βnr 〈h, en〉

}∣∣∣∣∣
r=Lt

∣∣∣∣∣FL


= E

E[exp

{
iu

N∑
n=1

βnr 〈h, en〉

}] ∣∣∣∣∣
r=Lt

= E

[
N∏
n=1

exp

{
−1

2
Lt |u|2 |〈h, en〉|2

}]

= exp

{
−tc′ 1

2α
|u|2α

(
N∑
n=1

|〈h, en〉|2
)α}

−→
N→∞

exp

{
−t c

′

2α
‖h‖2αH |u|

2α

}
. (1.3)

Hence applying Lévy’s continuity theorem we see that the series
∑∞

n=1 β
n
Lt
〈h, en〉 converges in distri-

bution to a symmetric, 2α–stable random variable. Moreover, for every n ∈ N, choosing h = en and
N > n the computations in (1.3) provide the distribution of the Lévy process βnL, namely

E
[
e
iuβnLt

]
= exp

{
−t c

′

2α
|u|2α

}
, u ∈ R, for any t > 0. (1.4)
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The process WL = (WLt)t is a subordinated cylindrical Wiener process, but we might also call it cylin-
drical, 2α–stable isotropic process. In fact, for every N ∈ N and t > 0, if we denote by πN the projection
onto the first N Fourier components and by HN its range, an argument analogous to the one in (1.3)
yields:

E

[
exp

{
i

〈
z,

N∑
n=1

βnLten

〉}]
= exp

{
−t c

′

2α

(
N∑
n=1

|〈z, en〉|2
)α}

, z ∈ H.

Hence canonically identifying HN with RN , the Galerkin projection
(∑N

n=1 β
n
Lt
en
)
t
can be read as an

RN–valued, 2α–stable, isotropic Lévy process.
Secondly, we consider a linear, bounded, nonnegative definite operator Q : H → H such that en is

one of its eigenvectors corresponding to the eigenvalue σ2
n ≥ 0, n ∈ N. We study the convergence in

probability –on an appropriate space– of the series:

√
QWLt =

∞∑
n=1

σnβ
n
Lten, t > 0.

Let us introduce a bounded sequence (ρn)n of strictly positive numbers such that
∑∞

n=1 ρ
2r
n σ

2r
n <∞ for

some r ∈ (0, α), and consider the corresponding Hilbert space (V, 〈·, ·〉V ), where

V :=

{
h ∈ H :

∞∑
n=1

ρ−2
n |〈h, en〉|

2 <∞

}
and 〈v, w〉V :=

∞∑
n=1

ρ−2
n 〈v, en〉 〈w, en〉 , v, w ∈ V. (1.5)

Evidently V ⊂ H with dense and continuous embedding, therefore using the concept of Gelfand triple
we can think a generic h ∈ H as an object in V ′, namely

〈h, v〉V ′,V =
∞∑
n=1

〈h, en〉 〈v, en〉 , v ∈ V.

Noticing that 〈h, ·〉V ′,V = 〈ṽ, ·〉V , where ṽ :=
∑∞

n=1 ρ
2
n 〈h, en〉 en ∈ V , we can apply Riesz representation

theorem to get ‖h‖2V ′ =
∑∞

n=1 ρ
2
n |〈h, en〉|

2 . Now we fix t > 0 and show that
(∑N

n=1 σnβ
n
Lt
en
)
N
⊂ V ′

is a Cauchy sequence in probability. Indeed, applying Markov’s inequality and using the fact that the
function φ (x) = xr, x ≥ 0, is subadditive and strictly increasing as 0 < r < α < 1, for every ε > 0 we
get:

P

∥∥∥∥∥
q∑

n=p

σnβ
n
Lten

∥∥∥∥∥
V ′

> ε

 ≤ P

φ
∥∥∥∥∥

q∑
n=p

σnβ
n
Lten

∥∥∥∥∥
2

V ′

 > φ
(
ε2
)

≤ 1

ε2r
E

φ
∥∥∥∥∥

q∑
n=p

σnβ
n
Lten

∥∥∥∥∥
2

V ′

 = ε−2rE

[
φ

(
q∑

n=p

σ2
nρ

2
n

∣∣βnLt∣∣2
)]

≤ ε−2r
q∑

n=p

E
[
σ2r
n ρ

2r
n

∣∣βnLt∣∣2r]=ε−2rE
[∣∣β1

Lt

∣∣2r]( q∑
n=p

σ2r
n ρ

2r
n

)
−→
p,q→∞

0,

where we use that by construction βnLt ∼ β1
Lt
, n ∈ N, and that by (1.4) they all generate a 2α–stable

distribution, which has finite moment of order 2r (see also Remark 1.2). By completeness, we can
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conclude the existence of an a.s. unique, V ′–valued random variable
√
QWLt such that

√
QWLt = P− lim

N→∞

N∑
n=1

σnβ
n
Lten in V ′.

Actually such a convergence in probability is true also in the P−a.s. sense, as the following, easy and
general lemma proves.

Lemma 1.1. Let (Xn)n be a sequence of real–valued random variables defined on a probability space
(Ω,F ,P) and H be a separable Hilbert space admitting (en)n as CONS. If

∑∞
n=1X

nen converges in
probability, then it converges P−a.s.

Proof. Let S̃ := P− limN→∞
∑N

n=1X
nen : Ω→ H. Obviously

S̃ (ω) =
∞∑
n=1

〈
S̃ (ω) , en

〉
en = H − lim

N→∞

N∑
n=1

〈
S̃ (ω) , en

〉
en, ω ∈ Ω. (1.6)

Convergence in measure implies a.s. convergence along a subsequence, hence we have

S̃ (ω) = H − lim
k→∞

Nk∑
n=1

Xn (ω) en for P− a.e. ω ∈ Ω.

Therefore, for P−a.e. ω ∈ Ω, we see that the Fourier components of S̃ are

〈
S̃ (ω) , en̄

〉
= lim

k→∞

〈
Nk∑
n=1

Xn (ω) en, en̄

〉
= X n̄ (ω) for every n̄ ∈ N.

Substituting in (1.6) we conclude

S̃ (ω) = H − lim
N→∞

N∑
n=1

Xn (ω) en for P− a.e. ω ∈ Ω,

as we stated. �

Going back to
√
QWLt , since (ρnen)n is a CONS for the Hilbert space V , Lemma 1.1 allows to write

√
QWLt = lim

N→∞

〈
N∑
n=1

σnβ
n
Lten, ·

〉
V ′,V

= lim
N→∞

N∑
n=1

ρnσnβ
n
Lt 〈(ρnen) , ·〉V P− a.s.

It then follows that
〈√

QWLt , v
〉
V ′,V

= limN→∞
∑N

n=1 σnβ
n
Lt
〈v, en〉 for every v ∈ V, P−a.s. Combining

this with (1.3), we can see that
〈√

QWLt , v
〉
V ′,V

has a symmetric, 2α–stable distribution. We collect
the previous results in the next theorem.

Theorem 1.2. 1. Given h ∈ H and t > 0, the series
∑∞

n=1 β
n
Lt
〈h, en〉 converges in distribution to a

real–valued, symmetric, 2α–stable random variable Xt whose characteristic function is

E
[
eiuXt

]
= exp

{
−t c

′

2α
‖h‖2αH |u|

2α

}
, u ∈ R.
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2. Consider a linear, bounded, nonnegative definite operator Q : H → H such that (en)n is a basis of
its eigenvectors corresponding to the eigenvalues

(
σ2
n

)
n

(⊂ R+). Let (ρn)n be a bounded sequence of
strictly positive weights such that

∑∞
n=1 ρ

2r
n σ

2r
n <∞ for some 0 < r < α. Then the corresponding

Hilbert space (V, 〈·, ·〉V ) defined in (1.5) is continuously embedded with density in H and, for every
t > 0, the random variable

√
QWLt : Ω→ V ′ is defined as

√
QWLt := lim

N→∞

N∑
n=1

σnβ
n
Lten P− a.s.

In particular, for every v ∈ V ,

N∑
n=1

βnLt

〈√
Qv, en

〉
−→
N→∞

〈√
QWLt , v

〉
V ′,V

P− a.s.

Remark 1.2. We can state the finiteness of the absolute moment of order 2r of the random variable β1
Lt

without explicitly knowing its distribution, i.e., without using (1.4). In fact, we can proceed as follows:

E
[∣∣β1

Lt

∣∣2r] = E
[
E
[∣∣β1

Lt

∣∣2r∣∣∣FL]] =
2r√
π

Γ

(
2r + 1

2

)
E [Lrt ] <∞,

recalling that 0 < r < α. This easy consideration allows to carry out the above procedure to define the
noise

√
QWL also for a subordinator L which is not α−stable. More precisely, given r ∈ (0, 1] such

that E [Lrt ] <∞ for some (hence, all) t > 0 and a bounded sequence (ρn)n of positive real numbers such
that

∑∞
n=1 ρ

2r
n σ

2r
n < ∞, then for every t > 0 it is possible to define the random variable

√
QWLt as in

Theorem 1.2.

1.1.2 The Stochastic Convolution

Let A : D (A) ⊂ H → H be a linear, selfadjoint, negative definite, unbounded operator that shares
with Q a common basis of eigenvectors (en)n. We denote by (−λn)n, with 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · ·
the corresponding eigenvalues, i.e., Aen = −λnen, n ∈ N. Recalling that α ∈ (0, 1) has been fixed at
the beginning of Section 1.1, it is convenient to introduce the shorthand notation X ∼ stable (α, β, γ, δ)
to denote a random variable X with characteristic function given by

E
[
eiuX

]
= exp

{
−γα |u|α

(
1− iβ tan

πα

2
sign (u)

)
+ iδu

}
, u ∈ R.

where |β| ≤ 1, γ > 0 and δ ∈ R. Hence by (1.4), for every n ∈ N the Lévy process βnL has random
variables distributed as

βnLt ∼ stable

(
2α, 0,

(
t
c′

2α

)1/(2α)

, 0

)
, t > 0.

We denote by Un = (Unt )t≥0 the OU–process Unt :=
∫ t

0 e
−λn(t−s)σn dβ

n
Ls
, t ≥ 0 : this is the unique (up

to evanescence) solution of the one–dimensional stochastic differential equation

dUnt = −λnUnt dt+ σn dβ
n
Lt , Un0 = 0. (1.7)
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The processes (Un)n are càdlàg and adapted to the filtration FL, and direct computations (see, e.g.,
[25, Proposition 3.2]) show that Unt ∼ stable(2α, 0, γn (t) , 0), where

γn (t) :=

(
c′

2α

)1/(2α)(∫ t

0
e−2αλn(t−s)σ2α

n ds

)1/(2α)

= σn

(
c′

2α+1α

)1/(2α)(1− e−2αλnt

λn

)1/(2α)

,

t > 0, n ∈ N.

In the sequel, we require the next assumption.

Hypothesis 1.1. For some r ∈ (0, α) ,
∞∑
n=1

σ2r
n

λ
r/α
n

<∞.

We are now in position to construct the stochastic convolution and the corresponding OU–process.

Theorem 1.3. Assume Hypothesis 1.1. Then, for all t > 0, the series
∑∞

n=1 U
n
t en converges P−a.s.

to a random variable Z̃A,Q (t) =
∫ t

0 e
(t−s)A√QdWLs. The resulting process Z̃A,Q =

(
Z̃A,Q (t)

)
t
is FL–

adapted and is called stochastic convolution.
The corresponding OU–process starting at x ∈ H, denoted by Zx = (Zxt )t and defined by

Zxt := etAx+

∫ t

0
e(t−s)A√QdWLs = etAx+ Z̃A,Q (t) , t ≥ 0,

is FL–adapted and Markovian with homogeneity in time.

Proof. Fix t > 0. Thanks to the preceding discussion, we know that Unt ∼ γn (t)X, n ∈ N, where X is a
random variable such that X ∼ stable (2α, 0, 1, 0). Then an application of Markov’s inequality entails:

P

∥∥∥∥∥
q∑

n=p

Unt en

∥∥∥∥∥
H

> ε

≤ ε−2rE

φ
∥∥∥∥∥

q∑
n=p

Unt en

∥∥∥∥∥
2

H

= ε−2rE

[
φ

(
q∑

n=p

|Unt |
2

)]

≤ ε−2r
q∑

n=p

E
[
|Unt |

2r
]

= ε−2rE
[
|X|2r

]( c′

2α+1α

)r/α( q∑
n=p

σ2r
n

λ
r/α
n

(
1− e−2αλnt

)r/α)

≤ c (ε)

(
q∑

n=p

σ2r
n

λ
r/α
n

)
−→
p,q→∞

0, ε > 0,

with c (ε) := ε−2rE
[
|X|2r

]( c′

2α+1α

)r/α
and φ (x) = xr, as above. Therefore the series converges in

probability:

Z̃A,Q (t) =

∫ t

0
e(t−s)A√QdWLs := P− lim

N→∞

N∑
n=1

Unt en.

An application of Lemma 1.1 shows that such convergence is true in the P−a.s. sense, as well. Obviously
Z̃A,Q is an FL–adapted process, since the space (Ω,F ,P) is complete by hypothesis, FL is complete by
construction and the one–dimensional OU–processes Un are FL–adapted.
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Concerning the OU–processes, for every x ∈ H we can express the random variables of Zx = (Zxt )t
as follows:

Zxt+h
a.s.
= ehAZxt +

∫ t+h

t
e(t+h−s)A√QdWLs = ehAZxt +

∞∑
n=1

(∫ t+h

t
e−λn(t+h−s)σn dβ

n
Ls

)
en,

t, h ≥ 0.

At this point, the Markovianity of the process is a consequence of the independence of the random
variable

∑∞
n=1

(∫ t+h
t e−λn(t+h−s)σndβ

n
Ls

)
en from the σ−algebra Ft. Indeed, such a random variable is

measurable with respect to the σ−algebra

Gt := σ

( ∞⋃
n=1

σ
(
σ
(
βnLu − β

n
Lt , u ≥ t

)
∪N

))
= σ

( ∞⋃
N=1

σ
(
σ
(
WN
Lu −W

N
Lt , u ≥ t

)
∪N

))
,

hence using the property of independence for the increments of a Lévy process one concludes Ft ⊥⊥ Gt,
as desired. The time homogeneity is obtained by a standard argument relying on the stationarity of
the increments of (βnL)n and the fact that the coefficients of the one–dimensional SDEs in (1.7) are
time–autonomous. The proof is then complete. �

We close this section with an example which analyzes a common framework in applications (see,
e.g., [83]).

Example 1.1. Let Td = Rd/Zd be the d–dimensional torus and denote by ek the functions

ek (x) :=
√

2

{
cos (2πk · x) , k ∈ Zd+
sin (2πk · x) , k ∈ Zd−

, x ∈ Td,

where Zd+ :=
{
k ∈ Zd \ {0} : kj > 0, where j = 1, . . . , d is the first index such that kj 6= 0

}
and Zd− :=

−Zd+. Then
{
ek : k ∈ Zd0

}
constitute a complete orthonormal system for the Hilbert space

H = L2
0

(
Td;R

)
:=

{
f ∈ L2

(
Td;R

)
:

∫
Td
f (x) dx = 0

}
,

where of course Zd0 := Zd \ {0} . In particular, for every f ∈ H, we have

f =
∑
k∈Zd0

f̂kek, f̂k :=

∫
Td
f (x) ek (x) dx, k ∈ Zd0.

We first introduce the Sobolev spaces

W β,2
0

(
Td
)

:=

{
f ∈ H :

∑
k∈Zd0

|k|2β f̂2
k <∞

}
, ‖f‖2

Wβ,2
0

:=
∑
k∈Zd0

|k|2β f̂2
k ,

and then define the linear operator A as follows:

A : W 2,2
0

(
Td
)
→ H such that Af = ∆f = − (2π)2

∑
k∈Zd0

|k|2 f̂kek.

In particular, the eigenvalues of A corresponding to ek are −λk = − (2π)2 |k|2, hence A is unbounded
and negative definite. Moreover it is selfadjoint, as well. Now we analyze Hypothesis 1.1 for two
specifications of the linear, bounded, positive semidefinite operator Q : H → H.
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• Let Q = Id. Then σk = 1, k ∈ Zd0, and Hypothesis 1.1 reads

1

(2π)2r/α

∑
k∈Zd0

1

|k|2r/α
<∞ for some r ∈ (0, α) ,

which is satisfied if and only if d = 1. Hence the stochastic convolution is defined only in dimension
d = 1.

• Set Q = Qη = (−∆)−η for η > 0, the negative fractional power of the Laplacian, defined as an
operator Qη : H → H such that

Qηf =
1

(2π)2η

∑
k∈Zd0

1

|k|2η
f̂kek, f ∈ H.

In this case the convergence of the infinite sum in Hypothesis 1.1 amounts to requiring η >(
d
2r −

1
α

)
∨ 0. Since r is chosen freely in the interval (0, α), Hypothesis 1.1 is satisfied if and only

if
η >

(
d− 2

2α

)
∨ 0. (1.8)

This fact can be interpreted as follows: the higher the dimension d, the weaker the effect of the
noise on the high Fourier modes needs to be in order to have the well–posedness of the stochastic
convolution.

1.2 Smoothing effect of the Markov Transition Semigroup

Let us introduce the Markov transition semigroup R = (Rt)t associated with the OU–processes
(Zx)x∈H , which is given by

Rtφ (x) := E [φ (Zxt )] , x ∈ H, φ ∈ Bb (H) , t ≥ 0,

where Bb (H) is the space of bounded, real–valued, Borel–measurable functions in H. Evidently, each
Rt is linear and bounded from Cb (H) into itself and R0 is the identity. Our aim is to prove that, under
suitable conditions, the operator Rt has a smoothing effect for every t > 0. Specifically, given a function
φ ∈ Bb (H), in the case α ∈

(
1
2 , 1
)
we are going to show that Rtφ ∈ C1

b (H) and that the following
gradient estimate holds:

sup
x∈H
‖∇Rtφ (x)‖H ≤

C

tγ
‖φ‖∞ for every t > 0, for some 0 < γ < 1, C > 0. (1.9)

1.2.1 Finite–dimensional case H = RN

Let H = RN and WN =
[
β1 · · · βN

]T
. We start by presenting a theorem which allows to obtain

an original derivation formula for the semigroup corresponding to the finite–dimensional OU processes
Z`t (x). They are defined as the unique, càdlàg solutions of the linear SDEs dZ`t (x) = AZ`t (x) dt +√
QdWN

`t
, Z`0 (x) = x, and can be expressed by the variation of constant formula as follows:

Z`t (x) = eAtx+

∫ t

0
eA(t−s)√QdWN

`s , t ≥ 0, P− a.s., (1.10)
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where x ∈ RN and ` : R+ → R+ is an increasing, càdlàg function such that `0 = 0 and `t > 0 for
every positive t: the set of functions with these properties will be denoted by S. Note that, for every
` ∈ S, WN

` =
(
WN
`t

)
t
is a càdlàg martingale with respect to the filtration

(
FN`t
)
t
, where

(
FNt
)
t
is

the minimal augmented filtration generated by WN . Analogously, for every ` ∈ S, we introduce the
filtrations Fn` =

(
Fβ

n

`t

)
t
, n ∈ N, and observe that βn` =

(
βn`t
)
t
is a càdlàg, Fn` –martingale. The proof

of such theorem is essentially based on the deterministic time–change procedure described by Zhang in
[178, Section 2], but exploits the linear nature of our setting to avoid the application of the Bismut–
Elworthy–Li’s formula (see, e.g., [61, Proposition 8.21]). For the sake of completeness we report its
main passages.

Theorem 1.4. Let t > 0, φ ∈ Bb
(
RN
)
, ` ∈ S and assume that σ2

n > 0, n = 1, . . . , N . Then the
function E

[
φ
(
Z`t (·)

)]
is differentiable at any point x ∈ RN in every direction h ∈ RN , and

〈
∇E

[
φ
(
Z`t (x)

)]
, h
〉

= E

[
φ
(
Z`t (x)

)( N∑
n=1

1

σn

e−λnt 〈h, en〉∫ t
0 e
−2λn(t−s)d`s

∫ t

0
e−λn(t−s)dβn`s

)]
. (1.11)

Proof. For every ε > 0 denote by `ε (t) := 1
ε

∫ t+ε
t `s ds, t ≥ 0, the Steklov’s averages of `. They are

strictly increasing, absolutely continuous functions such that, for every t ≥ 0, `εt ↓ `t as ε ↓ 0. Let
γε := (`ε)−1 : [`ε0,∞)→ R+ and define Z`ε (x) as in (1.10), i.e., for every x ∈ RN the process Z`ε (x) is
the unique solution of the linear SDE dZ`

ε

t (x) = AZ`
ε

t (x) dt +
√
QdWN

`εt
, Z`

ε

0 = x. Now introduce the
time–shifted processes Y `ε

t (x) := Z`
ε

γεt
(x) , t ≥ `ε0, and observe that

Y `ε

t (x) = x+

∫ t

`ε0

AY `ε

s (x) γ̇εs ds+
√
Q
(
WN
t −WN

`ε0

)
, t ≥ `ε0, P− a.s.,

which shows that dY `ε
t (x) = AY `ε

t (x) γ̇εtdt+
√
QdWN

t , Y
`ε

`ε0
(x) = x. Therefore,

Y `ε

t (x) = eAγ
ε
tx+

∫ t

`ε0

eA(γεt−γεs)
√
QdWN

s , t ≥ `ε0, P− a.s.

In particular, since
∫ `εt
`ε0
e2A(t−γεs)Qds =

∫ t
0 e

2A(t−s)Qd`εs, where the integral is to be interpreted entrywise,
we have

Z`
ε

t (x) = Y `ε

`εt
(x) ∼ N

(
eAtx,

∫ t

0
e2A(t−s)Qd`εs

)
.

At this point, we fix a generic t > 0, x ∈ RN and use [178, Equation (2.6)] (it is just an application
of Gronwall lemma) to get the convergence, in the L2–sense, of Z`εt (x) → Z`t (x) as ε ↓ 0. More-
over, recalling that `εt ↓ `t as ε ↓ 0, we invoke Helly’s second theorem (see [137, Theorem 7.3]) to get∫ t

0 e
2A(t−s)Qd`εs →

∫ t
0 e

2A(t−s)Qd`s as ε ↓ 0. Whence,

Z`t (x) ∼ N
(
eAtx,

∫ t

0
e2A(t−s)Qd`s

)
. (1.12)

Let us denote by Σt :=
∫ t

0 e
2A(t−s)Qd`s. If we take φ ∈ Bb

(
RN
)
, then we are interested in differentiating

the function

E
[
φ
(
Z`t (x)

)]
=

1√
det (2πΣt)

∫
RN

φ (y) exp

{
−1

2

〈
y − eAtx,Σ−1

t

(
y − eAtx

)〉}
dy.
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An explicit computation simply based on the derivation of the normal density function implies, for every
direction h ∈ RN ,〈

∇E
[
φ
(
Z`t (x)

)]
, h
〉

=
1√

det (2πΣt)

∫
RN
φ (y) exp

{
−1

2

〈
y − eAtx,Σ−1

t

(
y − eAtx

)〉}〈
y − eAtx,Σ−1

t eAth
〉
dy

= E

[
φ
(
Z`t (x)

)〈(∫ t

0
e2A(t−s)Qd`s

)−1(∫ t

0
eA(t−s)√QdWN

`s

)
, eAth

〉]
,

which coincides with (1.11) upon expanding the notation. �

Now we investigate the subordinated Brownian motion case. The intuition behind the argument is
to condition with respect to the σ–algebra FL, so that it is possible to apply the deterministic time–
shift result we have just obtained in Theorem 1.4 upon changing the reference probability space. Let
us denote by W the space of continuous functions from R+ to RN vanishing at 0 and endow it with the
Borel σ–algebra B (W) associated with the topology of locally uniform convergence. The pushforward
probability measure generated by WN (·) : (Ω,F ,P) → (W,B (W)) is denoted by PW and makes the
canonical process x = (xt)t a Brownian motion, where by definition

xt (w) := wt, w ∈W, t ≥ 0.

We work with the usual completion
(
W,B (W),PW

)
of this probability space: by [119, Theorem 7.9],

x is still a Brownian motion with respect to its minimal augmented filtration, which in turn satisfies
the usual hypotheses and is denoted by FW. In particular, note that the completeness of the space
(Ω,F ,P) implies the measurability of WN (·) : (Ω,F ,P) →

(
W,B (W)

)
and the fact that PW is still

the pushforward probability measure generated by WN (·). Obviously, WN (·) is independent from FL:
as a consequence, a regular conditional probability of WN (·) given FL is the probability kernel

P
(
WN (·) ∈ ·

∣∣FL) : Ω× B (W)→ [0, 1] such that P
(
WN (·) ∈ A

)
(w) := PW (A) ,

ω ∈ Ω, A ∈ B (W). (1.13)

As regards the space S, for every t ≥ 0 we introduce the map yt : S → R defined by yt (`) := `t, ` ∈ S,
and consider the σ–algebra FS := σ

(
y−1
t (B) , B ∈ B (R) , t ≥ 0

)
. Since L (·) :

(
Ω,FL,P

)
→
(
S,FS)

is measurable, we can construct the pushforward probability measure PS on
(
S,FS). At this point we

take into account the product space
(
W×S,B (W)⊗FS,PW⊗PS) and note that, thanks to the mutual

independence of WN (·) and L (·), the product measure PW ⊗ PS is indeed the pushforward probability
measure generated by ψ : Ω→W× S, ψ (ω) :=

(
WN
· (ω) , L· (ω)

)
. Finally, we take the process z = (zt)t

defined by
zt (w, `) := w`t , (w, `) ∈W× S, t ≥ 0,

and denote by Fz = (Fzt )t its natural filtration. By construction, WN
Lt

= zt ◦ ψ for every t ≥ 0.
Putting together all these properties, we can conclude that z is a Lévy process with respect to the
right–continuous filtration Fz+ =

(
Fzt+

)
t
, where

Fzt+ :=
⋂
ε>0

Fzt+ε, t ≥ 0.
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Endowing the product space with this filtration, the stochastic integral of suitable processes with respect
to z is well–defined. Let us consider then a deterministic, continuous, bounded, RN–valued process
ξ = (ξt)t: weaker assumptions can be done on it, but in our framework these are sufficient. Clearly the
subordinated Brownian motionWN

L is adapted with respect to the right–continuous filtration ψ−1
(
Fz+
)
,

therefore the usual rules of change of probability space (see, e.g., [109, §X-2]) entail∫ t

0
ξs · dWN

Ls =

(∫ t

0
ξs · dzs

)
◦ ψ, t ≥ 0, P− a.s. (1.14)

We conclude this preliminary discussion with an important substitution formula.

Lemma 1.5. Let ξ = (ξt)t be a deterministic, continuous, bounded, RN–valued process. Then, for any
t > 0, (∫ t

0
ξs · dzs

)
(·, `) =

∫ t

0
ξs · dx`s PW − a.s., for PS − a.e. ` ∈ S,

where the integral on the right–hand side of the equality is intended in the sense of stochastic integrals
by càdlàg martingales on the filtered probability space

(
W,B (W),PW;FW

`

)
.

Proof. Fix t > 0 and consider the elementary, predictable (with respect to both Fz+ and FW
` , ` ∈ S)

processes

ξms := ξ01{0} (s) +

m−1∑
i=0

ξti1]ti,ti+1] (s) , s ≥ 0, m ∈ N,

where ti = t
m i, i = 0, . . . ,m. The continuity of ξ implies that ξm → ξ pointwise in [0, t] as m → ∞;

furthermore, since ξ is bounded, the sequence (ξm)m is uniformly bounded. Hence, by [110, Theorem
4.31, Chapter I], ∫ t

0
ξs · dzs =

(
PW ⊗ PS

)
− lim
m→∞

∫ t

0
ξms · dzs,

where the notation on the right–hand side denotes the limit in probability. Now convergence in proba-
bility implies almost–sure convergence along a subsequence, hence we can say that for PS−a.e. ` ∈ S,(∫ t

0
ξmks · dzs

)
(·, `) −→

k→∞

(∫ t

0
ξs · dzs

)
(·, `) PW − a.s. (1.15)

With the same argument as above, we have∫ t

0
ξs · dx`s = PW− lim

k→∞

∫ t

0
ξmks · dx`s for every ` ∈ S. (1.16)

On the other hand, by the definition of stochastic integral of an elementary predictable process and
noticing that zs (w, `) = w`s = x`s (w) for every (w, `) ∈W× S and s ≥ 0, one has

(∫ t

0
ξmks · dzs

)
(w, `) =

mk−1∑
i=0

ξti ·
(
zti+1 − zti

)
(w, `)

=

mk−1∑
i=0

ξti ·
(
x`ti+1

− x`ti
)

(w) =

(∫ t

0
ξmks · dx`s

)
(w) ,
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which holds true for all (w, `) ∈W× S. Combining the last equation with (1.15) and (1.16) we get(∫ t

0
ξs · dzs

)
(·, `) =

∫ t

0
ξs · dx`s PW − a.s., for PS − a.e. ` ∈ S,

proving the thesis of the lemma. �

A useful result due to [33, Equation (14)] shows that there exists a constant c > 0 such that, for
every t > 0, the density ηt of Lt satisfies

ηt (s) ≤ c t s−1−αe−ts
−α
, s > 0.

As a consequence, for every p > 0,

E
[

1

Lpt

]
=

∫ ∞
0

1

sp
ηt (s) ds ≤ c t

∫ ∞
0

s−α−1−pe−ts
−α
ds =

(
c

α

∫ 1

0

(
log

1

u

)p/α
du

)
1

tp/α
,

performing the substitution u = e−ts
−α . Therefore Lt−1 ∈ Lp, and

E
[

1

Lpt

]1/p

≤ cα,p
1

t1/α
for some cα,p > 0. (1.17)

We refer to [70, Theorem 2.1] for moment estimates concerning general subordinators (not necessarily
with an α−stable distribution). We are now in position to obtain the derivation formula for the Markov
transition semigroup, together with an estimate on its gradient, in the subordinated Brownian motion
case.

Theorem 1.6. Let t > 0, φ ∈ Bb
(
RN
)
and assume that σ2

n > 0, n = 1, . . . , N . Then the function
E [φ (Z ·t)] is differentiable at any point x ∈ RN in every direction h ∈ RN , and

〈∇E [φ (Zxt )] , h〉 = E

[
φ (Zxt )

(
N∑
n=1

1

σn

e−λnt 〈h, en〉∫ t
0 e
−2λn(t−s)dLs

∫ t

0
e−λn(t−s)dβnLs

)]
. (1.18)

In addition, there exists cα > 0 such that the following gradient estimate holds:

sup
x∈RN

|∇E [φ (Zxt )]| ≤ cα ‖φ‖∞ sup
n=1,...,N

(
1

σn

2α

√
2αλn

1− e−2αλnt
e−λnt

)
for every t > 0. (1.19)

Proof. Fix t > 0 and φ ∈ Bb
(
RN
)
. In what follows, we denote by EW [·] the expected value of a random

variable defined on
(
W,B (W),PW

)
. Since Zxt = etAx+

∫ t
0 e

(t−s)A√QdWN
Ls
, by (1.14) we have, for every

x ∈ RN , P− a.s.,

Zxt =

(
etAx+

∫ t

0
e(t−s)A√Qdzs) ◦ ψ =

(
etAx+

∫ t

0
e(t−s)A√Qdzs)(WN (·) , L (·)

)
Thus, recalling the expression (1.13) for the regular conditional probability P

(
WN (·) ∈ ·

∣∣FL), we apply
the disintegration formula for the conditional expectation to write, for every x ∈ RN ,

E [φ (Zxt )] = E
[
E
[
φ (Zxt )

∣∣∣∣FL]] = E
[∫

W
φ

((
etAx+

∫ t

0
e(t−s)A√Qdzs) (w,L (·))

)
PW (dw)

]
= E

[
EW

[
φ

(
etAx+

∫ t

0
e(t−s)A√Qdx`s)] ∣∣∣∣

`=L(·)

]
= E

[
EW

[
φ
(
Z`t (x)

)] ∣∣∣
`=L(·)

]
,
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where in the second–to–last equality we use Lemma 1.5 and the fact that PS is the pushforward prob-
ability measure generated by L (·) on S. Take x ∈ RN and a direction h ∈ RN ; if we can justify
the derivation under the expected value, an application of (1.11) immediately leads to (1.18), as the
following computations based on the previous argument show:

〈∇E [φ (Zxt )], h〉 = E

EW

[
φ
(
Z`t (x)

)( N∑
n=1

1

σn

e−λnt 〈h, en〉∫ t
0 e
−2λn(t−s)d`s

∫ t

0
e−λn(t−s)dxn`s

)] ∣∣∣∣∣
`=L(·)

 (1.20)

= E

[
N∑
n=1

1

σn

e−λnt 〈h, en〉∫ t
0 e
−2λn(t−s)dLs

{∫
W

(
φ

(
etAx+

∫ t

0
e(t−s)A√Qdzs)

×
(∫ t

0
e−λn(t−s)dzns

))
(w,L (·))PW(dw)

}]
= E

[
E

[
φ (Zxt )

(
N∑
n=1

1

σn

e−λnt 〈h, en〉∫ t
0 e
−2λn(t−s)dLs

∫ t

0
e−λn(t−s)dβnLs

)∣∣∣∣∣FL
]]

.

Indeed, such a derivation is licit, since Jensen’s inequality and (1.12) entail∣∣∣∣∣EW

[
φ
(
Z`t (x)

)( N∑
n=1

1

σn

e−λnt 〈h, en〉∫ t
0 e
−2λn(t−s)d`s

∫ t

0
e−λn(t−s)dxn`s

)] ∣∣∣∣∣
`=L(·)

∣∣∣∣∣
2

≤ ‖φ‖2∞
N∑
n=1

1

σ2
n

e−2λnt |〈h, en〉|2∫ t
0 e
−2λn(t−s)dLs

, (1.21)

with the right–hand side which does not depend on x and is integrable. In fact, for every n = 1, . . . , N ,
recalling that L1 ∼ stable

(
α, 1, c̄1/α, 0

)
by (1.1), we have∫ t

0
e−2λn(t−s)dLs ∼ stable

(
α, 1, c̄

1
α

(
1− e−2αλnt

2αλn

)1/α

, 0

)

=⇒
∫ t

0
e−2λn(t−s)dLs ∼

(
1− e−2αλnt

2αλn

) 1
α

L1,

hence by (1.17) there exists cα > 0 such that

E

[
N∑
n=1

1

σ2
n

e−2λnt |〈h, en〉|2∫ t
0 e
−2λn(t−s)dLs

]
≤ E

[
1

L1

]( N∑
n=1

e−2λnt

σ2
n

(
2αλn

1− e−2αλnt

) 1
α

|〈h, en〉|2
)

≤ cα
N∑
n=1

e−2λnt

σ2
n

(
2αλn

1− e−2αλnt

) 1
α

|〈h, en〉|2 . (1.22)

Concerning the gradient estimate, it is sufficient to combine (1.20), (1.21) & (1.22) and to recall
that the L1–norm of a random variable is smaller than its L2–norm to get

|〈∇E [φ (Zxt )] , h〉| ≤ cα ‖φ‖∞ sup
n=1,...,N

(
1

σn

2α

√
2αλn

1− e−2αλnt
e−λnt

)
|h| , x, h ∈ RN ,

where the constant cα is allowed to be different from the one in (1.22). The desired inequality (1.19) is
then recovered taking the sup for |h| ≤ 1, and the proof is complete. �
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Remark 1.3. The derivative formula in (1.18) is different from the Bismut–Elworthy–Li’s type formula
provided by [178]. More precisely, according to [178, Theorem 1.1], if σ2

n > 0, n = 1, . . . , N and
φ ∈ C1

b

(
RN
)
, then for every t > 0, x ∈ RN and h ∈ RN ,

〈∇E [φ (Zxt )] , h〉 = E
[

1

Lt
φ (Zxt )

∫ t

0

(√
Q
)−1

esAh · dWN
Ls

]
.

As a side note, we refer to [175] for a derivative formula of Bismut–Elworthy–Li’s type for SDEs
driven by a multiplicative Lévy noise (not necessarily α−stable) obtained by subordination of a Brownian
motion.

Remark 1.4. Under the same hypotheses of Theorem 1.6, the derivative formula in (1.18) holds true
also for a subordinator L which is not α−stable and such that E

[
L
−1/2
t

]
<∞ for every t > 0 (sufficient

conditions for this to happen can be found, e.g., in [70, Theorem 2.1]). The proof is the same as before,
as long as we justify the differentiation under the expected value. To do that, we simply note that the
expectation of the square root of the right–hand side in (1.21) is finite by the estimate(∫ t

0
e−2λn(t−s)dLs

)−1/2

≤ eλntL−1/2
t , n = 1, . . . , N.

1.2.2 Infinite–dimensional case

In this subsection we analyze the general case where H is infinite–dimensional. We work under the
following assumption.

Hypothesis 1.2. Suppose that σ2
n > 0, n ∈ N, and that

sup
n

(
1

σn

2α

√
2αλn

1− e−2αλnt
e−λnt

)
≤ Ct for every t > 0, for some function Ct > 0.

In this setting, for every h ∈ H and t > 0, we can define the real–valued random variable

∞∑
n=1

1

σn

e−λnt 〈h, en〉∫ t
0 e
−2λn(t−s)dLs

∫ t

0
e−λn(t−s)dβnLs := L2 − lim

N→∞

(
N∑
n=1

1

σn

e−λnt 〈h, en〉∫ t
0 e
−2λn(t−s)dLs

∫ t

0
e−λn(t−s)dβnLs

)
.

Indeed, with the same argument as the one in (1.22), Hypothesis 1.2 yields

E

∣∣∣∣∣
M∑
n=m

1

σn

e−λnt 〈h, en〉∫ t
0 e
−2λn(t−s)dLs

∫ t

0
e−λn(t−s)dβnLs

∣∣∣∣∣
2
 ≤ cα M∑

n=m

e−2λnt

σ2
n

(
2αλn

1− e−2αλnt

) 1
α

|〈h, en〉|2

≤ cαC2
t

(
M∑
n=m

|〈h, en〉|2
)
−→

m,M→∞
0,

where cα > 0. In particular,

E

∣∣∣∣∣
∞∑
n=1

1

σn

e−λnt 〈h, en〉∫ t
0 e
−2λn(t−s)dLs

∫ t

0
e−λn(t−s)dβnLs

∣∣∣∣∣
2
 1

2

≤
√
cαCt ‖h‖H . (1.23)



1.2. Smoothing effect of the Markov Transition Semigroup 39

Hence the following, useful property holds:
∞∑
n=1

1

σn

e−λnt 〈hm, en〉∫ t
0 e
−2λn(t−s)dLs

∫ t

0
e−λn(t−s)dβnLs

L2

−→
∞∑
n=1

1

σn

e−λnt 〈h, en〉∫ t
0 e
−2λn(t−s)dLs

∫ t

0
e−λn(t−s)dβnLs ,

as hm → h. (1.24)

At this point we can present the main theorem of the chapter.

Theorem 1.7. Assume Hypotheses 1.1 & 1.2. Then for every φ ∈ Bb (H) and t > 0 the function
Rtφ ∈ C1

b (H) and there exists cα > 0 such that

sup
x∈H
‖∇Rtφ (x)‖H ≤ cαCt ‖φ‖∞ for every t > 0. (1.25)

Moreover, given φ ∈ Cb (H) and t > 0, for every x, h ∈ H the Gateaux derivative of Rtφ at x along
the direction h is given by

〈∇Rtφ (x) , h〉 = E

[
φ (Zxt )

( ∞∑
n=1

1

σn

e−λnt 〈h, en〉∫ t
0 e
−2λn(t−s)dLs

∫ t

0
e−λn(t−s)dβnLs

)]
. (1.26)

Proof. Fix t > 0 and a function φ ∈ Cb (H).
We first consider the case dimH = N, identifying H with RN , as usual. Evidently (1.26) coincides

with (1.18) and the map x 7→ ∇Rt (x) is a continuous function from RN into itself: this follows from
dominated convergence, together with φ ∈ Cb

(
RN
)
and Zxnt → Zxt a.s. as xn → x. Moreover,

Hypothesis 1.2 applied to (1.19) directly entails (1.25), therefore Rtφ ∈ C1
b

(
RN
)
. In order to pass to

infinite dimension it is convenient to write

Rtφ (x+ h)−Rtφ (x) =

∫ 1

0

〈
∇Rtφ

(
(1− ρ)x+ ρ (x+ h)

)
, h
〉
dρ

=

∫ 1

0
E

[
φ
(
Zx+ρh
t

)( N∑
n=1

1

σn

e−λnt 〈h, en〉∫ t
0 e
−2λn(t−s)dLs

∫ t

0
e−λn(t−s)dβnLs

)]
dρ. (1.27)

We now consider the general case dimH = ∞. Let πN be the projection onto the first N Fourier
components and HN be its range. Due to the diagonal structure of our model, the projections πNZxt of
the OU–process are, P−a.s.,

πNZ
x
t =

N∑
n=1

e−λnt 〈x, en〉 en +

N∑
n=1

(∫ t

0
e−λn(t−s)σndβ

n
Ls

)
en, N ∈ N.

Therefore introducing the operators AN := A
∣∣
HN

and QN := Q
∣∣
HN

, which map HN into itself, we can
write πNZxt = etAN (πNx) + Z̃AN ,QN (t): this shows that such projections are OU–processes in HN .
Thus, the dominated convergence theorem together with the expression in (1.27) and the continuity of
φ give

Rtφ (x+ h)−Rtφ (x) = lim
N→∞

E
[
φ
(
πNZ

x+h
t

)
− φ (πNZ

x
t )
]

= lim
N→∞

∫ 1

0
E

[
φ
(
πNZ

x+ρh
t

)( N∑
n=1

1

σn

e−λnt 〈h, en〉∫ t
0 e
−2λn(t−s)dLs

∫ t

0
e−λn(t−s)dβnLs

)]
dρ

=

∫ 1

0
E

[
φ
(
Zx+ρh
t

)( ∞∑
n=1

1

σn

e−λnt 〈h, en〉∫ t
0 e
−2λn(t−s)dLs

∫ t

0
e−λn(t−s)dβnLs

)]
dρ.
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Now we can define dx (Rtφ) (h) := E
[
φ (Zxt )

(∑∞
n=1

1
σn

e−λnt〈h,en〉∫ t
0 e
−2λn(t−s)dLs

∫ t
0 e
−λn(t−s)dβnLs

)]
: it is the

Fréchet differential of Rtφ at x. To see this, it is sufficient to note that the linear operator dx (Rtφ) (·)
is continuous by the property in (1.24) and to apply Hölder’s inequality, the dominated convergence
theorem and (1.23) to get, for a positive constant cα,

|Rtφ (x+ h)−Rtφ (x)− dx (Rtφ) (h)|

≤ cαCt ‖h‖H
∫ 1

0
E
[∣∣∣φ(Zx+ρh

t

)
− φ (Zxt )

∣∣∣2]1/2

dρ = o (‖h‖H) .

As a consequence of the definition of dx (Rtφ) (·), the formula in (1.26) is verified. The upper bound
(1.25) for the norm of the gradient is then obtained by (1.23) from the next, straightforward computation:

‖∇Rtφ (x)‖H = sup
‖h‖H≤1

|〈∇Rtφ (x) , h〉| = sup
‖h‖H≤1

|dx (Rtφ) (h)| ≤ cαCt ‖φ‖∞ , x ∈ H.

We also note that

sup
‖h‖H≤1

|(dxn (Rtφ)− dx (Rtφ)) (h)| ≤ cαCt E
[
|φ (Zxnt )− φ (Zxt )|2

]1/2
→ 0 as xn → x :

this proves the continuity of the map x 7→ d· (Rtφ), hence Rtφ ∈ C1
b (H).

Finally, we need to study the case where φ is just Borel measurable and bounded, without the
hypothesis of continuity. In order to do this, it is sufficient to observe that by the mean value theorem
and (1.25) we have, for every φ ∈ C2

b (H) ,

|Rtφ (x)−Rtφ (y)| ≤ cαCt ‖φ‖∞ ‖x− y‖H , x, y ∈ H. (1.28)

Being Rt Markovian, [64, Lemma 7.1.5] implies that the same holds true for every φ ∈ Bb (H). In
particular, Rt maps bounded, Borel measurable functions in bounded, Lip–continuous functions. The
semigroup law let us write Rtφ = Rs (Rt−sφ) for some 0 < s < t, which proves Rtφ ∈ C1

b (H). The
bound (1.25) follows from (1.28), hence the proof is complete. �

We now focus on the gradient estimate (1.9). We need to substitute Hypothesis 1.2 with the following,
stronger one.

Hypothesis 1.3. Suppose that σ2
n > 0, n ∈ N, and that

sup
n

(
1

σn

2α

√
2αλn

1− e−2αλnt
e−λnt

)
≤ C0

1

tγ
, for every t > 0, for some C0 > 0, 0 < γ < 1.

In other terms, in Hypothesis 1.2 we take Ct := C0 t
−γ , t > 0, for some C0 > 0, γ ∈ (0, 1).

Remark 1.5. Observe that, for every n ∈ N, the term

1

σn

2α

√
2αλn

1− e−2αλnt
e−λnt ∼ 1

σn

1

t1/(2α)
as t ↓ 0.

Therefore, Hypothesis 1.3 should be verified only in the case α ∈
(

1
2 , 1
)
and for some γ ∈

[
1

2α , 1
)
.

It is also worth noticing that Hypothesis 1.3 is equivalent to the next condition.
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Hypothesis 1.4. For some C1 > 0 and γ ∈
[

1
2α , 1

)
,

σn ≥ C1 λ
1

2α
−γ

n , n ∈ N.

A short argument proving the equivalence of the two statements is shown in [151, Hypothesis (N)].

At this point the next result is immediate.

Corollary 1.8. Consider α ∈
(

1
2 , 1
)
and assume Hypotheses 1.1 & 1.3. Then for every φ ∈ Bb (H)

the function Rtφ ∈ C1
b (H) , t > 0, and the gradient estimate (1.9) holds, namely there exists a constant

C > 0 such that
sup
x∈H
‖∇Rtφ (x)‖H ≤

C

tγ
‖φ‖∞ for every t > 0,

where γ ∈
[

1
2α , 1

)
is the one appearing in Hypothesis 1.3.

Example 1.2. We investigate Hypothesis 1.3 –in its equivalent formulation Hypothesis 1.4– in the same
framework as in Example 1.1. So we take A = ∆ (hence −λk = − (2π)2 |k|2 , k ∈ Zd0) and study two
possible choices for Q.

• If Q = Id, then

1 ≥ 1

(2π |k|)2(γ− 1
2α)

, k ∈ Zd0

for every γ ∈
[

1
2α , 1

)
. Therefore, in dimension d = 1 both Hypotheses 1.1 & 1.3 are satisfied.

In particular, motivated by the fact that Rt is a regularization operator with R0 = Id, we are
interested in the behavior of ∇Rtφ around 0, where φ ∈ Bb (H). Therefore we choose γ = 1

2α and
Corollary 1.8 provides the next estimate:

sup
x∈H
‖∇Rtφ (x)‖H ≤ C ‖φ‖∞

1

t2α
for every t > 0,

for a positive constant C.

• If Q = Qη = (−∆)−η for η > 0, then σ(η)
k = λ

−η/2
k , k ∈ Zd0, and Hypothesis 1.4 holds true if and

only if η ≤ 2γ − 1
α . Since we can take any γ ∈

[
1

2α , 1
)
, the aforementioned condition holds as

soon as η < 2 − 1
α . Combining this result with (1.8) obtained in Example 1.1, we conclude that

Hypotheses 1.1 & 1.3 simultaneously hold if and only if

η ∈
(

max

{
d− 2

2α
, 0

}
, 2− 1

α

)
.

It then follows that there exist negative fractional powers of the Laplacian Qη = (−∆)−η meeting
the requirements of Corollary 1.8 up to dimension d = 3. Specifically, for d = 1, 2 there is a Qη
with the searched properties for every α ∈

(
1
2 , 1
)
, whereas in dimension d = 3 we can find such a

Qη only for α ∈
(

3
4 , 1
)
.
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Chapter 2

Probability computation via mild
Kolmogorov equations

In this chapter, given α ∈ (1
2 , 1), we study an iterative scheme that allows to approximate the Markov

transition semigroup associated with semilinear SDEs in RN driven by 2α−stable, rotation–invariant
Lévy processes obtained by subordination of Brownian motions, see (I.1)-(I.3). This iterative scheme
arises from a mild integral formulation of the Kolmogorov equation corresponding to the SDEs, see
(I.4), and relies on a single bulk of Monte Carlo simulations as several parameters of the dynamics
change. In Section 2.6 we perform numerical experiments in dimension N = 100 for two choices of the
nonlinear drift B0. The outcomes show that, in these examples, the first iteration provides a compelling
improvement over the linear OU approximation.

Notation Let d,m, n ∈ N. In this chapter, elements of Rd are columns vectors. For any u, v ∈ Rd,
we denote by |u| the Euclidean norm and by 〈u, v〉 = u>v the standard scalar product. For a matrix
A ∈ Rd×m, |A| = supx∈Rm : |x|=1 |Ax| is the operator norm. Given a vector field B : Rd → Rm×n, the
uniform norm is ‖B‖∞ = supx∈Rd |B (x)|. In particular, if n = 1 then the Jacobian matrix is denoted by
DB ∈ Rm×d, and DhB = DBh, h ∈ Rd; if also m = 1 (so that B is a scalar function) then the gradient
∇B is a row vector and D2B ∈ Rd×d represents the Hessian matrix. For an integer k ∈ N ∪ {0}, the
space Ckb

(
Rd;Rm×n

)
is constituted by the continuous vector fields B which are bounded, continuously

differentiable up to order k with bounded derivatives. Taken h = 1, . . . , k and B ∈ Ckb
(
Rd;Rm×n

)
, we

write
∥∥∂hB∥∥∞ = supi,j,h ‖∂hBi,j‖∞, where B = (Bi,j) , i = 1, . . . ,m, j = 1, . . . , n and h ∈ (N ∪ {0})d

is a multi–index with length ‖h‖1 = h.

2.1 Preliminaries and Kolmogorov backward equation in mild form

Fix N ∈ N and a complete probability space (Ω,F ,P). Consider N independent Brownian motions
(βn)n=1,...,N : we write W =

[
β1, . . . , βN

]>. Moreover, for α ∈ (0, 1) we take a strictly α−stable
subordinator L = (Lt)t≥0 independent from (βn)n, and denote by FL the augmented σ−algebra it
generates, i.e., FL = σ

(
FL0 ∪N

)
, where FL0 is the natural σ−algebra generated by L and N is the

family of F−negligible sets. In other words, L is an increasing Lévy process with (cfr. [164, Example
24.12] and (1.1))

E
[
eiuL1

]
= exp

{
−γ̄α |u|α

(
1− i tan

πα

2
signu

)}
, u ∈ R, for some γ̄ > 0. (2.1)
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Let us introduce the diagonal matrices A = −diag [λ1, . . . , λN ] andQ = diag
[
σ2

1, . . . , σ
2
N

]
, with 0 < λ1 ≤

· · · ≤ λN and σ2
n > 0, n = 1, . . . , N . We endow Ω with the minimal augmented filtration F =

(
Ft
)
t≥0

generated by WL, which means Ft = σ
(
FWL

0,t ∪N
)
for t ≥ 0, with

(
FWL

0,t

)
t≥0

being the natural filtration
of WL, see also Remark 1.1.

Given T > 0 and a continuous function f : [0, T ] → RN , if x ∈ RN and 0 ≤ s < T then Zs,x =
(Zs,xt )t∈[s,T ] is the OU process starting from x at time s, i.e., it is the unique solution of the next linear
SDE

dZs,xt = (AZs,xt + f (t)) dt+
√
QdWLt , Zs,xs = x. (2.2)

We denote by R = (Rs,t) , 0 ≤ s ≤ t ≤ T , the time–dependent, Markov transition semigroup associated
with this family of processes:

Rs,tφ = E
[
φ
(
Zs,·t

)]
, 0 ≤ s ≤ t < T, φ ∈ Bb

(
RN
)
, (2.3)

where Bb
(
RN
)
denotes the space of real–valued, Borel measurable and bounded functions defined on

RN . The Chapman–Kolmogorov equations ensure that

Rs,t (Rt,uφ) = Rs,uφ, 0 ≤ s < t < u ≤ T, φ ∈ Bb
(
RN
)
. (2.4)

For any 0 ≤ s < t ≤ T , we define ILs,t =
∫ t
s e

2(t−r)AQdLr : Ω→ RN×N and Fs,t =
∫ t
s e

(t−r)Af (r) dr ∈
RN . An adaptation of [34, Theorem 6] (see also Theorem 1.6 in Chapter 1) guarantees that, for any
φ ∈ Bb

(
RN
)
, the function Rs,tφ is differentiable at any point x ∈ RN in every direction h ∈ RN , with〈
∇>Rs,tφ (x) , h

〉
= E

[
φ (Zs,xt )

〈(
ILs,t
)−1

e(t−s)Ah, Zs,xt − e(t−s)Ax− Fs,t
〉]
. (2.5)

Moreover, Rs,tφ ∈ C1
b

(
RN
)
and the following gradient estimate holds true for some constant cα > 0:

∥∥∥∇>Rs,tφ∥∥∥
∞
≤ cα ‖φ‖∞ sup

n=1,...,N

(
1

σn

2α

√
2αλn

1− e−2αλn(t−s) e
−λn(t−s)

)
,

0 ≤ s < t ≤ T. (2.6)

In the sequel, for every x ∈ RN and t ∈ (0, T ] we are going to need the continuity of R·,tφ (x) in the
interval [0, t) [resp., in the closed interval [0, t]] when φ ∈ Bb

(
RN
)
[resp., φ ∈ Cb

(
RN
)
]. In order to

prove this property, we first note that a variation of constants formula lets us consider, for 0 ≤ s ≤ t ≤ T
and x ∈ RN (from (2.2))

Zs,xt = e(t−s)Ax+

∫ t

s
e(t−r)Af (r) dr +

∫ t

s
e(t−r)A√QdWLr . (2.7)

This expression shows that the process (Zs,xt )s∈[0,t] is stochastically continuous (in the variable s). As
a consequence, if φ ∈ Cb

(
RN
)
, then we can easily deduce the continuity of R·,tφ (x) in [0, t] applying

the continuous mapping and Vitali’s convergence theorems to (2.3). In the general case φ ∈ Bb
(
RN
)
,

one can use the same argument combined with the regularizing property of R and (2.4) to obtain the
continuity of R·,tφ (x) in [0, t), as desired.

Finally, observe that there exists a constant C = C (α,A,Q) > 0 such that

cα sup
n=1,...,N

(
1

σn

2α

√
2αλn

1− e−2αλn(t−s) e
−λn(t−s)

)
≤ C 1

(t− s)1/(2α)
, 0 ≤ s < t ≤ T.
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We refer to [34, Remark 5] (see Remark 1.5) for a similar computation. Let us assume α ∈
(

1
2 , 1
)
: in

this way, denoting by γ = 1/ (2α), we have γ ∈ (0, 1) and the bound in (2.6) entails∥∥∥∇>Rs,tφ∥∥∥
∞
≤ C ‖φ‖∞

1

(t− s)γ
, 0 ≤ s < t ≤ T, φ ∈ Bb

(
RN
)
. (2.8)

For a given measurable and bounded vector field B : [0, T ]× RN → RN , we are concerned with the
analysis of the following Kolmogorov backward equation in mild, integral form:

uφs (t, x) = Rs,tφ (x) +

∫ t

s
Rs,r

(〈
B (r, ·) ,∇>uφr (t, ·)

〉)
(x) dr,

s ∈ [0, t] , x ∈ RN , (2.9)

where t ∈ (0, T ] and φ ∈ Bb
(
RN
)
. We denote by ‖B‖0,T = sup0≤t≤T ‖B (t, ·)‖∞. In order to study

(2.9), for every 0 < t1 < t2 ≤ T, we consider the Banach space
(

Λγ1 [t1, t2] , ‖·‖Λγ1 [t1,t2]

)
defined by

Λγ1 [t1, t2] =
{
V : [t1, t2]× RN → R measurable : V (·, x) ∈ C ([t1, t2]) , x ∈ RN ;

V (s, ·) ∈ C1
b

(
RN
)
, s ∈ [t1, t2] ; sup

s∈[t1,t2]
sγ ‖V (s, ·)‖1 <∞

}
,

‖V ‖Λγ1 [t1,t2] = sup
s∈[t1,t2]

sγ ‖V (s, ·)‖1 , where ‖V (s, ·)‖1 = ‖V (s, ·)‖∞ +
∥∥∂1V (s, ·)

∥∥
∞ .

When t1 = 0, we are careful to remove the left–end point of the interval [t1, t2] in the previous definitions,
so that we will be working with the space

(
Λγ1 (0, t2] , ‖·‖Λγ1 (0,t2]

)
. The following lemma proves the well–

posedness of (2.9). We refer to [66, Theorem 9.38] for an analogous result concerning the Kolmogorov
forward equation in mild form associated with OU processes in infinite dimension corresponding to
Brownian motions.

Theorem 2.1. Let α ∈
(

1
2 , 1
)
and B : [0, T ] × RN → RN be a measurable and bounded vector field.

Then for every φ ∈ Bb
(
RN
)
and 0 < t ≤ T , there exists a unique solution uφs (t, x) , s ∈ [0, t] , x ∈ RN ,

of (2.9) such that uφt−� (t, ·) ∈ Λγ1 (0, t], where γ = 1/ (2α).

Proof. Fix φ ∈ Bb
(
RN
)
, t ∈ (0, T ] , s̄ ∈ (0, t] and introduce the map Γ1 : Λγ1 (0, s̄]→ Λγ1(0, s̄] given by

Γ1V (s, x) = Rt−s,tφ (x) +

∫ t

t−s
Rt−s,r

(〈
B (r, ·) ,∇>V (t− r, ·)

〉)
(x) dr,

0 < s ≤ s̄, x ∈ RN , (2.10)

for every V ∈ Λγ1 (0, s̄]. Notice that such an application is well defined and with values in Λγ1 (0, s̄], thanks
to the properties of R discussed above, the dominated convergence theorem and the next computations
based on (2.8):

sup
x∈RN

∣∣∣∣∫ t

t−s
∂xjRt−s,r

(〈
B (r, ·) ,∇>V (t− r, ·)

〉)
(x) dr

∣∣∣∣
≤ NC ‖B‖0,T ‖V ‖Λγ1 (0,s̄]

∫ t

t−s

dr

(r − (t− s))γ (t− r)γ

≤ 4γ

1− γ
NC ‖B‖0,T ‖V ‖Λγ1 (0,s̄] s

1−2γ , 0 < s ≤ s̄, j = 1, . . . , N. (2.11)
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Here C = C (α,A,Q) > 0 is the same constant as in (2.8), and the last inequality is obtained using the
bound

∫ t

t−s

dr

(r − (t− s))γ (t− r)γ
=

{∫ t− s
2

t−s
+

∫ t

t− s
2

}
dr

(r − (t− s))γ (t− r)γ

= 2

∫ t− s
2

t−s

dr

(r − (t− s))γ (t− r)γ
≤ 2

1− γ

(
2

s

)γ (s
2

)1−γ
=

4γ

1− γ
s1−2γ , (2.12)

where for the second equality we perform the substitution u = 2t− s− r. Estimates similar to those in
(2.11) allow to write, for every V1, V2 ∈ Λγ1 (0, s̄],

sup
x∈RN

|(Γ1V1 − Γ1V2) (s, x)|+ sup
x∈RN

∣∣∂xj (Γ1V1 − Γ1V2) (s, x)
∣∣

≤ 4γ

1− γ
N ‖B‖0,T

(
s1−γ + Cs1−2γ

)
‖V1 − V2‖Λγ1 (0,s̄] , 0 < s ≤ s̄, j = 1, . . . , N.

Hence we obtain

‖Γ1V1 − Γ1V2‖Λγ1 (0,s̄] ≤
[

4γ

1− γ
N ‖B‖0,T

(
s̄+ Cs̄1−γ)] ‖V1 − V2‖Λγ1 (0,s̄] . (2.13)

This shows that, for s̄ sufficiently small, the map Γ1 is a contraction in Λγ1 (0, s̄]: we denote by V 1 its
unique fixed point. Now define

uφs (t, x) = Rs,tφ (x) +

∫ t

s
Rs,r

(〈
B (r, ·) ,∇>V 1 (t− r, ·)

〉)
(x) dr,

t− s̄ ≤ s ≤ t, x ∈ RN , (2.14)

and notice that uφt−s (t, x) = V 1 (s, x) , 0 < s ≤ s̄, x ∈ RN . Therefore uφ� (t, ·) is the unique, local solution
of (2.9) (in the strip [t− s̄, t]× RN ) such that uφt−� (t, ·) ∈ Λγ1 (0, s̄] .

At this point, we can repeat the same procedure to construct the solution of (2.9) in the interval
[t− 2s̄, t− s̄], because the relation among constants in (2.13) –which is necessary to get a contraction–
does not depend on the initial condition. Specifically, we take φ1 = uφt−s̄ (t, ·) ∈ C1

b

(
RN
)
and define the

map

Γ2V (s, x) = Rt−s,t−s̄ φ1 (x) +

∫ t−s̄

t−s
Rt−s,r

(〈
B (r, ·) ,∇>V (t− r, ·)

〉)
(x) dr,

s̄ ≤ s ≤ 2s̄, x ∈ RN ,

for every V ∈ Λγ1 [s̄, 2s̄]. Computations analogous to the ones in the previous step show that the mapping
Γ2 : Λγ1 [s̄, 2s̄]→ Λγ1 [s̄, 2s̄] is a contraction: its unique fixed point is denoted by V 2. Then we call

uφ1
s (t− s̄, x) = Rs,t−s̄φ1 (x) +

∫ t−s̄

s
Rs,r

(〈
B (r, ·) ,∇>V 2 (t− r, ·)

〉)
(x) dr,

t− 2s̄ ≤ s ≤ t− s̄, x ∈ RN ;



2.1. Preliminaries and Kolmogorov backward equation in mild form 47

notice that uφ1
t−s (t− s̄, x) = V 2 (s, x) , s̄ ≤ s ≤ 2s̄, x ∈ RN , and that by the definition of φ1, one has

uφ1
t−s̄ (t− s̄, ·) = uφt−s̄ (t, ·). Now we extend the function uφs (t, x) in (2.14) assigning

uφs (t, x) =

{
uφs (t, x) , t− s̄ ≤ s ≤ t
uφ1
s (t− s̄, x) , t− 2s̄ ≤ s ≤ t− s̄

, x ∈ RN .

By the Chapman–Kolmogorov equations and Fubini’s theorem we realize that uφ� (t, ·) is the unique
local solution of (2.9) (in the strip [t− 2s̄, t] × RN ) such that uφt−� (t, ·) ∈ Λγ1 (0, 2s̄] . In the sequel, we
can simply denote it by uφ� (t, ·).

This argument by steps of length s̄ can be repeated iteratively to cover the whole interval [0, t] and
obtain the unique, global solution uφ� (t, ·) of (2.9) such that uφt−� (t, ·) ∈ Λγ1 (0, t]. Thus, the proof is
complete. �

If φ ∈ C1
b

(
RN
)
, then by (2.7) one can directly write ∇Rs,tφ (x) = E [∇φ (Zs,xt )] e(t−s)A. Next,

considering that
∣∣e(t−s)A∣∣ ≤ 1, 0 ≤ s ≤ t ≤ T , an application of (2.5)-(2.8) shows that Rs,tφ ∈ C2

b

(
RN
)
,

with ∥∥∂2Rs,tφ
∥∥
∞ ≤ C

∥∥∂1φ
∥∥
∞

1

(t− s)γ
, 0 ≤ s < t ≤ T,

where C = C (α,A,Q) > 0 is the same constant as in (2.8). This argument can be iterated to claim
that, given an integer n ≥ 2 and φ ∈ Cn−1

b

(
RN
)
, Rs,tφ ∈ Cnb

(
RN
)
and

‖∂nRs,tφ‖∞ ≤ C
∥∥∂n−1φ

∥∥
∞

1

(t− s)γ
, 0 ≤ s < t ≤ T. (2.15)

The previous consideration allows to extend Theorem 2.1. To this purpose, for an integer n ≥ 2 and
0 < t1 < t2 ≤ T we introduce the Banach space

(
Λγn[t1, t2], ‖V ‖Λγn[t1,t2]

)
defined by

Λγn[t1, t2] =
{
V : [t1, t2]× RN → R measurable : V (·, x) ∈ C ([t1, t2]) , x ∈ RN ;

V (s, ·) ∈ Cnb
(
RN
)
, s ∈ [t1, t2] ; sup

s∈[t1,t2]
sγ ‖V (s, ·)‖n <∞

}
,

‖V ‖Λγn[t1,t2] = sup
s∈[t1,t2]

sγ ‖V (s, ·)‖n , where ‖V (s, ·)‖n =‖V (s, ·)‖∞ +
n∑
j=1

∥∥∂jV (s, ·)
∥∥
∞ .

As we have done before, when t1 = 0 we remove the left–end point of [t1, t2] .

Corollary 2.2. Let α ∈
(

1
2 , 1
)
, n ≥ 2 be an integer and B ∈ C0,n−1

b

(
[0, T ]× RN ;RN

)
. Then for every

φ ∈ Cn−1
b

(
RN
)
and 0 < t ≤ T , there exists a unique solution uφs (t, x) , s ∈ [0, t] , x ∈ RN , of (2.9) such

that uφt−� (t, ·) ∈ Λγn (0, t] , where γ = 1/ (2α).

Proof. Take an integer n ≥ 2; the argument parallels the one in the proof of Theorem 2.1, so here we only
show that, for a given φ ∈ Cn−1

b

(
RN
)
and s̄ ∈ (0, t] sufficiently small, the map Γ1 : Λγn (0, s̄]→ Λγn (0, s̄]

in (2.10) is well defined and a contraction. First, we note that for every V ∈ Λγn (0, s̄] and multi–index
j such that 1 ≤ ‖j‖1 ≤ n,

∂jΓ1V (s, x) = ∂jRt−s,tφ (x) +

∫ t

t−s
∂jRt−s,r

(〈
B (r, ·) ,∇>V (t− r, ·)

〉)
(x) dr,

0 < s ≤ s̄, x ∈ RN ,
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and that sups∈(0,s̄] s
γ
∥∥∂‖j‖1Rt−s,tφ∥∥∞ < ∞ by (2.15). Secondly, invoking the estimates in (2.12) and

(2.15), for every 0 < s ≤ s̄,

sup
x∈RN

∣∣∣∣∫ t

t−s
∂jRt−s,r

(〈
B (r, ·) ,∇>V (t− r, ·)

〉)
(x) dr

∣∣∣∣
≤ NCnC ‖B‖n−1,T ‖V ‖Λγn(0,s̄]

∫ t

t−s

dr

(r − (t− s))γ (t− r)γ

≤ 4γ

1− γ
NCnC ‖B‖n−1,T ‖V ‖Λγn(0,s̄] s

1−2γ , Cn =

(
n− 1

[2−1 (n− 1)]

)
,

where ‖B‖n−1,T = sup0≤t≤T

(
‖B (t, ·)‖∞ +

∑n−1
j=1

∥∥∂jB (t, ·)
∥∥
∞

)
and C = C (α,A,Q) > 0 is the same

constant as in (2.8). It then follows that Γ1V ∈ Λγn (0, s̄], with (V1, V2 ∈ Λγn (0, s̄])

‖Γ1V1 − Γ1V2‖Λγn(0,s̄] ≤
[

4γ

1− γ
N ‖B‖n−1,T

(
s̄+ nCnCs̄

1−γ)] ‖V1 − V2‖Λγn(0,s̄] ,

which reduces to (2.13) when n = 1 and proves the contraction property of Γ1 for s̄ small enough. �

2.2 The time–dependent Markov transition semigroup

Let α ∈ (0, 1) and B0 : [0, T ] × RN → RN be a vector field such that B0 ∈ C0,1
b

(
[0, T ]× RN ;RN

)
.

For every x ∈ RN and 0 ≤ s ≤ T , we define the process Xs,x = (Xs,x
t )t∈[s,T ] to be the unique (up to

indistinguishability) solution of the semilinear stochastic differential equation

dXs,x
t = (AXs,x

t +B0 (t,Xs,x
t )) dt+

√
QdWLt , Xs,x

s = x ∈ RN . (2.16)

We denote by P = (Ps,t) , 0 ≤ s ≤ t ≤ T , the corresponding time–dependent Markov transition
semigroup given by

Ps,tφ = E
[
φ
(
Xs,·
t

)]
, φ ∈ Bb

(
RN
)
.

The connection between the SDE in (2.16) and the Kolmogorov backward equation in mild integral
form (2.9) is provided by the next, fundamental result.

Theorem 2.3. Let α ∈
(

1
2 , 1
)
, B0 ∈ C0,3

b

(
[0, T ]× RN ;RN

)
, f ∈ C

(
[0, T ] ;RN

)
and define B = B0−f .

Then, for every φ ∈ Bb
(
RN
)
and 0 < t ≤ T , the function Ps,tφ (x) , 0 ≤ s ≤ t, x ∈ RN , is the unique

solution of (2.9) such that Pt−�,tφ (·) ∈ Λγ1 (0, t] , where γ = 1/ (2α).

The purpose of this section is to develop a self–contained procedure which is specific to our framework
and allows to prove Theorem 2.3 via important, preliminary results. In the case of time–independent
nonlinearities and f ≡ 0 (hence for Kolmogorov forward equations in mild form), Theorem 2.3 is known
for noises different from ourWL. As regards independent α−stable Lévy processes in finite dimension, it
has been established in [151, Lemma 5.12] (its proof relies on the theory of one–parameter semigroups,
so it cannot be adapted to our framework). As for Brownian motions in infinite dimension, we refer to
[66, Theorem 9.43].

Let α ∈ (0, 1) , B0 ∈ C0,1
b

(
[0, T ]× RN ;RN

)
and recall that the subordinated Brownian motion

WL is an isotropic (i.e., rotation–invariant), 2α−stable, RN−valued Lévy process with compensator
ν (dz) � |z|−(N+2α) dz and no continuous martingale part (see [164, Theorem 30.1]). Here � denotes
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the equality up to a positive multiplicative constant. By [150, Theorem 3.1] (see also [149]) there is
a sharp stochastic flow Xs,x

t generated by the SDE (2.16) which is jointly measurable in (s, t, x, ω)
and, P−a.s., simultaneously continuous in x and càdlàg in s and t. More specifically, there exists an
almost–sure event Ω′ such that the following facts hold true for every ω ∈ Ω′:

• for every x ∈ RN and t ∈ [0, T ], the mapping s 7→ Xs,x
t (ω) is càdlàg in [0, t];

• for every x ∈ RN and s ∈ [0, T ], the mapping t 7→ Xs,x
t (ω) is càdlàg in [s, T ];

• for every 0 ≤ s ≤ t ≤ T , the mapping x 7→ Xs,x
t (ω) is continuous in RN ;

• the flow property is satisfied, namely Xs,x
t (ω) = X

r,Xs,x
r (ω)

t (ω) for every x ∈ RN , 0 ≤ s < r < t ≤
T ;

• for every x ∈ RN and 0 ≤ s ≤ t ≤ T , Xs,x
t (ω)= x+

∫ t
s (AXs,x

r (ω)+B0 (r,Xs,x
r (ω))) dr

+
√
Q (WLt −WLs) (ω).

For every ω ∈ Ω \ Ω′, we set Xs,x
t (ω) = x, (s, t) ∈ [0, T ]2 , x ∈ RN : from now on, we work with such

a stochastic flow Xs,x
t . The next result shows that, under additional regularity requirements on B0, it

is differentiable with respect to x. Analogous claims concerning differentiability of stochastic flows can
be found in literature in, e.g., [61, Theorem 8.18] for the Brownian case and in [126, Theorem 3.4.2]
for the jumps one, although the latter requires regularity assumptions on the coefficients which are not
fulfilled by our framework. The proof, which carries out a path–by–path argument thanks to the already
mentioned properties guaranteed by [150], is postponed to Appendix 2.A.

Lemma 2.4. Let α ∈ (0, 1) , n ≥ 2 be an integer and B0 ∈ C0,n
b

(
[0, T ]× RN ;RN

)
. Then for every

ω ∈ Ω and 0 ≤ s ≤ t ≤ T , the function x 7→ Xs,x
t (ω) belongs to Cn

(
RN
)
, and there exists a constant

C > 0 depending only on A, B0, T, n and N such that

n∑
i=1

∥∥∂iXs,·
t (ω)

∥∥
∞ ≤ C, 0 ≤ s ≤ t ≤ T, ω ∈ Ω. (2.17)

The previous claim implies the following result regarding persistence of regularity.

Corollary 2.5. Let α ∈ (0, 1) , n ≥ 2 be an integer and φ ∈ Cnb
(
RN
)
. If B0 ∈ C0,n

b

(
[0, T ]× RN ;RN

)
,

then for every 0 ≤ s ≤ t ≤ T the function Ps,tφ ∈ Cnb
(
RN
)
. In addition,

sup
0≤s≤t≤T

(
‖Ps,tφ‖∞ +

n∑
i=1

∥∥∂iPs,tφ∥∥∞
)
<∞. (2.18)

Let D =
{
z ∈ RN , |z| ≤ 1

}
; we introduce the family of integro–differential operators (A (s))0≤s≤T ,

defined on every ψ ∈ C2
b

(
RN
)
by

A (s)ψ (x) =
〈
Ax+B0 (s, x) ,∇>ψ (x)

〉
+

∫
RN

[
ψ
(
x+

√
Qz
)
− ψ (x)− 1D (z)∇ψ (x)

√
Qz
]
ν (dz) , (2.19)

where x ∈ RN . We need the next preparatory result.
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Lemma 2.6. (i) Let α ∈
(

1
2 , 1
)
, 0 ≤ s ≤ T and x ∈ RN . If B0 ∈ C0,1

b

(
[0, T ]× RN ;RN

)
, then the

mapping r 7→ Ps,rA (r)φ (x) is continuous in [s, T ] for every φ ∈ C2
b

(
RN
)
;

(ii) Let α ∈ (0, 1) and 0 ≤ t ≤ T . If B0 ∈ C0,3
b

(
[0, T ]× RN ;RN

)
, then for every r ∈ [0, t] and

φ ∈ C3
b

(
RN
)
the mapping x 7→ A (r)Pr,tφ (x) belongs to C1

(
RN
)
.

Moreover, supr∈[0,t]

∥∥1B∇>A (r)Pr,tφ
∥∥
∞ <∞ for every bounded set B ⊂ RN .

Proof. We start off by proving Point (i). Fix 0 ≤ s ≤ T and x ∈ RN ; from (2.16), Gronwall’s
lemma, [134, Theorem 3.2] and the continuity in probability of the Lévy process WL we deduce that
E
[
supt∈[s,T ] |X

s,x
t |

p
]
< ∞ for every p ∈ (1, 2α), and that the process Xs,x

· is stochastically continuous
in [s, T ], as well. Consider r ∈ [s, T ] and a sequence (rn)n ⊂ [s, T ] such that rn → r as n→∞. Given
φ ∈ C2

b

(
RN
)
,

Ps,rnA (rn)φ (x)− Ps,rA (r)φ (x)

= Ps,rn (A (rn)φ−A (r)φ) (x) + (Ps,rnA (r)φ (x)− Ps,rA (r)φ (x)) =: In + IIn.

Since (2.19) entails (A (rn)φ−A (r)φ) (·) =
〈
B0 (rn, ·)−B0 (r, ·) ,∇>φ (·)

〉
we have, by Vitali’s and

dominated convergence theorems,

|In| ≤
∥∥∥∇>φ∥∥∥

∞

(
2 ‖DB0‖T,∞ E

[∣∣Xs,x
rn −X

s,x
r

∣∣]+ E [|B0 (rn, X
s,x
r )−B0 (r,Xs,x

r )|]
)
−→
n→∞

0,

where we denote by ‖DB0‖T,∞ = sup0≤t≤T ‖DB0 (t, ·)‖∞. As for IIn, note that A (r)φ is continuous in
RN , and that for every y ∈ RN (see (2.19)),

|A (r)φ (y)| ≤
∥∥∥∇>φ∥∥∥

∞

(
|A| |y|+ ‖B0‖0,T

)
+

1

2

∥∥D2φ
∥∥
∞

∫
RN

1D (z)
∣∣∣√Qz∣∣∣2 ν (dz) + 2 ‖φ‖∞

∫
RN

1Dc (z) ν (dz) . (2.20)

Therefore by the continuous mapping and Vitali’s convergence theorem we obtain IIn → 0 as n→∞,
proving Point (i).

We now move on to Point (ii), where it is sufficient to require α ∈ (0, 1). Fix 0 ≤ r ≤ t ≤ T ; observe
that for every ψ ∈ C3

b

(
RN
)
one has A (r)ψ ∈ C1

(
RN
)
, with

∇A (r)ψ (x) = ∇ψ (x) (A+DB0 (r, x)) + (Ax+B0 (r, x))>D2ψ (x)

+

∫
RN

[
∇ψ

(
x+

√
Qz
)
−∇ψ (x)− 1D (z)

(√
Qz
)>

D2ψ (x)

]
ν (dz) , x ∈ RN .

More specifically, in the previous computation we are allowed to differentiate under the integral sign
because (x ∈ RN , z ∈ D)∣∣∣∇>ψ (x+

√
Qz
)
−∇>ψ (x)−D2ψ (x)

√
Qz
∣∣∣ ≤ 1

2
N

3
2

∥∥∂3ψ
∥∥
∞

∣∣∣√Qz∣∣∣2 .
The hypotheses prescribe B0 ∈ C0,3

b

(
[0, T ]× RN ;RN

)
and φ ∈ C3

b

(
RN
)
, hence it is sufficient to invoke

Corollary 2.5 to complete proof. �

We are now in position to prove the following, crucial result concerning Kolmogorov equations (cfr.
[126, Theorem 4.5.1] for an analogous claim in a different setting).
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Theorem 2.7. Take α ∈
(

1
2 , 1
)
.

(i) Let 0 ≤ s ≤ T and x ∈ RN . If B0 ∈ C0,1
b

(
[0, T ]× RN ;RN

)
and φ ∈ C2

b

(
RN
)
, then the function

t 7→ Ps,tφ (x) is continuously differentiable in [s, T ] and satisfies the Kolmogorov forward equation

∂tPs,tφ (x) = Ps,tA (t)φ (x) ; (2.21)

(ii) Let 0 ≤ t ≤ T and x ∈ RN . If B0 ∈ C0,3
b

(
[0, T ]× RN ;RN

)
and φ ∈ C3

b

(
RN
)
, then the function

s 7→ Ps,tφ (x) is continuously differentiable in [0, t] and satisfies the Kolmogorov backward equation

∂sPs,tφ (x) = −A (s)Ps,tφ (x) . (2.22)

Proof. Recall that by [164, Theorem 14.7 (iii)] the process WL is centered in 0 when α ∈
(

1
2 , 1
)
. As a

consequence, denoting by N the Poisson random measure associated with its jumps and by Ñ the com-
pensated measure,WL =

∫ ·
0

∫
RN 1D (z) zÑ (ds, dz)+

∫ ·
0

∫
RN 1Dc (z) zN (ds, dz) up to indistinguishability

by [110, Theorem 2.34, Chapter II].
As for Point (i), take 0 ≤ s ≤ T, x ∈ RN and φ ∈ C2

b

(
RN
)
; by (2.16) an application of Itô formula

ensures that

φ (Xs,x
t ) = φ (x) +

∫ t

s

〈
AXs,x

r +B0 (r,Xs,x
r ) ,∇>φ (Xs,x

r )
〉
dr

+

∫ t

s

∫
RN

1D (z)∇φ
(
Xs,x
r−
)√

Qz Ñ (dr, dz)

+

∫ t

s

∫
RN

(
φ
(
Xs,x
r− +

√
Qz
)
− φ

(
Xs,x
r−
)
− 1D (z)∇φ

(
Xs,x
r−
)√

Qz
)
N (dr, dz) ,

which holds true P − a.s. for every t ∈ [s, T ]. Taking expectations in the previous equation and using
Fubini’s theorem we obtain

Ps,tφ (x) = φ (x) +

∫ t

s
E [A (r)φ (Xs,x

r )] dr = φ (x) +

∫ t

s
Ps,rA (r)φ (x) dr, t ∈ [s, T ] ,

which in turn implies (2.21) by Lemma 2.6 (i).
We now focus on Point (ii). Take 0 ≤ t ≤ T and x ∈ RN ; arguing as in [126, Proposition 3.8.2] we

see that X ·,xt follows the backward dynamics (P−a.s.)

Xs,x
t = x+

∫ t

s
DXr,x

t (Ax+B0 (r, x)) dr +

∫ t

s

∫
RN

(
Xr,x+

√
Qz

t −Xr,x
t

)
Ñ (dr, dz)

+

∫ t

s

∫
RN

[
Xr,x+

√
Qz

t −Xr,x
t − 1D (z)DXr,x

t

√
Qz
]
ν (dz) dr, s ∈ [0, t] .

Hence invoking the backward Itô formula (see, e.g., [126, Theorem 2.7.1]) we deduce that, for every
φ ∈ C2

b

(
RN
)
and s ∈ [0, t],

φ (Xs,x
t ) = φ (x) +

∫ t

s

∫
RN

(
φ
(
Xr,x+

√
Qz

t

)
− φ (Xr,x

t )
)
Ñ (dr, dz)

+

∫ t

s
∇φ (Xr,x

t )DXr,x
t (Ax+B0 (r, x)) dr

+

∫ t

s

∫
RN

[
φ
(
Xr,x+

√
Qz

t

)
− φ (Xr,x

t )− 1D (z)∇φ (Xr,x
t )DXr,x

t

√
Qz
]
ν (dz) dr,



52 Chapter 2

which holds true P−a.s. Taking expectations in the previous equation and using Fubini’s theorem
(remember Lemma 2.4) we obtain

Ps,tφ (x) = φ (x) +

∫ t

s
A (r)Pr,tφ (x) dr, s ∈ [0, t] . (2.23)

Since by hypotheses we are working with φ ∈ C3
b

(
RN
)
and B0 ∈ C0,3

b

(
[0, T ]× RN ;RN

)
, by Lemma

2.6 (ii) we can differentiate in x the expression in (2.23), showing the continuity of the mapping r 7→
∇Pr,tφ (x) in [0, t]. This, together with (2.19), the fact that (2.23) also provides the continuity of the
mapping r 7→ Pr,tφ (x) in [0, t] and a dominated convergence argument based on Corollary 2.5, ensures
the continuity of the function r 7→ A (r)Pr,tφ (x) in the same interval. Therefore differentiating (2.23)
with respect to s we infer (2.22). The proof is now complete. �

Another step that we need to prove Theorem 2.3 consists in a regularization result for the time–
dependent Markov transition semigroup Ps,t (see Lemma 2.10) which –at the best of our knowledge–
is not established in literature with this type of noise. We start by recalling the Bismut–Elworthy–Li’s
type formula presented in [178, Theorem 1.1] (see also [175] for a related work treating multiplicative
Lévy noise); such a formula is adapted to our framework, where we have to account for an initial time
s not necessarily equal to 0.

Theorem 2.8 ([178]). Let α ∈
(

1
2 , 1
)
and B0 ∈ C0,1

b

(
[0, T ]× RN ;RN

)
. Then for every 0 ≤ s < t ≤ T

and φ ∈ C1
b

(
RN
)
, the function Ps,tφ is differentiable at x in every direction h ∈ RN and

〈
∇>Ps,tφ (x) , h

〉
= E

[
1

Lt − Ls
φ (Xs,x

t )

∫ t

s

〈(√
Q
)−1

DhX
s,x
r , dWLr

〉]
. (2.24)

Furthermore, there exists a constant Cα > 0 such that the next gradient estimate holds true:∥∥∥∇>Ps,tφ∥∥∥
∞
≤Cα‖φ‖∞

∣∣∣∣(√Q)−1
∣∣∣∣ e(|A|+‖DB0‖T,∞)T 1

(t− s)1/(2α)
, 0 ≤ s < t ≤ T. (2.25)

We are able to extend the previous claim to functions φ ∈ Cb
(
RN
)
with an approximation procedure,

effectively making Theorem 2.8 a regularization–by–noise result. We need the next estimate, which
derives from [33, Equation (14)] (see also (1.17)):

E
[

1

Lpt

] 1
p

≤ c t−
1
α , t > 0, for some c = c (α, p) > 0, for every p > 0. (2.26)

Corollary 2.9. Let α ∈
(

1
2 , 1
)
and B0 ∈ C0,1

b

(
[0, T ]× RN ;RN

)
. Then, for every φ ∈ Cb

(
RN
)
and

0 ≤ s < t ≤ T , the function Ps,tφ is differentiable at x ∈ RN in every direction h ∈ RN , and the
expression in (2.24) holds true.

Proof. Fix x, h ∈ RN , 0 ≤ s < t ≤ T , and φ ∈ Cb
(
RN
)
. Since C∞b

(
RN
)
is dense in Cb

(
RN
)
, we

can take a sequence (φn)n ⊂ C∞b
(
RN
)
such that ‖φn − φ‖∞ → 0 as n → ∞. Denote by gn (u) =

Ps,tφn (x+ uh) , u ∈ R; by dominated convergence, for every u ∈ R,

gn (u)→ Ps,tφ (x+ uh) =: g (u) , as n→∞.
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Now we invoke (2.24) to write

g′n (u) = lim
v→0

E
[
φn

(
Xs,x+uh+vh
t

)]
− E

[
φn

(
Xs,x+uh
t

)]
v

=
〈
∇>Ps,tφn (x+ uh) , h

〉
= E

[
1

Lt − Ls
φn

(
Xs,x+uh
t

)∫ t

s

〈(√
Q
)−1

DhX
s,x+uh
r , dWLr

〉]
, u ∈ R.

Since α ∈
(

1
2 , 1
)
, an application of [178, Theorem 3.2], (2.26), Hölder’s inequality with p ∈ (1, 2α) and

Lemma 2.4 (see (2.17)) let us compute, for every u ∈ R,

E
[∣∣∣∣ 1

Lt − Ls

(
φn

(
Xs,x+uh
t

)
−φ

(
Xs,x+uh
t

))∫ t

s

〈(√
Q
)−1

DhX
s,x+uh
r , dWLr

〉∣∣∣∣]
≤
∣∣∣∣(√Q)−1

∣∣∣∣ |h| c1

(t− s)1/α
‖φn − φ‖∞ → 0, as n→∞, (2.27)

where c1 = c1 (α, p,A,B0, T,N) > 0. It follows that

g′n → E
[

1

Lt − Ls
φ
(
X
s,x+(·)h
t

)∫ t

s

〈(√
Q
)−1

DhX
s,x+(·)h
r , dWLr

〉]
, uniformly in R.

This suffices to obtain the desired result, hence the proof is complete. �

Note that for every φ ∈ Cb
(
RN
)
the expression on the right–hand side of (2.24) is continuous in x

for every h ∈ RN . Indeed, let us fix x ∈ RN and consider (xn)n ⊂ RN such that xn → x as n → ∞.
Then, using the same techniques as in the previous proof (cfr. (2.27)), together with Lemma 2.4 and
a dominated convergence argument, we get (for some p, q > 1 determined by a generalized Holder’s
inequality, and c = c (α, p, q, A,B0, Q, T,N) > 0)∣∣∣∣∣E
[

1

Lt − Ls

(
φ (Xs,xn

t )

∫ t

s

〈(√
Q
)−1

DhX
s,xn
r , dWLr

〉
− φ (Xs,x

t )

∫ t

s

〈(√
Q
)−1

DhX
s,x
r , dWLr

〉)]∣∣∣∣∣
≤ ‖φ‖∞ E

[
1

Lt − Ls

∣∣∣∣∫ t

s

〈(√
Q
)−1

(DhX
s,xn
r −DhX

s,x
r ) , dWLr

〉∣∣∣∣]
+ E

[
1

Lt − Ls

∣∣∣∣∫ t

s

〈(√
Q
)−1

DhX
s,x
r , dWLr

〉∣∣∣∣ |φ (Xs,xn
t )− φ (Xs,x

t )|
]

≤ c

(t− s)1/α
×

[
‖φ‖∞

(∫ t

s
E
[
|DhX

s,xn
r −DhX

s,x
r |

2α
]
dr

) 1
2α

+ |h|E
[
|φ (Xs,xn

t )− φ (Xs,x
t )|q

] 1
q

]
−→
n→∞

0.

Therefore, Ps,tφ ∈ C1
b

(
RN
)
for every φ ∈ Cb

(
RN
)
. At this point, the next result is a straightforward

consequence of the Chapman–Kolmogorov equations, the mean value theorem and [64, Lemma 7.1.5].

Lemma 2.10. Let α ∈
(

1
2 , 1
)
and B0 ∈ C0,1

b

(
[0, T ]× RN ;RN

)
. Then, for every φ ∈ Bb

(
RN
)
and

0 ≤ s < t ≤ T , one has Ps,tφ ∈ C1
b

(
RN
)
, and the gradient estimate in (2.25) holds true.

Finally we are in position to prove Theorem 2.3.



54 Chapter 2

Proof of Theorem 2.3. Fix α ∈
(

1
2 , 1
)
, 0 < t ≤ T , f ∈ C

(
[0, T ] ;RN

)
and B0 ∈ C0,3

b

(
[0, T ]× RN ;RN

)
.

Moreover, define B = B0 − f . We first consider φ ∈ C3
b

(
RN
)
. Recalling (2.2), we introduce the family

of integro–differential operators
(
Ã (s)

)
0≤s≤T , defined for every ψ ∈ C2

b

(
RN
)
by

Ã (s)ψ (x) =
〈
Ax+ f (s) ,∇>ψ (x)

〉
+

∫
RN

[
ψ
(
x+

√
Qz
)
− ψ (x)− 1D (z)∇ψ (x)

√
Qz
]
ν (dz) ,

where x ∈ RN . Let us take 0 ≤ s < t, x ∈ RN , and observe that by the definition in (2.19) and Corollary
2.5 there exists a constant C > 0 such that, for every r1, r2 ∈ [s, t],

sup
u∈[s,t]

∣∣A (u)Pu,tφ
(
Zs,xr2

)
−A (u)Pu,tφ

(
Zs,xr1

)∣∣ ≤ C ∣∣Zs,xr2 − Zs,xr1 ∣∣
×
[(
|A|
(
1 +

∣∣Zs,xr1 ∣∣)+ ‖B0‖1,T
)

+

∫
RN

(
1D (z)

∣∣∣√Qz∣∣∣2 + 1Dc (z)

)
ν (dz)

]
. (2.28)

We study the mapping [s, t] 3 r 7→ Rs,r (Pr,tφ) (x): using (2.23) and (2.28), it is easy to argue that
it is continuous in its domain by Theorem 2.7 (ii) coupled with Vitali’s and dominated convergence
theorems. It is also differentiable, with

∂rRs,r (Pr,tφ) (x) = Rs,r

(
Ã (r)Pr,tφ

)
(x)−Rs,r (A (r)Pr,tφ) (x)

= −Rs,r
(〈
B (r, ·) ,∇>Pr,tφ

〉)
(x) , r ∈ [s, t] . (2.29)

Indeed, take r ∈ [s, t] and a generic sequence (rn)n ⊂ [s, t] \ {r} such that rn → r as n→∞; then

Rs,rn (Prn,tφ) (x)−Rs,r (Pr,tφ) (x)

rn − r

= Rs,rn

(
Prn,tφ− Pr,tφ

rn − r

)
(x) + E

[
Pr,tφ (Zs,xrn )− Pr,tφ (Zs,xr )

rn − r

]
=: In + IIn.

We immediately notice that IIn → Rs,r

(
Ã (r)Pr,tφ

)
(x) as n → ∞ by Theorem 2.7 (i) and Corollary

2.5. As for In, we split it again as follows:

In = Rs,r

(
Prn,tφ− Pr,tφ

rn − r

)
(x) + E

[
Prn,tφ− Pr,tφ

rn − r
(
Zs,xrn

)
− Prn,tφ− Pr,tφ

rn − r
(Zs,xr )

]
=: IIIn + IVn.

By a dominated convergence argument based on (2.20), (2.23), Corollary 2.5 and Theorem 2.7 (ii) we
have IIIn → −Rs,r (A (r)Pr,tφ) (x) as n→∞. Finally we focus on IVn, estimating by (2.23)

|IVn| ≤ E

[
sup
u∈[s,t]

∣∣A (u)Pu,tφ
(
Zs,xrn

)
−A (u)Pu,tφ (Zs,xr )

∣∣] .
Notice that the random variables inside the expected value in the previous inequality converge to 0 in
probability as n→∞ by (2.28). Such a convergence is true also in the L1−sense, thanks to the estimates
in (2.20) and Vitali’s convergence theorem. Thus, IVn → 0 as n → ∞, fact which completely shows
(2.29). Observe that ∂rRs,r (Pr,tφ) (x) is continuous in [s, t] by Vitali’s and dominated convergence
theorems, the mean value theorem, Corollary 2.5 and the continuity of the mapping r 7→ ∇Pr,tφ (x) in
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[s, t] (see (2.23) and the subsequent sentence). Therefore we can integrate it with respect to r on the
interval [s, t] and infer that

Ps,tφ (x) = Rs,tφ (x) +

∫ t

s
Rs,r

(〈
B (r, ·) ,∇>Pr,tφ

〉)
(x) dr, (2.30)

which coincides with (2.9).
Next, we take φ ∈ Cb

(
RN
)
and consider a sequence (φn)n ⊂ C3

b

(
RN
)
such that ‖φn − φ‖∞ → 0 as

n→∞. Since by (2.25) and Lemma 2.10 (for some constant Cα > 0)∣∣∣∣∫ t

s
Rs,r

(〈
B (r, ·) ,∇>Pr,t (φn − φ)

〉)
(x) dr

∣∣∣∣
≤ Cα ‖B‖0,T ‖φn − φ‖∞

∣∣∣∣(√Q)−1
∣∣∣∣ e(|A|+‖DB0‖T,∞)T

(∫ t

s

dr

(t− r)1/(2α)

)
−→
n→∞

0,

by dominated convergence it is immediate to get the validity of (2.30) for φ, as well.
Finally, we tackle the case φ ∈ Bb

(
RN
)
. We consider φ to be the indicator function of an open set to

begin with. Then, by Urysohn’s lemma there exists a sequence (φn)n ⊂ Cb
(
RN
)
such that 0 ≤ φn ≤ φ

and φn → φ pointwise as n→∞. By construction and dominated convergence we have

lim
n→∞

(Ps,tφn (x)−Rs,tφn (x)) = Ps,tφ (x)−Rs,tφ (x) . (2.31)

Now we focus on the integral term in (2.30). Let us fix y, h ∈ RN , r ∈ (s, t) and u ∈ (r, t). Then,
exploiting the Chapman–Kolmogorov equations and (2.24), we write (n ∈ N)〈
∇>Pr,tφn (y) , h

〉
=
〈
∇> (Pr,u (Pu,tφn)) (y) , h

〉
= E

[
1

Lu − Lr
Pu,tφn (Xr,y

u )

∫ u

r

〈(√
Q
)−1

DhX
r,y
v , dWLv

〉]
. (2.32)

Since, with the same argument as in (2.31), Pu,tφn → Pu,tφ pointwise in RN as n→∞, and (see, e.g.,
(2.27))

sup
n∈N

∣∣∣∣Pu,tφn (Xr,y
u )

Lu − Lr

∫ u

r

〈(√
Q
)−1

DhX
r,y
v , dWLv

〉∣∣∣∣
≤ 1

Lu − Lr

∣∣∣∣∫ u

r

〈(√
Q
)−1

DhX
r,y
v , dWLv

〉∣∣∣∣ ∈ L1 (P) ,

we can pass to the limit in (2.32) to obtain, by dominated convergence,

lim
n→∞

〈
∇>Pr,tφn (y) , h

〉
= E

[
1

Lu − Lr
Pu,tφ (Xr,y

u )

∫ u

r

〈(√
Q
)−1

DhX
r,y
v , dWLv

〉]
=
〈
∇> (Pr,u (Pu,tφ)) (y) , h

〉
=
〈
∇>Pr,tφ (y) , h

〉
.

Observe that the second–to–last equality in the previous equation is due to (2.24) and Lemma 2.10. As
a consequence, for every r ∈ (s, t) we infer that

lim
n→∞

Rs,r

(〈
B (r, ·) ,∇>Pr,tφn

〉)
(x) = Rs,r

(〈
B (r, ·) ,∇>Pr,tφ

〉)
(x) ,
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where we use once again the dominated convergence theorem, thanks to the next bound that we get
using (2.25) and Lemma 2.10:∥∥∥〈B (r, ·) ,∇>Pr,tφn

〉∥∥∥
∞
≤ Cα ‖B‖0,T

∣∣∣∣(√Q)−1
∣∣∣∣ e(|A|+‖DB0‖T,∞)T 1

(t− r)1/(2α)
.

Moreover, this inequality also allows to pass the limit under the integral sign, so that we end up with

lim
n→∞

∫ t

s
Rs,r

(〈
B (r, ·),∇>Pr,tφn

〉)
(x) dr =

∫ t

s
Rs,r

(〈
B (r, ·) ,∇>Pr,tφ

〉)
(x) dr. (2.33)

Combining (2.31)-(2.33) we conclude that (2.30) holds true for φ, i.e., for every indicator function of an
open set.
Note that the passages of the previous step do not require the continuity of the approximating functions
(φn)n, as long as they are equibounded, satisfy (2.30) and converge pointwise to φ. Therefore, we can
state that (2.30) holds true for every φ ∈ Bb

(
RN
)
by the functional monotone class theorem (see, e.g.,

[32, Theorem 2.12.9]).
We notice that, from (2.30), the continuity of P·,tφ (x) , x ∈ RN , in the interval [0, t) can be argued by

dominated convergence (see (2.39) below for an analogous computation). Furthermore, the measurability
of Ps,tφ (x) with respect to (s, x) is a consequence of the measurability of the stochastic flow Xs,x

t (ω)
and Tonelli’s theorem. These facts, together with Lemma 2.10 and the gradient estimate in (2.25),
entail that Pt−�,tφ (·) ∈ Λγ1 (0, t] , γ = 1/ (2α) . Recalling Theorem 2.1 the proof is complete. �

Remark 2.1. Suppose that the requirements of Theorem 2.3 are satisfied. Given 0 ≤ s < t ≤ T and
φ ∈ Bb

(
RN
)
, we consider r ∈ (s, t) and call φ̃ = Pr,tφ. By Theorem 2.3 and the Chapman–Kolmogorov

equations,
Ps,tφ (x) = Ps,rφ̃ (x) = uφ̃s (r, x) , x ∈ RN ,

where uφ̃s (r, x) is the unique solution of (2.9) such that uφ̃r−� (r, ·) ∈ Λγ1 (0, r] , γ = 1/ (2α). Observing
that φ̃ ∈ C1

b

(
RN
)
by Lemma 2.10, we invoke Corollary 2.2 to say that Ps,tφ ∈ C2

b

(
RN
)
. An iteration

of this argument shows that Ps,tφ ∈ C4
b

(
RN
)
. In particular, the Kolmogorov backward equation (2.22)

holds true in the interval [0, t) for every φ ∈ Bb
(
RN
)
.

2.3 The iteration scheme

Let α ∈
(

1
2 , 1
)
, t ∈ (0, T ] , u0 ∈ Bb

(
RN
)
, B0 ∈ C0,3

b

(
[0, T ]× RN ;RN

)
and f ∈ C

(
[0, T ] ;RN

)
, so

that Theorem 2.3 holds true. The proof of Theorem 2.1 (see, in particular, (2.10)-(2.14)) suggests to
approximate the unique solution uu0

s (t, x) (= Ps,tu0 (x)) of (2.9) such that uu0
t−� (t, ·) ∈ Λγ1 (0, t] , γ =

1/ (2α) , with the iterates{
un+1
s (t, x) = Rs,tu0 (x) +

∫ t
s Rs,r

(〈
B (r, ·) ,∇>unr (t, ·)

〉)
(x) dr

u0
s (t, x) = Rs,tu0 (x)

,

for x ∈ RN , s ∈ [0, t] , n ∈ N∪ {0}. Here we recall that B = B0− f. If we define v0
s (t, x) = u0

s (t, x) and
vn+1
s (t, x) = un+1

s (t, x)− uns (t, x) , n ∈ N ∪ {0}, then these new functions satisfy the iteration scheme
vn+1
s (t, x) =

∫ t
s Rs,uk

n
u,t (x) du

knu,t (x) =
〈
B (u, x) ,∇>vnu (t, x)

〉
v0
s (t, x) = Rs,tu0 (x)

, x ∈ RN , s ∈ [0, t] , u ∈ [0, t) , n ∈ N ∪ {0} . (2.34)
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In the Brownian case, (2.34) has been investigated in [85]. In order to study the convergence of∑∞
n=0 v

n
s (t, x) to uu0

s (t, x) (in a sense that will be clarified later on), we need the next, preliminary
result.

Lemma 2.11. Let α ∈
(

1
2 , 1
)
, t ∈ (0, T ] , n ∈ N∪{0} and denote by γ = 1/ (2α). Then knu,t ∈ Cb

(
RN
)

and vns (t, ·) ∈ C1
b

(
RN
)
for every u, s ∈ [0, t).

Moreover, there exists a constant C = C (α,A,Q) > 0 such that, for every n ∈ N and s ∈ [0, t),

‖vns (t, ·)‖∞ ≤ C
n ‖B‖n0,T ‖u0‖∞

∫ t−s

0
dsn

∫ sn

0
dsn−1· · ·

∫ s2

0
ds1

n∏
i=1

1

(si+1 − si)γ
, (2.35)

and ∥∥∥∇>vns (t,·)
∥∥∥
∞
≤Cn+1‖B‖n0,T ‖u0‖∞

∫ t−s

0
dsn

∫ sn

0
dsn−1 . . .

∫ s2

0
ds1

n∏
i=0

1

(si+1 − si)γ
, (2.36)

where s0 = 0 and sn+1 = t− s.
We notice that the constant C in (2.35)-(2.36) is the same as the one appearing in the gradient estimate
(2.8).

Proof. We proceed by induction to prove that, for every u, s ∈ [0, t) and n ∈ N∪ {0}, one has vns (t, ·) ∈
C1
b

(
RN
)
, knu,t ∈ Cb

(
RN
)
and∥∥knu,t∥∥∞ ≤ Cn+1 ‖B‖n+1

0,T ‖u0‖∞
∫ t

u
ds1

∫ t

s1

ds2· · ·
∫ t

sn−1

dsn

n∏
i=0

1

(si+1 − si)γ
, (2.37)

where C = C (α,A,Q) > 0 is the same constant as in (2.8). In (2.37), s0 = u and sn+1 = t. The estimates
in (2.35)-(2.36) are an immediate consequence of (2.37) upon shifting the domain of integration and
applying Tonelli’s theorem.
For n = 0, the smoothing effect of the time–dependent Markov semigroup R guarantees that v0

s (t, ·) ∈
C1
b

(
RN
)
, which combined with the continuity of B yields k0

u,t ∈ Cb
(
RN
)
, with∥∥k0

u,t

∥∥
∞ ≤ C ‖B‖0,T ‖u0‖∞

1

(t− u)γ
. (2.38)

To fix the ideas, consider the case n = 1. Since k0
u,t ∈ Cb

(
RN
)
for every 0 ≤ u < t, the dominated conver-

gence theorem, (2.34) and (2.38) imply that v1
s (t, ·) ∈ C1

b

(
RN
)
, with ∇v1

s (t, x) =
∫ t
s ∇Rs,uk

0
u,t (x) du,

for every x ∈ RN . Hence k1
u,t ∈ Cb

(
RN
)
, and by (2.8)-(2.38) we get∥∥k1

u,t

∥∥
∞ ≤ C

2 ‖B‖20,T ‖u0‖∞
∫ t

u
ds1

1

(s1 − u)γ (t− s1)γ
.

Suppose now that our statement holds true at step n ∈ N. Then by the same argument as before and
(2.37) vn+1

s (t, ·) ∈ C1
b

(
RN
)
, with ∇vn+1

s (t, x) =
∫ t
s ∇Rs,uk

n
u,t (x) du. Therefore kn+1

u,t ∈ Cb
(
RN
)
, with

∥∥kn+1
u,t

∥∥
∞ ≤ C ‖B‖0,T

∫ t

u
ds1

1

(s1 − u)γ
∥∥kns1,t∥∥∞

≤ Cn+2 ‖B‖n+2
0,T ‖u0‖∞

∫ t

u
ds1

∫ t

s1

ds2· · ·
∫ t

sn

dsn+1

n+1∏
i=0

1

(si+1 − si)γ
,

where in the last inequality we apply the inductive hypothesis and consider s0 = u, sn+2 = t. Thus, the
claim is completely proved. �
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Another important property of the functions vn· (t, x) , x ∈ RN , is the continuity in the interval [0, t).
In the case n = 0, this follows from the property of R discussed in Section 2.1 ; for a generic n ∈ N, it
can be argued by (2.37) and dominated convergence writing

vns (t, x) =

∫ t

0
1{u>s}Rs,uk

n−1
u,t (x) du. (2.39)

Thanks to the estimates in (2.35)-(2.36), the convergence of the iteration scheme (2.34) is proved in the
same way as in the Brownian case with no time–shift, see [84, Section 2.4]. Overall, the next result is
true.

Theorem 2.12. For every α ∈
(

1
2 , 1
)
and 0 < t ≤ T , the series

∑∞
n=0 v

n
s (t, x) converges uniformly in

[0, t] × RN , and the series
∑∞

n=0∇>vns (t, x) converges uniformly in [0, t0] × RN , for every t0 ∈ (0, t).
In particular,

∞∑
n=0

vns (t, x) = uu0
s (t, x) , s ∈ [0, t] , x ∈ RN ,

where uu0
s (t, x) is the unique solution of (2.9) such that uu0

t−� (t, ·) ∈ Λγ1 (0, t] , γ = 1/ (2α).

2.4 The first term of the iteration scheme

Let α ∈
(

1
2 , 1
)
. The goal of this section is to study v1

s (t, x) =
∫ t
s Rs,uk

0
u,t (x) du –the first term of

(2.34)– for every 0 ≤ s < t ≤ T and x ∈ RN . In particular, starting from

k0
u,t (y) =

〈
B (u, y) ,∇>Ru,tu0 (y)

〉
, y ∈ RN , u ∈ (s, t) , (2.40)

we want to find an alternative, explicit expression (see Lemma 2.14) for

Rs,uk
0
u,t (x) = E

[
k0
u,t (Zs,xu )

]
. (2.41)

In order to do this, we propose an approach which at first analyzes a deterministic time–shift, and then
allows to recover the subordinated Brownian motion case by conditioning with respect to FL. The
results of this part represent the base case for the induction argument that we will develop to compute
the general term vn+1

s (t, x) , n ≥ 1 (see Section 2.5).

2.4.1 Deterministic time–shift

Denote by S the set of real–valued, strictly increasing càdlàg functions defined on R+ and starting
at 0. Take ` ∈ S and note that W` = (W`t)t≥0 is a càdlàg martingale with respect to the filtration(
FW`t

)
t≥0

, where
(
FWt

)
t≥0

is the minimal augmented filtration generated by W . For every x ∈ RN and
0 ≤ s < T , the OU process

(
Z`t (s, x)

)
t∈[s,T ]

is the unique, càdlàg solution of the linear SDE

dZ`t (s, x) =
(
AZ`t (s, x) + f (t)

)
dt+

√
QdW`t , Z`s (s, x) = x.

It can be expressed with a variation of constants formula as follows:

Z`t (s, x) = e(t−s)Ax+

∫ t

s
e(t−r)Af (r) dr +

∫ t

s
e(t−r)A√QdW`r , t ∈ [s, T ] .
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For every 0 ≤ s < t ≤ T , define I`s,t =
∫ t
s e

2(t−r)AQd`r ∈ RN×N . It is possible to argue as in [34,
Equation (12)] (see (1.12)) to deduce that

Z`t (s, x) ∼ N
(
e(t−s)Ax+ Fs,t, I

`
s,t

)
.

Note that, for every 0 ≤ s < u < t ≤ T ,

Z`t (s, x) = e(t−u)AZ`u (s, x) + Fu,t +

∫ t

u
e(t−r)A√QdW`r , P− a.s.,

therefore
(
Z` (s, x)

)
x∈RN is a family of (F`t)t∈[s,T ]−Markov processes as s varies in [0, T ). In particular,

its transition probability kernels µ`u,t : RN × B
(
RN
)
→ [0, 1] are

µ`u,t (y, ·) = N
(
e(t−u)Ay + Fu,t, I

`
u,t

)
, y ∈ RN . (2.42)

In the sequel, we denote by φ`u,t (y, ·) the density of µ`u,t (y, ·) . Moreover, we define

F̃u,t (y) = e(t−u)Ay + Fu,t, y ∈ RN ,

in order to keep the notation shorter. Straightforward changes to [34, Theorem 4] (see Theorem 1.4 in
Chapter 1) ensure that, for any 0 ≤ s < t ≤ T, the function E

[
u0

(
Z`t (s, ·)

)]
∈ C1

b

(
RN
)
, with derivative

at any point x ∈ RN in every direction h ∈ RN given by〈
∇>E

[
u0

(
Z`t (s, x)

)]
, h
〉

= E
[
u0

(
Z`t (s, x)

)〈(
I`s,t

)−1
e(t−s)Ah, Z`t (s, x)− F̃s,t (x)

〉]
. (2.43)

With all these preliminaries in mind, we fix `0 ∈ S, 0 ≤ u < t ≤ T and define –by analogy with
(2.40)– the function

k`
0

u,t (y) =
〈
B (u, y) ,∇>E

[
u0

(
Z`

0

t (u, y)
)]〉

, y ∈ RN . (2.44)

Note that k`0u,t ∈ Cb
(
RN
)
because B (u, ·) is continuous and bounded, as well. The next claim provides

us an analogue of (2.41) in this framework.

Lemma 2.13. Consider 0 ≤ s < t ≤ T . Then for every x ∈ RN , u ∈ (s, t) and `0, `1 ∈ S, one has,
P−a.s., writing Z`1 for Z`1 (s, x),

k`
0

u,t

(
Z`

1

u

)
= E

[
u0

((
I`

0

u,t

) 1
2
(
I`

1

u,t

)− 1
2
(
Z`

1

t − F̃u,t
(
Z`

1

u

))
+ F̃u,t

(
Z`

1

u

))
×
〈(

I`
0

u,t

)− 1
2
e(t−u)AB

(
u, Z`

1

u

)
,
(
I`

1

u,t

)− 1
2
(
Z`

1

t − F̃u,t
(
Z`

1

u

))〉 ∣∣∣σ (Z`1u )]. (2.45)

Proof. Fix x ∈ RN , 0 ≤ s < u < t ≤ T and `0, `1 ∈ S; by (2.43) we have

k`
0

u,t

(
Z`

1

u (s, x)
)

= k`
0

u,t (y)
∣∣∣
y=Z`1u (s,x)

= E
[
u0

(
Z`

0

t (u, y)
)

×
〈(

I`
0

u,t

)−1
e(t−u)AB (u, y) , Z`

0

t (u, y)− F̃u,t (y)

〉]∣∣∣∣
y=Z`1u (s,x)

. (2.46)



60 Chapter 2

Note that Z`0t (u, y) ∼ µ`0u,t (y, ·) , y ∈ RN ; furthermore, direct computations show that, for every y, ξ ∈
RN ,

φ`
1

u,t (y, ξ) = det

((
I`

0

u,t

) 1
2
(
I`

1

u,t

)− 1
2

)
φ`

0

u,t

(
y,
(
I`

0

u,t

) 1
2
(
I`

1

u,t

)− 1
2
(
ξ − F̃u,t(y)

)
+ F̃u,t(y)

)
.

Going back to (2.46) we write, substituting ξ =
(
I`

0

u,t

) 1
2
(
I`

1

u,t

)− 1
2
(
ξ′ − F̃u,t(y)

)
+ F̃u,t(y) as suggested by

the previous calculations and considering y = Z`
1

u (s, x),

k`
0

u,t (y) =

∫
RN

u0 (ξ)

〈(
I`

0

u,t

)−1
e(t−u)AB (u, y) , ξ − F̃u,t(y)

〉
φ`

0

u,t (y, ξ) dξ

=

∫
RN

u0

((
I`

0

u,t

) 1
2
(
I`

1

u,t

)− 1
2
(
ξ′ − F̃u,t(y)

)
+ F̃u,t(y)

)
×
〈(

I`
0

u,t

)− 1
2
e(t−u)AB (u, y) ,

(
I`

1

u,t

)− 1
2
(
ξ′ − F̃u,t(y)

)〉
φ`

1

u,t

(
y, ξ′

)
dξ′ .

At this point we invoke the disintegration formula of the conditional expectation (see, e.g., [116, Theorem
5.4]) and (2.42) to deduce (2.45), completing the proof. �

Remark 2.2. The function k`0u,t, `0 ∈ S, 0 ≤ u < t ≤ T, does not depend on the probability space where
the underlying OU processes Z`0t (u, x) , x ∈ RN , are defined.

2.4.2 Random time–shift

Here we investigate the subordinated Brownian motion case (see Lemma 2.14) after some further
preparation. In what follows, we denote by Ωk, k ∈ N ∪ {0} , copies of the probability space Ω. As
in Subsection 1.2.1, we denote by W the space of continuous functions from R+ to RN vanishing
at 0 and endow it with the Borel σ–algebra B (W) associated with the topology of locally uniform
convergence. The pushforward probability measure generated by W (·) : (Ω,F ,P) → (W,B (W)) is
denoted by PW and makes the canonical process x = (xt)t≥0 a Brownian motion. We work with

the usual completion
(
W,B (W),PW

)
of this probability space: x is still a Brownian motion with

respect to its minimal augmented filtration (cfr. [119, Theorem 7.9]). The completeness of the space
(Ω,F ,P) implies the measurability of W (·) : (Ω,F ,P)→

(
W,B (W)

)
and the fact that PW is still the

pushforward probability measure generated by W (·). Since W (·) is independent from FL, a regular
conditional distribution of W (·) given FL is PW (A) , A ∈ B (W). Moreover, we denote by (coherently
with Subsection 2.4.1)

Z
`
t (u, y) = F̃u,t(y) +

∫ t

u
e(t−r)A√Qdx`r : W→ RN , 0 ≤ u ≤ t ≤ T, y ∈ RN , ` ∈ S,

and by Ek [·] [resp., EW [·]] the expectation of a random variable defined on Ωk [resp., W]. We are now
in position to prove the next claim, which is the analogue of [85, Corollary 2.2].
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Lemma 2.14. For every x ∈ RN and 0 ≤ s < t ≤ T one has

v1
s (t, x) =

∫ t

s
du (E0 ⊗ E1)

[
u0

((
ILu,t (ω0)

) 1
2
(
ILu,t
)− 1

2

(
Zs,xt − F̃u,t (Zs,xu )

)
+ F̃u,t (Zs,xu )

)

×
〈(
ILu,t (ω0)

)− 1
2 e(t−u)AB (u, Zs,xu ) ,

(
ILu,t
)− 1

2

(
Zs,xt − F̃u,t (Zs,xu )

)〉
(ω1)

]
. (2.47)

Proof. Fix 0 ≤ s < t ≤ T ; combining the definition in (2.40) and the expression in (2.5) we get, by the
law of total expectation, for every u ∈ (s, t) and y ∈ RN ,

k0
u,t (y) = E0

[
E0

[
u0 (Zu,yt )

〈(
ILu,t
)−1

e(t−u)AB (u, y) , Zu,yt − F̃u,t(y)
〉 ∣∣∣FL]]. (2.48)

The discussion preceding this lemma together with the usual rules of change of probability space (see,
e.g., [109, §X-2]) and the substitution formula in [34, Lemma 5] (see Lemma 1.5 in Chapter 1) lets us
apply the disintegration formula for the conditional expectation to get, from (2.46)-(2.48) and Remark
2.2, for every y ∈ RN ,

k0
u,t (y)= E0

[
EW

[
u0

(
Z
`0

t (u, y)
)〈(

I`
0

u,t

)−1
e(t−u)AB (u, y) , Z

`0

t (u, y)− F̃u,t(y)

〉]∣∣∣∣
`0=L(ω0)

]

= E0

[
k`

0

u,t (y)
∣∣∣
`0=L(ω0)

]
. (2.49)

Since we aim to compute (2.41), for a generic x ∈ RN we focus on

Rs,uk
0
u,t (x) = E1

[
E1

[
k0
u,t (Zs,xu )

∣∣∣FL]] = E1

[
EW

[
k0
u,t

(
Z
`1

u (s, x)
)] ∣∣∣

`1=L(ω1)

]
, (2.50)

with the last equality which is obtained by the same argument as in (2.49). At this point we combine
(2.49) and (2.50) to write, using Fubini’s theorem,

Rs,uk
0
u,t (x) = E0

[
E1

[
EW

[
k`

0

u,t

(
Z
`1

u (s, x)
)] ∣∣∣

`1=L(ω1)

] ∣∣∣∣
`0=L(ω0)

]
.

Recalling that (2.45) in Lemma 2.13 provides us with an expression for k`0u,t
(
Z
`1

u (s, x)
)
, we can use the

law of total expectation and reason backwards with the conditioning in FL to conclude that

Rs,uk
0
u,t (x) = E0

[
E1

[
u0

((
I`

0

u,t

) 1
2 (
ILu,t
)− 1

2

(
Zs,xt − F̃u,t (Zs,xu )

)
+ F̃u,t (Zs,xu )

)

×
〈(
I`

0

u,t

)− 1
2
e(t−u)AB (u, Zs,xu ) ,

(
ILu,t
)− 1

2

(
Zs,xt −F̃u,t(Zs,xu )

)〉
(ω1)

]∣∣∣∣
`0=L(ω0)

]
.

Integrating the previous expression in the interval (s, t) with respect to u we obtain (2.47) completing
the proof. �
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2.5 The general term of the iteration scheme

Let α ∈
(

1
2 , 1
)
. We want to analyze the general term vn+1

s (t, x) =
∫ t
s Rs,uk

n
u,t (x) du, 0 ≤ s < t ≤ T,

of the iteration (2.34) for an integer n ≥ 1. Therefore we search for an explicit expression of

Rs,uk
n
u,t (x) = E

[
knu,t (Zs,xu )

]
, x ∈ RN , u ∈ (s, t) . (2.51)

2.5.1 Deterministic time–shift

We continue the construction carried out in Subsection 2.4.1. Specifically, fix an integer n ≥ 1 and
t ∈ (0, T ]; for every i = 1, . . . , n, (i+ 1)−tuple si = (sn−i+1, sn−i+2, . . . , sn+1) such that 0 ≤ sn−i+1 <
sn−i+2 < · · · < sn+1 < t and li = (`0, . . . , `i) ∈ Si+1, we define, for y ∈ RN (see (2.44)),

klisi,t (y) =
〈
B (sn−i+1, y) ,∇>E

[
k
li−1

si−1,t

(
Z`

i

sn−i+2
(sn−i+1, y)

)]〉
, (2.52)

where si−1 = (sn−i+2, sn−i+3, . . . , sn+1) and li−1 = (`0, . . . , `i−1). To shorten the notation, we denote
by ni = n− i. Note that, by the continuity and boundedness of B, an induction argument shows that
all these functions are well defined and in Cb

(
RN
)
. Moreover, as in Remark 2.2 we observe that their

value does not depend on the probability space where the underlying OU processes are constructed. By
(2.43) we have, for every y ∈ RN , writing Z`i for Z`i (sni+1, y),

klisi,t (y) = E
[
k
li−1

si−1,t

(
Z`

i

sni+2

)
×
〈(

I`
i

sni+1,sni+2

)−1
e(sni+2−sni+1)AB (sni+1, y) , Z`

i

sni+2
− F̃sni+1,sni+2

(y)

〉]
. (2.53)

Motivated by (2.51), we seek an explicit formula for the term klnsn,t
(
Z`

n+1

s1 (s, x)
)
, where `n+1 ∈ S, 0 ≤

s < s1 < · · · < sn+1 < t and x ∈ RN . A candidate for such an expression is given by (2.45) in Lemma
2.13, from which we deduce the next claim.

Lemma 2.15. Consider 0 ≤ s < t ≤ T and an integer n ≥ 1. Then, for every x ∈ RN , i = 0, . . . , n,
(i+ 2)−tuple (sni , sni+1, . . . , sn+1) such that s ≤ sni < sni+1 < · · · < sn+1 < t and `0, . . . , `i+1 ∈ S,
one has, writing Z`i+1 for Z`i+1

(sni , x),

klisi,t

(
Z`

i+1

sni+1

)
= E

[
u0

(
F̃sni+1,t

(
Z`

i+1

sni+1

)
+

i+1∑
j=1

e

(
t−snj+3

)
A
(
I`
j−1

snj+2,snj+3

) 1
2
(
I`
i+1

snj+2,snj+3

)− 1
2
(
Z`

i+1

snj+3
− F̃snj+2,snj+3

(
Z`

i+1

snj+2

)))
×

i+1∏
j=1

〈(
I`
j−1

snj+2,snj+3

)− 1
2
e

(
snj+3−snj+2

)
A
B

(
snj+2, F̃sni+1,snj+2

(
Z`

i+1

sni+1

)
+

i+1∑
k=j+1

e

(
snj+2−snk+3

)
A
(
I`
k−1

snk+2,snk+3

) 1
2
(
I`
i+1

snk+2,snk+3

)− 1
2
(
Z`

i+1

snk+3
−F̃snk+2,snk+3

(
Z`

i+1

snk+2

)))
,

(
I`
i+1

snj+2,snj+3

)− 1
2
(
Z`

i+1

snj+3
− F̃snj+2,snj+3

(
Z`

i+1

snj+2

))〉∣∣∣∣σ (Z`i+1

sni+1

)]
, P− a.s., (2.54)

where si = (sni+1, . . . , sn+1), li = (`0, . . . , `i) and sn+2 = t.
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In the previous expression, we interpret the empty sum to be 0: we adopt this convention hereafter.

Proof. Fix 0 ≤ s < t ≤ T and an integer n ≥ 1. We proceed by induction on i, observing that the base
case i = 0 has been proven in (2.45), where sn = s and sn+1 = u.

For the induction step, suppose that the statement is valid for i = m − 1, for some m = 1, . . . , n:
our goal is to show that it holds true for i = m, as well. Take an (m+ 2)−tuple (snm , snm+1, . . . , sn+1)
such that s ≤ snm < snm+1 < · · · < sn+1 < t and `0, . . . , `m+1 ∈ S; write sm = (snm+1, . . . , sn+1) and
lm = (`0, . . . , `m). Recalling (2.53) and denoting by sn+2 = t, we apply the inductive hypothesis and
the law of total expectation to deduce, for every y ∈ RN , writing Z`m for Z`m (snm+1, y),

klmsm,t (y) = E

[
u0

(
F̃snm+2,t

(
Z`

m

snm+2

)
+

m∑
j=1

e

(
t−snj+3

)
A
(
I`
j−1

snj+2,snj+3

) 1
2
(
I`
m

snj+2,snj+3

)− 1
2
(
Z`

m

snj+3
− F̃snj+2,snj+3

(
Z`

m

snj+2

)))
×

m∏
j=1

〈(
I`
j−1

snj+2,snj+3

)− 1
2
e

(
snj+3−snj+2

)
A
B

(
snj+2, F̃snm+2,snj+2

(
Z`

m

snm+2

)
+

m∑
k=j+1

e

(
snj+2−snk+3

)
A
(
I`
k−1

snk+2,snk+3

) 1
2
(
I`
m

snk+2,snk+3

)− 1
2
(
Z`

m

snk+3
−F̃snk+2,snk+3

(
Z`

m

snk+2

)))
,(

I`
m

snj+2,snj+3

)− 1
2
(
Z`

m

snj+3
− F̃snj+2,snj+3

(
Z`

m

snj+2

))〉
×
〈(

I`
m

snm+1,snm+2

)−1
e(snm+2−snm+1)AB (snm+1, y) , Z`

m

snm+2
− F̃snm+1,snm+2

(y)

〉]
, (2.55)

where we also consider the σ
(
Z`

m

snm+2

)
−measurability of the random variable〈(

I`
m

snm+1,snm+2

)−1
e(snm+2−snm+1)AB (snm+1, y) , Z`

m

snm+2
− F̃snm+1,snm+2

(y)

〉
.

To shorten the notation we write klmsm,t = E
[
f
(
Z`

m

snm+2
, Z`

m

snm+3
, . . . , Z`

m

t

)]
. Since Z`mr , r ∈ [snm+1, t], is

a Markov process, we know that (cfr. [116, Proposition 7.2])(
Z`

m

snm+2
, Z`

m

snm+3
, . . . , Z`

m

t

)
∼ µ`msnm+1,snm+2

(y)⊗ µ`msnm+2,snm+3
⊗ · · · ⊗ µ`msn+1,t.

Hence, using the same notation as in the previous section,

klmsm,t (y) =

∫
RN

φ`
m

snm+1 ,snm+2
(y, ξ1)

(∫
RN

φ`
m

snm+2,snm+3
(ξ1, ξ2)

(
. . .

(
∫
RN

φ`
m

sn+1,t (ξm, ξm+1) f (ξ1, . . . , ξm+1) dξm+1

)
. . .

)
dξ2

)
dξ1. (2.56)

We wish to rewrite (2.56) as an integral in µ`m+1

snm+1,snm+2
(y) ⊗ µ`m+1

snm+2,snm+3
⊗ · · · ⊗ µ`m+1

sn+1,t. In order to
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do so, we sequentially perform the following substitutions:
ξ1 =

(
I`
m

snm+1,snm+2

)1
2
(
I`
m+1

snm+1,snm+2

)− 1
2
(
ξ′1−F̃snm+1,snm+2

(y)
)

+F̃snm+1,snm+2
(y)=: g1(ξ′1) ;

ξh =
(
I`
m

snm+h,snm+h+1

) 1
2
(
I`
m+1

snm+h,snm+h+1

)− 1
2
(
ξ′h − F̃snm+h,snm+h+1

(
ξ′h−1

) )
+F̃snm+h,snm+h+1

(gh−1

(
ξ′1, . . . , ξ

′
h−1

)
) =: gh (ξ′1, . . . , ξ

′
h) , h = 2, . . . ,m+ 1.

In this way, (2.56) becomes

klmsm,t (y) =

∫
RN

φ`
m+1

snm+1,snm+2

(
y, ξ′1

)(∫
RN

φ`
m+1

snm+2,snm+3

(
ξ′1, ξ

′
2

)(
. . .

(
∫
RN

φ`
m+1

sn+1,t

(
ξ′m, ξ

′
m+1

)
f
(
g1

(
ξ′1
)
, . . . , gm+1

(
ξ′1, . . . , ξ

′
m+1

))
dξ′m+1

)
. . .

)
dξ′2

)
dξ′1.

Expanding the notation for f contained in (2.55), we exploit several cancellations to get

klmsm,t(y)=

∫
RN
φ`

m+1

snm+1,snm+2

(
y, ξ′1

)(
. . .

(∫
RN
φ`

m+1

sn+1,t

(
ξ′m, ξ

′
m+1

)
u0

(
F̃snm+1,t(y)+

m+1∑
j=1

e

(
t−snj+3

)
A
(
I`
j−1

snj+2,snj+3

) 1
2
(
I`
m+1

snj+2,snj+3

)− 1
2
(
ξ′mj+2 − F̃snj+2,snj+3

(
ξ′mj+1

)))
×
m+1∏
j=1

〈(
I`
j−1

snj+2,snj+3

)− 1
2
e

(
snj+3−snj+2

)
A
B

(
snj+2, F̃snm+1,snj+2(y) +

m+1∑
k=j+1

e

(
snj+2−snk+3

)
A
(
I`
k−1

snk+2,snk+3

)1
2
(
I`
m+1

snk+2,snk+3

)− 1
2
(
ξ′mk+2−F̃snk+2,snk+3

(
ξ′mk+1

)))
,

(
I`
m+1

snj+2,snj+3

)− 1
2
(
ξ′mj+2 − F̃snj+2,snj+3

(
ξ′mj+1

))〉
dξ′m+1

)
. . .

)
dξ′1, (2.57)

where we denote by ξ′0 = y. Noticing that δ
Z`m+1
snm+1

(snm ,x)
⊗ µ`m+1

snm+1,snm+2
⊗ · · · ⊗ µ`m+1

sn+1,t, x ∈ RN , is a

regular conditional distribution for

P
((

Z`
m+1

snm+1
(snm , x) , Z`

m+1

snm+2
(snm , x) , . . . , Z`

m+1

t (snm , x)
)
∈ ·
∣∣∣σ (Z`m+1

snm+1
(snm , x)

))
thanks to [116, Propositions 5.6-7.2], (2.57) yields (2.54) by the disintegration formula of the conditional
expectation. The proof is now complete. �

2.5.2 Random time–shift

We argue by conditioning with respect to FL as in Subsection 2.4.2. First, we present a result which
generalizes (2.49) in the proof of Lemma 2.14.

Lemma 2.16. Consider 0 ≤ s < t ≤ T and an integer n ≥ 1. Then for all i = 0, . . . , n, s1 ∈ (s, t)
and y ∈ RN ,
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kis1,t (y) =

∫ t

s1

ds2

∫ t

s2

ds3· · ·
∫ t

si

dsi+1Ei

[
. . .

[
E0

[
klisi,t (y)

∣∣∣
`0=L(ω0)

]
. . .

] ∣∣∣∣
`i=L(ωi)

]
, (2.58)

where si = (s1, . . . , si+1) and li = (`0, . . . , `i).

In this expression, we ignore the time–integrals when i = 0.

Proof. Take an integer n ≥ 1 and proceed by induction on i. For i = 0, there are no integrals in time
in (2.58), which then reduces to (2.49) with s1 = u.

Suppose that the statement holds for i = m−1, for some m = 1, . . . , n: we want to prove its validity
for i = m. To do so, let us fix y ∈ RN and s1 ∈ (s, t); recalling the definition of kms1,t in (2.34), by
Lemma 2.11 we can apply (2.5) to get

kms1,t (y) =

∫ t

s1

ds2 Em

[
EW

[
km−1
s2,t

(
Z
`m

s2

)
×
〈(

I`
m

s1,s2

)−1
e(s2−s1)AB (s1, y) , Z

`m

s2 − F̃s1,s2(y)

〉]∣∣∣∣
`m=L(ωm)

]
.

Here we write Z
`m for Z`

m

(s1, y). By the inductive hypothesis, we substitute the expression for
km−1
s2,t

, s2 ∈ (s1, t) , in the previous equality to obtain (ignoring the inner time–integral when m = 1)

kms1,t (y) =

∫ t

s1

ds2 Em

[
EW

[∫ t

s2

ds3· · ·
∫ t

sm

dsm+1Em−1

[
. . .

[
E0

[
k
lm−1

sm−1,t

(
Z
`m

s2

) ∣∣∣∣
`0=L(ω0)]

. . .

]∣∣∣∣∣
`m−1=L(ωm−1)

]〈(
I`
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)−1
e(s2−s1)AB (s1, y) , Z

`m

s2 − F̃s1,s2(y)

〉]∣∣∣∣∣
`m=L(ωm)

]
,

where sm−1 = (s2, . . . , sm+1) and lm−1 = (`0, . . . , `m−1). This equation can be rewritten by Fubini’s
theorem –whose application is guaranteed by [84, Lemma 2.12], upon carrying out computations similar
to those in the proof of [34, Theorem 6] (see Theorem 1.6 in Chapter 1, and also [25, Proposition 3.2])–
as follows:

kms1,t (y) =

∫ t

s1

ds2

∫ t

s2

ds3· · ·
∫ t

sm

dsm+1Em

[
Em−1

[
. . .

[
E0

[
EW
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(
Z
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)
×
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I`
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)−1
e(s2−s1)AB (s1, y) , Z
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〉]∣∣∣∣
`0=L(ω0)

]
. . .

]∣∣∣∣
`m−1=L(ωm−1)

]∣∣∣∣
`m=L(ωm)

]
.

This gives (2.58), once we plug in the expression of klmsm,t (y) in (2.53), where sm = (s1, . . . , sm+1) and
lm = (`0, . . . , `m) . Thus, the proof is complete. �

According to (2.51), given 0 ≤ s < s1 < t ≤ T we are interested in

Rs,s1k
n
s1,t (x) = En+1

[
EW

[
kns1,t

(
Z
`n+1

s1

)] ∣∣∣
`n+1=L(ωn+1)

]
=

∫ t

s1

ds2 . . .

∫ t
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dsn+1

E0
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. . .

[
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[
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[
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(
Z
`n+1

s1

)] ∣∣∣
`n+1=L(ωn+1)

]
. . .

] ∣∣∣∣
`0=L(ω0)

]
, (2.59)
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where we use Lemma 2.16 and Fubini’s theorem for the second equality. Here Z`
n+1

s1 represents Z`
n+1

s1 (s, x),
sn = (s1, . . . , sn+1) and ln = (`0, . . . , `n). Since Lemma 2.15 in the previous subsection provides us with
a formula for klnsn,t

(
Z
`n+1

s1

)
(see (2.54) with s0 = s and i = n), we just plug it into (2.59), apply the law

of total expectation and reason backwards with the conditioning in FL to deduce the next result (cfr.
[85, Theorem 2.3]).

Theorem 2.17. For every integer n ≥ 1, x ∈ RN and 0 ≤ s < t ≤ T one has

vn+1
s (t, x)=
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(
Zs,xsnj+2

))〉
(ωn+1)

]
, (2.60)

where sn+2 = t.

2.6 Numerical simulations

In this section we report on the results obtained by implementing the iterative scheme described
above for two choices of the nonlinear vector field B0. We interpret the SDE in (2.16) as a finite–
dimensional approximation of the reaction–diffusion SPDE{

dX (t, ξ) = (∆X (t, ξ) +B0 (t,X (t, ξ))) dt+ σ dWLt , t ≥ s,
X (s, ξ) = x (ξ) , ξ ∈ T1,

where T1 = R1/Z1 is the one–dimensional torus. We refer to [34, Example 1], see Example 1.1 in
Chapter 1, for an accurate description of this framework. Hence we consider λk = |k|2 , k = 1, . . . , N ,
and we take Q = σ2Id. Here σ > 0 is a parameter describing the strength of the noise.

The reason why we choose such an SPDE is that we aim at applying our iterative scheme to random
perturbations of fluid dynamic models, appearing for example in climate studies. We refer to the book
[82, Chapters 3–5] for an extensive analysis of the topic in the case of Gaussian noise. The interest in
considering WL as the driver of randomness is that, departing from the Brownian setting, it allows to
better capture extreme events thanks to the fat tails of its increments, while preserving the invariance
by rotation, i.e., the isotropy. We refer to [48, Introduction] and the references therein for a wide range
of applications characterized by strong non–Gaussianity. However, compared to [48], our approach to
these high dimensional, non–Gaussian problems is completely different. Finally, we mention that, in
order to tackle more realistic models involving, e.g., quadratic nonlinearities, the theoretical framework
presented in this chapter has to be expanded, and in particular the hypothesis of boundedness of B0

has to be overcome: this will be the focus of a future research.
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Figure 2.1: Behavior in time of the OU approximations in the bounded cubic case with and without time–shift. The panel
on the left refers to α = 0.55, the one on the right to α = 0.85. σ = 0.5 everywhere.

Before moving to the application of the model, we have to determine the time–shift function f ∈
C
(
[0, T ] ;RN

)
appearing in the OU process Zs,x, x ∈ RN (see (2.2)). Since we are dealing with a

rotation–invariant noise and α ∈
(

1
2 , 1
)
, E [WLt ] = 0, t ≥ 0. As a consequence, the choice of f can be

motivated as in [85, Introduction] for the Brownian case. In brief, we consider

f (t) = B0 (t, x (t)) , t ∈ [0, T ] ,

where x (·) : [0, T ]→ RN is the unique solution of the integral equation

x (t) = x+

∫ t

s
(Ax (r) +B0 (r, x (r))) dr, t ∈ [s, T ] , (2.61)

and x (t) = x, t ∈ [0, s] . Of course, x (·) is computed numerically. Note that (2.61) is the deterministic
counterpart of the semilinear SDE (2.16), and that the expected value function of the OU process
coincides with x (·) in the interval [s, T ] by the choice of f . The intuition is that, at least when the noise is
weak, the trajectories of the semilinear solutions are “close” to x (·) , allowing the 0−th iterate to perform
better than it would do with f ≡ 0. Figure 2.1 clearly displays this idea in the case of (bounded) cubic
nonlinearity treated below (see (2.62)). Furthermore, in the sequel we monitor the effect of the time–shift
on the first order approximation provided by our scheme. All the simulations are carried out using the
High Performance Computing Center of the Scuola Normale Superiore (https://hpccenter.sns.it).
We work in dimension N = 100, with u0 (x) = 1{|x|>R}, x ∈ RN , for some R > 0, and we denote by
e ∈ RN the vector with all components equal to 1. In particular, given 0 ≤ s < t ≤ 1, we are interested
in applying our iterates to approximate Ps,tu0 (e) = P

(∣∣Xs,e
t

∣∣ > R
)
, whose reference value is computed

by averaging 105 samples of Xs,e
t obtained by the Euler–Maruyama scheme with time step 10−4. The

same strategy is used to obtain the 0−th iterate v0
s (t, e) = P

(∣∣Zs,et ∣∣ > R
)
. In order to calculate the

numerical integrals appearing in the formulas for vns (t, e) , n ∈ N (see (2.47)-(2.60)), we use left Riemann
sums in a uniform grid with mesh 10−2. We will keep track of the relative error εnr , defined by

εnr =
Ps,tu0 (e)−

∑n
i=0 v

i
s (t, e)

Ps,tu0 (e)
, n ∈ N ∪ {0} .

Finally, we will mainly focus on the first iteration, with the aim of understanding the possible improve-
ments that it provides over the linear approximation of the OU process. In fact, although it is possible
to implement our scheme up to any order thanks to (2.60), one needs an n−dimensional integral (in
time) to get the iterate vns (t, e) , n ∈ N, fact which complicates the application of our method and

https://hpccenter.sns.it
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Table 2.1: First order approximation in the sine case with time–shift; noise strength σ = 1.

α P(|X0,e
1 | > 1) v0

0 (1, e) ε0r v1
0 (1, e) ε1r

0.55 0.687 0.639 6.99e-2 0.012 5.24e-2

0.65 0.713 0.676 5.19e-2 1.34e-2 3.31e-2

0.75 0.794 0.737 7.18e-2 3.34e-2 2.97e-2

0.85 0.899 0.863 0.040 1.87e-2 1.92e-2

Table 2.2: Same setting as in Table 2.1, without time–shift (f ≡ 0).

α P(|X0,e
1 | > 1) v0

0 (1, e) ε0r v1
0 (1, e) ε1r

0.55 0.691 0.502 0.274 0.101 0.127

0.65 0.720 0.558 0.225 0.110 7.22e-2

0.75 0.785 0.666 0.151 8.84e-2 0.039

0.85 0.896 0.840 6.25e-2 3.86e-2 1.94e-2

may result in losing its computational advantage over the classical Euler–Maruyama approach. In what
follows, we fix the initial time s = 0 and the threshold R = 1. For the subordinator L, we set γ̄ = 1 in
(2.1).

We first take B0 (x)k = sin (xk) , k = 1, . . . , N . Table 2.1 shows the performance of the first order
approximation of the iterative scheme with time–shift as α varies in

(
1
2 , 1
)
, σ = 1 and t = 1. Table

2.2 is analogous, but it refers to f ≡ 0 (no time–shift). The first thing we notice is that in both cases
the first iteration improves on the outcomes of the linear approximation. The role of the time–shift f
is evident in the column ε0r : it allows v0

0 (1, e) to be closer to the benchmark probability, and the first
iterate builds on this to guarantee a better overall performance, particularly when α is close to 1

2 .
Next, Figure 2.2 displays the behavior in time –up to t = 1– of the first order approximation in the case
of time–shift for two strengths of noise (σ = 0.1 and σ = 1.3). Here α = 0.6 is fixed. The panels of this
figure highlight the benefits of considering v1

0 (·, e) over the starting OU estimates, especially when the
noise is weak.

Secondly, we analyze the polynomial vector field

B0 (x)k = b0 ‖ȳ‖∞
(ȳk − xk) |ȳk − xk|2

b0 ‖ȳ‖∞ + S (S+ (ȳ − x))3 , k = 1, . . . , N, (2.62)

where ȳ ∈ RN , b0 > 0, S : RN → R and S+ : RN → RN , with (x ∈ RN )

S (x) =

∑N
i=1 xie

axi∑N
i=1 e

axi
; S+ (x)k =

xke
axk − xke−axk
eaxk + e−axk

, k = 1, . . . , N.

The maps S,S+ are smooth approximations of the maximum function and replace the infinity norm
in (2.62), allowing B0 ∈ C3

b

(
RN ;RN

)
, coherently with our theoretical framework. Therefore B0 is to

be interpreted as a cubic nonlinearity with a cutoff for large values of ‖x‖∞ . For our experiments, we
consider b0 = 2, ȳ = 2e and a = 104. In Tables 2.3-2.4 we report the outcomes of simulations with
and without f , respectively, when σ = 0.7, t = 1 and α varies in

(
1
2 , 1
)
. In particular, Table 2.3 shows

that, in the case of time–shift, the first iterate always remarkably outperforms the linear approximation.
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Table 2.3: First order approximation in the bounded cubic case with time–shift; noise strength σ = 0.7.

α P(|X0,e
1 | > 1) v0

0 (1, e) ε0r v1
0 (1, e) ε1r

0.55 0.501 0.562 −0.122 −5.19e-2 −1.82e-2

0.65 0.531 0.594 −0.119 −6.65e-2 6.59e-3

0.75 0.587 0.648 −0.104 −6.40e-2 5.11e-3

0.85 0.679 0.743 −9.43e-2 −7.95e-2 2.28e-2

Table 2.4: Same setting as in Table 2.3, without time–shift (f ≡ 0).

α P(|X0,e
1 | > 1) v0

0 (1, e) ε0r v1
0 (1, e) ε1r v2

0 (1, e) ε2r

0.55 0.495 0.374 0.244 −9.64e-4 0.246 0.109 2.62e-2

0.65 0.536 0.396 0.261 −2.74e-2 0.312 0.142 4.74e-2

0.75 0.586 0.462 0.212 −8.16e-2 0.351 0.191 2.49e-2

0.85 0.680 0.608 0.106 −8.20e-2 0.226 0.138 2.35e-2

On the contrary, when f ≡ 0 (Table 2.4), v1
0 (1, e) deteriorates the OU estimate, and we are forced to

implement the second iterate to get an accuracy similar to the one provided by the time–shift (compare
the columns ε1r , Table 2.3, and ε2r , Table 2.4). Of course, the trade–off in the introduction of v2

0 (1, e)
consists in substantially increasing the computational time.
Finally, in Figure 2.3 we investigate the trajectories of P0,·u0 (e) and of the first order approximation
in the time interval [0, 1], as well as the corresponding absolute relative errors. Here we fix α = 0.6
and consider two strengths of noise: σ = 0.1 and σ = 1.3. As already observed in the sine case,
the advantages in introducing the first iterate are rather evident. Overall, we conclude that v1

0 (·, e)
proves to be a versatile and computationally cheap method to improve on the performances of the linear
approximation.
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Figure 2.2: Behavior in time of the first order approximation in the sine case with time–shift. In each line, the panel on
the left shows the evolution of the probabilities, and the one on the right the corresponding errors. The top line refers to
σ = 0.1, the bottom line to σ = 1.3. α = 0.6 everywhere.

Figure 2.3: Behavior in time of the first order approximation in the bounded cubic case with time–shift. In each line, the
panel on the left shows the evolution of the probabilities, and the one on the right the corresponding errors. The top line
refers to σ = 0.1, the bottom line to σ = 1.3. α = 0.6 everywhere.
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Appendix 2.A Proof of Lemma 2.4

In this appendix we provide the proof of Lemma 2.4, a useful result for the arguments of Section
2.2.

Proof of Lemma 2.4. Let us fix 0 ≤ s ≤ T, x ∈ RN and a direction h ∈ RN ; note that all the assertions
of the statement are true for ω ∈ Ω \ Ω′ by construction of the stochastic flow, hence we only focus on
ω ∈ Ω′. For every ε ∈ (0, 1] and t ∈ [s, T ] define the incremental ratio function

Y 1
x,h (ε, t) = ε−1

(
Xs,x+εh
t (ω)−Xs,x

t (ω)
)

= h+

∫ t

s

AY 1
x,h (ε, r) +

B0

(
r,Xs,x

r (ω) + εY 1
x,h (ε, r)

)
−B0 (r,Xs,x

r (ω))

ε

dr
= h+

∫ t

s

(
A+

∫ 1

0
DB0

(
r,Xs,x

r (ω) + ρεY 1
x,h (ε, r)

)
dρ

)
Y 1
x,h (ε, r) dr. (2.63)

Notice that, for every ε ∈ (0, 1] (omitting ω to keep notation short)∣∣∣Xs,x+εh
t −Xs,x

t

∣∣∣ ≤ ε |h|+ (|A|+ ‖DB0‖T,∞
)∫ t

s

∣∣∣Xs,x+εh
r −Xs,x

r

∣∣∣ dr, t ∈ [s, T ] ,

where we recall that ‖DB0‖T,∞ = sup0≤t≤T ‖DB0 (t, ·)‖∞. Thus, an application of Gronwall’s lemma

shows that
∣∣∣Y 1
x,h (ε, t)

∣∣∣ ≤ |h| e(|A|+‖DB0‖T,∞)T =: C1 for all t ∈ [s, T ] and ε ∈ (0, 1]. Next, taking
ε1, ε2 ∈ (0, 1] and t ∈ [s, T ] we compute from (2.63)

∣∣Y 1
x,h (ε2, t)− Y 1

x,h (ε1, t)
∣∣ ≤ ∫ t

s
|A|
∣∣Y 1
x,h (ε2, r)− Y 1

x,h (ε1, r)
∣∣ dr

+

∣∣∣∣ ∫ t

s

(∫ 1

0
DB0

(
r,Xs,x

r + ρε2Y
1
x,h (ε2, r)

)
dρ Y 1

x,h(ε2, r)

−
∫ 1

0
DB0

(
r,Xs,x

r + ρε1Y
1
x,h (ε1, r)

)
dρ Y 1

x,h (ε1, r)

)
dr

∣∣∣∣
≤
(
|A|+ ‖DB0‖T,∞ +

N2

2
C1

∥∥∂2B0

∥∥
T,∞

)∫ t

s

∣∣Y 1
x,h (ε2, r)− Y 1

x,h (ε1, r)
∣∣ dr

+
N2

2
C2

1T
∥∥∂2B0

∥∥
T,∞ |ε2 − ε1| , (2.64)

where
∥∥∂2B0

∥∥
T,∞ = sup0≤t≤T

∥∥∂2B0 (t, ·)
∥∥
∞. Therefore another application of Gronwall’s lemma shows

that the mapping ε 7→ Y 1
x,h (ε, t) is Lip–continuous in (0, 1] uniformly in t ∈ [s, T ], and by the theorem of

extension of uniformly continuous functions we obtain the existence of DhX
s,x
t (ω). Now by dominated

convergence we are allowed to pass to the limit in (2.63), which yields

DhX
s,x
t (ω) = h+

∫ t

s
(A+DB0 (r,Xs,x

r (ω)))DhX
s,x
r (ω) dr, t ∈ [s, T ] . (2.65)

Given the arbitrarity of h, x ∈ RN , this equation shows that the mapping x 7→ Xs,x
t (ω) belongs to

C1
(
RN
)
, with

∥∥DXs,·
t (ω)

∥∥
∞ ≤ N exp

{(
|A|+ ‖DB0‖T,∞

)
T
}
.
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In order to analyze higher–order derivatives, we work by induction; fix m = 1, . . . , n− 1 and suppose as
inductive hypothesis that Xs,·

t (ω) ∈ Cm
(
RN
)
, t ∈ [s, T ], with the estimate in (2.17) holding true for

a sum from i = 1 to i = m. Moreover, assume that for every multi–index h ∈ (N ∪ {0})N with length
1 ≤ ‖h‖1 ≤ m one has, for any t ∈ [s, T ] (omitting ω)

DhX
s,x
t = δh +

∫ t

s
((A+DB0 (r,Xs,x

r ))DhX
s,x
r + Lh (r, x)) dr,

δh =

{
ej , if ‖h‖1 = 1 and hj = 1,

0, elsewhere.
(2.66)

Here (ej)j=1,...,N is the canonical basis of RN and Lh (t, x) = (Lh,j (t, x))j=1,...,N , with Lh,j (t, x) ∈ R
denoting a sum of products where one factor is a (partial) derivative at Xs,x

t of B0,j (t, ·) up to order
‖h‖1 and the others are (partial) derivatives at x of Xs,·

t up to order ‖h‖1−1. In particular, Lh (t, x) = 0
when ‖h‖1 = 1 (cfr. (2.65)). At this point, consider x, h ∈ RN and fix a multi–index h with length
‖h‖1 = m; by analogy with (2.63), for any ε ∈ (0, 1] and t ∈ [s, T ] define the incremental ratio function

Y m+1
x,h (ε, t) = ε−1

(
DhX

s,x+εh
t −DhX

s,x
t

)
=

∫ t

s

(
(A+DB0 (r,Xs,x

r ))Y m+1
x,h (ε, r) + ε−1 (Lh (r, x+ εh)− Lh (r, x))

+
DB0

(
r,Xs,x+εh

r

)
−DB0 (r,Xs,x

r )

ε
DhX

s,x+εh
r

)
dr.

Note that for any j = 1, . . . , N we can write (t ∈ [s, T ], ε ∈ (0, 1])

ε−1
(
DB0

(
t,Xs,x+εh

t

)
−DB0 (t,Xs,x

t )
)
j,·

=

((∫ 1

0
D2B0,j

(
t,Xs,x

t + ρεY 1
x,h (ε, t)

)
dρ

)
Y 1
x,h (ε, t)

)>
,

and that, further, the inductive hypothesis of boundedness for the derivatives of Xs,·
t (see (2.17)),

together with the structure of Lh and B0 ∈ Cm+1
b

(
[0, T ]× RN ;RN

)
ensures that

ε−1 |Lh (t, x+ εh)− Lh (t, x)| ≤ C2 |h| , t ∈ [s, T ] , ε ∈ (0, 1] ,

for some constant C2 = C2 (A,B0, T,m,N) > 0. These facts, the Lip–continuity of the map ε 7→
Y 1
x,h (ε, t) in (0, 1] uniformly in t ∈ [s, T ] and computations analogous to those in (2.64) entail that there

exists DhDhX
s,x
t (ω). The arbitrarity of x, h and h coupled with Gronwall’s lemma provides us with

the desired bound (2.17) for the derivatives of order m + 1, and finally by dominated convergence the
validity of (2.66) for a multi–index of length m + 1 is a consequence of the chain rule. In particular,
Xs,·
t (ω) ∈ Cm+1

(
RN
)
. The proof is then complete, considering that the base case is provided by

(2.65). �



Chapter 3

A sharp càdlàg property for jump
diffusions and dynamic programming
principle

In this chapter, we prove the existence of a version of the stochastic flow X = (Xs,x
t )t≥s generated

by (I.5) which depends in a regular way on the variables (s, t, x). In particular, the flow X is sharp
in the following sense: there exists an almost sure event Ω′ such that, for every ω ∈ Ω′, the map
(s, x, t) 7→ Xs,x

t (ω) is càdlàg in s (for t and x fixed), càdlàg in t (for s and x fixed) and continuous in
x (for s and t fixed). In the case of SDEs with only small jumps, i.e., with f ≡ 0, this result solves an
open problem which also appears in [126]. In our proof, we deal with non–separable spaces of càdlàg
functions involving supremum norms and, when f ≡ 0, we employ an extension of the càdlàg criterion
in [28], which is proved in the appendix, see Appendix 3.B. We then extend our approach to encompass
controlled SDEs having also a large–jumps component. Using our sharp stochastic flow we obtain a new
dynamic programming principle, whose proof is of independent interest.

3.1 Preliminaries and main results on the sharp càdlàg property

In this chapter, | · | denotes the Euclidean norm in any Rm, m ≥ 1. Fix T > 0 and let (Ω,F ,P) be
a complete probability space endowed with a filtration F = (Ft)0≤t≤T satisfying the usual hypotheses.
On this probability space, we take an m−dimensional F−Brownian motion W = (Wt)0≤t≤T . Moreover,
given a measurable space (U,U), we consider a stationary Poisson point process p on U with intensity
measure dt ⊗ ν(dz), where ν(dz) is a σ−finite measure on U (see [106, Section 9, Chapter I]). In
particular, for every ω ∈ Ω, p(ω) : Dp(ω)→ U , where Dp(ω) is a countable subset of (0,∞). Let Np be
the counting measure associated with p, namely

Np ((0, t]× V ) (ω) = # {s ∈ Dp(ω) ∩ (0, t] : [p(ω)](s) ∈ V } , t > 0, V ∈ U , ω ∈ Ω;

this is a Poisson random measure on (0,∞) × U . In the sequel, we write ps(ω) = [p(ω)](s) to have a
compact notation. We denote by Ñp(dt, dz) = Np(dt, dz)−dt⊗ν(dz) the compensated Poisson random
measure. We suppose that p is F−adapted, in the sense that Np((0, t]× V ) is Ft−measurable for every
V ∈ U and t > 0.

Fix a measurable set U0 ∈ U such that ν(U \ U0) ∈ (0,∞). We are going to consider SDEs with
coefficients satisfying the next requirements.

73
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Hypothesis 3.1. Consider the drift coefficient b (t, x) = (bj (t, x))j=1,...,d, the diffusion matrix α (t, x) =
(αi,j (t, x))i=1,...,d; j=1,...,m and the small–jumps coefficient g (x, t, z) = (gj (x, t, z))j=1,...,d. We require
b : [0, T ] × Rd → Rd, α : [0, T ] × Rd → Rd×m and g : Rd × [0, T ] × U → Rd to be jointly measurable in
their domains.

We assume that b, α and g satisfy linear growth and Lipschitz–type conditions, see [106]. More
precisely, for every p ≥ 2, there exists a constant Kp such that

|b (t, x)|p + |α (t, x)|p +

∫
U0

|g (x, t, z)|p ν (dz) ≤ Kp (1 + |x|p) , x ∈ Rd, t ∈ [0, T ] , (3.1)

and

|b (t, x)− b (t, y)|p + |α (t, x)− α (t, y)|p

+

∫
U0

|g (x, t, z)− g (y, t, z)|p ν (dz) ≤ Kp |x− y|p , x, y ∈ Rd, t ∈ [0, T ] . (3.2)

Here, |α|2 =
∑

i,j |αi,j |
2. We also consider a large–jumps coefficient f : Rd× [0, T ]×U → Rd, supposing

that f is a jointly measurable function which is continuous in the first argument.

In this chapter, we study the SDE (cfr. (I.5) in Introduction)

Xt = x+

∫ t

s
b (r,Xr) dr +

∫ t

s
α (r,Xr) dWr

+

∫ t

s

∫
U0

g
(
Xr−, r, z

)
Ñp (dr, dz) +

∫ t

s

∫
U\U0

f
(
Xr−, r, z

)
Np (dr, dz) , t ∈ [s, T ], (3.3)

where s ∈ [0, T ) and x ∈ Rd. In particular, the small–jumps case f ≡ 0 is investigated in Section 3.2,
while the large–jumps case f 6= 0 is analyzed in Section 3.3.
A solution to (3.3) is a càdlàg, Rd−valued, F−adapted process X = (Xt)s≤t≤T satisfying (3.3) up to
indistinguishability. We extend the trajectories of X in the whole interval [0, T ] by setting Xt = Xs, t ∈
[0, s]. Under Hypothesis 3.1, it is known that (3.3) admits a pathwise unique solution for every initial
condition (s, x) (see Sections 3.2-3.3 for the details). Our goal is to prove the existence of a sharp
version of the solution X which is simultaneously càdlàg in the time variables s, t, and continuous in
the space variable x; furthermore, X is stochastically continuous in s. More precisely, we search for a
sharp stochastic flow generated by (3.3) according to the following definition, where we denote by D0

the complete metric space of Rd−valued, càdlàg functions on [0, T ] endowed with the uniform norm.

Definition 3.1. Let X : Ω × [0, T ] × Rd × [0, T ] → Rd be an F ⊗ B([0, T ] × Rd × [0, T ])−measurable
function and denote by Xs,x

t (ω) = X(ω, s, x, t). We say that X is the sharp stochastic flow generated by
(3.3) if there exists an a.s. event Ω′ –independent from s, t, x– such that the four following requirements
are fulfilled for every ω ∈ Ω′, s ∈ [0, T ) and x ∈ Rd.

1. The process (Xs,x
t )t∈[s,T ] satisfies (3.3) in Ω′;

2. (i) The map Xs,x
· (ω) : [0, T ]→ Rd is càdlàg;

(ii) The map Xs,· (ω) : Rd → D0 is continuous;

(iii) The map X ·,x (ω) : [0, T ]→ D0 is càdlàg, locally uniformly in x;
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3. The flow property holds: Xs,x
t (ω) = X

u,Xs,x
u (ω)

t (ω), s < u < t ≤ T.

4. The function X is stochastically continuous in the following sense: for every ε > 0 and M > 0,

lim
r→s

P
(

sup
|x|≤M

sup
0≤t≤T

|Xr,x
t −X

s,x
t | > ε

)
= 0, s ∈ [0, T ]. (3.4)

Notice that, by the pathwise uniqueness of (3.3) and Point 2. in Definition 3.1, a sharp stochastic
flow generated by (3.3) is unique up to an a.s. event. The next theorem shows the existence of the
sharp stochastic flow associated with (3.3).

Theorem 3.1. Under Hypothesis 3.1, the sharp stochastic flow generated by (I.5) exists.

When f ≡ 0, i.e., in the small–jumps case, we deduce the previous result from a stronger one, which
is presented in Theorem 3.2 after introducing some notations. Let C0 = (C(Rd;D0), dlu0 ) be the metric
space of continuous functions defined on Rd with values in D0 with the usual distance dlu0 (defined
below in (3.20)). We endow C0 with the σ−algebra C generated by the projections πx : C(Rd;D0) →
(D0,D), x ∈ Rd, defined by πx(f) = f(x), f ∈ C0. Here D is the σ−algebra on D0 generated by the
Skorokhod topology (see the discussion around (3.11)).

Theorem 3.2. When f ≡ 0, under Hypothesis 3.1, the sharp stochastic flow generated by (I.5) exists
and is a stochastically continuous, càdlàg (C0, C)−valued process.

Remark 3.1. Despite some differences with the assertions in Theorem 3.1, [115, Theorem 5] gives a
version of the solution of the SDE (I.7) which is sharp in the variables (s, t, x) and satisfies the flow
property. [115, Theorem 5] can be applied to the SDE (3.3) when the coefficients are time–independent
and g and f have a special form; it cannot be used to study controlled SDEs. More precisely, α and b must
be time–independent and g(x, r, z) = g1(x)g2(r, z), f(x, r, z) = f1(x)f2(r, z), where f2, g2 are measurable
in their domains with values in Rk and g2 verifies

∫ T
0 dr

∫
U0
|g2 (r, z)|2 ν (dz) < ∞. Moreover, one has

to require that g1, f1 : Rd → Rd×k are Lipschitz continuous. In this case,

Zt =
(
t,Wt,

∫ t

0

∫
U0

g2 (r, z) Ñp (dr, dz) ,

∫ t

0

∫
U\U0

f2(r, z)Np (dr, dz)
)
∈ R1+m+2k.

The proof of [115, Theorem 5] is very different from the one of Theorem 3.1, which relies on Theorem 3.2.
On the other hand, in [115] there are no results related to Theorem 3.2 (the space C0 = (C(Rd;D0), dlu0 )
is introduced in this chapter).

3.2 SDEs with small jumps

In this section, we are interested in the study of (3.3) with f ≡ 0, i.e., the SDE with small jumps.
In particular, we consider the following SDE:

Yt = η +

∫ t

s
b (r, Yr) dr +

∫ t

s
α (r, Yr) dWr +

∫ t

s

∫
U0

g (Yr−, r, z) Ñp (dr, dz) , t ∈ [s, T ] , (3.5)

where s ∈ [0, T ) and
η ∈ L0 (Fs)
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i.e., η is an Fs−measurable random variable with values in Rd. A solution of this equation is a càdlàg,
Rd−valued, F−adapted process Y = (Yt)s≤t≤T satisfying (3.5) up to indistinguishability.

Conditions (3.1)-(3.2) guarantee the existence of a solution Y to (3.5) for every η ∈ Lp(Ω)∩L0(Fs),
with p ≥ 2, see [125, Theorem 3.1] or [167, Theorem 117]. Such a solution is pathwise unique and
satisfies

E
[

sup
s≤t≤T

|Yt|p
]
<∞.

We denote by Y s,η the solution of (3.5) starting from η at time s. We also set Y s,η
r = Y s,η

s if 0 ≤ r < s.

3.2.1 Flow property and continuity in x

The pathwise uniqueness of (3.5) immediately implies the cocycle property : for every x ∈ Rd and
0 ≤ s < u ≤ T , there exists an a.s. event Ωs,u,x such that

Y u,Y s,xu
t (ω) = Y s,x

t (ω) , t ∈ [u, T ] , ω ∈ Ωs,u,x. (3.6)

The notation Ωs,u,x indicates an (a.s.) event which may depend on s, u and x (it is independent of t).
This notation will be adopted for the rest of the chapter.

The next result is an extension of [125, Equation (3.7)] to random initial conditions, see also [126,
Lemma 3.3.3]. The proof contains useful estimates (in particular, see (3.9)-(3.10)) which will be used
several times hereinafter.

Lemma 3.3. Fix p ≥ 2. Then, for every Fs−measurable random variables ξ, η ∈ Lp (Ω), one has

E

[
sup
s≤t≤T

∣∣∣Y s,η
t − Y s,ξ

t

∣∣∣p] ≤ 4p−1ec(T−s)E [|η − ξ|p] , s ∈ [0, T ) , (3.7)

where c > 0 is a constant depending only on p, d,m, T,K2,Kp.

Proof. Fix 0 ≤ s < T and two Fs−measurable random variables ξ, η ∈ Lp(Ω). By (3.5), in an a.s. event
Ωs,ξ,η we have, using Hölder’s inequality and the Lipschitz condition (3.2) on b,∣∣∣Y s,η

t − Y s,ξ
t

∣∣∣p
≤ 4p−1

(
|η − ξ|p +KpT

p−1

∫ t

s
sup
s≤u≤r

∣∣∣Y s,η
u − Y s,ξ

u

∣∣∣p dr + sup
s≤u≤t

∣∣∣∣∫ u

s

(
α (r, Y s,η

r )− α
(
r, Y s,ξ

r

))
dWr

∣∣∣∣p
+ sup
s≤u≤t

∣∣∣∣∫ u

s

∫
U0

(
g
(
Y s,η
r− , r, z

)
− g

(
Y s,ξ
r− , r, z

))
Ñp (dr, dz)

∣∣∣∣p), t ∈ [s, T ] .

Taking the supremum and the expectation we obtain

E
[

sup
s≤u≤t

∣∣∣Y s,η
u − Y s,ξ

u

∣∣∣p] ≤ 4p−1

(
E [|η − ξ|p]

+KpT
p−1

∫ t

s
E
[

sup
s≤u≤r

∣∣∣Y s,η
u − Y s,ξ

u

∣∣∣p] dr + E
[

sup
s≤u≤t

∣∣∣∣∫ u

s

(
α (r, Y s,η

r )− α
(
r, Y s,ξ

r

))
dWr

∣∣∣∣p]
+ E

[
sup
s≤u≤t

∣∣∣∣∫ u

s

∫
U0

(
g
(
Y s,η
r− , r, z

)
− g

(
Y s,ξ
r− , r, z

))
Ñp (dr, dz)

∣∣∣∣p]), t ∈ [s, T ] . (3.8)
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By the Burkholder–Davis–Gundy inequality and the Lipschitz condition (3.2) on α we have

E
[

sup
s≤u≤t

∣∣∣∣∫ u

s

(
α (r, Y s,η

r )− α
(
r, Y s,ξ

r

))
dWr

∣∣∣∣p]
≤ cp (dm)p T

p
2
−1E

[∫ t

s

∣∣∣α (r, Y s,η
r )− α

(
r, Y s,ξ

r

)∣∣∣p dr]
≤ cp (dm)p T

p
2
−1Kp

∫ t

s
E
[

sup
s≤u≤r

∣∣∣Y s,η
u − Y s,ξ

u

∣∣∣p] dr, t ∈ [s, T ] . (3.9)

where cp > 0 is a constant only depending on p. As for the integral with respect to Ñp, [125, Theorem
2.11] yields, for every t ∈ [s, T ] ,

E
[

sup
s≤u≤t

∣∣∣∣∫ u

s

∫
U0

(
g
(
Y s,η
r− , r, z

)
− g

(
Y s,ξ
r− , r, z

))
Ñp (dr, dz)

∣∣∣∣p]
≤ c1,p d

p

(
E

[(∫ t

s
dr

∫
U0

ν (dz)
∣∣∣g (Y s,η

r− , r, z
)
− g

(
Y s,ξ
r− , r, z

)∣∣∣2) p
2

]

+ E
[∫ t

s
dr

∫
U0

ν (dz)
∣∣∣g (Y s,η

r− , r, z
)
− g

(
Y s,ξ
r− , r, z

)∣∣∣p])
≤ c1,p d

p
[
T
p
2
−1K

p
2
2 +Kp

] ∫ t

s
E
[

sup
s≤u≤r

∣∣∣Y s,η
u − Y s,ξ

u

∣∣∣p] dr, (3.10)

where c1,p > 0. Going back to (3.8), we combine (3.9) and (3.10) to get the existence of a constant
c = c (p, d,m, T,K2,Kp) > 0 such that

E
[

sup
s≤u≤t

∣∣∣Y s,η
u − Y s,ξ

u

∣∣∣p ] ≤ 4p−1E
[
|η − ξ|p

]
+ c

∫ t

s
E
[

sup
s≤u≤r

∣∣∣Y s,η
u − Y s,ξ

u

∣∣∣p ]dr, t ∈ [s, T ] .

At this point Gronwall’s lemma provides us with the assertion. �

Denote by D0 =
(
D
(
[0, T ] ;Rd

)
, ‖·‖0

)
, the metric space of Rd−valued, càdlàg functions with the

uniform norm ‖·‖0 in [0, T ]: D0 is complete but not separable. Inspired by [147, Chapter V], we endow
D0 with the σ−algebra D generated by the projections

πt : D0 → Rd, t ∈ [0, T ], defined by πt(f) = f(t), f ∈ D0. (3.11)

It is well known that D coincides with the Borel σ−algebra generated by the Skorokhod topology J1,
see [31, Theorem 12.5], [110, Theorem 1.14, Chapter VI]) and [111, Corollary 2.4]. On the contrary, D
is strictly smaller than the Borel σ−algebra of the uniform distance (cfr. [31, Eq. (15.2)]). Notice that
the difference of two càdlàg functions, considered as a mapping from (D0 × D0,D ⊗ D) to (D0,D), is
measurable. Indeed, this is an immediate consequence of the measurability of the following map:

(D0 ×D0,D ⊗D)→ R2d, (x, y) 7→ (x (t) , y (t)) , t ∈ [0, T ] .

Moreover, observe that also ‖·‖0 : (D0,D) → R is measurable, because the càdlàg property allows to
compute the supremum on a countable dense set of [0, T ].
Let us fix s ∈ [0, T ) and consider the random field Y s,· = (Y s,x)x∈Rd . For every x ∈ Rd, the map
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Y s,x : Ω→ (D0,D) is a random variable, i.e., it is D−measurable. Hence, by the previous discussion the
function ω 7→ sup0≤t≤T |Y

s,x
t (ω)−Y s,y

t (ω)| is measurable for every x, y ∈ Rd. Thanks to (3.7), choosing
p > d we can apply the Kolmogorov–Chentsov continuity criterion as in [30, Lemma A.2.37] to find a
continuous modification Ỹ s,· of Y s,·. Hence there exist a.s. events Ωs and Ωs,x such that

Ỹ s,x = Y s,x in Ωs,x, and Ỹ s,· (ω) : Rd → D0 is continuous for any ω ∈ Ωs. (3.12)

By setting Ỹ s,x
t (ω) = x for every x ∈ Rd, t ∈ [0, T ] and ω ∈ Ωc

s, we get the continuity of Ỹ s,·(ω) for
all ω ∈ Ω. From now on, we will always work with this continuous version, which we keep denoting by
Y s,·.

The following result shows the dependence of P−a.s. path of the solution on the initial condition.

Proposition 3.4. For every s ∈ [0, T ) and η ∈ Lp (Ω) ∩ L0(Fs), p ≥ 2, there exists an a.s. event Ωs,η

such that
Y s,η
t (ω) = Y

s,η(ω)
t (ω) , t ∈ [s, T ] , ω ∈ Ωs,η. (3.13)

Proof. Fix p ≥ 2 and s ∈ [0, T ). First, we notice that (3.13) is an immediate consequence of the pathwise
uniqueness of the solutions to (3.5) when η ∈ Lp (Ω)∩L0(Fs) is simple, namely η =

∑n
k=1 ak1Ak , where

n ∈ N, ak ∈ Rd and (Ak)k is an Fs−measurable partition of Ω, k = 1, . . . , n.
Secondly, we consider η ∈ Lp(Ω) ∩ L0(Fs) and take a sequence (ηn)n of simple, Fs−measurable

random variables converging to it both in the Lp−sense and almost surely. By the previous step, we
can find an a.s. event Ω′s,η (independent from n) such that

Y s,ηn (ω) = Y s,ηn(ω) (ω) , n ∈ N, ω ∈ Ω′s,η.

Without loss of generality, suppose that ηn → η pointwise on Ω′s,η. The continuity of the random field
(Y s,x)x∈Rd in Ω yields

D0 − lim
n→∞

Y s,ηn(ω) (ω) = Y s,η(ω) (ω) , ω ∈ Ω′s,η.

On the other hand, an application of Lemma 3.3 shows that, possibly passing to a subsequence,

D0 − lim
k→∞

Y s,ηnk (ω) = Y s,η (ω) , ω ∈ Ωs,η,

with an a.s. event Ωs,η ⊂ Ω′s,η. By the three previous assertions we infer (3.13) and the proof is
complete. �

Combining the cocycle property in (3.6) with Proposition 3.4 we get the flow property expressed in
the next corollary. This result improves (3.6), because in (3.6) the a.s. event Ωs,u,x possibly depends
on x ∈ Rd.

Corollary 3.5. For every 0 ≤ s < u ≤ T , there exists an a.s. event Ωs,u such that

Y
u,Y s,xu (ω)
t (ω) = Y s,x

t (ω) , t ∈ [u, T ] , x ∈ Rd, ω ∈ Ωs,u. (3.14)

Proof. Fix 0 ≤ s < u ≤ T . Equations (3.6)-(3.13) imply, for every x ∈ Rd, the existence of an a.s. event
Ωs,u,x where (3.14) holds. Therefore, it is sufficient to remove the dependence of this event from x to
prove the assertion. Let Ωs,u = ∩x∈QdΩs,u,x; then P (Ωs,u) = 1 and

Y
u,Y s,xu (ω)
t (ω) = Y s,x

t (ω) , t ∈ [u, T ] , x ∈ Qd, ω ∈ Ωs,u. (3.15)

For a point x ∈ Rd \ Qd, take a sequence (xn)n ⊂ Qd such that xn → x. Given ω ∈ Ωs,u, by the
continuity of the random field Y s,· (see (3.12) and the subsequent comment), one can pass to the limit
in (3.15) to show that (3.15) holds in x, as well. This gives (3.14), completing the proof. �
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Observe that each process Y s,x, x ∈ Rd, satisfies (3.5) in an a.s. event Ωs,x: we now want to find a
common a.s. event Ωs –independent from x– where (3.5) holds (with η = x). To do this, we consider
suitable modifications of the stochastic integrals. We start off by taking Ω′s = ∩x∈QdΩs,x, so that, for
every ω ∈ Ω′s,

Y s,x
t − x−

∫ t

s
b (r, Y s,x

r ) dr

=

∫ t

s
α (r, Y s,x

r ) dWr +

∫ t

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz) , t ∈ [s, T ] , x ∈ Qd. (3.16)

We can now construct two continuous random fields corresponding to the addends on the right–hand side
of the previous equation. Specifically, for the term (Zs,x1 )x∈Rd =

(∫ ·
s α (r, Y s,x

r ) dWr

)
x∈Rd , we combine

(3.7) with the estimate in (3.9) to write, for any p > d,

E
[

sup
s≤t≤T

∣∣∣∣∫ t

s
(α (r, Y s,y

r )− α (r, Y s,x
r )) dWr

∣∣∣∣p ] ≤ C |x− y|p , x, y ∈ Rd,

where C = C (T, p, d,m,K2,Kp) > 0. Hence the Kolmogorov–Chentsov criterion ensures the existence
of a version of this random field which is continuous in an a.s. event Ω′′s . We set this modifica-
tion equal to 0 outside Ω′′s , so that it is continuous in the whole space Ω, and keep denoting it by
Zs,x1 =

∫ ·
s α (r, Y s,x

r ))dWr. Moreover, we can think of (Zs,x1 )x as a continuous, (D0,D)−valued random
field defining Zs,x1,t (ω) = Zs,x1,s (ω), for every t ∈ [0, s) , x ∈ Rd and ω ∈ Ω.

As for Zs,x2 =
∫ ·
s

∫
U0
g
(
Y s,x
r− , r, z

)
Ñp (dr, dz) , x ∈ Rd, the argument to obtain a (D0,D)−valued, contin-

uous modification is the same once we consider the estimate in (3.10). This construction ensures that,
in an a.s. event Ωs ⊂ Ω′s, (3.16) holds with the right–hand side being the sum of continuous random
fields.
Finally, it is easy to see that (Zs,x3 )x∈Rd =

(∫ ·
s b (r, Y s,x

r ) dr
)
x∈Rd is a continuous random field in Ω by

the continuity of Y s,· and the condition (3.2) on b. If we define Zs,x3 (ω)(t) = 0, t ∈ [0, s), ω ∈ Ω, x ∈ Rd,
then (Zs3,x)x is a continuous, (D0,D)−valued random field. Going back to (3.16), we deduce that

Y s,x
t = x+

∫ t

s
b (r, Y s,x

r ) dr +

∫ t

s
α (r, Y s,x

r ) dWr +

∫ t

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz) ,

t ∈ [0, T ] , x ∈ Rd, ω ∈ Ωs. (3.17)

We conclude this subsection with a corollary showing the consequences of the cocycle property (3.6) of
(Y s,x)x∈Rd (see also Corollary 3.5) on the continuous vector fields (Zs,xi )x∈Rd , i = 1, 2, 3.

Corollary 3.6. For every s ∈ [0, T ) and η ∈ Lp (Ω) ∩ L0(Fs), p ≥ 2, there exists an a.s. event Ωs,η

such that(∫ t

s
α (r, Y s,η

r ) dWr

)
(ω) = Z

s,η(ω)
1,t (ω) ,

(∫ t

s

∫
U0

g
(
Y s,η
r− , r, z

)
Ñp (dr, dz)

)
(ω) = Z

s,η(ω)
2,t (ω) ,∫ t

s
b (r, Y s,η

r (ω)) dr = Z
s,η(ω)
3,t (ω) ,

(3.18)

for all t ∈ [s, T ] and ω ∈ Ωs,η. Furthermore, for every u ∈ (s, T ], there exists an a.s. event Ωs,u such
that

Zs,xi,u + Z
u,Y s,xu (ω)
i,t (ω) = Zs,xi,t (ω) , t ∈ [u, T ] , x ∈ Rd, i = 1, 2, 3, ω ∈ Ωs,u. (3.19)
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Proof. The equalities in (3.18) can be inferred with the same argument as in the proof of Proposition
3.4, recalling the estimates (3.8), (3.9) and (3.10) in the proof of Lemma 3.3.
As for (3.19), we focus only on Z1, being the other cases analogous. Fix 0 ≤ s < u ≤ T and compute,
by the cocycle property in (3.6) and (3.18),

Zs,x1,t (ω) =

(∫ u

s
α (r, Y s,x

r ) dWr +

∫ t

u
α
(
r, Y u,Y s,xu

r

)
dWr

)
(ω) = Zs,x1,u (ω) + Z

u,Y s,xu (ω)
1,t (ω) ,

which holds for every t ∈ [u, T ], x ∈ Qd and ω ∈ Ωs,u, where Ωs,u is an a.s. event independent from
x. In fact, the previous equation is valid also for x ∈ Rd \Qd, by the continuity of the (D0,D)−valued
random fields Y s,·, Zs,·1 and Zu,·1 . Hence we recover (3.19), completing the proof. �

3.2.2 The stochastic continuity in the initial time s

Let C0 = (C(Rd;D0), dlu0 ) be the metric space of continuous functions defined on Rd with values in
D0, where the distance dlu0 is given by

dlu0 (f, g) =
∞∑
N=1

1

2N
sup|x|≤N ‖f (x)− g (x)‖0

1 + sup|x|≤N ‖f (x)− g (x)‖0
, f, g ∈ C

(
Rd;D0

)
. (3.20)

The space C0 is complete but not separable. Hence, instead of endowing it with the Borel σ−algebra asso-
ciated with dlu0 , we consider the σ−algebra C generated by the projections πx : C(Rd;D0)→ (D0,D), x ∈
Rd, defined by πx(f) = f(x), f ∈ C0. In Appendix 3.A (see Lemma 3.28), we prove that C can be read as
a Borel σ−algebra of C(Rd;D0) endowed with the metric dluS . Although we are not going to use Lemma
3.28 in this chapter, it is worth presenting because it is an analogue of the fact that D coincides with
the Borel σ−algebra generated by J1 in D([0, T ];Rd), see the discussion around (3.11) and references
therein.
Arguments similar to those in Subsection 3.2.1 about the space (D0,D) show that dlu0 : (C0×C0, C⊗C)→
R is measurable. Indeed, for every N ∈ N, the map (f, g) 7→ sup|x|≤N ‖f(x)− g(x)‖0 from (C0×C0, C⊗C)
to R is measurable (by continuity, the sup can be computed on a countable dense subset of Rd).

We consider the process Y = (Ys)s∈[0,T ], where

Ys = Y s,·, 0 ≤ s < T, and YT (ω) : Rd → D0, [YT (ω) (x)] (t) = Y T,x
t (ω) = x, ω ∈ Ω, (3.21)

0 ≤ t ≤ T, x ∈ Rd (see (3.17)). Since (Y s,x)−1(A) ∈ F for every A ∈ D and x ∈ Rd, the map
Ys : Ω → (C0, C) is a random variable for all s ∈ [0, T ]. This fact coupled with the above discussion
shows that

ω 7→ dlu0 (Ys (ω) , Yt (ω)) is measurable for every s, t ∈ [0, T ]. (3.22)

As in [149], we want to apply [28, Theorem 4.2] to show the càdlàg property of the (C0, C)−valued
process Y . The aforementioned theorem requires the stochastic continuity of Y , which is then the aim
of this subsection.

Before presenting our result (see Lemma 3.10), we need some preparation. An important tool that
we are going to use is [107, Theorem 1.1] (see also [149, Theorem 3.1]), which in turn is based on a
generalized Garsia–Rodemich–Rumsey type lemma (see [13]). For the reader’s convenience we report its
statement, where we denote by log+ the positive part of the logarithm, namely log+ x = log x∨0, x ∈ R+.
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Theorem 3.7 ([107]). Consider a separable metric space (M,ρ) and an F⊗B
(
Rd
)
/B(M)−measurable

map φ : Ω × Rd → M such that φ (ω, ·) is continuous for every ω ∈ Ω. Suppose that there are p > 2d
and c > 0 such that

E [(ρ (φ (·, x) , φ (·, y)))p] ≤ c |x− y|p , x, y ∈ Rd.

For any α > 1, define the map fα (x) = ([xd
(
log+ x

)α
]∨ 1)−1, x ∈ R+. Then the function Z : Ω→ [0,∞]

given by

Z (ω) =

(∫
Rd

∫
Rd

(
ρ (φ (ω, x) , φ (ω, y))

|x− y|

)p
fα (|x|) fα (|y|) dx dy

) 1
p

, ω ∈ Ω, (3.23)

is a p−integrable random variable satisfying

ρ (φ (ω, x) , φ (ω, y)) ≤ c0Z (ω) |x− y|1−
2d
p

([
(|x| ∨ |y|)

2d
p
(
log+ (|x| ∨ |y|)

) 2α
p

]
∨ 1
)
,

x, y ∈ Rd, ω ∈ Ω, (3.24)

where c0 is a positive constant depending on α, p, d.

We wish to apply the previous result to (D0,D)−valued, continuous random fields. Although D0

is not separable and D is not the Borel σ−algebra generated by ‖·‖0, this can be done thanks to the
following proposition.

Proposition 3.8. Theorem 3.7 holds substituting (D0, ‖ · ‖0,D) for (M,ρ,B(M)).

Proof. We note that the map ω 7→ ‖φ(ω, x)− φ(ω, y)‖0 is measurable for every x, y ∈ Rd (see Sub-
section 3.2.1, where this fact is proved for Y s,·). As a consequence, since φ : Ω × Rd → D0 is F ⊗
B(Rd)/D−measurable and φ(ω, ·) is continuous for each ω ∈ Ω by hypothesis, the function K : Ω×Rd×
Rd → R defined by

K (ω, x, y) = ‖φ (ω, x)− φ (ω, y)‖0 , x, y ∈ Rd, ω ∈ Ω

is jointly measurable. Looking now at the proof of [107, Theorem 1.1] and the results cited therein, it
turns out that the separability of the arrival space (M,ρ) is only used to ensure the measurability of
the function Z in (3.23). When M = (D0,D), this property can be inferred directly. Indeed, for any
p > 0 and α > 1,

Z(ω) =

(∫
Rd

∫
Rd

(
K (ω, x, y)

|x− y|

)p
fα (|x|) fα (|y|) dx dy

)1/p

, ω ∈ Ω;

since K is non–negative, as well as fα and |x− y|−1 , x 6= y, the desired measurability for Z is given by
Tonelli’s theorem. �

Fix α = 2 and denote by f = fα. Notice that, for any γ > 0, (log(x))γ = O(x) as x → ∞. Hence,
combining Proposition 3.8 with (3.7) in Lemma 3.3 we obtain the next corollary.

Corollary 3.9. For every p > 2d and s ∈ [0, T ), the p−integrable random variable Us,p defined by

Us,p(ω) =

(∫
Rd

∫
Rd

(
‖Y s,x(ω)− Y s,y(ω)‖0

|x− y|

)p
f (|x|) f (|y|) dx dy

) 1
p

, ω ∈ Ω,
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is such that

sup
0≤t≤T

|Y s,x
t (ω)− Y s,y

t (ω)| ≤ c1 Us,p (ω) |x− y|1−2d/p
[
(|x| ∨ |y|)

2d+1
p ∨ 1

]
, x, y ∈ Rd, ω ∈ Ω, (3.25)

where c1 = c1 (d, p) > 0. Furthermore,

sup
s∈[0,T )

E
[
Ups,p

]
≤ 4p−1ecT c2, (3.26)

where c > 0 is the same constant as in (3.7) and c2 = (
∫
Rd f (|x|) dx)2 <∞.

We remark that results similar to Corollary 3.9 hold with the continuous random fields Zs,·i , i =
1, 2, 3, instead of Y s,·. We are now ready to prove the main result of this subsection.

Lemma 3.10. The (C0, C)−valued process Y = (Ys)s∈[0,T ] considered in (3.21) is continuous in proba-
bility.

Proof. Fix s ∈ [0, T ] and take a sequence (sn)n ⊂ [0, T ] such that sn → s as n→∞. We want to show
that

E
[

sup
|x|≤N

‖Y s,x − Y sn,x‖0
]

= E
[

sup
|x|≤N

sup
0≤t≤T

|Y s,x
t − Y sn,x

t |
]
−→
n→∞

0, N ≥ 1. (3.27)

Indeed, this is a sufficient condition to obtain the stochastic continuity of Y in s, as the next argument
explains. By definition of continuity in probability, we aim to prove that limn→∞ P

(
dlu0 (Ysn , Ys) > ε

)
= 0

for any ε > 0, which is equivalent to

lim
n→∞

E
[
dlu0 (Ysn , Ys)

(
1 + dlu0 (Ysn , Ys)

)−1
]

= 0.

Therefore, it is enough to show that

lim
n→∞

E
[
dlu0 (Ysn , Ys)

]
= lim

n→∞

∞∑
N=1

1

2N
E

[
sup|x|≤N ‖Y s,x − Y sn,x‖0

1 + sup|x|≤N ‖Y s,x − Y sn,x‖0

]
= 0. (3.28)

The dominated convergence theorem –endowing N with the canonical counting measure– gives (3.28)
knowing (3.27).

Fix N ≥ 1. We start off by proving the right stochastic continuity in a point s ∈ [0, T ). Take a
sequence (sn)n ⊂ (s, T ) such that sn ↓ s and split the expectation in (3.27) as follows:

E

[
sup
|x|≤N

sup
0≤t≤T

|Y s,x
t − Y sn,x

t |

]
≤ E

[
sup
|x|≤N

sup
0≤t≤s

|Y s,x
t − Y sn,x

t |

]
+ E

[
sup
|x|≤N

sup
s≤t≤sn

|Y s,x
t − Y sn,x

t |

]

+ E

[
sup
|x|≤N

sup
sn≤t≤T

|Y s,x
t − Y sn,x

t |

]
, n ∈ N. (3.29)

We analyze the second and third addends in the right–hand side of (3.29), the first being 0. As for the
second, by (3.17), for every n ∈ N, we can find an a.s. event Ωs,sn independent of x where

sup
s≤t≤sn

|Y s,x
t − Y sn,x

t | ≤ sup
s≤t≤sn

∣∣∣∣∫ t

s
b (r, Y s,x

r ) dr

∣∣∣∣+ sup
s≤t≤sn

∣∣∣∣∫ t

s
α (r, Y s,x

r ) dWr

∣∣∣∣
+ sup
s≤t≤sn

∣∣∣∣∫ t

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣ , x ∈ Rd. (3.30)
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Thus, we prove that, as n→∞,

E

[
sup
|x|≤N

sup
s≤t≤sn

∣∣∣∣∫ t

s
b (r, Y s,x

r ) dr

∣∣∣∣
]
→ 0, E

[
sup
|x|≤N

sup
s≤t≤sn

∣∣∣∣∫ t

s
α (r, Y s,x

r ) dWr

∣∣∣∣
]
→ 0,

E

[
sup
|x|≤N

sup
s≤t≤sn

∣∣∣∣∫ t

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣
]
→ 0.

(3.31)

The limits in (3.31) are all dealt with using the same technique, so we just focus on the one appearing
in the second line. In particular, we want to apply Proposition 3.8 to the continuous, (D0,D)−valued
random field (Zs,x2 )x∈Rd . To do this, we take γ > 2d and write

E
[

sup
|x|≤N

sup
s≤t≤sn

∣∣∣Zs,x2,t

∣∣∣γ ] ≤ 2γ−1
(
E
[

sup
s≤t≤sn

∣∣∣Zs,02,t

∣∣∣γ ]+ E
[

sup
|x|≤N

sup
s≤t≤sn

∣∣∣Zs,x2,t − Z
s,0
2,t

∣∣∣γ ])
=: 2γ−1 (In + IIn (N)) . (3.32)

As for In, by the linear growth condition (3.1) for g and [125, Theorem 2.11] we infer that, for some
C > 0,

In = E
[

sup
s≤t≤sn

∣∣∣∣∫ t

s

∫
U0

g
(
Y s,0
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣γ]
≤ cd,γ

(
E

[(
K2

∫ sn

s

(
1 +

∣∣∣Y s,0
r−

∣∣∣)2
dr

) γ
2

]
+ E

[
Kγ

∫ sn

s

(
1 +

∣∣∣Y s,0
r−

∣∣∣)γ dr])

≤ cd,γ
(

(sn − s)
γ
2 K

γ
2
2 + (sn − s)Kγ

)
E

[
sup
s≤t≤T

(
1 +

∣∣∣Y s,0
t

∣∣∣)γ] ≤ C · o (1) , as n→∞, (3.33)

where in the last inequality we use [125, Equation (3.6)]. As regards IIn, by the estimates in (3.7) and
(3.10) we have, for some C0 = C0 (γ, d,m, T,K2,Kγ) > 0,

E
[

sup
s≤t≤sn

∣∣∣∣∫ t

s

∫
U0

(
g
(
Y s,x
r− , r, z

)
− g

(
Y s,y
r− , r, z

))
Ñp (dr, dz)

∣∣∣∣γ]
≤ C0 (sn − s) |x− y|γ , x, y ∈ Rd. (3.34)

Hence Proposition 3.8 yields, arguing as in Corollary 3.9 with Y s,· replaced by Zs,·2 ,

sup
|x|≤N

sup
s≤t≤sn

∣∣∣Zs,x2,t − Z
s,0
2,t

∣∣∣ ≤ c (d, p) Ũ (2)
s,sn,γN

1+ 1
γ , in Ω,

where

Ũ (2)
s,sn,γ(ω) =

∫
Rd

∫
Rd

sups≤t≤sn

∣∣∣Zs,x2,t (ω)− Zs,y2,t (ω)
∣∣∣

|x− y|

γ

f (|x|) f (|y|) dx dy


1
γ

, ω ∈ Ω.

In particular, Ũ (2)
s,sn,γ is a γ−integrable random variable such that, by (3.34), E

[(
Ũ

(2)
s,sn,γ

)γ] ≤ C1 (sn − s) ,
where C1 = C1(γ, d,m, T,K2,Kγ). Consequently,

IIn (N) ≤ cγC1N
γ+1 (sn − s)→ 0 as n→∞. (3.35)
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Combining (3.33)-(3.35) in (3.32) we deduce that

E

[
sup
|x|≤N

sup
s≤t≤sn

∣∣∣∣∫ t

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣γ
]
→ 0 as n→∞. (3.36)

Note that (3.36) holds for every γ > 0 by Jensen’s inequality, hence we recover the second line of (3.31)
as a particular case. In an analogous way one can prove that, for any γ > 0,

E

[
sup
|x|≤N

sup
s≤t≤sn

∣∣∣∣∫ t

s
b (r, Y s,x

r ) dr

∣∣∣∣γ
]
−→
n→∞

0, E

[
sup
|x|≤N

sup
s≤t≤sn

∣∣∣∣∫ t

s
α (r, Y s,x

r ) dWr

∣∣∣∣γ
]
−→
n→∞

0, (3.37)

whence

E

[
sup
|x|≤N

sup
s≤t≤sn

|Y s,x
t − Y sn,x

t |

]
→ 0 as n→∞. (3.38)

Next, we study the third addend in (3.29) using the flow property in Corollary 3.5. In particular, by
(3.14) there exists an almost sure event Ωs,sn independent of x where

sup
sn≤t≤T

|Y s,x
t − Y sn,x

t | = sup
sn≤t≤T

∣∣∣Y sn,Y
s,x
sn

t − Y sn,x
t

∣∣∣ ≤ sup
0≤t≤T

∣∣∣Y sn,Y
s,x
sn

t − Y sn,x
t

∣∣∣ , x ∈ Rd.

Now we choose p ≥ 2d+ 1 and apply (3.25) in Corollary 3.9 to deduce that

sup
0≤t≤T

∣∣∣Y sn,Y
s,x
sn

t − Y sn,x
t

∣∣∣ ≤ c1 Usn,p

[(
|x| ∨

∣∣Y s,x
sn

∣∣) 2d+1
p ∨ 1

] ∣∣x− Y s,x
sn

∣∣1− 2d
p , x ∈ Rd,

which holds in the whole space Ω. Moreover, by (3.17), there exists a full probability set Ωs where∣∣Y s,x
sn

∣∣ ≤ N +

∣∣∣∣∫ sn

s
b (r, Y s,x

r ) dr

∣∣∣∣+ ∣∣∣∣∫ sn

s
α (r, Y s,x

r ) dWr

∣∣∣∣+ ∣∣∣∣∫ sn

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣ , |x| ≤ N.

Combining the three previous expressions we get the existence of an almost sure event Ω′s,sn where

sup
|x|≤N

sup
sn≤t≤T

|Y s,x
t − Y sn,x

t | ≤ c1 Usn,p sup
|x|≤N

{[
N

2d+1
p

+

∣∣∣∣∫ sn

s
b (r, Y s,x

r ) dr

∣∣∣∣ 2d+1
p

+

∣∣∣∣∫ sn

s
α (r, Y s,x

r ) dWr

∣∣∣∣ 2d+1
p

+

∣∣∣∣∫ sn

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣ 2d+1
p

]

×

[∣∣∣∣∫ sn

s
b (r, Y s,x

r ) dr

∣∣∣∣1− 2d
p

+

∣∣∣∣∫ sn

s
α (r, Y s,x

r ) dWr

∣∣∣∣1− 2d
p

+

∣∣∣∣∫ sn

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣1− 2d
p

]}
. (3.39)

In the estimates in (3.39), we use the subadditivity property of the function xr, for r = (2d+ 1) /p
or r = 1 − 2d/p. Let us denote by C2 := sup0<t<T E

[
U2
t,p

]
, which is finite by (3.26) in Corollary 3.9.

Taking the expected value in (3.39), we apply the Cauchy–Schwarz inequality to write

E

[
sup
|x|≤N

sup
sn≤t≤T

|Y s,x
t − Y sn,x

t |

]2

≤ 12 c1C2 E

[
sup
|x|≤N

{

N
4d+2
p +

∣∣∣∣∫ sn

s
b (r, Y s,x

r ) dr

∣∣∣∣ 4d+2
p

+

∣∣∣∣∫ sn

s
α (r, Y s,x

r ) dWr

∣∣∣∣ 4d+2
p

+

∣∣∣∣∫ sn

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣ 4d+2
p

}

× sup
|x|≤N

{∣∣∣∣∫ sn

s
b (r, Y s,x

r ) dr

∣∣∣∣2− 4d
p

+

∣∣∣∣∫ sn

s
α (r, Y s,x

r ) dWr

∣∣∣∣2− 4d
p

+

∣∣∣∣∫ sn

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣2− 4d
p

}]
.
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Invoking the Cauchy–Schwarz inequality one more time,

E

[
sup
|x|≤N

sup
sn≤t≤T

|Y s,x
t − Y sn,x

t |

]2

≤ 12
√

12 c1C2

(
N

4d+2
p +

(
E

[
sup
|x|≤N

{∣∣∣∣∫ sn

s
b (r, Y s,x

r ) dr

∣∣∣∣ 8d+4
p

+

∣∣∣∣∫ sn

s
α (r, Y s,x

r ) dWr

∣∣∣∣ 8d+4
p

+

∣∣∣∣∫ sn

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣ 8d+4
p

}]) 1
2
)(

E

[

sup
|x|≤N

{∣∣∣∣∫ sn

s
b (r, Y s,x

r ) dr

∣∣∣∣4− 8d
p

+

∣∣∣∣∫ sn

s
α (r, Y s,x

r ) dWr

∣∣∣∣4− 8d
p

+

∣∣∣∣∫ sn

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣4− 8d
p

}])1
2

.

Notice that the right–hand side of the previous equation goes to 0 as n→∞ by (3.36)-(3.37). Summing
up,

E

[
sup
|x|≤N

sup
sn≤t≤T

|Y s,x
t − Y sn,x

t |

]
→ 0 as n→∞. (3.40)

Combining (3.40) with (3.38) we obtain (3.27), which yields the desired right–stochastic continuity
for the process Y in s. The left–continuity of Y in (0, T ] can be argued in a similar way. The proof is
complete. �

Recall the continuous, (D0,D)−valued random fields Zs,·i , i = 1, 2, 3, introduced at the end of
Subsection 3.2.1 and appearing on the right–hand side of (3.17). For every i = 1, 2, 3, we define the
(C0, C)−valued stochastic process Zi = (Zi,s)s∈[0,T ], whose random variables are Zi,s = Zs,·i , 0 ≤ s < T ,
and we set, for every ω ∈ Ω,

Zi,T (ω) : Rd → D0, [Zi,T (ω) (x)] (t) = ZT,xi,t (ω) = 0, x ∈ Rd, 0 ≤ t ≤ T.

Using a strategy similar to the one followed in Lemma 3.10 for the process Y , in the next result we
show the continuity in probability of the processes Zi.

Corollary 3.11. For every i = 1, 2, 3, the (C0, C)−valued process Zi = (Zi,s)s∈[0,T ] is continuous in
probability.

Proof. Fix i = 1, 2, 3 and s ∈ [0, T ). As in Lemma 3.10, we only prove the right stochastic continuity of
Zi in s. Hence we consider a sequence (sn)n ⊂ (s, T ) such that sn ↓ s and we show that (cfr. (3.27))

E

[
sup
|x|≤N

‖Zs,xi − Z
sn,x
i ‖0

]
= E

[
sup
|x|≤N

sup
0≤t≤T

∣∣∣Zs,xi,t − Zsn,xi,t

∣∣∣] −→
n→∞

0, N ≥ 1. (3.41)

Taking N ≥ 1, we split the expectation in (3.41) as follows:

E

[
sup
|x|≤N

sup
0≤t≤T

∣∣∣Zs,xi,t − Zsn,xi,t

∣∣∣] ≤ E

[
sup
|x|≤N

sup
0≤t≤s

∣∣∣Zs,xi,t − Zsn,xi,t

∣∣∣]+ E

[
sup
|x|≤N

sup
s≤t≤sn

∣∣∣Zs,xi,t − Zsn,xi,t

∣∣∣]

+ E

[
sup
|x|≤N

sup
sn≤t≤T

∣∣∣Zs,xi,t − Zsn,xi,t

∣∣∣]
=:
(
I(i)
n + II(i)

n + III(i)
n

)
(N) , n ∈ N.
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Since I
(i)
n (N) = 0, n ∈ N, by construction, and limn→∞ II

(i)
n (N) = 0 by (3.31), we only study III

(i)
n (N) .

In particular, we prove that limn→∞ III
(i)
n (N) = 0. To do this, we invoke Corollary 3.6, precisely (3.19),

which guarantees the existence of an almost sure event Ωs,sn –independent from x– where, for every
x ∈ Rd,

sup
sn≤t≤T

∣∣∣Zs,xi,t − Zsn,xi,t

∣∣∣ = sup
sn≤t≤T

∣∣∣Zs,xi,sn + Z
sn,Y

s,x
sn

i,t − Zsn,xi,t

∣∣∣
≤ sup

s≤t≤sn

∣∣∣Zs,xi,t ∣∣∣+ sup
0≤t≤T

∣∣∣Zsn,Y s,xsn
i,t − Zsn,xi,t

∣∣∣ . (3.42)

Choose p ≥ 2d + 1. By Lemma 3.3 and the estimates in its proof, we can apply Proposition 3.8 to
deduce the existence of a p−integrable random variable Ũ (i)

sn,p such that, for some c = c(p, d) > 0,

sup
0≤t≤T

∣∣∣Zsn,Y s,xsn
i,t − Zsn,xi,t

∣∣∣ ≤ c Ũ (i)
sn,p

[(
|x| ∨

∣∣Y s,x
sn

∣∣) 2d+1
p ∨ 1

] ∣∣x− Y s,x
sn

∣∣1− 2d
p , x ∈ Rd,

which holds in the whole space Ω. Since (again by Lemma 3.3) supn∈N E
[(
Ũ

(i)
sn,p

)2]
<∞, we can proceed

as in (3.39) and the subsequent estimates to obtain

lim
n→∞

E
[

sup
|x|≤N

sup
0≤t≤T

∣∣∣Zsn,Y s,xsn
i,t − Zsn,xi,t

∣∣∣] = 0.

Taking now the supremum over |x| ≤ N and expectations in (3.42), we have

III(i)
n (N) ≤ II(i)

n (N) + E
[

sup
|x|≤N

sup
0≤t≤T

∣∣∣Zsn,Y s,xsn
i,t − Zsn,xi,t

∣∣∣]→ 0 as n→∞,

completing the proof. �

3.2.3 The càdlàg property in the initial time s

In this subsection we study the existence of a càdlàg modification of the process Y = (Ys)s in (3.21).
Such a property is obtained by Theorem 3.12, which is a reformulation of [28, Theorem 4.2] (see also
[29, Theorem 1.2]). We compare Theorem 3.12 with the original result in [28]-[29] in Remark 3.2.

Theorem 3.12. Let X = (Xt)t∈[0,T ] be a family of functions defined on a complete probability space
(Ξ,G,Q) with values in a complete metric space (E,∆). Let 0 ≤ s ≤ t ≤ u ≤ T and denote by
∆(s, t, u) = ∆(Xs, Xt) ∧ ∆(Xt, Xu). Suppose that the map ω 7→ ∆(Xs(ω), Xt(ω)) is measurable for
any s, t ∈ [0, T ], and that X is continuous in probability. If there exist continuous, increasing functions
δ : [0, T ]→ R+ and θ : [0, T ∨ 1]→ R+, with δ(0) = θ(0) = 0 and θ concave, such that

EQ [∆(s, t, u)1A] ≤ δ (u− s) · θ (Q (A)) , 0 ≤ s ≤ t ≤ u ≤ T, A ∈ G, (3.43)

and that ∫ T

0
u−2δ (u) θ (u) du <∞, (3.44)

then X has a càdlàg modification X ′ (modification means that the map ω 7→ ∆(Xt(ω), X ′t(ω)) is equal
to 0, Q−a.s., for any t ∈ [0, T ]).
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Remark 3.2. Compared to the original assertion in [28]-[29], in Theorem 3.12 we do not require the
functions Xt : Ξ → (E,∆) to be measurable with respect to the Borel σ−algebra of E. This is crucial
for our arguments, because we are going to apply Theorem 3.12 to the (C0, C)−valued process Y and C is
not the Borel σ−algebra of C0. The hypothesis on the measurability of the map ω 7→ ∆(Xs(ω), Xt(ω)) is
inspired by an analogous assumption in [30, Lemma A.2.37], where the Kolmogorov–Chentsov continuity
criterion is proved without supposing the separability of the arrival space. In any case, such an hypothesis
does not alter the strategy of the proof of Theorem 3.12, which is presented in Appendix 3.B for the sake
of completeness.

The next corollary, which gives a sufficient condition for the existence of a càdlàg version, can be
easily deduced from Theorem 3.12.

Corollary 3.13. Under the same hypotheses as in Theorem 3.12, if there exist q > 1/2, r > 0 and
C > 0 such that

EQ [∆ (Xs, Xt)
q ·∆ (Xt, Xu)q] ≤ C |u− s|1+r , 0 ≤ s ≤ t ≤ u ≤ T, (3.45)

then X has a càdlàg modification.

Proof. Define θ(h) = h
1− 1

2q and δ(h) = C
1
2q h

1+r
2q , h ≥ 0. Then (3.43) can be deduced from (3.45) as in

[149, Corollary 4.2], while (3.44) is satisfied because r > 0. �

We are now ready to present the main result of Section 3.2. In the proof, we employ the concept of
strong solution to Equation (3.5) (see (3.55)), which allows to follow an argument relying on conditional
expectations with respect to the augmented σ−algebra generated by W and Np.

Theorem 3.14. There exists a càdlàg version Z of the (C0, C)−valued process Y = (Ys)s.

Proof. We will apply Corollary 3.13. Note that, by the completeness of the probability space, the càdlàg
version Z will be automatically a (C0, C)−valued process.

Recall that in (3.22) we have shown the measurability of the map ω 7→ dlu0 (Ys(ω), Yt(ω)), s, t ∈ [0, T ].
Thus, according to Corollary 3.13, in order to find a càdlàg modification of the stochastically continuous
process Y it is sufficient to determine q > 1/2, r > 0 and a constant C > 0 such that

E
[
dlu0 (Ys, Yu)q · dlu0 (Yu, Yv)

q
]
≤ C |v − s|1+r , 0 ≤ s < u < v ≤ T. (3.46)

Note that using the completeness of the probability space, it is not difficult to prove that
Let us take a triplet of times (s, u, v), with 0 ≤ s < u < v ≤ T , and denote by ρ = v − s. We

can assume ρ < 1, otherwise (3.46) is trivially satisfied for any choice of q, r ∈ R+ and C ≥ 1. By the
computations in Subsection 3.2.2, precisely (3.30)-(3.39), there exists an a.s. event Ωs,u where, for every
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p ≥ 2d+ 1 and N ≥ 1,

sup
|x|≤N

sup
0≤t≤T

|Y s,x
t − Y u,x

t |

≤ sup
|x|≤N

{
sup
s≤t≤u

∣∣∣∣∫ t

s
b (r, Y s,x

r ) dr

∣∣∣∣+ sup
s≤t≤u

∣∣∣∣∫ t

s
α (r, Y s,x

r ) dWr

∣∣∣∣+ sup
s≤t≤u

∣∣∣∣∫ t

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣}
+ c1 Uu,p sup

|x|≤N

{
[
N

2d+1
p +

∣∣∣∣∫ u

s
b (r, Y s,x

r ) dr

∣∣∣∣ 2d+1
p

+

∣∣∣∣∫ u

s
α (r, Y s,x

r ) dWr

∣∣∣∣ 2d+1
p

+

∣∣∣∣∫ u

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣ 2d+1
p

]

×

[∣∣∣∣∫ u

s
b (r, Y s,x

r ) dr

∣∣∣∣1− 2d
p

+

∣∣∣∣∫ u

s
α (r, Y s,x

r ) dWr

∣∣∣∣1− 2d
p

+

∣∣∣∣∫ u

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣1− 2d
p

]}
=: I1 + c1Uu,pII1. (3.47)

If we compute the product appearing in II1, then introducing the set A =
{

2d+1
p , 1− 2d

p

}
we can

estimate

II1 ≤ sup
|x|≤N

{
N

2d+1
p sup

s≤t≤u

∣∣∣∣∫ t

s
b (r, Y s,x

r ) dr

∣∣∣∣1−
2d
p

+N
2d+1
p sup

s≤t≤u

∣∣∣∣∫ t

s
α (r, Y s,x

r ) dWr

∣∣∣∣1−
2d
p

+N
2d+1
p sup

s≤t≤u

∣∣∣∣∫ t

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣1−
2d
p

+ sup
s≤t≤u

∣∣∣∣∫ t

s
b (r, Y s,x

r ) dr

∣∣∣∣1+ 1
p

+ sup
s≤t≤u

∣∣∣∣∫ t

s
α (r, Y s,x

r ) dWr

∣∣∣∣1+ 1
p

+ sup
s≤t≤u

∣∣∣∣∫ t

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣1+ 1
p
}

+ S (N) =: III1,

where we denote by S (N) , N ≥ 1, the quantity

S (N) =
∑

i,j∈A, i 6=j
sup
|x|≤N

sup
s≤t≤u

{
∣∣∣∣∫ t

s
b (r, Y s,x

r ) dr

∣∣∣∣i ∣∣∣∣∫ t

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣j +

∣∣∣∣∫ t

s
b (r, Y s,x

r ) dr

∣∣∣∣i ∣∣∣∣∫ t

s
α (r, Y s,x

r ) dWr

∣∣∣∣j
+

∣∣∣∣∫ t

s
α (r, Y s,x

r ) dWr

∣∣∣∣i ∣∣∣∣∫ t

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣j
}
. (3.48)
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Furthermore, notice that I1 ≤ III1. Therefore, going back to (3.47) we have

sup
|x|≤N

sup
0≤t≤T

|Y s,x
t − Y u,x

t | ≤ (1 + c1 Uu,p) III1 ≤ (1 + c1 Uu,p)

×

[
N

2d+1
p sup
|x|≤N

sup
s≤t≤u

∣∣∣∣∫ t

s
b (r, Y s,x

r ) dr

∣∣∣∣1−
2d
p

+N
2d+1
p sup
|x|≤N

sup
s≤t≤u

∣∣∣∣∫ t

s
α (r, Y s,x

r ) dWr

∣∣∣∣1−
2d
p

+N
2d+1
p sup
|x|≤N

sup
s≤t≤u

∣∣∣∣∫ t

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣1−
2d
p

+ sup
|x|≤N

sup
s≤t≤u

∣∣∣∣∫ t

s
b (r, Y s,x

r ) dr

∣∣∣∣1+ 1
p

+ sup
|x|≤N

sup
s≤t≤u

∣∣∣∣∫ t

s
α (r, Y s,x

r ) dWr

∣∣∣∣1+ 1
p

+ sup
|x|≤N

sup
s≤t≤u

∣∣∣∣∫ t

s

∫
U0

g
(
Y s,x
r− , r, z

)
Ñp (dr, dz)

∣∣∣∣1+ 1
p

+ S (N)

]
. (3.49)

Since we can pick p ≥ 2d + 1 arbitrarily large, we consider p−1(2d+ 1) < 1 − 2dp−1. Moreover, note
that given two numbers a, b ≥ 0,

(ab) ∧ 1 ≤ (1 + a) (b ∧ 1) and (a+ b) ∧ 1 ≤ a ∧ 1 + b ∧ 1. (3.50)

With these considerations, using the inequality x/(1 + x) ≤ 1 ∧ x, x ≥ 0, we simplify the expression in
(3.49) to deduce that

sup|x|≤N ‖Y s,x − Y u,x‖0
1 + sup|x|≤N ‖Y s,x − Y u,x‖0

≤ sup
|x|≤N

sup
0≤t≤T

|Y s,x
t − Y u,x

t | ∧ 1

≤ (2 + c1 Uu,p)
(
N

2d+1
p + 2

)[
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]
.

Multiplying by 2−N and then summing over N , by the definition in (3.20) we infer that

dlu0 (Ys, Yu)

≤ 2 (2 + c1 Uu,p)
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) 2d+1
p

]
, (3.51)

which holds in Ωs,u. Now we want to split the series in (3.51). To do this, we first notice that the
function 2−x (x+ 1) is strictly decreasing in [1,∞), hence we can estimate

∞∑
N=N+1

N + 1

2N
≤
∫ ∞
N

x+ 1

2x
dx =

1

(log 2)2

(
N + 1

)
log 2 + 1

2N
, N ≥ 1.



90 Chapter 3

Therefore, for any γ > 0 –a new leverage parameter which has to be fixed– there exists a constant cγ > 0
such that

∑∞
N=N+1 (N + 1)2−N ≤ cγ(N + 1)−γ , N ≥ 1.

Secondly, we introduce another parameter σ > 0 –once again, to be determined– and set N = N (ρ) =
[ρ−σ] (recall that ρ = v − s < 1). Note that

∑∞
N=[ρ−σ ]+1(N + 1)2−N ≤ cγ([ρ−σ] + 1)−γ ≤ cγρ

σγ , and
that

∑∞
N=1(N + 1)2−N = 3. Hence from (3.51) we write

dlu0 (Ys, Yu) ≤ 2 (2 + c1 Uu,p)

[
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S
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s
α (r, Y s,x

r ) dWr
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p

)
+ 4 cγ ρ

σγ

]
. (3.52)

At this point, we revert to the definition of S (·) in (3.48). By (3.50),

( ∣∣∣∣∫ t

s
b (r, Y s,x

r ) dr
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p
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+
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p

, x ∈ Rd, t ∈ [s, u] .

Repeating the previous argument we find an upper bound for S (ρ−σ) ∧ 1, namely

S
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)
∧ 1 ≤ 4
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.

Therefore (3.52) becomes

dlu0 (Ys, Yu) ≤ 2 (2 + c1 Uu,p)

[
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]
.

Analogously, in an a.s. event Ωu,v one has, using also that dlu0 (f, g) ≤ 1 for every f, g ∈ C0,

dlu0 (Yu, Yv) ≤ 30 (2 + c1 Uv,p)
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]
.
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If we multiply the two previous expressions, raise both sides to a power q ∈ (1/2, p) and take expecta-
tions, then

E
[
dlu0 (Ys, Yu)q · dlu0 (Yu, Yv)

q
]
≤ 302q
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.

Notice that the definition in Corollary 3.9 and Lemma 3.3 yield the η−integrability of the random
variables Uu,p and Uv,p for every η > 1. We fix η = 5

4 and apply Hölder’s inequality with exponents η
and η′ = η(η − 1)−1 = 5 to deduce that
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. (3.53)

For every couple of time indeces 0 ≤ t1 ≤ t2 ≤ T , let us denote by

FW,Npt1,t2
= σ ({Wt −Wt1 , Np ((t1, t]× E) , t ∈ [t1, t2] , E ∈ U} ∪ N ) , (3.54)

where N is the family of negligible events in (Ω,F ,P): we set FW,Npt1
= (FW,Npt1,t

)t∈[t1,T ]. In particular,
FW,Np0 = (FW,Np0,t )t∈[0,T ] is the augmented filtration generated by W and Np. We are considering the
SDE (3.5) with deterministic coefficients, which are obviously predictable with respect to FW,Npt1

, for
every t1 ∈ [0, T ), once restricted to the interval [t1, T ]. Hence we can invoke [167, Theorem 117] (see
also [15, Theorem 2]) to claim that, for every t1 ∈ [0, T ) and x ∈ R,

Y t1,x is a strong solution of (3.5). (3.55)
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This means that Y t1,x is FW,Npt1
−adapted (in fact, it is also an FW,Npt1

−Markov process). As a con-
sequence, for all x ∈ Rd, i = 1, 2, 3, and t ∈ [u, v], the random variable Zu,xi,t (defined at the end of
Subsection 3.2.1) is FW,Npu,v −measurable. Recalling the continuity of the (D0,D)−valued random fields
Zu,·i and using the fact that countable sup of measurable functions is measurable, we deduce that the
random variables sup|x|≤ρ−σ supu≤t≤v |Z

u,x
i,t |, i = 1, 2, 3, appearing in (3.53) are FW,Npu,v −measurable. It

then follows that they are independent from FW,Nps,u . Indeed, since W and Np are mutually independent
(see [106, Theorem 6.3, Chapter II], or [125, Proposition 2.6]), a standard argument based on Dynkin’s
theorem ensures that FW,Npt1,t2

and FW,Npt2,t3
are independent, for any 0 ≤ t1 < t2 < t3 ≤ T . Therefore
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) . (3.56)

From now on, we denote by p̃ = ηq(2d+ 1)p−1 and enumerate positive constants implicitly assuming
their dependence on the parameters γ, η, p, q, d,m, T, {Kr, r ≥ 2}. By virtue of Corollary 3.9 and [125,
Equation (3.6)], for every q̃ > 2d,

E
[

sup
|x|≤ρ−σ

sup
s≤t≤u

∣∣∣Y s,x
t

∣∣∣q̃] ≤ 2q̃−1
(
E
[

sup
s≤t≤u

∣∣∣Y s,0
t

∣∣∣q̃]+ E
[

sup
|x|≤ρ−σ

sup
s≤t≤u

∣∣∣Y s,x
t − Y s,0

t

∣∣∣q̃])
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)
≤ 2c2ρ

−σ(q̃+1). (3.57)

Taking p̃ > d, (3.57) with q̃ = 2p̃, (3.1) and Hölder’s inequality entail

E
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2p̃−σ(2p̃+1). (3.58)

In order to estimate the expected value in the right–hand side of (3.53), we also want to apply
Proposition 3.8 to the continuous, (D0,D)−valued random fields

Zξ,x1 =

∫ ·
ξ
α
(
r, Y ξ,x

r

)
dWr, Zξ,x2 =

∫ ·
ξ

∫
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g
(
Y ξ,x
r− , r, z

)
Ñp (dr, dz) , x ∈ Rd,

where ξ = s, u. We only show the case ξ = s, being ξ = u analogous. We start from Zs,·1 , writing
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=: c4 (I2 + II2) .
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Regarding I2, by (3.1), the Burkholder–Davis–Gundy inequality and [125, Equation (3.6)] we obtain
I2 ≤ c5ρ

p̃. As for II2, since p̃ > d we can apply Proposition 3.8, which implies that, in the whole space
Ω,
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.

Here Ũ (1)
s,u,p̃ is the 2p̃−integrable random variable
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which satisfies, by (3.2), Lemma 3.3 and the Burkholder–Davis–Gundy inequality,
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Thus,
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Moving on to Zs,·2 , we can argue as in (3.32) to conclude that
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Analogously, if we require p̃ > 2d, then
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Going back to (3.53), by (3.56) and the law of iterated expectations with respect to FW,Nps,u we compute
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=: c11 {ρσγq + I3 + II3} . (3.62)
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To perform this passage, we observe that the argument of the second expected value in (3.53) is a
product between a sum S, which includes an integral in Ñp, and min{S, 1}, where S is another sum.
In (3.62), II3 is obtained multiplying the integral with respect to Ñp in S with S, while ρσγq and I3

multiplying the remaining terms in S by 1.
By (3.58)-(3.59) and the Cauchy–Schwarz inequality,

I3 ≤ c12ρ
p̃
2η
− σ

2η
(2p̃+1)

.

The same results together with (3.60)-(3.61) also yield
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)
.

Combining the two previous estimates in (3.62) we deduce that
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)
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At this point, it only remains to select appropriate parameters to recover (3.46) from (3.63). Recall
that η = 5

4 , hence
3
2η = 6

5 > 1. Collecting the conditions written throughout the lines above, we pick
(p, q, σ, γ) according to the following steps.

1. p ∈ (4d+ 1,∞), so that p−1(2d+ 1) < 1− 2dp−1;

2. q ∈ (p(2d+ 1
2)(2d+ 1)−1, p), where the lower bound ensures that q (2d+ 1) p−1 > 2d + 1

2 . In
turn, this yields

q > 1/2, p̃ = ηq
2d+ 1

p
> 2d,

p̃

2η
>

3

2η
;

3. σ ∈ (0, (8p̃+ 6)−1), i.e., σ is so small that

3

2η
− σ

η

(
2p̃+

3

2

)
> 1. (3.64)

This bound also guarantees that σ (p̃+ 1) < 1;

4. γ ∈
(
3(2ησq)−1,∞

)
, so that σγq > 3

2η .

With the previous prescriptions and noticing that 2p̃+1
2 < 2p̃+ 3

2 , from (3.63) we conclude that

E
[
dlu0 (Ys, Yu)q · dlu0 (Yu, Yv)

q
]
≤ c15ρ

3
2η
−σ
η (2p̃+ 3

2) =: c15ρ
1+r, where

r =
3

2η
− σ

η

(
2p̃+

3

2

)
− 1. (3.65)

Since r > 0 by (3.64), recalling that ρ = v − s < 1, we see that Equation (3.65) reduces to (3.46). The
proof is then complete. �

Using the càdlàg version Z of the process Y given by Theorem 3.14, we consider

Zs,x1,t =

∫ t

s
α (r, Zs,xr ) dWr, Zs,x2,t =

∫ t

s

∫
U0

g
(
Zs,xr− , r, z

)
Ñp (dr, dz) , Zs,x3,t =

∫ t

s
b (r, Zs,xr ) dr. (3.66)
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Thanks to (3.42), for every i = 1, 2, 3, the estimate (3.51) for dlu0 (Ys, Yu) constitutes an upper bound for
dlu0 (Zi,s, Zi,u), upon substituting

(
3 + c1Ũ

(i)
u,p

)
for (2 + c1Uu,p) in the right–hand side. Here the random

variables Ũ (i)
u,p are defined according to Proposition 3.8 applied to the (D0,D)−valued random fields Zu,·i .

Therefore, recalling that Zi = (Zi,s)s∈[0,T ] are stochastically continuous processes with values in (C0, C)
by Corollary 3.11, the same computations as in the proof of Theorem 3.14 allow to invoke Corollary
3.13, which yields the following result.

Corollary 3.15. For any i = 1, 2, 3, there exists a càdlàg version of the (C0, C)−valued process Zi =
(Zi,s)s.

In order not to complicate the notation, we keep denoting by Zi, i = 1, 2, 3, the càdlàg processes
given by Corollary 3.15. Without loss of generality, we assume that Z and Zi are càdlàg in the whole
space Ω.
At the end of Subsection 3.2.1 (see (3.17)), we have determined the existence of an a.s. event Ωs

independent from x where the SDE (3.5) is satisfied. Now, combining Theorem 3.14 with Corollary
3.15, we can get rid of the dependence of such Ωs from the initial time s. This is done in the next
lemma, where we are also able to establish the flow property (3.14) in an a.s. event independent from
the space and time variables.

Lemma 3.16. There exists an a.s. event Ω′ (independent from x, s and t) such that

Zs,xt = x+

∫ t

s
b (r, Zs,xr ) dr +

∫ t

s
α (r, Zs,xr ) dWr +

∫ t

s

∫
U0

g
(
Zs,xr− , r, z

)
Ñp (dr, dz) ,

s ∈ [0, T ) , t ∈ [0, T ] , x ∈ Rd, ω ∈ Ω′. (3.67)

Furthermore,
Zs,xt (ω) = Z

u,Zs,xu (ω)
t (ω) , 0 ≤ s < u < t ≤ T, x ∈ Rd, ω ∈ Ω′. (3.68)

Proof. By (3.17), there exists an a.s. event Ω1 –independent from s ∈ [0, T ) and x ∈ Rd– such that

Zs,xt (ω) = x+

3∑
i=1

Zs,xi,t (ω) , s ∈ [0, T ) ∩Q, t ∈ [0, T ] , x ∈ Rd, ω ∈ Ω1. (3.69)

Thanks to the càdlàg property of the (C0, C)−valued processes Z and Zi, i = 1, 2, 3, a standard ap-
proximation argument in s ensures that (3.69) holds for every s ∈ [0, T ). Hence (3.67) is satisfied in
Ω1.

As for the flow property in (3.68), note that by (3.14) in Corollary 3.5 there is an a.s. event Ω2

–independent from x, s, u– such that

Zs,xt (ω) = Z
u,Zs,xu (ω)
t (ω) , 0 ≤ s < u < t ≤ T, s, u ∈ Q, x ∈ Rd, ω ∈ Ω2. (3.70)

Fix x ∈ Rd, ω ∈ Ω2 and s, u ∈ R \ Q such that 0 ≤ s < u < T . Consider t ∈ (u, T ] and a sequence
(sn)n ⊂ [0, u) ∩ Q such that sn ↓ s as n → ∞: we know that limn→∞ Z

sn,x
t (ω) = Zs,xt (ω). Moreover,

we take a sequence (un)n ⊂ (u, t) ∩ Q, with un ↓ u as n → ∞, so that limn→∞ Z
sn,x
un (ω) = Zs,xu (ω).

At this point, from the càdlàg property of the (C0, C)−valued process Z, we deduce that Zu,y (ω) =
D0− limn→∞ Z

un,y (ω) locally uniformly in y ∈ Rd. As a consequence,

Zu,Z
s,x
u (ω) (ω) = D0− lim

n→∞
Zun,Z

sn,x
un (ω) (ω) .
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By (3.70), Zsn,xt (ω) = Z
un,Z

sn,x
un (ω)

t (ω) , n ∈ N, hence we can pass to the limit as n → ∞ to obtain
(3.68) in Ω2.

The a.s. event Ω′ is obtained by setting Ω′ = Ω1 ∩ Ω2, completing the proof. �

Theorem 3.14 and Lemma 3.16 coupled with Lemma 3.10 show that Z is the sharp stochastic flow
generated by the SDE (3.5) (without large jumps) according to Theorem 3.2.

More precisely, Z satisfies Points 1.-3. in Definition 3.1 by Lemma 3.16, while the fact that Z is a
stochastically continuous, càdlàg process with values in (C0, C) –which entail Points 2.-4. in Definition
3.1– is guaranteed by Theorem 3.14 and Lemma 3.10.

Combining stochastic continuity and càdlàg property, we also infer that the process Z = (Zs)s∈[0,T ]

has no fixed–time discontinuities, meaning that, for every s ∈ [0, T ],

Zs−(ω) = Zs(ω), ω ∈ Ωs. (3.71)

We conclude this part by stating a couple of lemmas discussing further properties of the sharp flow
Zs,xt : they will be used in Section 3.3 while studying the SDE (3.3) with large jumps. Their proofs are
postponed to Appendix 3.C. The first result regards the joint–measurability.

Lemma 3.17. For any s̄, t̄ ∈ [0, T ], the mapping Z : Ω×[0, s̄]×Rd×[0, t̄]→ Rd defined by Z(ω, s, x, t) =
Zs,xt (ω) is Ft̄ ⊗ B([0, s̄]× Rd × [0, t̄])−measurable.

The second lemma shows that the flow Zs,xt can be used to construct a solution to (3.5) when the
initial condition η is only a measurable random variable.

Lemma 3.18. Fix s ∈ [0, T ] and let η ∈ L0(Fs). Then, denoting by Zs,η the process defined by
Zs,ηt (ω) = Z

s,η(ω)
t (ω), ω ∈ Ω, t ∈ [0, T ], there exists an a.s. event Ωs,η where the following equation is

satisfied:

Zs,ηt = η +

∫ t

0
1{r>s}b (r, Zs,ηr ) dr +

∫ t

0
1{r>s}α (r, Zs,ηr ) dWr

+

∫ t

0

∫
U0

1{r>s}g
(
Zs,ηr− , r, z

)
Ñp (dr, dz) , t ∈ [0, T ]. (3.72)

In particular, Zs,η is the pathwise unique solution of (3.72). Further, for every ω ∈ Ωs,η, t ∈ [0, T ] (cfr.
(3.66)),(∫ t

0
1{r>s}α (r, Zs,ηr ) dWr

)
(ω) = Z

s,η(ω)
1,t (ω) ,

∫ t

0
1{r>s}b (r, Zs,ηr (ω)) dr = Z

s,η(ω)
3,t (ω) ,(∫ t

0

∫
U0

1{r>s}g
(
Zs,ηr− , r, z

)
Ñp (dr, dz)

)
(ω) = Z

s,η(ω)
2,t (ω) .

(3.73)

We observe that, using (3.73) and arguing as in the proof of Lemma 3.16, it is possible to show that
Zs,η in Lemma 3.18 satisfies (3.72) in an a.s. event Ωη depending only on η.

Remark 3.3. In Subsections 3.2.2-3.2.3 we have considered the process Y with values in the complete
metric space C0 = (C(Rd;D0), dlu0 ). Since C0 is not separable, we have endowed it with the σ−algebra
C generated by the projections πx –strictly smaller than the Borel σ−algebra– in order to overcome
measurability issues.
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An alternative approach which, at a first glance, might appear to be more natural is the following one.
Denote by DS the space of Rd−valued, càdlàg functions on [0, T ] endowed with the Skorokhod topology
J1, i.e., DS =

(
D
(
[0, T ] ;Rd

)
, J1

)
. According to [31, Section 12, Chapter 3], DS is a Polish space with

the following metric defining the topology:

dS (x, y) = inf
λ∈Λ

{
‖λ‖0 ∨ ‖x− y ◦ λ‖0

}
, x, y ∈ D

(
[0, T ] ;Rd

)
. (3.74)

Here Λ is the set of continuous and strictly increasing functions λ such that λ (0) = 0 and λ (T ) = T ,
and ‖λ‖0 = sups<t

∣∣ log
(λ(t)−λ(s)

t−s
)∣∣. Note that J1 is weaker than the topology generated by the uniform

convergence. Indeed, taking λ = I,

dS (x, y) ≤ ‖x− y‖0 , x, y ∈ D
(

[0, T ] ;Rd
)
. (3.75)

Hence, for every s ∈ [0, T ], Ys ∈ C(Rd;DS). By [122], the complete metric space
(
C
(
Rd;DS

)
, dluS

)
,

where

dluS (f, g) =

∞∑
N=1

1

2N
sup|x|≤N dS(f (x) , g (x))

1 + sup|x|≤N dS(f (x) , g (x))
, f, g ∈ C

(
Rd;DS

)
,

is also separable. Therefore we can argue as at the beginning of page 702 in [149] to infer the measurability
of Ys with respect to the Borel σ−algebra associated with dluS . Observe that, by (3.75) and the fact that
x(1 + x)−1 is increasing in R+, dluS (f, g) ≤ dlu0 (f, g) , f, g ∈ C

(
Rd;DS

)
. Thus, we can exploit the same

computations as those presented in the chapter to obtain the existence of a càdlàg modification Ỹ of
the C

(
Rd;DS

)
−valued process Y . Moreover, using [110, Proposition 2.1, Chapter VI] we can prove

Lemma 3.16, as well. However, Ỹ is not the sharp stochastic flow associated with (3.5) according to
Definition 3.1, because (ii) and (iii)] in Point 2. hold in a weaker sense, namely replacing D0 with
DS. As a consequence, for every s̄ ∈ [0, T ], t ∈ [0, T ], x ∈ Rd and ω ∈ Ω, we can not deduce that
limx→x̄ Ỹ

s̄,x
t (ω) = Ỹ s̄,x̄

t (ω) or lims↓s̄ Ỹ
s,x̄
t (ω) = Ỹ s̄,x̄

t (ω).

3.3 SDEs with large jumps

In this section, we investigate the SDE (3.3) with f 6= 0. Given s ∈ [0, T ) and η ∈ L0(Fs), we study

Xs,η
t = η +

∫ t

s
b (r,Xs,η

r ) dr +

∫ t

s
α (r,Xs,η

r ) dWr

+

∫ t

s

∫
U0

g
(
Xs,η
r− , r, z

)
Ñp (dr, dz) +

∫ t

s

∫
U\U0

f
(
Xs,η
r− , r, z

)
Np (dr, dz) , t ∈ [s, T ]. (3.76)

Compared to the SDE (3.5) that we have been discussing in Section 3.2, (3.76) presents an additional
integral with respect to the (non–compensated) Poisson random measure Np. For this reason, (3.76) is
often referred to as an SDE with large jumps. In particular, given ω ∈ Ω, one can read(∫ t

s

∫
U\U0

f
(
Xs,η
r− , r, z

)
Np (dr, dz)

)
(ω) =

∑
r∈Dp(ω)∩(s,t]

1U\U0
(pr(ω)) f(Xs,η

r− (ω), r, pr(ω)),

with the sum on the right–hand side which is finite P−a.s., because ν(U \ U0) < ∞ implies that
Dp(ω) is discrete, P−a.s. We study (3.76) by adapting an interlacing method described, for example, in
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[43, 106, 128]. Such an adaptation is not trivial for our scope of finding a sharp stochastic flow generated
by (3.76), as detailed in Remark 3.4.

Recall that a solution to (3.76) is a càdlàg, Rd−valued, F−adapted process Xs,η = (Xs,η
t )s≤t≤T

satisfying (3.76) up to indistinguishability. As usual, we extend the trajectories of Xs,η in the whole
interval [0, T ] by setting Xs,η

t = Xs,η
s , t ∈ [0, s]. Under our assumptions on the coefficients (see Section

3.1), there exists a pathwise unique solution of (3.76).

Remark 3.4. The existence of a pathwise unique solution of (3.76) can be proven by adapting the
interlacing procedure described in, e.g, [43, Subsection 3.2] and [106, Section 9, Chapter IV]) to the case
s 6= 0. To do this, starting from W , p and F, we construct a Brownian motion W (s) and a stationary
Poisson point process p(s) with respect to a filtration F(s), for every s ∈ (0, T ). On the other hand,
it is not clear how to use this approach to prove the existence of a sharp stochastic flow generated by
(3.76) according to Definition 3.1. In particular, it is not clear how to analyze the regularity of the flow
with respect to the initial time s. To overcome this issue, we follow an argument relying on the sharp
stochastic flow Zs,xt generated by the SDE (3.5) with small jumps (see Section 3.2). Remarkably, we
are also able to obtain an explicit expression –based on Zs,xt – for the solution of (3.76), from which we
deduce the regularity properties that we are looking for.

We now prove Theorem 3.1, which asserts the existence of a sharp stochastic flow generated by (3.76)
according to Definition 3.1. In order to make the proof easier to follow, in Theorem 3.19 we reformulate
the statement of Theorem 3.1 in an expanded version.

Theorem 3.19. There exist an F ⊗ B([0, T ]× Rd × [0, T ])−measurable function X : Ω× [0, T ]× Rd ×
[0, T ] → Rd, denoted by Xs,x

t (ω) = X(ω, s, x, t), and an almost sure event Ω′′ (independent of s, t and
x) such that

Xs,x
t = x+

∫ t

s
b (r,Xs,x

r ) dr +

∫ t

s
α (r,Xs,x

r ) dWr +

∫ t

s

∫
U0

g
(
Xs,x
r− , r, z

)
Ñp (dr, dz)

+

∫ t

s

∫
U\U0

f
(
Xs,x
r− , r, z

)
Np (dr, dz) , s ∈ [0, T ) , t ∈ [0, T ] , x ∈ Rd, ω ∈ Ω′′, (3.77)

and such that the flow property holds:

Xs,x
t (ω) = X

u,Xs,x
u (ω)

t (ω), 0 ≤ s < u < t ≤ T, x ∈ Rd, ω ∈ Ω′′. (3.78)

Furthermore, the process (Xs)s∈[0,T ] is stochastically continuous in the sense of Point 4. in Definition
3.1, and, for every ω ∈ Ω, the mapping (s, t, x) 7→ Xs,x

t (ω) satisfies Point 2. in Definition 3.1.

Proof. In order not to complicate the notation, we are going to construct the flow Xs,x
t generated by

(3.77) with t ∈ [0, T ), excluding the upper bound T . Since the proof is rather long, we divide it into
several steps.

Step I : Construction of the flow Xs,x
t . Denote by Pt = Np((0, t]× (U \ U0)), t > 0, and set P0 = 0:

since ν(U \ U0) ∈ (0,∞), P = (Pt)t≥0 is a Poisson process with intensity ν(U \ U0). Let τn, n ∈ N, be
the arrival times for the jumps of P . It is well known that τn(ω) ↑ ∞ as n → ∞, for every ω ∈ Ω1,
where Ω1 is an a.s. event (see, e.g., [164, Theorem 21.3] and the subsequent comment). Notice that P
is càdlàg and continuous in probability, hence it does not jump at time T , P−a.s. Thus, we suppose
that τn 6= T in Ω1, for every n ∈ N.
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To construct the solution of (3.77) we use Z = (Zs)s∈[0,T ]: the càdlàg, (C0, C)−valued process
studied in Subsection 3.2.3 satisfying (3.67), see Lemma 3.16. Note that (3.67) is the analogous of
(3.77) without the integral in Np, i.e., without the “large jumps”. We argue that Zs,x· (ω) does not jump
at τn(ω) ∈ (s, T ), for every s ∈ [0, T ), x ∈ Rd and ω ∈ Ω2, where Ω2 is an a.s. event. To see this,
we take a sequence (Un)n ⊂ U such that ν(Un) < ∞ and ∪n Un = U , which exists because ν(dz) is
σ−finite. Moreover, we denote by

gn (r, z, ω) = 1(−n,n)

(
g
(
Zs,xr− (ω) , r, z

))
g
(
Zs,xr− (ω) , r, z

)
, n ∈ N.

By construction of the stochastic integral with respect to Ñp (see [106, Section 3, Chapter II]),

lim
n→∞

∫ t

s

∫
U0∩Un

gn (r, z, ·) Ñp (dr, dz) =

∫ t

s

∫
U0

g
(
Zs,xr− , r, z

)
Ñp (dr, dz) ,

where the limit is uniform on compacts in probability. It follows that, P− a.s.,

sup
t∈[s,T ]

∣∣∣∣∣
∫ t

s

∫
U0∩Unk

gnk (r, z, ·) Ñp (dr, dz)−
∫ t

s

∫
U0

g
(
Zs,xr− , r, z

)
Ñp (dr, dz)

∣∣∣∣∣ −→k→∞ 0. (3.79)

Since pτn ∈ U \ U0 and, for every k ∈ N, for P−a.s. ω ∈ Ω,(∫ t

s

∫
U0∩Unk

gnk (r, z, ·) Ñp (dr, dz)

)
(ω) =

∑
r∈Dp(ω)∩(s,t]

gnk (r, pr(ω), ω) 1U0∩Unk (pr(ω))

−
∫ t

s
dr

∫
U0∩Unk

gnk (r, z, ω) ν (dz) , t ∈ [s, T ],

these approximating processes do not jump at time τn ∈ (s, T ) for all n ∈ N, P−a.s. Therefore, by
(3.79), the process

∫ ·
s

∫
U0
g
(
Zs,xr− , r, z

)
Ñp (dr, dz) does not jump either at time τn ∈ (s, T ) in an a.s.

event depending on s and x. Whence the same conclusion holds for Zs,x· in an a.s. event Ωs,x, by (3.67).
Define the a.s. event

Ω2 =
⋂

s∈[0,T )∩Q

⋂
x∈Qd

Ωs,x :

we are going to show that Zs,x· (ω) does not jump at τn(ω) ∈ (s, T ) for every x ∈ Rd, s ∈ [0, T )
and ω ∈ Ω2. Fix ω ∈ Ω2, s ∈ [0, T ) ∩ Q, x ∈ Rd and take a sequence (xm)m ∈ Qd such that
xm → x as m → ∞. Since the map Zs,· (ω) : Rd → D0 is continuous and Zs,xm· (ω) is continuous
at τn(ω), for all m ∈ N, we conclude that Zs,x· (ω) is continuous at τn(ω), as well. Indeed, uniform
convergence in t preserves continuity. An analogous argument relying on the càdlàg property of the
map Z ·,x (ω) : [0, T ] → D0 allows to deduce the continuity of Zs,x· (ω) at τn(ω) for every s ∈ [0, T ), as
desired.

Recalling the almost certain event Ω′ given by Lemma 3.16, we define Ω3 = Ω1 ∩ Ω2 ∩ Ω′. Without
loss of generality, we suppose that Zs,xt (ω) = x for every 0 ≤ t ≤ s ≤ T, x ∈ Rd and ω ∈ Ω3. For the
sake of shortness, from now on

we denote by τn the random variable τn ∧ T, n ∈ N. (3.80)

We now construct the solution X of (3.76) using an ad hoc, path–by–path, interlacing procedure (see
Remark 3.4). For s = T , we just assign XT,x

t = x. Take s ∈ [0, T ) and x ∈ Rd. First, we set Xs,x
t (ω) = x
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for ω ∈ Ω \ Ω3, t ∈ [0, T ]. Secondly, fix ω ∈ Ω3 and denote by τn(s,ω)(ω) = minn{τn(ω) > s}. In words,
if τn(s,ω)(ω) < T , then it represents the first jump time of P occurring (strictly) after time s and before
time T . In the sequel, we omit ω to keep notation simple. We define

Xs,x
t = Zs,xt , t ∈

[
0, τn(s)

)
. (3.81)

If τn(s) = T the construction is over. Otherwise, for t = τn(s) we set

Xs,x
τn(s)

= Xs,x
τn(s)− + f

(
Xs,x
τn(s)−, τn(s), pτn(s)

)
= Zs,xτn(s)− + f

(
Zs,xτn(s)−, τn(s), pτn(s)

)
= Zs,xτn(s)

+ f
(
Zs,xτn(s)

, τn(s), pτn(s)

)
, (3.82)

where the last equality is due to the fact that τn(s) is not a jump time for Zs,x· , because ω ∈ Ω3 ⊂ Ω2.
Next, we define

Xs,x
t = Z

τn(s),X
s,x
τn(s)

t , t ∈
[
τn(s), τn(s)+1

)
. (3.83)

This argument by steps can be repeated to cover the whole interval [s, T ). More precisely, for every
m ∈ N such that τn(s)+m < T , we define recursively

Xs,x
t =

X
s,x
τn(s)+m− + f

(
Xs,x
τn(s)+m−, τn(s)+m, pτn(s)+m

)
, t = τn(s)+m,

Z
τn(s)+m,X

s,x
τn(s)+m

t , t ∈ [τn(s)+m, τn(s)+m+1),
(3.84)

In particular, since ω ∈ Ω3 ⊂ Ω2 we observe that

Xs,x
τn(s)+m− = Z

τn(s)+m−1,X
s,x
τn(s)+m−1

τn(s)+m
. (3.85)

We finally extend the map Xs,x
· to [0, T ] by setting Xs,x

T = Xs,x
T−.

Step II : The process (Xs,x
t )t∈[0,T ] is F−adapted. The claim is trivial if s = T because XT,x

t = x, so
we consider s ∈ [0, T ). For every t ∈ [0, T ), setting τ0 = 0 we have (recall (3.80))

Xs,x
t = x1Ω\Ω3

+ x1{t≤s}1Ω3 +

∞∑
n=1

Z
τn−1∨s,Xs,x

τn−1∨s
t 1{τn−1∨s≤t<τn∨s}1Ω3 . (3.86)

Notice that the series in (3.86) is actually a finite sum, as τn(ω) = T definitively in Ω3, hence [τn−1(ω)∨
s, τn ∨ s(ω)) = ∅ definitively in Ω3. In what follows, we write τ sn = τn ∨ s, n ∈ N0. Recalling that
the filtration F is complete, x1Ω\Ω3

and x1{t≤s}1Ω3 are Ft−measurable. Since (τ sn)n is a sequence of
F−stopping times, the sets {ω : τ sn−1(ω) ≤ t < τ sn(ω)}, n ∈ N, are Ft−measurable. As a consequence,
Zs,xt 1{s≤t<τs1}1Ω3 –the first term of the series in (3.86)– is Ft−measurable. Moreover, by Lemma 3.17,
Zs,xτs1

1{τs1≤t} is Ft−measurable, so (by (3.82))

Xs,x
τs1

1{τs1≤t}1Ω3 =
(
Zs,xτs1

+ 1{τs1>s}f
(
Zs,xτs1

, τ s1 , pτs1

))
1{τs1≤t}1Ω3

is Ft−measurable, too. Hence another application of Lemma 3.17 yields the Ft−measurability of the
second term of the series in (3.86), i.e.,

Z
τs1 ,X

s,x
τs1

t 1{τs1≤t<τs2}1Ω3 .
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At this point, an induction argument based on the recursive definition law in (3.84) allows us to conclude
that all the addends in the series (3.86) are Ft−measurable. Therefore, considering also that Xs,x is
left–continuous in T , we deduce that the process Xs,x is F−adapted, as desired.

Step III : The regularity of the flow Xs,x
t . The aim of this part is to prove (i)-(ii)-(iii) in Definition

3.1. We only analyze the case ω ∈ Ω3, being the other one trivial (Xs,x
t (ω) = x, ω ∈ Ω\Ω3). Conditions

(i)-(ii) are immediate also for s = T because XT,x
t = x, so we consider s ∈ [0, T ). Recalling that the

series in (3.86) is actually a finite sum, for every x ∈ Rd the càdlàg property with respect to t ∈ [0, T ]
is evident, because the path Xs,x

· (ω) is constructed by combining a finite number of càdlàg trajectories
of the flow Zs,xt . Hence (i) is verified.
To study the continuity in x in the sense of (ii), we take x ∈ Rd and a sequence (xj)j ⊂ Rd such that
xj → x as j →∞. Since Xs,xj

t = Z
s,xj
t and Xs,x

t = Zs,xt for t ∈ [0, τn(s)), and Zs ∈ C0,

lim
j→∞

sup
0≤t<τn(s)

∣∣Xs,xj
t −Xs,x

t

∣∣ = 0.

If τn(s) < T , then by (3.82) and the continuity of f in the first argument we have Xs,xj
τn(s)

→ Xs,x
τn(s)

as
j →∞, from which we deduce, by (3.83),

lim
j→∞

sup
t∈(τn(s),τn(s)+1)

∣∣Xs,xj
t −Xs,x

t

∣∣ = 0.

In general, using (3.84)-(3.85) we can work by induction to obtain (ii).
Finally we study the càdlàg property in the variable s ∈ [0, T ] according to (iii). Firstly, we analyze
the right–continuity in s ∈ [0, T ). Fix M > 0 and take a sequence (sj)j ⊂ (s, T ) such that sj → s as
j →∞. We assume, without loss of generality, that τn(sj) = τn(s) for all j. Since Z is a (C0, C)−valued
càdlàg process, by construction

lim
j→∞

sup
|x|≤M

sup
0≤t<τn(s)

∣∣Xsj ,x
t −Xs,x

t

∣∣ = 0.

If τn(s) < T , notice that the set
{
Z
sj ,x
τn(s)

, Zs,xτn(s)
, with |x| ≤ M, j ∈ N

}
is bounded. Considering that f

is uniformly continuous in the first variable on compact sets, by (3.82) we deduce that

sup
|x|≤M

∣∣∣Xsj ,x
τn(s)
−Xs,x

τn(s)

∣∣∣≤ sup
|x|≤M

∣∣∣Zsj ,xτn(s)
− Zs,xτn(s)

∣∣∣
+ sup
|x|≤M

∣∣∣f (Zsj ,xτn(s)
, τn(s), pτn(s)

)
−f

(
Zs,xτn(s)

, τn(s), pτn(s)

)∣∣∣ −→
j→∞

0.

As x 7→ Z
τn(s),x
· is a continuous function from Rd to D0, it is uniformly continuous on compact sets of

Rd. Moreover, the previous equation coupled with

sup
|x|≤M

∣∣∣Xsj ,x
τn(s)

∣∣∣ <∞, j ∈ N, sup
|x|≤M

∣∣∣Xs,x
τn(s)

∣∣∣ <∞ (by the continuity in x)

ensures that the set
{
X
sj ,x
τn(s)

, Xs,x
τn(s)

, with |x| ≤ M, j ∈ N
}
is bounded. Combining these two facts, by

(3.83)
lim
j→∞

sup
|x|≤M

sup
τn(s)<t<τn(s)+1

∣∣Xsj ,x
t −Xs,x

t

∣∣ = 0.
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Using (3.84)-(3.85) we argue by induction to infer the right–continuity in s in the sense of (iii).
Secondly, we can prove the left–continuity of X ·,xt in s ∈ (0, T ] in a similar way, exploiting the left–
continuity of the process (Zs)s. We only note that, in this case, it is possible that s = τn for some n ∈ N.
Hence given a sequence (sj)j ⊂ (0, s) such that sj → s as j → ∞, we might have τn(sj) = s < τn(s)

for j large enough. This, however, does not affect the existence of the left–limits because τn(sj) are
definitively all equal.

Step IV : The stochastic continuity of the flow Xs,x
t . To obtain the stochastic continuity in the sense

of Point 4. in Definition 3.1, it is sufficient to prove that, for every s ∈ (0, T ], there exists an a.s. event
Ωs where

Xs−,x
t = Xs,x

t , x ∈ Rd, t ∈ [0, T ]. (3.87)

Indeed, combining this equality with the càdlàg property we have just proved, we deduce that

0 = lim
r↑s

P

(
sup
|x|≤M

sup
0≤t≤T

∣∣∣Xr,x
t −X

s−,x
t

∣∣∣ > ε

)
= lim

r↑s
P

(
sup
|x|≤M

sup
0≤t≤T

|Xr,x
t −X

s,x
t | > ε

)

= lim
r↓s

P

(
sup
|x|≤M

sup
0≤t≤T

|Xr,x
t −X

s,x
t | > ε

)
= 0, ε, M > 0.

The case s = T is the easier one: by construction and (3.71) we have, in an a.s. event contained in Ω3

and depending on T ,

XT−,x
t = lim

r↑T
Xr,x
t = lim

r↑T
Zr,xt = ZT−,xt = ZT,xt = x = XT,x

t , t ∈ [0, T ), x ∈ Rd;

the final time t = T can be recovered by passing to the limit as t → T , because XT−,x
· and XT,x

· are
left–continuous in T . As for s ∈ [0, T ), we can argue as at the beginning of this proof to construct an
a.s. event Ωs ⊂ Ω3 such that τn(s) 6= s for all n ∈ N, and that (recall (3.71)) Zs− = Zs. Then, by
(3.81),

Xs−,x
t = Zs−,xt = Zs,xt = Xs,x

t , t ∈ [0, τn(s)), x ∈ Rd, in Ωs :

if τn(s) < T , this equality holds also for t = τn(s) by (3.82). Employing (3.83)-(3.84)-(3.85) and the
left–continuity of Xs−,x

· , Xs,x
· in T , we reason by induction to obtain (3.87).

Step V : The stochastic flow Xs,x
t satisfies (3.77). Recall that τ sm = τm ∨ s, m ∈ N0, where τm is

given in (3.80). We now argue –using Lemma 3.18– that the process Xs,x
t satisfies (3.76) with η = x in

t ∈ [0, T ). This is equivalent to showing that, for every m ∈ N0, there is an a.s. event Ω1,m(s, x) such
that, for all t ∈ [τ sm, τ

s
m+1) (note that [τ sm, τ

s
m+1) can also be empty),

Xs,x
t = x1{τsm≤s} +

(
Xs,x
τsm− + f

(
Xs,x
τsm−, τ

s
m, pτsm

))
1{τsm>s} +

∫ t

s
1{r>τsm}b (r,Xs,x

r ) dr

+

∫ t

s
1{r>τsm}α (r,Xs,x

r ) dWr +

∫ t

s

∫
U0

1{r>τsm}g
(
Xs,x
r− , r, z

)
Ñp (dr, dz) . (3.88)

Indeed, the stochastic integrals appearing in the previous expression can be read as differences involving
truncated processes, see, for instance, [106, Section 3, Chapter II] and [110, Property 4.37, Chapter I].
More precisely, P−a.s., for every t ∈ [s, T ),∫ t

s
1{r>τsm}α (r,Xs,x

r ) dWr =

∫ t

s
α (r,Xs,x

r ) dWr −
(∫ ·

s
α (r,Xs,x

r ) dWr

)
τsm∧t
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and similarly∫ t

s

∫
U0

1{r>τsm}g
(
Xs,x
r− , r, z

)
Ñp (dr, dz) =

∫ t

s

∫
U0

g
(
Xs,x
r− , r, z

)
Ñp (dr, dz)

−
(∫ ·

s

∫
U0

g
(
Xs,x
r− , r, z

)
Ñp (dr, dz)

)
τsm∧t

.

In view of the interlacing construction carried out above (cfr. (3.86)), in order to verify (3.88) we search
for an a.s. event Ω1,m(s, x) ⊂ Ω3 such that, for all t ∈ [τ sm, τ

s
m+1),

Zs,xt = x+

∫ t

s
1{r>τsm}b (r, Zs,xr ) dr +

∫ t

s
1{r>τsm}α (r, Zs,xr ) dWr

+

∫ t

s

∫
U0

1{r>τsm}g
(
Zs,xr− , r, z

)
Ñp (dr, dz) , in Ω1,m(s, x) ∩ {τ sm ≤ s},

and

Z
τsm,X

s,x
τsm

t = Xs,x
τsm

+

∫ t

s
1{r>τsm}b

(
r, Z

τsm,X
s,x
τsm

r

)
dr +

∫ t

s
1{r>τsm}α

(
r, Z

τsm,X
s,x
τsm

r

)
dWr

+

∫ t

s

∫
U0

1{r>τsm}g

(
Z
τsm,X

s,x
τsm

r− , r, z

)
Ñp (dr, dz) , in Ω1,m(s, x) ∩ {τ sm > s}. (3.89)

In {τ sm ≤ s}, the former equation can be rewritten without the indicator functions, namely

Zs,xt = x+

∫ t

s
b (r, Zs,xr ) dr +

∫ t

s
α (r, Zs,xr ) dWr +

∫ t

s

∫
U0

g
(
Zs,xr− , r, z

)
Ñp (dr, dz) ,

which, by (3.67), holds in the whole Ω3 ⊂ Ω′. Thus, we only focus on (3.89). Note that, in (3.89), we
can insert 0 instead of s as lower bound for the integrals because we are working in {τ sm > s}.

Consider a non–increasing sequence of simple random variables (τm,n)n, with τm,n ≤ T , such that
τm,n ↓ τ sm as n → ∞ in an a.s. event Ω2,m(s) ⊂ Ω3: (3.89) holds if we replace τ sm with τm,n. More
precisely, we write τm,n =

∑Nn
k=1 a

n
k1Ank for some Nn ∈ N, (ank)k ⊂ (−∞, T ] and some measurable

partition (Ank)k ⊂ F of Ω, k = 1, . . . , Nn. Then, by Lemma 3.18, there exists an a.s. event where, for
every t ∈ [0, T ] and n ∈ N,

Z
τm,n,X

s,x
τm,n

t =

Nn∑
k=1

Z
ank ,X

s,x
an
k

t 1Ank

=

Nn∑
k=1

[
Xs,x
ank

+

∫ t

0
1{r>ank}b

(
r, Z

ank ,X
s,x
an
k

r

)
dr +

∫ t

0
1{r>ank}α

(
r, Z

ank ,X
s,x
an
k

r

)
dWr

+

∫ t

0

∫
U0

1{r>ank}g

(
Z
ank ,X

s,x
an
k

r− , r, z

)
Ñp (dr, dz)

]
1Ank ,

Note that here we do not insert 1Akn inside the stochastic integrals in order not to lose the adaptedness
of the integrands. Invoking (3.73), the previous equation can be rewritten as follows:

Z
τm,n,X

s,x
τm,n

t = Xs,x
τm,n + Z

τm,n,X
s,x
τm,n

1,t + Z
τm,n,X

s,x
τm,n

2,t + Z
τm,n,X

s,x
τm,n

3,t , t ∈ [0, T ], n ∈ N, (3.90)
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which holds in an a.s. event Ω3,m(s, x) ⊂ Ω3. Since X
s,x
t is a càdlàg function of t and Z is a C0−valued

càdlàg process,

lim
n→∞

Xs,x
τm,n = Xs,x

τsm
, lim

n→∞
Z
τm,n,X

s,x
τm,n

t = Z
τsm,X

s,x
τsm

t , in Ω2,m(s).

Thus, recalling that also the processes Z1, Z2 and Z3 are càdlàg with values in the space C0, we can
pass to the limit in (3.90) as n→∞ to deduce that, in the a.s. event Ω1,m(s, x) = Ω2,m(s)∩Ω3,m(s, x),

Z
τsm,X

s,x
τsm

t = Xs,x
τsm

+ Z
τsm,X

s,x
τsm

1,t + Z
τsm,X

s,x
τsm

2,t + Z
τsm,X

s,x
τsm

3,t , t ∈ [0, T ]. (3.91)

Therefore (3.89) is satisfied in Ω1,m(s, x) on the entire [0, T ], proving that Xs,x is a solution to (3.88).
Hence Xs,x solves (3.76) with η = x.

It remains to find an a.s. event Ω′′ –not depending on s, x and t– where (3.77) is satisfied. If we
define

Ω1,m =
⋂

s∈[0,T )∩Q

⋂
x∈Qd

Ω1,m(s, x), m ∈ N0,

then (3.91) is simultaneously satisfied in Ω1,m for every s ∈ [0, T )∩Q and x ∈ Qd. In fact, the continuity
of the flow Xs,x

t in x implies that (3.91) holds for every x ∈ Rd in Ω1,m, with s being a rational number
in [0, T ).
If s ∈ [0, T )∩ (R \Q), then we just consider (sn)n ⊂ (s, T )∩Q such that sn ↓ s as n→∞, and another
limiting argument based on the regularity of Z, Z1, Z2, Z3 and Xs,x

t shows that (3.91) holds for this
choice of s, too. Summarizing, (3.91) holds in Ω1,m for all s ∈ [0, T ) and x ∈ Rd. Therefore the flow
Xs,x
t satisfies (3.77) in

Ω′′ = ∩∞m=0Ω1,m.

Step VI : The flow property (3.78). Note that, for every t̄ ∈ [0, T ], the function X : Ω× [0, T ]×Rd×
[0, t̄] → Rd defined by X(ω, s, x, t) = Xs,x

t (ω) is F ⊗ B([0, T ] × Rd × [0, t̄])−measurable by (3.86) and
Lemma 3.17. As a consequence, for every s ∈ [0, T ), η ∈ L0(Fs) and t ∈ [s, T ], the random variable
X
s,η(·)
t (·) is Ft−measurable. Denote by Xs,η the process defined by Xs,η

t (ω) = X
s,η(ω)
t (ω), ω ∈ Ω, t ∈

[s, T ]; by the same arguments as those used to prove (3.88), with η instead of x, we deduce that Xs,η

solves (3.76) with initial condition (s, η). In particular, for every 0 ≤ s < u < t ≤ T and x ∈ Rd, thanks
to the pathwise uniqueness of (3.76) we infer the existence of an a.s. event Ωs,u,x such that

Xs,x
t (ω) = X

u,Xs,x
u (ω)

t (ω), t ∈ (u, T ], ω ∈ Ωs,u,x.

Since Xs,x
t satisfies Point 2. in Definition 3.1, we can proceed as in Corollary 3.5 and Lemma 3.16 to

obtain (3.78), i.e., to establish the previous equation in an a.s. event not depending on s, u and x.
The proof is now complete. �

3.4 Towards controlled SDEs

The results of Theorem 3.1 continue to hold if we consider more general coefficients depending on
additional variables for the SDE (3.3), under requirements similar to Hypothesis 3.1. More precisely,
we suppose that b, α, g and f introduced in Section 3.1 also depend on y ∈ Rk, for some k ∈ N, and
that they are jointly measurable in their domains. We require that f : Rd × [0, T ] × U × Rk → Rd is
continuous in the first and last arguments, and that b, α, g satisfy the linear growth and Lipschitz–type
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conditions in (3.1)-(3.2), uniformly in y ∈ Rk. Moreover, we assume that, for every p ≥ 2, there exists
a constant Kp such that

|b (t, x,y1)− b (t, x,y2)|p + |α (t, x,y1)− α (t, x,y2)|p

+

∫
U0

|g (x, t, z,y1)− g (x, t, z,y2)|p ν (dz) ≤ Kp |y1 − y2|p , x ∈ Rd, y1, y2 ∈ Rk, t ∈ [0, T ] . (3.92)

Given s ∈ [0, T ), η ∈ L0(Fs) and y ∈ Rk, the corresponding SDE is the following:

Xs,η,y
t = η +

∫ t

s
b (r,Xs,η,y

r ,y) dr +

∫ t

s
α (r,Xs,η,y

r ,y) dWr +

∫ t

s

∫
U0

g
(
Xs,η,y
r− , r, z,y

)
Ñp (dr, dz)

+

∫ t

s

∫
U\U0

f
(
Xs,η,y
r− , r, z,y

)
Np (dr, dz) , t ∈ [s, T ]. (3.93)

Thanks to (3.92), the SDE (3.93) admits a pathwise unique solution.
The arguments used in Sections 3.2 and 3.3 can be easily adapted to encompass the additional

variable y. Here we provide some insights on how these changes can be implemented. We mainly focus
on the small–jumps case f ≡ 0, discussing some important steps of Section 3.2 in the new framework.

By (3.92), an analogue of Lemma 3.3 holds: for every s ∈ [0, T ) and p ≥ 2, for some C > 0,

E

[
sup
s≤t≤T

∣∣∣Xs,η,y1
t −Xs,ξ,y2

t

∣∣∣p] ≤ C (E [|η − ξ|p] + |y1 − y2|p) , η, ξ ∈ Lp(Ω) ∩ L0 (Fs) , y1, y2 ∈ Rk.

Hence, invoking the Kolmogorov–Chentsov criterion, there is a version of the solution Xs,x,y
t such that,

for every ω ∈ Ω, the map Xs,·,·(ω) : Rd × Rk → (D0,D) is continuous. This allows to prove the flow
property

Xs,x,y
t (ω) = X

u,Xs,x,y
u (ω),y

t (ω), t ∈ [u, T ], x ∈ Rd, y ∈ Rk, ω ∈ Ωs,u,

for any 0 ≤ s < u ≤ T .
As in Corollary 3.9 (see also [107]), given p > 2(d + k), there exist random variables Us,p, s ∈ [0, T ),
with sups∈[0,T ) E [|Us,p|p] <∞, such that

sup
0≤t≤T

∣∣Xs,x,y1
t (ω)−Xs,y,y2

t (ω)
∣∣

≤ cUs,p (ω) (|x− y|+ |y1 − y2|)1−2 d+k
p

[
max {|x|+ |y1| , |y|+ |y2|}

2(d+k)+1
p ∨ 1

]
, (3.94)

where x, y ∈ Rd, y1, y2 ∈ Rk, ω ∈ Ω. Similar results hold for the continuous, (D0,D)−valued ran-
dom fields Zs,x,y1 =

∫ ·
s α
(
r,Xs,x,y

r ,y
)
)dWr, Z

s,x,y
2 =

∫ ·
s

∫
U0
g
(
Xs,x,y
r− , r, z,y

)
Ñp (dr, dz) and Zs,x,y3 =∫ ·

s b
(
r,Xs,x,y

r ,y
)
dr.

Equation (3.94) enables to estimate fundamental quantities like (cfr. (I.9) in Introduction)

E

[
sup
|x|≤N

sup
|y|≤N

sup
s≤t≤T

∣∣∣∣∫ t

s

∫
U0

g
(
Xs,x,y
r− , r, z,y

)
Ñp (dr, dz)

∣∣∣∣γ
]
, γ > 2(d+ k), N > 0,

by writing

E

[
sup
|x|≤N

sup
|y|≤N

sup
s≤t≤T

∣∣∣Zs,x,y2,t

∣∣∣γ] ≤ 2γ−1

(
E

[
sup
s≤t≤T

∣∣∣Zs,0,02,t

∣∣∣γ]+ E

[
sup
|x|≤N

sup
|y|≤N

sup
s≤t≤T

∣∣∣Zs,x,y2,t − Zs,0,02,t

∣∣∣γ]) ,



106 Chapter 3

and then proceeding as in, e.g., (3.33)-(3.35).
Consider now the space C̃0 = C(Rd × Rk;D0) endowed with the σ−algebra C̃ generated by the

projections πx,y : C(Rd × Rk;D0) → (D0,D), x ∈ Rd, y ∈ Rk, defined by πx,y(f) = f(x,y), f ∈ C̃0.
The previous considerations allow to deduce the stochastic continuity [resp., the càdlàg property] of the
(C̃0, C̃)−valued process (Xs)s∈[0,T ] arguing as in Subsection 3.2.2 [resp., Subsection 3.2.3]. Therefore
Theorem 3.2 holds when the coefficients b, α, g depend also on y.

In the large–jumps case, the same observations, coupled with the arguments in Section 3.3, yield the
validity of Theorem 3.1 for (3.93), as well.

As a consequence, the SDE (3.93) generates a sharp stochastic flow X = Xs,x,y
t in the following

sense.

Definition 3.2. LetX : Ω×[0, T ]×Rd×[0, T ]×Rk → Rd be an F⊗B([0, T ]×Rd×[0, T ]×Rk)−measurable
function and denote byXs,x,y

t (ω) = X(ω, s, x, t,y). We say thatX is the sharp stochastic flow generated
by (3.93) if there exists an a.s. event Ω′ –independent from s, t, x,y– such that the four following
requirements are fulfilled for every ω ∈ Ω′, s ∈ [0, T ), x ∈ Rd and y ∈ Rk.

1. The process (Xs,x,y
t )t∈[s,T ] satisfies (3.93) in Ω′;

2. (i) The map Xs,x,y
· (ω) : [0, T ]→ Rd is càdlàg;

(ii) The map Xs,·,· (ω) : Rd × Rk → D0 is continuous;

(iii) The map X ·,x,y (ω) : [0, T ]→ D0 is càdlàg, locally uniformly in x,y;

3. The flow property holds: Xs,x,y
t (ω) = X

u,Xs,x,y
u (ω),y

t (ω), s < u < t ≤ T ;

4. The function X is stochastically continuous in the following sense: for every ε > 0 and M > 0,

lim
r→s

P
(

sup
|x|≤M

sup
|y|≤M

sup
0≤t≤T

∣∣Xr,x,y
t −Xs,x,y

t

∣∣ > ε
)

= 0, s ∈ [0, T ].

3.5 The dynamic programming principle

The aim of this section is to establish a dynamic programming principle for controlled SDEs, em-
ploying the properties of the sharp stochastic flow constructed in the previous sections (see Theorem 3.1
and Section 3.4). According to [117, Chapter 4], in this section we suppose that the measurable space
(U,U) is in fact a Polish space, with U being the Borel σ−algebra.

Moreover, we will use extensively

FW,Npt1,t2
= σ ({Wt −Wt1 , Np ((t1, t]× E) , t ∈ [t1, t2] , E ∈ U} ∪ N ) , 0 ≤ t1 ≤ t2 ≤ T, (3.95)

where N is the family of negligible events in (Ω,F ,P): we set FW,Npt1
= (FW,Npt1,t

)t∈[t1,T ] (cfr. (3.54)). In
particular, FW,Np = FW,Np0 = (FW,Np0,t )t∈[0,T ] is the augmented filtration generated by W and Np.

3.5.1 Controlled SDEs

Fix l ∈ N. Here we assume that the coefficients b, α, g and f introduced in Section 3.1 also depend on
y ∈ Rl, and that they are jointly measurable in their domains. We require that f : Rd× [0, T ]×U×Rl →
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Rd is continuous in the first and last arguments, and that b, α, g satisfy the linear growth and Lipschitz–
type conditions in (3.1)-(3.2), uniformly in y ∈ Rl. Moreover, we assume that, for every p ≥ 2, condition
(3.92) holds.

We are considering controlled SDEs of the form

Xs,x,a
t = x+

∫ t

s
b (r,Xs,x,a

r , ar) dr +

∫ t

s
α (r,Xs,x,a

r , ar) dWr

+

∫ t

s

∫
U0

g
(
Xs,x,a
r− , r, z, ar

)
Ñp (dr, dz) +

∫ t

s

∫
U\U0

f
(
Xs,x,a
r− , r, z, ar

)
Np (dr, dz) , (3.96)

where a ∈ E , i.e., a is a simple (or step) control. More precisely, E = ∪n̄∈NEn̄, where we denote by En̄
the space of FW,Np−adapted square–integrable simple processes a of the form

a(t, ω) =
n̄−1∑
i=0

Zi(ω)1(ti,ti+1](t), t ∈ [0, T ], ω ∈ Ω, (3.97)

where Z = (Zi)i ⊂ L2(Ω;Rl), Zi being FW,Np0,ti
−measurable. Here Πn̄ = (t0, t1, . . . , tn̄) is an (n̄ +

1)−tuple, 0 = t0 < t1 < · · · < tn̄ = T . Without loss of generality, we may assume that the processes in
E starts from 0.

We denote by Xs,x,a the pathwise unique strong solution of the controlled SDE (3.96); see also
(3.55). We now show that there exists a sharp stochastic flow generated by (3.96).

Consider n̄ ∈ N, Πn̄ as before and a vector y(n̄) = (yi)i=0,...,n̄−1 ∈ (Rl)n̄. Given s ∈ [0, T ) and
η ∈ L0(Fs), we analyze the following SDE:

X
s,η,y(n̄)
t = η +

n̄−1∑
i=0

(∫ t

s
1{ti<r≤ti+1}b

(
r,Xs,η,y(n̄)

r , yi

)
dr +

∫ t

s
1{ti<r≤ti+1}α

(
r,Xs,η,y(n̄)

r , yi

)
dWr

+

∫ t

s

∫
U0

1{ti<r≤ti+1}g
(
X
s,η,y(n̄)
r− , r, z, yi

)
Ñp (dr, dz)

+

∫ t

s

∫
U\U0

1{ti<r≤ti+1}f
(
X
s,η,y(n̄)
r− , r, z, yi

)
Np (dr, dz)

)
, t ∈ [s, T ]. (3.98)

If we define b̃ : [0, T ]× Rd ×
(
Rl
)n̄ → Rd by

b̃ (t, x, z) =

n̄−1∑
i=0

1{ti<t≤ti+1}b (t, x, zi) , t ∈ [0, T ], x ∈ Rd, z = (z0, . . . , zn̄−1) ∈
(
Rl
)n̄
,

with analogous definitions for the coefficients α̃, g̃ and f̃ , then (3.98) can be rewritten as

X
s,η,y(n̄)
t = η +

∫ t

s
b̃
(
r,Xs,η,y(n̄)

r ,y(n̄)
)
dr +

∫ t

s
α̃
(
r,Xs,η,y(n̄)

r ,y(n̄)
)
dWr

+

∫ t

s

∫
U0

g̃
(
X
s,η,y(n̄)
r− , r, z,y(n̄)

)
Ñp (dr, dz) +

∫ t

s

∫
U\U0

f̃
(
X
s,η,y(n̄)
r− , r, z,y(n̄)

)
Np (dr, dz) ,

for t ∈ [s, T ]. We note that b̃, α̃, g̃ and f̃ satisfy the requirements of Section 3.4 (see (3.92)), hence the
SDE (3.98) generates a sharp stochastic flow XΠn̄ in the sense of Definition 3.2.
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Recalling (3.97), if we set [y(n̄)](ω) = Z(ω), then arguments similar to those in the proof of Lemma
3.18 yield

Xs,x,a
t (ω) = X

s,x,[y(n̄)](ω)
t (ω), ω ∈ Ω. (3.99)

Therefore there exists a version of Xs,x,a
t which is a sharp stochastic flow in the sense of Definition 3.1.

In particular, the stochastic continuity in Point 4. can be inferred using equalities like (3.71)-(3.87) (see
also (3.112) below) and Point 2. (iii) in Definition 3.1.

Remark 3.5. The existence of a sharp stochastic flow has been established for different classes of
controlled SDEs without jumps. In fact, this is a useful tool to prove the DPP (see [146] and the
references therein). In the special case of controlled jump–diffusions driven by a compound Poisson
measure, the stochastic flow has been also used in the proof of [40, Proposition 5.4], where, however, the
details about its validity are missing.

In order to prove the dynamic programming principle (see, in particular, Step II in the proof of
Theorem 3.27), we want to use a classical measurable selection theorem, namely [42, Theorem 2]. To
this purpose, it is useful to introduce simple processes with jump times in a countable, dense subset of
[0, T ].
Thus, for every n ∈ N, we consider the set Sn = {t(n)

i , i = 0, . . . , 2n} of dyadic points of [0, T ] with
mesh T2−n, and call S = ∪n∈NSn. For every t ∈ [0, T ], we define t−n = max{s ∈ Sn : s ≤ t} and
t+n = min{s ∈ Sn : s > t}, with T+

n =∞. We denote by An the subspace of simple processes a ∈ E such
that

a(t, ω) =
2n−1∑
i=0

Zi(ω)1(
t
(n)
i ,t

(n)
i+1

](t), t ∈ [0, T ], ω ∈ Ω,

for some Z = (Zi)i ⊂ L2(Ω;Rl), where Zi is F
W,Np

0,t
(n)
i

−measurable. Therefore every simple process a ∈ An
is identified by Z: we are going to write a ∼ Z. We denote by

Zn =
{

(Zi)i=0,...,2n−1 ⊂ L2(Ω;Rl) such that Zi is F
W,Np

0,t
(n)
i

−measurable}.

In the sequel, we set
A = ∪n∈NAn and Z = ∪n∈NZn. (3.100)

The following lemma shows that it is possible to approximate, in probability, the solution Xs,x,a
t , a ∈ E ,

of (3.96) with solutions of the same equation corresponding to controls in A.

Lemma 3.20. For every s ∈ [0, T ), x ∈ Rd and a ∈ E, there exists a sequence (an)n ⊂ A such that
an → a in L2([0, T ]× Ω) and

lim
n→∞

P

(
sup

0≤t≤T
|Xs,x,a

t −Xs,x,an
t | > ε

)
= 0, ε > 0.

Proof. Fix s ∈ [0, T ), x ∈ Rd, n̄ ∈ N and a ∈ En̄. By definition, there exists an (n̄ + 1)−tuple
t̄ = (t0, . . . , tn̄), with 0 = t0 < t1 < · · · < tn̄ = T , and FW,Np0,ti

−measurable, Rl−valued random variables
Zi such that

ati = a(t, ·) = Zi, t ∈ (ti, ti+1], i = 0, . . . , n̄− 1.
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We consider controls a′ ∈ A depending on the random variables ati , i = 0, . . . , n̄− 1, of the form

a′(t, ω) =
n̄−1∑
i=0

ati(ω)1(qi,qi+1](t), t ∈ [0, T ], ω ∈ Ω,

where q̄ = (q0, q1, . . . , qn̄) is an (n̄ + 1)−tuple of dyadic points 0 = q0 < q1 < · · · < qn̄ = T such that
ti < qi < ti+1, for any i = 1, . . . , n̄− 1. Clearly, a′ depends also on q̄, and

E
∫ T

0

∣∣ar − a′r∣∣2 dr =
n̄−1∑
i=1

∫ qi

ti

E
∣∣ati − ati−1

∣∣2 dr =
n̄−1∑
i=1

(qi − ti)E
∣∣ati − ati−1

∣∣2 . (3.101)

Consequently, limq̄→t̄ E
∫ T

0 |ar − a
′
r|

2 dr = 0. We prove that

lim
q̄→t̄

P

(
sup

0≤t≤T

∣∣∣Xs,x,a
t −Xs,x,a′

t

∣∣∣ > ε

)
= 0, ε > 0, (3.102)

i.e., we prove the convergence in probability of Xs,x,a′

t to Xs,x,a
t as q̄ → t̄, uniformly on t ∈ [0, T ].

In order to do this, we use an induction argument. By the pathwise uniqueness of (3.96), the
assertion holds when t ∈ [0, t1]. We then suppose that it is true on [0, tk], k = 1, . . . , n̄− 1, and we aim
to prove that it holds on [0, tk+1], as well. To this purpose, it is enough to check that

lim
q̄→t̄

P
(

sup
tk≤t≤tk+1

∣∣∣Xs,x,a
t −Xs,x,a′

t

∣∣∣ > ε
)

= 0, ε > 0. (3.103)

First we work on the interval [tk, qk], namely we show that

lim
q̄→t̄

P
(

sup
tk≤t≤qk

∣∣∣Xs,x,a
t −Xs,x,a′

t

∣∣∣ > ε
)

= 0, ε > 0. (3.104)

We introduce the control ã ∈ E given by

ã(t, ω) =
n̄−1∑

i=0, i 6=k
ati(ω)1(ti,ti+1](t) + atk−1

(ω)1(tk,tk+1](t), t ∈ [0, T ], ω ∈ Ω,

and note that, for every t ∈ [tk, qk], by the flow property in Point 3. of Definition 3.1 we have

Xs,x,a
t = X

tk,X
s,x,a
tk

,a

t , Xs,x,a′

t = X
tk,X

s,x,a′
tk

,a′

t , P− a.s.

Using this equality we can write, P−a.s., for every t ∈ [tk, qk],

Xs,x,a
t −Xs,x,a′

t =
[
X
tk,X

s,x,a
tk

,a

t −X
tk,X

s,x,a
tk

,ã

t

]
+
[
X
tk,X

s,x,a
tk

,ã

t −X
tk,X

s,x,a′
tk

,a′

t

]
=: I(t) + II(t).

Noticing that a′t = ãt when t ∈ [tk, qk], by (3.96)-(3.99) we have

X
tk,X

s,x,a′
tk

,a′

t = X
tk,X

s,x,a′
tk

,ã

t , t ∈ [tk, qk], P− a.s.
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Since, by the inductive hypothesis, Xs,x,a′

tk
→ Xs,x,a

tk
in probability as q̄ → t̄, using the properties of our

stochastic flow in Definition 3.1 we infer that

lim
q̄→t̄

P

(
sup

tk≤t≤qk
|II(t)| > ε

)
= 0, ε > 0.

Hence, denoting by η = Xs,x,a
tk

, to obtain (3.104) we just need to show that

lim
q̄→t̄

P

(
sup

tk≤t≤qk
|I(t)| > ε

)
= lim

q̄→t̄
P
(

sup
tk≤t≤qk

∣∣∣Xtk,η,a
t −Xtk,η,ã

t

∣∣∣ > ε
)

= 0, ε > 0. (3.105)

In particular, we prove convergence results similar to (3.105) for each of the following terms:∫ t

tk

b
(
r,Xtk,η,a

r , atk
)
dr,

∫ t

tk

∫
U0

g(Xtk,η,a
r− , r, z, atk)Ñp (dr, dz) ,∫ t

tk

α
(
r,Xtk,η,a

r , atk
)
dWr,

∫ t

tk

∫
U\U0

f(Xtk,η,a
r− , r, z, atk)Np (dr, dz) .

We only consider the stochastic integrals with respect to dWr and Np: the others can be treated in a
similar way. As for the integral in dWr, we define, for every δ > 0,

σq̄(δ) = inf

{
t ∈ [0, T ] :

∫ t

0
1(tk,qk](r)

∣∣α (r,Xtk,η,a
r , atk

)
− α

(
r,Xtk,η,ã

r , atk−1

)∣∣2 dr ≥ δ} ,
with inf ∅ = ∞. This is an FW,Np0,t −stopping time. By the dominated convergence theorem, using the
Lipschitz continuity of α(r, ·, ·), we obtain

lim
q̄→t̄

∫ T

0
1(tk,qk](r)

∣∣α (r,Xtk,η,a
r , atk

)
− α

(
r,Xtk,η,ã

r , atk−1

)∣∣2 dr = 0, P− a.s.

It follows that σq̄(δ) → ∞ as q̄ → t̄. In particular, limq̄→t̄ P (σq̄ (δ) ≤ T ) = 0. Hence, by Markov’s
inequality, for some c > 0,

P

(
sup

tk≤t≤qk

∣∣∣∣∫ t

tk

[
α
(
r,Xtk,η,a

r , atk
)
− α

(
r,Xtk,η,ã

r , atk−1

)]
dWr

∣∣∣∣ > ε

)

= P

(
sup

0≤t≤T

∣∣∣∣∫ t

0
1(tk,qk](r)

[
α
(
r,Xtk,η,a

r , atk
)
− α

(
r,Xtk,η,ã

r , atk−1

)]
dWr

∣∣∣∣ > ε

)

≤P

(
sup

0≤t≤T

∣∣∣∣∫ t

0
1(tk,qk](r)

[
α
(
r,Xtk,η,a

r , atk
)
−α

(
r,Xtk,η,ã

r , atk−1

)]
dWr

∣∣∣∣> ε, σq̄(δ) ≥ T

)
+P (σq̄ (δ) ≤ T )

≤ c

ε2
E

[∫ σq̄(δ)

0
1(tk,qk](r)

∣∣α (r,Xtk,η,a
r , atk

)
−α

(
r,Xtk,η,ã

r , atk−1

)∣∣2 dr]+ P (σq̄ (δ) ≤ T )

≤ cδ

ε2
+P (σq̄ (δ)≤T ),

for every ε > 0, which shows that

lim
q̄→t̄

P

(
sup

tk≤t≤qk

∣∣∣∣∫ t

tk

[
α
(
r,Xtk,η,a

r , atk
)
− α

(
r,Xtk,η,ã

r , atk−1

)]
dWr

∣∣∣∣ > ε

)
= 0, ε > 0.
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As for the stochastic integral with respect to Np, note that, for every ω ∈ Ω,

sup
tk≤t≤qk

∣∣∣∣∣
∫ t

tk

∫
U\U0

(
f(Xtk,η,a

r− , r, z, atk)− f(Xtk,η,ã
r− , r, z, atk−1

)
)
Np (dr, dz)

∣∣∣∣∣ (ω)

≤
∑

r∈Dp(ω)∩(tk,qk]

1U\U0
(pr(ω))

∣∣∣f(Xtk,η,a
r− (ω), r, pr(ω), atk(ω)

)
−f
(
Xtk,η,ã
r− (ω), r, pr(ω), atk−1

(ω)
)∣∣∣ .

This is a random sum which is finite, P−a.s. Thus, it is straightforward to prove that it converges,
P−a.s., to 0 as q̄ → t̄. The proof of (3.105) is complete, so (3.104) holds.

It remains to consider t ∈ [qk, tk+1]. In this case, by the flow property in Point 3. of Definition 3.1
we have

Xs,x,a
t = X

qk,X
s,x,a
qk

,a

t , Xs,x,a′

t = X
qk,X

s,x,a′
qk

,a′

t , t ∈ [qk, tk+1], P− a.s.

Since a′t = at when t ∈ (qk, tk+1], by (3.96)-(3.99) we have

X
qk,X

s,x,a′
qk

,a′

t = X
qk,X

s,x,a′
qk

,a

t , t ∈ [qk, tk+1], P− a.s.

Note that qk ↓ tk as q̄ → t̄. By (3.104) and the càdlàg property of the process Xs,x,a
· , we know that

Xs,x,a
qk → Xs,x,a

tk
and Xs,x,a′

qk → Xs,x,a
tk

in probability as q̄ → t̄. Therefore, by the regularity of the sharp
stochastic flow Xs,x,a

t in Point 2. of Definition 3.1, we conclude that

P

(
sup

qk≤t≤tk+1

∣∣∣Xs,x,a
t −Xs,x,a′

t

∣∣∣ > ε

)
≤ P

(
sup

0≤t≤T

∣∣∣∣Xqk,X
s,x,a
qk

,a

t −Xqk,X
s,x,a′
qk

,a

t

∣∣∣∣ > ε

)
−→
q̄→t̄

0, ε > 0.

This equation and (3.104) yield (3.103), hence (3.102) holds and the proof is complete. �

3.5.2 On FW,Np0,t −measurable random variables

Let ΩW be the space of continuous functions from [0, T ] to Rm and, for every t ∈ [0, T ], let BWt
be the smallest σ−algebra on ΩW which makes the projections πs : ΩW → Rm, s ∈ [0, t], measurable.
Notice that the Brownian motion W : (Ω,FW,Np0,t )→ (ΩW ,BWt ) is a measurable map. We denote by ΩN

the set of integer–valued measures defined on E = (0, T ] × U with values in N ∪ {∞}. As in [106], we
endow ΩN with the minimal σ−algebra G which makes measurable all the mappings: µ 7→ µ(A), with
A ∈ B ((0, T ])⊗U . The Poisson random measure Np discussed in the previous sections is a measurable
map from Ω into ΩN . For every t ∈ [0, T ], we consider the minimal σ−algebra BNt on ΩN which makes
measurable all the mappings

µ 7→ µ((0, s]×A), s ≤ t, A ∈ U ;

notice that Np : (Ω,FW,Np0,t )→ (ΩN ,BNt ) is measurable.
Inspired by the proof of [170, Lemma 3.11], we now clarify how to rewrite a random variable Y :(

Ω,FW,Np0,t

)
→ Rl in terms of W and Np, for all t ∈ [0, T ]. We introduce the measurable function

T̃t :
(
Ω,FW,Np0,t

)
→
(
ΩW × ΩN ,BWt ⊗ BNt

)
defined by

T̃t(ω) = (W (ω), Np(ω)) , ω ∈ Ω.
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In the sequel, we write
(
Ω×,B×t

)
instead of

(
ΩW × ΩN ,BWt ⊗ BNt

)
to keep the notation short. Denoting

by FW,Np,0 = (FW,Np,0t )t∈[0,T ] the natural filtration generated by W and Np, namely

FW,Np,0t = σ ({Wr, Np ((0, r]× E) , r ∈ [0, t] , E ∈ U}) , t ∈ [0, T ],

we observe that
σ
(
T̃t
)

= FW,Np,0t . (3.106)

As a consequence, [177, Theorem 1.7] yields the existence of a measurable mapping

F :
(
Ω×,B×t

)
→ Rl such that Y (ω) = F

(
T̃t(ω)

)
, for P−a.s. ω ∈ Ω.

Consider an FW,Np−stopping time θ with values in [0, T ] and denote by θt = θ∧t, for every t ∈ [0, T ].
Note that, given (w, µ) ∈ Ω×, one can write, for every ω ∈ Ω,

w = w(θt (ω) ∧ ·) + [w(θt (ω) ∨ ·)− w(θt (ω))] , µ = µ (· ∩ ((0, θt(ω)]× U)) + µ (· ∩ ((θt(ω), T ]× U)) .

It follows that, for every ω ∈ Ω,

F
(
T̃t(ω)

)
= F (W (ω), Np(ω)) = F

(
Wθt(ω)∧·(ω) +

[
Wθt(ω)∨· −Wθt(ω)

]
(ω),

Np (· ∩ ((0, θt(ω)]× U)) (ω) +Np (· ∩ ((θt(ω), T ]× U)) (ω)) .

We observe that the random variable from (Ω,FW,Np,0t ) to
(
Ω×,B×t

)
defined by

ω 7→
(
Wθt(ω)∧·(ω), Np (· ∩ ((0, θt(ω)]× U)) (ω)

)
is measurable with respect to FW,Npθt

, the σ−algebra generated by the stopping time θt relative to the
filtration FW,Np . On the other hand, the

(
Ω×,B×t

)
−valued random variable

ω 7→
([
Wθt(ω)∨· −Wθt(ω)

]
(ω), Np (· ∩ ((θt(ω), T ]× U)) (ω)

)
is independent from FW,Npθt

. Therefore, if Y is integrable, we can compute its conditional expectation
with respect to FW,Npθt

to deduce that, for P−a.s. ω ∈ Ω,

E
[
Y
∣∣FW,Npθt

]
(ω)= E

[
F
(
T̃t

) ∣∣FW,Npθt

]
(ω)

= E
[
F
(
Wθt(ω)∧·(ω)+ [Wθt∨·−Wθt ], Np (· ∩ ((0, θt(ω)]×U))(ω) +Np (· ∩ ((θt, T ]× U))

)]
.

In particular, given An 3 a ∼ Z ∈ Zn, for every i = 0, . . . , 2n − 1, n ∈ N, there exists a measurable
function

F
(n)
i :

(
Ω×,B×

t
(n)
i

)
→ Rl such that Zi(ω) = F

(n)
i

(
T̃
t
(n)
i

(ω)
)
, for P−a.s. ω ∈ Ω.

Moreover, for every FW,Np−stopping time θ we have, P−a.s.,

E
[
Zi
∣∣FW,Npθs

]
(ω) = E

[
F

(n)
i

(
Wθs(ω)∧·(ω) + [Wθs∨· −Wθs ] ,

Np (· ∩ ((0, θs(ω)]× U)) (ω) +Np (· ∩ ((θs, T ]× U)))
]
, s ∈

[
0, t

(n)
i

]
.
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Given ω̄ ∈ Ω and s ∈ [0, T ], we denote by aθ,ω̄s,n the following FW,Np−adapted simple process obtained
from a:

aθ,ω̄s,n(t, ω) = 1{t≤s+n}a(t, ω̄) + 1{t>s+n}
2n−1∑
i=0

F
(n)
i

(
Wθs(ω̄)∧·(ω̄) +

[
Wθs(ω)∨· −Wθs(ω)

]
(ω),

Np (· ∩ ((0, θs(ω̄)]× U)) (ω̄) +Np (· ∩ ((θs(ω), T ]× U)) (ω)) 1(
t
(n)
i ,t

(n)
i+1

](t), (3.107)

where t ∈ [0, T ], ω ∈ Ω. We conclude this subsection with a result which will be useful for the proof of
the DPP (see Subsection 3.5.3).

Lemma 3.21. For any 0 ≤ s ≤ t ≤ T , l ∈ N, the Hilbert space

H = L2(Ω,FW,Nps,t ;Rl) is separable. (3.108)

Proof. The claim is trivial for s = t, so we consider 0 ≤ s < t ≤ T . Let Ωs,t
W be the space of continuous

functions from [s, t] to Rm and, for every r ∈ [s, t], let BWs,t be the smallest σ−algebra on Ωs,t
W which

makes the projections πr − πs : Ωs,t
W → Rm, r ∈ [s, t], measurable.

Similarly, we denote by Ωs,t
N the set of integer–valued measures defined on (s, t] × U with values in

N ∪ {∞}. We endow Ωs,t
N with the minimal σ−algebra BNs,t which makes measurable all the mappings

µ 7→ µ((s, r]×A), s < r ≤ t, A ∈ U .

We write
(

Ωs,t
× ,B×s,t

)
instead of

(
Ωs,t
W × Ωs,t

N ,BWs,t ⊗ BNs,t
)
to keep the notation short.

Note that H is isomorphic to K = L2
(

Ωs,t
× ,B×s,t,Qs,t;Rl

)
, where Qs,t is the image law of P under

the random variable
ω 7→ (W·(ω)−Ws(ω), Np ((s, ·]× ·) (ω)) .

We know from [117, Theorem 4.2] that (Ωs,t
× ,B×s,t) is metrizable and that it can be considered as a Polish

space (this fact has been also remarked in [15, Section 2]). It is not difficult to prove that L2(E,B, µ;Rl)
is separable when E is a Polish space and µ is a probability measure defined on the σ−algebra of Borel
sets B. This shows (3.108). �

3.5.3 Statement and proof of DPP

Given a jointly measurable map h : [0, T ]×Rd×Rl → R, with h continuous in the second and third
arguments, and a continuous map j : Rd → R, we define the gain function

J(s, x, a) = E
[∫ T

s
h (r,Xs,x,a

r , ar) dr + j
(
Xs,x,a
T

)]
, s ∈ [0, T ), x ∈ Rd, a ∈ E . (3.109)

We also require h and j to be bounded in their domains, so that J is well defined.
The value function v associated with J is

v(s, x) = sup
a∈E

J(s, x, a), s ∈ [0, T ), x ∈ Rd.

The next result shows that it is not restrictive to consider only controls a ∈ A, i.e., simple processes
with jump times in S, when defining v.
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Lemma 3.22. The following equality holds for every s ∈ [0, T ) and x ∈ Rd:

v(s, x) = sup
a∈A

J(s, x, a). (3.110)

Proof. Fix s ∈ [0, T ) and x ∈ Rd. Since A ⊂ E , we only focus on v(s, x) ≤ supa∈A J(s, x, a). According
to Lemma 3.20, for every a ∈ E there exists a sequence (an)n ⊂ A such that an → a in L2

(
[0, T ] × Ω

)
and that

lim
n→∞

P

(
sup

0≤t≤T
|Xs,x,an

t −Xs,x,a
t | > ε

)
= 0, ε > 0. (3.111)

We now prove that there exists a subsequence (ank)k such that

lim
k→∞

J(s, x, ank) = J(s, x, a).

This easily implies the assertion in (3.110). Recall that

J(s, x, an) = E
[∫ T

s
h (r,Xs,x,an

r , an(r)) dr + j
(
Xs,x,an
T

)]
, n ∈ N.

By (3.111) and Vitali’s convergence theorem, E
[
j
(
Xs,x,an
T

)]
→ E

[
j
(
Xs,x,a
T

)]
as n → ∞. Regarding

the other addend, Fubini’s theorem yields

E
[∫ T

s
(h (r,Xs,x,an

r , an(r))− h (r,Xs,x,a
r , a(r))) dr

]
=

∫ T

s
E [h (r,Xs,x,an

r , an(r))− h (r,Xs,x,a
r , a(r))] dr.

Using (3.111) and the fact that there exists a subsequence ank such that ank(r) → a(r) in probability
as k →∞, for a.e. r ∈ [s, T ], by Vitali’s convergence theorem we infer that

lim
k→∞

E
[
h
(
r,X

s,x,ank
r , ank(r)

)
− h (r,Xs,x,a

r , a(r))
]

= 0, for a.e. r ∈ [s, T ],

which in turn implies, by dominated convergence,

lim
k→∞

∫ T

s
E
[
h
(
r,X

s,x,ank
r , ank(r)

)
− h (r,Xs,x,a

r , a(r))
]
dr = 0.

This computation finishes the proof. �

Remark 3.6. By Lemma 3.22, we can consider the value function v as in (3.110), i.e., v is computed
taking the supremum over controls a ∈ A. Moreover, using the identification An 3 a ∼ Z ∈ Zn, n ∈ N,
in the sequel we might also write J(s, x, Z) = J(s, x, a).

Thanks to (3.99), we can exploit the regularity of the flow XΠn̄ generated by (3.98) (see Definition
3.2) to deduce the following property of v.

Lemma 3.23. The function v : [0, T )× Rd → R is lower semicontinuous.
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Proof. Fix n ∈ N, s ∈ [0, T ), x ∈ Rd and a ∈ An. By Points 2. (iii) and 4. in Definition 3.2 (see also
(3.71)-(3.87)) we infer that there exists an a.s. event Ωs such that

Xs−,x,y
t (ω) = Xs,x,y

t (ω), x ∈ Rd, y ∈
(
Rl
)2n

, t ∈ [0, T ], ω ∈ Ωs. (3.112)

Hence by (3.99) we infer that

Xs−,x,a
t (ω) = lim

r↑s
Xr,x,a
t (ω) = Xs,x,a

t (ω), x ∈ Rd, t ∈ [0, T ], ω ∈ Ωs.

Thus, if we take a sequence (sk, xk)k ⊂ [0, T ) × Rd such that (sk, xk) → (s, x) as k → ∞, then the
dominated convergence theorem yields J(s, x, a) = limk→∞ J(sk, xk, a). Since a is chosen arbitrarily,
we deduce that

v(s, x) = sup
a∈A

lim
k→∞

J(sk, xk, a) ≤ lim inf
k→∞

sup
a∈A

J(sk, xk, a) = lim inf
k→∞

v (sk, xk) ,

which completes the proof. �

The following, technical result is about a continuity property of J with respect to the control a ∈ A.

Lemma 3.24. For every n ∈ N, consider Z ∈ Zn and a sequence (Zk)k ⊂ Zn such that limk→∞(Zk)i =
Zi, i = 0, . . . , 2n − 1, P−a.s. (see (3.100)). Then, identifying An 3 ak ∼ Zk and An 3 a ∼ Z, the
following holds for every s ∈ [0, T ) and x ∈ Rd:

J(s, x, a) = lim
k→∞

J(s, x, ak).

Proof. Fix n ∈ N, s ∈ [0, T ) and x ∈ Rd; from (3.99) and Point 2. (ii) in Definition 3.2 we have

lim
k→∞

Xs,x,ak
t = Xs,x,a

t , t ∈ [0, T ], P− a.s.

Then, writing J(s, x, ak) =
∑2n−1

i=0 E
[∫ T
s 1{t(n)

i <r≤t(n)
i+1}

h (r,Xs,x,ak
r , (Zk)i) dr

]
+ E

[
j
(
Xs,x,ak
T

)]
, k ∈ N,

the continuity hypotheses on h and j allow us to invoke the dominated convergence theorem and complete
the proof. �

Taking into account Remark 3.8 we now restrict the set of controls. To do this, fix n ∈ N; recall the
set Sn = {t(n)

i , i = 0, . . . , 2n} of dyadic points of [0, T ] with mesh T2−n.
Note that, as U is a Polish space, according to (3.108) the space L(n)

i = L2(Ω,FW,Np
0,t

(n)
i

;Rl) is separa-

ble, i = 0, . . . , 2n − 1. It is then possible to consider an Hilbert basis
(
e

(n)
i,m

)
m

for each L(n)
i . We denote

by
L

(n)
i,M the subspace of L(n)

i generated by e(n)
i,1 , . . . , e

(n)
i,M , for every M ∈ N. (3.113)

We introduce the subspace An,M ⊂ An given by the simple processes a ∈ An of the form

a(t, ω) =
2n−1∑
i=0

Zi(ω)1(
t
(n)
i ,t

(n)
i+1

](t), t ∈ [0, T ], ω ∈ Ω,
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for some family Z = (Zi)i ⊂ L(n)
i,M . As before, we define

Zn,M =
{

(Zi)i=0,...,2n−1 such that Zi ∈ L(n)
i,M},

and we identify An,M 3 a ∼ Z ∈ Zn,M ; moreover we set Ã = ∪n,M∈NAn,M and Z̃ = ∪n,M∈NZn,M .

Since L(n)
i = ∪ML(n)

i,M , where the closure is relative to the L2−norm, Lemma 3.24 entails that

v(s, x) = sup
a∈Ã

J(s, x, a). (3.114)

Thus, at the level of the value function v, working with Ã instead of A is not restrictive.
Fix s ∈ [0, T ] and n, M ∈ N. For every i = 0, . . . , 2n − 1 such that t(n)

i ≥ s, we define

H
(n)
s,i = L2

(
Ω,FW,Np

s,t
(n)
i

;Rl
)

: (3.115)

by (3.108), H(n)
s,i is separable, hence it has an Hilbert basis

(
e

(n)
s,i,m

)
m
. We denote by H(n)

s,i,M the subspace

of H(n)
s,i generated by e(n)

s,i,1, . . . , e
(n)
s,i,M , and by

Zsn,M =
{(
Zi
)
i=0,...,2n−1

∈ Zn,M such that Zi ∈ H(n)
s,i,M , for all i : t(n)

i ≥ s} :

the corresponding simple, finitely generated controls are denoted by Asn,M . Moreover, we set

Ãs =
⋃

n,M∈N
Asn,M , Z̃s =

⋃
n,M∈N

Zsn,M , (3.116)

and we define the function

ṽ(s, x) = sup
a∈Ãs

J(s, x, a), s ∈ [0, T ), x ∈ Rd.

By analogy with (3.114), if we call

Zsn =
{

(Zi)i=0,...,2n−1 ∈ Zn such that Zi is F
W,Np

s,t
(n)
i

−measurable, for all i : t(n)
i ≥ s}

and denote by Asn the corresponding simple controls, then by Lemma 3.24 we obtain

ṽ(s, x) = sup
a∈∪n∈NAsn

J(s, x, a), s ∈ [0, T ), x ∈ Rd. (3.117)

The next lemma clarifies that we can restrict ourselves to controls independent of FW,Np0,s (cfr. [40,
Remark 5.2] and [146, Remark 3.1]).

Lemma 3.25. The following equality holds for every s ∈ [0, T ) and x ∈ Rd:

v(s, x) = ṽ(s, x). (3.118)
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Proof. We only focus on the inequality v(s, x) ≤ ṽ(s, x), being the other one trivial. Fix s ∈ [0, T ),
x ∈ Rd and a simple control a ∈ An,M , with n,M ∈ N. Using

as,ω̄s,n(t, ω) = 1{t≤s+n}a(t, ω̄) + 1{t>s+n}
2n−1∑
i=0

F
(n)
i (Ws∧·(ω̄) + [Ws∨· −Ws] (ω),

Np (· ∩ ((0, s]× U)) (ω̄) +Np (· ∩ ((s, T ]× U)) (ω)) 1(
t
(n)
i ,t

(n)
i+1

](t),
where t ∈ [0, T ], ω, ω̄ ∈ Ω (see (3.107)), we compute

J(s, x, a) = E
[
E
[∫ T

s
h (r,Xs,x,a

r , ar) dr + j
(
Xs,x,a
T

) ∣∣∣FW,Np0,s

]]
= E

[
J(s, x, as,·s,n)

]
≤ ṽ(s, x).

Here the last inequality is due to (3.117) and the fact that as,ωs,n ∈ Asn, for every ω ∈ Ω. Taking the
supremum over a ∈ Ã, by (3.114) we deduce (3.118) and complete the proof. �

The next remarks will be important in the proof of the DPP (see, in particular, Step II ).

Remark 3.7. For every θ̄ ∈ [0, T ], the set Z̃ θ̄ (see (3.116)) can be identified with a Borel subset of the
separable space ∏

i,n : t
(n)
i <θ̄

M∈N

[
L

(n)
i,M

]
×
∏

i,n : θ̄≤t(n)
i <T

M∈N

[
H

(n)

θ̄,i,M

]
.

Therefore, by [27, Proposition 7.12], Z̃ θ̄ endowed with the trace topology is a Borel space. Moreover,
for every n,M ∈ N and i = 0, . . . , 2n − 1 such that t(n)

i ≥ θ̄ [resp., t(n)
i < θ̄], the projection map

π
(n)

θ̄,i,M
: Z̃ θ̄ → H

(n)

θ̄,i,M
[resp., π(n)

θ̄,i,M
: Z̃ θ̄ → L

(n)
i,M ] is continuous, hence Borel measurable.

Remark 3.8. Fix a separable Hilbert space H = L2(Ω,G;Rk) with basis e = (em)m. We can choose
a representative for every element em, m ∈ N, of the basis e. In this way, it makes sense to consider
em(ω), ω ∈ Ω. Given M ∈ N, we denote by FM = span {e1, . . . , eM}; for every y ∈ FM , there exists
a unique representative ȳ of y such that ȳ(ω) =

∑M
m=1〈y, em〉Hem(ω), ω ∈ Ω. Note that FM ⊂ H is

isomorphic to RkM . We can define a map T : FM × (Ω,G)→ R by

T (y, ω) = ȳ(ω), y ∈ FM , ω ∈ Ω.

Note that T is well defined, and depends on the choice of the representatives for (em)m.
Furthermore, we remark that T is measurable with respect to the product σ−algebra. Indeed, this is
a consequence of the fact that T (y, ·) is G−measurable for every y ∈ FM , and that T (·, ω) : FM → R is
continuous for every ω ∈ Ω. This observation will be important in (3.123) (see also (3.126)).

For the proof of DPP, see Theorem 3.27, we need to use a classical measurable selection theorem. In
particular, we employ a simplified version of [42, Theorem 2] (see Theorem 3.26), an important result
which is also considered, in a more general form, in [27, Proposition 7.50(b)]. Note that, according to
[42, Remark 2, Page 909], we can work with functions defined in separable, absolute Borel sets (or Borel
spaces) instead of Polish spaces. Recall that a topological space X is said to be a Borel space if there
exists a Polish space Z such that X is homeomorphic to a member of the Borel σ−algebra of Z. We
also recall that, given two Borel spaces X and Y , a function g : X → Y is universally measurable if it
is (G,B(Y ))−measurable, where G is the intersection of the completions of the Borel σ−algebra B(X)
with respect to all the Borel probability measures on X.
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Theorem 3.26 ([42]). Let X and Y be Borel spaces and let f : X × Y → R be a Borel measurable
bounded function. Then, for any ε > 0, there exists a universally measurable function ϕε : X 7→ Y such
that

f(x, ϕε(x)) ≤ inf
y∈Y

f(x, y) + ε, x ∈ X.

We are now ready to state the dynamic programming principle (or Bellman’s principle).

Theorem 3.27. Consider (3.96) and (3.109). Fix s ∈ [0, T ) and denote by Ts,T the set of stopping
times with respect to the filtration FW,Np taking values in (s, T ). Then the following holds:

v(s, x) = sup
a∈E

inf
θ∈Ts,T

E
[ ∫ θ

s
h (r,Xs,x,a

r , ar) dr + v
(
θ,Xs,x,a

θ

) ]
= sup

a∈E
sup
θ∈Ts,T

E
[ ∫ θ

s
h (r,Xs,x,a

r , ar) dr + v
(
θ,Xs,x,a

θ

) ]
, s ∈ [0, T ), x ∈ Rd. (3.119)

Remark 3.9. Equation (3.119) in Theorem 3.27 gives a stronger version of the DPP, which is typically
formulated as follows: for any stopping time θ ∈ Ts,T ,

v(s, x) = sup
a∈E

E
[ ∫ θ

s
h (r,Xs,x,a

r , ar) dr + v
(
θ,Xs,x,a

θ

) ]
, s ∈ [0, T ), x ∈ Rd.

Proof. We divide the proof into two steps.

Step I: We show that, for every s ∈ [0, T ) and x ∈ Rd,

v(s, x) ≤ sup
a∈A

inf
θ∈Ts,T

E
[∫ θ

s
h (r,Xs,x,a

r , ar) dr + v
(
θ,Xs,x,a

θ

)]
. (3.120)

Since A ⊂ E , the estimate in (3.120) will hold replacing A with E , too. Fix s ∈ [0, T ), x ∈ Rd, θ ∈ Ts,T
and a ∈ Aq, for some q ∈ N. By the flow property in Point 3. of Definition 3.1,

J(s, x, a) = E
[∫ θ

s
h (r,Xs,x,a

r , ar) dr

]
+ E

[∫ T

θ
h
(
r,X

θ,Xs,x,a
θ ,a

r , ar

)
dr + j

(
X
θ,Xs,x,a

θ ,a

T

)]
= E

[∫ θ

s
h (r,Xs,x,a

r , ar) dr

]
+

2q−1∑
k=0

E

[
1(
t
(q)
k ,t

(q)
k+1

](θ)
(∫ T

θk+1

h

(
r,X

θk+1,X
s,x,a
θk+1

,a

r , ar

)
dr + j

(
X
θk+1,X

s,x,a
θk+1

,a

T

))]
, (3.121)

where we denote by θk+1 = θ ∧ t(q)k+1, k = 0, . . . , 2q − 1.
We focus on the second addend in (3.121). Observe that Xs,x,a

θk+1
is measurable with respect to the

σ−algebra FW,Npθk+1
generated by the stopping time θk+1 relative to the filtration FW,Np . Therefore,

thanks to the arguments in Subsection 3.5.2 (see, in particular, (3.107)), we condition with respect to
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FW,Npθk+1
to deduce that, for every k = 0, . . . , 2q − 1, for P− a.s. ω ∈ Ω,

E

[
1(
t
(q)
k ,t

(q)
k+1

](θ)
(∫ T

θk+1

h

(
r,X

θk+1,X
s,x,a
θk+1

,a

r , ar

)
dr + j

(
X
θk+1,X

s,x,a
θk+1

,a

T

)) ∣∣∣FW,Npθk+1

]
(ω)

= 1(
t
(q)
k ,t

(q)
k+1

](θk+1(ω))J
(
θk+1(ω), Xs,x,a

θk+1
(ω), a

θk+1,ω
θk+1(ω),q

)
= 1(

t
(q)
k ,t

(q)
k+1

](θ(ω))J
(
θ(ω), Xs,x,a

θ (ω), aθ,ωθ(ω),q

)
.

Since aθ,ωθ(ω),q ∈ Aq, by the definition of the value function v we deduce that

J
(
θ(ω), Xs,x,a

θ (ω), aθ,ωθ(ω),q

)
≤ v(θ(ω), Xs,x,a

θ (ω)), ω ∈ Ω.

Going back to (3.121) we conclude that, by the law of total expectation,

J(s, x, a) ≤ E
[ ∫ θ

s
h (r,Xs,x,a

r , ar) dr
]

+ E
[
v(θ,Xs,x,a

θ )
]
.

Since a ∈ A and θ ∈ Ts,T are arbitrary, we obtain (3.120).
Step II: We show that, for every s ∈ [0, T ) and x ∈ Rd,

v(s, x) ≥ sup
a∈E

sup
θ∈Ts,T

E
[ ∫ θ

s
h (r,Xs,x,a

r , ar) dr + v
(
θ,Xs,x,a

θ

) ]
. (3.122)

Fix s ∈ [0, T ), x ∈ Rd and a ∈ E ; first, we assume that θ = θ̄ ∈ (s, T ) ∩ S. Our idea is to apply a
measurable selection argument, specifically Theorem 3.27. However, before doing this, some necessary
preparation is required.

Consider n,M ∈ N and i = 0, . . . , 2n − 1 such that t(n)
i ≥ θ̄; recall the space

H
(n)

θ̄,i,M
⊂ H(n)

θ̄,i
generated by e(n)

θ̄,i,m
, m = 1, . . . ,M,

see (3.115) and the subsequent line. We write em for e(n)

θ̄,i,m
to keep notation simple and fix a represen-

tative for every function em, m = 1, . . . ,M . Denoting by ȳ the unique representative of y ∈ H(n)

θ̄,i,M
such

that ȳ(ω) =
∑M

m=1〈y, em〉L2 em(ω), ω ∈ Ω, by Remark 3.8 we can define the measurable map

g
t
(n)
i

: H
(n)

θ̄,i,M
×
(
Ω,FW,Np

θ̄,t
(n)
i

)
→ Rl, g

t
(n)
i

(y, ω) = ȳ(ω). (3.123)

When t(n)
i < θ̄, we can follow the same argument to define, recalling also (3.113), the measurable map

g
t
(n)
i

: L
(n)
i,M ×

(
Ω,FW,Np

0,t
(n)
i

)
→ Rl as in (3.123).

We now focus on the application of Theorem 3.27. Denote by X = D([s, θ̄];Rd) the usual space of
càdlàg functions endowed with the Skorokhod topology: since X is a Polish space, it is a Borel space
too. Recalling (3.116), we introduce the function f : X × Z̃ θ̄ → R defined by, for every ξ ∈ X and
y ∈ Z̃ θ̄,

f(ξ, y) = −J(θ̄, πθ̄(ξ), y), where πθ̄(ξ) = ξ(θ̄).
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The map f is Borel measurable and bounded. Thus, by Remark 3.7 we can apply Theorem 3.27, which
yields, for any ε > 0, the existence of a universally measurable function cε : X → Z̃ θ̄ such that

J(θ̄, πθ̄(ξ), cε(ξ)) ≥ sup
y∈Z̃ θ̄

J(θ̄, πθ̄(ξ), y)− ε = v(θ̄, πθ̄(ξ))− ε, ξ ∈ X . (3.124)

Note that the last equality in (3.124) is due to Lemma 3.25. Consequently,

E[J(θ̄, Xs,x,a

θ̄
, cε(X

s,x,a
· ))] ≥ E[v(θ̄, Xs,x,a

θ̄
)]− ε; (3.125)

for every ω ∈ Ω, we identify
Ãθ̄ 3 c̃ε(ω) ∼ cε(Xs,x,a

· (ω)) ∈ Z̃ θ̄.
At this point, we modify the control a ∈ E after time θ̄ using the processes c̃ε(·), with the aim of

invoking (3.125) and the flow property in Point 3. of Definition 3.1. However, since c̃ε(ω) ∈ Aθ̄n,M for
some integers n,M depending on ω, we need to consider suitable approximated controls to make the
procedure rigorous.
For every ω ∈ Ω and n,M ∈ N, define c(n)

ε,M (ω) ∈ Z θ̄n,M by (recall Remark 3.7)(
c

(n)
ε,M (ω)

)
i

= π
(n)

θ̄,i,M
(cε(X

s,x,a
· (ω))) , i = 0, . . . , 2n − 1;

we identify Aθ̄n,M 3 cε,M,n(ω) ∼ c(n)
ε,M (ω) ∈ Z θ̄n,M .

For everyK ∈ N, we denote by ΦK : Rl → Rl the truncation function defined by ΦK(x) = x1{|x|≤K}, x ∈
Rl. Then we consider the quantity c(n)

ε,M,K(ω) ∈ Z θ̄n,M , given by(
c

(n)
ε,M,K(ω)

)
i
(·) = ΦK

((
c

(n)
ε,M (ω)

)
i
(·)
)
, i = 0, . . . , 2n − 1, K ∈ N;

we identify Aθ̄n,M 3 cε,M,n,K(ω) ∼ c(n)
ε,M,K(ω) ∈ Z θ̄n,M .

Recalling (3.123) and the subsequent comment, we introduce the FW,Np
0,t

(n)
i

−measurable random variable

c̃
(n)
ε,M,i(ω) :=

(
c

(n)
ε,M (ω)

)
i
(ω) = g

t
(n)
i

(
π

(n)

θ̄,i,M
(cε(X

s,x,a
· (ω))) , ω

)
, ω ∈ Ω, i = 0, . . . , 2n − 1.

Once again, for every K ∈ N and i = 0, . . . , 2n − 1, we define

c̃
(n)
ε,M,i,K(ω) := ΦK

(
c̃

(n)
ε,M,i(ω)

)
= ΦK

(
g
t
(n)
i

(
π

(n)

θ̄,i,M
(cε(X

s,x,a
· (ω))) , ω

))
. (3.126)

Note that the map ΦK ensures that the random variables c̃(n)
ε,M,i,K in (3.126) are square–integrable, which

allows us to identify Zn 3
(
c̃

(n)
ε,M,i,K

)
i
∼ c̃ε,M,n,K ∈ An.

Consider n,M,K ∈ N and suppose that θ̄ ∈ Πn. We introduce the simple process aε,M,n,K defined by

aε,M,n,K(t, ω) = 1{t≤θ̄}a(t, ω) + 1{t>θ̄}c̃ε,M,n,K(t, ω), t ∈ [0, T ], ω ∈ Ω.

The control aε,M,n,K ∈ E because c̃ε,M,n,K ∈ An: this explains the need for the truncation map ΦK .
Thus, by the flow property of Xs,x,(aε,M,n,K) in Point 3. of Definition 3.1, we have

v(s, x) ≥ E

[∫ θ̄

s
h (r,Xs,x,a

r , ar) dr

]

+ E
[∫ T

θ̄
h

(
r,X

θ̄,Xs,x,a

θ̄
,(c̃ε,M,n,K)

r , (c̃ε,M,n,K)r

)
dr + j

(
X
θ̄,Xs,x,a

θ̄
,(c̃ε,M,n,K)

T

)]
. (3.127)
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Observe that, for every y ∈ Rd, y(n) ∈ (Rl)2n and r ∈ (θ̄, T ], by [167, Theorem 117] and the construction
carried out in the proof of Theorem 3.19, the random variable X θ̄,y,y(n)

r is independent from FW,Np
0,θ̄

.

Moreover, by (3.126) we infer that, for every i = 0, . . . , 2n − 1 such that t(n)
i ≥ θ̄, for P− a.s. ω ∈ Ω,

E
[
c̃

(n)
ε,M,i,K

∣∣FW,Np
0,θ̄

]
(ω) = E

[
ΦK

(
g
t
(n)
i

(
π

(n)

θ̄,i,M
(cε(ξ)) , ·

))]
ξ=Xs,x,a

· (ω)

= E
[
ΦK

(
g
t
(n)
i

(
π

(n)

θ̄,i,M
(cε(X

s,x,a
· (ω))) , ·

))]
= E

[(
c

(n)
ε,M,K(ω)

)
i
(·)
]
.

Therefore, P−a.s.,

E
[∫ T

θ̄
h

(
r,X

θ̄,Xs,x,a

θ̄
,(c̃ε,M,n,K)

r , (c̃ε,M,n,K)r

)
dr + j

(
X
θ̄,Xs,x,a

θ̄
,(c̃ε,M,n,K)

T

) ∣∣∣FW,Np
0,θ̄

]
= J

(
θ̄, Xs,x,a

θ̄
, cε,M,n,K

)
.

Going back to (3.127), by the law of total expectation we can write

v(s, x) ≥ E
[ ∫ θ̄

s
h (r,Xs,x,a

r , ar) dr
]

+ E
[
J
(
θ̄, Xs,x,a

θ̄
(·), cε,M,n,K(·)

)]
. (3.128)

Observing that, for every ω ∈ Ω,

lim
K→∞

(
c

(n)
ε,M,K(ω)

)
i
(ω′) =

(
c

(n)
ε,M (ω)

)
i
(ω′), i = 0, . . . , 2n − 1, ω′ ∈ Ω,

by Lemma 3.24 we can pass to the limit as K →∞ in (3.128) to obtain, by dominated convergence,

v(s, x) ≥ E

[∫ θ̄

s
h (r,Xs,x,a

r , ar) dr

]
+ E

[
J
(
θ̄, Xs,x,a

θ̄
(·), cε,M,n(·)

)]
. (3.129)

Notice that, for every ω ∈ Ω, when n and M are sufficiently large then Ãθ̄ 3 c̃ε(ω) = cε,M,n(ω) ∈ Aθ̄n,M .
Hence, choosing M = n we have

J
(
θ̄, Xt,x,a

θ̄
(ω), c̃ε(ω)

)
= lim

n→∞
J
(
θ̄, Xs,x,a

θ̄
(ω), cε,n,n(ω)

)
, ω ∈ Ω,

which by dominated convergence implies

E
[
J
(
θ̄, Xt,x,a

θ̄
(·), c̃ε (·)

)]
= lim

n→∞
E
[
J
(
θ̄, Xs,x,a

θ̄
(·), cε,n,n(·)

)]
. (3.130)

Combining (3.129)-(3.130) with (3.125) we conclude that

v(s, x) ≥ E

[∫ θ̄

s
h (r,Xs,x,a

r , ar) dr

]
+E

[
J
(
θ̄, Xt,x,a

θ̄
, c̃ε

)]
≥ E

[∫ θ̄

s
h (r,Xs,x,a

r , ar) dr + v(θ̄, Xt,x,a

θ̄
)

]
−ε.

Suppose now that θ is a simple, FW,Np−stopping time with values in (s, T ) ∩ S. Then we can write
θ =

∑N
k=1 θk1Ak , where θk ∈ (s, T )∩S and (Ak)k is a partition of Ω such that Ak ∈ F

W,Np
0,θk

, k = 1, . . . , N.
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We can invoke the measurable selection theorem (see Theorem 3.26) N−times to deduce, for any ε > 0,
the existence of a universally measurable function cε,k : D

(
[s, θk];Rd

)
→ Z̃θk such that (cfr. (3.124))

J(θk, X
s,x,a
θk

(ω), cε,k(X
s,x,a
· (ω))) ≥ v

(
θk, X

s,x,a
θk

(ω)
)
− ε, k = 1, . . . , N, ω ∈ Ω.

If we identify, for every k = 1, . . . , N , Ãθk 3 c̃ε,k(ω) ∼ cε,k(X
s,x,a
· (ω)) ∈ Z̃θk , ω ∈ Ω, then conditioning

with respect to FW,Np0,θk
we can follow the previous arguments to obtain

v(s, x) ≥ E
[∫ θ

s
h (r,Xs,x,a

r , ar) dr

]
+

N∑
k=1

E
[
1AkJ

(
θk, X

s,x,a
θk

(·), c̃ε,k(·)
)]

≥ E
[∫ θ

s
h (r,Xs,x,a

r , ar) dr + v(θ,Xs,x,a
θ )

]
− ε. (3.131)

Finally, we show that (3.122) holds for all θ ∈ Ts,T . We consider a sequence (θ̃n)n∈N ⊂ Ts,T of simple
FW,Np−stopping times with values in (s, T ) ∩ S such that θ̃n ↓ θ as n → ∞, P−a.s. An application of
Lemma 3.23 yields, for P−a.s. ω ∈ Ω,

v
(
θ(ω), Xt,x,a

θ (ω)
)
≤ lim inf

n→∞
v
(
θ̃n(ω), Xt,x,a

θ̃n
(ω)
)
.

Hence by (3.131) and Fatou’s lemma, which can be applied because v is bounded, we deduce that

v(s, x) ≥ lim inf
n→∞

(
E

[∫ θ̃n

s
h (r,Xs,x,a

r , ar) dr + v
(
θ̃n, X

s,x,a

θ̃n

)])
− ε

≥ E
[∫ θ

s
h (r,Xs,x,a

r , ar) dr + v(θ,Xs,x,a
θ )

]
− ε.

Since ε > 0, a ∈ E and θ ∈ Ts,T are chosen arbitrarily, the previous equation entails (3.122).
Combining (3.122) with (3.120) we obtain (3.119). The proof is now complete. �

Appendix 3.A On the σ−algebra C
Recall that D([0, T ];Rd) is the set of Rd−valued, càdlàg functions defined on [0, T ], and that we

denote by D0 = (D([0, T ];Rd), ‖·‖0) and by DS = (D([0, T ];Rd), J1). In particular, the Skorokhod
topology J1 is generated by the metric dS , see Remark 3.3.
Notice that C(Rd;D0)⊂ C(Rd;DS), because dS(x, y)≤ ‖x− y‖0 for every x, y ∈ D([0, T ];Rd). Since
(C(Rd;DS), dluS ) is separable (see [122]), where

dluS (f, g) =
∞∑
N=1

2−N
sup|x|≤N dS(f (x) , g (x))

1 + sup|x|≤N dS(f (x) , g (x))
, f, g ∈ C

(
Rd;DS

)
,

it follows that (C(Rd;D0), dluS ) is separable, too. We denote CS the corresponding Borel σ−algebra.

Lemma 3.28. The following equality between σ−algebras holds:

C = CS . (3.132)
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Proof. First we prove the inclusion C ⊂ CS . Fix x ∈ Rd and consider the projection πx : C(Rd;D0)→ D0

defined by πx(f) = f(x), f ∈ C(Rd;D0). Notice that πx : (C(Rd;D0), dluS )→ DS is continuous, because
if fn, f ∈ C(Rd;D0), n ∈ N, such that limn→∞ d

lu
S (fn, f) = 0, then

lim
n→∞

dS(fn(y), f(y)) = 0, for every y ∈ Rd.

As D is the Borel σ−algebra generated by J1, we infer that πx is CS/D−measurable, whence C ⊂ CS .
Secondly, we focus on the inclusion CS ⊂ C. Since (C(Rd;D0), dluS ) is separable, it suffices to show

that
B(f0, R) =

{
f ∈ C(Rd;D0) : dluS (f0, f) ≤ R

}
∈ C, f0 ∈ C(Rd;D0), R > 0.

Hence we fix f0 ∈ C(Rd;D0) and consider the map C(Rd;D0) 3 f 7→ dluS (f0, f) ∈ R: we argue that it
is C−measurable. Indeed, this is a consequence of the fact that, for every m ∈ N, the map

C(Rd;D0) 3 f 7→
sup|x|≤m dS(f0 (x) , f (x))

1 + sup|x|≤m dS(f0 (x) , f (x))
∈ R is C−measurable.

Note that the supremum can be computed over x ∈ Qd because f0, f : Rd → DS are continuous. Since
x/(1 + x), x ∈ R, is measurable, we only need to verify that

hm : C(Rd;D0)→ R defined by hm(f) = sup
|x|≤m,x∈Qd

dS(f0 (x) , f (x)) is C−measurable. (3.133)

For every c ∈ R and r > 0, denoting by B(c, r) ⊂ R the closed ball of radius R and center c in R,

h−1
m (B(c, r)) =

{
f ∈ C(Rd;D0) : sup

|x|≤m,x∈Qd
dS(f0 (x) , f (x)) ∈ B(c, r)

}
=

⋂
|x|≤m,x∈Qd

π−1
x

(
d−1
S (f0(x), ·)(B(c, r))

)
∈ C,

where in the last step we use that dS(f0(x), ·) : DS → R is continuous (hence measurable) and that D
is the Borel σ−algebra generated by J1. Thus, (3.133) is satisfied, whence CS ⊂ C.

The double inclusion proves (3.132), completing the proof. �

Appendix 3.B Proof of Theorem 3.12

In this section we use the same notation and work under the same hypotheses as in Theorem 3.12.
First of all, by Jensen’s inequality, which can be invoked since θ is concave, we have

sup


n∑
j=1

θ (pj) , pj ≥ 0 such that
n∑
j=1

pj = 1

 = nθ

(
1

n

)
, n ∈ N. (3.134)

Before presenting the proof of Theorem 3.12, we introduce an approximation scheme. For every n ∈ N,
we denote by Sn the set of dyadic points

Sn =
{
Tj2−n, j = 0, 1, . . . , 2n

}
.
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For any t ∈ [0, T ], let t−n = max{s ∈ Sn : s ≤ t} and t+n = min{s ∈ Sn : s > t}, where we set T+
n = ∞.

Next, for every n ∈ N we define the function gn : Ξ× Sn+1 → Sn by

gn (ω, t) =

{
t−n , ∆

(
Xt (ω) , Xt−n

(ω)
)

= ∆ (t−n , t, t
+
n ) (ω)

t+n , otherwise
, ω ∈ Ξ, t ∈ Sn+1.

In our framework, the map ω 7→ ∆(Xt±n
(ω), Xt(ω)) is G−measurable. It follows that also the function

ω 7→ ∆(Xt(ω), Xgn(w,t) (ω)) = ∆(t−n , t, t
+
n )(ω) is G−measurable, because it is the minimum of two

random variables. Finally, for all m,n ∈ N such that n ≥ m, define fm,n = gm ◦ · · · ◦ gn. Note that fm,n
maps Ξ× Sn+1 into Sm. The following lemma is a fundamental tool in the proof of Theorem 3.12.

Lemma 3.29. Let m,n ∈ N be such that n ≥ m and ω ∈ Ξ. Then the map gn(ω, ·) is non–decreasing
in Sn+1 and, restricted to Sn, is the identity. As a consequence, the map fm,n(ω, ·) is non–decreasing
in Sn+1.

Furthermore, there exists a family of increasing, càdlàg step functions fn : Ξ × [0, T ] → Sn, n ∈ N,
such that

fm,n(ω, ·) ◦ fn+1(ω, ·) = fm(ω, ·), n ≥ m, ω ∈ Ξ, (3.135)

and that
|t− fn (ω, t)| ≤ T2−n, ω ∈ Ξ, t ∈ [0, T ] . (3.136)

Proof. Fixm,n ∈ N such that n ≥ m and ω ∈ Ξ. In the sequel, we do not explicitly write the dependence
of gn and fm,n on ω to keep notation simple. By definition, Sn ⊂ Sn+1 and t = t−n for every t ∈ Sn.
This implies that gn(t) = t. Consider now s, t ∈ Sn+1 such that s < t: since s+

n ≤ t−n , the function gn is
non–decreasing in Sn+1, as desired. Therefore the same property holds for fm,n = gm ◦ · · · ◦ gn, too.

For the second part of the statement, consider n ∈ N, ω ∈ Ξ, s ∈ Sn, and for every integer k ≥ n
define T (k, n, s)(ω) = min{t ∈ Sk+1 : fn,k(ω, t) = s}. Since gk+1 restricted to Sk+1 is the identity,
the sequence (T (k, n, s)(ω))k≥n is non–increasing, hence there exists T (n, s)(ω) = limk→∞ T (k, n, s)(ω).
The monotonicity of the map fn,k proved in the previous point yields

T (n, s) (ω) ∈
[
s− T2−n, s

]
, s ∈ Sn \ {0}, (3.137)

and
T (n, s) (ω) ≤ T

(
n, s+

n

)
(ω) , setting T

(
n, T+

n

)
= T. (3.138)

Thanks to (3.138), we can construct the function fn : Ξ× [0, T ]→ Sn defining, for all ω ∈ Ξ,

fn (ω, t) =

{
s, t ∈ [T (n, s) (ω) , T (n, s+

n ) (ω)) , Sn 3 s < T,

T, t ∈ [T (n, T ) (ω) , T ] .

It is immediate to notice that fn is a càdlàg, increasing step function, while (3.136) is guaranteed by
(3.137).
It only remains to prove the composition property in (3.135). Consider ω ∈ Ξ, two integers n ≥ m and
s ∈ Sn+1. Note that, by definition (omitting ω as before),

T (k, n+ 1, s) ≥ T (k, n, gn (s)) ≥ · · · ≥ T (k,m, fm,n (s)) , k > n,

hence passing to the limit as k →∞,

T (n+ 1, s) ≥ T (n, gn (s)) ≥ · · · ≥ T (m, fm,n (s)) . (3.139)
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Take t ∈ [0, T ] and denote by s̃ ∈ Sn+1 the unique element in Sn+1 such that t ∈ [T (n + 1, s̃), T (n +
1, s̃+

n+1)[. Notice that this interval is closed when s̃ = T . Analogously, let s̄ ∈ Sm be such that
t ∈ [T (m, s̄), T (m, s̄+

m)[, again closing the interval when s̄ = T . Since, by (3.139), t ≥ T (n + 1, s̃) ≥
T (m, fm,n(s̃)), from (3.138) we infer that fm,n(s̃) ≤ s̄, whence

fm,n (fn+1 (t)) = fm,n(s̃) ≤ s̄ = fm (t) . (3.140)

On the other hand, we argue by cases. Firstly, note that T (m, s̄) ≤ T (n+ 1, s̄) by (3.139). Secondly, we
observe that either t ≥ T (n+ 1, s̄) or t ∈ [T (m, s̄), T (n+ 1, s̄)). In the former case, (3.138) implies that
s̄ ≤ fm,n(s̃). In the latter (where in particular s̄ 6= 0), there exists u ∈ [T (m, s̄), T (n+ 1, s̄)) ∩ Sk+1, for
some integer k > n, such that

s̄ = fm,k (u) = fm,n (fn+1,k (u)) .

Since u < T (n + 1, s̄), fn+1,k (u) ∈ (s̄ − T2−m, s̄) ∩ Sn+1. Hence we can define ū = min{v ∈ (s̄ −
T2−m, s̄) ∩ Sn+1 : fm,n(v) = s̄}, and it is easy to argue by contradiction that T (n + 1, ū) ≤ T (m, s̄).
Consequently,

fm,n (fn+1 (t)) ≥ fm,n (ū) = s̄ = fm (t) . (3.141)

Combining (3.140) and (3.141) we obtain (3.135), completing the proof. �

We are now ready to prove Theorem 3.12.
Proof of Theorem 3.12. For every n ∈ N, consider the finite partition {A(n)

t , t ∈ Sn+1\Sn} of Ξ, defined
by

A
(n)
t =

{
ω ∈ Ξ : ∆

(
Xt (ω) , Xgn(ω,t) (ω)

)
= max

u∈Sn+1

∆
(
Xu (ω) , Xgn(ω,u) (ω)

)}
=

(
∆
(
Xt, Xgn(·,t)

)
− max
u∈Sn+1

∆
(
Xu, Xgn(·,u)

))−1

{0} , t ∈ Sn+1 \ Sn.

Noticing that Ξ 3 ω 7→ maxu∈Sn+1 ∆
(
Xu (ω) , Xgn(ω,u) (ω)

)
is G−measurable because it is the maximum

of 2n+1 + 1 random variables, we deduce that A(n)
t ∈ G for every t ∈ Sn+1 \Sn. Then, by the hypothesis

in (3.43),

EQ

[
max
u∈Sn+1

∆
(
Xu, Xgn(·,u)

)]
=

∑
t∈Sn+1\Sn

EQ

[
∆
(
t−n , t, t

+
n

)
1
A

(n)
t

]
≤ δ

(
T2−n

) ∑
t∈Sn+1\Sn

θ
(
Q
(
A

(n)
t

))
≤ δ

(
T2−n

)
2nθ

(
2−n

)
, (3.142)

where in the last step we use (3.134) and the fact that the cardinality of Sn+1 \Sn is 2n. Now, since for
every ω ∈ Ξ and m,n ∈ N such that n ≥ m, (omitting ω to save space)

∆
(
Xt, Xfm,n(t)

)
≤ ∆

(
Xt, Xgn(t)

)
+ ∆

(
Xgn(t), Xgn−1(gn(t))

)
+ · · ·+ ∆

(
Xfm+1,n(t), Xfm,n(t)

)
≤

n∑
j=m

max
u∈Sj+1

∆
(
Xu, Xgj(u)

)
, t ∈ Sn+1,

we obtain

sup
n≥m

max
t∈Sn+1

∆
(
Xt (ω) , Xfm,n(ω,t) (ω)

)
≤
∞∑
n=m

max
u∈Sn+1

∆
(
Xu (ω) , Xgn(ω,u) (ω)

)
=: Im (ω) . (3.143)
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Consider m so big that 21−m ≤ T and denote by T = T ∨ 1. From the integral condition in (3.44),
(3.142) and recalling that the functions δ, θ are non–decreasing, we invoke the dominated convergence
theorem to conclude that

EQ [Im] ≤
∞∑
n=m

δ
(
T2−n

)
2nθ

(
2−n

)
≤ T

∞∑
n=m

δ
(
T2−n

) 2n

T
θ
(
T2−n

)
≤ 2T

∫ ∞
m−1

δ
(
T2−x

) 2x

T
θ
(
T2−x

)
dx

=
2T

log 2

∫ T

0
1{y≤T21−m}y

−2δ (y) θ (y) dy −→
m→∞

0.

Therefore, there exists a subsequence (Imk)k such that limk→∞ Imk = 0 almost uniformly in Ω. This
means that there exists a sequence of G−measurable sets (ΞN )N , with Q(ΞN ) < N−1 and ΞN+1 ⊂ ΞN ,
such that

lim
k→∞

sup
ω∈Ξ\ΞN

Imk (ω) = 0.

Using a diagonalization argument, we can find a subsequence (Imkp )p with the following property:

Imkq (ω) < 2−q, ω ∈ Ξ \ Ξp, q ≥ p, for every p ∈ N.

Let us define the almost sure event Ξ0 = Ξ \ ∩∞N=1ΞN : note that for any ω ∈ Ξ0, ω ∈ Ξ \ ΞN for all N
sufficiently large. Going back to (3.143), the previous relation gives

sup
n≥mkp

max
t∈Sn+1

∆
(
Xt (ω) , Xfmkp,n

(ω,t) (ω)
)
≤ Imkp (ω) < 2−p, ω ∈ Ξ0, p ≥ p (ω) ∈ N,

which is equivalent to writing, for every ω ∈ Ξ \ Ξp(ω),

∆
(
Xt (ω) , Xfmkp,n

(ω,t) (ω)
)
< 2−p, t ∈ Sn+1, n ≥ mkp , p ≥ p (ω) .

The composition property in Lemma 3.29 (see (3.135)) yields

∆
(
Xfn+1(ω,t) (ω) , Xfmkp

(ω,t) (ω)
)
< 2−p, t ∈ [0, T ] , n ≥ mkp , p ≥ p (ω) . (3.144)

Note that Xfn(ω,·) (ω) : [0, T ]→ E is càdlàg for every n ∈ N and ω ∈ Ξ because fn(ω, ·) is a càdlàg, step
function. Thus, (3.144) shows that the sequence (Xfmkp

(ω,·)(ω))p is Cauchy in the metric space of the
E−valued càdlàg functions defined in [0, T ] endowed with the uniform distance. This space is complete
since E is complete, hence there exists a càdlàg function X̃(ω) : [0, T ]→ E such that

lim
p→∞

sup
0≤t≤T

∆
(
X̃ (ω) (t) , Xfmkp

(ω,t)(ω)
)

= 0, ω ∈ Ξ0.

Finally, we define the function Z : Ξ× [0, T ]→ E by

Zt (ω) =

{
X̃ (w) (t), ω ∈ Ξ0,

0, otherwise.

By construction Z is càdlàg. Moreover, notice that fn(ω, t) ∈ {t−n , t+n } by (3.136), for every ω ∈ Ξ, n ∈ N
and t ∈ [0, T ]. Recall that X is continuous in probability, hence for every t ∈ [0, T ] there exists a full
probability set Ξt and a subsequence (mkpq )q depending on t such that, denoting by q̃ = q̃(q) = mkpq ,

lim
q→∞

∆
(
Xt (ω) , Xt−q̃

(ω)
)

= lim
q→∞

∆
(
Xt (ω) , Xt+q̃

(ω)
)

= 0, ω ∈ Ξt.
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Then, for all ω ∈ Ξ0 ∩ Ξt,

∆(Xt (ω), Zt (ω))= lim
q→∞

∆
(
Xt (ω) , Xfmkpq

(ω,t) (ω)
)

≤ lim
q→∞

∆
(
Xt (ω) , Xt−q̃

(ω)
)

+ ∆
(
Xt (ω) , Xt+q̃

(ω)
)

= 0.

In conclusion, Z is the càdlàg version of X that we are looking for as Q(Ξ0 ∩Ξt) = 1. The proof is now
complete. �

Appendix 3.C Proofs of Lemma 3.17-3.18

Proof of Lemma 3.17. In order not to complicate the notation, we carry out the proof in the case
s̄ = t̄ = T , hence s, t ∈ [0, T ]. The assumption t̄ = T is not restrictive because the Rd−valued random
variables Zs,xt are Ft̄−measurable for every t ∈ [0, t̄], so that all the following passages can be easily
adapted to treat a general t̄ ∈ [0, T ]. As for s̄ ∈ [0, T ], this case can be treated by considering only
dyadic points in [0, T ] up to s̄ in the procedure that we are about to explain.

Consider the function g1 : (Ω × [0, T ],FT ⊗ B([0, T ])) → (C0, C) defined by g1(ω, s) = Zs(ω). Let
Sn = {Tj2−n, j = 0, . . . , 2n} be the set of dyadic points and denote by s+

n = min{t ∈ Sn : t ≥ s}, s ∈
[0, T ]. Then, we define g1,n(ω, s) = g1(ω, s+

n ). For every A ∈ B(Rd), n ∈ N, x ∈ Rd and t ∈ [0, T ], we
have

g−1
1,n

(
π−1
x

(
π−1
t (A)

))
=

((
Z0,x
t

)−1
(A)× {0}

)
⋃( ⋃

s∈Sn\{0}

(
(Zs,xt )

−1
(A)×

(
s− T2−n, s

]))
∈ FT ⊗ B ([0, T ]) .

Recalling that C is the σ−algebra generated by πx : C0 → (D0,D), x ∈ Rd, and that D is the σ−algebra
generated by πt : D0 → Rd, t ∈ [0, T ], the previous computation shows that

g1,nis FT ⊗ B([0, T ])/C−measurable.

The càdlàg property of g1(ω, ·) ensured by Theorem 3.14 yields limn→∞ g1,n = g1 pointwise in Ω× [0, T ],
hence g1 is measurable, as well. Next, consider g2 : (C0 × Rd, C ⊗ B(Rd))→ (D0,D) given by g2(f, x) =
πx(f) = f(x). For every n ∈ N, let Πn = {2−nz, z ∈ Zd} be the set of lattice points in Rd with mesh
2−n. Denoting by x̄n = 2−n[2nx] ∈ Πn, x ∈ Rd, we define g2,n(f, x) = g2(f, x̄n). Note that g2,n is
C ⊗ B(Rd)/D−measurable for all n ∈ N. Indeed, for every A ∈ B(Rd) and t ∈ [0, T ],

g−1
2,n

(
π−1
t (A)

)
=
{

(f, x) ∈ C0 × Rd : [g2,n(f, x)](t) ∈ A
}

=
⋃
x∈Πn

(
π−1
x

(
π−1
t (A)

)
×
([
x1 + 2−n

)
× · · · ×

[
xd + 2−n

)))
∈ C ⊗ B

(
Rd
)
.

Since, by continuity, limn→∞ g2,n = g2 pointwise in C0×Rd, we conclude that g2 is measurable. Finally,
we introduce the map g3 : (D0 × [0, T ],D ⊗ B([0, T ])) → Rd defined by g3(f, t) = f(t): arguing as we
have done for g1, we infer that g3 is measurable. At this point, we read the function Z in the statement
of this lemma as the following composition, where Id : [0, T ]→ [0, T ] and Idd : Rd → Rd are the identity
maps:

Z = g3 ◦ (g2, Id) ◦ (g1, Idd, Id).
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The previous argument allows then to deduce that Z is FT ⊗ B([0, T ]× Rd × [0, T ])−measurable. �
Proof of Lemma 3.18. Since (3.72) can be obtained from (3.76) by setting f = 0, the existence of a
pathwise unique solution of (3.72) can be argued as in Remark 3.4. Thus, we only focus on showing
that the process Zs,η solves (3.72).

All the assertions of the lemma are trivially satisfied when s = T . Thus, we fix s ∈ [0, T ) and
take η ∈ L0(Fs). By construction, Zs,ηt = η for every t ∈ [0, s], P−a.s., so we only focus on t ∈ [s, T ].
First of all, notice that Zs,ηt is Ft−measurable by Lemma 3.17. Next, consider a sequence of simple,
Fs−measurable, Rd−valued random variables (ηn)n such that ηn → η as n → ∞, P−a.s. Specifically,
for every n ∈ N, let ηn =

∑Nn
k=1 a

n
k1Ank , for some Nn ∈ N, (ank)k ⊂ Rd and some partition (Ank)k ⊂

Fs, k = 1, . . . , Nn. By (3.67), using [106, Section 3, Chapter II] and [110, Property 4.37, Chapter I] we
have, P−a.s., for any n ∈ N,

Zs,ηnt =

Nn∑
k=1

Z
s,ank
t 1Ank

=

Nn∑
k=1

[
ank +

∫ t

s
b
(
r, Z

s,ank
r

)
dr +

∫ t

s
α
(
r, Z

s,ank
r

)
dWr +

∫ t

s

∫
U0

g
(
Z
s,ank
r− , r, z

)
Ñp (dr, dz)

]
1Ank

= ηn +

∫ t

s
b (r, Zs,ηnr ) dr +

∫ t

s
α (r, Zs,ηnr ) dWr +

∫ t

s

∫
U0

g
(
Zs,ηnr− , r, z

)
Ñp (dr, dz) , t ∈ [s, T ]. (3.145)

In order to recover (3.72), we want to take limits in (3.145) as n→∞. From the continuity of Zs,xt in
x (see (ii) in Definition 3.1), we infer that limn→∞ Z

s,ηn
t = Zs,ηt uniformly in t ∈ [s, T ], P−a.s. Next, by

dominated convergence and (3.2),

lim
n→∞

∫ t

s
b (r, Zs,ηnr ) dr =

∫ t

s
b (r, Zs,ηr ) dr, t ∈ [s, T ], P−a.s. (3.146)

The convergence of the stochastic integrals in (3.145) is studied via a localization procedure. As for the
integral with respect to the Brownian motion, for every ε > 0 we define

σn(ε) = inf

{
u ∈ [s, T ] :

∫ u

s
|α (r, Zs,ηnr )− α (r, Zs,ηr )|2 dr ≥ ε

}
, with inf ∅ =∞.

Since, by the dominated convergence theorem, limn→∞
∫ T
s |α (r, Zs,ηnr )− α (r, Zs,ηr )|2 dr = 0, P−a.s., we

have σn(ε) → ∞ as n → ∞, P−a.s. In particular, limn→∞ P (σn (ε) ≤ T ) = 0. Hence by Markov’s
inequality, for every δ > 0, for some c > 0,

P
(

sup
t∈[s,T ]

∣∣∣∣∫ t

s
(α (r, Zs,ηnr )− α (r, Zs,ηr )) dWr

∣∣∣∣ ≥ δ)
≤ c

δ2
E
[ ∫ T

s
1[s,σn(ε)](r) |α (r, Zs,ηnr )− α (r, Zs,ηr )|2 dr

]
+ P (σn (ε) ≤ T )

≤ cε

δ2
+ P (σn (ε) ≤ T ) , ε > 0,

which proves that limn→∞
∫ t
s α (r, Zs,ηnr ) dWr =

∫ t
s α (r, Zs,ηr ) dWr uniformly on [s, T ] in probability.

This in turn yields the existence of a subsequence such that

lim
k→∞

∫ t

s
α
(
r, Z

s,ηnk
r

)
dWr =

∫ t

s
α (r, Zs,ηr ) dWr, uniformly in t ∈ [s, T ] , P− a.s. (3.147)
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The convergence of the integral with respect to Ñp in (3.145) can be treated analogously. More precisely,
by (3.2), limn→∞

∫ T
s

∫
U0

∣∣g (Zs,ηnr− , r, z
)
− g

(
Zs,ηr− , r, z

)∣∣2 ν(dz) dr = 0, P−a.s. If we introduce the stopping
times

σ̃n(ε) = inf

{
u ∈ [s, T ] :

∫ u

s

∫
U0

∣∣g (Zs,ηnr− , r, z
)
− g

(
Zs,ηr− , r, z

)∣∣2 ν(dz) dr ≥ ε
}
, ε > 0,

then we can proceed as before to deduce that, P−a.s.,

lim
k→∞

∫ t

s

∫
U0

g
(
Z
s,ηnk
r− , r, z

)
Ñp(dr, dz)

=

∫ t

s

∫
U0

g
(
Zs,ηr− , r, z

)
Ñp(dr, dz), uniformly in t ∈ [s, T ] . (3.148)

Thus, combining (3.146)-(3.147)-(3.148), we can pass to the limit in (3.145) along a suitable subsequence
to get (3.72).

The equalities in (3.73) are obtained using (3.146)-(3.147)-(3.148) and recalling the continuity of
Zs,xi in the space variable x. The lemma is now completely proved. �
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Chapter 4

Affine Volterra processes with jumps

In this chapter, we delve into the theory of affine processes, which has been recently extended
to stochastic Volterra equations with continuous trajectories. These affine Volterra processes possibly
incorporate path–dependent features which allow to go beyond the Markovian framework. Furthermore,
they can have trajectories whose regularity is different from the paths of Brownian motion. More
specifically, singular kernels yield rough affine processes. We extend the theory by considering affine
stochastic Volterra equations with jumps. This extension poses nontrivial challenges because the jump
structure, together with possible singularities of the kernel, may induce explosions of the trajectories.
We also provide semi–explicit exponential affine formulas for the conditional Fourier–Laplace transforms
of marked Hawkes processes.

Notation Throughout the chapter, elements of Rk and Ck are column vectors. Given a matrix
A ∈ Ck×l, the element in row i and column j is Aij , A> ∈ Cl×k is its transpose matrix, and |A|
is the Frobenius norm. We also use the notation Rk+ =

{
x ∈ Rk : xi ≥ 0, i = 1, . . . , k

}
and Ck− ={

x ∈ Ck : Re (xi) ≤ 0, i = 1, . . . , k
}
, where, for z ∈ C, Re(z) denotes its real part. The imaginary part

of a complex number z is Im z. We adopt the convolution notation (f ∗ g) (t) =
∫ t

0 f (t− s) g (s) ds for
functions f, g.

4.1 Preliminaries on affine Volterra processes with jumps

Fix d,m ∈ N. Let g0 ∈ L1
loc (R+;Rm), K ∈ L2

loc
(
R+;Rm×d

)
be a matrix–valued kernel and E ⊂ Rm

be a subset which will be the state–space that we consider. We also introduce a characteristic triplet
(b, a, η) consisting of the measurable maps b : Rm → Rd, a : Rm → Rd×d and the (positive) transition
kernel η (x, dξ) from Rm to Rd. We require this triplet to be affine on E, meaning that, for every x ∈ E,

b (x) = b0 +
m∑
k=1

xkbk, a (x) = A0 +
m∑
k=1

xkAk, η (x,dξ) = ν0 (dξ) +
m∑
k=1

xkνk (dξ) . (4.1)

Here b0, b1, . . . , bm ∈ Rd, A0, A1, . . . , Am ∈ Rd×d, and (νk)k=0,...,m are signed measures on Rd such
that

∫
Rd |ξ|

2 |νk| (dξ) < ∞, with νk ({0}) = 0. Throughout the chapter, we denote by X = (Xt)t≥0 a
predictable process with trajectories in L1

loc (R+;Rm) and such that X ∈ E, P⊗dt−a.e. It is defined on
a filtered probability space

(
Ω,F ,F = (Ft)t≥0 ,P

)
where the filtration F satisfies the usual conditions.

Moreover, we assume that X solves the following affine stochastic Volterra equation of convolution type

133
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Xt = g0 (t) +

∫ t

0
K (t− s) dZs, P− a.s., for a.e. t ∈ R+. (4.2)

Here Z is a d−dimensional semimartingale starting at 0 whose differential characteristics with respect
to the Lebesgue measure are (b (Xt) , a (Xt) , η (Xt, dξ)) , t ≥ 0. These characteristics are taken with
respect to the “truncation function” h (ξ) = ξ, ξ ∈ Rd, which can be chosen because Z is a special
semimartingale due to [110, Proposition 2.29, Chapter II] and the local integrability of the trajectories
of X. In the sequel, we denote by µ (dt,dξ) the measure associated with the jumps of Z and by
ν (dt,dξ) = η (Xt,dξ) dt its compensator. We remark that ν(dt,dξ) is positive, even though νk, k =
0, . . . ,m, is a signed measure and we do not impose any requirements on the sign of the components of
x ∈ E. Indeed, from the definition of (positive) transition kernel, η(x,dξ) is a positive measure on Rd for
every x ∈ Rm. This is coherent with the fact that ν(dt,dξ) should be positive, as it is the compensator
of the positive jump–measure µ(dt,dξ).

It is worth discussing the good definition of the stochastic integral in (4.2). Recalling that X ∈
E, P ⊗ dt−a.e., the canonical representation theorem for semimartingales (see [110, Proposition 2.34,
Chapter II]) shows that Z admits the decomposition

Zt =

∫ t

0
b (Xs) ds+M c

t +Md
t = b0t+

d∑
k=1

bk

∫ t

0
Xk,s ds+M c

t +Md
t , t ≥ 0, P−a.s.,

where dMd
t =

∫
Rd ξ (µ− ν) (dt,dξ) is an Rd−valued, purely discontinuous local martingale and M c is

a d−dimensional, continuous local martingale satisfying d 〈M c,M c〉t = a (Xt) dt. Now if we introduce,
for every j = 1, . . . , d, the increasing process Cjt =

∫ t
0

∫
Rd |ξj |

2 ν (ds, dξ) , t ≥ 0, then we have

Cjt =

(∫
Rd
|ξj |2 ν0 (dξ)

)
t+

m∑
k=1

∫
Rd
|ξj |2 νk (dξ)

(∫ t

0
Xk,s ds

)
, t ≥ 0, P− a.s.

As a consequence of this expression, the local integrability of the paths of X implies that Cj is locally
integrable. Hence [110, Theorem 1.33 (a), Chapter II] yields that Md is a locally square–integrable
martingale with

d
〈
Md,j ,Md,j

〉
t

=

[ ∫
Rd
|ξj |2 ν0 (dξ) +

m∑
k=1

(∫
Rd
|ξj |2 νk (dξ)

)
Xk,t

]
dt, (4.3)

where Md,j is the j−th component of Md, j = 1, . . . , d. It is convenient to introduce the locally square–
integrable martingale Z̃ = M c +Md, which satisfies

Z̃t = Zt −
∫ t

0
b (Xs) ds = Zt − b0t−

d∑
k=1

bk

∫ t

0
Xk,s ds, t ≥ 0, P− a.s. (4.4)

Given an integer l ∈ N and F ∈ L2
loc
(
R+;Rl×d

)
, we define the l−dimensional random variable

(
F ∗ dZ̃

)
T

= (F ∗ dM c)T +
(
F ∗ dMd

)
T

=

∫ T

0
F (T − s) dM c

s +

∫ T

0
F (T − s) dMd

s .

This is well–defined for a.e. T ∈ R+. Indeed, consider the stopping times τn = inf
{
t ≥ 0 :

∫ t
0 |Xs|ds >

n
}
for all n ∈ N. Since X· (ω) ∈ L1

loc (R+,Rm), τn → ∞ as n → ∞ in Ω. Then for every T > 0, we
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can apply the Young’s type inequality in [3, Lemma A.1] with p = q = r = 1 and Tonelli’s theorem to
deduce that∫ T

0

(
E
[ ∫ T∧τn

0
|F (T − s)|2 |Xk,s|ds

])
dT =

∫ T

0

(∫ T

0
|F (T − s)|2 E

[
1{s≤τn} |Xk,s|

]
ds

)
dT

≤ ‖F‖2
L2([0,T ];Rl×d) E

[ ∫ T∧τn

0
|Xk,s| ds

]
≤ n ‖F‖2

L2([0,T ];Rl×d) <∞, k = 1, . . . ,m.

This ensures that E
[ ∫ T∧τn

0 |F (T − s)|2Xk,s ds
]
< ∞, k = 1, . . . ,m, n ∈ N, for a.e. T ∈ R+, say for

every T ∈ R+ \N , where N ⊂ R+ is a dt−null set. As a consequence, it is straightforward to conclude
that the processes (∫ t

0
F (T − s) dM c

s

)
t∈[0,T ]

,

(∫ t

0
F (T − s) dMd

s

)
t∈[0,T ]

, (4.5)

are locally square–integrable martingales for every T ∈ R+ \ N . Indeed, denoting by M c,j the j−th
component of M c, j = 1, . . . , d, for every n ∈ N we can write

d∑
j=1

E
[ ∫ T∧τn

0
|F (T − s)|2 d

〈
M c,j ,M c,j

〉
s

]
=

d∑
j=1

E
[ ∫ T∧τn

0
|F (T − s)|2

(
Ajj0 +

m∑
k=1

Xk,sA
jj
k

)
ds

]
<∞,

and (by (4.3))

d∑
j=1

E
[ ∫ T∧τn

0
|F (T − s)|2 d

〈
Md,j ,Md,j

〉
s

]

=
d∑
j=1

E
[ ∫ T∧τn

0
|F (T − s)|2

(∫
Rd
|ξj |2 ν0 (dξ) +

m∑
k=1

Xk,s

∫
Rd
|ξj |2 νk (dξ)

)
ds

]
<∞.

We always work with a jointly measurable version of the stochastic convolution F ∗dZ̃ defined on Ω×R+

(such a modification exists, see, e.g., [162, Theorem 3.5]).
As for the convolution of F with the drift part of Z, using [96, Theorem 2.2 (i), Chapter 2] we compute

E
[ ∫ T

0

(∫ T

0
1{t≤τn}1{s≤t} |F (t− s)|

(
|b0|+

m∑
k=1

|bk| |Xk,s|
)

ds

)
dt

]

= E
[ ∫ T∧τn

0

(∫ t

0
|F (t− s)|

(
|b0|+

m∑
k=1

|bk| |Xk,s|
)

ds

)
dt

]

≤ ‖F‖L1([0,T ];Rl×d)

[
|b0|T + n

(
m∑
k=1

|bk|

)]
<∞, T > 0.

This shows that there exists a P⊗dt−null set N1 ⊂ Ω×R+ such that the next expression is well–defined:

1{t≤τn(ω)}

∫ t

0
F (t− s)

(
b0 +

m∑
k=1

bkXk,s (ω)

)
ds, n ∈ N, (ω, t) ∈ (Ω× R+) \N1.
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By Fubini’s theorem the resulting processes are jointly measurable in (Ω× R+) \N1, hence passing to
the limit as n→∞, we obtain the jointly measurable process

∫ t
0 F (t− s) (b0 +

∑m
k=1 bkXk,s) ds (defined

on the same set). Finally we introduce

(F ∗ b (X)) (ω, t) =

{∫ t
0 F (t− s) (b0 +

∑m
k=1 bkXk,s (ω)) ds, (ω, t) ∈ (Ω× R+) \N1,

0, (ω, t) ∈ N1.

This is a jointly measurable process defined on the whole Ω × R+. This machinery for constructing
jointly measurable modifications of given processes will be used several times in the sequel.
Overall, the previous argument proves that the integral on the right side of (4.2) is well–defined P−a.s.,
for a.e. t ∈ R+. We denote by (F ∗ dZ) = (F ∗ b (X)) +

(
F ∗ dZ̃

)
; with this notation, Equation (4.2)

can be written as follows

X = g0 + (K ∗ dZ) = g0 + (K ∗ b (X)) +
(
K ∗ dZ̃

)
, P⊗ dt− a.e. (4.6)

The following lemma will be useful in the sequel.

Lemma 4.1. For every T > 0,
E
[
‖X‖L1([0,T ];Rm)

]
<∞. (4.7)

Proof. The proof follows the same steps as those in [3, Theorem 1.4]. The difference is that the
affine structure of our model guaranteed by (4.1) is substituted for [3, Condition (1.5)], and makes
the L1

loc−integrability of the paths of X sufficient (instead of the Lploc−integrability, p ≥ 2 required in
[3]). �

Knowing the additional property in (4.7), the same argument as the one above (without stopping
times) shows that the processes in (4.5) are indeed square–integrable martingales for a.e. T ∈ R+.

Remark 4.1. We refer to [3] for a general solution theory concerning equations of the type in (4.6)
when g0 ∈ Lploc (R+;Rm) , p ≥ 2, and E = Rm.
In the case m = d = 1 and E = R+, if one defines Yt =

∫ t
0 Xs ds, t ≥ 0, then Y = (Yt)t≥0 is a

nondecreasing process and an application of [3, Lemma 3.2] shows

Yt =

∫ t

0
g0 (s) ds+

∫ t

0
K (t− s)Zs ds =

∫ t

0
g0 (s) ds+ (K ∗ Z)t , t ≥ 0, P− a.s.

This type of stochastic Volterra equations is analyzed in [2] for locally integrable kernels K∈L1
loc (R+;R) .

4.1.1 Stochastic convolution for processes with jumps

The goal of this subsection is to develop technical results concerning the stochastic convolution. In
particular, we aim to make Lemma 2.1 and Lemma 2.6 in [8] feasible in our context, where we are dealing
with discontinuities for Z and, more importantly, with a process X which a priori is not bounded. This
requires to modify the statements and the proofs of the aforementioned results, which are crucial for
the development of the theory. Such changes are important from a conceptual point of view and after
every result we add a remark showing the parallel with the setting in [8].

We start with a preliminary claim.
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Lemma 4.2. Fix p ∈ N. Let F,G ∈ L2
loc
(
R+;Rp×d

)
and S ⊂ R+ be such R+\S is dt−null set. Suppose

that F = G a.e. in R+. Then∫ T

0
F (T − s) dZs =

∫ T

0
1S (s)G (T − s) dZs, P− a.s., for a.e. T ∈ R+. (4.8)

In particular,
F ∗ dZ = G ∗ dZ, P⊗ dt− a.e. (4.9)

Proof. It is sufficient to prove (4.8) replacing Z with Z̃, because trivially F ∗ b (X) = G ∗ (1Sb (X)) ,
P ⊗ dt−a.e. on Ω × R+. Moreover, we only work with the stochastic integral in dM c, as by (4.3) we
can repeat the next procedure (component–wise) for the convolution in dMd recovering (4.8).

The argument above in the section implies the existence of a dt−null set N ⊂ R+ such that, for
every T ∈ R+ \N , we have, P− a.s.,∫ T

0
1S (s)G (T − s) dM c

s −
∫ T

0
F (T − s) dM c

s =

∫ T

0
(1S (s)G (T − s)− F (T − s)) dM c

s . (4.10)

Consider Q =
( ∫ t

0 (1S (s)G (T − s)− F (T − s)) dM c
s

)
t≤T . Note that Q is a p−dimensional, square–

integrable martingale whose predictable quadratic covariation is, due to the hypotheses,

〈Q,Q〉t=
∫ t

0
(1S (s)G (T − s)− F (T − s)) a (Xs) (1S (s)G (T − s)− F (T − s))> ds = 0,

which holds for every t ∈ [0, T ] , P − a.s. Since Q starts at 0, we can conclude that Q = 0 up to
evanescence, hence (4.8) follows.

Regarding (4.9), it is an immediate consequence of (4.8) with S = R+ and the joint measurability of
the stochastic convolutions, which allows to state an equality P⊗dt−a.e. This completes the proof. �

Remark 4.2. In [8], the authors consider the stochastic convolution of a function F ∈ L2
loc
(
R+;Rp×d

)
with respect to a continuous local martingaleM with predictable quadratic covariation d 〈M,M〉t = at dt,
where (at) is an adapted, locally bounded process. These assumptions allow to define (F ∗ dM)t for every
t ∈ R+. In particular, two jointly measurable versions of the stochastic convolution are equal P−a.s., for
every t ≥ 0. This concept is stronger than the P⊗dt−uniqueness that we have in our framework. As for
(4.9) in Lemma 4.2, in the continuous case it can be stated as follows: for every F,G ∈ L2

loc
(
R+;Rp×d

)
,

with F = G a.e. in R+, one has

(F ∗ dM)t = (G ∗ dM)t , P− a.s., t ≥ 0.

Now we state a result concerning the associativity of the stochastic convolution.

Lemma 4.3. Fix p, q ∈ N. Let ρ ∈ L1
loc (R+;Rq×p) and F ∈ L2

loc
(
R+;Rp×d

)
. Then

((ρ ∗ F ) ∗ dZ)t = (ρ ∗ (F ∗ dZ)) (t) , P− a.s., for a.e. t ∈ R+. (4.11)

Proof. Also in this case we just need to show the statement with dZ̃ in place of dZ, because an
application of Fubini’s theorem provides (ρ ∗ F ) ∗ b (X) = ρ ∗ (F ∗ b (X)) , P ⊗ dt−a.e. on Ω × R+. In
addition it is sufficient to focus only on the stochastic convolutions in dM c, as discussed in the preceding
proof. By linearity we can assume d = p = q = 1 without loss of generality, and we consider ρ ≥ 0 to
keep the notation simple, otherwise we should split it into positive and negative part.
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First note that the function ρ ∗ F ∈ L2
loc (R+;R), hence for every t ∈ R+ \N1, being N1 a dt−null

set, we have

((ρ ∗ F ) ∗ dM c)t =

∫ t

0

(
1{(t−u)∈S}

∫ t−u

0
F (t− u− s) ρ (s) ds

)
dM c

u

=

∫ t

0

(∫ t

0
1{(t−u)∈S}1{s≤t−u}F (t− u− s) ρ (s) ds

)
dM c

u, P− a.s, (4.12)

where S ⊂ R+ is such that
∫ t

0 F (t− s) ρ (s) ds, t ∈ S, is well–defined. In particular, R+ \S is a dt−null
set. Our goal is to apply the stochastic Fubini’s theorem (see, e.g., [153, Theorem 65, Chapter IV]), but
before we can do that we need a preliminary step. For every T > 0, a change of variables, sequential
applications of Tonelli’s theorem and Young’s inequality yield (in the whole Ω)∫ T

0

[∫ t

0

(∫ t

0
1{(t−u)∈S}1{s≤t−u} |F (t− s− u)|2 ρ (s) ds

)
|Xu| du

]
dt

≤
∫ T

0

[∫ t

0

(∫ t−s

0
|F (t− s− u)|2 |Xu| du

)
ρ (s) ds

]
dt =

∫ T

0

[ ∫ T

s

(
|F |2 ∗ |X|

)
(t− s) dt

]
ρ (s) ds

=

∫ T

0

[ ∫ T−s

0

(
|F |2 ∗ |X|

)
(t) dt

]
ρ (s) ds ≤ ‖ρ‖L1([0,T ]) ‖F‖

2
L2([0,T ]) ‖X‖L1([0,T ]) .

Taking expectation and recalling (4.7) we have∫ T

0
E
[∫ t

0

(∫ t

0
1{(t−u)∈S}1{s≤t−u} |F (t− s− u)|2 ρ (s) ds

)
|Xu| du

]
dt

≤ ‖ρ‖L1([0,T ]) ‖F‖
2
L2([0,T ]) E

[
‖X‖L1([0,T ])

]
<∞.

This proves that there exists N2 ⊂ R+ such that

E
[∫ t

0

(∫ t

0
1{(t−u)∈S}1{s≤t−u} |F (t− s− u)|2 ρ (s) ds

)
Xu du

]
<∞, t ∈ R+ \N2. (4.13)

Taking t ∈ R+ \ (N1 ∪N2), thanks to (4.13) and Lemma 4.2 (see (4.8)) we can apply the stochastic
Fubini’s theorem in (4.12) to deduce that

((ρ ∗ F ) ∗ dM c)t

=

∫ t

0

(∫ t

0
1{(t−u)∈S}1{s≤t−u}F (t− u− s) ρ (s)ds

)
dM c

u=

∫ t

0

(∫ t−s

0
1{(t−u)∈S}F (t− s− u) dM c

u

)
ρ (s) ds

=

∫ t

0
(F ∗ dM c)t−s ρ (s) ds = (ρ ∗ (F ∗ dM c)) (t) , P− a.s.,

and the proof is complete. �

Remark 4.3. The previous result is the analogue of [8, Lemma 2.1], where the authors are able –in the
framework described in Remark 4.2– to handle a generic signed measure of locally bounded variation L.
Essentially they can do so because the convolution F ∗ dM is defined as a stochastic integral for every
t ∈ R+. As a consequence, it is unique up to a P ⊗ |L| −null set, being |L| the total variation measure
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of L.
In contrast with this, notice that in our setting it is not possible to make sense of the right side of (4.11)
for a fixed time t > 0 when ρ is replaced by L. Indeed, F ∗ dZ is only defined up to a P ⊗ dt−null
set, therefore the value of (L ∗ (F ∗ dZ)) (t) would depend on the modification one chooses. However,
Lemma 4.3 can be slightly extended by replacing ρ in (4.11) with an Rq×p−valued measure which is the
sum of a locally integrable function and a point mass in 0 (this extension can be inferred directly from
(4.11)). We are going to need this final comment in Section 4.3.

We are now ready to state an analogue of [8, Lemma 2.6].

Proposition 4.4. Assume that m = d, and that the kernel K ∈ L2
loc
(
R+;Rd×d

)
admits a resolvent of

the first kind L1. Let F ∈ L2
loc
(
R+;Rd×d

)
be such that F ∗ L is locally absolutely continuous. Then

(F ∗ dZ)t = (F ∗ L) (0) (X − g0) (t) +
(
(F ∗ L)′ ∗ (X − g0)

)
(t) , for a.e. t ∈ R+, P− a.s. (4.14)

Proof. By Lebesgue’s fundamental theorem of calculus we can write (denoting by I the identity matrix
in Rd×d)

(F ∗ L) (t) = (F ∗ L) (0) +

∫ t

0
(F ∗ L)′ (s) ds = (F ∗ L) (0) +

(
(F ∗ L)′ ∗ I

)
(t) , t ≥ 0,

which implies, convolving with K, using [96, Theorem 6.1 (ix), Chapter 3] and a change of variables,∫ t

0
F (s) ds = (F ∗ L) (0)

∫ t

0
K (s) ds+

∫ t

0

(
(F ∗ L)′ ∗K

)
(s) ds, t ≥ 0.

We can differentiate both sides of the previous equation, as they are absolutely continuous functions,
and we obtain

F (t) = (F ∗ L) (0)K (t) +
(
(F ∗ L)′ ∗K

)
(t) , for a.e. t ∈ R+.

Then convolving with dZ yields

(F ∗ dZ)t = (F ∗ L) (0) (K ∗ dZ)t +
((

(F ∗ L)′ ∗K
)
∗ dZ

)
t

= (F ∗ L) (0) (K ∗ dZ)t +
(
(F ∗ L)′ ∗ (K ∗ dZ)

)
(t) , P− a.s, for a.e. t ∈ R+, (4.15)

where in the first equality we use Lemma 4.2 (see (4.9)) and in the second Lemma 4.3 with ρ = (F ∗ L)′.
The crucial point here is to pass to the trajectories. In order to do so, observe that by (4.6) we have

Xt − g0 (t) = (K ∗ dZ)t , for a.e. t ∈ R+, P− a.s.,

hence
(
(F ∗ L)′ ∗ (K ∗ dZ)

)
(t) =

(
(F ∗ L)′ ∗ (X − g0)

)
(t), P−a.s., for a.e. t ∈ R+. Moreover we

can consider a jointly measurable modification of the process
(
(F ∗ L)′ ∗ (X − g0)

)
thanks to Fubini’s

theorem, which in turn can be applied as

E
[ ∫ T

0

(∫ T

0
1{s≤t}

∣∣(F ∗ L)′ (s)
∣∣ |(X − g0) (t− s)|ds

)
dt

]
= E

[ ∫ T

0

(∫ t

0

∣∣(F ∗ L)′ (s)
∣∣ |(X − g0) (t− s)| ds

)
dt

]
≤
∥∥(F ∗ L)′

∥∥
L1([0,T ];Rd×d)

(
E
[
‖X‖L1([0,T ];Rd)

]
+ ‖g0‖L1([0,T ];Rd)

)
<∞, T > 0,

(4.16)

1Given a kernel K ∈ L1
loc
(
R+;Rd×d

)
, an Rd×d−valued measure L is called its (measure) resolvent of the first kind if

L ∗K = K ∗ L = I, where I ∈ Rd×d is the identity matrix. L does not always exists, but if it does then it is unique (cfr.
[96, Theorem 5.2, Chapter 5]).
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by Tonelli’s theorem, Equation (4.7) and [96, Theorem 2.2 (i), Chapter 2]. Substituting this term in
(4.15) and recalling once again (4.6) we deduce that

(F ∗ dZ)t = (F ∗ L) (0) (X − g0) (t) +
(
(F ∗ L)′ ∗ (X − g0)

)
(t) , P− a.s., for a.e. t ∈ R+.

This equality can be understood up to a P ⊗ dt−null set because it involves only jointly measurable
processes. Therefore (4.14) holds true and the proposition is completely proved. �

Remark 4.4. In [8, Lemma 2.6] the authors require F ∗L to be right–continuous and of locally bounded
variation. The loss of generality in Proposition 4.4, where we assume the local absolute continuity for
the same function, is triggered by Lemma 4.3 and Remark 4.3.

4.2 Towards the conditional Fourier–Laplace transform

In this section we are going to introduce processes V T =
(
V T
t

)
t∈[0,T ]

which will be used to find an
ansatz for the conditional Fourier–Laplace transform of (f> ∗X) (T ) , T > 0, where f is a suitable given
function. The procedure that we employ can also be adapted to characterize the marginal distributions
of the solution process X and of the semimartingale Z in (4.2), see Subsection 4.2.1.

We first introduce some notation. For a C−valued function g ∈ L1 (νk) , k = 0, 1, . . . ,m, we denote

〈η (x,dξ) , g (ξ)〉 =

∫
Rd
g (ξ) ν0 (dξ) +

m∑
k=1

(∫
Rd
g (ξ) νk (dξ)

)
xk, x ∈ E;

ν (g (ξ)) =
[∫

Rd g (ξ) ν1 (dξ)
∫
Rd g (ξ) ν2 (dξ) . . .

∫
Rd g (ξ) νm (dξ)

]>
∈ Cm.

Note that 〈η (x,dξ) , g (ξ)〉 =
∫
Rd g (ξ) ν0 (dξ) + ν (g (ξ))> x for every x ∈ E. In addition, we consider

B =
[
b1 b2 . . . bm

]
∈ Rd×m,

A (u) =
[
u>A1 u u>A2 u . . . u>Am u

]>
∈ Cm, u ∈ Cd.

Notice that b (x) = b0 +Bx, and u>a (x)u = u>A0u+A (u)> x, for every x ∈ E, u ∈ Cd.
Take f ∈ C (R+;Cm) and denote by

Dν =
{
u ∈ Cd :

(
eu
>· − 1− u> ·

)
∈ L1(νk), for every k = 0, . . . ,m

}
. (4.17)

Recalling that the signed measures νk, k = 0, . . . ,m, have finite second moment, one can show that
iRd ⊂ Dν , and that Dν ∩ Rd is a star–shaped domain at 0.
Consider a subset D ⊂ Dν where the C−valued functions u 7→

∫
Rd
(
eu
>ξ − 1 − u>ξ

)
νk(dξ) are locally

bounded, for every k = 0, . . . ,m. We define the map R : R+ ×D → Cm as follows:

R (t, u) = f (t) +B>u+
1

2
A (u) + ν

(
eu
>ξ − 1− u>ξ

)
, (t, u) ∈ R+ ×D. (4.18)

Notice that, by the definition of D, the mapping R is locally bounded. The following hypothesis intro-
duces the deterministic Riccati–Volterra equation that allows us to determine a semi–explicit exponential
affine formula for E[exp{(f> ∗X)(T )}|Ft], with T > 0 and t ∈ [0, T ].
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Hypothesis 4.1. There exists a continuous global solution ψ : R+ → D to the deterministic Riccati–
Volterra equation

ψ (t)> =

∫ t

0
R (s, ψ (s))>K (t− s) ds =

(
R (·, ψ (·))> ∗K

)
(t) , t ≥ 0. (4.19)

Since ψ is continuous and takes values in D, the Cm−valued map s 7→ R(s, ψ(s)) is locally bounded.
We introduce the C−valued function φ : R+ → C given by

φ(t) =

∫ t

0

(
ψ(s)>b0 +

1

2
ψ(s)>A0ψ(s) +

∫
Rd

(
eψ(s)>ξ − 1− ψ(s)>ξ

)
ν0(dξ)

)
ds, t ≥ 0. (4.20)

For every T > 0 we define the following càdlàg, adapted, C−valued semimartingale on Ω× [0, T ]:

V T
t = V T

0 −
∫ t

0

[
1

2
ψ (T − s)> a (Xs)ψ (T − s) +

〈
η (Xs,dξ) , e

ψ(T−s)>ξ − 1− ψ (T − s)> ξ
〉]

ds

+

∫ t

0
ψ (T − s)> dZ̃s,

(4.21)

V T
0 =

∫ T

0

(
f (T − s) +B>ψ (T − s) +

1

2
A (ψ (T − s))

+ ν
(
eψ(T−s)>ξ − 1− ψ (T − s)> ξ

))>
g0 (s) ds+ φ (T ) .

(4.22)

Observe that V T is left–continuous in T because ψ (0) = 0 by (4.19). This process is the natural
extension of [8, Equations (4.4)− (4.5)] to the framework with jumps. Moreover, one can write

V T
0 = φ (T ) +

∫ T

0
R (T − s, ψ (T − s))> g0 (s) ds. (4.23)

Our aim is to find, using the stochastic Fubini’s theorem, an alternative expression for the random
variables V T

t by means of integrals in time of the trajectories of suitable processes.
In the case b ≡ 0, we are going to use the paths of the forward process. Precisely, for a fixed t ∈ [0, T ],
by (4.70) in Appendix 4.A we have

E
[
Xs

∣∣Ft] = g0 (s) +

∫ t

0
K (s− r) dZ̃r, P− a.s., for a.e. s > t. (4.24)

Hence requiring the kernel K to be continuous on (0,∞), the process on the right side of the previous
equation has a jointly measurable version that we denote by g̃t (s) , s > t. Note that it makes sense to
integrate in time the trajectories of such g̃t (·) since it is unique up to a P⊗ dt−null set.
In the case b 6= 0 we consider the paths of a process gt (·) such that

gt (s) = g0 (s) +

∫ t

0
K (s− r) dZr, P− a.s., s > t. (4.25)

Also in this case we assume K to be continuous on (0,∞), so that gt (·) can be taken jointly measurable
on Ω× (t,∞) and is uniquely defined up to a P⊗ dt−null set. An application of the stochastic Fubini’s
theorem (see, e.g., [153, Theorem 65, Chapter IV]) shows that the trajectories of gt(·) are locally
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integrable in (t,∞). Note that when t = 0 we have an abuse of notation, as g0 represents both the
initial input curve in (4.2) and the process just defined in (4.25). This, however, is not an issue as these
two concepts coincide P ⊗ dt−a.e. in Ω × (0,∞). In the following, we continue to consider g0 as the
initial input curve. Finally, notice that

gt (s) = E
[
Xs −

∫ s−t

0
K (s− t− r) b (Xt+r) dr

∣∣∣Ft] , P− a.s., for a.e. s > t. (4.26)

For this reason gt (·) is called adjusted forward process.

Theorem 4.5. Assume Hypothesis 4.1. Let K ∈ L2
loc
(
R+;Rm×d

)
be a continuous kernel on (0,∞) and

define, for every t ∈ [0, T ],

Ṽ T
t = φ (T − t) +

∫ t

0
f (T − s)>Xs ds+

∫ T

t
R (T − s, ψ (T − s))> gt (s) ds. (4.27)

Then
V T
t = Ṽ T

t , P− a.s., t ∈ [0, T ] . (4.28)

In addition, the process
(
exp

{
V T
t

})
t∈[0,T ]

is a C−valued local martingale, and if it is a true martin-
gale then

E
[
exp

{(
f> ∗X

)
(T )
} ∣∣∣Ft] = exp

{
Ṽ T
t

}
, P− a.s., t ∈ [0, T ] . (4.29)

Proof. It is straightforward to check that (4.28) holds for t = 0.
Focusing on the case t ∈ (0, T ], we rewrite the definition of Ṽ T

t in (4.27) as follows

Ṽ T
t = φ (T − t) +

∫ t

0
f (T − s)>Xs ds

+

∫ T

t
R (T − s, ψ (T − s))> g0 (s) ds+

∫ T

t
R (T − s, ψ (T − s))> (gt − g0) (s) ds. (4.30)

It is convenient to introduce the process

gt (s) =

{
Xs, s ≤ t
gt (s) , s > t

. (4.31)

Recall that by (4.25) gt (s) = g0 (s) +
∫ t

0 K (s− r) dZr, P−a.s. for a.e. s > t, and that by (4.6)
Xs = g0 (s) +

∫ s
0 K (s− r) dZr, P−a.s., for a.e. s ∈ [0, t]. Therefore gt (·) is a jointly measurable

modification of the process g0 (·) +
∫ t

0 1{r≤·}K (· − r) dZr. Invoking the stochastic Fubini’s theorem in
[153, Theorem 65, Chapter IV] and recalling the Riccati–Volterra equation in (4.19), after a suitable
change of variables we obtain∫ T

0
R (T − s, ψ (T − s))> (gt − g0) (s) ds

=

∫ T

0
R (T − s, ψ (T − s))>

[∫ t

0
1{r≤s}K (s− r) dZr

]
ds

=

∫ t

0

[ ∫ T

r
R (T − s, ψ (T − s))>K (s− r) ds

]
dZr =

∫ t

0

[ ∫ T−r

0
R (s, ψ (s))>K (T − r − s) ds

]
dZr

=

∫ t

0
ψ (T − r)> dZr, P− a.s. (4.32)
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Such an application is legitimate, because the boundedness of R (·, ψ (·)) in [0, T ] by a positive constant
CT and a change of variables yield, for every k = 1, . . . ,m,∫ t

0

[ ∫ T

0
1{r≤s} |R (T − s, ψ (T − s))|2 |K (s− r)|2 ds

]
|Xk,r| dr

=

∫ t

0

[ ∫ T−r

0
|R (s, ψ (s))|2 |K (T − r − s)|2 ds

]
|Xk,r| dr

≤ C2
T ‖K‖

2
L2([0,T ];Rm×d) ‖X‖L1([0,t];Rm) , (4.33)

so the expectation of the leftmost side is finite thanks to (4.7). As for the drift part,

∫ t

0

(∫ T

0
1{r≤s}|R (T − s, ψ (T − s))|2|K (s− r)|2 ds

) 1
2

|Xk,r| dr

≤ CT ‖K‖L2([0,T ];Rm×d) ‖X‖L1([0,t];Rm) . (4.34)

Going back to (4.30) and recalling the definitions of V T in (4.21)–(4.23) we obtain, P−a.s.,

Ṽ T
t = φ (T − t) +

∫ t

0
f (T − s)>Xs ds+

∫ T

t
R (T − s, ψ (T − s))> g0 (s) ds

+

∫ t

0
ψ (T − s)> dZs −

∫ t

0
R (T − s, ψ (T − s))> (Xs − g0 (s)) ds

= φ (T − t) +

∫ T

0
R (T − s, ψ (T − s))> g0 (s) ds+

∫ t

0
ψ (T − s)> dZs

−
∫ t

0

[
B>ψ (T − s) +

1

2
A (ψ (T − s)) + ν

(
eψ(T−s)>ξ − 1− ψ (T − s)> ξ

)]>
Xs ds

= φ (T ) +

∫ T

0
R (T − s, ψ (T − s))> g0 (s) +

∫ t

0
ψ (T − s)> dZ̃s

−
∫ t

0

[
1

2
ψ (T − s)> a (Xs)ψ (T − s) +

〈
η (Xs, dξ) , e

ψ(T−s)>ξ − 1− ψ (T − s)> ξ
〉]

ds

= V T
t , (4.35)

where in the second–to–last equality we use (4.4). This proves (4.28).
Moving on to the next assertion, denote by HT =

(
HT
t

)
t∈[0,T ]

=
(
exp

{
V T
t

})
t∈[0,T ]

. By Itô’s formula
and the dynamics in (4.21) we have

dHT
t =HT

t−

×
[
−
(

1

2
ψ (T − t)>a (Xt)ψ (T − t) +

〈
η (Xt, dξ) , e

ψ(T−t)>ξ − 1− ψ (T − t)> ξ
〉)

dt+ ψ (T − t)> dZ̃t

]
+

1

2
HT
t−ψ (T − t)> a (Xt)ψ (T − t) dt+HT

t−

∫
Rd

(
eψ(T−t)>ξ − 1− ψ (T − t)> ξ

)
µ (dt,dξ)

= HT
t−

[
ψ (T − t)> dM c

t +

∫
Rd

(
eψ(T−t)>ξ − 1

)
(µ− ν) (dt,dξ)

]
, HT

0 = exp
(
V T

0

)
.
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We define NT = (NT
t )t∈[0,T ] by dNT

t = ψ (T − t)> dM c
t +

∫
Rd
(
eψ(T−t)>ξ − 1

)
(µ− ν) (dt,dξ) , NT

0 = 0.
Then NT is a local martingale and the previous computations show that HT = exp{V T

0 }E(NT ) up
to evanescence, where E denotes the Doléans–Dade exponential. Therefore HT is a local martingale,
as stated. Finally, in case it is a true martingale, (4.29) directly follows from (4.28), and the proof is
complete. �

Remark 4.5. Assuming m = d, it is possible to find an expression for V T in terms of the true forward
process even in the case b 6= 0. Indeed, by (4.73) in Appendix 4.A

E
[
Xs

∣∣Ft] = (g0 − (RB ∗ g0) + (EB ∗ b0)) (s) +

∫ t

0
EB (s− r) dZ̃r, P− a.s., for a.e. s > t. (4.36)

Here RB is the resolvent of the second kind 2 of −KB and EB = K − RB ∗K. If K is continuous on
(0,∞), then EB is continuous on the same interval, as well. Thus, one can choose a jointly measurable
version ft (s) , s > t, of the process on the right side of (4.36), which is unique up to a P⊗ dt−null set.
Arguing as in [8, Lemma 4.4], we obtain the variation of constants formula

ψ (t)> =

∫ t

0

[
f (s) +

1

2
A (ψ (s)) + ν

(
eψ(s)>ξ − 1− ψ (s)> ξ

)]>
EB (t− s) ds, t ≥ 0,

which combined with the strategy in the proof of Theorem 4.5 leads to

V T
t =

∫ t

0
f (T − s)>Xs ds+

∫ T

t

[(
R (T − s, ψ (T − s))−B>ψ (T − s)

)>
ft (s)

+
1

2
ψ (T − s)>A0ψ (T − s) +

∫
Rd

(
eψ(T−s)>ξ − 1− ψ (T − s)> ξ

)
ν0 (dξ)

]
ds, P− a.s.

However in the framework of jumps it is preferable to work with the adjusted forward process, because
–as will become clear in the next section– certain properties can be assumed for the kernel K, but they
can be neither required (i.e. it would not be a reasonable hypothesis) nor inferred for EB.

4.2.1 The marginal distributions of X and Z

The procedure that we have used above to obtain a formula for E[exp{(f> ∗X)(T )}|Ft] (see (4.29)
in Theorem 4.5) can also be followed to deduce an exponential affine expression for the conditional
Fourier–Laplace transform of the marginal distributions of the solution process X and the semimartin-
gale Z in (4.2), i.e.,

E[exp{u>1 ZT }|Ft], E[exp{u>2 XT }|Ft],

for suitable u1 ∈ Cd and u2 ∈ Cm.
We start off by showing the formula for the conditional transform of the Rd−valued càdlàg semi-

martingale Z.

2Given K ∈ L1
loc
(
R+;Rd×d

)
, its resolvent of the second kind is the unique solution R ∈ L1

loc
(
R+;Rd×d

)
of the two

equations K ∗R = R ∗K = K −R (cfr. [96, Theorem 3.1, Chapter 2] and the subsequent definition).
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Theorem 4.6. Assume that K ∈ L2
loc(R+;Rm×d) is continuous in (0,∞). Given u1 ∈ Cd and f ∈

C(R+;Cm), suppose that there exists a continuous global solution ψ1 : R+ → D of the deterministic
Riccati–Volterra equation

ψ1 (t)> = u>1 +

∫ t

0
R (s, ψ1 (s))>K (t− s) ds, t ≥ 0,

where R : R+ × D → Cm is given in (4.18). Then, for every T > 0, defining Ṽ T = (Ṽ T
t )t∈[0,T ] as in

(4.27) with ψ1 instead of ψ and Ṽ T
1 =

(
Ṽ T

1,t

)
t∈[0,T ]

by

Ṽ T
1,t = Ṽ T

t + u>1 Zt, t ∈ [0, T ],

the process exp{Ṽ T
1 } is a local martingale. In particular, if exp{Ṽ T

1 } is a true martingale, then

E
[
exp

{
u>1 ZT + (f> ∗X)(T )

} ∣∣∣Ft] = exp
{
Ṽ T

1,t

}
, P− a.s., t ∈ [0, T ] .

Proof. We use the same argument as in the proof of Theorem 4.5. It can be split into two parts.
In the first step, we define the process V T

1 =
(
V T

1,t

)
t∈[0,T ]

as in (4.21)-(4.23), replacing ψ with ψ1.

Then, using the stochastic Fubini’s theorem, we prove that V T
1 and Ṽ T

1 are versions of each other.
In the second step, we use Itô’s formula to infer that exp{V T

1 } is a local martingale, since it can be
seen as the Doléans–Dade exponential of a local martingale. �

We now fix an i.i.d. sequence (Yi,k)k of F0−measurable, R−valued random variables distributed
according to a probability measure θi on R with finite first and second moments, for every i = 1, . . . , d.
Denoting by (ei)i=1,...,d the canonical basis of Rd, we extend θi to a probability measure on Rd by setting

θ̄i(A) = θi (πi (A ∩ span(ei))) , A ∈ B
(
Rd
)
,

where πi : Rd → R is defined by πi(x) = x>ei and B
(
Rd
)
are the Borel–measurable sets of Rd. We

also take an increasing sequence (Ti,k)k∈N of F−stopping times independent from (Yi,k)k and such that
Ti,k →∞ as k →∞, P−a.s., for every i = 1, . . . , d.
We focus on a d−dimensional marked point process N = (Nt)t≥0 = [N1,t, . . . , Nd,t]

>
t≥0 with jump times

(Ti,k)k∈N and jump sizes (Yi,k)k∈N, namely,

Ni,t =
∑
t≥Ti,k

Yi,k =
∑
k∈N

Yi,k1{t≥Ti,k}, t ≥ 0, i = 1, . . . , d.

Given a vector λ0 ∈ Rm and two matrices Λ0,Λ1 ∈ Rd×m, we suppose that the conditional intensity of
N is Λ1λ, where λ = (λt)t≥0 = [λ1,t, . . . , λm,t]

>
t≥0 is an Rm−valued process satisfying

λt = λ0 +

∫ t

0
K(t− s)Λ0λsds+

d∑
i=1

∑
t>Ti,k

Yi,kK(t− Ti,k)ei, t ≥ 0. (4.37)

This means that, denoting by µN (dt,dξ) the measure on R+ ×Rd associated with the jumps of N and
by νN (dt,dξ) its compensator, then

νN (dt,dξ) =

d∑
i=1

(
Λ1λt

)
i

dt⊗ θ̄i(dξ). (4.38)
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We call N a marked Hawkes process in Rd. In particular, note that

Ni,t −
∫ t

0

∫
Rd
ξi ν

N (ds, dξ) = Ni,t −
(∫

R
ξiθi(dξi)

)∫ t

0

(
Λ1λs

)
i
ds, t ≥ 0, i = 1, . . . , d,

are local martingales. Consequently, the i−th component Ni of N is a 1−dimensional marked point
process with intensity (Λ1λ)i and marks Yi,k ∼ θi, k ∈ N, for every i = 1, . . . , d.
We define the process

N = N +

∫ ·
0

Λ0λs ds

and the measures

θ̃i (dξ) =

d∑
j=1

Λji1 θ̄j(dξ), i = 1, . . . ,m; (4.39)

in the sequel, for a function g ∈ L1(θ̃i), i = 1, . . . ,m, we write

θ̃(g(ξ)) =
[∫

Rd g(ξ) θ̃1(dξ) . . .
∫
Rd g(ξ) θ̃m(dξ)

]>
∈ Cm.

By analogy with (4.17), we introduce the set

D
θ̃

=
{
u ∈ Cd :

(
eu
>· − 1− u> ·

)
∈ L1(θ̃k), for every k = 1, . . . ,m

}
,

and we consider a subset D ⊂ D
θ̃
where the C−valued functions u 7→

∫
Rd
(
eu
>ξ − 1 − u>ξ

)
θ̃k(dξ) are

locally bounded, for every k = 1, . . . ,m. In this framework, Theorem 4.6 is relevant because it provides
a formula for the conditional Fourier–Laplace transform of N and N . More precisely, the following
corollary holds.

Corollary 4.7. Assume that the kernel K ∈ L2
loc(R+;Rm×d) is continuous in (0,∞). Given u1 ∈ Cd and

f ∈ C(R+;Cm), suppose that there exists a continuous global solution ψ1 : R+ → D of the deterministic
Riccati–Volterra equation

ψ1 (t)> = u>1 +

∫ t

0
R1

(
s, ψ1 (s)

)>
K (t− s) ds, t ≥ 0, (4.40)

where R1 : R+ ×D → Cm is defined by

R1(t, u) = f(t) + Λ>0 u+ θ̃
(
eu
>ξ − 1

)
.

For every T > 0, consider the process V T
1 =

(
V T

1,t

)
t∈[0,T ]

given by

V T
1,t = u>1 N t +

∫ t

0
f(T − s)>λs ds+

∫ T

t
R1(T − s, ψ1(T − s))>g̃t (s) ds, t ∈ [0, T ],

where g̃t(·) is defined as in (4.25) with N instead of Z. Then the process exp{V T
1 } is a local martingale.

In particular, if exp{V T
1 } is a true martingale, then

E
[
exp

{
u>1 NT + (f> ∗ λ)(T )

} ∣∣∣Ft] = exp
{
V T

1,t

}
, P− a.s., t ∈ [0, T ] . (4.41)
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Proof. We first observe that the differential characteristics of the special semimartingale N with respect
to the “truncation function” h(ξ) = ξ are((

Λ0 + diag
[∫

R
ξ1θ1(dξ1), . . . ,

∫
R
ξdθd(dξd)

]
Λ1

)
λt, 0,

m∑
i=1

λi,tθ̃i(dξ)

)
.

Indeed, by (4.39), the compensator νN (dt,dξ) of the jump–measure ofN , which coincides with νN (dt,dξ)
in (4.38), can be rewritten as

νN (dt,dξ) =

d∑
i=1

(
Λ1λt

)
i

dt⊗ θ̄i(dξ) =

m∑
i=1

λi,t dt⊗ θ̃i(dξ).

By (4.37) we infer that λ is a càg and adapted, hence predictable process with locally (square–)integrable
trajectories in the state space E = Rm. In addition, since∑

t>Ti,k

K(t− Ti,k) =
∑
t≥Ti,k

K(t− Ti,k), t ∈ R+ \ {Ti,k, k ∈ N} , P−a.s., i = 1, . . . , d,

then λ satisfies the following stochastic Volterra equation of convolution type with jumps (cfr. (2.50)):

λ = λ0 +
(
K ∗ dN

)
, P⊗ dt− a.e.

Thus, the statements of the corollary are an immediate consequence of Theorem 4.6, obtained by
replacing Z with N and, respectively, B, A and ν(e·

>ξ − 1− ·>ξ) in the definition of R in (4.18) with

Λ0 + diag
[∫

R
ξ1θ1(dξ1), . . . ,

∫
R
ξdθd(dξd)

]
Λ1, 0, θ̃(e·

>ξ − 1− ·>ξ).

This completes the proof. �

Remark 4.6. To the best of our knowledge, Corollary 4.7 contains an original expression for the con-
ditional Fourier–Laplace transform of the Hawkes process N , see (4.41) with f = −Λ>0 u1. Comparing
our findings to the existing literature, we note that in the one–dimensional case, results akin to Equation
(4.41) can be found in [92]. To be precise, in [92, Theorem 3.1] the authors, albeit concentrating on
other quantities, outline a procedure that can be adapted to derive an expression for E[exp {u1NT }|Ft].
Here, N = (Nt)t≥0 is a Hawkes process with intensity λ = λ0 +K ∗dÑ , where Ñ represents the compen-
sated process of N . Notably, this formula coincides with Equation (4.41) when we set Λ0 = −

∫
R ξθ(dξ),

Λ1 = 1 and f = u1

∫
R ξθ(dξ), although the Riccati–Volterra equations in [92] have a different formulation

from (4.41), see for instance [92, Equation (3.4)]. In particular, one retrieves a solution to (4.41) by
convolving a solution of the corresponding equation in [92] with the kernel K. Thus, even within this
restricted framework, Corollary 4.7 stands as an original contribution because it covers Hawkes processes
with more general intensities, e.g., λ = λ0 +K ∗ dN .

We now analyze the conditional distributions of the solution process X of (4.6). In particular, in
Theorem 4.8 we obtain an expression for E[exp{u>2 XT }|Ft], for some u2 ∈ Cm. However, since X
is defined up to a P ⊗ dt−null set, such a formula will be meaningful only for a.e. T > 0. This,
in conjunction with the fact that we may be dealing with unbounded solutions of Riccati–Volterra
equations in the new setting, makes the applicability of the arguments in Theorem 4.5 more delicate,
as detailed in the proof of Theorem 4.8.
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Theorem 4.8. Assume that the kernel K ∈ L2
loc(R+;Rm×d) is continuous in (0,∞). Given u2 ∈ Cm

and f ∈ C(R+;Cm), suppose that there exists a locally square–integrable function ψ2 : R+ → Dν such
that the mappings s 7→

∫
Rd
(
eψ(s)>ξ − 1−ψ(s)>ξ

)
νk(dξ), k = 0, . . . ,m, are locally integrable on R+ and

that the following deterministic Riccati–Volterra equation is satisfied:

ψ2 (t)> = u>2 K +

∫ t

0
R (s, ψ2 (s))>K (t− s) ds, for a.e. t ≥ 0,

where Dν is given in (4.17) and R : R+ × Dν → Cm in (4.18). Then, for a.e. T > 0, defining
Ṽ T = (Ṽ T

t )t∈[0,T ] as in (4.27) with ψ2 instead of ψ and Ṽ T
2 =

(
Ṽ T

2,t

)
t∈[0,T ]

by

Ṽ T
2,t = Ṽ T

t + u>2

∫ t

0
K(T − s) dZs, t ∈ [0, T ], (4.42)

the process exp{Ṽ T
2 } is a local martingale. In particular, if exp{Ṽ T

2 } is a true martingale, then

E
[
exp

{
u>2 XT + (f ∗X)(T )

} ∣∣∣Ft] = exp
{
Ṽ T

2,t

}
, P− a.s., t ∈ [0, T ] . (4.43)

Proof. In this proof, we highlight the main changes that need to be implemented into the arguments
employed in Theorem 4.5.

Notice that, contrary to before, we work with a solution ψ2 of (4.8) which is supposed to be only
square–integrable, with potential explosions precluding the boundedness on compact sets of R(·, ψ2(·))
and

∫
Rd
(
eψ2(·)>ξ−1−ψ2(·)>ξ

)
νk(dξ), k = 0, . . . ,m. As a consequence, recalling also the construction of

the stochastic convolution in Section 4.1, we can define the process V T
2 = (V T

2,t)t∈[0,T ] as in (4.21)-(4.23)
with ψ2 instead of ψ only for a.e. T > 0.
We now discuss the good definition of the process Ṽ T = (Ṽ T

t )t∈[0,T ] in (4.27) (with ψ replaced by ψ2) for
a.e. T > 0. By (4.26), the conditional Jensen’s inequality, the law of total expectation and the change
of variables r′ = r + t, we observe that, for a.e. s > t,

1{s>t}E [|gt(s)|] ≤ cE
[
|Xs|+ 1{s>t}

∫ s−t

0
|K(s− t− r)| |b(Xt+r)|dr

]
≤ c

(
E [|Xs|] +

∫ s

0

∣∣K(s− r′)
∣∣E [|b (Xr′)|] dr′

)
≤ c

(
E [|Xs|] + ‖K‖L1([0,s];Rm×d) + (|K| ∗ E[|X·|])(s)

)
, (4.44)

for some constant c = c(d,m, b0, . . . , bm) > 0 allowed to change from line to line. This estimate enables
us to show that

∫ T
t R (T − s, ψ2 (T − s))> gt (s) ds, which appears in the definition of Ṽ T

t in (4.27),
exists P−a.s. in C, for every t ∈ [0, T ], for a.e. T > 0. Indeed, recalling Lemma 4.1, for every T > 0 we
have∫ T

0

(∫ T

0
|R (T − s, ψ2 (T − s))| (E [|Xs|] + (|K| ∗ E[|X·|])(s)) ds

)
dT

≤ ‖R(·, ψ2(·))‖L1([0,T ];Cm) E
[
‖X‖L1([0,T ];Rm)

] (
1 + ‖K‖L1([0,T ];Rm×d)

)
<∞,

hence ∫ T

0
|R (T − s, ψ2 (T − s))| (E [|Xs|] + (|K| ∗ E[|X·|])(s)) ds <∞, for a.e. T > 0.
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Combining this equation with (4.44) we conclude that, for a.e. T > 0, for every t ∈ [0, T ],∫ T

0
1{s>t} |R (T − s, ψ2 (T − s))|E [|gt(s)|] ds <∞. (4.45)

Thus, Ṽ T is well defined for a.e. T > 0. Moreover, as K ∈ L2
loc
(
R+;Rm×d

)
, the stochastic convolution

(K ∗ dZ)T is well defined for a.e. T > 0, see Section 4.1. As a result, the process Ṽ T
2 in (4.42) is well

defined, for a.e. T > 0.
Since, by the same computations as in the proof of Theorem 4.5, exp{V T

2 } is a local martingale,
the final step required to conclude the current proof is to establish the equality V T

2 = Ṽ T
2 . To do this,

since R(·, ψ2(·)) is neither locally bounded nor locally square–integrable anymore, we cannot apply the
stochastic Fubini’s theorem as in (4.32). Indeed, the conditions in (4.33)-(4.34) are no longer satisfied.
To overcome this problem, we employ an approximation argument.
For every n ∈ N, define the truncation function hn(z) = z1{|z|≤n}, z ∈ Cm. Recalling the process ḡt(·)
in (4.31), the stochastic Fubini’s theorem, whose application is possible thanks to computations similar
to (4.33)-(4.34), yields, P−a.s.,∫ T

0
hn (R (T − s, ψ2 (T − s)))> (gt − g0) (s) ds

=

∫ t

0

[ ∫ T

r
hn (R (T − s, ψ2 (T − s)))>K (s− r) ds

]
dZr. (4.46)

Since, for any z ∈ Cm, hn(z)→ z as n→∞, and (see (4.45))
∫ T

0 |R (T − s, ψ2 (T − s))| |gt − g0| (s) ds <
∞, P−a.s., for every t ∈ [0, T ], for a.e. T > 0, by the dominated convergence theorem we infer that

lim
n→∞

∫ T

0
hn(R (T − s, ψ2 (T − s)))>(gt − g0) (s) ds

=

∫ T

0
R (T − s, ψ2 (T − s))> (gt − g0) (s) ds, P− a.s. (4.47)

As for the right side of (4.46), we observe that, again by dominated convergence, for a.e. T > 0,

lim
n→∞

∫ T

r
hn (R (T − s, ψ2 (T − s)))>K (s− r) ds

=

∫ T

r
R (T − s, ψ2 (T − s))>K (s− r) ds, for a.e. r ∈ [0, T ].

Moreover, noticing that the map |R(·, ψ2(·))| ∗ |K| ∈ L2
loc(R+), for i = 1, 2 we have

E
[ ∫ t

0

(∫ T

r
|R (T − s, ψ2 (T − s))| |K(s− r)|ds

)i
|Xr|dr

]
=

∫ t

0

(∫ T−r

0
|R (T − r − s, ψ2 (T − r − s))| |K(s)|ds

)i
E [|Xr|] dr

≤
∫ T

0
((|R(·, ψ2(·))| ∗ |K|) (T − r))i E [|Xr|] dr <∞, for every t ∈ [0, T ],
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which holds for a.e. T > 0. Thus, we can apply the dominated convergence theorem for stochastic
integrals (see, for instance, [153, Theorem 32, Chapter IV]) to claim that, for a.e. T > 0 and for every
t ∈ [0, T ],

P− lim
n→∞

∫ t

0

[ ∫ T

r
hn (R (T − s, ψ2 (T − s)))>K (s− r) ds

]
dZr

=

∫ t

0

[ ∫ T

r
R (T − s, ψ2 (T − s))>K (s− r) ds

]
dZr, (4.48)

where P − lim denotes the limit in probability. Combining (4.47)-(4.48) in (4.46), for a.e. T > 0 and
t ∈ [0, T ] we obtain

∫ T

0
R (T − s, ψ2 (T − s))> (gt − g0) (s) ds =

∫ t

0

[ ∫ T

r
R (T − s, ψ2 (T − s))>K (s− r) ds

]
dZr

=

∫ t

0

(
ψ2 (T − r)> − u>2 K(T − r)

)
dZr, P− a.s.

Therefore, an analogue of the equality in (4.32) holds; proceeding as in (4.35), it allows to show that
V T

2 and Ṽ T
2 are versions of each other. This completes the proof. �

Remark 4.7. Whenm = d = 1, u2 ∈ R−, φ ≡ 0, f ≡ 0 and g0 is the Laplace transform of a finite signed
measure on R+, Equation (4.43) reduces to the expression in [59, Theorem 5.7 (v)] for the (conditional)
Laplace transform of the marginal distributions of X. To deduce such a result, however, in [59] the
authors employ an abstract approach based on infinite dimensional Markovian lifts of stochastic affine
Volterra processes, which is completely different from our procedure inspired by [8].

4.3 An expression for V T affine in the past trajectory of X

In this section we consider m = d and aim to find an alternative formula for V T (see (4.21)-
(4.22)) which is affine in the past trajectory of X. This new expression can be used to prove the
martingale property of the complex–valued process exp

{
V T
}

in particular cases (see Section 4.4).
Similar formulas might also be obtained for the processes introduced in Subsection 4.2.1 to study the
marginal distributions of X and Z, see Theorems 4.6-4.8.

Due to the lack of regularity of the trajectories of both X and the stochastic convolution in dZ, we
are going to require mild, additional conditions on the kernel K, in particular on the shifted kernels
∆hK for h > 0. We start with a preliminary result providing an alternative expression for the adjusted
forward process gt (·).

Lemma 4.9. Assume that K ∈ L2
loc
(
R+;Rd×d

)
is continuous on (0,∞) and that it admits a resolvent

of the first kind L with no point masses in (0,∞) . In addition, suppose that for every h > 0 the shifted
kernel ∆hK is differentiable, with derivative (∆hK)′ ∈ C

(
R+;Rd×d

)
. Then, for every T > 0, for every

t ∈ [0, T )

gt (T ) = g0 (T ) +K (T − t)Zt +
((

(∆T−tK)′ ∗ L
)
∗ (X − g0)

)
(t) , P− a.s. (4.49)
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Proof. Fix h > 0. We first show that the stochastic convolution ∆hK ∗ dZ has a càdlàg version.
Indeed, for every t ∈ R+, (∆hK ∗ dZ)t =

∫ t
0 ft,h (s) dZs, P−a.s., with ft,h (s) = K (t+ h− s) , s ∈ [0, t].

Integration by parts yields∫ t

0
ft,h (s) dZs = ft,h (t)Zt − ft,h (0)Z0 −

∫ t

0
(ft,h)′ (s)Zs− ds

=K (h)Zt +

∫ t

0
(∆hK)′ (t− s)Zs ds, P− a.s.,

where we also note that Zt− = Zt for a.e. t > 0, P−a.s. Since the rightmost side of the previous equality
is a càdlàg process we obtain the desired claim. Hence in what follows we consider ∆hK ∗ dZ to be
right–continuous. In particular, the process (∆hK −K (h)) ∗ dZ is continuous.

Thanks to the assumptions on the kernel, we apply [96, Corollary 7.3, Chapter 3] to claim that the
function (∆hK −K (h)) ∗ L is locally absolutely continuous in R+, with

((∆hK −K (h)) ∗ L)′ = (∆hK)′ ∗ L, a.e. in R+.

In particular, the function (∆hK)′∗L ∈ C
(
R+;Rd×d

)
by [96, Corollary 6.2 (iii), Chapter 3], the absence

of point masses of L in (0,∞) and the continuity of (∆hK)′. Therefore we invoke Proposition 4.4 to
obtain

((∆hK −K (h)) ∗ dZ)t = ((∆hK −K (h)) ∗ L) (0) (X − g0) (t) +
((

(∆hK)′ ∗ L
)
∗ (X − g0)

)
(t)

=
((

(∆hK)′ ∗ L
)
∗ (X − g0)

)
(t) , for a.e. t ∈ R+, P− a.s.

Note that the last equality involves continuous processes, so it is indeed true for every t ≥ 0 up to a
P−null set. Thus,

(∆hK ∗ dZ)t = K (h)Zt +
((

(∆hK)′ ∗ L
)
∗ (X − g0)

)
(t) , t ≥ 0, P− a.s. (4.50)

At this point, take t < T and recall that, by (4.25),

gt (T ) = g0 (T ) +

∫ t

0
K (T − s) dZs = g0 (T ) +

∫ t

0
(∆T−tK) (t− s) dZs

= g0 (T ) + (∆T−tK ∗ dZ)t , P− a.s.

It suffices to take h = T − t in (4.50) to deduce that

(∆T−tK ∗ dZ)t = K (T − t)Zt +
((

(∆T−tK)′ ∗ L
)
∗ (X − g0)

)
(t) , P− a.s..

Hence, combining the two previous equations, we conclude

gt (T ) = g0 (T ) +K (T − t)Zt +
((

(∆T−tK)′ ∗ L
)
∗ (X − g0)

)
(t) , P− a.s.,

completing the proof. �

Fix a generic T > 0. By Equation (4.49) we can write, for every t ∈ [0, T ),

gt (s) = g0 (s) +K (s− t)Zt +
((

(∆s−tK)′ ∗ L
)
∗ (X − g0)

)
(t) , P− a.s., s ∈ (t, T ) . (4.51)
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Intuitively speaking, we want to plug this expression in (4.27), so that we obtain an alternative for-
mulation for V T

t which is an affine function on the past trajectory {Xs, s ≤ t}. This is done in the
next theorem, which extends [8, Theorem 4.5] under further conditions on the kernel K. These ad-
dtional assumptions hold for instance in the one–dimensional case if K is completely monotone (recall
that a function f is called completely monotone on (0,∞) if it is infinitely differentiable there with
(−1)kf (k)(t) ≥ 0 for all t > 0 and k = 0, 1, . . .).

Theorem 4.10. Assume that K ∈ L2
loc
(
R+;Rd×d

)
is continuous on (0,∞) and that it admits a resolvent

of the first kind L with no point masses in (0,∞). In addition, suppose that for every h > 0 the shifted
kernel ∆hK is differentiable, with (∆hK)′ continuous on R+. Under Hypothesis 4.1, if the total variation
bound

sup
h∈(0,T ]

‖∆hK ∗ L‖TV([0,T ]) <∞, for all T > 0, (4.52)

holds, then for every h > 0 the Cd−valued function

πh (r) =
(
R (·, ψ (·))> ∗

(
(∆·K)′ ∗ L

)
(r)
)

(h)> (4.53)

is well–defined for a.e. r ∈ R+ and belongs to L1
loc
(
R+;Cd

)
. Moreover, P−a.s., for a.e. t ∈ (0, T ),

V T
t = φ (T − t) +

∫ t

0
f (T − s)>Xs ds+

∫ T−t

0
R (s, ψ (s))> g0 (T − s) ds

+ ψ (T − t)> Zt +
(
πT−t

> ∗ (X − g0)
)

(t) , (4.54)

where φ is defined in (4.20).

Proof. Fix h > 0; expanding the notation in (4.53) for πh we have

πh (r)> =

∫ h

0
R (s, ψ (s))>

[∫ r

0
(∆h−sK)′ (r − u)L (du)

]
ds.

In order to see that it is well–defined a.e. on R+ and belongs to L1
loc
(
R+;Cd

)
, first note that for every

positive s, the continuity of (∆sK)′ and the absence of point masses for L in (0,∞) allow to apply [96,
Corollary 6.2 (iii), Chapter 3], which ensures the continuity on R+ of (∆sK)′ ∗L. As a consequence, we
can define the Cd−valued measurable function

[
R (s, ψ (s))>

(
(∆h−sK)′ ∗ L

)
(r)
]>
, (s, r) ∈ (0, h)× R+.

Recalling the previous proof, we see that (∆hK)′ ∗ L is, almost everywhere, the derivative of the
locally absolutely continuous function (∆hK −K (h)) ∗ L. The boundedness of R (·, ψ (·)) on [0, h] by
a constant Ch > 0 (see Hypothesis 4.1 and the subsequent comment) coupled with Condition (4.52),
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Tonelli’s theorem and [96, Theorem 6.1 (v), Chapter 3] yields, for a generic T > h,∫ T

0

[ ∫ h

0
|R (s, ψ (s))|

∣∣((∆h−sK)′ ∗ L
)

(r)
∣∣ ds]dr =

∫ h

0
|R (s, ψ (s))|

[ ∫ T

0

∣∣((∆h−sK)′ ∗ L
)

(r)
∣∣ dr]ds

≤ d2

∫ h

0
|R (s, ψ (s))|

[
‖(∆h−sK −K (h− s)) ∗ L‖TV([0,T ])

]
ds

≤ d2

[ ∫ h

0
|R (s, ψ (s))| ‖∆h−sK ∗ L‖TV([0,T ]) ds+ |L|

([
0, T

]) ∫ h

0
|R (s, ψ (s))| |K (h− s)|ds

]
≤ d2

[
sup

s∈(0,T ]

‖∆sK ∗ L‖TV([0,T ])Chh+ |L|
([

0, T
]) ∫ h

0
|R (s, ψ (s))| |K (h− s)|ds

]
<∞.

Hence the conclusion on πh follows. Furthermore, by Lebesgue’s fundamental theorem of calculus, the
Cd−valued function Πh (r) =

∫ r
0 πh (u) du, r ∈ R+, is locally absolutely continuous on R+, with Π′h = πh

a.e. Using Fubini’s theorem we can obtain the following explicit expression for such Πh

Πh (r)> =

∫ h

0
R (s, ψ (s))> ((∆h−sK −K (h− s)) ∗ L) (r) ds, r ∈ R+. (4.55)

At this point we observe that for every function g ∈ L1
loc
(
R+;Rd

)
we have, reasoning as before and

using the boundedness of R (·, ψ (·)) on [0, T ] by a positive constant CT ,∫ T

0

[ ∫ t

0
|g (t− u)|

(∫ T−t

0
|R (s, ψ (s))|

∣∣((∆T−t−sK)′ ∗ L
)

(u)
∣∣ ds)du

]
dt

=

∫ T

0

[ ∫ t

0
|g (t− u)|

(∫ T−t

0
|R (T − t− s, ψ (T − t− s))|

∣∣((∆sK)′ ∗ L
)

(u)
∣∣ ds)du

]
dt

=

∫ T

0

[ ∫ T−t

0
|R (T − t− s, ψ (T − t− s))|

(∫ t

0
|g (t− u)|

∣∣((∆sK)′ ∗ L
)

(u)
∣∣ du) ds

]
dt

=

∫ T

0

[ ∫ T−s

0
|R (T − s− t, ψ (T − s− t))|

(∫ t

0
|g (t− u)|

∣∣((∆sK)′ ∗ L
)

(u)
∣∣du)dt

]
ds

≤ CTd2 ‖g‖L1([0,T ];Rd)

∫ T

0
‖(∆sK −K (s)) ∗ L‖TV([0,T ]) ds

≤ CTd2 ‖g‖L1([0,T ];Rd)

[
T sup
s∈(0,T ]

‖∆sK ∗ L‖TV([0,T ]) + |L| ([0, T ])

∫ T

0
|K (s)|ds

]
<∞,

(4.56)

where we apply Tonelli’s theorem, together with [96, Theorem 2.2 (i), Chapter 2] and a change of
variables. Consequently, for almost every t ∈ (0, T ) we can apply Fubini’s theorem to obtain∫ t

0
πT−t (u)> g (t− u) du =

∫ T−t

0
R (s, ψ (s))>

[∫ t

0

(
(∆T−t−sK)′ ∗ L

)
(u) g (t− u) du

]
ds. (4.57)

Computations analogous to those in (4.56) (with g [resp., |R (·, ψ (·))|] substituted by X − g0 [resp., 1])
let us conclude, by Fubini’s theorem and Equation (4.7), that there is a jointly measurable modification
of the process

((
(∆·−tK)′ ∗ L

)
∗ (X − g0)

)
(t) on Ω × (t, T ) for a.e. t ∈ (0, T ). Therefore we interpret

(4.51) pathwise, namely the equality holds almost everywhere in (t, T ) up to a P−null set.
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Now we focus on Ṽ T
t . The previous analysis together with (4.27) and a suitable change of variables

yields

Ṽ T
t = φ (T − t) +

∫ t

0
f (T − s)>Xs ds+

∫ T−t

0
R (s, ψ (s))> gt (T − s) ds

=

{
φ (T − t) +

∫ t

0
f (T − s)>Xs ds+

∫ T−t

0
R (s, ψ (s))> g0 (T − s) ds

}
+

{(∫ T−t

0
R (s, ψ (s))>K (T − t− s) ds

)
Zt

}
+

{∫ T−t

0
R (s, ψ (s))>

((
(∆T−t−sK)′ ∗ L

)
∗ (X − g0)

)
(t) ds

}
= It + IIt + IIIt, P− a.s., t ∈ (0, T ) .

The idea is to analyze separately the addends that we have singled out in the previous computations.
Note that IIIt is finite because Ṽ T

t , It, IIt are so, and that we can consider a jointly measurable modifi-
cation of this process in Ω× (0, T ), again by Fubini’s theorem and Equation (4.7) (see (4.56)). Taking
into account (4.28) we have

V T
t = It + IIt + IIIt, for a.e. t ∈ (0, T ) , P− a.s., (4.58)

where the equality can be understood pathwise as it involves jointly measurable processes.
Regarding IIt, since ψ solves the Riccati–Volterra equation in (4.19) we have

IIt = ψ (T − t)> Zt.

As for IIIt, by (4.57) we have

IIIt =

∫ t

0
πT−t (u)> (X − g0) (t− u) du =

(
πT−t

> ∗ (X − g0)
)

(t) , for a.e. t ∈ (0, T ) , P−a.s.

Substituting the two previous equations in (4.58) we conclude

V T
t = φ (T − t) +

∫ t

0
f (T − s)>Xs ds+

∫ T−t

0
R (s, ψ (s))> g0 (T − s) ds

+ ψ (T − t)> Zt +
(
πT−t

> ∗ (X − g0)
)

(t) ,

for almost every t ∈ (0, T ) , P−a.s. The proof is now complete. �

If the resolvent of the first kind L is the sum of a locally integrable function and a point mass in
0, then recalling (4.6) we can apply Lemma 4.3 (see also the final comment in Remark 4.3) and argue
as in (4.16) to see that Zt = (L ∗ (X − g0)) (t) , for a.e. t > 0, P−a.s. In addition, for every h > 0 we
define the Cd−valued function

Π̃h (r)>= Πh (r)>+ ψ (h)>L ({0}) + ψ (h)> L ((0, r])

=

∫ h

0
R (s, ψ (s))> (∆h−sK ∗ L) (r) ds, r ∈ R+, (4.59)
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where the second equality is due to (4.55). Note that Π̃h is locally absolutely continuous on R+, and
that(

πT−t
> ∗ (X − g0)

)
(t) =

(
dΠT−t

> ∗ (X − g0)
)

(t)

=
(

dΠ̃T−t
>
∗ (X − g0)

)
(t)− ψ (T − t)> (L ∗ (X − g0)) (t) + ψ (T − t)> L ({0}) (X − g0) (t) ,

which holds for a.e. t ∈ (0, T ) , P−a.s. Substituting in (4.54) we immediately deduce the following
result.

Corollary 4.11. Under the same hypotheses of Theorem 4.10, if the resolvent of the first kind L is the
sum of a locally integrable function and a point mass in 0, then P−a.s., for a.e. t ∈ (0, T )

V T
t = φ (T − t) +

∫ t

0
f (T − s)>Xs ds+

∫ T−t

0
R (s, ψ (s))> g0 (T − s) ds

+ ψ (T − t)> L ({0}) (X − g0) (t)−
(

dΠ̃T−t
>
∗ g0

)
(t) +

(
dΠ̃T−t

>
∗X

)
(t) . (4.60)

4.4 The 1−dimensional Volterra square root diffusion with jumps

In this section we discuss a one–dimensional example (m = d = 1) where not only are we able to infer
the assumptions made in the previous arguments, such as the existence of solutions to the stochastic
Volterra equation (4.2) and the Riccati–Volterra equation (4.19) (i.e., Hypothesis 4.1), but also we can
prove the martingale property of the process exp

{
V T
}
. In order to develop the theory we need to

require more properties for the kernel K. In particular, we consider a hypothesis which is standard in
the theory of stochastic Volterra equations, that is (see [2, Condition (2.10)], and also [8, Condition
(3.4)] and [5, Assumption B.2])

Hypothesis 4.2. The kernel K is nonnegative, nonincreasing, not identically zero and continuously
differentiable on (0,∞). Furthermore, its resolvent of the first kind L is nonnegative and nonincreasing,
i.e., s 7→ L ([s, s+ t]) is nonincreasing for every t ≥ 0.

Notice that, under Hypothesis 4.2, the map s 7→ L({s}) is nonincreasing, where L is the resolvent of
the first kind of K. Combining this fact with Lebesgue’s decomposition theorem, which ensures that L
has at most a countable number of point masses, we deduce that L has no point masses in (0,∞).
In the sequel, we suppose that K and the shifted kernels ∆1/nK, n ∈ N, satisfy Hypothesis 4.2. This is
the case, for example, when K is a completely monotone function not identically equal to 0.

We focus on the following stochastic Volterra equation of convolution type:

X = g0 + (K ∗ dZ) , P⊗ dt− a.e., (4.61)

where Z is a real–valued semimartingale with differential characteristics (with respect to h (ξ) = ξ, ξ ∈
R) given by (b (Xt) , a (Xt) , η (Xt,dξ)) , t ≥ 0, with

b (x) = bx, a (x) = c x, η (x, dξ) = xν (dξ) , x ≥ 0.

Here b ∈ R, c ≥ 0 and ν is a nonnegative measure on R+ such that
∫
R+
|ξ|2 ν (dξ) < ∞. The function

g0 : R+ → R is an admissible input curve in either one of the following two forms
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i. g0 is continuous and non–decreasing, with g0 (0) ≥ 0;

ii. g0 (t) = x0 +
∫ t

0 K (t− s) θ (s) ds, t ≥ 0, where x0 ≥ 0 and θ : R+ → R+ is locally bounded.

Notice that (4.61) describes a 1−dimensional Volterra square root diffusion with jumps. In this frame-
work, we can invoke [2, Theorem 2.13] to claim the existence of a weak, predictable solution X = (Xt)t≥0

of (4.61) with trajectories in L1
loc (R+) such that X ≥ 0, P ⊗ dt−a.e. Actually, if g0 ∈ L2

loc (R+), the
paths of this solution X are in L2

loc (R+) , P−a.s., as the next result shows.

Lemma 4.12. Suppose that g0 ∈ L2
loc (R+) and let X be a solution of (4.61) with trajectories in

L1
loc (R+) such that X ≥ 0, P⊗ dt−a.e. Then, for every T > 0, E

[( ∫ T
0 |Xt|2 dt

)1/2]
<∞.

Proof. The convolution equation (4.61) enables us to write, P−a.s.,

|Xt|2 ≤ 4

(
|g0 (t)|2 + |b|2 |(K ∗X) (t)|2 + |(K ∗ dM c)t|

2 +
∣∣∣(K ∗ dMd

)
t

∣∣∣2) , for a.e. t ≥ 0.

Integrating over the interval (0, T ) , T > 0, we have

(∫ T

0
|Xt|2 dt

) 1
2

≤ 2

(
2 + ‖g0‖L2([0,T ]) + |b| ‖K ∗X‖L2([0,T ])

+

∫ T

0
|(K ∗ dM c)t|

2 dt+

∫ T

0

∣∣∣(K ∗ dMd
)
t

∣∣∣2 dt

)
, P− a.s.,

where we also use that
√
x ≤ 1 + x, x ∈ R+. By [96, Theorem 2.2 (i), Chapter 2], ‖K ∗X‖L2([0,T ]) ≤

‖K‖L2([0,T ]) ‖X‖L1([0,T ]), hence taking expectation in the previous inequality we obtain, using Tonelli’s
theorem,

E
[(∫ T

0
|Xt|2 dt

) 1
2
]
≤ 2

(
2 + ‖g0‖L2([0,T ]) + |b| ‖K‖L2([0,T ]) E

[
‖X‖L1([0,T ])

]
+

∫ T

0
E
[
|(K ∗ dM c)t|

2
]

dt+

∫ T

0
E
[∣∣∣(K ∗ dMd

)
t

∣∣∣2]dt

)
. (4.62)

Recall that (K ∗ dM c)t =
∫ t

0 K (t− s) dM c
s , P−a.s. for a.e. t ≥ 0; therefore we use the Burkholder–

Davis–Gundy inequality and the Young’s type inequality in [3, Lemma A.1] to write (always bearing in
mind Tonelli’s theorem)∫ T

0
E
[
|(K ∗ dM c)t|

2
]

dt ≤ c · c1E
[ ∫ T

0

(∫ t

0
|K (t− s)|2Xs ds

)
dt

]
≤ c · c1 ‖K‖2L2([0,T ]) E

[
‖X‖L1([0,T ])

]
, for some c1 > 0.

Analogously, we invoke [134, Theorem 3.2] to assert∫ T

0
E
[∣∣∣(K ∗ dMd

)
t

∣∣∣2]dt ≤ 2

(∫
R+

|ξ|2 ν (dξ)

)
c2 ‖K‖2L2([0,T ]) E

[
‖X‖L1([0,T ])

]
, for some c2 > 0.

Now substituting the previous two bounds in (4.62) we see that the right side is finite by (4.7). This
concludes the proof. �
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Fix f ∈ C (R+;C−). Since ν(dξ) is a positive measure on R+ with finite second moment and, for
every z ∈ C−,

|Re (ez − 1− z)| ≤
∣∣eRe z − 1− Re z

∣∣+ eRe z (1− cos (Im z)) ≤ |z|2 ,
|Im (ez − 1− z)| =

∣∣eRe z sin (Im z)− Im z
∣∣ ≤ |sin (Im z)− Im z|+ |Im z|

(
1− eRe z

)
≤ 2 |z|2 ,

we have C− ⊂ Dν , see (4.17). We then set D = C− and define the map R : R+ ×D → C as in (4.18).
Notice that, by the dominated convergence theorem, R is continuous in its domain R+ × C−, hence
it is locally bounded. In addition to Equation (4.19), we consider the deterministic Riccati–Volterra
equation

ψ (t) =

∫ t

0
K (t− s)R

(
s, ψ (s)

)
ds, t ≥ 0, (4.63)

where R : R+ × C− → C is defined by

R (t, u) = Re f (t) + bu+
c

2
u2 +

∫
R+

(
euξ − 1− uξ

)
ν (dξ) , (t, u) ∈ R+ × C− (4.64)

and Re f : R+ → R− denotes the real part of f . We observe that also R is continuous in R+ × C−.
The next theorem shows the existence of global solutions to (4.19) and (4.63) (in particular, Hypothesis
4.1 is verified), as well as a comparison result between them which is crucial for the subsequent argument
on the martingale property.

Theorem 4.13. Let f ∈ C (R+;C−) and assume Hypothesis 4.2.

(i) There exist a continuous global solution ψ ∈ C (R+;C−) of (4.19) and a real–valued, continuous
global solution ψ ∈ C (R+;R−) of (4.63).

(ii) Given ψ ∈ C (R+;C−) and ψ ∈ C (R+;R−) satisfying (4.19) and (4.63), respectively, the following
inequality holds:

Reψ (t) ≤ ψ (t) , t ≥ 0. (4.65)

Proof. The proof of (i) is in Appendix 4.B.1, and the one of (ii) is in Appendix 4.B.2. �

In what follows, we take two continuous functions ψ,ψ as in Theorem 4.13 (i) and fix T > 0. We
aim to prove the martingale property of the process exp

{
V T
}
, where V T is given by (4.21)–(4.22). For

this purpose, we define the process V T as in (4.21)–(4.22), substituting Re f [resp., ψ] for f [resp., ψ].

Theorem 4.5 shows that V T
t = Ṽ

T

t , P−a.s., for every t ∈ [0, T ], where of course we define Ṽ
T
as in (4.27)

with the same substitution as before. It is known that exp{V T } is a true, real–valued martingale. This
is due to [2, Lemma 6.1], which in turn is an interesting application of the Novikov–type condition in
[129, Theorem IV.3]. The idea of the present section consists in using the expression (4.60) in order to
prove the bound | exp{V T }| ≤ C exp{V T } up to indistinguishability for some C > 0, so that we can
conclude that exp

{
V T
}
is a martingale, too.

Direct computations based on the Riccati–Volterra equation (4.19) yield, for every h > 0,

∆hψ (r) = (∆h (R (·, ψ (·))) ∗K) (r) + (R (·, ψ (·)) ∗∆rK) (h) , r ≥ 0.
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Focusing on the second addend on the right side, if we convolve it with L then

((R (�, ψ (�)) ∗∆·K) (h) ∗ L) (r) =

∫ r

0

[ ∫ h

0
R (s, ψ (s)) (∆r−uK) (h− s) ds

]
L (du)

=

∫ h

0
R (s, ψ (s)) ((∆h−sK) ∗ L) (r) ds, r ≥ 0,

where the application of Fubini’s theorem is justified because K is nonnegative and nonincreasing and
L is a nonnegative measure. Whence, since ∆h (ψ ∗ L) (r) = (R (·, ψ (·)) ∗ 1) (r + h), recalling (4.59) we
can write

Π̃h (r) = (∆hψ ∗ L) (r)−∆h (ψ ∗ L) (r) +

∫ h

0
R (s, ψ (s)) ds

= −
∫

(0,h]
ψ (h− s)L (r + ds) +

∫ h

0
R (s, ψ (s)) ds, r ≥ 0,

and in particular

Re
(

Π̃h (r)
)

= −
∫

(0,h]
Re (ψ (h− s))L (r + ds) +

∫ h

0
Re (R (s, ψ (s))) ds, r ≥ 0.

Repeating the same argument for ψ we also obtain

Π̃h (r) = −
∫

(0,h]
ψ (h− s)L (r + ds) +

∫ h

0
R
(
s, ψ (s)

)
ds, r ≥ 0.

Taking the difference between the two previous equations we infer, for every r ≥ 0,

Π̃h(r)−Re
(
Π̃h (r)

)
=−

∫
(0,h]

[
ψ − Reψ

]
(h− s)L (r + ds) +

∫ h

0

[
R
(
·, ψ (·)

)
− Re (R (·, ψ (·)))

]
(s) ds

=
(
ψ − Reψ

)
(h)L ({r})−

∫
[0,h]

[
ψ − Reψ

]
(h− s)L (r + ds)

+

∫ h

0

[
R
(
·, ψ (·)

)
− Re (R(·, ψ (·)))

]
(s) ds. (4.66)

Hence, we see that this function is increasing on the interval (0,∞) by (4.65) in Theorem 4.13 (ii) and
Hypothesis 4.2 (see also the subsequent comment). We are now in position to prove the next, important
result.

Theorem 4.14. Assume that the kernel K ∈ L2
loc (R+;R) satisfies the requirements of Corollary 4.11

together with Hypothesis 4.2. Then there exists a constant C > 0 such that∣∣exp
{
V T
t

}∣∣ ≤ C exp
{
V
T
t

}
, t ∈ [0, T ] , P− a.s. (4.67)

In particular,
(
exp

{
V T
t

})
t∈[0,T ]

is a complex–valued martingale.
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Proof. First of all note that
∣∣exp

{
V T
}∣∣ = exp

{
Re
(
V T
)}

. For the reader’s convenience, we write the
expression for Re

(
V T
)
provided by (4.60)

Re
(
V T
t

)
=

∫ t

0
Re f (T − s)Xs ds

+

∫ T−t

0
Re (R (s, ψ (s))) g0 (T − s) ds+ Reψ (T − t)L ({0}) (X − g0) (t)

−
(

d
(

Re
(

Π̃T−t

))
∗ g0

)
(t) +

(
d
(

Re
(

Π̃T−t

))
∗X

)
(t) , for a.e. t ∈ (0, T ) , P− a.s.

The idea of the proof is simply to compare, term by term, the addends of this sum with the corresponding
ones in the expansion of V T according to (4.60). We are going to consider a common set Ω0 ⊂ Ω,
with P (Ω0) = 1, such that both the expressions for Re

(
V T
t

)
and V

T
t are valid on (0, T ) \ Nω, being

Nω ⊂ (0, T ) a dt−null set for every ω ∈ Ω0.
Regarding the random terms, recall that X ≥ 0, P ⊗ dt−a.e. Therefore, without loss of generality,

we can assume that for every ω ∈ Ω0 and t ∈ (0, T ) \ Nω we have Xt (ω) ≥ 0. As a consequence (by
(4.66))(

d
(

Π̃T−t − Re
(

Π̃T−t

))
∗X· (ω)

)
(t) ≥ 0

=⇒
(

d
(

Re
(

Π̃T−t

))
∗X· (ω)

)
(t) ≤

(
dΠ̃T−t ∗X· (ω)

)
(t) .

It is important to stress the fact that such an inequality can be stated because the measure L is absolutely
continuous with respect to the Lebesgue measure on the interval (0,∞). Summing up,(

d
(

Re
(

Π̃T−t

))
∗X

)
(t) ≤

(
dΠ̃T−t ∗X

)
(t) , t ∈ (0, T ) \Nω, ω ∈ Ω0.

Moreover, since L ({0}) ≥ 0, by (4.65) we immediately have

Reψ (T − t)L ({0})Xt ≤ ψ (T − t)L ({0})Xt, t ∈ (0, T ) \Nω, ω ∈ Ω0.

The other random addend
∫ t

0 Re f (T − s)Xs ds appears in both the expressions for Re
(
V T
t

)
and V T

t ,
so it does not need to be discussed.

As for the deterministic terms, we observe that, by Hölder’s inequality,∣∣∣∣ ∫ T−t

0
g0 (T − s)

(
Re (R (s, ψ (s)))−R

(
s, ψ (s)

))
ds

∣∣∣∣
≤ ‖g0‖L2([0,T ])

∥∥Re (R (·, ψ (·)))−R
(
·, ψ (·)

)∥∥
L2([0,T ])

,

for any t ∈ (0, T ) . Hence, calling C1 = ‖g0‖L2([0,T ])

∥∥Re (R (·, ψ))−R (·, ψ)
∥∥
L2([0,T ])

, we have∫ T−t

0
g0 (T − s) Re (R (s, ψ (s))) ds ≤ C1 +

∫ T−t

0
g0 (T − s)R

(
s, ψ (s)

)
ds, t ∈ (0, T ) .

Furthermore, recalling the continuity of ψ, ψ and g0, we call C2 = maxt∈[0,T ]

{∣∣ψ − Reψ
∣∣ (T − t) g0 (t)

}
,

so that we have

−Reψ (T − t)L ({0}) g0 (t) ≤ L ({0})C2 − ψ (T − t)L ({0}) g0 (t) , t ∈ (0, T ) .
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Finally, looking at (4.66) we compute(
d
(

Π̃T−t − Re
(

Π̃T−t

))
∗ 1
)

(t) ≤ −
∫

[0,T−t]

[
ψ − Reψ

]
(T − t− s) [L (t+ ds)− L (ds)]

≤ 2 max
t∈[0,T ]

∣∣ψ (t)− Reψ (t)
∣∣L ([0, T ]) = C3, t ∈ (0, T ) .

Hence exploiting the continuity of the input curve we conclude that∣∣∣(d
(

Π̃T−t − Re
(

Π̃T−t

))
∗ g0

)
(t)
∣∣∣ ≤ C3 max

t∈[0,T ]
|g0 (t)| ,

which in turn implies

−
(

d
(

Re
(

Π̃T−t

))
∗ g0

)
(t) ≤ C3 max

t∈[0,T ]
|g0 (t)| −

(
dΠ̃T−t ∗ g0

)
(t) , t ∈ (0, T ) .

Combining all these results we deduce that

Re
(
V T
t (ω)

)
≤ C1 + L ({0})C2 + C3 max

t∈[0,T ]
|g0 (t)|+ V T

t (ω) , t ∈ (0, T ) \Nω, ω ∈ Ω0. (4.68)

Since Nω is a null set, its complementary (Nω)c = (0, T )\Nω is dense in [0, T ]. Recalling the regularity
for the trajectories of the processes Re

(
V T
)
and V T , we can assume that for every ω ∈ Ω0 both the

functions Re
(
V T
· (ω)

)
and V T

· (ω) are càdlàg in [0, T ] and left–continuous in T . Accordingly, we pass
to the limit –from the right in [0, T ) and from the left in T– to deduce, from (4.68), that

Re
(
V T
t (ω)

)
≤ C1 + L ({0})C2 + C3 max

t∈[0,T ]
|g0 (t)|+ V T

t (ω) , t ∈ [0, T ] , ω ∈ Ω0,

i.e., (4.67) holds choosing C = exp
{
C1 + L ({0})C2 + C3 maxt∈[0,T ] |g0 (t)|

}
.

The second statement of the theorem follows from [112, Lemma 1.4], as
(

exp
{
V
T})

t∈[0,T ]
is a

real–valued martingale. Thus, the proof is complete. �

Combining Theorem 4.14 with Theorem 4.5 (see (4.29)) we deduce the following result about weak
uniqueness for (4.61).

Corollary 4.15. The weak solution X of (4.61) is unique in law in L2
loc (R+), that is: if Y = (Yt)t≥0 is

another predictable process (defined on a possibly different stochastic basis) such that Y ≥ 0, P⊗dt−a.e.,
which satisfies (4.61), then the laws of X and Y on the spaces L2 ([0, T ]) , T > 0, are the same.

Proof. Fix T > 0 and consider another weak solution Y of (4.61). We assume that X and Y are defined
on the same stochastic basis to keep notation simple. The paths of Y are in L2 ([0, T ]) , P−a.s., by
Lemma 4.12. We want to show that

E
[

exp

{
i

∫ T

0
f (s)Xs ds

}]
= E

[
exp

{
i

∫ T

0
f (s)Ys ds

}]
, f ∈ L2 ([0, T ]) . (4.69)

First, we verify the previous equation for f ∈ C ([0, T ]). Denoting by f̃ (s) = if (T − s) , s ∈ [0, T ] , by
Theorem 4.5 and Theorem 4.14 we have

E
[

exp

{
i

∫ T

0
f (s)Xs ds

}]
= E

[
exp

{∫ T

0
f̃ (T − s)Xs ds

}]
= E

[
exp

{
V T

0

}]
= E

[
exp

{∫ T

0
f̃ (T − s)Ys ds

}]
= E

[
exp

{
i

∫ T

0
f (s)Ys ds

}]
,
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where we use the fact that V T
0 in (4.22) does not depend on the solution process, but only on the solution

of the Riccati–Volterra equation. Therefore (4.69) holds for continuous functions. Since C ([0, T ]) is
dense in L2 ([0, T ]), Hölder’s inequality allows to carry out a dominated convergence argument that
yields (4.69) for all f ∈ L2 ([0, T ]). Hence, the laws of X and Y are the same on the space L2 ([0, T ])
by, for instance, [66, Proposition 2.5, Chapter 2]. This completes the proof. �

Appendix 4.A The forward process

Given a kernel K ∈ L2
loc
(
R+;Rm×d

)
, we want to find an expression for the forward process

E
[
XT

∣∣Ft] , 0 ≤ t ≤ T,

for almost every T ∈ R+.
If b ≡ 0, then (4.6) implies

XT = g0 (T ) +
(
K ∗ dZ̃

)
T

= g0 (T ) +

∫ T

0
K (T − s) dZ̃s, P− a.s., for a.e. T ∈ R+.

By the martingale property ensured by (4.7) we immediately infer that, for almost every T ∈ R+,

E
[
XT

∣∣Ft] = g0 (T ) +

∫ t

0
K (T − s) dZ̃s, P− a.s., t ∈ [0, T ] . (4.70)

If b 6= 0, then we consider m = d and introduce the resolvent of the second kind RB associated with
−KB. Note that RB ∈ L2

loc
(
R+;Rd×d

)
by [96, Theorem 3.5, Chapter 2]. Convolving (4.6) with RB

and [96, Theorem 2.2 (viii), Chapter 2] yield

(RB ∗X) (T ) = (RB ∗ g0) (T )+((RB ∗K) ∗ b (X)) (T )+
(
RB∗

(
K∗dZ̃

))
(T ) , for a.e. T ∈ R+, P−a.s.

The associativity of the stochastic convolution proved in Lemma 4.3 (with ρ = RB) and the joint
measurability of the processes involved let us rewrite this equality as follows:

(RB ∗X) (T ) = (RB ∗ g0) (T ) + ((RB ∗K) ∗ b0) (T ) + ((RB ∗KB) ∗X) (T )

+
(

(RB ∗K) ∗ dZ̃
)
T
, P− a.s., for a.e. T ∈ R+. (4.71)

From the resolvent identity (see the footnote 2) we have RB ∗KB = KB+RB a.e. in R+, so we rewrite
Equation (4.71) as follows

0 = (RB ∗ g0) (T ) + ((RB ∗K) ∗ b0) (T ) + (KB ∗X) (T ) +
(

(RB ∗K) ∗ dZ̃
)
T
,

P− a.s., for a.e. T ∈ R+. (4.72)

Consider the canonical resolvent EB = K −RB ∗K; subtracting (4.72) from (4.6) we have

XT = (g0 − (RB ∗ g0)) (T ) + (EB ∗ b0) (T ) +
(
EB ∗ dZ̃

)
T
, P− a.s., for a.e. T ∈ R+.

Hence by the martingale property guaranteed by (4.7) we are able to find an expression for the forward
process E

[
XT

∣∣Ft], namely for almost every T ∈ R+, for every t ∈ [0, T ] it holds

E
[
XT

∣∣Ft] = (g0 (T )− (RB ∗ g0) (T )) + (EB ∗ b0) (T ) +

∫ t

0
EB (T − s) dZ̃s, P− a.s. (4.73)
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Finally, notice that (4.73) reduces to (4.70) as b ≡ 0. Indeed, since E0 = K a.e. in R+ as R0 =
0
(
∈ Rd×d

)
, combining (4.6) with Lemma 4.2 (see (4.9)) we have

XT = g0 (T ) +
(
E0 ∗ dZ̃

)
T
, P− a.s., for a.e. T ∈ R+, (4.74)

and the assertion follows by the martingale property.

Remark 4.8. Equation (4.73) with t = 0 implies that E [XT ] = (g0 − (RB ∗ g0)) (T ) + (EB ∗ b0) (T )
for a.e. T ∈ R+. This result can be confirmed with a direct method. Specifically, by (4.7) and Tonelli’s
theorem the function E [|X·|] ∈ L1

loc (R+;R). Hence taking expectations in (4.2) we obtain, by Fubini’s
theorem,

E [XT ] = (g0 +K ∗ b0) (T ) + (KB ∗ E [X·]) (T ) , for a.e. T ∈ R+,

i.e., E [X·] + ((−KB) ∗ E [X·]) = g0 + K ∗ b0 a.e. in R+. By the variation of constants formula [96,
Theorem 3.5, Chapter 2] we conclude

E [XT ] = (g0 − (RB ∗ g0) + (EB ∗ b0)) (T ) , for a.e. T ∈ R+,

as desired.

Appendix 4.B On the 1−dimensional deterministic Riccati–Volterra
equation

Here we focus on the Riccati–Volterra equation used in Section 4.4, i.e., (4.19) with

R (t, u) = f (t) + bu+
c

2
u2 +

∫
R+

(
euξ − 1− uξ

)
ν (dξ) , (t, u) ∈ R+ × C−, (4.75)

where f ∈ C (R+;C−) . Throughout the section, we require Hypothesis 4.2 on the kernel K.

4.B.1 Existence of a global solution

It is easy to argue that (4.19) admits a continuous, noncontinuable solution ψ, with Reψ ≤ 0, defined
on the maximal interval [0, Tmax) (see [2, Theorem 2.5, Step 1]). We are concerned with showing that
Tmax =∞, i.e., that ψ does not explode in finite time (cfr. [96, Theorem 1.1, Chapter 12]).
Fix a generic T ∈ (0, Tmax); taking real and imaginary parts in (4.19) and (4.75) we have, on the interval
[0, T ],

Reψ = K ∗
[
Re f+ bReψ+

c

2

(
|Reψ|2− |Imψ|2

)
+

∫
R+

(
cos (Imψ · ξ) eReψ·ξ − 1− Reψ · ξ

)
ν (dξ)

]
, (4.76)

Imψ = K ∗
[
Im f + b Imψ + cReψ Imψ +

∫
R+

(
sin (Imψ · ξ) eReψ·ξ − Imψ · ξ

)
ν (dξ)

]
. (4.77)

First we study the imaginary part. In particular, we consider the function h : R− × R → R defined as
follows

h (x, y) =

{
1
y

∫
R+

(sin (y ξ)− y ξ) ex·ξν (dξ) , y 6= 0

0, y = 0
, x ≤ 0.
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Note that h is continuous and non–positive in its domain. By construction

y · h (x, y) =

∫
R+

(sin (y ξ)− y ξ) ex·ξν (dξ) , (x, y) ∈ R− × R.

Hence we can use this function to rewrite (4.77) in the following form

Imψ = K ∗
[
Im f + b Imψ + cReψ Imψ +

(∫
R+

ξ
(
eReψ·ξ − 1

)
ν (dξ)

)
Imψ + h (Reψ, Imψ) Imψ

]
,

which holds on [0, T ]. Consider the unique, continuous, non–negative solution on [0, T ] of the linear
equation

g = K ∗
[
|Im f |+ b g +

(
cReψ +

∫
R+

ξ
(
eReψ·ξ − 1

)
ν (dξ) + h (Reψ, Imψ)

)
g

]
.

By Hypothesis 4.2, we can invoke [5, Theorem C.1] to deduce that |Imψ| ≤ g on [0, T ]. Next we
introduce u, the unique, continuous solution of the linear equation

u = K ∗ [|Im f |+ b u] .

Notice that u is defined on R+, and that g ≤ u on [0, T ] (again by [5, Theorem C.1]), as in this interval
one has

cReψ +

∫
R+

ξ
(
eReψ·ξ − 1

)
ν (dξ) + h (Reψ, Imψ) ≤ 0.

Therefore we have obtained the bound

|Imψ (t)| ≤ u (t) , 0 ≤ t ≤ T. (4.78)

Secondly, Equation (4.76) ensures that Reψ satisfies

Reψ = K ∗
[
Re f + bReψ +

c

2

(
|Reψ|2 − |Imψ|2

)
+

∫
R+

(
eReψ·ξ − 1− Reψ · ξ

)
ν (dξ)

−
∣∣∣∣ ∫

R+

eReψ·ξ (cos (Imψ · ξ)− 1) ν (dξ)

∣∣∣∣]
on [0, T ]. Since |cos (x)− 1| = 1− cos (x) ≤ x2/2, x ∈ R, we have (also recalling (4.78))∣∣∣∣ ∫

R+

eReψ·ξ (cos (Imψ · ξ)− 1) ν (dξ)

∣∣∣∣ ≤ 1

2

(∫
R+

|ξ|2 ν (dξ)

)
|Imψ|2 ≤ 1

2

(∫
R+

|ξ|2 ν (dξ)

)
u2, (4.79)

which holds on [0, T ]. This suggests to introduce the linear equation

l = K ∗
[
Re f + b l −

(
c

2
+

1

2

∫
R+

|ξ|2 ν (dξ)

)
u2

]
,

which has a unique, continuous, non–positive solution l defined on the whole R+. At this point, observe
that the difference Reψ − l satisfies the linear equation

χ = K ∗
[
b χ+

c

2
|Reψ|2 +

c

2

(
u2 − |Imψ|2

)
+

∫
R+

(
eReψ·ξ − 1− Reψ · ξ

)
ν (dξ)

+

(
1

2

(∫
R+

|ξ|2 ν (dξ)

)
u2 −

∣∣∣∣ ∫
R+

eReψ·ξ (cos (Imψ · ξ)− 1) ν (dξ)

∣∣∣∣)].
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It admits a unique, continuous solution on [0, T ] which is non–negative by (4.78), (4.79) and the fact
that ex − 1− x ≥ 0, x ∈ R. Since T ∈ (0, Tmax) was chosen arbitrarily, we conclude that

l (t) ≤ Reψ (t) ≤ 0 and |Imψ (t)| ≤ u (t) , 0 ≤ t < Tmax.

Now recalling that l and u are continuous in R+, so they are bounded in every compact interval, we
conclude that Tmax =∞, as desired.

Finally we notice that if f takes values in R−, then from (4.78) we deduce that any solution of (4.19)
is real–valued, as well. In particular, ψ in (4.63) is R−−valued.

4.B.2 A comparison result

The goal of this appendix is to prove the inequality (4.65) in Theorem 4.13 (ii), which is of utmost
importance for the argument in Section 4.4. Precisely, we want to show that

Reψ (t) ≤ ψ (t) , t ≥ 0,

where ψ ∈ C (R+;C−) and ψ ∈ C (R+;R−) satisfy (4.19) and (4.63), respectively. Direct computations
based on the definitions in (4.75) and (4.64) show that, for every u ∈ C− and t ≥ 0,

Re (R (t, u))=Re f (t)+ bRe (u)+
c

2

(
|Re (u)|2−|Im (u)|2

)
+

∫
R+

(
cos (Im (u) ξ) eRe(u)ξ − 1− Re (u) ξ

)
ν (dξ)

≤ Re f (t) + bRe (u) +
c

2
|Re (u)|2 +

∫
R+

(
eRe(u)ξ − 1− Re (u) ξ

)
ν (dξ) = R (t,Re (u)) .

Summarizing,
Re (R (t, u)) ≤ R (t,Re (u)) , u ∈ C−, t ≥ 0.

Then taking the real parts in (4.19) and recalling that –under Hypothesis 4.2– the kernel K is nonneg-
ative on (0,∞), we obtain

Re (ψ (t)) ≤
∫ t

0
K (t− s)R (s,Re (ψ (s))) ds, t ≥ 0.

Therefore we can introduce a nonnegative function γ : R+ → R+ defined by the relation

Re (ψ (t)) = −γ (t) +

∫ t

0
K (t− s)R (s,Re (ψ (s))) ds, t ≥ 0; (4.80)

we immediately note that, using (4.19), one can rewrite γ as follows

γ (t) =

∫ t

0
K (t− s)

(
R (s,Reψ (s))− Re (R (s, ψ (s)))

)
ds, t ≥ 0. (4.81)

For a generic map g : R+ → R consider the condition

∆hg − (∆hK ∗ L) (0) g − d (∆hK ∗ L) ∗ g ≥ 0, h ≥ 0; (4.82)
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we denote by GK = {g : R+ → R s.t. g is continuous, satisfies (4.82) and g (0) ≥ 0} the set of admissible
curves, see [5, Condition B.3], and also [2, Equations (2.14)-(2.15)]. By [5, Remark B.6] and (4.81) we
infer that γ ∈ GK .

At this point we subtract (4.80) from (4.63) to deduce, calling δ = ψ − Reψ, that

δ (t) = γ (t) +

∫ t

0
K (t− s)

(
R
(
s, ψ (s)

)
−R (s,Re (ψ (s)))

)
ds, t ≥ 0. (4.83)

We then need to study the increments of R in the second variable. Namely, fix u1, u2 ∈ R− and use the
definition (4.64) to write

R (t, u1)−R (t, u2) = b (u1 − u2) +
c

2

(
u2

1 − u2
2

)
+

∫
R+

(
eu1ξ − eu2ξ − (u1 − u2) ξ

)
ν (dξ)

=
[
b+

c

2
(u1 + u2)

]
(u1 − u2) +

∫
R+

(
eu1ξ − eu2ξ − (u1 − u2) ξ

)
ν (dξ) , t ≥ 0.

Hence substituting ψ and Reψ to u1 and u2, respectively, we have

R
(
t, ψ (t)

)
−R (t,Re (ψ (t))) =

[
b+

c

2

(
ψ (t) + Re (ψ (t))

)]
︸ ︷︷ ︸

=z(t)

δ (t)+

∫
R+

(
eψ(t)ξ − eReψ(t)ξ − δ (t) ξ

)
ν (dξ)︸ ︷︷ ︸

=w(t)

for t ≥ 0. Going back to (4.83),

δ (t) = γ (t) +

∫ t

0
K (t− s) (z (s) δ (s) + w (s)) ds, t ≥ 0. (4.84)

We aim to apply [5, Theorem C.1] in order to conclude δ ≥ 0 in R+.

• In the continuous case the integral in ν (dξ), i.e., the function w, simply disappears, hence the
application of [5, Theorem C.1] is straightforward.

• In the jump case we need to deal with such an integral. Observe that the function w has opposite
sign with respect to δ, so there is no hope of applying [5, Theorem C.1] unless we modify its
expression. Fortunately this can be done using the mean value theorem, in combination with
simple real–analysis arguments.

First, for every ξ > 0 we define fξ (u) = eξu, u ∈ R, so f ′ξ (u) = ξeξu. Observe that the derivative

f ′ξ is continuous and strictly increasing in R, hence its inverse hξ =
(
f ′ξ

)−1
is continuous on (0,∞),

as well. By the mean value theorem, for every u1, u2 ∈ R there exists cξ ∈ [u1 ∧ u2, u1 ∨ u2] such
that

fξ (u2)− fξ (u1) = f ′ξ (cξ) (u2 − u1) .

In particular cξ ∈ (u1 ∧ u2, u1 ∨ u2) when u1 6= u2.
Secondly, we consider the functions ψ and Reψ, and we can say that for every t ∈ R+ there exists
cξ (t) ∈

[
ψ (t) ∧ Reψ (t) , ψ (t) ∨ Reψ (t)

]
(in the interior of such interval whenever ψ 6= Reψ, i.e.,

whenever δ 6= 0) such that

eξψ(t) − eξReψ(t) = f ′ξ (cξ (t))
(
ψ (t)− Reψ (t)

)
= ξeξcξ(t)δ (t) . (4.85)
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By the axiom of choice we construct the function c : R+ × R+ → R− defined by

c (ξ, t) = cξ (t) , ξ > 0, t ≥ 0,

and c (0, t) = 0, t ≥ 0. Note that the codomain of c (·, ·) is R− since both ψ and Reψ take values
there. Recalling the definition of w and using (4.85) we can write

w (t) =

∫
R+

[
eψ(t)ξ − eRe(ψ(t))ξ − δ (t) ξ

]
ν (dξ) =

(∫
R+

ξ
[
eξc(ξ,t) − 1

]
ν (dξ)

)
︸ ︷︷ ︸

=w(t)

δ (t) , t ≥ 0.

Now we have to prove that w is continuous on R+. The first step is to show the continuity of the
function c (ξ, ·) in R+ for every fixed ξ ∈ R+. It is of course trivial for ξ = 0, so we just focus on
ξ > 0. If t ∈ (0,∞) such that δ

(
t
)
> 0, then we can find ε > 0 such that δ > 0 in

(
t− ε, t+ ε

)
.

Hence we use (4.85) to prove that

c (ξ, t) = hξ

(
eξψ(t) − eξReψ(t)

δ (t)

)
, t ∈

(
t− ε, t+ ε

)
,

recalling that hξ =
(
f ′ξ

)−1
. So c (ξ, ·) is continuous in the points t ∈ (0,∞) where δ

(
t
)
> 0. An

analogous reasoning shows the continuity in the points where δ < 0. Consider now t ∈ R+ a zero
for δ, i.e., δ

(
t
)

= 0. For every sequence (tn)n ⊂ R+ such that tn → t as n → ∞ one has, by
construction,

ψ (tn) ∧ Reψ (tn) ≤ c (ξ, tn) ≤ ψ (tn) ∨ Reψ (tn) , n ∈ N.

Therefore an application of the squeeze theorem gives

lim
n→∞

c (ξ, tn) = Reψ
(
t
)

= ψ
(
t
)

= c
(
ξ, t
)
.

At this point we deduce the continuity of the function w using the dominated convergence theorem.
Indeed, take t ∈ R+, a sequence tn → t, and define g(n) (ξ) = ξ

[
eξc(ξ,t(n)) − 1

]
, ξ ∈ R+. Then

gn → g pointwise in R+ by the continuity of c (ξ, ·) and, for a certain C > 0 s.t. tn ≤ C, n ∈ N
(which exists since (tn)n is bounded), we have∣∣∣ξ [eξc(ξ,tn) − 1

]∣∣∣ = ξ
[
1− eξc(ξ,tn)

]
≤ ξ

[
1− eξmin0≤s≤C c(ξ,s)

]
≤ ξ

[
1− eξmin0≤s≤C{(Reψ∧ψ)(s)}

]
∈ L1 (dν) , n ∈ N.

Therefore we can rewrite (4.84) as follows

δ (t) = γ (t) +

∫ t

0
K (t− s) (z (s) + w (s)) δ (s) ds, t ≥ 0,

and we invoke [5, Theorem C.1] to assert that δ ≥ 0, i.e., that (4.65) holds.
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The rough Hawkes Heston stochastic
volatility model

In this chapter, we propose a stochastic volatility model, called the rough Hawkes Heston model,
where the spot variance is described by an affine stochastic Volterra equation of convolution type with
jumps, see Chapter 4. As a result, our model incorporates both rough volatility and jump clustering
phenomena. The affine framework of the model enables to efficiently price options on the underlying
and the corresponding volatility index via Fourier inversion techniques. In Section 5.5, we calibrate a
parsimonious specification of the model characterized by a power kernel and an exponential law for the
jumps using S&P 500 and VIX options data. The results demonstrate that the rough Hawkes Heston
model is able to jointly replicate the implied volatility smiles for both S&P 500 and VIX options with
remarkable accuracy.

5.1 The model

We study a stochastic volatility model where the spot variance σ2 = (σ2
t )t≥0 is a predictable process

with trajectories in L2
loc(R+). It is defined on a stochastic basis (Ω,F ,F = (Ft)t≥0,Q) where the

filtration F satisfies the usual conditions.
We consider, throughout our study, a kernel K that satisfies the next requirement, see [2, 3, 8, 37].

Hypothesis 5.1. The kernel K ∈ L2
loc(R+) is nonnegative, nonincreasing, not identically zero and

continuously differentiable on (0,∞). Furthermore, its resolvent of the first kind L is nonnegative and
nonincreasing, i.e., s 7→ L([s, s+ t]) is nonincreasing for every t ≥ 0.

Note that Hypothesis 5.1 coincides with Hypothesis 4.2 in Chapter 4. We recall that, given a kernel
K ∈ L1

loc(R+;Rd×d), an Rd×d−valued measure L is called its (measure) resolvent of the first kind if
L ∗ K = K ∗ L = I, where I ∈ Rd×d is the identity matrix. The resolvent of the first kind does not
always exist, but if it does then it is unique, see [96, Theorem 5.2, Chapter 5]. Under Hypothesis 5.1,
the existence of the resolvent of the first kind is ensured by [96, Theorem 5.5, Chapter 5].

Let g0 be a function representing the initial spot variance curve. A parametric form of g0 will be
specified for the application of the model (see Section 5.5). At this point, however, we only make the
following assumption.

Hypothesis 5.2. g0 is continuous and nondecreasing, with g0(0) ≥ 0.

167
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Fix b ∈ R, c > 0, an F−Brownian motion W2 = (W2,t)t≥0 and a nonnegative measure ν on R+ such
that ν({0}) = 0 and that

∫
R+
|z|2ν(dz) < ∞. We assume that the spot variance σ2 is a Q ⊗ dt−a.e.

nonnegative predictable process satisfying

σ2 = g0 +K ∗ dZ, Q⊗ dt− a.e., (5.1)

where Z is the following semimartingale having jump measure µ(dt,dz) and compensator σ2
t dt⊗ ν(dz):

dZt = b σ2
t dt+

√
c σt dW2,t +

∫
R+

z
(
µ (dt,dz)− σ2

t dt⊗ ν (dz)
)
, Z0 = 0.

Therefore, the instantaneous variance σ2 satisfies a stochastic affine Volterra equation of convolution
type with jumps. From now on, we denote by µ̃(dt,dz) = µ(dt,dz) − σ2

t dt ⊗ ν(dz) the compensated
jump measure of Z. Since the intensity of the jumps of σ2 is proportional to σ2 itself, the spot variance
is a Hawkes-type process, which is coherent with other models that incorporate endogeneity of financial
markets such as [26, 46, 79, 93, 113]. In the sequel, we denote by Z̃ = (Z̃t)t≥0 the process dZ̃t =√
c σt dW2,t+

∫
R+
z µ̃(dt,dz), t ≥ 0, with starting condition Z̃0 = 0. Notice that Z̃ is a square-integrable

martingale by [37, Lemma 1], see also Lemma 4.1 in Chapter 4.
According to [37, Appendix A], see Appendix 4.A of Chapter 4,

σ2 = g0 −R−bK ∗ g0 + Eb,K ∗ dZ̃, Q⊗ dt− a.e., (5.2)

where R−bK is the resolvent of the second kind of −bK and Eb,K is the canonical resolvent of K with
parameter b. We recall that the resolvent of the second kind RK for a kernel K ∈ L1

loc(R+) is the
unique solution RK ∈ L1

loc(R+) of the two equations K ∗ RK = RK ∗K = K − RK , see [96, Theorem
3.1, Chapter 2] and the subsequent definition. The canonical resolvent Eλ,K of K with parameter λ is
defined by Eλ,K = −λ−1R−λK for λ 6= 0, whereas E0,K = K.

Remark 5.1. If we assume that K and the shifted kernels K(· + 1/n), n ∈ N, satisfy Hypothesis
5.1, then under Hypothesis 5.2 the (weak) existence of the spot variance process σ2, satisfying (5.1), is
ensured by [2, Theorem 2.13] and [37, Lemma 12] (see also Lemma 4.12). Assuming weak existence,
weak uniqueness is established in [37, Corollary 15] under Hypothesis 5.1, see Corollary 4.15 in Chapter
4. We refer to [3] and [37] for more information about stochastic Volterra equations and stochastic
convolution for processes with jumps.

A useful tool for the development of the theory is the adjusted forward process, which we now define
as in Equation (4.25). For every t ≥ 0, it is denoted by (gt(s))s>t and it is a jointly measurable process
on Ω× (t,∞) such that

gt (s) = g0 (s) +

∫ t

0
K (s− r) dZr, Q− a.s., s > t. (5.3)

Thanks to [135, Theorem 46] and the fact that F satisfies the usual conditions, we can consider gt(·) to
be Ft ⊗ B(t,∞)−measurable.
Analogous arguments provide a version of the conditional expectation process E[σ2|Ft] = (E[σ2

s |Ft])s>t
which is Ft ⊗ B(t,∞)−measurable. In particular, from (5.2) (cfr. (4.73))

E
[
σ2
s

∣∣∣Ft] = g0(s)− (R−bK ∗ g0)(s) +

∫ t

0
Eb,K (s− r) dZ̃r, Q− a.s., s > t. (5.4)
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We now prescribe the dynamics of the log returns process X = (Xt)t≥0 as follows:

dXt = −
(

1

2
+

∫
R+

(
e−Λz − 1 + Λz

)
ν (dz)

)
σ2
t dt+ σt

(√
1− ρ2 dW1,t + ρ dW2,t

)
− Λ

∫
R+

z µ̃ (dt,dz) , X0 = 0, (5.5)

where ρ ∈ [−1, 1] is a correlation parameter, W1 = (W1,t)t≥0 is an F−Brownian motion independent
from W2 and Λ ≥ 0 is a leverage parameter forcing common jumps for volatility and underlying with
opposite signs. This is coherent with empirical findings in [171], stylized features studied in [52], and
the financial/econometric literature with jumps, e.g. [16, 17, 19, 26, 60, 154, 166]. We have assumed,
for the sake of readability and without loss of generality, that interest rates and dividends are zero. The
price process of the underlying asset will be S = (St)t≥0 = (S0e

Xt)t≥0, where S0 > 0 represents the
initial price. An application of Itô’s formula shows that S is a local martingale. Indeed,

dSt
St−

= −
(

1

2
+

∫
R+

(
e−Λz − 1 + Λz

)
ν (dz)

)
σ2
t dt+ σt

(√
1− ρ2 dW1,t + ρdW2,t

)
− Λ

∫
R+

z µ̃ (dt,dz) +
1

2
σ2
t dt+

∫
R+

(
e−Λz − 1 + Λz

)
µ (dt,dz)

= σt

(√
1− ρ2 dW1,t + ρdW2,t

)
+

∫
R+

(
e−Λz − 1

)
µ̃ (dt,dz) =: dNt,

where N = (Nt)t≥0 is a local martingale with N0 = 0. In particular, since S starts at S0, it follows that
S = S0E(N), where E denotes the Doléans-Dade exponential. In the next section, see Corollary 5.4,
we will improve on this result by showing that, for every T > 0, the restriction of S to [0, T ] is a true
martingale.

5.2 The Fourier–Laplace transform of the log returns

In this section we study, for a fixed T ≥ 0, the conditional Fourier-Laplace transform of XT ,
E[ewXT | Ft], t ∈ [0, T ]. Here w ∈ C is subject to suitable conditions that will be specified in the
sequel. In particular, we want to find a formula that allow us to compute the prices of options written
on the underlying asset using Fourier-inversion techniques [74, 75, 81, 95]. We will adopt the following
notation: for z ∈ C we denote by Re z and Im z the real and imaginary parts of z, respectively. We let
C+ [resp., C−] be the set of complex numbers with nonnegative [resp., nonpositive] real part.

Let us define the mapping R : C+ × C− → C by

R (u, v) =
1

2

(
u2 − u

)
+
(
b+ ρ

√
c u
)
v +

c

2
v2 +

∫
R+

[
e(v−Λu)z − u

(
e−Λz − 1

)
− 1− vz

]
ν (dz) , (5.6)

for every (u, v) ∈ C+ × C−. For the development of the theory we need the following result about
deterministic Riccati-Volterra equations, whose proof is postponed to Appendix 5.A.

Theorem 5.1. Suppose that K satisfies Hypothesis 5.1 and w ∈ C is such that Rew ∈ [0, 1].

(i) There exists a unique continuous solution ψw : R+ → C− of the Riccati-Volterra equation

ψw (t) =

∫ t

0
K (t− s)R (w,ψw (s)) ds = (K ∗R (w,ψw (·))) (t) , t ≥ 0. (5.7)

In particular, ψRew is R−−valued.
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(ii) The following inequalities hold:

Reψw (t) ≤ ψRew (t) ≤ 0, t ≥ 0. (5.8)

We also need the next preparatory lemma, which can be proven similarly to [2, Lemma 6.1].

Lemma 5.2. Let f1, f2, f3 : [0, T ] → R be bounded measurable functions such that f3 ≤ 0 in [0, T ].
Then, the Doléans-Dade exponential

E
(∫ t

0
f1 (s)σs dW1,s +

∫ t

0
f2 (s)σs dW2,s +

∫ t

0

∫
R+

(
ef3(s)z − 1

)
µ̃ (ds, dz)

)
, t ∈ [0, T ]

is a martingale.

We are now ready to state the main result of this section. We introduce for every ε ∈ R the shift
operator ∆ε, which, given I ⊂ R and a function f : I → C, assigns the function ∆εf : I− ε→ C defined
by ∆εf(t) = f(t+ ε), t ∈ I − ε.

Theorem 5.3. Suppose that K satisfies Hypothesis 5.1 and that the resolvent of the first kind L is the
sum of a locally integrable function and a point mass at 0. Moreover, suppose that the total variation
bound

sup
ε∈(0,T ]

‖∆εK ∗ L‖TV([0,T ]) <∞

holds for all T > 0. Then, under Hypothesis 5.2, for every w ∈ C such that Rew ∈ [0, 1],

E
[
exp {wXT }

∣∣∣Ft] = exp
{
Ṽt (w, T )

}
, Q− a.s., t ∈ [0, T ] , (5.9)

where Ṽt(w, T ) = wXt +
∫ T
t R(w,ψw(T − s))gt(s)ds, t ∈ [0, T ].

Proof. Let w ∈ C be such that Rew ∈ [0, 1]. Define the càdlàg, adapted, C−valued semimartingale
(Vt(w, T ))t∈[0,T ] by

Vt (w, T ) = V0 (w, T ) + wXt +

∫ t

0
ψw (T − s) dZ̃s

−
∫ t

0

(
1

2

(
w2 − w

)
+ ρ
√
cw ψw (T − s) +

c

2
ψw (T − s)2

+

∫
R+

(
e(−Λw+ψw(T−s))z − w

(
e−Λz − 1

)
− 1− ψw (T − s) z

)
ν (dz)

)
σ2
s ds,

(5.10)

V0 (w, T ) =

∫ T

0
R (w,ψw (T − s)) g0 (s) ds. (5.11)

The same arguments as in the proof of [37, Theorem 5] (see Theorem 4.5 in Chapter 4), which essentially
rely on the stochastic Fubini’s theorem (see, e.g., [153, Theorem 65, Chapter IV]), allow us to prove
that

Vt (w, T ) = Ṽt (w, T ) , Q− a.s., t ∈ [0, T ] . (5.12)
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We now define H(w, T ) = (Ht(w, T ))t∈[0,T ] = (exp{Vt(w, T )})t∈[0,T ]. By Itô’s formula and the dynamics
in (5.5) and (5.10) we have, omitting (w, T ) for sake of readability,

dHt

Ht−
=

[
w dXt −

(
c

2
ψw (T − t)2 +

∫
R+

(
e(−Λw+ψw(T−t))z − 1− w

(
e−Λz − 1

)
− ψw (T − t) z

)
ν (dz)

+
1

2

(
w2 − w

)
+ ρ
√
cw ψw (T − t)

)
σ2
t dt+ ψw (T − t) dZ̃t

]
+

1

2

(
c ψw (T − t)2 + w2

)
σ2
t dt

+ ρ
√
cw ψw (T − t)σ2

t dt+

∫
R+

(
e(−Λw+ψw(T−t))z − 1− (−Λw + ψw (T − t)) z

)
µ (dt,dz)

=

[
σt

(
w
√

1− ρ2 dW1,t +
(
wρ+

√
c ψw (T − t)

)
dW2,t

)
+

∫
R+

(
e(−Λw+ψw(T−t))z − 1

)
µ̃ (dt,dz)

]
,

with H0 = exp(V0). We define N(w, T ) = (Nt(w, T ))t∈[0,T ] by N0(w, T ) = 0 and

dNt (w, T ) = σt

(
w
√

1− ρ2 dW1,t +
(
wρ+

√
c ψw (T − t)

)
dW2,t

)
+

∫
R+

(
e(−Λw+ψw(T−t))z − 1

)
µ̃ (dt,dz) .

Then N(w, T ) is a local martingale and the previous computations show that, omitting again (w, T ),
H = exp{V0}E(N) up to evanescence, where E denotes the Doléans-Dade exponential. Therefore
H(w, T ) is a local martingale. If it is indeed a true martingale, then (5.9) directly follows from (5.12)
noting also that ṼT (w, T ) = wXT .

In order to argue the martingale property of H(w, T ), first we observe that by Lemma 5.2 the
real-valued process H(Rew, T ) = (Ht(Rew, T ))t∈[0,T ] = (exp{Vt(Rew, T )})t∈[0,T ] is a true martingale.
Secondly, we invoke [37, Corollary 11], see Corollary 4.11 in Chapter 4, to obtain the following alternative
expression for V (w, T ) (an analogous one holds for V (Rew, T ))

Vt (w, T ) = wXt +

∫ T−t

0
R (w,ψw (s)) g0 (T − s) ds+ ψw (T − t)L ({0})

(
σ2 − g0

)
(t)

+
(
dΠT−t ∗

(
σ2 − g0

))
(t) , for a.e. t ∈ (0, T ) , Q− a.s., (5.13)

where for every ε > 0, Πε(t) =
∫ ε

0 R(w,ψw(s))(∆ε−sK ∗L)(t)ds, t ≥ 0, is a locally absolutely continuous
function. The application of this result is legitimate because the procedure carried out in [37] (see also
Chapter 4) to infer (5.13) only depends on (5.1), (5.7) and the boundedness on compact intervals of
R+ of R(w,ψw(·)), and does not rely on the expression of R. A similar argument together with (5.8)
and Hypothesis 5.2 allows us to parallel the comparison method in the proof of [37, Theorem 14], see
Theorem 4.14 in Chapter 4, to conclude that there is a constant C > 0 such that

|Ht (w, T )| = |exp {Vt (w, T )}| = exp {ReVt (w, T )} ≤ C exp {Vt (Rew, T )} = CHt (Rew, T ) ,

for t ∈ [0, T ], Q− a.s. At this point it is sufficient to invoke [112, Lemma 1.4] to claim that H(w, T ) is
a true martingale, hence the proof is complete. �

From the previous theorem we deduce the martingale property of our price process S with a direct
approach (it can also be obtained by Lemma 5.2).
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Corollary 5.4. Under the hypotheses of Theorem 5.3, the price process S = (St)t∈[0,T ] is a martingale.

Proof. The computations at the end of Section 5.1 show that the stock price S is a nonnegative local
martingale, hence it is a supermartingale. In order for it to be a martingale, it is sufficient to show that
E[ST ] = S0. By (5.9) in Theorem 5.3 with w = 1 we have

E [ST ] = S0 exp

{∫ T

0
R (1, ψ1 (T − s)) g0 (s) ds

}
.

From (5.6)-(5.7), we observe that ψ1 ≡ 0 in R+. This implies that R(1, ψ1(·)) = 0 in R+, which
concludes the proof. �

Equation (5.9) in Theorem 5.3 gives a semi-explicit expression to compute the Fourier-Laplace
transform ΨXT of XT in a suitable region of C, namely

ΨXT (w) = exp

{∫ T

0
R (w,ψw (T − s)) g0 (s) ds

}
, w ∈ C such that Rew ∈ [0, 1] . (5.14)

As shown in the following proposition, whose proof is in Appendix 5.B, we can use ΨXT to price options
with maturity T on the underlying asset S via Fourier-inversion techniques.

Proposition 5.5. Fix a log strike k > 0. Then, under the hypotheses of Theorem 5.3, the price CS(k, T )
of a call option on the underlying asset S with log strike k and maturity T is

CS (k, T ) = S0 −
1

π

√
S0ek

∫
R+

Re

[
eiλ(log(S0)−k)ΨXT

(
1

2
+ iλ

)]
1

1
4 + λ2

dλ, (5.15)

and the price PS(k, T ) of a put option with the same log strike, maturity and underlying is

PS (k, T ) = ek − 1

π

√
S0ek

∫
R+

Re

[
eiλ(log(S0)−k)ΨXT

(
1

2
+ iλ

)]
1

1
4 + λ2

dλ. (5.16)

Remark 5.2. The expression in (5.15) coincides with [130, Formula (3.11)], but we have to indepen-
dently prove it (see Appendix 5.B). Indeed, in [130] the author obtains (5.15) starting from the inversion
of the generalized Fourier transform of the payoff function w(x) = (ex − ek)+, x ∈ R, of a call option
with log strike k (here x represents the log price). Namely, for x ∈ R,

w (x) = − 1

2π

∫ izi+∞

izi−∞

ek(iz+1)

z2 − iz
e−izxdz, zi > 1.

If we were to follow the same approach here, then we would find a problem: we only have proved that
ΨXT is defined for complex numbers with real part in [0, 1]. Therefore, in the previous expression, we
would need zi ∈ [0, 1], which is a contradiction. This setback cannot be immediately fixed by considering
put options and then applying the put-call parity formula, because again the intersection between the
complex strip (zi < 0), where the Fourier transform for the payoff function is defined, and the strip
where ΨXT (−i ·) is available is empty. We refer to [165, Section 4] for a survey of pricing based on
Fourier-inversion techniques.
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5.3 The Fourier–Laplace transform of VIX2

In this section the underlying asset S represents the SPX index. Then, according to the CBOE VIX
white paper and [68], the theoretical value of VIX=(VIXT )T≥0 is

VIXT =

√(
−2

δ
E
[
XT+δ −XT

∣∣FT ])+

× 100, T ≥ 0. (5.17)

Here δ = 1
12 and represents 30 days, the time to expiration of the log contracts involved in the com-

putation of the index. Note that in (5.17), the positive part has been inserted to guarantee the good
definition of the random variable VIXT in the whole space Ω, however the radicand is nonnegative
Q−a.s., as we are about to show.

We first derive, in the following theorem, an expression for E[XT+δ − XT |FT ], T ≥ 0, in terms of
the adjusted forward process at time T , gT (·).

Theorem 5.6. The log contract satisfies an infinite dimensional affine relation with respect to the
adjusted forward process. More specifically,

E
[
XT+δ −XT

∣∣FT ] = c1

∫ T+δ

T
(1 + b (Eb,K ∗ 1) (T + δ − s)) gT (s) ds ≤ 0, Q− a.s., (5.18)

where c1 = −(1
2 +

∫
R+

(e−Λz − 1 + Λz)ν(dz)).

Proof. By (5.5) and the martingale property of the local martingale part of the expression (see [37,
Lemma 1] or Lemma 4.1 in Chapter 4), we have

E
[
XT+δ −XT

∣∣FT ] = c1

∫ T+δ

T
E
[
σ2
s

∣∣FT ]ds, Q− a.s.

Recalling that σ2 ≥ 0, Q⊗ dt−a.e., we infer that E[σ2
s |FT ] ≥ 0 for a.e. s > T, Q−a.s., hence the value

of a log contract at time T is nonpositive Q−a.s.
By (5.2), (5.4), the stochastic Fubini’s theorem – whose application is guaranteed by [37, Lemma 1],

see also Lemma 4.1 – and a suitable change of variables, we infer that, Q−a.s.

c−1
1 E

[
XT+δ −XT

∣∣FT ] =

∫ T+δ

0
f0 (s) ds−

∫ T

0
σ2
s ds+

∫ T+δ

0

(∫ T

0
1{r≤s}Eb,K (s− r) dZ̃r

)
ds

=

∫ T+δ

0
f0 (s) ds−

∫ T

0
σ2
s ds+

∫ T

0
(Eb,K ∗ 1) (T + δ − r) dZ̃r

=

∫ T+δ

0
f0 (s) ds−

∫ T

0
(1 + b (Eb,K ∗ 1)) (T + δ − s)σ2

s ds+

∫ T

0
(Eb,K ∗ 1) (T + δ − r) dZr, (5.19)

where f0 = g0 − R−bK ∗ g0. Notice that Eb,K ∗ 1 is the unique, continuous (nonnegative) solution of
the linear Volterra equation χ = K ∗ (1 + bχ). Then, another application of stochastic Fubini’s theorem
yields, Q−a.s.,∫ T

0
(Eb,K ∗ 1) (T + δ − r) dZr =

∫ T

0

(∫ T+δ

r
K (s− r) (1 + b (Eb,K ∗ 1) (T + δ − s)) ds

)
dZr

=

∫ T+δ

0
(1 + b (Eb,K ∗ 1) (T + δ − s))

(∫ T

0
1{r≤s}K (s− r) dZr

)
ds.
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To conclude, we observe that by [96, Theorem 2.2 (viii), Chapter 2]

− ((R−bK ∗ g0) ∗ 1) (T + δ) = b ((Eb,K ∗ 1) ∗ g0) (T + δ) ,

and plugging the previous two equalities in (5.19), together with (5.1), (5.3), we obtain the relation in
(5.18). �

We deduce the following corollary showing an affine relation between the square of the VIX index
and the adjusted forward process.

Corollary 5.7. The square of VIX satisfies an infinite dimensional affine relation with respect to the
adjusted forward process. More specifically

VIX2
T = −104 2

δ
E
[
XT+δ −XT

∣∣FT ] , Q− a.s.

= −104 2

δ
c1

∫ T+δ

T
(1 + b (Eb,K ∗ 1) (T + δ − s)) gT (s) ds, Q− a.s.,

(5.20)

where c1 = −(1
2 +

∫
R+

(e−Λz − 1 + Λz)ν(dz)).

Remark 5.3. Our framework also allows us to obtain an explicit infinite dimensional affine relation
between the variance swaps and the adjusted forward process. Specifically, the variance swap rate is

1

δ
E
[
[X,X]T+δ − [X,X]T

∣∣FT ] =
c2

δ

∫ T+δ

T
(1 + b (Eb,K ∗ 1) (T + δ − s)) gT (s) ds, Q− a.s., (5.21)

where c2 = 1+Λ2
∫
R+
|z|2ν(dz). Note that for Λ = 0 we have c2 = −2c1, hence in this case log contracts

and variance swaps coincide up to the factor −2/δ (see (5.18)-(5.21)). Therefore, when there are no
jumps in the dynamics of the underlying, by (5.20) we recover the fact that VIX2 is a variance swap.
Moreover, observe that the relation in (5.21) is an extension of [118, Lemma 4.4] in the classical affine
setting. We refer to [54, 68, 132] for more details regarding the distinction between variance swaps and
VIX2.

We are now interested in finding the conditional Fourier-Laplace transform of VIX2
T . Before address-

ing this question, we need some technical intermediate steps. We first recall the following functional
space as defined in [4], see also (4.82) and the subsequent phrase.

GK = {g : R+ → R continuous : g (0) ≥ 0 and
∆εg − (∆εK ∗ L) (0) g − d (∆εK ∗ L) ∗ g ≥ 0, ε ≥ 0} . (5.22)

Lemma 5.8. Suppose that K satisfies Hypothesis 5.1. Define the function h : R+ → R by

h (t) = −104 2

δ
c1 [1 + b (Eb,K ∗ 1) (δ − t)] 1{t≤δ}, t ≥ 0.

Then h is a continuous nonnegative function on [0, δ) and t 7→
∫
R+
h(s)K(s+ t)ds belongs to GK .

Proof. The first step is to show that 1 + b(Eb,K ∗1) ≥ 0 in R+, which implies that h is also nonnegative.
This can be deduced from the fact that this function is the unique, continuous solution in R+ of the
Volterra equation χ = 1 + bK ∗ χ, which is nonnegative by [5, Theorem C.1]. Secondly, h has compact
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support, and under Hypothesis 5.1 for every ε ≥ 0 the function ∆εK∗L is right-continuous nondecreasing
in R+ and (see the proof of [8, Lemma 2.6])

∆εK = (∆εK ∗ L) (0)K + d (∆εK ∗ L) ∗K, dt− a.e. in R+.

As a consequence, for every t ≥ 0

∆εK (s+ t) = (∆εK ∗ L) (0)K (s+ t) + (d (∆εK ∗ L) ∗K) (s+ t)

≥ (∆εK ∗ L) (0)K (s+ t) +

∫ t

0
K (s+ t− u) d (∆εK ∗ L) (u) , for a.e. s ∈ [0, δ] .

This implies, by Tonelli’s theorem, that t 7→
∫
R+
h(s)K(s+ t)ds belongs to GK . �

We now define, for every w ∈ C−, the function hw(t) = w · h(t), t ≥ 0, and consider the Riccati-
Volterra equation

φw =

∫ ∞
0

hw (s)K (s+ ·) ds+K ∗ (G (φw (·))) , (5.23)

where
G (u) = bu+

c

2
u2 +

∫
R+

(euz − 1− uz) ν (dz) , u ∈ C−. (5.24)

Lemma 5.9. Suppose that K satisfies Hypothesis 5.1. For every w ∈ C−, there exists a unique contin-
uous solution φw : R+ → C− to (5.23). Moreover,

Reφw (t) ≤ φRew (t) , t ≥ 0. (5.25)

Proof. Having in mind [5, Theorem C.1], the existence of a global solution of (5.23) can be deduced as
in [37, Theorem 13] (see Theorem 4.13 in Chapter 4), whereas the uniqueness of such φw is obtained
with a procedure analogous to the proof of Theorem 5.1, see Step III with Λ = 0 in Appendix 5.A.
Moreover, again by analogy with [37, Theorem 13 (ii)], see Theorem 4.13 (ii), the comparison result
(5.25) holds. �

Before stating the theorem that provides the conditional Fourier-Laplace transform of VIX2
T , we

define
Φw (t, s) = hw (s− t) 1{s≥t} +G (φw (t− s)) 1{s<t}, t, s ≥ 0. (5.26)

Theorem 5.10. Assume the same hypotheses as in Theorem 5.3. Then, for every w ∈ C−,

E
[
exp

{
w ·VIX2

T

} ∣∣∣Ft] = exp
{
Ũt (w, T )

}
, Q− a.s., t ∈ [0, T ] , (5.27)

where Ũt(w, T ) =
∫∞
t Φw(T, s)gt(s)ds, t ∈ [0, T ].

Proof. Fix w ∈ C−. First of all, notice that by the definition of hw and (5.20)

ŨT (w, T ) =

∫ ∞
T

hw (s− T ) gT (s) ds = −104 2

δ
c1w

∫ T+δ

T
(1 + b (Eb,K ∗ 1) (T + δ − s)) gT (s) ds

= w ·VIX2
T , Q− a.s. (5.28)
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We introduce the process (cfr. (4.31))

ḡT (s) =

{
σ2
s , s ∈ [0, T ] ,

gT (s) , s > T.

Note that by (5.1) and (5.3), ḡT (·) is a joint measurable modification of g0 +
∫ T

0 1{r≤·}K(· − r)dZr. For
every t ∈ [0, T ], the stochastic Fubini’s theorem, (5.23), (5.26), and suitable changes of variables, yield∫ ∞

0
Φw (T, s) (ḡt (s)− g0 (s)) ds =

∫ ∞
0

Φw (T, s)

(∫ t

0
1{u≤s}K (s− u) dZu

)
ds

=

∫ t

0

(∫ ∞
0

hw (s)K (s+ T − u) ds+

∫ T−u

0
K (s)G (φw (T − u− s)) ds

)
dZu

=

∫ t

0
φw (T − u) dZu, Q− a.s. (5.29)

Moreover, by (5.26), the following equality holds:∫ t

0
Φw (T, s)σ2

s ds =

∫ t

0
hw (s− T ) 1{s≥T}σ

2
s ds+

∫ t

0
G (φw (T − s))σ2

s ds

=

∫ t

0
G (φw (T − s))σ2

s ds. (5.30)

Recalling the definition of Ũt(w, T ), we combine (5.29) and (5.30) to write

Ũt (w, T ) =

∫ ∞
t

Φw (T, s) g0 (s) ds+

∫ ∞
0

Φw (T, s) (ḡt (s)− g0 (s)) ds−
∫ t

0
Φw (T, s)

(
σ2
s − g0 (s)

)
ds

=

∫ ∞
0

Φw (T, s) g0 (s) ds+

∫ t

0
φw (T − u) dZu −

∫ t

0
G (φw (T − s))σ2

s ds, Q− a.s. (5.31)

In the sequel we denote by U(w, T ) = (Ut(w, T ))t∈[0,T ] the càdlàg process defined by the rightmost side of
(5.31). An application of Itô’s formula together with (5.24) shows that E(w, T ) = (exp{Ut(w, T )})t∈[0,T ]

is a local martingale, namely E(w, T ) = exp{
∫∞

0 Φw(T − s)g0(s)ds}E(Ñ(w, T )), where E denotes the
Doléans-Dade exponential and Ñ(w, T ) = (Ñt(w, T ))t∈[0,T ] is defined by

dÑt (w, T ) =
√
c φw (T − t)σt dW2,t +

∫
R+

(
eφw(T−t)z − 1

)
µ̃ (dt,dz) , Ñ0 (w, T ) = 0.

If E(w, T ) is a true martingale, then (5.27) follows from (5.28) and (5.31). As in the proof of Theorem
5.3, we search for an expression of U(w, T ) which is affine on the past trajectory of σ2. However, we
cannot directly invoke [37, Theorem 10], see also Theorem 4.10 in Chapter 4, due to the different
structure of the Riccati-Volterra equation in (5.23) and of the process U(w, T ) itself. Fortunately, we
can adapt the procedure in the proof of [37, Theorem 10] or Theorem 4.10. Specifically, thanks to the
local boundedness of Φw(T, ·) (see (5.26)), Q−a.s.,

Ut (w, T ) =

∫ T+δ

t
Φw (T, s) g0 (s) ds+ φw (T − t)Zt +

(
πT+δ−t ∗

(
σ2 − g0

))
(t) , for a.e. t ∈ (0, T ) .
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Here the functions

πT+δ−t(u) =

∫ T+δ−t

0
Φw(T, T + δ − s)((∆T+δ−t−sK)′ ∗ L)(u)ds, t ∈ (0, T ),

are well defined for almost every u ∈ R+ and belong to L1
loc(R+). At this point, for every t ∈ (0, T ) we

introduce the locally absolutely continuous function

Π̃T+δ−t (u) =

∫ u

0
πT+δ−t (s) ds+ φw (T − t)L ([0, u])

=

∫ T+δ−t

0
Φw (T, T + δ − s) ((∆T+δ−t−sK) ∗ L) (u) ds, u ≥ 0,

where the second equality is due to (5.23) and a suitable change of variables. Therefore, also recalling
(5.1), the previous formula for U(w, T ) can be rewritten as, Q−a.s., for a.e. t ∈ (0, T ),

Ut (w, T ) =

∫ T+δ

t
Φw (T, s) g0 (s) ds+

(
dΠ̃T+δ−t ∗

(
σ2 − g0

))
(t) + φw (T − t)L ({0})

(
σ2 − g0

)
(t) ,

which is an affine expression in terms of the past trajectories of σ2. Now by Lemma 5.2 the real-valued
process E(Rew, T ) = (exp{Ut(Rew, T )})t∈[0,T ] is a true martingale. Thus, thanks to (5.25), we can
parallel the comparison argument in the proof of [37, Theorem 14], see also Theorem 4.14 in Chapter 4
to deduce that

|exp {Ut (w, T )}| = exp {ReUt (w, T )} ≤ C exp {Ut (Rew, T )} , t ∈ [0, T ] , Q− a.s.,

for some constant C > 0. An application of [112, Lemma 1.4] completes the proof. �

5.3.1 VIX put options and futures prices

Theorem 5.10 provides a semi-explicit formula for the Fourier-Laplace transform λT of VIX2
T in C−,

namely

λT (w) = E
[
exp

{
w ·VIX2

T

}]
= exp

{∫ ∞
0

Φw (T, s) g0 (s) ds

}
= exp

{∫ δ

0
hw (s) g0 (s+ T ) ds+ (g0 ∗G (φw (·))) (T )

}
, w ∈ C−. (5.32)

This allows us to price put options written on VIX with the Fourier-inversion technique for the bilateral
Laplace transform shown in [47]. More specifically, for a log strike k ∈ R, the payoff function of such
options defined on the whole real line is w(x) = (ek −

√
x+)+, x ∈ R, where x+ represents VIX2. Then,

denoting by P (k, T ) the price of a put option with maturity T (and log strike k) we have (cfr. [47,
Equations (7.6)-(7.8)])

P (k, T ) = E
[(
ek −VIXT

)+
]

= − 1

4
√
πi

∫ zr+i∞

zr−i∞

erf
(
ek
√
z
)

z3/2
λT (z) dz

= − 1

4
√
π

∫
R

Re

[
erf
(
ek
√
zr + iu

)
(zr + iu)3/2

λT (zr + iu)

]
du

= − 1

2
√
π

∫
R+

Re

[
erf
(
ek
√
zr + iu

)
(zr + iu)3/2

λT (zr + iu)

]
du, zr < 0. (5.33)
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Here erf represents the error function erf z = 2√
π

∫ z
0 e
−t2dt, z ∈ C, and for z ∈ C and a ≥ 0, we consider

the power za = Λaeiaθ, where z = Λeiθ with Λ ≥ 0, θ ∈ (−π, π]. In particular, we write
√
z = z1/2.

The last equality in (5.33) is due to the fact that the integrand is even. Indeed, this follows from the
well-known symmetry relation erf z̄ = erf z, z ∈ C, as well as the identities (for u 6= 0)

Re
(√
zr + iu

)
=

√
zr +

√
z2
r + u2

2
, Im

(√
zr + iu

)
= sgn (u)

√
−zr +

√
z2
r + u2

2
.

Moreover, we can use λT to determine E[VIXT ], i.e., the futures price of VIX at time T . In order
to do this, notice that for every x ≥ 0 the function (

√
πs)−1(e−xs − 1) +

√
x erf(

√
sx), s > 0, is an

antiderivative of (2
√
π)−1(1 − e−xs)s−3/2, s > 0. From this relation we deduce the following integral

representation for the square-root function

√
x+ =

1

2
√
π

∫ ∞
0

1− e−sx+

s
3
2

ds, x ∈ R.

An application of Tonelli’s theorem yields

E [VIXT ] =
1

2
√
π

∫ ∞
0

1− λT (−s)
s

3
2

ds. (5.34)

Remark 5.4. Taking w = it, t ∈ R, in (5.14) and (5.32), we obtain semi-explicit expressions for
the characteristic functions of XT and VIX2

T . As a consequence, option pricing on the underlying
and the corresponding volatility index can be performed via standard characteristic function inversion
algorithms different from the formulae in (5.15), (5.16) and (5.33). An analogous argument applies to
the VIX futures prices in (5.34). Among such Fourier-based techniques, the COS method (see [80])
could provide a computationally efficient alternative. However, utilizing the COS method would require
an analysis of the truncation domain using the cumulants of XT and VIX2

T . Considering that an optimal
implementation of the model (5.1)-(5.5) is not the main objective of the present chapter (see also Remark
5.5 and Section 5.5), we postpone the improvement of efficiency, possibly using the COS method itself,
to future research specifically focusing on the numerical aspects of the rough Hawkes Heston model.

5.4 Numerical approximation of the model

According to the formulae in (5.15)-(5.16) and (5.33), in order to price options on S and VIX with
maturity T , one needs to compute ΨXT (w1) and λT (w2), where w1, w2 belong to appropriate regions
of C. In addition, the values λT (−s), s ≥ 0, are also necessary to determine the futures price of VIX
at time T . Consequently, looking at the expressions of these Fourier-Laplace transforms in (5.14) and
(5.32), the solutions of the Riccati-Volterra equations (5.7) and (5.23), i.e., ψw1 , φw2 and φ−s, have to
be approximated on the interval [0, T ]. Among the available numerical methods to approximate them
we choose the multi-factor scheme suggested in [5]. Another possibility would be to use the Adams
scheme [71, 72], hybrid schemes as in [45], or an adaptation of the multi-factor hybrid approach in [160].

The multi-factor scheme consists in approximating the kernelK with a weighted sum of exponentials,
namely with functions Kn, n ∈ N, of the form

Kn (t) =

n∑
j=1

mj,ne
−xj,nt, t ≥ 0, (5.35)
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where mj,n, xj,n > 0, j = 1, . . . , n. In what follows, we write m = {mj,n| j = 1, . . . , n, n ∈ N} and
x = {xj,n| j = 1, . . . , n, n ∈ N}. Notice that Kn, n ∈ N, is completely monotone on (0,∞), meaning
that it is nonnegative and infinitely differentiable on this interval, with nonpositive [resp., nonnegative]
odd [resp., even] k−derivative, k ∈ N. More details about this approximation and the idea behind it
can be found in Remark 5.5 below and in the references therein.

Given n ∈ N and w ∈ C such that Rew ∈ [0, 1], we now introduce the Riccati-Volterra equation

ψw,n (t) =

∫ t

0
Kn (t− s)R (w,ψw,n (s)) ds = (Kn ∗R (w,ψw,n (·))) (t) , t ≥ 0. (5.36)

Note that the existence and uniqueness of ψw,n is guaranteed by Theorem 5.1 (i), because Kn satisfies
Hypothesis 5.1. The advantage in considering (5.36) instead of (5.7) is that its solution ψw,n can be
obtained by numerically solving a system of integral equations with standard methods. More precisely,
ψw,n(t) =

∑n
j=1mj,nψ

(j)
w,n(t) for every t ≥ 0, where

ψ(j)
w,n (t) = e−xj,nt

∫ t

0
exj,nsR

(
w,

n∑
k=1

mk,nψ
(k)
w,n (s)

)
ds, j = 1, . . . , n.

Analogously, for every n ∈ N and w ∈ C−, we consider the Riccati-Volterra equation

φw,n (t) =

∫ ∞
0

hw (s)Kn (s+ t) ds+ (Kn ∗ (G (φw,n (·)))) (t) , t ≥ 0. (5.37)

We have that φw,n(t) =
∑n

j=1mj,nφ
(j)
w,n(t), t ≥ 0, with

φ(j)
w,n (t) = e−xj,nt

(∫ ∞
0

hw (s) e−xj,nsds+

∫ t

0
exj,nsG

(
n∑
k=1

mk,nφ
(k)
w,n (s)

)
ds

)
, j = 1, . . . , n.

The following theorem offers an estimate on the uniform distance on [0, T ] between ψw and ψw,n, as
well as between φw and φw,n. In the former case, it generalizes [5, Theorem 4.1] to our framework
with jumps. Its proof, which we postpone to Appendix 5.C, relies on results related to Riccati-Volterra
equations which are proved in Appendix 5.A.

Theorem 5.11. Assume that K satisfies Hypothesis 5.1. Let T > 0 and denote by Eλ,n the canonical
resolvent of Kn with parameter λ ∈ R, n ∈ N.

(i) Suppose that
∫ T

0 |Eb+ρ+
√
c,n(s)|ds ≤ C̃ for every n ∈ N, where C̃ = C̃(ρ, b,m,x, T ) > 0. Then

there exists a constant C = C(ρ, b, c,Λ, ν,m,x, T ) > 0 such that, for every w ∈ C with Rew ∈ [0, 1]
and n ∈ N,

sup
t∈[0,T ]

|ψw (t)− ψw,n (t)| ≤ C
(

1 + |Imw|6
)∫ T

0
EC(1+|Imw|2),K (s) ds

×
∫ T

0
|Kn (s)−K (s)| ds. (5.38)

In addition, if b < 0 and ρ < 0 then the constant C does not depend on m or x, and the dependence
on T is via ‖K‖L1([0,T ]).
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(ii) Suppose that
∫ T∨δ

0 |Eb+,n(s)|ds ≤ C̃ for every n ∈ N, where C̃ = C̃(b,m,x, T, δ) > 0. Then there
exists a constant C = C(b, c,Λ, ν,m,x, T, δ) > 0 such that, for every w ∈ C− and n ∈ N,

sup
t∈[0,T ]

|φw (t)− φw,n (t)| ≤ C
(

1 + |w|6
)∫ T

0
EC(1+|w|2),K (s) ds

∫ T∨δ

0
|Kn (s)−K (s)| ds. (5.39)

Remark 5.5. When the kernel K is completely monotone, a standard way to determine m and x in
(5.35) relies on the Bernstein-Widder theorem (see, e.g., [96, Theorem 2.5, Chapter 5]), according to
which there exists a nonnegative measure µ on R+ such that K(t) =

∫
R+
e−xtµ(dx), t > 0. Approxi-

mating µ with a weighted sum of Dirac measures gives Kn. More specifically, for a fixed n ∈ N, it is
customary to take a strictly increasing sequence of nonnegative numbers (ρj,n)j=0,...,n, and then choose,
for every j = 1, . . . , n,

mj,n =

∫ ρj,n

ρj−1,n

µ (dy) , xj,n = m−1
j,n

∫ ρj,n

ρj−1,n

y µ (dy) . (5.40)

We mention that in some instances (most notably when K is the fractional kernel, see for instance [1,
Lemma A.3] and [5, Proposition 3.3]) it is possible to show the convergence Kn → K in L2

loc(R+).
Thanks to [96, Theorem 3.1, Chapter 2], this ensures the validity of the hypotheses required in both
points of Theorem 5.11, and therefore the convergence of the multi-factor scheme.

We remark that (5.40) is not an optimal choice for the exponential approximation (5.35) when it
comes to efficiency. In this regard, better solutions can be found in [160, Section 5], where an extensive
numerical analysis with comparisons among different approximation methods is presented for the rough
fractional kernel. It is also important to mention the recent work in [20], which provides good low-factor
approximations using higher-order quadrature rules for the choice of the nodes and weights. For the
numerical application we use the nodes and weights in (5.40) because, as explained in the following
section, this is sufficient for our calibration purposes.

5.5 Calibration

We have shown that Fourier-based methods can be applied to the rough Hawkes Heston model
in order to price options on the underlying and the corresponding volatility index. Based on these
techniques, in this section we calibrate a parsimonious specification of the rough Hawkes Heston model
to S&P 500 and VIX options data on May 19, 2017. This is the same data set as in [91]. In Table 5.3
[resp., Table 5.4] we report the strikes and maturities of the SPX options [resp., VIX options] considered
for the calibration. Our objective is to minimize the relative RMSE (root-mean-square error) between
market and theoretical implied volatilities of both SPX and VIX options. More precisely, denoting by
Θ the parameters of the model, the goal of the calibration procedure is to determine

arg min
Θ

√√√√∑
i,j

(
σmkt

SPX (Ti,Kj)− σΘ
SPX (Ti,Kj)

σmkt
SPX (Ti,Kj)

)2

+
∑
i,j

(
σmkt

VIX (Ti,Kj)− σΘ
VIX (Ti,Kj)

σmkt
VIX (Ti,Kj)

)2

. (5.41)

The implied volatilities of VIX options are computed with respect to market futures. As we will explain
below, after calibration, model futures approximate well market futures (see Figure 5.7).

As it is customary in rough volatility models, for our parametrization we choose a power kernel of
the form K(t) = tα−1/Γ(α), α ∈ (1/2, 1]. We then approximate it with the sum of exponentials in
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(5.35), considering n = 200. The weights mj,200 and mean reversion terms xj,200, j = 1, . . . , 200, are
computed according to (5.40), where ρj,200 = rj−100, j = 0, . . . , 200, r > 1, is the geometric partition.
In this setting, the integrals in (5.40) can be computed explicitly, see [1, Equation (3.3)]. In order to
select r we follow [1, Remark 3.2], namely

r̄ = arg min
r>1
‖K −K200‖L2([0,0.091]) .

We refer to [49, Equation (5.2)] for an explicit expression of the functional to minimize. Here we take
the L2−norm in [0, 0.091] because T = 0.091 is the longest maturity that we consider for the calibration.
However, the sensitivity of the model with respect to the upper bound of the interval is negligible. In
the sequel, we denote the multi-factor kernel corresponding to r̄ by K̄200.
By analogy with the rough Heston model introduced and studied in [78, 79], we consider an initial input
curve g0 of the form

g0 (t) = σ2
0 + β

∫ t

0
K (s) ds = σ2

0 +
β

Γ(α+ 1)
tα, t ≥ 0, (5.42)

where σ2
0, β ≥ 0. Note that the structure of g0 in (5.42) is quite restrictive, but it allows to keep the

model parsimonious with a small number of parameters. Indeed, the initial variance curve in (5.42)
is specified only by σ2

0 and β. Our choice is also justified by the fact that we focus on short time-to-
maturity options, so the lack of flexibility for g0 is not a drawback in our application. More general
forms of g0 or expressions extracted from the replication formula for the log-contract as in [7, Equation
(5.1)] can be used to calibrate VIX smiles for longer times-to-maturity. In our numerical illustration, we
consider the kernel K̄200 and g0 as in (5.42). These choices guarantee the well-posedness, in the weak
sense, of (5.1), because K̄200 is completely monotone and g0 satisfies Hypothesis 5.2 (see Remark 5.1).
For the law of the jumps, to keep the number of parameters low we choose an exponential distribution
with rate 1, ν(dz) = exp(−z) dz. Our parsimonious specification of the model has therefore – other
than the two parameters (β, σ2

0) related to g0 – five evolution-related parameters (α, ρ, b, c,Λ). Like in
[91], we concentrate on short maturities for which, as pointed out in [99], “VIX derivatives are most
liquid and the joint calibration is most difficult.” The resulting calibrated parameters are reported in
Table 5.1.

α ρ b c Λ β σ2
0

0.506 -0.737 -2.008 0.156 0.242 0.048 0.0074

Table 5.1: Calibrated parameters for the rough Hawkes Heston model.

Starting from the values in Table 5.1, we then minimize the following functional of Θ, which takes into
account the relative number of SPX/VIX options in the sample considered for the calibration:

c1

√√√√∑
i,j

(
σmkt

SPX (Ti,Kj)− σΘ
SPX (Ti,Kj)

σmkt
SPX (Ti,Kj)

)2

+ c2

√√√√∑
i,j

(
σmkt

VIX (Ti,Kj)− σΘ
VIX (Ti,Kj)

σmkt
VIX (Ti,Kj)

)2

,

where c1 = 71.4%, c2 = 28.6%.

However, no significant changes in the parameters have to be reported.
We observe that the value of α in Table 5.1 is very close to its lower bound limit 0.5. This is coherent

with previous estimates in the rough volatility literature, see for instance [12, 21, 24, 76, 87, 90, 91].
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Figure 5.1: On the left, the approximation of the fractional kernel with the multi-factor kernel K̄200 in the domain
[ 1
500

, 0.091]. Here α = 0.506. On the right, the corresponding log-log plot.

Figure 5.2: On the left, the power-law kernel K̃ (see (5.43)) fitting K̄200, with α = 0.506, in the domain [ 1
500

, 0.091]. On
the right, the corresponding log-log plot.

On the other hand, such a small value of α causes the approximation of the fractional kernel K via the
sum of exponentials K̄200 to deteriorate, despite the high number of factors considered (n = 200). This
is shown in Figure 5.1. Nonetheless, K̄200 still approximates well the singular kernel

K̃(t) = 0.485 t0.519−1, t > 0, (5.43)

as shown in Figure 5.2 and is able to reproduce a power law for the ATM implied volatility skew as
illustrated in Figure 5.12. In this regard, more efficient exponential representations such as those pro-
posed in [20, 160] could give a better approximation of the fractional kernel, while reducing the number
of factors n in (5.35), with a significant improvement in computational cost. This kind of numerical
analysis is, however, beyond the scope of this chapter. Furthermore, we remark that the recent study [6],
comparing different types of kernels (fractional, log-modulated, shifted and exponential) in a Gaussian
Volterra driven setup, concludes that a conventional one factor, Markovian exponential kernel is able
to jointly fit the SPX/VIX smiles outperforming its rough and non-rough path-dependent counterparts.
Since the theoretical study of the previous sections covers a wide range of kernels (e.g., completely
monotone), an interesting question is whether a similar behavior is exhibited in our framework. This
important question could be addressed in futures studies of efficient approximations and variants of the
rough Hawkes Heston model.

The estimation of the correlation parameter ρ is also in line with empirical estimates, e.g. [52], and
what is commonly known as the leverage effect [60, 76, 133]. We notice that for the joint calibration
we can keep the vol-of-vol parameter c small because an important part of the volatility fluctuation is
captured by the self-exciting jumps controlled by the parameters α and Λ. This responds to the issue,
raised in [99], that the “very large negative skew of short-term SPX options, which in continuous models
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implies a very large volatility of volatility, seems inconsistent with the comparatively low levels of VIX
implied volatilities.”

The calibrated implied volatility smiles for S&P 500 and VIX options are plotted in Figures 5.4
and 5.6, respectively. We zoom the calibration of the S&P 500 options at-the-money in Figure 5.5.
Figure 5.7 focuses on the VIX term structure, which we do not include in the functional (5.41) used
for the calibration. We remark that the term structure of the model is not flexible enough to perfectly
reproduce the shape of the market VIX futures, mainly due to a change of convexity. However, the
maximal relative distance between market and model data is ∼ 0.5%, which is decent considering that
we have implicitly assumed a “flat” initial volatility curve, see (5.42). Furthermore, Figure 5.8 shows the
implied volatility smile for S&P 500 options with expiration T = 0.179 (July 21st, 2017): one month
after the last, calibrated maturity T = 0.091. Despite the fact that T = 0.179 is not included in (5.41),
the model is able to replicate market implied volatility smiles with an accuracy comparable to the other
maturities considered for S&P 500 options (cfr. Figure 5.4). Overall, these graphs show that the model
fits remarkably well both S&P 500 and VIX implied volatilities.

The shape of the smile at-the-money for S&P 500 options is well-captured and the distance to
the bid-ask corridor – across the maturities – is at most of one bid-ask spread. For the two shortest
maturities, most of the model implied volatilities at-the-money are actually inside the bid-ask corridor.
The fit is not perfect for very negative log-moneyness. This is also seen – possibly to a less extent – in
the quadratic rough Heston model [91]. We conjecture that, at the cost of increasing the complexity of
the model, even better results could be obtained if we replace the exponential law for the jumps by a
law with Pareto tails as suggested in [52, 114] and the references therein. Regarding the VIX implied
volatilities, we observe that – even for options deep out-of-the-money – the model implied volatilities
stay almost systematically within the bid-ask corridor, whether it is calculated using call or for put
options.

5.5.1 Calibration with the rough Heston model

The model (5.1)-(5.5) proposed in this chapter is an extension of the rough Heston model (see
[78, 79]), obtained by adding a jump component with intensity proportional to the spot variance σ2.
In particular, the rough Heston model can be recovered from (5.1)-(5.5) by setting ν(dz) = 0. In
Introduction and Section 5.1, we justify the presence of self-exciting jumps common to the underlying
and the volatility based on empirical evidence of jump-clustering phenomena and endogeneity of financial
markets. The purpose of this part (see also Subsection 5.6.1) is to investigate the impact of jumps with
numerical experiments. To do this, we perform a calibration exercise with the rough Heston model using
the same dataset as before (cfr. Section 5.5) and considering the same functional (5.41) to minimize.
The calibrated parameters are reported in Table 5.2.

α ρ b c β σ2
0

0.516 -0.781 -1.988 0.166 0.050 0.0096

Table 5.2: Calibrated parameters for the rough Heston model.

The resulting implied volatility smiles of SPX/VIX options for two selected maturities (T = 0.032,
T = 0.091) are shown in Figure 5.9. Here we see that the rough Heston model is able to reproduce quite
well the level and shape of VIX options smiles, although we might argue that, for T = 0.091, it produces
a curve which is too concave at-the-money and too flat out-of-the-money. However, the rough Heston
model struggles to capture the out-of-the-money skew of S&P 500 options, especially for T = 0.032.
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In an attempt to understand whether this effect is due to the VIX options in (5.41), we run another
calibration exercise with the aim of minimizing the following functional in Θ:√√√√∑

i,j

(
σmkt

SPX (Ti,Kj)− σΘ
SPX (Ti,Kj)

σmkt
SPX (Ti,Kj)

)2

. (5.44)

The strikes and maturities used in this example are listed in Tables 5.3-5.5. We perform the same
optimization for the rough Hawkes Heston model and display the outcomes in Figure 5.10. These
results confirm that the rough Heston model does not produce a correct shape for the left-tails of
SPX implied volatility smiles, and that in this aspect it is consistently outperformed by the extension
(5.1)-(5.5) proposed in this chapter.

On the basis of these experiments, we conclude that the introduction of a jump component in the
rough Heston model is significant and does not cause redundancy. In particular, the jumps allow to
better reproduce the skew of out-of-the-money S&P 500 options, especially for short maturities.

5.6 Sensitivities of the implied volatilities

In this section we study the sensitivity of the implied volatilities of S&P 500 and VIX options to the
parameters of the rough Hawkes Heston model. Starting from the calibrated parameters presented in
Table 5.1, we analyze the impact of a change in the evolution-related parameters (α, ρ, b, c,Λ) and the
initial curve parameters (β, σ2

0) on the implied volatilities for the shortest maturity, and for the shortest
and longest maturities, respectively.

We begin with the sensitivity with respect to the parameter α ∈ (0.5, 1], which as we will see plays
a crucial role in our model. We can observe in Figure 5.11 – as is the case for other rough volatility
models – that modifications of the parameter α change the ATM skew of the implied volatility of S&P
500 options. A good convexity and ATM skew, for the maturities considered in the calibration, can
be obtained with very low values of the parameter α, confirming the findings in the rough volatility
literature. To elucidate the influence of the parameter α on the ATM skews, we plot in Figure 5.12 the
log-log plots of ATM skews as a function of maturity, for the calibrated parameters and different values
of α. We observe that a perfect power decay, for the given maturities, is captured by α = 0.506, but not
by higher values of α. For α = 0.506, the linear fit is almost perfect with a −0.597 power decay and an
unquestionable coefficient of determination R2 = 0.99905. It is important to mention at this point the
recent works [67, 100] which point out that the linear fit is no longer optimal when considering a larger
range of maturities. Our findings for the maturities considered in the calibration are coherent with the
results in the rough volatility literature, e.g. [21, 90], indicating a power law, as T goes to zero, for the
ATM skew as a function of maturity given approximately by T−

1
2 . For other values of α, the linear fit

is also observed for the shortest maturities. In Figure 5.12, we plot the estimated power decay for the
short maturities as a function of α. This plot shows that the relationship between the power decay and
α is approximately linear for the short maturities.

More importantly, within the joint calibration framework, the parameter α has a big impact on the
level and shape of implied volatilities of VIX options. This is confirmed by Figure 5.11. In particular,
the difference in level between the implied volatilities of VIX options for α = 0.506 and α = 0.6 is
similar to the one between α = 0.6 and α = 0.9. As α decreases the implied volatilities shift downwards.
This feature is fundamental to bring down the VIX implied volatilities maintaining the correct skew
for SPX implied volatilities, explaining therefore the shift mentioned in [98, 99]. We ratify therefore –
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within the affine framework – the relevance of rough non-Markovian volatility to jointly calibrate SPX
and VIX smiles.

We now analyze the dependency of the implied volatilities with respect to the other parameters.
Figure 5.13 shows the sensitivities with respect to the evolution-related parameters (b, c, ρ,Λ). We
notice that – unless we zoom at-the-money – the sensitivity of the SPX smiles with respect to (b, c,Λ) is
relatively small. The main effect of an increment in the reverting speed −b is a shift slightly downwards
of the SPX implied volatility and a more pronounced upward shift and a reduction of the concavity on
the VIX implied volatility. The impact of the volatility of volatility c is similar for SPX options, with a
slight change of concavity, and a more pronounced and less symmetric effect on the level and concavity
of implied volatility of VIX options. As usual, the correlation parameter ρ plays a big role by moving
the minimum value to the left (ρ < 0) or to the right (ρ > 0). Obviously, the VIX smiles do not depend
on the correlation ρ. The effect of the (jump) leverage Λ is relatively small on SPX implied volatilities
but fundamental on the VIX implied volatilities. For SPX implied volatilities, the impact of Λ could
be reduced to a rotation with the at-the-money value as pivot. The parameter Λ also controls the level
of VIX implied volatility out-of-the-money. As Λ increases this level goes down, achieving the correct
shift for the calibrated parameter. This effect is similar to the one observed for the vol-of-vol c, but the
sensitivity is larger, and it allows us to keep a low value of c for the joint calibration. This explains, the
importance in our model of self-exciting jumps in opposite directions for the underlying and volatility.

We now turn to the parameters (β, σ2
0) of the initial curve g0(t) = σ2

0 + β
∫ t

0 K(s) ds, t ≥ 0 (see
(5.42)). Figure 5.14 shows the SPX and VIX implied volatility sensitivities for the shortest and longest
maturity. The impact of both parameters is similar for SPX and VIX options. When σ2

0 or β increase
the SPX implied volatilities move up and to the right, while the VIX implied volatilities move down
and the concavity increases.

5.6.1 Comparison with the rough Heston model

We now continue the discussion started in Subsection 5.5.1 regarding the relevance of jumps in the
implementation of the rough Hawkes Heston model. Contrary to Subsection 5.5.1, here we do not focus
on the calibration to a particular dataset, but we take a more general point of view. More precisely, we
are interested in understanding how the jumps affect the implied volatility curves of SPX/VIX options
keeping all the other parameters constant. To do this, we take the values in Table 5.1 for the rough
Hawkes Heston model and simply remove the jump component by setting ν(dz) = 0, recovering then
the rough Heston model. Figure 5.3 clearly shows that the jumps have a significant impact on implied
volatility smiles. In fact, they change the shape of S&P 500 curves and the level of VIX curves. Hence
we conclude that the model (5.1)-(5.5) suggested in this chapter is a parsimonious extension of the rough
Heston model which does provide a considerably richer framework. Speaking of the joint calibration,
the level and shape of SPX/VIX implied volatility curves constitute two main issues to reconcile in
order to successfully tackle the problem, see Introduction. Since the self-exciting jumps affect them
both, it appears that the rough Hawkes Heston model has an important advantage over its continuous
counterpart (rough Heston), which is also coherent with the experiments in Subsection 5.5.1.

5.7 Conclusion

We develop and study a new stochastic volatility model named the rough Hawkes Heston model.
It is a tractable affine Volterra model with rough volatility and volatility jumps that cluster and that
have the opposite direction but occur at the same time as the jumps of the underlying prices. This
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Figure 5.3: Effect of the jump component on the implied volatility of SPX (left) and VIX (right) options. The rough
Hawkes Heston (rHH) is in green and the rough Heston (rH) in orange. The blue and red crosses are respectively the bid
and ask of market implied volatilities for T = 0.032.

model shares many features with other existing models, mainly the Heston [104], Barndorff-Nielsen and
Shephard [17], and rough Heston [79] models. It takes advantage of the low regularity and memory
features of rough volatility models, the large fluctuation of jumps, the clusters of Hawkes processes and
the explicit Fourier-Laplace transform of the affine setup. By combining the modeling advantages of
these approaches, it is able to better capture the joint dynamics of underlying prices and their volatility
index in a tractable fashion. The addition of a singular kernel in the dynamics of the volatility, together
with jumps, incorporates not only the rough volatility feature but also a jump-clustering component.
The presence of common jumps in the underlying and the volatility in opposite directions is coherent
with previous studies such as [171]. Moreover, the introduction of jumps that cluster – as in [26] – is
in accordance with empirical findings, e.g. [52, 53]. Similar to [17, 79, 104], the rough Hawkes Heston
model is parsimonious with only five evolution-related parameters, and it belongs to the class of affine
Volterra models [8, 37], which allows efficient Fourier-based techniques for pricing.

The parameter α describing the power kernel in the volatility dynamics controls – as in the rough
Heston model – the underlying implied volatilities ATM skews for short maturities. Our calibration
example indicates that this value is close to 0.5, which agrees with previous estimates in the rough
volatility literature [21, 90]. This is not, however, the only role played by the parameter α in our setup,
because the power kernel also affects the jump-clustering feature of the model. As a consequence, the
parameter α plays a crucial role in controlling the level of VIX implied volatilities. Together with
the jump-leverage parameter Λ, the power kernel allows us to bring down the VIX implied volatilities
maintaining the correct skew for SPX implied volatilities, consequently capturing the shift mentioned in
[98, 99]. This confirms the relevance, in our affine framework, of rough volatility and clustering jumps
to model simultaneously the S&P 500 and VIX dynamics.

The affine relation between variance swap rates and forward variance – which generalizes the affine
relation between variance swap rates and spot variance in the classical framework [118] – is a by-product
of our affine Volterra framework. This affine relation has been confirmed empirically in [132].

To conclude, the rough Hawkes Heston model is able – in a tractable and parsimonious fashion
– to jointly calibrate S&P 500 and VIX options. The parsimonious character of our model is an
advantage compared to other models that jointly calibrate SPX/VIX options with either a large number
of parameters [54, 101] or based on martingale transport considerations [99]. The affine character of
the rough Hawkes Heston model allows fast pricing using Fourier-techniques, instead of Monte Carlo
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or machine learning methods as those used for instance in [91, 161]. Moreover, all the parameters in
our model have a financial interpretation, and a complete sensitivity analysis shows that they are not
redundant since each of them controls a different feature of the S&P 500 and VIX volatility smiles.

Data Availability Statement

Market data was purchased from the CBOE website https://datashop.cboe.com/.

Appendix 5.A Proof of Theorem 5.1

In this appendix we prove Theorem 5.1 regarding the Riccati-Volterra equation (5.6)-(5.7) used to
study the Fourier-Laplace transform of the log returns (Xt)t≥0. We use the following notation: given
u, v ∈ C, let [u, v] be the segment in C having u and v as endpoints, i.e. [u, v] = {z ∈ C : z =
(1− t)u+ tv, t ∈ [0, 1]}, and denote by u ∨ v = Reu ∨ Re v + i Imu ∨ Im v.

Proof. Fix w ∈ C with Rew ∈ [0, 1].
(i) The proof of this point is divided into three steps. In the first step, we show the existence of a

noncontinuable solution ψw of (5.7). In the second step, we prove that ψw does not explode in finite
time, i.e., that it is global solution. To conclude, in the third and last step, we prove the uniqueness of
ψw.

Step I. Let us compute from (5.6), for every v ∈ C−,

Re R(w, v) =
1

2

(
|Rew|2 − Rew

)
+
(
b+ ρ

√
cRew

)
Re v

+
c

2
|Re v|2 − 1

2

(
|Imw|2 + c |Im v|2 + 2ρ

√
c ImwIm v

)
+

∫
R+

[
e(Re v−ΛRew)z cos ((Im v − ΛImw) z)− Rew

(
e−Λz − 1

)
− 1− Re vz

]
ν (dz) . (5.45)

Since |ρ| ≤ 1 we have |ρ
√
c ImwIm v| ≤

√
c|Imw||Im v|, which implies

−1

2

(
|Imw|2 + c |Im v|2 + 2ρ

√
c ImwIm v

)
≤ −1

2

(
|Imw| −

√
c |Im v|

)2 ≤ 0. (5.46)

Recalling that Rew ∈ [0, 1], we then obtain

Re R(w, v) ≤
(
b+ ρ

√
cRew

)
Re v +

c

2
|Re v|2 +

∫
R+

[
e−ΛRewz − Rew

(
e−Λz − 1

)
− 1
]
ν (dz)

+

∫
R+

[
e(Re v−ΛRew)z − e−ΛRewz − Re vz

]
ν (dz)

≤
(
b+ ρ

√
cRew +

∫
R+

z
(
e−ΛRewz − 1

)
ν (dz)

)
Re v +

c

2
|Re v|2

+

∫
R+

e−ΛRewz
(
eRe vz − 1− Re vz

)
ν (dz) , (5.47)

where for the second inequality we use

e−ΛRewz − Rew
(
e−Λz − 1

)
− 1 ≤ 0, z ≥ 0. (5.48)

https://datashop.cboe.com/
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Let h : R+ × R− → R− be the continuous function defined by

h (x, y) =

{
1
y

∫
R+
e−Λxz (eyz − 1− yz) ν (dz) , y < 0

0, y = 0
, x ≥ 0,

and note that y · h(x, y) =
∫
R+
e−Λxz(eyz − 1− yz)ν(dz). At this point, we can use (5.47) to show that

Re R(w, v) ≤
(
Cw +

c

2
Re v + h (Rew,Re v)

)
Re v, v ∈ C−, (5.49)

where Cw = b+ ρ
√
cRew +

∫
R+
z(e−ΛRewz − 1)ν(dz).

We now introduce the function R̃w : C→ C given by

R̃w (v) = R
(
w,−Re v− + iIm v

)
+ CwRe v+, v ∈ C.

Observe that, by construction (see also (5.49))

Re R̃w(v) ≤
(
Cw −

c

2
Re v− + h

(
Rew,−Re v−

))
Re v, v ∈ C.

Since R̃w is continuous, we can invoke [96, Therorem 1.1, Chapter 12] to assert the existence of a
continuous, noncontinuable solution ψw : [0, Tmax)→ C of the equation

χ = K ∗ R̃w (χ (·)) , t ∈ [0, Tmax) , (5.50)

for some Tmax ∈ (0,∞]. If we can show that Reψw ≤ 0 in [0, Tmax), then we conclude that ψw is
indeed a noncontinuable solution of (5.7), as well. To this end, consider the continuous function ζ(t) =
Cw − c

2Reψw(t)− + h(Rew,−Reψw(t)−) defined for t ∈ [0, Tmax). Taking the real part in (5.50), for
every T ∈ (0, Tmax), we obtain

Reψw (t) = −γT (t) +

∫ t

0
K (t− s) ζ (s) Reψw (s) ds, t ∈ [0, T ] ,

where γT (t) =
∫ t

0 K(t−s)1{s≤T}(ζ(s)Reψw(s)−Re R̃w(ψw(s)))ds. By [5, Remark B.6] γT ∈ GK (recall
(5.22)), and we can invoke [5, Theorem C.1] to infer that Reψw ≤ 0 in [0, T ]. Given that T was arbitrary,
such an inequality holds in the whole interval [0, Tmax), completing the first step of the proof.

Step II. Our goal here is to show that Tmax = ∞. Let us fix again a generic T ∈ (0, Tmax). Taking
the imaginary part in (5.6) and (5.7) we have, on the interval [0, T ],

Imψw = K ∗

[(
Rew − 1

2

)
Imw +

(
b+ ρ

√
cRew

)
Imψw + ρ

√
c ImwReψw + cReψw Imψw

+

∫
R+

(
eRe(ψw−Λw)·z sin (Im (ψw − Λw) · z)− Imw

(
e−Λz − 1

)
− Imψw · z

)
ν (dz)

]
. (5.51)

Consider the function d : R− × R→ R defined as follows

d (x, y) =

{
1
y

∫
R+
exz (sin (y z)− y z) ν (dz) , y 6= 0

0, y = 0
, x ≤ 0.
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Note that d is continuous and nonpositive in its domain. Moreover, by construction

y · d (x, y) =

∫
R+

exz (sin (y z)− y z) ν (dz) , (x, y) ∈ R− × R.

To shorten the notation we define ψ̃w = ψw − Λw. Using the function d we rewrite (5.51) as

Imψw +
ρ+

√
c
Imw

=
ρ+

√
c
Imw +K ∗

[(
Rew − 1

2
−
∫
R+

(
e−Λz − 1 + Λz

)
ν (dz)− ρ+

√
c

(
b+ ρ

√
cRew

))
Imw

+

(
−ρ−
√
cReψw −

(
Λ +

ρ+

√
c

)∫
R+

z
(
eRe ψ̃w·z − 1

)
ν (dz)−

(
Λ +

ρ+

√
c

)
d
(

Re ψ̃w, Im ψ̃w

))
Imw

+

((
b+ ρ

√
cRew

)
+cReψw +

∫
R+

z
(
eRe ψ̃w·z − 1

)
ν (dz) + d

(
Re ψ̃w, Im ψ̃w

))(
Imψw +

ρ+

√
c
Imw

)]

=:
ρ+

√
c
Imw

+K∗
[(
C1 −

ρ+

√
c

(
b+ ρ

√
cRew

))
Imw + f1 (·) Imw +

(
b+ ρ

√
cRew + f2 (·)

)(
Imψw +

ρ+

√
c
Imw

)]
,

which holds on [0, T ]. In particular, note that f1 ≥ 0 and f2 ≤ 0 in [0, T ]. We want to find a continuous
function u : R+ → R+ such that |Imψw| ≤ u on [0, T ]. To do this, we argue by cases on Imw. In
the following, we denote Λ̃ = max{ρ−c−1/2, Λ}. All the claims regarding the sign of solutions to linear
Volterra equations are justified by [5, Theorem C.1].

If Imw ≥ 0, then we can consider the unique, nonnegative, continuous solution l1 : [0, T ] → R+ of
the linear equation

l1 =
ρ+

√
c
Imw +K ∗

[∣∣∣∣C1 −
ρ+

√
c

(
b+ ρ

√
cRew

)∣∣∣∣ Imw +
((
b+ ρ

√
cRew

)
+ f2

)
l1

]
.

Since the function Imψw + ρ+
√
c
Imw + l1 satisfies – in [0, T ] – the linear equation

χ = 2
ρ+

√
c
Imw +K ∗

[
2

(
C1 −

ρ+

√
c

(
b+ ρ

√
cRew

))+

Imw + f1 Imw +
((
b+ ρ

√
cRew

)
+ f2

)
χ

]
,

we deduce that Imψw ≥ −l1− ρ+
√
c
Imw on [0, T ]. Next, we introduce the unique, nonnegative, continuous

solution l1 : R+ → R+ of the linear equation

l1 =
ρ+

√
c
|Imw|+K ∗

[∣∣∣∣C1 −
ρ+

√
c

(
b+ ρ

√
cRew

)∣∣∣∣ |Imw|+
(
b+ ρ

√
cRew

)
l1

]
(5.52)

and observe that l1 − l1 ≥ 0 on [0, T ], because l1 − l1 solves on [0, T ]

χ = K ∗
[
−f2 l1 +

(
b+ ρ

√
cRew

)
χ
]
.
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Hence, Imψw ≥ −l1 − ρ+
√
c
|Imw| on [0, T ]. We now focus on the upper bound. Observe that

Imψw − Λ̃ Imw = −Λ̃ Imw

+K ∗

[(
C1 +

(
b+ ρ

√
cRew

)
Λ̃
)

Imw +
(
b+ ρ

√
cRew + f2

) (
Imψw − Λ̃ Imw

)
+

((
Λ̃c+ ρ

√
c
)

Reψw +
(

Λ̃− Λ
)(∫

R+

z
(
eRe ψ̃w·z − 1

)
ν (dz) + d

(
Re ψ̃w, Im ψ̃w

)))
Imw

]
.

We then take the unique, nonnegative, continuous solution u1 : [0, T ]→ R+ of the linear equation

u1 = Λ̃ Imw +K ∗
[∣∣∣C1 +

(
b+ ρ

√
cRew

)
Λ̃
∣∣∣ Imw +

(
b+ ρ

√
cRew + f2

)
u1

]
.

We infer that u1− (Imψw− Λ̃ Imw) ≥ 0 since Λ̃c+ρ
√
c, Λ̃−Λ ≥ 0, and u1− (Imψw− Λ̃ Imw) satisfies

(on [0, T ])

χ = 2Λ̃ Imw +K ∗

[
2
(
C1 +

(
b+ ρ

√
cRew

)
Λ̃
)−

Imw +
(
b+ ρ

√
cRew + f2

)
χ

−
((

Λ̃c+ ρ
√
c
)

Reψw +
(

Λ̃− Λ
)(∫

R+

z
(
eRe ψ̃w·z − 1

)
ν (dz) + d

(
Re ψ̃w, Im ψ̃w

)))
Imw

]
.

To end, we introduce the unique, nonnegative, continuous solution u1 : R+ → R+ of the linear equation

u1 = Λ̃ |Imw|+K ∗
[∣∣∣C1 +

(
b+ ρ

√
cRew

)
Λ̃
∣∣∣ |Imw|+

(
b+ ρ

√
cRew

)
u1

]
, (5.53)

and since u1−u1 satisfies the linear equation χ = K ∗ [−f2 u1 + (b+ ρ
√
cRew)χ] on [0, T ], we conclude

that u1 ≥ u1 on the same interval. Therefore, Imψw ≤ u1 + Λ̃ Imw on [0, T ].
In the case Imw ≤ 0 the argument is analogous, but the upper and lower bounds are inverted.

Specifically, with the same steps as the ones just carried out, we have −u1 − Λ̃|Imw| ≤ Imψw ≤
l1 + ρ+

√
c
|Imw| on [0, T ].

Therefore, defining the continuous function u : R+ → R+ by u = l1 + u1 + (Λ̃ + ρ+
√
c
)|Imw|, we have

|Imψw (t)| ≤ u (t) , 0 ≤ t ≤ T. (5.54)

Taking the real part in (5.7) and using (5.45) we deduce that

Reψw = K ∗

[
1

2

(
|Rew|2 − Rew

)
+
(
b+ ρ

√
cRew

)
Reψw +

c

2
|Reψw|2

− 1

2

(
|Imw|2 + c |Imψw|2 + 2ρ

√
c Imw Imψw

)
−
∣∣∣∣∫

R+

eRe ψ̃w·z
(

cos
(

Im ψ̃w · z
)
− 1
)
ν (dz)

∣∣∣∣
+

∫
R+

(
eReψw·z (e−ΛRewz − 1

)
− Rew

(
e−Λz − 1

))
ν (dz) +

∫
R+

(
eReψw·z − 1− Reψw · z

)
ν (dz)

]



5.A. Proof of Theorem 5.1 191

on [0, T ]. Since | cos(x)− 1| = 1− cos(x) ≤ x2/2, x ∈ R, by (5.54) we have∣∣∣∣∫
R+

eRe ψ̃w·z
(

cos
(

Im ψ̃w · z
)
− 1
)
ν (dz)

∣∣∣∣ ≤ 1

2

(∫
R+

|z|2 ν (dz)

) ∣∣∣Im ψ̃w

∣∣∣2
≤
(∫

R+

|z|2 ν (dz)

)(
u2 + Λ2 |Imw|2

)
, on [0, T ] . (5.55)

Moreover, notice that by (5.54), since |ρ| ≤ 1

1

2

∣∣∣|Imw|2 + c |Imψw|2 + 2ρ
√
c ImwImψw

∣∣∣ ≤ 1

2

(
|Imw|+

√
c |Imψw|

)2 ≤ |Imw|2 + cu2. (5.56)

These facts coupled with (5.48) suggest to consider the linear equation

l = K ∗

[
1

2

(
|Rew|2 − Rew − 2 |Imw|2

)
+

∫
R+

(
e−ΛRewz − 1− Rew

(
e−Λz − 1

))
ν (dz)− c u2

−
(∫

R+

|z|2 ν (dz)

)(
u2 + Λ2 |Imw|2

)
+
(
b+ ρ

√
cRew

)
l

]
, (5.57)

which has a unique, continuous, nonpositive solution l defined on the whole R+. At this point, observe
that the difference Reψw − l satisfies the linear equation

χ = K ∗

[ (
b+ ρ

√
cRew

)
χ+

c

2
|Reψw|2

+

(
|Imw|2 + cu2 − 1

2

(
|Imw|2 + c |Imψw|2 + 2ρ

√
c ImwImψw

))
+

∫
R+

(
eReψw·z − 1− Reψw · z

)
ν (dz) +

∫
R+

(
eReψw·z − 1

) (
e−ΛRewz − 1

)
ν (dz)

+

((∫
R+

|z|2 ν (dz)

)(
u2 + Λ2 |Imw|2

)
−
∣∣∣∣∫

R+

eRe ψ̃w·z
(

cos
(

Im ψ̃w · z
)
− 1
)
ν (dz)

∣∣∣∣)
]
.

It admits a unique, continuous solution on [0, T ] which is nonnegative by (5.55), (5.56) and the fact
that ex − 1− x ≥ 0, x ∈ R. Since T ∈ (0, Tmax) was chosen arbitrarily, we infer that

l (t) ≤ Reψw (t) ≤ 0 and |Imψw (t)| ≤ u (t) , 0 ≤ t < Tmax.

Recalling that l and u are continuous on R+, and in particular bounded on every compact interval, we
conclude that Tmax =∞, as desired.

Step III. Consider two global solutions ψw, ψ′w of (5.7), and let δ = ψw − ψ′w and δ̃ = ψ′w ∨ ψw.
Then, for every t ≥ 0,

δ (t) =

∫ t

0
K (t− s)

[(
b+ ρ

√
cw +

c

2

(
ψw + ψ′w

)
(s) +

∫
R+

z
(
e(−Λw+δ̃(s))z − 1

)
ν (dz)

)
δ (s)

+

∫
R+

e(−Λw+δ̃(s))z
(
e(ψw−δ̃)(s)z − e(ψ′w−δ̃)(s)z − δ (s) z

)
ν (dz)

]
ds. (5.58)
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We introduce the function kw : C− × C− → C defined for (u, v) ∈ C− × C− by

kw (u, v) =

{
1

v−u
∫
R+
e(−Λw+u∨v)z

(
e(v−u∨v)z − e(u−u∨v)z − (v − u) z

)
ν (dz) , u 6= v

0, otherwise
. (5.59)

We claim that kw is continuous on its domain. This is a consequence of an application of the mean
value theorem to the functions fz(u) = euz − uz, u ∈ C−, with the parameter z ∈ R+. Indeed, using
the inequality |1− cosx| ≤ x2, x ∈ R,

|fz (v)− fz (u)| ≤ z sup
ξ∈[u,v]

∣∣∣eξz − 1
∣∣∣ |v − u|

≤ z sup
ξ∈[u,v]

(∣∣∣eRe ξ·z − 1
∣∣∣+
√

2e
1
2

Re ξ·z (1− cos (Im ξ · z))
1
2

)
|v − u|

≤ z
((

1− e(Reu∧Re v)z
)

+
√

2 (|Imu| ∨ |Im v|) |z|
)
|v − u| , u, v ∈ C−, z ∈ R+. (5.60)

Consequently, the continuity of kw follows from

|fz (v − u ∨ v)− fz (u− u ∨ v)| ≤ |z|2
(

1 +
√

2
)
|v − u|2 , u, v ∈ C−, z ∈ R+. (5.61)

Coming back to (5.58) we have (on R+)

δ = K ∗
[(
b+ ρ

√
cw +

c

2

(
ψw + ψ′w

)
(·) +

∫
R+

z
(
e(−Λw+δ̃(·))z − 1

)
ν (dz)

+ kw
(
ψ′w (·) , ψw (·)

))
δ

]
, (5.62)

which is a linear equation admitting the zero function as its unique solution. Hence ψ′w = ψw on R+,
completing the proof of this step.

The fact that ψRew is R−−valued follows from (5.54), because in this case u ≡ 0. This concludes
the proof of the statement in (i).

(ii) From (5.45) and (5.46) we deduce that Re R(w, v) ≤ R(Rew, Re v) for every v ∈ C−. Taking
the real part in (5.7) and recalling that – under Hypothesis 5.1 – the kernel K is nonnegative on (0,∞)
we obtain

Reψw (t) ≤
∫ t

0
K (t− s)R (Rew, Reψw (s)) ds, t ≥ 0.

We can then introduce a nonnegative function γ̃ : R+ → R+ defined by the relation

Reψw (t) = −γ̃ (t) +

∫ t

0
K (t− s)R(Rew, Reψw (s)) ds, t ≥ 0. (5.63)

Using (5.7), one can rewrite γ̃ as

γ̃ (t) =

∫ t

0
K (t− s) (R (Rew,Reψw (s))− Re R(w,ψw (s))) ds, t ≥ 0.

Thus γ̃ ∈ GK by [5, Remark B.6]. At this point we subtract (5.63) from (5.7) (with Rew instead of w)
to deduce that δ = ψRew − Reψw satisfies

δ (t) = γ̃ (t) +

∫ t

0
K (t− s) (R (Rew,ψRew (s))−R (Rew, Reψw (s))) ds, t ≥ 0. (5.64)
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If we denote by δ̃ = Reψw ∨ ψRew, we then need to study (on R+)

R (Rew,ψRew)−R (Rew, Reψw)

=

(
b+ ρ

√
cRew +

c

2
(Reψw + ψRew) +

∫
R+

z
(
e(−ΛRew+δ̃)z − 1

)
ν (dz)

)
δ

+

∫
R+

e(−ΛRew+δ̃)z
(
e(ψRew−δ̃)z − e(Reψw−δ̃)z − δz

)
ν (dz)

=: (w1 (·) + kRew (Reψw (·) , ψRew (·))) δ,

with kRew as in (5.59). Going back to (5.64),

δ (t) = γ̃ (t) +

∫ t

0
K (t− s) (w1 (s) + kRew (Reψw (s) , ψRew (s))) δ (s) ds, t ≥ 0.

We can now apply [5, Theorem C.1] in order to conclude that δ ≥ 0 on R+. This yields (5.8) and
concludes the proof of (ii). �

Appendix 5.B Proof of Proposition 5.5

This section is devoted to the proof of Proposition 5.5, a result which allows to price options on the
underlying asset S with maturity T > 0.

Proof. Let us define the function f : R→ R by

f (m) = E
[
eXT −

(
eXT − em

)+]
e−

1
2
m = E

[
eXT 1{XT≤m} + em1{m<XT }

]
e−

1
2
m, m ∈ R. (5.65)

Denote by µT the probability distribution of XT on R and note that f ∈ L1(R), because, thanks to
Tonelli’s theorem,∫

R
e−

1
2
m

[∫
R

(
ex1{x≤m} + em1{m<x}

)
µT (dx)

]
dm = 4

∫
R
e

1
2
xµT (dx) = 4E

[
e

1
2
XT
]
<∞. (5.66)

Therefore we can compute the Fourier transform of f as follows

f̂ (λ) =

∫
R
e(−

1
2

+iλ)m
[∫

R

(
ex1{x≤m} + em1{m<x}

)
µT (dx)

]
dm

=

∫
R

[
ex
∫ ∞
x

e(−
1
2

+iλ)mdm+

∫ x

−∞
e(

1
2

+iλ)mdm

]
µT (dx) =

1
1
4 + λ2

ΨXT

(
1

2
+ iλ

)
, λ ∈ R,

where in the second equality we are allowed to use Fubini’s theorem by (5.66).
Since |ΨXT (1

2 + iλ)| ≤ E[e
1
2
XT ] < ∞ and, by dominated convergence, f in continuous on R, we

invoke the Fourier inversion theorem, see for instance [163, Theorem 9.11], to obtain

f (m) =
1

2π

∫
R
e−imλ

1
1
4 + λ2

ΨXT

(
1

2
+ iλ

)
dλ, m ∈ R. (5.67)

Combining (5.65) and (5.67) and recalling Corollary 5.4 we deduce that

E
[(
eXT − em

)+]
= 1− 1

2π

∫
R
e(

1
2
−iλ)m 1

1
4 + λ2

ΨXT

(
1

2
+ iλ

)
dλ, m ∈ R. (5.68)
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Now, for every k ∈ R, we can determine the price CS(k, T ) of a call option written on S with log strike
k and maturity T . Indeed, taking m = k − log(S0) in (5.68) we have

CS (k, T ) = E
[(
ST − ek

)+
]

= S0 −
1

2π

√
S0ek

∫
R
eiλ(log(S0)−k) 1

1
4 + λ2

ΨXT

(
1

2
+ iλ

)
dλ

= S0 −
1

π

√
S0ek

∫
R+

Re

[
eiλ(log(S0)−k)ΨXT

(
1

2
+ iλ

)]
1

1
4 + λ2

dλ,

which coincides with (5.15). The expression (5.16) for the price PS(k, T ) of a put option with the same
underlying, log strike and maturity as before, follows from (5.15), Corollary 5.4, and the put-call parity
formula. This completes the proof. �

Appendix 5.C Proof of Theorem 5.11

This section is devoted to the proof of Theorem 5.11, a result providing estimates for the multi-factor
approximation of the Riccati-Volterra equations appearing in the Fourier-Laplace transform of the log
returns and VIX2.

Proof. Fix T > 0. We first prove Point (i). Take w ∈ C such that Rew ∈ [0, 1] and n ∈ N, and observe
that |ψw,n| ≤ l1,n+u1,n− ln+(Λ̃+ ρ+

√
c
)|Imw| on R+. Here Λ̃ = max{ρ−c−1/2, Λ} and l1,n [resp., u1,n, ln]

is the unique, continuous solution of (5.52) [resp., (5.53), (5.57)] in Appendix 5.A with Kn instead of
K. [5, Corollary C.4] guarantees the existence of a positive constant C1 = C1(ρ, b, c,Λ, ν) such that

l1,n (t) + u1,n (t) +

(
Λ̃ +

ρ+

√
c

)
|Imw| ≤ C1

(
1 +

∫ T

0

∣∣∣Eb+ρ+
√
c,n (s)

∣∣∣ ds) |Imw| , t ∈ [0, T ] .

Then, recalling the hypothesis of boundedness for (
∫ T

0 |Eb+ρ+
√
c,n(s)|ds)n and using (5.57), another

application of [5, Corollary C.4] provides the existence of a constant C2 = C2(ρ, b, c,Λ, ν,m,x, T ) > 0
such that |ln(t)| ≤ C2(1 + |Imw|2), t ∈ [0, T ]. This implies, given that n ∈ N is arbitrary, that

sup
n∈N

sup
t∈[0,T ]

|ψw,n (t)| ≤ C3

(
1 + |Imw|2

)
, for some C3 = C3 (ρ, b, c,Λ, ν,m,x, T ) > 0. (5.69)

Since the same argument works for ψw, without loss of generality, we assume that the upper bound in
(5.69) holds also for ψw. Now, from (5.7) and (5.36) we have (on R+)

ψw − ψw,n = (K −Kn) ∗R (w,ψw,n (·)) +K ∗ (R (w,ψw (·))−R (w,ψw,n (·))) , n ∈ N.

For every v ∈ C−, recalling the inequality ex − 1− x ≤ x2/2, x ≤ 0, and thanks to the computations in
Appendix 5.A (see (5.60))∣∣∣∣∫

R+

[
e(v−Λw)z − w

(
e−Λz − 1

)
− 1− vz

]
ν (dz)

∣∣∣∣
≤ 4
√

2

[
Λ2

2
(1 + |Imw|) + |v|2 + Λ2

(
1 + |Imw|2

)]∫
R+

|z|2 ν (dz) .
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Then by (5.69) and (5.6) we deduce that there exists a constant C4 = C4(ρ, b, c,Λ, ν,m,x, T ) > 0 such
that

sup
t∈[0,T ]

|((K −Kn) ∗ (R (w,ψw,n (·)))) (t)| ≤ C4

(
1 + |Imw|4

)∫ T

0
|Kn (s)−K (s)| ds, n ∈ N. (5.70)

In what follows, we denote by hn = (K − Kn) ∗ R(w,ψw,n(·)), i.e., the function that we have just
bounded. Next, computations analogous to those carried out to obtain the Volterra equation (5.62) in
Appendix 5.A, allow us to write (on R+)

R (w,ψw)−R (w,ψw,n) =

(
b+ ρ

√
cw +

c

2
(ψw + ψw,n) +

∫
R+

z
(
e(−Λw+ψw,n∨ψw)z − 1

)
ν (dz)

+ kw (ψw,n, ψw)

)
(ψw − ψw,n) ,

where kw is the continuous function in (5.59). Therefore, since |kw(u, v)| ≤ (1+
√

2)(
∫
R+
|z|2ν(dz))|v−u|

for every u, v ∈ C− (see (5.61)) and recalling (5.69)-(5.70), an application of [5, Corollary C.4] yields

sup
t∈[0,T ]

|ψw (t)− ψw,n (t)− hn (t)| ≤ C5

(
1 + |Imw|6

) ∫ T
0 Eb++ρ+

√
c+cνC3(1+|Imw|2),K (s) ds∫ T

0

∣∣∣Eb++ρ+
√
c,K (s)

∣∣∣ds
×
∫ T

0
|Kn (s)−K (s)|ds, n ∈ N. (5.71)

for some C5 = C5(ρ, b, c,Λ, ν,m,x, T ) > 0 and where cν = 2(1+
√

2)(
∫
R+
|z|2ν(dz)). Notice that by [96,

Proposition 8.1, Chapter 9] and Hypothesis 5.1, Eb++ρ+
√
c+cνC3(1+|Imw|2),K ≥ 0. Consequently, thanks

to [5, Theorem C.1, Remark B.6], Eb++ρ+
√
c,K ≤ Eb++ρ+

√
c+cνC3(1+|Imw|2),K a.e. in R+. Hence the ratio

in (5.71) is greater or equal to 1. Combining (5.71) with (5.70) yields (5.38).
In order to prove the final remark about the independence of the constant C in (5.38) with respect

to m and x, note that in the previous argument such a dependence is only due to C̃, the positive
constant given by the hypothesis controlling the sequence (

∫ T
0 |Eb+ρ+

√
c,n(s)|ds)n. When b < 0, the

kernels −bKn inherit the property of complete monotonicity from Kn. If in addition ρ < 0, we can
use [96, Theorem 3.1, Chapter 5] to infer that

∫ T
0 |Eb+ρ+

√
c,n(s)|ds =

∫ T
0 |Eb,n(s)|ds ≤ |b|−1 for every

n ∈ N, and
∫ T

0 |Eb++ρ+
√
c,K(s)|ds = ‖K‖L1([0,T ]). In particular, in this case C depends on T only via

the L1−norm of K in [0, T ] (see (5.69)-(5.71)).
The proof of Point (ii) follows by an analogous argument. In this case we use the estimates in [37,

Appendix B.1] (see Appendix 4.B.1 of Chapter 4) and the fact that
∫ δ

0 Kn(s)ds ≤
∫ T∨δ

0 Eb+,n(s)ds ≤ C̃,
n ∈ N. We also combine [5, Corollary C.4], the comparison result for linear Volterra equations in [23,
Theorem 2], and the inequality∫ δ

0
h (s)Kn (s+ t) ds ≤

∫ δ

0
h (s)Kn (s) ds, t ≥ 0,

which holds also for K by Hypothesis 5.1. �
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Figure 5.4: Calibrated implied volatility of SPX options on May 19, 2017, using the parameters in Table 5.1. The blue and
red crosses are respectively the bid and ask of market implied volatilities. The implied volatility smiles from the model
are in green. The abscissa is in log-moneyness and T is time to expiry in years.

Maturity Strikes

May 31, 2017

1700, 1775, 1850, 1900, 1965, 1970, 1980, 2015, 2040, 2095, 2100, 2105, 2115,
2120, 2125, 2135, 2140, 2145, 2150, 2155, 2160, 2165, 2175, 2200, 2210, 2215,
2220, 2225, 2230, 2240, 2245, 2255, 2260, 2265, 2270, 2275, 2280, 2285, 2290,
2295, 2300, 2305, 2310, 2315, 2320, 2325, 2330, 2335, 2340, 2345, 2350, 2355,
2360, 2365, 2370, 2375, 2380, 2385, 2390, 2395, 2400, 2405, 2410, 2415, 2420,
2425, 2430, 2435, 2440, 2445, 2450, 2455, 2465, 2470, 2480.

June 7, 2017
2150, 2200, 2250, 2255, 2270, 2275, 2280, 2300, 2305, 2310, 2320, 2325, 2330,
2335, 2405, 2410, 2415, 2420, 2425, 2430, 2435, 2440, 2445, 2450, 2470.

June 14, 2017
2000, 2100, 2150, 2200, 2220, 2270, 2300, 2305, 2310, 2315, 2320, 2415, 2420,
2425, 2430, 2435, 2440, 2445, 2450, 2460, 2465, 2470, 2480, 2490, 2500.

June 21, 2017
1850, 1950, 1975, 2100, 2190, 2230, 2265, 2270, 2280, 2285, 2290, 2425, 2430,
2435, 2440, 2470, 2475.

Table 5.3: SPX options data on May 19, 2017, considered for the calibration. The listed maturities correspond to
T = 0.032, 0.052, 0.071, 0.091, respectively.
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Figure 5.5: Zoom at-the-money of the calibrated implied volatility of SPX options on May 19, 2017, using the parameters
in Table 5.1.
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Figure 5.6: Calibrated implied volatility of VIX options on May 19, 2017, using the parameters in Table 5.1. The blue and
red crosses are respectively the bid and ask of market implied volatilities. The implied volatility smiles from the model
are in green. The abscissa is in strikes and T is time to expiry in years.

Maturity Strikes

May 31, 2017 11.5, 12.5, 13, 13.5, 14, 14.5, 15, 16, 17, 18, 20, 23.

June 7, 2017 11.5, 12, 12.5, 13, 14, 14.5, 15, 16, 17, 19, 20.

June 14, 2017 11, 11.5, 12.5, 15 , 16, 19, 25.

June 21, 2017
10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32.5, 35.

Table 5.4: VIX options data on May 19, 2017, considered for the calibration. The listed maturities correspond to
T = 0.032, 0.052, 0.071, 0.091, respectively.

Figure 5.7: VIX term structure. Figure 5.8: Implied volatility of SPX options on May 19, 2017,
with time to expiry T = 0.179 years.
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Figure 5.9: Calibrated implied volatility of SPX (left) and VIX (right) options on May 19, 2017, using the rough Heston
model. The parameters are reported in Table 5.2. The abscissa is in log-moneyness for SPX options and in strikes for
VIX options. The time to expiry in years is T = 0.032 in the first line and T = 0.091 in the second line.

Maturity Strikes

July 21, 2017

1750, 1800, 1850, 1900, 1925, 1950, 1975, 1995, 2000, 2005, 2015, 2020, 2025,

2030, 2040, 2050, 2075, 2090, 2100, 2110, 2125, 2140, 2160, 2170, 2175, 2180,

2185, 2190, 2350, 2360, 2365, 2370, 2375, 2380, 2385, 2390, 2400, 2405, 2415,

2420, 2425, 2430, 2435, 2440, 2445, 2450, 2455, 2460, 2465, 2470, 2475, 2480,

2485, 2490, 2495, 2500, 2505, 2510, 2515, 2520, 2525, 2580, 2590, 2600.

Table 5.5: SPX options data on May 19, 2017, considered for the calibration of (5.44) in addition to Table 5.3. The
maturity corresponds to T = 0.179.
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Figure 5.10: SPX implied volatility smiles obtained by minimizing the functional in (5.44) for the rough Heston model
(orange) and the rough Hawkes Heston model (green). The blue and red crosses are respectively the bid and ask of market
implied volatilities on May 19, 2017. The abscissa is in log-moneyness and T is the time to expiry in years,

Figure 5.11: Sensitivity of implied volatility for SPX (left and center) and VIX (right) options with respect to the kernel
power α for the shortest maturity.

Figure 5.12: Power decay of the ATM volatility skew. On the left, the log-log plot of ATM volatility skew for the
calibrated parameters of Table 5.1. At the center, the log-log plot of ATM volatility skew for different values of α; the
other parameters are as in Table 5.1. On the right, the fitted power decay of the ATM volatility skew as function of α;
the power decay is estimated using the five shortest maturities, i.e. log(T ) ∈ [−5.5,−3.5].
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Figure 5.13: Sensitivity of implied volatility for SPX (left, center) and VIX (right) options for the shortest maturity with
respect to: the mean reversion speed parameter b (first line), the volatility of volatility c (second line), the correlation ρ
(third line), and the jump-leverage Λ (fourth line).
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Figure 5.14: Sensitivity of implied volatility for SPX (left, left-center) and VIX (right-center, right) options for the
shortest (first line) and longest maturity (second line) with respect to the initial spot variance curve, i.e. intercept σ2

0 ,
and proportional coefficient β.
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Chapter 6

On the Kolmogorov equation associated
with Volterra equations and Fractional
Brownian Motion

In this chapter we study a theoretical connection between the subjects treated in Parts I and II.
More precisely, we analyze a particular class of SPDEs which represent an abstract, infinite–dimensional
reformulation of stochastic Volterra equations in Rd driven by additive, fractional Brownian motions
of Riemann–Liouville type. These SPDEs require an original extension of the drift operator and its
Fréchet differentials. We prove that the SPDEs generate a Markov stochastic flow which is twice
Fréchet differentiable with respect to the initial data. This stochastic flow is then employed to solve,
in the classical sense of infinite–dimensional calculus, the corresponding path–dependent Kolmogorov
equation. Notably, we associate a time–dependent infinitesimal generator with the fBm. In Section
6.4, we show some obstructions in the analysis of the mild formulation of the Kolmogorov equation for
SPDEs driven by the same infinite–dimensional noise. This problem, which is relevant to the theory of
regularization-by-noise, remains open for future research

6.1 Infinite–dimensional reformulations for Volterra SDEs

Let (Ω,F ,P,F) be a complete filtered probability space, with expectation denoted by E, where the
filtration F = (Ft)t∈[0,T ] satisfies the usual conditions. Fix d ∈ N and consider an Rd−valued standard
Brownian motion W = (Wt)t≥0 defined on (Ω,F ,P,F). In what follows, we denote by k2 : (0,∞) →
(0,∞) the fractional kernel which controls the noise in the Volterra SDE (I.23), namely

k2(t) =
1

Γ(α)
tα−1, t > 0, for some α ∈

(
1

2
, 1

)
. (6.1)

As already mentioned in Introduction, we note that the arguments and results of this chapter continue
to hold even when α ∈ [1, 3

2), i.e., when the fBM governing (I.23) has Hurst parameter in [1/2, 1), see
also Remark 6.4.

Fix T > 0. Suppose that the measurable vector field b : [0, T ]× Rd → Rd satisfies, for some L > 0,

|b (t, x)| ≤ L (1 + |x|) , |b (t, x)− b (t, y)| ≤ L |x− y| ,

205
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for every t ∈ [0, T ] and x, y ∈ Rd. By (strong) solution of (I.23) we mean a continuous adapted process
satisfying the identity for every t ∈ [0, T ] , P−a.s. Existence and pathwise uniqueness of strong solutions
of (I.23) have been studied in literature under additional requirements on k1, see, e.g., Equation (2.5)
and Theorem 3.3 in [8].

Let H be the Hilbert space L2
(
0, T ;Rd

)
and denote by 〈·, ·〉H the usual inner product. Denoting by

L(Rd;H) the space of linear and bounded operators from Rd to H, define σ : [0, T ]→ L(Rd;H) by

[σ (t)x] (ξ) = k2 (ξ − t) 1{t<ξ}x, x ∈ Rd, t, ξ ∈ [0, T ] . (6.2)

For every q ≥ 2, we denote by Hq the space Lq
(
Ω;H

)
, endowed with the usual norm ‖·‖Hq , and by

Hqt ⊂ Hq the subspace of Ft−measurable functions, t ∈ [0, T ]. Notice that

‖σ(t)‖2HS ≤ d ‖k2‖22 , t ∈ [0, T ],

where ‖·‖HS represents the Hilbert–Schmidt norm and ‖·‖2 the norm in L2(0, T ;R). As a consequence,
since

∫ T
0 ‖σ(s)‖2HS ds <∞, we can construct the stochastic integral

Σs,t =

∫ t

s
σ (r) dWr ∈ Hqt , 0 ≤ s ≤ t ≤ T. (6.3)

By [66, Theorem 4.36], there exists a constant Cd,q > 0 such that

‖Σs,t‖Hq ≤ Cd,q ‖k2‖2
√
t− s, 0 ≤ s ≤ t ≤ T. (6.4)

Let Λ be the space C
(
[0, T ] ;Rd

)
, and define B : [0, T ]× Λ→ H by

[B (t, w)] (ξ) = k1 (ξ − t) 1{t<ξ}b (t, w (t)) , t, ξ ∈ [0, T ] . (6.5)

In the sequel, a stochastic process taking values in H will be denoted by, e.g., (wt)t∈[0,T ], namely with
the time variable as a subscript. Then, for a fixed t0 ∈ [0, T ], wt0 is a random function, denoted by
wt0 (ξ), ξ ∈ [0, T ].

In the following proposition, we show that it is possible to construct a solution to (I.24), i.e., an
F−adapted process with values in H satisfying (I.24) P−a.s., for every t ∈ [0, T ], using a solution of
(I.23).

Proposition 6.1. Let X = (Xt)t∈[0,T ] be a solution of (I.23). For every t ∈ [0, T ], define the Rd−valued
stochastic process θt = (θt(ξ))ξ∈[t,T ] by

θt (ξ) = x0 +

∫ t

0
k1 (ξ − s) b (s,Xs) ds+

∫ t

0
k2 (ξ − s) dWs, ξ ∈ [t, T ].

Define the H−valued stochastic process (wt)t∈[0,T ] by setting, for each t ∈ [0, T ],

wt (ξ) =

{
Xξ, ξ ≤ t,
θt (ξ) , ξ > t.

(6.6)

Then (wt)t∈[0,T ] is a solution of (I.24) with φ ∈ H being the function identically equal to x0.
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Proof. Fix t ∈ [0, T ]. Note that, by the Kolmogorov–Chentsov continuity criterion, there exists a con-
tinuous version of the stochastic process (

∫ t
0 k2(ξ− s) dWs)ξ∈[t,T ]. Hence, also employing the dominated

convergence theorem, we deduce that the process θt has continuous trajectories θt(·) in [t, T ]. It follows
that wt defined in (6.6) takes values in H.
In addition, by [66, Proposition 3.18], we observe that wt is an Ft−measurable random variable, because
X is continuous and F−adapted, θt(·) is continuous and θt(ξ) is Ft−measurable for every ξ ∈ [t, T ].
Thus, the H−valued stochastic process (wt)t∈[0,T ] is F−adapted.

We now want to prove that wt satisfies (I.24). By (I.23) and the definition of θt, we have, P−a.s.,

wt (ξ) = Xξ1{ξ≤t} + θt(ξ)1{ξ>t} = x0 +

∫ t∧ξ

0
k1 (ξ − s) b (s,Xs) ds+

∫ t∧ξ

0
k2 (ξ − s) dWs

= x0 +

∫ t

0
k1 (ξ − s) 1{ξ>s}b (s,Xs) ds+

∫ t

0
k2 (ξ − s) 1{ξ>s}dWs, ξ ∈ [0, T ]. (6.7)

We focus on the integral in dW , with the aim of understanding its relation with Σ0,t =
∫ t

0 σ(s)dWs, see
(6.3). By (6.2) and [66, Proposition 4.30],〈∫ t

0
σ (s) dWs, h

〉
H

=

∫ t

0

(∫ T

0
k2(ξ − s)1{ξ>s}h(ξ) dξ

)>
dWs, P− a.s., for every h ∈ H.

Moreover, an application of the stochastic Fubini’s theorem yields〈∫ t

0
k2(· − s)1{·>s}dWs, h

〉
H

=

∫ T

0

(∫ t

0
k2(ξ − s)1{ξ>s} dWs

)>
h(ξ) dξ

=

∫ t

0

(∫ T

0
k2(ξ − s)1{ξ>s}h(ξ) dξ

)>
dWs, P− a.s., for every h ∈ H.

Considering that H is separable, combining the two previous equations we deduce that〈∫ t

0
σ (s) dWs, h

〉
H

=

〈∫ t

0
k2(· − s)1{·>s}dWs, h

〉
H

, h ∈ H, P− a.s.,

which in turn implies that(∫ t

0
σ (s) dWs

)
(ξ) =

∫ t

0
k2(ξ − s)1{ξ>s}dWs, for a.e. ξ ∈ [0, T ], P− a.s. (6.8)

Going back to (6.7), recalling the definition of B in (6.5) and denoting by φ ∈ H the function identically
equal to x0, by the standard properties of Bochner’s integral we conclude that

wt = φ+

∫ t

0
B (s, ws) ds+

∫ t

0
σ(s) dWs, P− a.s.

Therefore (wt)t∈[0,T ] satisfies (I.24), completing the proof. �

The previous proposition gives us the classical infinite–dimensional reformulation of the Volterra
SDE (I.23), quoted by Equation (I.24) in Introduction. However, for the procedure carried out in
Section 6.2, it turns out that a second reformulation is more convenient.
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Proposition 6.2. Let (Xt)t∈[0,T ] be a solution of (I.23) and φ ∈ H be the function identically equal
to x0. Let θt (ξ) and wt (ξ) be defined as in Proposition 6.1. Then, for every t ∈ [0, T ], the following
identity holds:

wt = φ+

∫ t

0
B (s, wt) ds+

∫ t

0
σ(s) dWs, P− a.s. (6.9)

Proof. Observing that, for a.e. ξ ∈ [0, T ],∫ t

0
k1 (ξ − s) 1{ξ>s}b (s,Xs) ds =

∫ t

0
B (s, wt) (ξ) ds =

[∫ t

0
B (s, wt) ds

]
(ξ) ,

the proof is the same as the one of Proposition 6.1, �

Motivated by the infinite–dimensional reformulation of Proposition 6.2, in Section 6.2 we focus on
studying Equation (6.9). Our aim is to investigate the property of its solutions and the associated
Kolmogorov equation, which is the subject of Section 6.3. However, the implementation of this plan is
challenging, due to the particular structure of the drift function B : [0, T ] × Λ → H. More precisely,
the issue with the expression of B in (6.5) is that it is meaningful only for continuous functions, as it
involves a punctual evaluation. Consequently, unlike the classical case, the functional space Λ in the
domain of B is different from the arrival Hilbert space H. This requires an abstract formulation of the
problem that, to the best of our knowledge, is not covered by the existing literature.

6.2 Abstract formulation and differentiability of the stochastic flow

In this section, we introduce and study an abstract formulation for the equation (6.9), with a
particular attention devoted to the differentiability of its solution with respect to the initial data, see
Subsections 6.2.1-6.2.2. In our reasoning, we introduce an extension of the drift operator B, denoted by
B, which is a characterizing and original feature of the approach that we propose.

For every k, p ∈ N, we denote by ‖·‖p the usual norm on the Banach space Lp
(
0, T ;Rk

)
. We denote

by
H� the Hilbert space L2

(
(0, T )× (0, T ) ;Rd

)
endowed with the norm ‖·‖2,�.

Recall H = L2
(
0, T ;Rd

)
and Λ = C

(
[0, T ] ;Rd

)
. For every w ∈ Λ, we consider a map B (w) : [0, T ] ×

[0, T ]→ Rd subject to the next requirement.

Hypothesis 6.1. The function B : Λ→ H� satisfies

‖B (w1)‖2,� ≤ C0 (1 + ‖w1‖2) , ‖B (w1)−B (w2)‖2,� ≤ C0 ‖w1 − w2‖2 , (6.10)

for every w1, w2 ∈ Λ, for some constant C0 = C0 (d, T ) > 0.
Moreover, given w ∈ Λ and 0 < t ≤ T , for a.e. r ∈ (0, t) the function B (w) (r, ·) ∈ H is of Volterra–
type, namely B (w) (r, ξ) = 0 for a.e. ξ ∈ (0, r), and depends on w only via its restriction w|(0,t) to
(0, t).

In the sequel, we are going to progressively introduce stricter hypotheses on the drift map B (see,
in particular, Hypotheses 6.2-6.3), which will allow us to prove the main result on the Kolmogorov
equation, see Theorem 6.9 in Section 6.3. In Example 6.1, we show a function B, obtained by choosing
b in (6.5) with an affine structure, that satisfies these requirements.



6.2. Abstract formulation and differentiability of the stochastic flow 209

Under Hypothesis 6.1, we can invoke the theorem of extension of uniformly continuous functions to
uniquely define a continuous map B : H → H� such that B

∣∣
Λ

= B. Note that B satisfies (6.10) for
every w1, w2 ∈ H. Given w ∈ H and r ∈ (0, T ), we are going to write B (r, w) = B (w) (r, ·) ∈ H: these
maps are well defined for a.e. r ∈ (0, T ).
For a fixed 0 < t ≤ T , we remark that also B (r, w) is of Volterra–type in the sense of Hypothesis 6.1
for a.e. r ∈ (0, t), and that it depends on w only via w|(0,t). For these reasons, in the sequel we will
refer to Hypothesis 6.1 while talking about B.

Recall the spaces Hq = Lq
(
Ω;H

)
, q ≥ 2, and the subspaces Hqt ⊂ Hq of Ft−measurable functions

introduced in Section 6.1, as well as the random variables Σs,t ∈ Hqt in (6.3). For every 0 ≤ s ≤ t ≤ T
and φ ∈ Hq, we are interested in the equation

w = φ+

∫ t

s
B (r, w) dr +

∫ t

s
σ (r) dWr, (6.11)

whose well–posedness in Hq is given by the next result.

Theorem 6.3. Under Hypothesis 6.1, for every q ≥ 2, φ ∈ Hq and s, t ∈ [0, T ], with s ≤ t, there exists
a unique solution ws,φt ∈ Hq of (6.11). In particular, if φ ∈ Hqs then ws,φt ∈ Hqt .

Furthermore, the following cocycle property holds in Hq:

ws,φt = wu,w
s,φ
u

t , 0 ≤ s < u < t ≤ T, φ ∈ Hq. (6.12)

Proof. Fix q ≥ 2, 0 ≤ s ≤ t ≤ T and φ ∈ Hqs. Consider N = N (d, T ) ∈ N so big that C0

√
T/N < 1,

where C0 = C0 (d, T ) is the constant in (6.10). Let us introduce an equispaced partition {tk}Nk=0 of [s, t]
where t0 = s and tN = t: its mesh ∆ ≤ T/N . Define the mapping Γt1t0 : Hqt1 → H

q
t1

by

Γt1t0w = φ+

∫ t1

t0

B (r, w) dr +

∫ t1

t0

σ (r) dWr, w ∈ Hqt1 . (6.13)

Under Hypothesis 6.1, Γt1t0 is well defined. Indeed, for every w ∈ Hqt1 ,

∥∥Γt1t0w
∥∥q
Hq = E

[∥∥Γt1t0w
∥∥q

2

]
≤ 3q−1E

‖φ‖q2 +

(∫ t1

t0

(∫ T

0

∣∣B (w) (r, ξ)
∣∣2 dξ

) 1
2

dr

)q
+

∥∥∥∥∫ t1

t0

σ (r) dWr

∥∥∥∥q
2


≤ 3q−1E

[
‖φ‖q2 + Cq0∆

q
2 (1 + ‖w‖2)q +

∥∥∥∥∫ t1

t0

σ (r) dWr

∥∥∥∥q
2

]
<∞,

where we use Bochner’s theorem in the first inequality and the first bound in (6.10), coupled with
Jensen’s inequality, in the second one. Analogously, using the second inequality in (6.10), we write

∥∥Γt1t0w1 − Γt1t0w2

∥∥
Hq ≤ E

(∫ t1

t0

(∫ T

0

∣∣B (w1)−B (w2)
∣∣2 (r, ξ) dξ

) 1
2

dr

)q 1
q

≤ C0

√
∆ ‖w1 − w2‖Hq , w1, w2 ∈ Hqt1 . (6.14)

Hence, for our choice of N ∈ N, the map Γt1t0 is a contraction in Hqt1 , whose unique fixed point is w1.
Noting that w1 is the unique solution of (6.11) with t1 instead of t, we denote it by ws,φt1 .
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Since the relation between constants in (6.14), which is necessary to make Γt1t0 a contraction, does
not depend on the initial condition, under Hypothesis 6.1 the previous argument can be iterated to
construct the solution ws,φt of (6.11). More precisely, define the map Γt2t1 : Hqt2 → H

q
t2

by

Γt2t1w = w1 +

∫ t2

t1

B (r, w) dr +

∫ t2

t1

σ (r) dWr, w ∈ Hqt2 .

Computations similar to those above show that Γt2t1 is well defined. Moreover,∥∥Γt2t1w1 − Γt2t1w2

∥∥
Hq ≤ C0

√
∆ ‖w1 − w2‖Hq , w1, w2 ∈ Hqt2 .

Thus, Γt2t1 is a contraction in Hqt2 , whose unique fixed point is w2 = w
t1,w

s,φ
t1

t2
. Now, by the Volterra–type

property of B and σ, together with the standard features of the Bochner’s and stochastic integrals (see
(6.8)), we infer that(∫ t2

t1

B (r, w2) dr

)
(ξ) =

(∫ t2

t1

σ (r) dWr

)
(ξ) = 0, for a.e. ξ ∈ (0, t1), P− a.s., (6.15)

whence
w2

∣∣
(0,t1)

= w1

∣∣
(0,t1)

, P− a.s.

Furthermore, P−a.s., for a.e. r ∈ (s, t1), B (r, w1) depends on w1 only via w1

∣∣
(0,r)

, which yields

B (r, w1) = B (r, w2) , for a.e. r ∈ (s, t1), P− a.s. (6.16)

Therefore, recalling (6.13),

w2 = φ+

∫ t1

s
B (r, w1) dr +

∫ t2

t1

B (r, w2) dr +

∫ t2

s
σ (r) dWr

= φ+

∫ t2

s
B (r, w2) dr +

∫ t2

s
σ (r) dWr. (6.17)

This shows that w2 is a solution of (6.11) with t2 instead of t.
To prove that w2 is in fact the unique solution of this equation, we consider another random variable
w̃ ∈ Hqt2 satisfying (6.17). Then, relying on the same properties of B and σ as those used above, we
deduce that

1(0,t1)w̃ = 1(0,t1)

(
φ+

∫ t1

s
B
(
r, 1(0,t1)w̃

)
dr +

∫ t1

s
σ (r) dWr

)
. (6.18)

Moreover, we observe that also 1(0,t1)w1 ∈ Hq satisfies (6.18). Therefore, using Bochner’s theorem and
Jensen’s inequality, by Hypothesis 6.1 we can compute

∥∥1(0,t1) (w1 − w̃)
∥∥q
Hq ≤ E

[∥∥∥∥∫ t1

s

(
B
(
r, 1(0,t1)w1

)
−B

(
r, 1(0,t1)w̃

))
dr

∥∥∥∥q
2

]
≤ E

[(∫ t1

s

∥∥B (r, 1(0,t1)w1

)
−B

(
r, 1(0,t1)w̃

)∥∥
2

dr

)q]
≤ ∆

q
2E
[∥∥B (1(0,t1)w1

)
−B

(
1(0,t1)w̃

)∥∥q
2,�

]
≤ ∆

q
2Cq0

∥∥1(0,t1) (w1 − w̃)
∥∥q
Hq ,
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which allow us to conclude, recalling that
√

∆C0 < 1,

1(0,t1)w̃ = 1(0,t1)w1, P− a.s.

Going back to (6.17), by (6.13) and the previous equality we have, P−a.s.,

w̃ = φ+

∫ t1

s
B (r, w1) dr +

∫ t1

s
σ (r) dWr +

∫ t2

t1

B (r, w̃) dr + Σt1,t2 = w1 +

∫ t2

t1

B (r, w̃) dr + Σt1,t2 .

It follows that w̃ is a fixed point of the map Γt2t1 in Hqt2 : by uniqueness, we obtain w̃ = w2. Hence w2 is
the unique solution of (6.11) with t2 instead of t, which we denote by ws,φt2 .

This argument by steps can be repeated to cover the whole interval [s, t]. In this way, we obtain the
unique solution ws,φt of (6.11) in Hqt . The same procedure also works when the initial condition φ ∈ Hq,
i.e., when φ is not necessarily Fs−measurable. In such a case, it provides a unique solution ws,φt ∈ Hq.

The cocycle property in (6.12) follows by a similar reasoning. Indeed, if we fix u ∈ (s, t), then by
the Volterra–type property of B and σ (cfr. (6.15)) we have

wu,w
s,φ
u

t

∣∣∣
(0,u)

= ws,φu

∣∣∣
(0,u)

, P− a.s. (6.19)

Invoking again Hypothesis 6.1 as in (6.16),

wu,w
s,φ
u

t = φ+

∫ u

s
B
(
r, ws,φu

)
dr +

∫ t

u
B
(
r, wu,w

s,φ
u

t

)
dr +

∫ t

s
σ (r) dWr

= φ+

∫ t

s
B
(
r, wu,w

s,φ
u

t

)
dr +

∫ t

s
σ (r) dWr,

hence the equality in (6.12) is inferred by the uniqueness of the solution of (6.11). The proof is now
complete. �

Remark 6.1. The cocycle property in (6.12) (see also (6.19)) yields ws,φt (ξ) = ws,φu (ξ) for a.e. ξ ∈
(0, u), P−a.s., for every 0 ≤ s ≤ u ≤ t ≤ T and φ ∈ Hq, q ≥ 2.

Remark 6.2. For every p ∈ (2, (1 − α)−1), the fractional kernel k2 in (6.1) belongs to the space
Lp
(
0, T ;R

)
.

As a consequence, according to [144, Lemma 8.27, Theorem 8.29], the stochastic integral Σs,t in (6.3)
belongs to the space

Lpt = (Lpt (Ω;Lp) , ‖·‖Lp) , where Lp = Lp
(
0, T ;Rd

)
.

As before, the subscript t in the previous expression indicates a space of Ft−measurable random variables.
Moreover, the following inequality holds (cfr. (6.4)):

‖Σs,t‖Lp ≤ Cd,p ‖k2‖p
√
t− s, for some Cd,p > 0. (6.20)

We denote by

Lp� the Banach space Lp
(

(0, T )× (0, T ) ;Rd
)
, endowed with the norm ‖·‖p,�.
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In addition to Hypothesis 6.1, suppose that B : Λ→ Lp� and that it satisfies

‖B (w1)‖p,� ≤ C0,p

(
1 + ‖w1‖p

)
, ‖B (w1)−B (w2)‖p,� ≤ C0,p ‖w1 − w2‖p , (6.21)

for every w1, w2 ∈ Λ, for some constant C0,p = C0,p(d, T ) > 0. Note that B : H → H� satisfies (6.21)
for every w1, w2 ∈ Lp.

In this framework, one can argue as in the proof of Theorem 6.3 to infer that, for every φ ∈ Lps,
there exists a unique solution ws,φt of (6.11) belonging to the space Lpt .

The following corollary to Theorem 6.3 gives a Lipschitz–type dependence of the solution ws,φt of
(6.11) on the initial condition φ, which combined with (6.12) allows to prove the F−Markov property
of the process (ws,φt )t∈[s,T ].

Corollary 6.4. Let q ≥ 2. Under Hypothesis 6.1, there exists a constant C1 = C1 (d, q, T ) > 0 such
that, for every 0 ≤ s < t ≤ T ,∥∥∥ws,φt − ws,ψt ∥∥∥

Hq
≤ C1 ‖φ− ψ‖Hq , φ, ψ ∈ Hq. (6.22)

In addition, for all s ∈ [0, T ] and φ ∈ Hqs, the process (ws,φt )t∈[s,T ] is F−Markov, and

E
[
Φ
(
ws,φu

) ∣∣∣Ft] = E
[
Φ
(
wt,ψu

)] ∣∣∣
ψ=ws,φt

, P− a.s., s ≤ t ≤ u ≤ T, Φ ∈ Bb(H), (6.23)

where Bb(H) denotes the space of bounded Borel measurable functions from H to R.

Proof. Fix q ≥ 2, 0 ≤ s < t ≤ T and consider N = N (d, T ) ∈ N so big that 2C0

√
T/N < 21/q, where

C0 = C0 (d, T ) is the constant in (6.10). Moreover, take an equispaced partition {tk}Nk=0 of [s, t] where
t0 = s and tN = t. By (6.10)-(6.11), for every φ, ψ ∈ Hq,

∥∥∥ws,φt1 − ws,ψt1 ∥∥∥q2 ≤ 2q−1 ‖φ− ψ‖q2 + 2q−1

(
T

N

) q
2
∥∥∥B (ws,φt1 )−B (ws,ψt1 )∥∥∥q2,�

≤ 2q−1 ‖φ− ψ‖q2 + 2q−1Cq0

(
T

N

) q
2
∥∥∥ws,φt1 − ws,ψt1 ∥∥∥q2 , P−a.s.,

hence ∥∥∥ws,φt1 − ws,ψt1 ∥∥∥q2 ≤ 2q−1

(
1− 2q−1Cq0

(
T

N

) q
2

)−1

‖φ− ψ‖q2 , P− a.s.

Thus, by the cocycle property in (6.12), for every φ, ψ ∈ Hq,∥∥∥ws,φt − ws,ψt ∥∥∥q
2

=

∥∥∥∥wtN−1,w
s,φ
tN−1

tN
− w

tN−1,w
s,ψ
tN−1

tN

∥∥∥∥q
2

≤ 2q−1

(
1− 2q−1Cq0

(
T

N

) q
2

)−1 ∥∥∥∥wtN−2,w
s,φ
tN−2

tN−1
− w

tN−2,w
s,ψ
tN−2

tN−1

∥∥∥∥q
2

≤ 2N(q−1)

(
1− 2q−1Cq0

(
T

N

) q
2

)−N
‖φ− ψ‖q2 , P−a.s.,



6.2. Abstract formulation and differentiability of the stochastic flow 213

which shows (6.22) upon taking expectations and q−th root, as desired.
The Markov property of the process (ws,φt )t∈[s,T ], φ ∈ H

q
s, is a consequence of (6.23). In turn, the

equality in (6.23) can be readily obtained by paralleling the monotone class argument in [66, Theorem
9.14], which essentially relies on the cocycle property in (6.12) and the Lipschitz–continuous dependence
in (6.22). Thus, the proof is complete. �

6.2.1 First–order differentiability in the initial data

In this subsection we focus on deterministic initial conditions for (6.11), i.e., φ ∈ H. From now on,
we denote the Hilbert space H2 = L2(Ω;H) simply by H.

In order to study the first–order Fréchet differentiability of ws,φt in H, we require hypotheses on B
which are stronger than Hypothesis 6.1. In fact, we need some conditions on the Frechét differentiability
of B in the normed space (Λ, ‖·‖2). In the sequel, we write Λ2 for (Λ, ‖·‖2) to have a compact notation.

Hypothesis 6.2. The map B : Λ→ H� satisfies Hypothesis 6.1. Moreover, B is Λ2−Fréchet differen-
tiable, and there exists a constant C0 = C0 (d, T ) > 0 such that

‖DB (w1) (w2)‖2,� ≤ C0 ‖w2‖2 , w1, w2 ∈ Λ, (6.24)

and

‖DB (w1)−DB (w2)‖L(Λ2;H�) ≤ C0 ‖w1 − w2‖γ2 , w1, w2 ∈ Λ, for some γ ∈ (0, 1] . (6.25)

Without loss of generality, we assume the constant C0 in (6.24)-(6.25) to be the same as the one in
(6.10).
Under Hypothesis 6.2, precisely by (6.24) and the theorem of extension of uniformly continuous func-
tions, for every w1 ∈ Λ it is possible to extendDB (w1) ∈ L (Λ;H�) to an operatorDB (w1) ∈ L (H;H�)
satisfying (6.24) for all w2 ∈ H. Moreover, by (6.25),∥∥DB (w1)−DB (w2)

∥∥
L(H;H�)

=‖DB (w1)−DB (w2)‖L(Λ2;H�) ≤ C0 ‖w1 − w2‖γ2 , w1, w2 ∈ Λ, (6.26)

hence we can extend (without changing the notation)

DB : H → L (H;H�), with DB satisfying (6.24)-(6.26) for every w1, w2 ∈ H. (6.27)

We want to show that B is H−Fréchet differentiable, with DB = DB. By Taylor’s formula applied on
B, recalling that B

∣∣
Λ

= B and DB(w1)
∣∣
Λ

= DB(w1), w1 ∈ Λ, we write

B (w2)−B (w1)−DB (w1) (w2 − w1) = r (w1, w2) , w1, w2 ∈ Λ, where (6.28)

r (x, y) =

∫ 1

0

(
DB (x+ h (y − x))−DB (x)

)
(y − x) dh, x, y ∈ H.

Note that r : H × H → H� is continuous. Indeed, for every x, y ∈ H and every sequence H × H 3
(xn, yn) → (x, y) as n → ∞, by Bochner’s theorem and (6.27), after some algebraic computations we
deduce that

‖r (xn, yn)− r (x, y)‖2,� ≤
C0

γ + 1
‖yn − xn‖γ2 ‖yn − y + x− xn‖2

+ C0

(
1

γ + 1
‖yn − y + x− xn‖γ2 + 2 ‖x− xn‖γ2

)
‖y − x‖2 → 0, as n→∞.
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It then follows from the continuity of B in H and (6.27) that (6.28) holds for every w1, w2 ∈ H.
Moreover, since by (6.27) ‖r (x, y)‖2,� ≤ C0(γ + 1)−1 ‖y − x‖1+γ

2 , x, y ∈ H, we conclude that

B (w2)−B (w1)−DB (w1) (w2 − w1) = o (‖w2 − w1‖2) , w1, w2 ∈ H.

Therefore B is H−Fréchet differentiable, with DB = DB.
We also notice that, for every w1, w2 ∈ H and 0 < t ≤ T ,

DB(w1) (r, w2) := [DB(w1)(w2)] (r, ·) ∈ H is of Volterra–type, for a.e. r ∈ (0, t), (6.29)

and that
DB(w1) (r, w2) depends on wi only via wi

∣∣
(0,t)

, i = 1, 2, for a.e. r ∈ (0, t) : (6.30)

these two properties are inherited from B, see Hypothesis 6.1.
The next result shows that, under Hypothesis 6.2, the solution ws,φt of (6.11), considered as a map

from H to H, is H−Fréchet differentiable.

Theorem 6.5. Under Hypothesis 6.2, for every 0 ≤ s ≤ t ≤ T , the mapping ws,·t ∈ C1+γ (H;H). In
particular, for every φ, ψ ∈ H, Dws,φt ψ is the unique solution in H of the following equation:

Dws,φt ψ = ψ +

∫ t

s
DB

(
ws,φt

)(
r,Dws,φt ψ

)
dr. (6.31)

Furthermore, there exists a constant C2 = C2(d, T ) > 0 such that, for every φ, ψ, η ∈ H, P− a.s.,∥∥∥Dws,φt η
∥∥∥

2
≤ C2 ‖η‖2 ,

∥∥∥Dws,φt η −Dws,ψt η
∥∥∥

2
≤ C2

∥∥∥ws,φt − ws,ψt ∥∥∥γ
2
‖η‖2 . (6.32)

Proof. Fix 0 ≤ s ≤ t ≤ T and φ ∈ H. Firstly, we prove the well–posedness in H of the equation

w = ψ +

∫ t

s
DB

(
ws,φt

)
(r, w) dr, ψ ∈ H. (6.33)

Consider N = N (d, T ) ∈ N so big that C0

√
T/N < 1, where C0 = C0 (d, T ) is the constant in

Hypotheses 6.1-6.2. In addition, take an equispaced partition {tk}Nk=0 of [s, t] where t0 = s and tN = t:
its mesh ∆ ≤ T/N . By (6.27) (see also (6.24)) and Bochner’s theorem, the following estimate holds:

∥∥∥∥∫ t1

t0

DB
(
ws,φt

)
(w1 − w2) (r, ·) dr

∥∥∥∥
H
≤
√

∆E
[∫ t1

t0

∫ T

0

∣∣∣DB (ws,φt ) (w1 − w2)
∣∣∣2 (r, ξ) dξ dr

] 1
2

≤
√

∆E
[∥∥∥DB (ws,φt ) (w1 − w2)

∥∥∥2

2,�

] 1
2

≤ C0

√
∆ ‖w1 − w2‖H , w1, w2 ∈ H. (6.34)

Thus, employing a fixed point argument as in the proof of Theorem 6.3, we deduce the existence of a
unique solution wψ1 ∈ H of (6.33) with t1 instead of t, for every ψ ∈ H.

We claim that the operator Dws,φt1 : H → H defined by Dws,φt1 ψ = wψ1 , ψ ∈ H, is the Fréchet
differential of ws,φt1 . Indeed, the linearity of Dws,φt1 is straightforward, while the continuity is ensured by
the following computation, which can be argued from (6.33) similarly to (6.34):∥∥∥Dws,φt1 ψ∥∥∥2

≤
(

1− C0

√
T/N

)−1
‖ψ‖2 , P− a.s., ψ ∈ H. (6.35)
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Moreover, recalling (6.11)-(6.31),

∥∥∥ws,φ+h
t1

− ws,φt1 −Dw
s,φ
t1
h
∥∥∥
H
≤
√

∆E
[∥∥∥B (ws,φ+h

t1

)
−B

(
ws,φt1

)
−DB

(
ws,φt1

)
Dws,φt1 h

∥∥∥2

2,�

] 1
2

≤
√
T/N

(
E
[∥∥∥DB (ws,φt1 )(ws,φ+h

t1
− ws,φt1 −Dw

s,φ
t1
h
)∥∥∥2

2,�

] 1
2

+ E

[∥∥∥∥∫ 1

0

(
DB

(
ws,φt1 + u

(
ws,φ+h
t1

− ws,φt1
))
−DB

(
ws,φt1

))(
ws,φ+h
t1

− ws,φt1
)

du

∥∥∥∥2

2,�

] 1
2


≤
√
T/NC0

(∥∥∥ws,φ+h
t1

− ws,φt1 −Dw
s,φ
t1
h
∥∥∥
H

+ E
[∥∥∥ws,φ+h

t1
− ws,φt1

∥∥∥2(1+γ)

2

] 1
2

)
, h ∈ H, (6.36)

where we apply Taylor’s formula on B for the second inequality and (6.27) together with Bochner’s
theorem for the third. Notice thatH ⊂ Hq for every q ≥ 2. Therefore, by Corollary 6.4 with q = 2(1+γ),
from (6.36) we infer that∥∥∥ws,φ+h

t1
− ws,φt1 −Dw

s,φ
t1
h
∥∥∥
H
≤
√
T/NC0C

1+γ
1

(
1−

√
T/NC0

)−1
‖h‖1+γ

2 = o (‖h‖2) , h ∈ H, (6.37)

for some constant C1 = C1(γ, d, T ) > 0. This shows that Dws,φt1 is the Fréchet differential of ws,φt1 , as
desired.

Next, consider

w = Dws,φt1 ψ +

∫ t2

t1

DB
(
ws,φt2

)
(r, w) dr, ψ ∈ H : (6.38)

the well–posedness of this equation in H can be obtained via a fixed–point argument as in the above
step. We denote by wψ2 ∈ H, ψ ∈ H, the unique solution of (6.38).

We argue that wψ2 is the unique solution of (6.33) with t2 instead of t, for every ψ ∈ H. By the
Volterra–type property of DB in (6.29) and (6.38) we have, P−a.s.,

wψ2

∣∣∣
(0,t1)

= Dws,φt1 ψ
∣∣∣
(0,t1)

.

Furthermore, thanks to the relation ws,φt2 = w
t1,w

s,φ
t1

t2
in (6.12) and the properties of B under Hypothesis

6.1 we can write, P−a.s.,
ws,φt2

∣∣∣
(0,t1)

= ws,φt1

∣∣∣
(0,t1)

, (6.39)

see Remark 6.1. Consequently, by the property of DB in (6.30) and recalling that Dws,φt1 ψ satisfies
(6.33) with t1 instead of t, from (6.38) we conclude that, P−a.s.,

wψ2 = ψ +

∫ t1

s
DB

(
ws,φt1

)(
r,Dws,φt1 ψ

)
dr +

∫ t2

t1

DB
(
ws,φt2

)(
r, wψ2

)
dr

= ψ +

∫ t2

s
DB

(
ws,φt2

)(
r, wψ2

)
dr. (6.40)
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Hence wψ2 solves (6.33) with t replaced by t2; to prove that it is in fact the unique solution, we consider
another random variable w̃ ∈ H satisfying (6.40). Then, by (6.29)-(6.30),

1(0,t1)w̃ = 1(0,t1)

(
ψ +

∫ t1

s
DB

(
ws,φt1

) (
r, 1(0,t1)w̃

)
dr

)
. (6.41)

We observe that also 1(0,t1)w
ψ
1 ∈ H satisfies (6.41). Therefore, using Bochner’s theorem and Jensen’s

inequality, by (6.27) we can compute

∥∥∥1(0,t1)

(
wψ1 − w̃

)∥∥∥2

H
≤ E

[(∫ t1

s

∥∥∥DB (ws,φt1 )(r, 1(0,t1)

(
wψ1 − w̃

))∥∥∥
2

dr

)2
]

≤ ∆E
[∥∥∥DB (ws,φt1 )(1(0,t1)

(
wψ1 − w̃

))∥∥∥2

2,�

]
≤ ∆C2

0

∥∥1(0,t1) (w1 − w̃)
∥∥2

H , (6.42)

which allow us to conclude, recalling that
√

∆C0 < 1,

1(0,t1)w̃ = 1(0,t1)w
ψ
1 , P− a.s.

Going back to (6.40), by (6.33) and the previous equality we have, P−a.s.,

w̃ = ψ +

∫ t1

s
DB

(
ws,φt1

)(
r, wψ1

)
dr +

∫ t2

t1

DB
(
ws,φt2

)
(r, w̃) dr = wψ1 +

∫ t2

t1

DB
(
ws,φt2

)
(r, w̃) dr.

It follows that w̃ satisfies (6.38): by uniqueness, we obtain w̃ = wψ2 . Hence w
ψ
2 is the unique solution of

(6.33) in H with t2 instead of t.
We define the operator Dws,φt2 : H → H by Dws,φt2 ψ = wψ2 , ψ ∈ H, and claim that it is the Fréchet

differential of ws,φt2 . To see this, note that the linearity of Dws,φt2 is a consequence of the well–posedness
of (6.40). As for the continuity, it is ensured by the following computations, where we use (6.27)-(6.35)-
(6.38):

∥∥∥Dws,φt2 ψ∥∥∥2
≤
∥∥∥Dws,φt1 ψ∥∥∥2

+

∫ t2

t1

∥∥∥DB (ws,φt2 ) (r,Dws,φt2 ψ)
∥∥∥

2
dr

≤
(

1− C0

√
T/N

)−1
‖ψ‖2 +

√
∆C0

∥∥∥Dws,φt2 ψ∥∥∥2
, P− a.s., ψ ∈ H,

whence ∥∥∥Dws,φt2 ψ∥∥∥2
≤
(

1− C0

√
T/N

)−2
‖ψ‖2 , P− a.s., ψ ∈ H. (6.43)

Moreover, by the cocycle property in (6.12) and reasoning as in (6.36), by (6.11)-(6.38) we obtain, for
some constant c > 0,∥∥∥ws,φ+h

t2
− ws,φt2 −Dw

s,φ
t2
h
∥∥∥
H

=

∥∥∥∥wt1,ws,φ+h
t1

t2
− w

t1,w
s,φ
t1

t2
−Dws,φt1 h−

∫ t2

t1

DB
(
ws,φt2

)(
r,Dws,φt2 h

)
dr

∥∥∥∥
H

≤
∥∥∥ws,φ+h

t1
− ws,φt1 −Dw

s,φ
t1
h
∥∥∥
H

+

∥∥∥∥∫ t2

t1

(
B
(
ws,φ+h
t2

)
−B

(
ws,φt2

)
−DB

(
ws,φt2

)
Dws,φt2 h

)
(r, ·) dr

∥∥∥∥
H

≤ c ‖h‖1+γ
2 = o (‖h‖2) , h ∈ H, (6.44)
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where we also employ (6.37) in the last inequality. This shows that Dws,φt2 is the Fréchet differential of
ws,φt2 , as desired.

Repeating this argument N−times, we deduce that Dws,φt : H → H defined by Dws,φt ψ = wψN ,
where wψN is the unique solution of (6.33) in H, for every ψ ∈ H, is the Fréchet differential of ws,φt . In
particular, the first bound in (6.32) is true, because (cfr. (6.35)-(6.43))∥∥∥Dws,φt ψ

∥∥∥
2
≤
(

1− C0

√
T/N

)−N
‖ψ‖2 =: C ‖ψ‖2 , P− a.s., φ, ψ ∈ H. (6.45)

As regards the second inequality in (6.32), by (6.27), (6.31) and (6.45) we have, for every φ, ψ, η ∈ H,
P−a.s.,∥∥∥Dws,φt1 η −Dws,ψt1 η

∥∥∥
2

=

∥∥∥∥∫ t1

s

(
DB

(
ws,φt

)
Dws,φt1 η −DB

(
ws,ψt

)
Dws,ψt1 η

)
(r, ·) dr

∥∥∥∥
2

≤
√

∆

(∥∥∥DB (ws,φt )(Dws,φt1 η −Dws,ψt1 η
)∥∥∥

2,�
+
∥∥∥(DB (ws,φt )−DB (ws,ψt ))

Dws,ψt1 η
∥∥∥

2,�

)
≤ C0

√
T/N

(∥∥∥Dws,φt1 η −Dws,ψt1 η
∥∥∥

2
+ C

∥∥∥ws,φt − ws,ψt ∥∥∥γ
2
‖η‖2

)
,

where in the first equality we also use (6.30) and (6.39) with t instead of t2. It follows that∥∥∥Dws,φt1 η −Dws,ψt1 η
∥∥∥

2
≤
(

1− C0

√
T/N

)−1
C0C

√
T/N

∥∥∥ws,φt − ws,ψt ∥∥∥γ
2
‖η‖2 .

By (6.38), we sequentially iterate this computation to obtain the second bound in (6.32) with

C2 = max{C,NC0C
2√

T/N}.

At this point, taking expectations and using Corollary 6.4 with q = 2γ (recall that H ⊂ Hq), by
Jensen’s inequality we infer that, for some constant C > 0,

∥∥∥Dws,φt −Dws,ψt ∥∥∥
L(H;H)

= sup
‖η‖2≤1

E
[∥∥∥Dws,φt η −Dws,ψt η

∥∥∥2

2

] 1
2

≤ C2E
[∥∥∥ws,φt − ws,ψt ∥∥∥2γ

2

] 1
2

≤ C ‖φ− ψ‖γ2 , φ, ψ ∈ H.

This shows that Dws,·t ∈ Cγ (H;L(H;H)), completing the proof. �

6.2.2 Second–order differentiability in the initial data

Recalling the normed space Λ2 =
(
Λ, ‖·‖2

)
, in the sequel we identify L(Λ2;L(Λ2;H�)) with the

space L(Λ2,Λ2;H�) of bilinear forms from Λ2 × Λ2 to H� in the usual way.
For the purpose of investigating the second–order Fréchet differential in H of ws,φt , we need to require
another condition on B.

Hypothesis 6.3. The map B : Λ → H� satisfies Hypothesis 6.2. Moreover, B is twice Λ2−Fréchet
differentiable, and there exists a constant C0 = C0 (d, T ) > 0 such that∥∥D2B (w1) (w2, w3)

∥∥
2,�
≤ C0 ‖w2‖2 ‖w3‖2 , w1, w2, w3 ∈ Λ, (6.46)

and ∥∥D2B (w1)−D2B (w2)
∥∥
L(Λ2,Λ2;H�)

≤ C0 ‖w1 − w2‖β2 , w1, w2 ∈ Λ, for some β ∈ (0, 1] . (6.47)
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Once again, we can assume that the constant C0 in (6.46)-(6.47) is the same as the one in (6.10)
and (6.24)-(6.25).
By (6.46), we invoke the theorem of extension of uniformly continuous functions to extend, for ev-
ery w1, w2 ∈ Λ, the map D2B (w1) (w2, ·) ∈ L (Λ2;H�) to an operator D2B (w1) (w2, ·) ∈ L (H;H�)
satisfying (6.46) for all w3 ∈ H. It follows that, by linearity,∥∥∥D2B (w1) (w2)−D2B (w1) (w3)

∥∥∥
L(H;H�)

=
∥∥∥D2B (w1) (w2 − w3)

∥∥∥
L(H;H�)

≤ C0 ‖w2 − w3‖2 , w1, w2, w3 ∈ Λ,

hence we can extend (without changing notation) D2B(w1) ∈ L(H,H;H�), for all w1 ∈ Λ. At this
point, by (6.47) we infer that, for every w1, w2 ∈ Λ,∥∥∥D2B (w1)−D2B (w2)

∥∥∥
L(H,H;H�)

=
∥∥∥D2B (w1)−D2B (w2)

∥∥∥
L(Λ2,Λ2;H�)

≤ C0 ‖w1 − w2‖β2 , (6.48)

whence, via another extension, from now on we consider

D2B : H → L(H,H;H�) satisfying (6.46)-(6.48) for every wi ∈ H, i = 1, 2, 3. (6.49)

We want to show that B is twice H−Fréchet differentiable, with D2B = D2B. By Taylor’s formula
applied to DB,(

DB (w2)−DB (w1)−D2B (w1) (w2 − w1)
)
w3 = r (w1, w2, w3) , w1, w2, w3 ∈ Λ, where (6.50)

r (x, y, z) =

(∫ 1

0

(
D2B (x+ h (y − x))−D2B (x)

)
(y − x) dh

)
z, x, y, z ∈ H.

We note that r : H × H × H → H� is continuous. Indeed, for every x, y, z ∈ H and every sequence
((xn, yn, zn))n ⊂ H ×H ×H such that (xn, yn, zn) → (x, y, z) as n → ∞, with some algebraic compu-
tations we obtain, by (6.49),

‖r (xn, yn, zn)− r (x, y, z)‖2,� ≤ 2C0 ‖yn − xn‖2 ‖zn − z‖2

+ C0 ‖z‖2
(

2 ‖yn − xn + x− y‖2 +

(
1

β + 1
‖yn − y + x− xn‖β2 + 2 ‖xn − x‖β2

)
‖y − x‖2

)
−→
n→∞

0.

It then follows from the continuity of DB in H and (6.49) that (6.50) holds for every w1, w2, w3 ∈
H. Moreover, observing that, by (6.49), ‖r (x, y, ·)‖L(H;H�) ≤ C0(β + 1)−1 ‖y − x‖1+β

2 , x, y ∈ H, we
conclude that

DB (w2)−DB (w1)−D2B (w1) (w2 − w1) = o (‖w2 − w1‖2) , w1, w2 ∈ H.

Therefore B is twice H−Fréchet differentiable, with D2B = D2B.
We also note that, for every w1, w2, w3 ∈ H and 0 < t ≤ T ,

D2B(w1) (w2, w3) (r, ·) ∈ H is of Volterra–type, for a.e. r ∈ (0, t), (6.51)

and that

D2B(w1) (w2, w3) (r, ·) depends on wi only via wi
∣∣
(0,t)

, i = 1, 2, 3, for a.e. r ∈ (0, t): (6.52)
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these properties are inherited from DB (cfr. (6.29)-(6.30) in the discussion following Hypothesis 6.2).
In conclusion, we notice that, by (6.49) (see also (6.46)),∥∥D2B

∥∥
∞ = sup

w∈H

∥∥D2B(w)
∥∥
L(H,H;H�)

≤ C0. (6.53)

As a consequence, by the mean value theorem we deduce that (6.26) (see also (6.27)) holds with γ = 1,
i.e., under Hypothesis 6.3 the map DB : H → L(H;H�) is globally Lipschitz–continuous. Since DB is
also bounded (see (6.24)-(6.27)), in what follows we suppose, without loss of generality, that

under Hypothesis 6.3, DB : H → L(H;H�) satisfies (6.27) with γ = β. (6.54)

The next result shows that, in the framework of this subsection, the solution ws,φt of (6.11), considered
as a map from H to H, is twice H−Fréchet differentiable.

Theorem 6.6. Under Hypothesis 6.3, for every 0 ≤ s ≤ t ≤ T , the mapping ws,·t ∈ C2+β (H;H). In
particular, for every φ, ψ, η ∈ H, D2ws,φt (ψ, η) is the unique solution in H of the following equation:

D2ws,φt (ψ, η) =

∫ t

s

(
D2B

(
ws,φt

)(
Dws,φt ψ,Dws,φt η

)
+DB

(
ws,φt

)
D2ws,φt (ψ, η)

)
(r, ·) dr. (6.55)

Furthermore, there exists a constant C3 = C3(d, T ) > 0 such that, for every φ, ψ, η, θ ∈ H, P−a.s.,∥∥∥D2ws,φt (η, θ)
∥∥∥

2
≤C3‖η‖2‖θ‖2 ,

∥∥∥(D2ws,φt −D2ws,ψt

)
(η, θ)

∥∥∥
2
≤ C3

∥∥∥ws,φt − ws,ψt ∥∥∥β
2
‖η‖2‖θ‖2 . (6.56)

Proof. Fix 0 ≤ s ≤ t ≤ T and φ ∈ H. We first want to prove the well–posedness in H of the equation

w =

∫ t

s

(
D2B

(
ws,φt

)(
Dws,φt ψ,Dws,φt η

)
+DB

(
ws,φt

)
w
)

(r, ·) dr, ψ, η ∈ H. (6.57)

Consider N = N (d, T ) ∈ N so big that C0

√
T/N < 1, where C0 = C0 (d, T ) is the constant in

Hypotheses 6.1-6.2-6.3. In addition, take an equispaced partition {tk}Nk=0 of [s, t] where t0 = s and
tN = t: its mesh ∆ ≤ T/N . Under Hypothesis 6.3, the bound in (6.34) holds and allows to employ a
fixed point argument as in the proof of Theorem 6.3 (see also Theorem 6.5) to deduce the existence of
a unique solution wψ,η1 ∈ H of (6.57) with t1 instead of t, for every ψ, η ∈ H.

We claim that the operator D2ws,φt1 : H × H → H defined by D2ws,φt1 (ψ, η) = wψ,η1 , ψ, η ∈ H, is
the second–order Fréchet differential of ws,φt1 . Indeed, considering that Dws,φt1 ∈ L(H;H), DB(ws,φt1 ) ∈
L(H;H�) and D2B(ws,φt1 ) ∈ L(H,H;H�), the fact that D2ws,φt1 is bilinear directly follows from (6.57).
As for the boundedness, by (6.27)-(6.49) (see also (6.24)-(6.46)) and (6.32) we can compute, applying
Bochner’s theorem to (6.55), for some constant C2 = C2(d, T ) > 0,∥∥∥D2ws,φt1 (ψ, η)

∥∥∥
2
≤ C0

√
∆
(∥∥∥Dws,φt1 ψ∥∥∥2

∥∥∥Dws,φt1 η∥∥∥2
+
∥∥∥D2ws,φt1 (ψ, η)

∥∥∥
2

)
≤ C0

√
T/N

(
C2 ‖ψ‖2 ‖η‖2 +

∥∥∥D2ws,φt1 (ψ, η)
∥∥∥

2

)
, P− a.s., ψ, η ∈ H. (6.58)

Hence ∥∥∥D2ws,φt1 (ψ, η)
∥∥∥

2
≤
(

1− C0

√
T/N

)−1
C0C2

√
T/N ‖ψ‖2 ‖η‖2 , P− a.s., ψ, η ∈ H. (6.59)
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We now observe that, by Taylor’s formula applied to DB (cfr. (6.50)), from (6.31)-(6.55) we have, for
every h ∈ H, ∥∥∥Dws,φ+h

t1
−Dws,φt1 −D

2ws,φt1 h
∥∥∥
L(H;H)

≤ I1 + II1 + III1 + IV1, (6.60)

where we set

I1 = sup
‖η‖2≤1

E

[∥∥∥∥∫ t1

s
DB

(
ws,φt1

)(
Dws,φ+h

t1
η −Dws,φt1 η −D

2ws,φt1 (h, η)
)

(r, ·) dr

∥∥∥∥2

2

] 1
2

,

II1 = sup
‖η‖2≤1

E

[∥∥∥∥∫ t1

s

(
D2B

(
ws,φt1

)(
ws,φ+h
t1

− ws,φt1 −Dw
s,φ
t1
h,Dws,φt1 η

))
(r, ·) dr

∥∥∥∥2

2

] 1
2

,

III1 = sup
‖η‖2≤1

E

[∥∥∥∥∫ t1

s

(
DB

(
ws,φ+h
t1

)
−DB

(
ws,φt1

))(
Dws,φ+h

t1
η −Dws,φt1 η

)
(r, ·) dr

∥∥∥∥2

2

] 1
2

,

IV1 = sup
‖η‖2≤1

E
[∣∣∣∣∣∣∣∣ ∫ t1

s

(∫ 1

0

(
D2B

(
ws,φt1 + v

(
ws,φ+h
t1

− ws,φt1
))

−D2B
(
ws,φt1

))(
ws,φ+h
t1

− ws,φt1
)

dv
)
Dws,φt1 η (r, ·) dr

∣∣∣∣∣∣∣∣2
2

] 1
2

.

By (6.27) (see, in particular, (6.24))

|I1| ≤ C0

√
T/N sup

‖η‖2≤1
E
[∥∥∥Dws,φ+h

t1
η −Dws,φt1 η −D

2ws,φt1 (h, η)
∥∥∥2

2

] 1
2

= C0

√
T/N

∥∥∥Dws,φ+h
t1

−Dws,φt1 −D
2ws,φt1 h

∥∥∥
L(H;H)

.

Moreover, considering (6.26)-(6.32) (see also (6.54)) and Corollary 6.4, which we can apply with q =
2(1 + β) because φ, h ∈ H ⊂ Hq (see also ), for some C1 = C1(β, d, T ) > 0 we can write

|III1| ≤
√

∆ sup
‖η‖2≤1

E
[∥∥∥(DB (ws,φ+h

t1

)
−DB

(
ws,φt1

))(
Dws,φ+h

t1
η −Dws,φt1 η

)∥∥∥2

2,�

] 1
2

≤
∥∥D2B

∥∥
∞C2

√
T/N sup

‖η‖2≤1
E
[∥∥∥ws,φ+h

t1
− ws,φt1

∥∥∥2(1+β)

2
‖η‖22

] 1
2

≤ C0C
1+β
1 C2

√
T/N ‖h‖1+β

2 ,

where we also use the mean value theorem on DB and (6.53). As for II1, by (6.32)-(6.49) we compute

|II1| ≤
√

∆ sup
‖η‖2≤1

E
[∥∥∥D2B

(
ws,φt1

)(
ws,φ+h
t1

− ws,φt1 −Dw
s,φ
t1
h,Dws,φt1 η

)∥∥∥2

2,�

] 1
2

≤ C0C2

√
∆ sup
‖η‖2≤1

E
[∥∥∥ws,φ+h

t1
− ws,φt1 −Dw

s,φ
t1
h
∥∥∥2

2
‖η‖22

] 1
2

≤ C0C2

√
T/N

∥∥∥ws,φ+h
t1

− ws,φt1 −Dw
s,φ
t1
h
∥∥∥
H

= o (‖h‖2) .
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Finally, again by (6.32)-(6.49) (see also (6.48)) and Corollary 6.4, employed with q = 2(1 + β), we have

|IV1| ≤
√

∆E

[(∫ 1

0

∥∥∥D2B
(
ws,φt1 + v

(
ws,φ+h
t1

− ws,φt1
))
−D2B

(
ws,φt1

)∥∥∥
L(H,H;H�)

dv

)2

×
∥∥∥ws,φ+h

t1
− ws,φt1

∥∥∥2

2

∥∥∥Dws,φt1 η∥∥∥2

2

] 1
2

≤ C0C2

√
T/N sup

‖η‖2≤1
E
[∥∥∥ws,φ+h

t1
− ws,φt1

∥∥∥2(1+β)

2
‖η‖22

] 1
2

≤ C0C
1+β
1 C2

√
T/N ‖h‖1+β

2 .

Going back to (6.60), we conclude that∥∥∥Dws,φ+h
t1

−Dws,φt1 −D
2ws,φt1 h

∥∥∥
L(H;H)

≤
(

1− C0

√
T/N

)−1
(II1 + III1 + IV1) = o (‖h‖2) , h ∈ H. (6.61)

This shows that D2ws,φt1 is the second–order Fréchet differential of ws,φt1 , as desired.
Next, consider

w = D2ws,φt1 (ψ, η) +

∫ t2

t1

(
D2B

(
ws,φt2

)(
Dws,φt2 ψ,Dw

s,φ
t2
η
)

+DB
(
ws,φt2

)
w
)

(r, ·) dr, ψ, η ∈ H. (6.62)

Arguing as in the previous step, we infer the well–posedness of this equation in H: we denote by
wψ,η2 ∈ H its unique solution, for every ψ, η ∈ H.

Given ψ, η ∈ H, we now show that wψ,η2 is the unique solution of (6.57) with t2 instead of t. By the
Volterra–type property of D2B [resp., DB] in (6.51) [resp., (6.29)] and (6.62) we have, P−a.s.,

wψ,η2

∣∣∣
(0,t1)

= D2ws,φt1 (ψ, η)
∣∣∣
(0,t1)

.

Moreover, since Dws,φt2 ψ satisfies (6.38), we infer that, P−a.s.,

Dws,φt2 ψ
∣∣∣
(0,t1)

= Dws,φt1 ψ
∣∣∣
(0,t1)

,

with an analogous result holding for η. Consequently, recalling also (6.39) and Remark 6.1, by the
property of D2B [resp., DB] in (6.52) [resp., (6.30)], from (6.62) we obtain, P−a.s.,

wψ,η2 =

∫ t1

s

(
D2B

(
ws,φt1

)(
Dws,φt1 ψ,Dw

s,φ
t1
η
)

+DB
(
ws,φt1

)
D2ws,φt1 (ψ, η)

)
(r, ·) dr

+

∫ t2

t1

(
D2B

(
ws,φt2

)(
Dws,φt2 ψ,Dw

s,φ
t2
η
)

+DB
(
ws,φt2

)
wψ,η2

)
(r, ·) dr

=

∫ t2

s

(
D2B

(
ws,φt2

)(
Dws,φt2 ψ,Dw

s,φ
t2
η
)

+DB
(
ws,φt2

)
wψ,η2

)
(r, ·) dr, (6.63)

where we also use the fact that D2ws,φt1 (ψ, η) solves (6.57) with t1 instead of t. Hence wψ,η2 solves (6.57)
with t replaced by t2. In order to prove that it is in fact the unique solution of this equation, we consider
another random variable w̃ ∈ H satisfying (6.63). Then, by (6.51)-(6.52),

1(0,t1)w̃ = 1(0,t1)

(∫ t1

s

(
D2B

(
ws,φt1

)(
Dws,φt1 ψ,Dw

s,φ
t1
η
)

+DB
(
ws,φt1

)
1(0,t1)w̃

)
(r, ·) dr

)
. (6.64)
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We observe that also 1(0,t1)w
ψ,η
1 ∈ H satisfies (6.64). Therefore we can perform the same computations

as in (6.42) to deduce that
1(0,t1)w̃ = 1(0,t1)w

ψ,η
1 , P− a.s.

Going back to (6.63), by the previous equality we have, P−a.s.,

w̃ =

∫ t1

s

(
D2B

(
ws,φt1

)(
Dws,φt1 ψ,Dw

s,φ
t1
η
)

+DB
(
ws,φt1

)
w̃
)

(r, ·) dr

+

∫ t2

t1

(
D2B

(
ws,φt2

)(
Dws,φt2 ψ,Dw

s,φ
t2
η
)

+DB
(
ws,φt2

)
w̃
)

(r, ·) dr

= wψ,η1 +

∫ t2

t1

(
D2B

(
ws,φt2

)(
Dws,φt2 ψ,Dw

s,φ
t2
η
)

+DB
(
ws,φt2

)
w̃
)

(r, ·) dr.

It follows that w̃ satisfies (6.62): by uniqueness, we obtain w̃ = wψ,η2 . Hence wψ,η2 is the unique solution
of (6.57) in H with t2 instead of t.

We define the operator D2ws,φt2 : H ×H → H by D2ws,φt2 (ψ, η) = wψ,η2 , ψ, η ∈ H, and claim that it
is the second–order Fréchet differential of ws,φt2 . Indeed, as we have argued for D2ws,φt1 , the map D2ws,φt2
is bilinear thanks to the the well–posedness of (6.63). As for the boundedness, arguing as in (6.58), by
(6.59)-(6.62) we can write, for every ψ, η ∈ H, P− a.s.,∥∥∥Dws,φt2 (ψ, η)

∥∥∥
2
≤
∥∥∥D2ws,φt1 (ψ, η)

∥∥∥
2

+

∫ t2

t1

∥∥∥(D2B
(
ws,φt2

)(
Dws,φt2 ψ,Dw

s,φ
t2
η
)

+DB
(
ws,φt2

)
Dws,φt2 (ψ, η)

)
(r, ·)

∥∥∥
2

dr

≤ C0C2

((
1− C0

√
T/N

)−1√
T/N +

√
∆

)
‖ψ‖2 ‖η‖2 +

√
∆C0

∥∥∥D2ws,φt2 (ψ, η)
∥∥∥

2
,

whence∥∥∥Dws,φt2 (ψ, η)
∥∥∥

2
≤ 2C0C2

(
1− C0

√
T/N

)−2√
T/N ‖ψ‖2 ‖η‖2 , P− a.s., ψ, η ∈ H. (6.65)

Moreover, combining (6.38) with (6.62), we can argue as in (6.60) to infer that∥∥∥Dws,φ+h
t2

−Dws,φt2 −D
2ws,φt2 h

∥∥∥
L(H;H)

= o (‖h‖2) , h ∈ H,

which shows that D2ws,φt2 is the second–order Fréchet differential of ws,φt2 , as desired.
This reasoning can be repeated N−times to deduce that the operator D2ws,φt : H ×H → H defined

by D2ws,φt (ψ, η) = wψ,ηN , where wψ,ηN is the unique solution of (6.57) in H, for every ψ, η ∈ H, is the
second–order Fréchet differential of ws,φt . In particular, the first bound in (6.56) is true, because (cfr.
(6.59)-(6.65))∥∥∥D2ws,φt (ψ, η)

∥∥∥
2
≤ NC0C2

(
1− C0

√
T/N

)−N√
T/N ‖ψ‖2 ‖η‖2 =: C̃ ‖ψ‖2 ‖η‖2 ,

P− a.s., φ, ψ, η ∈ H. (6.66)
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As for the second inequality in (6.56), by (6.27), (6.32), (6.49), (6.54), (6.55) and (6.66) we compute,
for every φ, ψ, η, θ ∈ H, P−a.s.,∥∥∥D2ws,φt1 (η, θ)−D2ws,ψt1 (η, θ)

∥∥∥
2

=

∣∣∣∣∣∣∣∣ ∫ t1

s

(
D2B

(
ws,φt

)(
Dws,φt η,Dws,φt θ

)
−D2B

(
ws,ψt

)(
Dws,ψt η,Dws,ψt θ

)
+DB

(
ws,φt

)
D2ws,φt1 (η, θ)−DB

(
ws,ψt

)
D2ws,ψt1 (η, θ)

)
(r, ·) dr

∣∣∣∣∣∣∣∣
2

≤
√

∆
(∥∥∥(D2B

(
ws,φt

)
−D2B

(
ws,ψt

))(
Dws,φt η,Dws,φt θ

)∥∥∥
2,�

+
∥∥∥D2B

(
ws,ψt

)((
Dws,φt −Dw

s,ψ
t

)
η,Dws,φt θ

)∥∥∥
2,�

+
∥∥∥D2B

(
ws,ψt

)(
Dws,ψt η,

(
Dws,φt −Dw

s,ψ
t

)
θ
)∥∥∥

2,�

+
∥∥∥(DB (ws,φt )−DB (ws,ψt ))

D2ws,φt1 (η, θ)
∥∥∥

2,�
+
∥∥∥DB (ws,ψt )(D2ws,φt1 (η, θ)−D2ws,ψt1 (η, θ)

)∥∥∥
2,�

)
≤ C0

√
T/N

((
C̃ + 3C2

)∥∥∥ws,φt − ws,ψt ∥∥∥β
2
‖η‖2 ‖θ‖2 +

∥∥∥D2ws,φt1 (η, θ)−D2ws,ψt1 (η, θ)
∥∥∥

2

)
,

whence∥∥∥D2ws,φt1 (η, θ)−D2ws,ψt1 (η, θ)
∥∥∥

2
≤
(

1− C0

√
T/N

)−1
C0

(
C̃ + 3C2

)√
T/N

∥∥∥ws,φt − ws,ψt ∥∥∥β
2
‖η‖2 ‖θ‖2 .

By (6.62), we sequentially iterate this computation to obtain the second inequality in (6.56) with

C3 = max{C̃,N
(

1− C0

√
T/N

)−N
C0(C̃ + 3C2)

√
T/N}.

Thus, taking expectations and using Corollary 6.4 with q = 2, by Jensen’s inequality we deduce that,
for some constant c > 0,

∥∥∥D2ws,φt −D2ws,ψt

∥∥∥
L(H,H;H)

= sup
‖η‖2,‖θ‖2≤1

E
[∥∥∥D2ws,φt (η, θ)−D2ws,ψt (η, θ)

∥∥∥2

2

] 1
2

≤ C3E
[∥∥∥ws,φt − ws,ψt ∥∥∥2β

2

] 1
2

≤ c ‖φ− ψ‖β2 , φ, ψ ∈ H.

This shows that D2ws,·t ∈ Cβ (H;L(H,H;H)), completing the proof. �

6.3 The Kolmogorov equation

Recall the definition of the map σ : [0, T ] → L(Rd;H) in (6.2). Given u : [0, T ] × H → R and a
terminal condition Φ: H → R, in this section we investigate the following Kolmogorov backward equation
in integral form:

u (t, φ) = Φ (φ) +

∫ T

t
〈∇u (r, φ) , B (r, φ)〉H dr +

1

2

∫ T

t
Tr
(
D2u (r, φ)σ (r)σ (r)∗

)
dr,

t ∈ [0, T ] , φ ∈ Λ. (6.67)

Our aim is to find a solution of (6.67) via the random variables wt,φT ∈ H satisfying (6.11) for every
t ∈ [0, T ] and φ ∈ H. This is done in Theorem 6.9, for which we need a couple of preparatory results.
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Lemma 6.7. There exists a constant Cα,d > 0 such that∥∥∥∥∫ t

s
(σ (t)− σ (r)) dWr

∥∥∥∥
H
≤ Cα,d |t− s|α , 0 ≤ s ≤ t ≤ T. (6.68)

Proof. Fix 0 ≤ s ≤ t ≤ T and denote by (ek)k=1,...,d the canonical basis of Rd. Using straightforward
substitutions, by (6.2) we compute, for every k = 1, . . . , d,

‖(σ (t)− σ (r)) ek‖22 =

∫ T

0

∣∣k2 (ξ − t) 1{ξ>t} − k2 (ξ − r) 1{ξ>r}
∣∣2 dξ

=

∫ t−r

0
|k2 (ξ)|2 dξ +

∫ T−t

0
|k2 (ξ + t− r)− k2 (ξ)|2 dξ, r ∈ [s, t] . (6.69)

Recalling that (see (6.1)) k2 (u) = 1
Γ(α)u

α−1, α ∈ (1/2, 1), u > 0, for every r ∈ [s, t] we have∫ t−r

0
|k2 (ξ)|2 dξ =

1

(Γ(α))2(2α− 1)
|t− r|2α−1 ,

and ∫ T−t

0
|k2 (ξ + t− r)− k2 (ξ)|2 dξ ≤ 1

(Γ(α))2

(∫ ∞
0

(
(ξ + 1)α−1 − ξα−1

)2
dξ

)
|t− r|2α−1 .

Therefore the discussion at the end of Page 98 in [66] ensures that (6.68) holds with

Cα,d =

√
d

Γ (α)

(
1

2α

) 1
2
(

1

2α− 1
+

∫ ∞
0

(
(ξ + 1)α−1 − ξα−1

)2
dξ

) 1
2

,

completing the proof. �

The following lemma analyzes some properties of the solution ws,φt ∈ Lpt of (6.11) in the framework
of Remark 6.2. Recall that Lpt = Lpt (Ω;Lp) , where Lp = Lp

(
0, T ;Rd

)
, and that Lp� = Lp

(
(0, T ) ×

(0, T ) ;Rd
)
.

Lemma 6.8. Suppose that B : Λ→ Lp� satisfies Hypothesis 6.1 and (6.21), for some p ∈
[
2, (1− α)−1 ).

Then there exists a constant C1,p = C1,p (α, d, T ) > 0 such that∥∥∥ws,φt ∥∥∥Lp ≤ C1,p

(
1 + ‖φ‖p

)
, 0 ≤ s ≤ t ≤ T, φ ∈ Lp. (6.70)

Furthermore, for every φ ∈ Lp, there is a constant Cφ,p = Cφ,p(α, d, T ) > 0 such that∥∥∥ws,φt − φ∥∥∥Lp ≤ Cφ,p√t− s, 0 ≤ s ≤ t ≤ T. (6.71)

When p = 2, the assumptions of Lemma 6.8 reduce to Hypothesis 6.1 and ‖·‖Lp = ‖·‖H.

Proof. Fix 0 ≤ s ≤ t ≤ T and φ ∈ Lp. Recall that, under the hypotheses of the lemma, the unique
solution ws,φt ∈ H of (6.11) belongs to the space Lpt , see Remark 6.2.
Consider N = N(d, p, T ) ∈ N so big that C0,p(2T/N)

1− 1
p < 1, where C0,p is the constant appearing in
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(6.21). Take an equispaced partition {tk}Nk=0 of [s, t] with t0 = s and tN = t: its mesh ∆ ≤ T/N . By
(6.11)-(6.21) we have, using Bochner’s theorem and Jensen’s inequality,∥∥∥ws,φt1 ∥∥∥Lp ≤ ‖φ‖p + C0,p(2∆)

1− 1
p

(
1 +

∥∥∥ws,φt1 ∥∥∥Lp)+

∥∥∥∥∫ t1

s
σ (r) dWr

∥∥∥∥
Lp
,

which in turn implies, by (6.20), for some constant c = c(d, p, T ) > 0,∥∥∥ws,φt1 ∥∥∥Lp ≤ (1− C0,p (2T/N)
1− 1

p

)−1 (
‖φ‖p + c ‖k2‖p + C0,p (2T/N)

1− 1
p

)
.

At this point, invoking N−times the cocycle property in (6.12) we obtain (6.70).
As for (6.71), using (6.20)-(6.21) we compute, for some constant C = C(d, p) > 0, recalling the

notation Σs,t introduced in (6.3),∥∥∥ws,φt − φ∥∥∥Lp ≤ E
[(∫ t

s

∥∥∥B (r, ws,φt )∥∥∥
p

dr

)p] 1
p

+ ‖Σs,t‖Lp

≤ (t− s)1− 1
p E
[∫ t

s
dr

∫ T

0

∣∣∣B (ws,φt )∣∣∣p (r, ξ) dξ

] 1
p

+ C ‖k2‖p
√
t− s

≤
√
t− s

(
C ‖k2‖p + 2

1− 1
pT

1
2
− 1
pC0,p

(
1 +

∥∥∥ws,φt ∥∥∥Lp)) .
Thus, by (6.70) the proof is complete. �

We are now ready to prove the main result of the chapter, which shows the connection between
the solution wt,φT , t ∈ [0, T ], φ ∈ H, of (6.11) and the backward Kolmogorov equation in integral form
(6.67).

Theorem 6.9. Suppose that B : Λ→ Lp� satisfies Hypothesis 6.3 and (6.21), for some p∈
(
2, (1− α)−1).

In addition, let the function r 7→ B(r, φ) belong to C
(
[0, T ];H

)
, for every φ ∈ Λ. Fix Φ ∈ C2+β

b (H)
and define the map u : [0, T ]×H → R by

u (t, φ) = E
[
Φ
(
wt,φT

)]
, t ∈ [0, T ] , φ ∈ H, (6.72)

where wt,φT ∈ H is the unique solution of (6.11). Then u ∈ L∞
(
0, T ;C2+β

b (H)
)
∩ C([0, T ]×H;R) and

solves the Kolmogorov backward equation in integral form (6.67).

Proof. The fact that the function u defined in (6.72) belongs to L∞
(
0, T ;C2+β

b (H)
)
∩C([0, T ]×H;R)

is one of the results contained in Lemma 6.11 (see Appendix 6.A). Consequently, here we only focus on
proving that u solves (6.67).

Fix 0 ≤ s < t ≤ T and φ ∈ Λ. Since Λ ⊂ Hqs, q ≥ 2, we can use (6.23) in Corollary 6.4 to write

u (s, φ) = E
[
E
[
Φ
(
ws,φT

) ∣∣∣Ft]] = E
[
E
[
Φ
(
wt,ψT

)] ∣∣∣
ψ=ws,φt

]
= E

[
u
(
t, ws,φt

)]
. (6.73)

Taylor’s formula applied to the mapping u (t, ·) ∈ C2+β
b (H) yields, denoting by h = ws,φt − φ ∈ H,

u
(
t, ws,φt

)
− u (t, φ) = 〈∇u (t, φ) , h〉H +

1

2

〈
D2u (t, φ)h, h

〉
H

+ ru(t,·)

(
φ,ws,φt

)
, where

ru(t,·)(x, y) =

∫ 1

0
(1− r)

〈(
D2u (t, x+ r (y − x))−D2u (t, x)

)
(y − x), y − x

〉
H

dr, x, y ∈ H. (6.74)
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To keep the notation simple, in this proof we denote by Bs,t(w
s,φ
t ) =

∫ t
s B(r, ws,φt ) dr ∈ H. Using the

expression in (6.11) for h = ws,φt − φ and noticing that E[Σs,t] = 0 ∈ H by [66, Proposition 4.28], we
take expectations in the previous chain of equalities to obtain, from (6.73),

u (s, φ)− u (t, φ) =

〈
∇u (t, φ) ,E

[∫ t

s
B
(
r, ws,φt

)
dr

]〉
H

+
1

2
E
[〈
D2u (t, φ)

(
Bs,t

(
ws,φt

)
+ Σs,t

)
, Bs,t

(
ws,φt

)
+ Σs,t

〉
H

]
+ E

[
ru(t,·)

(
φ,ws,φt

)]
. (6.75)

For all N ∈ N, consider an equispaced partition {t(N)
k }

N
k=0 of [s, T ] with mesh ∆N , where t

(N)
0 = s

and t(N)
N = T . By (6.75), we have

u (s, φ)− Φ (φ) =

N∑
k=1

(
u
(
t
(N)
k−1, φ

)
− u

(
t
(N)
k , φ

))
=

N∑
k=1

〈
∇u
(
t
(N)
k , φ

)
,E
[
B
t
(N)
k−1,t

(N)
k

(
w
t
(N)
k−1,φ

t
(N)
k

)]〉
H

+
1

2

N∑
k=1

E
[〈
D2u

(
t
(N)
k , φ

)(
B
t
(N)
k−1,t

(N)
k

(
w
t
(N)
k−1,φ

t
(N)
k

)
+ Σ

t
(N)
k−1,t

(N)
k

)
, B

t
(N)
k−1,t

(N)
k

(
w
t
(N)
k−1,φ

t
(N)
k

)
+Σ

t
(N)
k−1,t

(N)
k

〉
H

]

+

N∑
k=1

E
[
r
u
(
t
(N)
k ,·

)(φ,wt(N)
k−1,φ

t
(N)
k

)]
=: IN + IIN + IIIN . (6.76)

In the sequel, we omit the superscript N from the points of the partition to ease notation, i.e., we write
tk for t(N)

k . Firstly, we analyze IN , which we decompose using the properties of the Bochner’s integral
as follows:

IN =
N∑
k=1

〈∇u (tk, φ) , B (tk, φ)〉H (tk − tk−1)

+

N∑
k=1

E

[∫ tk

tk−1

〈
∇u (tk, φ) , B

(
r, w

tk−1,φ
tk

)
−B (r, φ)

〉
H

dr

]

+
N∑
k=1

∫ tk

tk−1

〈∇u (tk, φ) , B (r, φ)−B (tk, φ)〉H dr =: IN1 + IN2 + IN3 .

Note that IN1 →
∫ T
s 〈∇u(r, φ), B(r, φ)〉Hdr as N →∞ by Lemma 6.11 in Appendix 6.A. Next, Jensen’s

inequality, (6.21), (6.71) and the continuous immersion

Lp
(
(tk−1, tk)× (0, T ) ;Rd

)
↪→ L2

(
(tk−1, tk)× (0, T ) ;Rd

)
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yield, for some constant Cφ,p = Cφ,p(α, d, T ) > 0,

∣∣IN2 ∣∣ ≤ ‖∇u‖∞√∆N

N∑
k=1

E

(∫ tk

tk−1

dr

∫ T

0

∣∣∣B (wtk−1,φ
tk

)
−B (φ)

∣∣∣2 (r, ξ) dξ

) 1
2


≤ T

1
2
− 1
p (∆N )

1− 1
p ‖∇u‖∞

N∑
k=1

E
[∥∥∥B (wtk−1,φ

tk

)
−B (φ)

∥∥∥
p,�

]

≤ T
1
2
− 1
pC0,p (∆N )

1− 1
p ‖∇u‖∞

N∑
k=1

E
[∥∥∥wtk−1,φ

tk
− φ

∥∥∥
p

]
≤ T

3
2
− 1
pC0,pCφ,p ‖∇u‖∞ (∆N )

1
2
− 1
p −→
N→∞

0.

Here, we set ‖∇u‖∞ = supt∈[0,T ] supφ∈H ‖∇u(t, φ)‖2. Regarding IN3 , we define the modulus of continuity
of the map B(·, φ) : [0, T ]→ H by

w (B(·, φ), δ) = sup
|u−v|≤δ

. ‖B (u, φ)−B (v, φ)‖2 , δ > 0.

Since, by hypothesis, B(·, φ) is continuous on the compact [0, T ], it is also uniformly continuous, hence
we infer that

∣∣IN3 ∣∣ ≤ T ‖∇u‖∞w (B (·, φ) ,∆N ) −→
N→∞

0. Therefore, we have just shown that

lim
N→∞

IN =

∫ T

s
〈∇u(r, φ), B(r, φ)〉H dr. (6.77)

Now we investigate IIN , which we split as follows:

2IIN =
N∑
k=1

E
[〈
D2u (tk, φ)Btk−1,tk

(
w
tk−1,φ
tk

)
, Btk−1,tk

(
w
tk−1,φ
tk

)〉
H

]
+

N∑
k=1

E
[〈
D2u (tk, φ)Btk−1,tk

(
w
tk−1,φ
tk

)
,Σtk−1,tk

〉
H

]
+

N∑
k=1

E
[〈
D2u (tk, φ) Σtk−1,tk , Btk−1,tk

(
w
tk−1,φ
tk

)〉
H

]
+

N∑
k=1

E
[〈
D2u (tk, φ) Σtk−1,tk ,Σtk−1,tk

〉
H

]
=: IIN1 + IIN2 + IIN3 + IIN4 .

Let us set
∥∥D2u

∥∥
∞ = supt∈[0,T ] supφ∈H

∥∥D2u(t, φ)
∥∥
L(H;H)

. By (6.21)-(6.70), arguing similarly to IN2 we
have, for some c > 0,

∣∣IIN1 ∣∣ ≤ ∥∥D2u
∥∥
∞

N∑
k=1

E
[∥∥∥Btk−1,tk

(
w
tk−1,φ
tk

)∥∥∥2

2

]

≤ T 1− 2
p∆

1− 2
p

N

∥∥D2u
∥∥
∞

N∑
k=1

E
[∥∥∥B (wtk−1,φ

tk

)∥∥∥2

p,�

]
(tk − tk−1) ≤ c∆

1− 2
p

N

∥∥D2u
∥∥
∞

(
1 + ‖φ‖2p

)
.
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Moreover, by Hölder’s inequality and (6.4), for some c̃ > 0,

∣∣IIN2 ∣∣ ≤ ∥∥D2u
∥∥
∞

N∑
k=1

∥∥∥Btk−1,tk

(
w
tk−1,φ
tk

)∥∥∥
H

∥∥Σtk−1,tk

∥∥
H ≤

∥∥D2u
∥∥
∞ c̃ T

3
2
− 1
p ‖k2‖2 ∆

1
2
− 1
p

N

(
1 + ‖φ‖p

)
.

Since the second bound holds for IIN3 , too, we see that IINi → 0 as N →∞, i = 1, 2, 3.
As for IIN4 , we write it as the following sum:

IIN4 =
N∑
k=1

E

[〈
D2u (tk, φ)

∫ tk

tk−1

σ (tk) dWr,

∫ tk

tk−1

σ (tk) dWr

〉
H

]

+
N∑
k=1

E

[〈
D2u (tk, φ)

∫ tk

tk−1

(σ (r)− σ (tk)) dWr,

∫ tk

tk−1

σ (tk) dWr

〉
H

]

+

N∑
k=1

E

[〈
D2u (tk, φ)

∫ tk

tk−1

σ (tk) dWr,

∫ tk

tk−1

(σ (r)− σ (tk)) dWr

〉
H

]

+
N∑
k=1

E

[〈
D2u (tk, φ)

∫ tk

tk−1

(σ (r)− σ (tk)) dWr,

∫ tk

tk−1

(σ (r)− σ (tk)) dWr

〉
H

]
=:IIN4,1 + IIN4,2 + IIN4,3 + IIN4,4.

By [66, Proposition 4.30], we have, for every k = 1, . . . , N ,

D2u (tk, φ)

∫ tk

tk−1

σ (tk) dWr =

∫ tk

tk−1

D2u (tk, φ)σ (tk) dWr, P− a.s.,

whence, by [66, Corollary 4.29] and Lemma 6.11,

IIN4,1 =
N∑
k=1

Tr
(
D2u (tk, φ)σ (tk)σ (tk)

∗) (tk − tk−1) −→
N→∞

∫ T

s
Tr
(
D2u (r, φ)σ (r)σ (r)∗

)
dr.

Furthermore, Hölder’s inequality, (6.68) in Lemma 6.7 and [66, Proposition 4.20] yield, for i = 2, 3, for
some constants c1, c2 > 0,

∣∣IIN4,i∣∣ ≤ c1 ‖k2‖2
∥∥D2u

∥∥
∞

√
∆N

N∑
k=1

∥∥∥∥∥
∫ tk

tk−1

(σ (r)− σ (tk)) dWr

∥∥∥∥∥
H

≤ Tc2 ‖k2‖2
∥∥D2u

∥∥
∞∆

α− 1
2

N −→
N→∞

0.

Analogous estimates show that IIN4,4 → 0 as N →∞, as well. Thus,

lim
N→∞

IIN =
1

2

∫ T

s
Tr
(
D2u (r, φ)σ (r)σ (r)∗

)
dr. (6.78)

At last we study the remainder term IIIN in (6.76). To do this, we employ the fact that the map
D2u (t, ·) : H → L (H;H) is β−Hölder continuous uniformly in time, see (6.91) in Lemma 6.11. We
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choose β̃ ∈ (0, β) such that 2 + β̃ < p; by the expression of ru(tk,·) in (6.74) we deduce that

∣∣IIIN ∣∣ ≤ N∑
k=1

∫ 1

0
E
[∥∥∥D2u

(
tk, φ+ r

(
w
tk−1,φ
tk

− φ
)
−D2u (tk, φ)

)∥∥∥
L(H;H)

∥∥∥wtk−1,φ
tk

− φ
∥∥∥2

2

]
dr

≤ C
N∑
k=1

E
[∥∥∥wtk−1,φ

tk
− φ

∥∥∥2+β̃

2

]
≤ CT

(
1
2
− 1
p

)
(2+β̃)

N∑
k=1

E
[∥∥∥wtk−1,φ

tk
− φ

∥∥∥2+β̃

p

]

≤ C
N∑
k=1

(tk − tk−1)1+ β̃
2 −→
N→∞

0, (6.79)

where in the last passage we use Lemma 6.8 and Jensen’s inequality. Here C > 0 is a constant allowed
to change from line to line. Combining (6.77), (6.78), (6.79) in (6.76), we obtain

u (s, φ)− Φ (φ) =

∫ T

s
〈∇u (r, φ) , B (r, φ)〉H dr +

1

2

∫ T

s
Tr
(
D2u (r, φ)σ (r)σ (r)∗

)
dr,

i.e., (6.67). Thus, the proof is complete. �

Remark 6.3. Under the hypotheses of Theorem 6.9, for every φ ∈ Λ the function u (·, φ) : [0, T ] → R
defined in (6.72) is absolutely continuous on [0, T ], because the integrands on the right–hand side of
(6.67) are bounded on [0, T ]. Thus, the fundamental theorem of calculus shows that u : [0, T ] ×H → R
satisfies the following Kolmogorov backward equation in differential form:{

∂tu (t, φ) + 〈∇u (t, φ) , B (t, φ)〉H + 1
2Tr

(
D2u (t, φ)σ (t)σ (t)∗

)
= 0, for a.e. t ∈ (0, T ) , φ ∈ Λ,

u (T, φ) = Φ (φ) , φ ∈ H.

Remark 6.4. All the arguments and computations leading to Theorem 6.9 continue to hold when the
power α of the kernel k2 in (6.1) varies in [1, 3

2), i.e., k2 is the continuous kernel in R+ given by

k2(t) =
1

Γ(α)
tα−1, t ≥ 0, for some α ∈

[
1,

3

2

)
.

We have however decided to present the theory in the case α ∈ (1
2 , 1) to emphasize the fact that our

approach is able to handle rough kernels with explosions at t = 0.

Example 6.1. Given two continuous maps A : [0, T ] → Rd×d and b : [0, T ] → Rd, define B : Λ → H�

by (cfr. (6.5))

B(w) : [0, T ]× [0, T ]→ Rd such that
B(w)(t, ξ) = 1{ξ>t}k2(ξ − t) (A(t)w(t) + b(t)) , t, ξ ∈ [0, T ], (6.80)

for every w ∈ Λ. We now show that B satisfies all the hypotheses of Theorem 6.9.
For every t ∈ (0, T ] and r ∈ (0, t), from the definition in (6.80) it is immediate to see thatB(w)(r, ξ) =

0, ξ ∈ (0, r), and that B(w)(r, ·) depends on w only via w
∣∣
(0,t)

. Denote by ‖A‖∞ = supt∈[0,T ] |A(t)| and
by ‖b‖∞ = supt∈[0,T ] |b(t)|, where |A(t)| is the operator norm in Rd×d. Computing, for every w1, w2 ∈ Λ,

‖B(w1)‖2� ≤
∫ T

0

(∫ T

0
|k2(ξ − t)|2 1{ξ>t} (‖b‖∞ + ‖A‖∞ |w1(t)|)2 dξ

)
dt

≤ 2T max
{
‖b‖2∞ , ‖A‖

2
∞

}
‖k2‖22 (1 + ‖w1‖22),
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and

‖B(w2)−B(w1)‖2� ≤ ‖A‖
2
∞

∫ T

0

(∫ T

0
|k2(ξ − t)|2 1{ξ>t} |w2(t)− w1(t)|2 dξ

)
dt

≤ ‖A‖2∞ ‖k2‖22 ‖w2 − w1‖22 ,

we deduce that Hypothesis 6.1 is satisfied. Since the previous computations can be repeated for every
p ∈ (2, (1− α)−1), then condition (6.21) in Remark 6.2 is verified, as well.
As for Hypothesis 6.2, evidently the operator DB(w1) ∈ L

(
Λ2;H�

)
defined by

[DB(w1)(w2)](t, ξ) = 1{ξ>t}k2(ξ − t)A(t)w2(t), t, ξ ∈ [0, T ], w2 ∈ Λ2, (6.81)

is the Λ2−Fréchet differential of B in w1, for any w1 ∈ Λ. Indeed,

B(w1 + h)−B(w1)−DB(w1)(h) = 0, w1, h ∈ Λ.

Moreover, from (6.81) we have, for every w1, w2 ∈ Λ,

‖DB(w1)(w2)‖� ≤ ‖A‖∞ ‖k2‖2 ‖w2‖2 , ‖DB(w1)−DB(w2)‖L(Λ2;H�) = 0,

which in particular gives (6.25) with γ = 1.
The requirements of Hypothesis 6.3 are trivially satisfied (with β = 1) because, given the affine structure
of this example, D2B(w1) = 0 ∈ L(Λ2,Λ2;H�), w1 ∈ Λ.
In conclusion, for every w ∈ Λ, the map t 7→ B(t, w) = B(w)(t, ·) is continuous from [0, T ] to H. Indeed,
denoting by b̃(t) the Rd−valued continuous function A(t)w(t) + b(t), by (6.69) and the two following
equations we have, for any r, t ∈ [0, T ],

‖B(t, w)−B(r, w)‖22 =

∫ T

0

∣∣∣k2 (ξ − t) 1{ξ>t}b̃(t)− k2 (ξ − r) 1{ξ>r}b̃(r)
∣∣∣2 dξ

≤ 2
∣∣∣∣b̃∣∣∣∣2∞ ∫ T

0

∣∣k2 (ξ − t) 1{ξ>t} − k2 (ξ − r) 1{ξ>r}
∣∣2 dξ + 2 ‖k2‖22

∣∣∣b̃(t)− b̃(r)∣∣∣2
≤ L

(
|t− r|2α−1 +

∣∣∣b̃(t)− b̃(r)∣∣∣2) ,
for some constant L > 0.

6.4 The mild Kolmogorov equation

A classical approach to the study of the Kolmogorov equation is its mild formulation, see for example
[65, Section 6.5] and [66, Section 9.5]. Contrary to the strategy adopted in the previous section, where
we have constructed a solution to (6.67) via a stochastic equation (cfr. Theorem 6.9), for the mild
Kolmogorov equation we look for a direct solution. With the term direct, we mean a solution which is
determined by a fixed point argument, hence which does not rely on the underlying stochastic PDE.

In this section, we first present a formal reasoning leading to the mild form of (6.67), see (6.85).
After that, in Subsection 6.4.1 we explain some difficulties in proving the well–posedness of such a
mild formulation, which are essentially due to the structure of the noise. Since it not the purpose
of this section to present a general theory with abstract hypotheses, we limit ourselves to observe
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that the mild Kolmogorov equation cannot be solved for a class of interesting drifts b using common
techniques (cfr. Lemma 6.10). Finally, in Subsection 6.4.2, we highlight the theoretical importance
of the mild Kolmogorov equation. In particular, we sketch a procedure –relying on the mild form–
typically used to prove uniqueness in law for a stochastic PDE under weak regularity requirements on
the coefficients. We only mention that studying the relation between the transition semigroup of an
SDE and the corresponding mild Kolmogorov equation can also be used for numerical applications, as
recently investigated by [85] in the Brownian case and [35] (see also Chapter 2) in the case of isotropic,
stable Lévy processes.

Let C = Cb (H;R) and consider the backward Kolmogorov equation in differential form, formally
written as{

∂sv (s, x) + 〈b (s, x) ,∇v (s, x)〉H + 1
2Tr

(
D2v (s, x)σ (s)σ (s)?

)
= 0, s ∈ [0, T ) , x ∈ H,

v (T, x) = φ (x) , φ ∈ C.
(6.82)

Here, H and σ are those of the previous sections (see, in particular, (6.2)), whereas the drift b : [0, T ]×
H → H is a bounded measurable map which could be non–smooth.
We reformulate (6.82) in order to study it in the space C. Let u (t, x) := v (T − t, x): u solves the
forward equation{

∂tu (t, x) = AT−tu (t, x) + 〈b (T − t, x) ,∇u (t, x)〉H , t ∈ (0, T ] , x ∈ H,
u (0, x) = φ (x) , φ ∈ C,

(6.83)

where we set
AT−tf (x) =

1

2
Tr
(
D2f (x)σ (T − t)σ (T − t)∗

)
.

Fix s ∈ [0, T ]. For every t ∈ [s, T ], we define the linear evolution operator RT (t, s) : C → C by

(RT (t, s)φ) (x) = E
[
φ

(
x+

∫ t

s
σ (T − r) dWr

)]
, x ∈ H, φ ∈ C,

where W is an Rd−valued, standard Brownian motion as the one introduced in Section 6.1. Consider
the auxiliary equation {

∂tz (t, x) = AT−tz (t, x) , t ∈ (s, T ] , x ∈ H,
z (s, x) = φ (x) , φ ∈ C;

(6.84)

if φ ∈ C2+β
b (H), then Theorem 6.9 and Remark 6.3 imply that the function (RT (t, s)φ)(x) solves this

Cauchy problem for almost every t ∈ (s, T ), for every x ∈ Λ. At this point, we can introduce the mild
formulation of the Kolmogorov equation (6.67):

u (t, x) = (RT (t, 0)φ) (x) +

∫ t

0
(RT (t, s) 〈b (T − s, ·) ,∇u (s, ·)〉H) (x) ds, φ ∈ C. (6.85)

Note that, heuristically speaking, (6.85) corresponds to the Kolmogorov equation (6.83). Indeed, if
u (t, x) solves (6.85), then a formal application of Leibnitz integral rule and (6.84) yield

∂tu(t, ·) = ∂tRT (t, 0)φ+RT (t, t) 〈b (T − t, ·) ,∇u (t, ·)〉H +

∫ t

0
∂tRT (t, s) 〈b (T − s, ·) ,∇u (s, ·)〉H ds

= AT−tRT (t, 0)φ+ 〈b (T − t, ·) ,∇u (t, ·)〉H +

∫ t

0
AT−tRT (t, s) 〈b (T − s, ·) ,∇u (s, ·)〉H ds

= AT−tu+ 〈b (T − t, ·) ,∇u (t, ·)〉H .
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As we have already mentioned, the aim is to prove directly, i.e., by a fixed point argument not relying
on a stochastic equation, that (6.85) admits a solution of class, e.g., C ([0, T ] ; C). In this regards, the
regularity properties of the evolution operator RT (t, s) are paramount, hence we now discuss them.
According to [66, Proposition 4.28], the H−valued random variable

∫ t
s σ (T − r) dWr is Gaussian, cen-

tered, with covariance operator

QT (t, s) =

∫ t

s
σ (T − r)σ (T − r)∗ dr =

∫ T−s

T−t
σ (τ)σ (τ)∗ dτ. (6.86)

This covariance operator is not trivial as it would be in the case of constant σ. In fact, in such a case
it would be easy to see that RT (t, s)φ, φ ∈ C, is differentiable in the direction σ (and only in this
direction). In our framework with a time–varying σ, the question of the directions of differentiability of
RT (t, s)φ, φ ∈ C, is much more complex. Nevertheless, it has to be addressed, because the directional
differentiability of RT (t, s)φ is essential to solve directly (6.85). This may be seen in various ways, one
of which is the change of variable

θT (t, x) = 〈b (T − t, x) ,∇u (t, x)〉H ,

that leads to the study of the equation

θT (t, x) = 〈b (T − t, x) ,∇ (RT (t, 0)φ) (x)〉H

+

∫ t

0
〈b (T − t, x) ,∇ (RT (t, s) θT (s, ·)) (x)〉H ds, φ ∈ C. (6.87)

If we can prove that, for some C, ε > 0,

sup
x∈H
|〈b (T − t, x) ,∇ (RT (t, s)ψ) (x)〉H | ≤

C

|t− s|1−ε
‖ψ‖∞ , 0 ≤ s < t ≤ T, ψ ∈ C, (6.88)

then we may try to set up a fixed point argument for the θT−equation (6.87) in a suitable space of
bounded, measurable functions. This would in turn give a solution for equation (6.85) by simply setting

u (t, x) = (RT (t, 0)φ) (x) +

∫ t

0
(RT (t, s) θT (s, ·)) (x) ds.

6.4.1 The gradient estimate

Using the Gaussian structure of the H−valued random variable

ZT (t, s) =

∫ t

s
σ (T − r) dWr, 0 ≤ s < t ≤ T,

and denoting by QT (t, s)−1 the pseudo–inverse of QT (t, s), one can prove –via the Cameron Martin
formula (see, e.g., [66, Theorem 2.23])– that, for every ψ ∈ C,

〈b (T − t, x) ,∇ (RT (t, s)ψ) (x)〉H = E
[〈
QT (t, s)−1 b (T − t, x) , ZT (t, s)

〉
H
ψ (x+ ZT (t, s))

]
,

if
b (T − t, x) ∈ Range (QT (t, s)) .
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This is not the most general condition to obtain the existence of such directional derivative. Indeed, we
could split QT (t, s)−1 and use the fact that QT (t, s)−1/2 ZT (t, s) has good properties, which reduces
the problem to investigating b (T − t, x) ∈ Range

(
QT (t, s)1/2 ). However, handling the square root is

even more difficult and thus, for the time being, we analyze the more restrictive condition.
When the previous holds, arguing as in (6.4), for some c > 0 we have

sup
x∈H
|〈b (T − t, x) ,∇ (RT (t, s)ψ) (x)〉H | ≤ ‖ψ‖∞ sup

x∈H
E
[∣∣∣〈QT (t, s)−1 b (T − t, x) , ZT (t, s)

〉
H

∣∣∣]
≤ c ‖ψ‖∞ ‖k2‖2 (t− s)1/2 sup

x∈H

∥∥∥QT (t, s)−1 b (T − t, x)
∥∥∥

2
.

Therefore a sufficient condition for the gradient estimate (6.88) is

sup
x∈H

∥∥∥QT (t, s)−1 b (T − t, x)
∥∥∥

2
≤ C

|t− s|
3
2
−ε
, 0 ≤ s < t ≤ T, for some C > 0.

For a general b, standing the potentially very strong degeneracy of QT (t, s), we do not see any hope
to prove the gradient estimate (6.88). A particular case that, a priori, may look promising, is when the
Volterra drift is of the same kind as the noise part, namely (cfr. (6.2))

[b (t, x)](ξ) = β̄ (x) k2 (ξ − t) 1{t<ξ} = [σ(t)β̄(x)] (ξ) , ξ ∈ [0, T ], for some β̄ ∈ Bb
(
H;Rd

)
.

In this case, since b (T − t, x) = σ (T − t) β̄ (x), we need to prove that

σ (T − t) ek ∈ Range (QT (t, s)) , k = 1, . . . , d, (6.89)

and that∥∥∥QT (t, s)−1 σ (T − t) ek
∥∥∥

2
≤ C

|t− s|
3
2
−ε
, 0 ≤ s < t ≤ T, k = 1, . . . , d, for some C > 0,

where (ek)k=1,...,d is the canonical basis of Rd. Recalling that, by (6.86), QT (t, s) =
∫ T−s
T−t σ (τ)σ (τ)∗ dτ ,

apparently we could think that (6.89) is true. But it is not, as the necessary condition given by the next
lemma shows.

Lemma 6.10. Let 0 ≤ s < t ≤ T and suppose that f ∈ Range (QT (t, s)) ⊂ H. Then f = g almost
everywhere in (0, T ), where g : (0, T )→ Rd is a continuous function such that g = 0 in (0, T − t).

Proof. Fix 0 ≤ s < t ≤ T . Consider f ∈ Range (QT (t, s)), so that there exists v ∈ H such that, by
(6.86), f =

∫ T−s
T−t σ (τ)σ (τ)∗ vdτ. In particular, for every k = 1, . . . , d, denoting by · the scalar product

in Rd, by the standard properties of Bochner’s integral we obtain

f · ek =

(∫ T−s

T−t
(σ (τ)∗v) k2 (· − τ) 1{·>τ}dτ

)
· ek =

∫ T−s

T−t
〈σ (τ) ek, v〉H k2 (· − τ) 1{·>τ}dτ.

Furthermore, recalling (6.1), for a.e. ξ ∈ (0, T ) we have

(f · ek) (ξ) =
1

Γ (α)

∫ T−s

T−t
1{τ<ξ} 〈σ (τ) ek, v〉H (ξ − τ)α−1 dτ.
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We denote by gk the function appearing on the right–hand side of the previous equation, i.e.,

gk (ξ) =
1

Γ (α)

∫ T−s

T−t
1{τ<ξ} 〈σ (τ) ek, v〉H (ξ − τ)α−1 dτ, ξ ∈ (0, T ) .

We want to show the continuity of gk on the interval [T − t, T ): this ensures that gk is continuous on
the whole (0, T ), since trivially gk = 0 on (0, T − t]. We first write

gk (ξ) =

∫ ξ

0
1{τ>T−t} 〈σ (τ) ek, v〉H (ξ − τ)α−1 dτ, ξ ∈ [T − t, T − s],

and notice that, as σ(·)ek ∈ C([0, T ];H) (see (6.69) in the proof of Lemma 6.7), the mapping 〈σ(·)ek, v〉H
is continuous on [0, T ]. Therefore we invoke [96, Theorem 2.2 (i), Chapter 2] to conclude that gk is
continuous on [T − t, T − s]. Secondly, since

gk (ξ) =

∫ T−s

T−t
〈σ (τ) ek, v〉H (ξ − τ)α−1 dτ, ξ ∈ [T − s, T ) ,

the continuity of gk on [T − s, T ) can be inferred employing the dominated convergence theorem.
Thus, gk is continuous on (0, T ). This shows that the components f · ek, k = 1, . . . , d, of the function
f : [0, T ] → Rd are almost everywhere equal on (0, T ) to continuous functions gk, which completes the
proof. �

Remark 6.5. Lemma 6.10 prevents us from choosing another interesting drift b(t, x), namely

[b (t, x)] (ξ) = β̄ (x) 1(t,T ) (ξ) , ξ ∈ [0, T ] , for some β̄ ∈ Bb(H;Rd).

6.4.2 Concerning regularization by noise via the Kolmogorov equation

Among the interests of the Kolmogorov equation, there is the theory of regularization by noise: both
in finite and infinite dimensions, it has been shown that a sufficiently regular solution to the Kolmogorov
equation allows to prove suitable uniqueness results for the underlying stochastic differential equation
(see examples in [62, 63, 82, 169, 173]). In contrast with Sections 6.2-6.3, one deals with a stochastic
PDE

dXt = b(t,Xt) dt+ σ (t) dWt, X0 = x ∈ H, (6.90)

which –a priori– is not well posed, because b : [0, T ]×H → H is subject to weak regularity assumptions
not including Lipschitz continuity. The aim is to prove the uniqueness in law of a mild solution to
(6.90). A typical approach to achieve this takes the following steps:

1. Write the Kolmogorov equation in mild form (6.85) associated with (6.90) and prove the existence
of solutions by a fixed point argument.

2. Possibly after a regularization procedure (see an example in infinite dimensions in [82, Theorem
2.9, Section 2.3.3]), apply Itô formula to u (T − t,Xt), where u solves (6.85) and Xt is any solution
of (6.90), prove that the local martingale term is a martingale and obtain an expression for

E [φ (Xt)] .

In this way, one deduces that two solutions have the same marginals. A control on the gradient
of u, like the one discussed in Subsection 6.4.1, may help in this step to prove that the local
martingale term is a martingale.
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3. Apply specific arguments (see [169], [172]) to obtain uniqueness in law.

Under suitable assumptions on b which guarantee the well–posedness of (6.85) (whence Step 1 follows),
the details of Steps 2-3 will be the subject of a future research.

Appendix 6.A Regularity of the solution (6.72) of the Kolmogorov
equation

In this appendix, we present an auxiliary lemma, namely Lemma 6.11, containing regularity results
about the solution u : [0, T ] × H → R of the Kolmogorov backward equation (6.67) defined in (6.72).
Such a lemma plays a key role in the proof of Theorem 6.9.

Lemma 6.11. Suppose that Φ ∈ C2+β
b (H) and that Hypothesis 6.3 holds. Then, the map u : [0, T ]×H →

R defined in (6.72) belongs to L∞
(
0, T ;C2+β

b (H)
)
∩ C([0, T ] × H;R). In particular, there exists a

constant Cd,T,β,Φ > 0 such that∥∥D2u (t, φ)−D2u (t, ψ)
∥∥
L(H;H)

≤ Cd,T,β,Φ ‖φ− ψ‖β2 , φ, ψ ∈ H, t ∈ [0, T ] . (6.91)

Furthermore, the map (t, φ, ψ) 7→ 〈∇u(t, φ), ψ〉H [resp., (t, φ, ψ, η) 7→ 〈D2u(t, φ)ψ, η〉H ] is continuous
in [0, T ]×H ×H [resp., [0, T ]×H ×H ×H].

Proof. We start off by proving that u ∈ C([0, T ]×H;R). Consider t ∈ [0, T ], φ ∈ H and two sequences
(tn)n ⊂ [0, T ] and (φn)n ⊂ H such that tn → t and φn → φ as n→∞. Since ∇Φ: H → H is bounded,
by the mean value theorem we compute, recalling the definition of u in (6.72),

|u(tn, φn)− u(t, φ)| ≤ E
[∣∣∣Φ(wtn,φnT

)
− Φ

(
wtn,φT

)∣∣∣]+ E
[∣∣∣Φ(wtn,φT

)
− Φ

(
wt,φT

)∣∣∣]
≤ ‖∇Φ‖∞

(∥∥∥wtn,φnT − wtn,φT

∥∥∥
H

+
∥∥∥wtn,φT − wt,φT

∥∥∥
H

)
. (6.92)

By (6.22) in Corollary 6.4, we infer that limn→∞
∣∣∣∣wtn,φnT −wtn,φT

∣∣∣∣
H = 0. As for

∣∣∣∣wtn,φT − wt,φT
∣∣∣∣
H, we first

assume that tn > t. Then, by the flow property in (6.12) and Corollary 6.4 we have, for some constants
c1, c2 > 0 which might depend on φ,∥∥∥wtn,φT − wt,φT

∥∥∥
H

=

∥∥∥∥wtn,φT − wtn,w
t,φ
tn

T

∥∥∥∥
H
≤ c1

∥∥∥wt,φtn − φ∥∥∥H ≤ c2

√
|tn − t|,

where the last inequality is due to Lemma 6.8, see (6.71). An analogous argument shows that the
previous bound holds even in the case tn ≤ t, therefore limn→∞

∣∣∣∣wtn,φT − wt,φT
∣∣∣∣
H = 0. Going back to

(6.92), we conclude that limn→∞ |u(tn, φn)− u(t, φ)| = 0, hence u : [0, T ] × H → R is continuous, as
desired.

We now prove that u ∈ L∞
(
0, T ;C2+β

b (H)
)
. Since Φ ∈ C2+β

b (H), there exists a constant CΦ > 0
such that ∥∥D2Φ (φ)−D2Φ (ψ)

∥∥
L(H;H)

≤ CΦ ‖φ− ψ‖β2 , φ, ψ ∈ H. (6.93)

Obviously, from the boundedness of Φ we have ‖u‖∞ = supt∈[0,T ] supφ∈H |u(t, φ)| <∞. First, we want
to show that, for every t ∈ [0, T ], u(t, ·) ∈ C1

b (H), with

〈∇u (t, φ) , ψ〉H = E
[〈
∇Φ

(
wt,φT

)
, Dwt,φT ψ

〉
H

]
, φ, ψ ∈ H. (6.94)
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To see this, by Taylor’s formula applied to Φ we compute, for every φ, h ∈ H,

E
[∣∣∣Φ(wt,φ+h

T

)
− Φ

(
wt,φT

)
−
〈
∇Φ

(
wt,φT

)
, Dwt,φT h

〉
H

∣∣∣]
≤ ‖∇Φ‖∞ E

[∥∥∥wt,φ+h
T − wt,φT −Dw

t,φ
T h

∥∥∥
2

]
+ E

[∣∣∣∣∫ 1

0

〈
∇Φ

(
wt,φT + r

(
wt,φ+h
T − wt,φT

))
−∇Φ

(
wt,φT

)
, wt,φ+h

T − wt,φT
〉
H

dr

∣∣∣∣]
≤ ‖∇Φ‖∞

∥∥∥wt,φ+h
T − wt,φT −Dw

t,φ
T h

∥∥∥
H

+
∥∥D2Φ

∥∥
∞

∥∥∥wt,φ+h
T − wt,φT

∥∥∥2

H
= o (‖h‖2) . (6.95)

Here, for the second inequality we use the Lipschitz continuity of the map ∇Φ: H → H –guaranteed
by the mean value theorem– and for the third equality we invoke Corollary 6.4 and Theorem 6.5. This
shows (6.94), from which we deduce the continuity of the function ∇u(t, ·) : H → H. In particular, by
(6.32), there exists a constant C1 = C1(d, T ) such that ‖∇u‖∞ ≤ C1 ‖∇Φ‖∞.
We also note that, arguing as in (6.95) and thanks to the estimates of

∣∣∣∣wt,φ+h
T − wt,φT −Dw

t,φ
T h

∣∣∣∣
H in

the proof of Theorem 6.5 (see, for instance, (6.37)-(6.44)), for every M > 0 we have

sup
t∈[0,T ]

sup
‖φ‖2,‖ψ‖2≤M

E
[∣∣∣Φ(wt,φ+hψ

T

)
− Φ

(
wt,φT

)
−h
〈
∇Φ

(
wt,φT

)
, Dwt,φT ψ

〉
H

∣∣∣] = o (h) , h ∈ R. (6.96)

which gives the continuity of the map (t, φ, ψ) 7→ 〈∇u(t, φ), ψ〉H in [0, T ]×H×H as u ∈ C([0, T ]×H;R).
Secondly, we claim that u (t, ·) is twice Fréchet differentiable in H, with〈

D2u (t, φ)ψ, η
〉
H

= E
[〈
D2Φ

(
wt,φT

)
Dwt,φT ψ,Dwt,φT η

〉
H

+
〈
∇Φ

(
wt,φT

)
, D2wt,φT (ψ, η)

〉
H

]
,

φ, ψ, η ∈ H. (6.97)

Indeed, recalling (6.94), an application of Taylor’s formula on ∇Φ yields∣∣〈∇u (t, φ+ h)−∇u (t, φ)−D2u (t, φ)h, ψ
〉
H

∣∣
=
∣∣∣E[ 〈∇Φ

(
wt,φ+h
T

)
, Dwt,φ+h

T ψ
〉
H
−
〈
∇Φ

(
wt,φT

)
, Dwt,φT ψ

〉
H

−
〈
D2Φ

(
wt,φT

)
Dwt,φT h,Dwt,φT ψ

〉
H
−
〈
∇Φ

(
wt,φT

)
, D2wt,φT (h, ψ)

〉
H

]∣∣∣
≤ E

[∣∣∣〈D2Φ
(
wt,φT

)(
wt,φ+h
T − wt,φT −Dw

t,φ
T h

)
, Dwt,φT ψ

〉
H

∣∣∣]
+ E

[∣∣∣〈∇Φ
(
wt,φT

)
, Dwt,φ+h

T ψ −Dwt,φT ψ −D2wt,φT (h, ψ)
〉
H

∣∣∣]
+ E

[∣∣∣〈∇Φ
(
wt,φ+h
T

)
−∇Φ

(
wt,φT

)
,
(
Dwt,φ+h

T −Dwt,φT
)
ψ
〉
H

∣∣∣]+RΦ (φ, ψ, h)

=: (I1 + II1 + III1 +RΦ) (φ, ψ, h) , (6.98)

for every φ, ψ, h ∈ H. Here, we denote by

RΦ (φ, ψ, h)

= E
[∣∣∣∣〈∫ 1

0

(
D2Φ

(
wt,φT + r

(
wt,φ+h
T − wt,φT

))
−D2Φ

(
wt,φT

))(
wt,φ+h
T − wt,φT

)
dr,Dwt,φT ψ

〉
H

∣∣∣∣] .
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Using (6.32), (6.93) and Corollary 6.4, for some constant c3 > 0 we compute

RΦ (φ, ψ, h) ≤ CΦC1E
[∥∥∥wt,φ+h

T − wt,φT
∥∥∥1+β

2

]
‖ψ‖2 ≤ CΦC1

∥∥∥wt,φ+h
T − wt,φT

∥∥∥1+β

H
‖ψ‖2

≤ c3 ‖ψ‖2 ‖h‖
1+β
2 , φ, ψ, h ∈ H,

where we also employ Jensen’s inequality noticing that 1 + β ≤ 2. Next,

|I1 (φ, ψ, h)| ≤ C1

∥∥D2Φ
∥∥
∞ ‖ψ‖2

∥∥∥wt,φ+h
T − wt,φT −Dw

t,φ
T h

∥∥∥
H
, φ, ψ, h ∈ H,

and

|II1 (φ, ψ, h)| ≤ ‖∇Φ‖∞ ‖ψ‖2
∥∥∥Dwt,φ+h

T −Dwt,φT −D
2wt,φT (h, ·)

∥∥∥
L(H;H)

, φ, ψ, h ∈ H.

Finally, by Corollary 6.4 and (6.32) (recall that, under Hypothesis 6.3, we take γ = β in (6.27), see
(6.54))

|III1 (φ, ψ, h)| ≤ C1

∥∥D2Φ
∥∥
∞ ‖ψ‖2 E

[∥∥∥wt,φ+h
T − wt,φT

∥∥∥1+β

2

]
≤ c̃

∥∥D2Φ
∥∥
∞ ‖ψ‖2 ‖h‖

1+β
2 , φ, ψ, h ∈ H,

for some c̃ > 0. Going back to (6.98), by Theorem 6.6, the previous estimates let us write, for some
constant C > 0,

∥∥∇u (t, φ+ h)−∇u (t, φ)−D2u (t, φ)h
∥∥

2
= sup
‖ψ‖2≤1

∣∣〈∇u (t, φ+ h)−∇u (t, φ)−D2u (t, φ)h, ψ
〉
H

∣∣
≤ C

(∥∥∥wt,φ+h
T − wt,φT −Dw

t,φ
T h

∥∥∥
H

+
∥∥∥Dwt,φ+h

T −Dwt,φT −D
2wt,φT (h, ·)

∥∥∥
L(H;H)

+ ‖h‖1+β
2

)
= o (‖h‖2) , φ, h ∈ H, (6.99)

which proves (6.97). In particular, by (6.32)-(6.56), there is a constant C2 = C2(d, T ) > 0 such that

∥∥D2u
∥∥
∞ ≤ C2

(∥∥D2Φ
∥∥
∞ + ‖∇Φ‖∞

)
.

In addition, arguing as in (6.99) (see also (6.96)) and thanks to the estimates of
∣∣∣∣Dwt,φ+h

T −Dwt,φT −
D2wt,φT (h, ·)

∣∣∣∣
L(H;H)

in the proof of Theorem 6.6 (see, for instance, (6.61)), for every M > 0 we have

sup
t∈[0,T ]

sup
‖φ‖2,‖ψ‖2,‖η‖2≤M

∣∣〈∇u (t, φ+ hψ)−∇u (t, φ)− hD2u (t, φ)ψ, η
〉
H

∣∣ = o (h) , h ∈ R.

Since we have proved that 〈∇u(t, φ), ψ〉H is continuous in [0, T ]×H×H, the previous equation ensures
that the map (t, φ, ψ, η) 7→ 〈D2u(t, φ)ψ, η〉H is continuous in [0, T ]×H ×H ×H, as desired.
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In conclusion, we prove that u (t, ·) ∈ C2+β
b (H). From (6.97), for every φ1, φ2 ∈ H,〈(

D2u (t, φ1)−D2u (t, φ2)
)
ψ, η

〉
H

= E
[〈(

D2Φ
(
wt,φ1

T

)
−D2Φ

(
wt,φ2

T

))
Dwt,φ1

T ψ,Dwt,φ1

T η
〉
H

]
+ E

[〈
D2Φ

(
wt,φ2

T

)(
Dwt,φ1

T −Dwt,φ2

T

)
ψ,Dwt,φ1

T η
〉
H

]
+ E

[〈
D2Φ

(
wt,φ2

T

)
Dwt,φ2

T ψ,
(
Dwt,φ1

T −Dwt,φ2

T

)
η
〉
H

]
+ E

[〈
∇Φ

(
wt,φ1

T

)
−∇Φ

(
wt,φ2

T

)
, D2wt,φ1

T (ψ, η)
〉
H

]
+ E

[〈
∇Φ

(
wt,φ2

T

)
,
(
D2wt,φ1

T −D2wt,φ2

T

)
(ψ, η)

〉
H

]
=: (I2 + II2 + III2 + IV2 + V2) (φ1, φ2, ψ, η) , ψ, η ∈ H.

To keep notation the short, in what follows we consider arbitrary ψ, η ∈ H, we do not write (φ1, φ2, ψ, η)
and we denote by c = c(d, T, β) > 0 a constant that might change from line to line. Observe that, by
(6.32)-(6.93), Corollary 6.4 and Jensen’s inequality,

|I2| ≤ cCΦ ‖ψ‖2 ‖η‖2 ‖φ1 − φ2‖β2 .

Moreover, by (6.32) (see also (6.54)),

|II2| ≤ c
∥∥D2Φ

∥∥
∞ ‖ψ‖2 ‖η‖2 ‖φ1 − φ2‖β2 .

An analogous estimate holds for |III2|, too. As for the remaining addends, by (6.56) we have

|IV2| ≤ c
∥∥D2Φ

∥∥
∞ ‖ψ‖2 ‖η‖2 ‖φ1 − φ2‖2 ,

and
|V2| ≤ c ‖∇Φ‖∞ ‖ψ‖2 ‖η‖2 ‖φ1 − φ2‖β2 .

Thus, the function D2u (t, ·) : H → L (H;H) is β−Hölder continuous uniformly in time and the proof
is complete. �
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