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ABSTRACT: A recently developed strategy for the computation
at affordable cost of reliable barrier heights ruling reactions in the
gas phase (junChS, [Barone, V.; et al. J. Chem. Theory Comput.
2021, 17, 4913−4928]) has been extended to the employment of
explicitly correlated (F12) methods. A thorough benchmark based
on a wide range of prototypical reactions shows that the new
model (referred to as junChS-F12), which employs cost-effective
revDSD-PBEP86-D3(BJ) reference geometries, has an improved
performance with respect to its conventional counterpart and
outperforms the most well-known model chemistries without the
need of any empirical parameter and at an affordable computa-
tional cost. Several benchmarks show that revDSD-PBEP86-
D3(BJ) structures and force fields provide zero point energies
and thermal contributions, which can be confidently used, together with junChS-F12 electronic energies, for obtaining accurate
reaction rates in the framework of the master equation approach based on the ab initio transition-state theory.

■ INTRODUCTION
The main focus of atmospheric chemistry is the descritption
and analysis of Earth’s atmosphere in terms of the underlying
physical-chemical processes controlling the sources and fate of
the different chemical species produced by natural or
anthropogenic emissions. However, despite significant pro-
gress, the interpretation of atmospheric processes in terms of
the underlying chemistry faces against a number of difficulties
mainly related to the interplay between chemical composition
and meteorological/transport processes.

In the last years, the increasing synergism among the major
pillars of atmospheric chemistry, namely observational
measurements, laboratory investigation, and atmospheric
modeling,1,2 is providing invaluable insights into the intricate
phenomena occurring in the atmosphere. In this framework,
computational chemistry can be of considerable help for
gaining additional information about ground and excited state
properties of chemical species, their photochemical pathways,
chemical reaction mechanisms, and rate coefficients.3 In
particular, kinetic and mechanistic features of reactions are
usually interpreted employing the Arrhenius equation to
describe the variation of the rate constant with temperature4
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where A is the pre-exponential or frequency factor (which may
involve a small dependence on temperature) and Ea is the
activation energy. While more precise definitions are

available,5,6 the activation energy is usually interpreted as the
minimum energy (kinetic plus potential, relative to the lowest
state of reactants) that reactants must have to form products
and the pre-exponential factor is a measure of the rate at which
collisions occur. If a reaction obeys the Arrhenius equation,
then a plot of ln k versus

T
1 should produce a straight line,

whose slope and intercept at the origin are E
R

a and A,
respectively. However, many reactions of wide current interest
do not obey the Arrhenius equation and/or have negative
activation energies (rate constants that decrease when the
temperature is increased).7,8 At the same time, the
experimental characterization of several reactions of atmos-
pheric interest is made difficult by the involvement of highly
reactive species, such as free radicals or ions.

Under such circumstances, accurate yet feasible quantum
chemical approaches are needed. The main factors determining
the accuracy of computed rate constants are the reaction
energies and the energy barriers for all the elementary steps
involved in the reaction under investigation. In the absence of
species with a strong multireference character and/or non-
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adiabatic effects, the coupled cluster (CC) approach delivers
accurate results provided that the most important classes of
excitations are included together with complete basis set
(CBS) extrapolation, core−valence (CV) correlation, and, if
needed, other minor effects (scalar relativistic, diagonal non-
Born−Oppenheimer, spin−orbit). Due to an effective error
compensation, single, double, and (perturbative estimates of)
triple excitations are usually sufficient, leading to the
CCSD(T)-CBS+CV model, which is often considered the
gold standard of contemporary computational chemistry. At
this level, chemical accuracy (4 kJ mol−1) can be reached either
by employing large basis sets,9 resorting to empirical
parameters in conjunction with smaller basis sets (e.g., G4,10

CBS-QB311), or employing explicitly correlated (F12) models
(e.g., W1-F1212 or SVECV-f1213). The most reliable protocols
(e.g., HEAT,14 W4,12 and their explicitly correlated HEAT-F12
and W4-F1215 variants) further increase the overall accuracy
(below 1 kJ mol−1) including additional (expensive)
contributions. In this connection it should be pointed out
that the latter protocols push also geometry optimizations to
the limit, whereas, at the other extreme, G4 and CBS-QB3
schemes employ B3LYP geometries, whose accuracies are
often unsatisfactory.10,16

Next, zero point energies (ZPEs) and finite temperature
contributions (FTCs) come into play, which are determined
by geometries and vibrational frequencies. In this connection,
effective approaches going beyond the standard rigid rotor/
harmonic oscillator (RRHO) model are needed especially
when light atoms or hindered rotors are involved. Finally,
barrierless entrance or exit channels are often encountered for
reactions in the gas phase, which require the accurate
description of noncovalent interactions.

Based on these premises, we have developed a composite
method, referred to as the “cheap” scheme (ChS) and devoid
of any empirical parameter, which has provided accurate
structural and energetic data at nonprohibitive costs.17−19 In
conjunction with geometries and harmonic frequencies
computed by double-hybrid functionals, ChS has given
promising results also for the activation energies of some
reactions of astrochemical interest.20−24 In analogy with the
W1X25 and SVECV-f1213 composite methods, ChS employs
the second order Møller−Plesset perturbation theory (MP2)26

for estimating the CV correlation. A further reduction of the
computational cost is achieved by performing, in accord with
the correlation consistent composite approach (ccCA),27,28

also the CBS extrapolation at the MP2 level. Quite recently, an
improved variant (referred to as the jun-Cheap scheme,
junChS) has been introduced, which, thanks to the use of the
“june” partially augmented basis sets of the “calendar” family,29

provides accurate results also for noncovalent interactions30,31

and activation energies.16

In the present paper we perform a comprehensive
benchmark of the latest member of the “cheap” family of
composite methods, junChS-F12,32,33 for several classes of
reactions for which accurate reference results are available or
have been purposely computed. We will show that, thanks to
the replacement of conventional post-Hartree−Fock methods
by their explicitly correlated (F12) counterparts, this model
chemistry improves the accuracy of previous variants, strongly
reducing the uncertainty of CBS extrapolation without any
excessive increase of computational requirements. Together
with electronic energies, we analyze also the roles of
geometries, ZPEs, and FTCs in tuning reaction rates in the

framework of the master equation approach based on the ab
initio transition-state theory (ME/AITST).34−36

■ COMPUTATIONAL DETAILS
All the composite schemes discussed in the present work
employ the cc-pV(n+d)Z (hereafter nZ)37 or jun-cc-pV(n
+d)Z (hereafter jnZ)29 families of basis sets.

The geometrical parameters and harmonic vibrational
frequencies of energy minima and first-order saddle points
(transition states) are obtained employing analytical gradients
and Hessians computed by the revDSD-PBEP86-D3(BJ)
double-hybrid functional38,39 in conjunction with the j3Z
basis set (this combination of functional and basis set will be
referred to in the following as rDSD).

At those geometries, single point energy evaluations are
performed by the explicitly correlated coupled cluster method,
including single, double, and (perturbatively) triple excitations
(CCSD(T)-F12)40,41 within the frozen-core approximation
and in conjunction with the j3Z basis set. Next, CBS
extrapolation, CV correlation, and, possibly, other minor
terms are added at different levels depending on the specific
model chemistry. Finally, the experimental values of spin−orbit
couplings are employed for O, OH, SH, and Cl radicals,
lowering their electronic energies by 0.9, 0.8, 2.3, and 3.5 kJ
mol−1, respectively.42

All the DFT computations have been performed with the
Gaussian code,43 F12 calculations with the Molpro package44

and CCSDT or CCSDT(Q) energy evaluations with the
MRCC program.45 Finally, diagonal Born−Oppenheimer
Corrections (DBOC) and relativistic contributions have been
computed by the CFOUR code.46

The junChS-F12 Model Chemistry. The junChS-F12
total electronic energies are obtained by the following recipe:

= +

+

E E E

E

(CCSD(T) F12/j3Z)junChS F12 MP2 F12
CBS

MP2 F12
CV (2)

where

=E
E E

E

4 (MP2 F12/j4Z) 3 (MP2 F12/j3Z)
4 3

(MP2 F12/j3Z)

MP2 F12
CBS

3 3

3 3

(3)

and

=E E E(MP2 F12 /C3Z) (MP2 F12 /C3Z)MP2 F12
CV ae fc

(4)

In the above equations ΔEMP2‑F12
CBS is the MP2-F12 correlation

energy extrapolated to the CBS limit using the n−3 formula47

and ΔEMP2‑F12
CV is the MP2-F12 energy difference between all

electron (ae) and frozen core (fc) calculations employing the
cc-pwCVTZ basis set (C3Z).48 At this level, the extrapolation
of Hartree−Fock (HF) and correlation contributions is
performed with the same equation and basis sets since several
tests have shown that this simplified recipe has a negligible
impact on the overall accuracy of the results.27,28,30,32

Derivation of eq 2 w.r.t. Cartesian coordinates leads to the
junChS-F12 version of the so-called “gradient scheme”
introduced by Gauss and co-workers49,50 for geometry
optimizations by composite methods
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where, on the grounds of previous experience,32,51 the CBS
contribution can be safely neglected. To further extend the
applicability of composite approaches to larger molecules, an
effective solution is provided by the so-called “geometry”
scheme.52,53 This is based on the assumption that the additivity
approximation can be directly applied to geometrical
parameters and only requires geometry optimizations at several
levels of theory. The different contributions are thus evaluated
separately and then combined together. This approach will be
used in the following sections to analyze the role of different
geometries on the final evaluation of electronic energies
(ΔGEOM contribution).

Additional Terms. Starting from junChS-F12 electronic
energies, additional terms can be added to improve the
accuracy of the final results (EBest):

= + + + +

+ +

E E E E E E

E E

Best junChS F12 CBS CV fT pQ

rel DBOC (6)

The CBS and CV contributions refer to the differences
between evaluations of these terms at the CCSD(T)-F12 and
MP2-F12 levels. The diagonal Born−Oppenheimer correction
ΔEDBOC

54−57 and the scalar relativistic contribution to the
energy ΔErel

58,59 are computed at the HF-SCF/aug-cc-pVDZ
and CCSD(T)/aug-cc-pCVDZ levels, after having checked
their convergence with respect to contributions calculated with
triple-ζ basis sets for a few stationary points. Finally, the
corrections due to full treatment of triple (ΔEfT) and
perturbative treatment of quadruple (ΔEpQ) excitations are
computed, within the fc approximation, as energy differences
between CCSDT and CCSD(T) and between CCSDT(Q)
and CCSDT calculations employing the cc-pVTZ and cc-
pVDZ basis set, respectively.

In the following, the method obtained including only the
first three terms of eq 6 will be referred to as CBS+CV,
whereas the method including all the terms of eq 6 will be
referred to as Best. While straightforward generalizations of eq
4 would allow geometry optimizations at the CBS+CV and
Best levels, this route has not been pursued here due to the
negligible improvement over junChS-F12 in the former case
and the lack of analytical gradient implementations for fT and
pQ contributions in the latter case.

Zero Point Energy and Finite Temperature Contri-
butions. Accurate determination of thermochemical and
kinetic parameters by quantum chemical methods requires,
in addition to electronic energies, also zero point energies
(ZPE) and finite temperature contributions (FTC), which are
usually obtained within the RRHO approximation, possibly
employing empirical scaling factors.60 In the present context,
the use of empirical factors is avoided by resorting to
generalized second order vibrational perturbation theory in
conjunction with a separate treatment of large amplitude
motions.61,62 In fact, a resonance-free expression for ZPEs of
energy minima and transition states,63,64 an unsupervised
smoothing procedure (HDCPT2) for fundamental frequen-

cies65 and a fully unsupervised detection and treatment of
torsional motions (hindered rotor, HR, approximation)66 have
been implemented in the Gaussian code43 and validated.67 As a
consequence a fully black-box procedure is available for taking
into account all these contributions.

Next, partition functions can be computed by the so-called
simple perturbation theory (SPT),68 which retains the formal
expression of the harmonic partition function, but employing
the anharmonic ZPE and fundamental levels (Δi) issuing from
HDCPT2 and HR computations.

=
( )

( )
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This approximation provides results in remarkable agreement
with accurate reference values and leads to analytical
expressions for the different thermodynamic functions.68

Kinetic Models. Global and channel-specific rate constants
can be computed solving the multiwell one-dimensional master
equation using the chemically significant eigenvalues (CSEs)
method within the Rice−Ramsperger−Kassel−Marcus
(RRKM) approximation, as implemented in the MESS
code.41 The collisional energy transfer probability is described
using the exponential down model69 with a temperature
dependent ΔEdown of 260 × (T/298)0.875 cm−1 in an argon
bath gas.69

For channels ruled by a distinct saddle point, rate
coefficients are determined by conventional transition state
theory (TST)70 including tunneling as well as non classical
reflection effects by the Eckart model.71 Instead, rate constants
for barrierless elementary reactions are computed by the phase
space theory (PST).72,73 The isotropic attractive potential Veff

entering the PST is described by a C
R6 power law, whose C

coefficient is obtained by fitting rDSD energies computed at
various long-range distances between the fragments.

While the adopted models for the inclusion of tunneling and
the description of barrierless entrance channels usually deliver
qualitatively correct results, they neglect a number of effects
(e.g., variational location of the TS, nonvanishing curvature of
the reaction path, etc.), whose proper treatment would require
more advanced models.21,74 However, these models require, in
turn, additional information besides the characterization of the
stationary points governing each elementary step. As a
consequence, we prefer to postpone these aspects after the
reliability of the proposed approach for the structural and
energetic properties of stationary points has been definitely
assessed.

The rate constants of the overall reactions evaluated at
different temperatures are fitted by the three-parameter
modified Arrhenius equation proposed by Kooij:75,76

=k T A T E
RT

( )
300

exp
n

ai
k
jjj y

{
zzz i

k
jjj y

{
zzz (8)

where A, n, and Ea are the fitting parameters, and R is the
universal gas constant.

■ RESULTS AND DISCUSSION
The most widely employed reference results for reaction
barriers are collected in the DBH24 compilation77,78

containing results mostly obtained at the CCSDTQ5/CBS
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level by means of the W4 composite method79 for a statistically
representative set including 3 prototypes for each of the
following classes of reactions: heavy atom transfer, nucleophilic
substitution, unimolecular and association reactions, and
hydrogen-transfer reactions.

Table 1 compares the reaction barriers computed at the
junChS-F12 level to the reference values of ref 78. From a
technical point of view, the results show that F12a and F12b
variants of the CCSD-F12 method41 provide comparable
results, so that only F12a values will be discussed in detail in
the following. As shown in Table 1, the CCSD(T)-F12/j3Z
error is already on par with the best available composite
methods13 and is further slightly reduced adding CBS and CV
contributions by inexpensive MP2-F12 computations. These
trends confirm that two-point extrapolation at the MP2-F12
level is an effective route for estimating the CBS limit without
introducing additional computational bottlenecks with respect
to the underlying CCSD(T)-F12/j3Z reference. As a matter of
fact, already for reactions involving two heavy atoms, junChS-
F12 computations require no more than twice the time of the
CCSD(T)-F12/jun-cc-pVTZ step and are 1 order of
magnitude faster than their CBS+CV counterparts. It is also
remarkable that all the energy barriers showing non-negligible
errors have quite large contributions from full triple and
perturbative quadruple excitations (fT+pQ), which are not
included in the junChS-F12 approach nor in its CBS+CV
counterpart. Table 1 collects also the differences between

anharmonic and harmonic ZPE contributions to energy
barriers (Δanh). While these terms (together with spin−
orbit contributions) will be discussed in more detail in the
following, we already point out that their contribution is
sometimes comparable with that of (fT+pQ).

Two larger compilations of energy barriers are available for
prototypical reactions involving the transfer of hydrogen
(HTBH38/0880) and non-hydrogen atoms (NHTBH38/
0881), respectively. However, the values not already included
in the DBH24 set have been obtained at a lower computational
level (W182). In order to investigate the role of different effects
on energy barriers we have computed Best values for all the
reactions belonging to those two sets. It is noteworthy that
rDSD energy barriers, although not directly used in the junChS
model chemistries, show mean unsigned errors (MUEs)
smaller than 8.0 kJ mol−1, thus suggesting that the
corresponding geometries should be sufficiently accurate for
single-point energy evaluations at higher computational levels.

Figure 1 shows the errors issued from different model
chemistries, whereas the corresponding energy barriers are
given in Table S1 of the Supporting Information (SI). It is
quite apparent that CBS extrapolation plays a much more
important role in conventional composite methods (junChS)
than in their explicitly correlated counterparts (junChS-F12).
However, also in the latter case its inclusion (together with
that of the CV contribution) is surely warranted in view of the
quite negligible cost. As expected, the junChS-F12 model

Table 1. Theoretical Values of the Barrier Heights (Not Including Spin−Orbit Correction and ZPE) in the DBH24
Compilation Obtained at Different Levels of Theorya

forward/reverse barrier height

reactions CC-F12a/j3Z junChS-F12 fT+pQ ref 78 Δanh

heavy-atom transfer
a1 H• + N2O → OH• + N2 74.0/347.8 73.9/348.3 −1.4/−3.2 71.7/345.0 −0.2/−0.2

[74.2/347.4]
a2 H• + ClH → HCl + H• 75.2/75.2 73.6/73.6 −0.55/−0.5 75.3/75.3 1.3/1.3

[75.9/75.9]
a3 CH3

• + FCl → CH3F + Cl• 29.9/250.4 29.9/251.3 −1.0/−1.2 28.2/251.0 −0.8/0.1
[30.0/250.5]

nucleophilic substitution
a4 Cl−···CH3Cl → ClCH3···Cl− 56.2/56.2 56.2/56.2 −1.0/−1.0 56.1/56.1 0.1/0.1

[56.7/56.7]
a5 F−···CH3Cl → FCH3···Cl− 14.3/122.5 14.6/123.7 −0.8/−0.9 14.4/123.1 0.0/0.0

[14.5/123.7]
a6 OH− + CH3F → HOCH3 + F− −11.8/73.5 −8.9/74.8 −1.3/−1.4 −10.2/73.9 −0.4/0.0

[−11.1/74.0]
unimolecular and association

a7 H• + N2 → HN2
• 61.4/45.8 60.8/46.3 0.5/0.7 60.1/44.4 −0.4/0.1

[61.8/45.4]
a8 H• + C2H4 → C2H5

• 9.1/177.1 8.3/176.6 −0.5/−0.6 7.2/174.7 −0.3/−0.2
[9.3/177.0]

a9 HCN ↔ HNC 199.6/137.8 201.2/138.6 −0.2/−0.6 201.1/137.3 0.1/0.1
[199.3/137.5]

hydrogen transfer
a10 OH• + CH4 → CH3

• + H2O 27.1/82.2 27.7/83.3 −0.7/−0.6 28.1/82.0 1.0/0.9
[27.1/81.9]

a11 H• + OH• →H2 + 3O 46.3/56.9 46.6/57.6 −0.6/−1.0 44.8/54.9 0.7/0.8
[45.8/56.6]

a12 H• + H2S → H2 + HS• 17.1/73.9 16.0/76.3 −0.5/−0.4 15.2/72.5 −0.5/−0.6
[17.6/73.6]

aF12b values are reported in square brackets. The contributions of full-triple and perturbative-quadruple excitations (fT+pQ) and the differences
between anharmonic and harmonic ΔZPEs computed at the rDSD level (Δanh) are also given. All the values are in kJ mol−1.
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shows smaller errors with respect to the reference values than
the junChS approach, with both models clearly satisfying the
requirements of chemical accuracy (i.e., errors within 4 kJ
mol−1) without the need of any empirical parameter.

Tables 2 and 3 show the contributions given by improved
geometries (junChS-F12 vs rDSD referred to as ΔGEOM),
core−valence correlation (CV−F12), triple excitations (fT),
quadruple excitations (included perturbatively, pQ), diagonal
Born−Oppenheimer corrections (DBOC), scalar relativistic
contributions (rel), and spin−orbit couplings (ΔSO). The
quality of rDSD geometries is confirmed by the small values of
the ΔGEOM contributions, with the possible exception of
reactions involving two doublet species (especially HT15 and
HT16), where spin contamination effects can become non-
negligible also for double-hybrid functionals.83 Noted is that
geometries optimized by hybrid functionals or MP2 (either

UMP2 or ROMP2) methods produce significantly larger
ΔGEOM contributions.16,84

In more general terms, the results collected in Tables 2 and
3 show that none of the contributions mentioned above can be
neglected for reaching fully converged values. As already
mentioned, this is also the case for anharmonic corrections to
ZPEs (see Δanh in Table 1). In this connection, we recall that
accurate ZPEs and thermal contributions can be obtained in
the framework of the SPT68 from HDCPT265 computations
employing rDSD anharmonic force fields.16,51 All in all,
evaluation of electronic energies at the junChS-F12 level in
conjunction with rDSD geometries and vibrational frequencies
represents a reliable tool for the study of medium- to large-size
systems in the absence of strong multireference effects.

■ RATE CONSTANTS
In this section, we analyze the performance of three composite
schemes (junChS-F12, Best and the largely employed CBS-
QB3 model11) for the computation of rate constants within the
ME/AITST approach. To the purpose we have chosen at least
one example for each of the main classes of reactions
considered in the reference databases discussed in the
preceding section. The selected reactions are CH4 + OH →
CH3 + H2O (HT4) and H + PH3 → PH2 + H2 (HT11) for
hydrogen transfer; Cl− + CH3Cl → ClCH3 + Cl− (NHT10)
for nucleophilic substitution; HCN → HNC (NHT19) for
unimolecular isomerization, and H + FH → HF + H (NHT2)
for heavy-atom transfer. While the original recipes have been
used for the evaluation of ZPE and thermal effects in the CBS-
QB3 method, rDSD geometries and VPT2 anharmonic
frequencies have been used in junChS-F12 and Best
computations in order to avoid any empirical scaling factor.

The reaction of OH with CH4 (HT4) is very important in
the Earth’s troposphere since it accounts for about 90% of the
total CH4 sink.85 The junChS-F12 and Best energy barriers are
quite close (27.7 and 28.1 kJ mol−1, respectively), whereas a

Figure 1. Root-mean-square deviations of different model chemistries
from reference values (CBS+CV or Best) of energy barriers belonging
to the HTBH38/08 and NHTBH38/08 compilations: junChS (I),
junChS without MP2 CBS extrapolation (II), junChS-F12 (III) and
junChS-F12 without MP2-F12 CBS extrapolation (IV).

Table 2. Geometry (ΔGEOM), Core−Valence (CV), full triples (fT), Perturbative Quadruples (pQ), Diagonal Born−
Oppenheimer (DBOC), Relativistic (rel), and Spin−Orbit (ΔSO) Contributions to the Energy Barriers included in the
HTBH38/08 Databasea

reactions ΔGEOM CVb fT pQ DBOC rel ΔSO

HT1 H• + HCl → H2 + Cl• 0.0/1.6 0.1/−0.3 (0.1/−0.3) −0.3/0.2 −0.1/−0.2 1.6/1.0 −0.5/0.8 0.1/3.5
HT2 OH• + H2 → H2O + H• 0.0/0.0 0.0/0.8 (0.0/0.8) −0.5/−1.1 −0.3/0.3 0.2/1.1 0.0/−0.6 0.8/0.0
HT3 CH3

• + H2 → CH4 + H• 0.0/0.0 0.0/0.6 (−0.1/0.6) −0.2/−0.4 −0.1/−0.1 1.2/1.9 0.0/−0.1 −
HT4 OH• + CH4 → CH3

• + H2O 0.0/0.0 0.3/0.4 (0.3/0.4) −0.1/−0.5 −0.7/−0.1 0.4/0.7 0.0/−0.5 0.8/0.0
HT5 H• + H2 → H2 + H• −0.1/−0.1 0.0/0.0 (0.0/0.0) −0.3/−0.3 −0.8/−0.8 1.7/1.7 0.0/0.0 −
HT6 OH• + NH3 → H2O + NH2

• −0.2/0.7 0.3/-0.1 (0.4/0.0) −0.9/−1.0 −1.2/−0.8 1.7/1.5 0.0/−0.2 0.8/0.0
HT7 HCl + CH3

• → Cl• + CH4 0.0/1.7 0.0/0.3 (0.1/0.3) 0.0/0.4 −0.3/−0.3 0.2/0.3 0.0/1.2 0.0/3.5
HT8 OH• + C2H6 → H2O + C2H5

• 0.0/0.0 0.2/0.6 (0.2/0.6) −0.2/−0.4 −0.6/−0.1 −0.3/0.3 −0.2/−0.7 0.8/0.0
HT9 F• + H2 → HF + H• 0.0/0.0 0.1/0.7 (0.1/0.7) −0.5/−0.9 −0.2/0.6 0.1/0.9 0.0/−0.8 −
HT10 3O + CH4 → OH• + CH3

• −0.4/−1.3 0.4/0.3 (0.4/0.3) −0.2/−0.1 −0.2/0.2 0.1/−0.1 0.1/−0.3 0.9/0.8
HT11 H• + PH3 → PH2

• + H2 0.0/0.0 −0.1/−0.3 (0.0/−0.4) −0.5/−0.4 −0.1/−0.2 0.9/0.2 −0.2/0.5 −
HT12 H• + OH• →H2 + 3O −0.6/0.3 0.4/0.0 (0.4/-0.1) −0.6/−0.6 0.1/−0.4 1.5/0.9 −0.4/0.1 0.8/0.9
HT13 H• + H2S →H2 + HS• 0.0/0.0 0.0/−0.4 (0.0/−0.5) −0.4/−0.1 −0.1/−0.3 0.9/0.3 −0.3/0.7 0.0/2.3
HT14 3O + HCl → OH• + Cl• −0.7/0.1 0.1/0.2 (0.4/0.4) −2.4/−1.8 −1.3/−0.9 1.4/1.3 −0.4/0.4 0.9/4.3
HT15 NH2

• + CH3
• → CH4 + NH −2.5/−1.2 0.4/0.3 (0.4/0.3) 0.0/0.0 −0.3/−0.6 2.0/2.1 −0.2/0.1 −

HT16 NH2
• + C2H5

• → NH + C2H6 −2.6/−1.3 0.5/0.1 (0.5/0.1) 0.3/0.1 −0.4/−0.7 1.1/0.8 −0.2/0.1 −
HT17 NH2

• + C2H6 → NH3 + C2H5
• 0.0/0.0 0.1/0.9 (0.1/0.9) 0.5/0.3 −0.6/−0.5 0.7/1.5 0.0/−0.3 −

HT18 NH2
• + CH4 → NH3 + CH3

• 0.0/0.0 0.1/0.7 (0.1/0.7) 0.5/0.2 −0.6/−0.4 0.8/1.2 0.1/−0.3 −
HT19 s-trans cis−C5H8 → same 0.01/0.1 0.6/0.6 (0.6/0.6) 0.4/0.4 −1.7/−1.7 0.3/0.3 0.0/0.0 −

aAll the values are in kJ mol−1. bF12a (F12b).
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slightly lower value (26.0 kJ mol−1 at the W1 level82) was
estimated in the most exhaustive computation of the rate
constant performed until now.86 In any case, the reaction
shows a strongly non-Arrhenius behavior (related also to the
presence of a hindered rotation at the transition state) and the
agreement between different model chemistries is only fair at
low temperatures (see panel (a) of Figure 2). While a more
comprehensive analysis of all the factors (path curvature,
anharmonicity, etc.) playing a role in determining the rate
constant of this reaction is beyond the scope of the present
paper, we point out that the difference between harmonic and
anharmonic ZPEs is not negligible (about 1 kJ mol−1 for both
the forward and backward reaction).

Inspection of panel (b) in Figure 2 shows that reaction
between H and PH3 (HT11) follows the Arrhenius behavior.
The rate constants computed from junChS-F12 and Best
energy barriers are in remarkable agreement with the available
experimental data,87,88 whereas the CBS-QB3 energy barrier
leads to underestimated rate constants at low temperatures and

overestimated rate constants at high temperatures. In this case
the role af anharmonicity on the rate constants is negligible: for
instance, the difference between harmonic and anharmonic
(VPT2) ZPEs is about 0.3 kJ mol−1. All these trends are
confirmed by the coefficients of the Arrhenius−Kooij fittings
collected in Table 4.

The high pressure limits for the rate constants of reactions
NHT10 and NHT19 are shown in Figure 3, while the
corresponding Arrhenius-Kooij parameters are given in Table
4. Both reactions are characterized by quite high energy
barriers, and their rate constants follow the Arrhenius equation
in the medium- to high-temperature range.

Reaction NHT10 is the prototypical SN2 reaction, which
shows very large environmental effects,89 so that accurate
computations of gas phase rate constants are the mandatory
prerequisite for disentangling intrinsic and environmental
effects. The value of the Best energy barrier (9.0 kJ mol−1)
coincides with that obtained from the very accurate focal point
approach (FPA) given in ref 90. Since tunneling is expected to

Table 3. Geometry (ΔGEOM), Core−Valence (CV), Full Triples (fT), Perturbative Quadruples (pQ), Diagonal Born−
Oppenheimer (DBOC), Relativistic (rel), and Spin−Orbit (ΔSO) Contributions to the Energy Barriers Included in the
NHTBH38/08 Databasea

reactions ΔGEOMb CV−F12c fT pQ DBOC rel ΔSO

NHT1 H• + N2O → OH• + N2 0.2/−0.9 0.6/0.1 (0.6/0.1) −0.6/1.9 −0.8/−5.1 1.1/0.4 −0.3/0.4 0.0/0.8
NHT2 H• + FH → HF + H• 0.1/0.1 0.5/0.5 (0.5/0.5) −0.1/−0.1 −0.4/−0.4 2.3/2.8 −0.7/−0.7 −
NHT3 H• + ClH → HCl + H• −0.1/−0.1 0.2/0.2 (0.2/0.2) −0.4/−0.4 −0.2/−0.2 1.5/1.5 −0.8/−0.8 −
NHT4 H• + FCH3 → HF + CH3

• −0.1/0.0 0.6/1.3 (0.5/1.3) −0.7/−0.3 −0.7/−0.9 0.7/0.2 −0.7/−0.7 −
NHT5 H• + F2 → HF + F• 0.8/0.8 0.1/1.6 (0.1/1.6) −0.2/0.3 0.3/−2.8 0.7/0.3 −0.1/−1.0 −
NHT6 CH3

• + FCl → CH3F + Cl• 0.0/0.0 0.3/1.1 (0.3/1.0) −0.1/0.0 −0.9/−1.7 0.5/0.6 −0.3/−0.7 0.0/3.5
NHT7 F− + CH3F → FCH3 + F− / 1.5/1.5 (1.5/1.5) −0.5/−0.5 −0.6/−0.6 0.0/0.0 −0.2/−0.2 −
NHT8 F−···CH3F → FCH3···F− / 1.1/1.1 (1.1/1.1) −0.3/−0.3 −0.5/−0.5 0.1/0.1 −0.2/−0.2 −
NHT9 Cl− + CH3Cl → ClCH3 + Cl− / 1.2/1.2 (1.4/1.4) −0.6/−0.6 −0.5/−0.5 0.0/0.0 −0.2/−0.2 −
NHT10 Cl−···CH3Cl → ClCH3···Cl− / 1.1/1.1 (1.2/1.2) −0.5/−0.5 −0.5/−0.5 0.0/0.0 −0.5/−0.5 −
NHT11 F− + CH3Cl → FCH3 + Cl− / 1.4/0.8 (1.5/0.9) −0.6/−0.5 −0.4/−0.9 0.0/0.0 −0.2/−0.1 −
NHT12 F−···CH3Cl → FCH3···Cl− / 1.0/0.6 (1.0/0.7) −0.4/−0.4 0.3/−0.4 0.0/0.0 −0.2/−0.3 −
NHT13 OH− + CH3F → HOCH3 + F− / 1.3/2.0 (1.3/2.0) −0.3/−0.5 −1.0/−0.9 0.0/0.1 −0.1/−0.5 −
NHT14 OH−···CH3F → HOCH3···F− / 1.1/1.8 (1.1/1.8) −0.2/−0.6 −0.9/−0.6 0.1/0.1 −0.2/−0.4 −
NHT15 H• + N2 → HN2

• 0.0/0.0 0.3/0.4 (0.2/0.4) −0.5/0.7 1.0/−0.1 1.3/0.4 0.1/−0.4 −
NHT16 H• + CO → HCO• 0.0/0.0 0.1/1.0 (0.1/1.0) −0.4/−0.1 −0.2/−0.1 0.8/−0.1 0.0/−0.4 −
NHT17 H• + C2H4 → C2H5

• 0.0/0.2 0.2/0.0 (0.2/0.0) −0.5/0.2 0.0/−0.8 0.7/0.0 0.0/−0.2 −
NHT18 CH3

• + C2H4 → CH3CH2CH2
• −0.1/−0.1 0.6/0.6 (0.6/0.6) −0.8/−1.0 −0.5/−0.8 0.0/0.0 0.0/−0.2 −

NHT19 HCN → HNC 0.1/0.1 1.6/0.8 (1.7/0.8) −0.6/0.2 0.4/−0.8 0.1/0.2 −0.3/−0.4 −
aAll the values are in kJ mol−1. bthe geometries have not been reoptimized at the junChS-F12 level when charged species were involved. cF12a
(F12b).

Figure 2. Temperature dependence of the rate constants for reactions HT4 and HT11 in the high-pressure limit.
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play a negligible role, accurate rate constants should be
obtained at this level. It is then remarkable that Best and
junChS-F12 rate constants are very close in the whole range of
temperatures, whereas the CBS-QB3 model underestimates
significantly the rate constant at low temperatures. In fact, the
not too high activation energy leads to a significant deviation
from the Arrhenius behavior at low temperatures, with the
consequent non-negligible impact of even relatively small
errors.

The isomerization of HCN to HNC (NHT19) is of
paramount relevance in astrochemistry because the ratio
between the two species changes in different environments.
While the energy barrier is too high to allow effective
isomerization in the interstellar medium (ISM), the rate
constant of the reaction represents the reference value for
studying catalytic effects by water molecules on icy grains.91 In
this case, the rate constants computed by different models are
in good agreement in the whole temperature range among
themselves and with previous computations.92

The last reaction considered (NHT2) is the simplest heavy
atom transfer. Figure 4 shows that also in this case, the rate

constants provided by the different methods are in good
agreement for medium- to high-temperatures, whereas at low
temperatures the CBS-QB3 energy barriers lead to too low
rates in comparison with the (close) values of junChS-F12 and
Best models.

Table 4. Arrhenius−Kooij Parameters of the Reactions Investigated in the Present Paper

junChS-F12 Best CBS-QB3

CH4 + OH → CH3 + H2O A/cm3 molecule−1 s−1 3.76 × 10−14 3.77 × 10−14 8.19 × 10−14

n 2.86 2.86 2.56
Ea/kJ mol−1 5.31 4.07 4.74

H + PH3 → PH2 + H2 A/cm3 molecule−1 s−1 9.06 × 10−12 8.96 × 10−12 4.84 × 10−11

n 2.02 2.03 1.60
Ea/kJ mol−1 2.85 3.34 6.47

H + HF → HF + H A/cm3 molecule−1 s−1 1.75 × 10−16 1.75 × 10−16 5.04 × 10−16

n 1.81 1.81 1.74
Ea/kJ mol−1 1.57 × 102 1.57 × 102 1.63 × 102

Cl−···CH3Cl → ClCH3···Cl− A/s−1 1.19 × 1011 1.19 × 1011 2.34 × 1011

n 1.05 1.06 7.56 × 10−1

Ea/kJ mol−1 5.10 × 101 5.00 × 101 5.07 × 101

HCN → HNC A/s−1 1.13 × 1014 8.61 × 1013 1.78 × 1013

n 6.42 × 10−2 1.93 × 10−1 1.01
Ea/kJ mol−1 1.88 × 102 1.87 × 102 1.82 × 102

C2H4 + CN A/cm3 molecule−1 s−1 5.89 × 10−10 5.86 × 10−10 5.90 × 10−10

n 8.55 × 10−2 5.05 × 10−2 1.05 × 10−1

Ea/kJ mol−1 5.45 × 10−2 7.73 × 10−2 4.18 × 10−2

CH2OO + H2O A/cm3 molecule−1 s−1 2.83 × 10−15 − 2.36 × 10−15

n 1.05 − 1.12
Ea/kJ mol−1 5.63 − 7.30

Figure 3. Temperature dependence of the rate constants for reactions NHT10 and NHT19 in the high-pressure limit.

Figure 4. Temperature dependence of the rate constants for reaction
NHT2.
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In order to investigate the effect of entrance and exit van der
Waals wells, two multistep reactions of astrochemical (CN
addition to ethylene) and atmospheric (reaction between the
simplest Criegee intermediate and H2O) interest have been
investigated.

Aminoacetonitrile (AN), also known as vinylcyanide, has
been found in several regions of the ISM93 and may be also the
best candidate for the formation of cell-like membranes in
Titan’s hydrocarbon-rich lakes and seas.94 Among the possible
formation routes of AN, we have considered the addition of
CN radical to ethylene, since both species are present in the
ISM and on Titan. From an experimental point of view, the
reaction was found to be very fast, approaching the gas kinetics
limit at very low and very high temperatures.95 On the other
hand, the computational studies performed until now did not
employ state-of-the-art quantum chemical models.96 The
reaction mechanism is sketched in Figure 5 together with
the junChS-F12 relative energies (including rDSD anharmonic
ZPEs) of all the stationary points.

Intermediate 1, which is formed without any entrance
barrier, leads to the final products (H and AN), either through
a single step ruled by the transition state TS-1AN or by a two-
step mechanism involving intermediate 2. In any case, all the
energy barriers are submerged, so that this reaction channel is
open also in the harsh conditions characterizing the ISM.

The rate constant for the addition issued from junChS-F12
computations is compared in Figure 6 with the CBS-QB3 and
Best counterparts. The addition rate constant is essentially flat
in the whole temperature range and the different composite
methods provide comparable results. Although a fully
quantitative comparison with experimental rate constants is
not possible because we have considered only the high
pressure limit, our values have the correct order of magnitude,
especially at high temperatures.95

Criegee intermediates (CIs) are carbonyl oxides formed in
the ozonolysis of unsaturated hydrocarbons and play a central
role in several processes occurring in the atmosphere. Reaction
with water is a key step for several processes involving CIs and
has been investigated in a number of studies. In particular, the
rate constant for the reaction of the simplest CI (CH2OO) has
been analyzed in a thorough computational study.97

The reaction mechanism is sketched in Figure 7 together
with the relative energies of the key stationary points

computed at the junChS-F12 level and including anharmonic
ZPEs computed at the rDSD level. The rate constants
predicted by different composite methods in the framework
of the ME/TST model are shown in Figure 8. In this case the
temperature dependence of the rate constant is well
represented by the simple Arrhenius equation, but the slope
is significantly different when employing junChS-F12 or CBS-

Figure 5. Reaction mechanism for the addition of CN to C2H4. Electronic energies at the junChS-F12 level augmented by rDSD anharmonic ZPEs.

Figure 6. Temperature dependence of the rate constant for the
addition of CN to C2H4 in the high pressure limit.

Figure 7. Mechanism of the reaction between CH2OO and H2O.
Electronic energies at the junChS-F12 level augmented by
anharmonic rDSD ZPEs.
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QB3 energy barriers. Once again all these trends are confirmed
quantitatively by the coefficients of the Arrhenius−Kooij
fittings given in Table 4 and the junChS-F12 results are in
agreement with previous state-of-the-art computations.97

■ CONCLUSIONS
The analysis of processes occurring in nonstandard environ-
ments like the atmospheres of exoplanets or the Earth’s
troposphere requires accurate kinetic data at low to moderate
temperatures and involving barrier heights spanning a large
range of values. Furthermore, medium- to large-molecular
systems are often involved in those processes, whose entrance
channels are tuned by noncovalent interactions. As a
consequence, reliable yet effective methods for the computa-
tion of rate constants and branching ratios are needed. The
master equation formalism employing the ab initio transition
state theory offers a reliable reference frame, provided that
accurate structural and energetic parameters are available for
the key stationary points. To this end, we have validated the
recently proposed junChS-F12 model chemistry with reference
to very accurate energetic and kinetic data. The results
obtained for a large panel of systems and reaction channels
show an average error well within the chemical accuracy for all
the key thermodynamic and kinetic contributions without the
need of any empirical parameter. The junChS-F12 model
delivers smaller errors with respect to the reference values than
its conventional junChS predecessor, without any excessive
increase of computational resources. This behavior can be
traced back to the strongly reduced role of CBS extrapolation
when going from conventional to explicitly correlated
composite methods, with the consequent reduced role of the
errors incurred from its estimation by low-order perturbative
methods. The computational bottleneck of the proposed
model chemistry is the CCSD(T)-F12/jun-cc-pVTZ step. In
this connection, new low-scaling approaches98 and, possibly,
local-correlation models99,100 deserve further investigation in
order to increase the dimension of molecular systems
amenable to accurate computations with reasonable computer
requirements. Additional refinements and validations are
needed also for situations involving the non-negligible static
correlation and/or nonadiabatic effects. However, even taking
these limitations into account, we think that the strategy
proposed in the present paper can contribute to the
computational study of chemical processes under widely
different temperature and pressure conditions.
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