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1 Introduction

Quasi-normal modes (QNM) of black holes (BH) are a highly valuable tool for accurately
describing the last part of a gravitational wave (GW) signal, known as the ringdown
phase [1]. Far from the BH, the metric perturbation is expressed as a sum of exponentially
decaying oscillations. One remarkable result of BH perturbation theory is that the fre-
quency of these oscillations is quantized, meaning that it depends on a integer «overtone
number» n and on the spherical harmonic numbers (ℓ, m) [2]. While QNMs do not form
a complete basis for describing the full late-time signal of a BH collision [3], they still fit
very well the results from numerical relativity [4, 5].

Various techniques have been developed to compute QNM frequencies with high pre-
cision. All of these techniques rely on studying the simplified problem of a monochromatic
linearized perturbation on Schwarzschild or Kerr spacetime obeying boundary conditions
infalling at the BH horizon and outgoing at infinity. To date, the most accurate of these
is Leaver’s continued-fraction method [6]. Another well-known approximation technique is
an application of WKB method to the QNM problem [7–11]. This last method has the ad-
vantage of being analytic, thus providing insights into the mechanism of QNM generation
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and allowing generalizations to beyond-GR theories [12, 13]. Other techniques include the
Bender-Wu approach [14], the monodromy method [15] (see e.g. [1] for a review), meth-
ods based on a spectral decomposition of the equations in hyperboloidal slices [16, 17]
and more recent developments related to supersymmetric and conformal field theories (see
e.g. [18–21]). Finally, closely related to the WKB method, the method of uniform expan-
sions was developed in [22], where it was applied together with Borel-Padé summation.

In this article we will also rely on the method of uniform expansions (see e.g. [23, 24]),
performing detailed computations of the linear frequencies for various n and ℓ and extending
it to compute the amplitude of nonlinear QNMs. We will provide a detailed explanation of
this technique in section 3. Interestingly, this method allows to circumvent the matching
conditions traditionally used in the Schutz and Will WKB approach [9]. Indeed, our
approximate QNM wavefunction is accurate both near the maximum of the potential and
at large distances from it. Similar to the WKB method, this approach does not strongly
depend on the precise form of the potential in GR, making it potentially applicable to
other modified-gravity settings. However, unlike the WKB method, we will demonstrate
in section 4 that its accuracy remains high even as the overtone number n increases. We
will achieve this without the need for high-order matching, resulting in more compact
expressions compared to the WKB method.

Our primary motivation for introducing this new analytic technique is related to the
study of nonlinearities in BH ringdown. Indeed, since the merger of two BHs is a highly
nonlinear process, it is not surprising that the ringdown phase may not be entirely described
by a linearized perturbation on the BH background. Several works have highlighted the
significance of nonlinearities in BH ringdown [25–31]. In particular, due to mode-coupling
effects at quadratic order in perturbation theory, there exist a set of «nonlinear quadratic
QNMs» whose frequencies are given by the sum or difference of linear QNM frequencies [31].
These modes emerge at the second order in perturbation theory because the Regge-Wheeler
and Zerilli equations involve a source term with a product of two linear QNMs [32–34].
Notice, however, that the complete gravitational-wave signal after a BH merger does not
only consist in a superposition of QNMs, as it also contains a flat-space and tail piece both
at first and second-order [3, 31, 35–37]; our work only concentrates on the QNM part of
the Green’s function.

Including these nonlinearities into ringdown models could prove to be advantageous
for fitting the signals. Given the anticipated increase in precision of BH spectroscopy made
possible by the space-based interferometer LISA [38], it is crucial to gain a quantitative
understanding of the structure of these nonlinear QNMs, both analytically and numerically.
In the following, we will loosely use the term “nonlinear” to explicitly refer to second-order
perturbation theory of BH spacetimes, even if in full generality the nonlinearities also
contain cubic and higher-order perturbations.

An open problem in the study of nonlinear QNMs, which this article aims to contribute
to, is determining the amplitude of these modes. In ringdown models, the amplitude of
linear QNMs is typically a free parameter dependent on initial conditions, which should be
fitted against data [38]. Being generated by nonlinear processes involving the multiplication
of linear modes, we expect that the amplitude of nonlinear QNMs can be entirely deter-
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mined by the amplitudes of the linear modes themselves. Such a statement has already
been proved in numerous previous works [27–31, 36, 39, 40]. By considering an idealized
model of a pure nonlinear QNM that satisfies the same boundary conditions as the linear
ones, we will once again demonstrate that this intuition is true. In other words, our work
aims to quantitatively answer the question: «Given two linear QNMs with amplitudes
A1 and A2, what is the amplitude ANL of the associated nonlinear QNM?». Knowing
how to accurately solve this open problem would greatly benefit ringdown modeling, as
it would make it possible to account for nonlinearities without introducing redundant free
parameters at the level of data analysis.

Our strategy concerning the study of nonlinear QNM is the following. First, we will
introduce in section 2 the equation obeyed by second-order perturbations of the metric field
around a Schwarzschild black hole, which turns out to be a Regge-Wheeler (RW)/Zerilli
equation with a source term containing the nonlinearities [29, 30, 32–34, 41–43]. When
dealing with the nonlinear source term, particular care should be given to the choice of
gauge as its asymptotic behavior crucially depends on that choice [42]. For simplicity
and to focus the discussion on the analytic method we developed to solve the RW/Zerilli
equation, we will use a simplified expression for the source term featuring the correct
asymptotic behavior. It’s important to note that there are no obstructions in using the
full source term, as we show in a concrete example in appendix A. In section 5 we next
employ the method of uniform expansions introduced in section 3 to obtain an analytical
approximation to the solution of this second-order equation. This allows us to write in
eq. (5.8) the amplitude of the nonlinear QNM at large distance, which we subsequently
evaluate numerically in tables 2 and 3. We finally estimate the accuracy of the method of
uniform expansion in section 6, finding that the approximate solutions should be correct
at the percent level.

Except for section 3, we will denote all linear quantities with an overbar (Ψ̄) in order
to distinguish them from nonlinear ones (Ψ). Our convention for the Fourier transform is

Ψ(t) =
∫ dω

2π
eiωtΨ(ω) (1.1)

Newton’s constant is G. All plots in this article are displayed in units where GM = 1,
where M is the mass of the black hole.

Note added. As we were finalizing the writing of this article, we became aware of a
related work [44], similar to ours in spirit. While using a different technique than the one
presented in [44], we can confirm their main conclusions concerning the study of nonlinear
QNMs. For example, our estimates for the amplitudes of nonlinear QNMs agree in the
particular case illustrated in appendix A. However, in addition to presenting new results
concerning also the study of linear QNM frequencies, we believe that our contribution
offers a more quantitative estimate of the amplitudes of nonlinear QNMs, as we evaluate
the accuracy of our approximation, see section 6. As an additional difference, we insist on
requiring the appropriate asymptotic behavior for the term sourcing the nonlinearities (the
‘source’ term) in the second order RW/Zerilli equation (see section 2). This requirement
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is necessary to ensure that second-order QNMs are well defined. This point appears to be
less emphasized in ref. [44].

Furthermore, another recent work, ref. [45], employs uniform approximations to study
the Poschl-Teller potential, without focusing on the QNMs, but rather studying the accu-
racy of the method.

2 Nonlinear perturbations of a Schwarzschild black hole

It is well-known that linear perturbations around a Schwarzschild black hole of mass M

obey the Regge-Wheeler [46] (RW) or Zerilli [47] equation, depending on the parity of the
mode. Focusing on eigenfunctions at definite frequency ω̄ and angular momentum (ℓ̄, m̄),
and denoting by Ψ̄(r∗) the dimensionless amplitude of the propagating degree of freedom
at linear order (either in the even or the odd sector), we have

d2Ψ̄
dr2

∗
+
(
ω̄2 − V (r)

)
Ψ̄ = 0 , (2.1)

where r∗ is the tortoise coordinate r∗ = r + 2GM log
(
r/(2GM) − 1

)
(while r is the stan-

dard Schwarzschild radial coordinate), and V (r) is the Regge-Wheeler or Zerilli potential,
given by

V RW(r) =
(
1− 2GM

r

)(
ℓ(ℓ + 1)

r2 − 6GM

r3

)
,

V Z(r) =
(
1− 2GM

r

)2λ2(λ + 1)r3 + 6λ2GMr2 + 18λG2M2r + 18G3M3

r3(λr + 3GM)2 ,

λ = (ℓ − 1)(ℓ + 2)
2 . (2.2)

At second order in perturbation theory, it turns out that the second-order perturbations of
the metric can also be encoded into one parity-odd and one parity-even function which we
will denote by Ψ (also chosen to be dimensionless in the following) [29, 30, 32–34, 41–43].
These second-order amplitudes satisfy the same RW/Zerilli equation, albeit with a source
term that is proportional to the product of linear modes:

d2Ψ
dr2

∗
+
(
ω2 − V (r)

)
Ψ = S(r) . (2.3)

The explicit expression of S(r) depends on the choice of gauge and dynamical variable Ψ̄,
see e.g. [29, 33] for some specific examples. Generically, the source consists in the product
of two first-order modes Ψ̄1 and Ψ̄2 and their derivatives multiplied by functions of r,
constructed so as to be quadratic in the linear amplitudes. Furthermore, even for a given
parity of the second-order mode Ψ, the source can depend on both even and odd-parity
first-order modes. Thus, we will rewrite S as

S(r) = Ŝ(r)Ψ̄1(r)Ψ̄2(r) , (2.4)
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where now Ŝ does not scale with the linear amplitudes.1 It can further be shown that,
with an appropriate gauge choice, one can impose the following asymptotic behavior of
Ŝ [29, 42]:

Ŝ(r) = O
(
r−2) , for r → ∞ ,

Ŝ(r) = O
(
1− 2GM

r

)
, for r → 2GM . (2.5)

These asymptotics are crucial for the study of nonlinear quasi-normal modes. This require-
ment is not specifically linked to our method; any study of nonlinear QNMs should employ
dynamic variables Ψ̄1,2 defined so that eq. (2.5) are ensured, otherwise second-order QNMs
would display a divergent power-law scaling, as discussed in ref. [31]. We will later observe
that this translates in our formalism into the convergence of the integrals described in
appendix B.

In order to keep the discussion as simple as possible, in the spirit of refs. [31, 36] we
will use the following toy-model for Ŝ:

Ŝ(r) = 1
r2

(
1− 2GM

r

)
, (2.6)

which respects the boundary conditions (2.5). This choice is mainly motivated by two
considerations:

1. Our focus in this article is demonstrating the effectiveness of an analytic method for
computing quasi-normal mode amplitudes at the second order, rather than recon-
structing a complete waveform template accounting for second-order QNMs. As a
result, we do not (at this point) aim at a maximally realistic source term. When using
our results to estimate the quantitative impact of second-order modes on ringdown
waveforms, it will be important to go beyond the toy-model approximation (eq. (2.6))
and use the complete expression of S in a gauge adapted for gravitational radiation.
We leave this issue to further work.

2. Expressions for the source S featuring the correct asymptotic behavior are rare in
the literature. To our knowledge, ready-to-use expressions for S are only available
for specific values of ℓ in refs. [29, 33, 42]. In addition, the only one that exhibits
the asymptotics (2.5) (particularly near the horizon) is the source present in [29],
which however focuses only on (ℓ = 2) × (ℓ = 2) → (ℓ = 4). We further show in
appendix A that our toy-model (or simple modifications thereof) can quite accurately
fit the function Ŝ provided in [29].

Having presented the necessary details of the dynamics we are interested in, we now
turn to introduce our method for solving the RW/Zerilli equation.

1For example, Ŝ can contain the ratio Ψ̄′
1/Ψ̄1 which does not scale with the overall linear amplitude.
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3 Uniform expansions

In this section, we introduce the concept of uniform expansions, first set out in [48, 49]. We
refer the reader to [23, 24] for more details and applications of the formalism to quantum-
mechanical problems. The basic idea is to compare the Zerilli/RW equation (2.3) with a
simpler, auxiliary differential equation which is exactly solvable. While this step sounds
similar to what we would do with a Poschl-Teller potential, we will then relate the exact
solutions of the new auxiliary differential equation to approximate solutions of the original
one. We will freely switch between r and r∗ inside the argument of functions, leaving the
conversion r∗(r) implicit. In this section we will not distinguish between Ψ and Ψ̄, since
the discussion applies to both.

We choose to consider the following auxiliary differential equation for ϕ(σ), where σ(r)
will be interpreted as a local rescaling of r

d2ϕ

dσ2 +Θ(σ)ϕ = Λ(σ) , (3.1)

where σ(r) and Λ(σ) are two functions we will solve for later on. We now want to choose
the potential Θ to be “close” in some sense to ω2 − V (r) in eq. (2.3). We know that
physically quasi-normal modes are generated near the maximum of the potential present
in eq. (2.3), so that this region should matter the most. In order to exploit this, we choose
Θ to be a quadratic function of σ

Θ(σ) = i

(
ν + 1

2

)
+ σ2

4 , (3.2)

where we have introduced a parameter ν and some convenient normalizations. The two
solutions of the homogeneous part of equation (3.1) are

ϕA(σ) = Dν
(
eiπ/4σ

)
, ϕB(σ) = D−ν−1

(
e3iπ/4σ

)
. (3.3)

where Dν is the parabolic cylinder function. We now relate the exact solutions ϕA, ϕB(σ)
to approximate solutions of equation (2.3), thanks to a local rescaling that will transform r

to σ. The function σ(r) will now be determined by simply substituing the following ansatz

Ψ(r) = f(r)ϕ
(
σ(r)

)
, (3.4)

into eq. (2.3). f(r) will later be chosen in a convenient way. Plugging into equation (2.3)
and using the auxiliary differential equation (3.1) on ϕ′′ we obtain

0 =
(
f ′′ +

(
ω2 − V

)
f − (σ′)2f Θ

)
ϕ +

(
2f ′σ′ + fσ′′)dϕ

dσ
+ (σ′)2f Λ− S , (3.5)

where a prime denotes differentiation with respect to the tortoise coordinate r∗. We now
choose the following expressions for f and Λ:

f = (σ′)−1/2 , Λ = S

(σ′)3/2 . (3.6)
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This choice makes everything outside the first parenthesis vanish. We are thus left with a
differential equation on the only remaining undetermined variable σ, because ϕ factors out:

ω2 − V = (σ′)2 Θ− (σ′)1/2 d2

dr2
∗
(σ′)−1/2 . (3.7)

The last term is called the schwarzian derivative (up to a normalization). If Θ(σ) has been
chosen appropriately, σ will be a slowly varying function of r∗ and the schwarzian should
be negligible. It is worth pausing to mention that the usual WKB method would have
been recovered had we chosen Θ(σ) ≡ ±1 [23]; the schwarzian is the parameter controlling
the validity of the approximation for that case also. This should reassure the reader
that, despite our crude auxiliary potential Θ(σ), great accuracy can be achieved with this
method.2 To achieve even better results, one could perturbatively include the effects of the
schwarzian derivative and Borel-Padé resum the resulting series as suggested in [22].

Assuming for now that the schwarzian is negligible, we can approximate

dσ

dr∗
≃
(

ω2 − V (r)
Θ(σ(r))

)1/2
, (3.8)

where the sign choice matches σ to r∗ preserving orientation. Notice that this is the only
approximation we have made so far. It is possible to go beyond this approximation and
include higher-order corrections, see e.g. [50–52], although we will not do it here. Eq. (3.8)
completely determines σ up to an additive shift.

WKB approximation is invalid near to the turning points, that is the zeros of ω2 − V .
This is readily seen in this framework, because the schwarzian derivative could blow up.
To ensure it remains finite in the whole domain of interest (i.e. the real r∗ line), turning
points should be matched so that dσ

dr∗
remains finite; the schwarzian derivative is then

not necessarily divergent (necessary condition for the approximation to work). This will
impose a relation between ω and ν. The (uniform) smallness of the schwarzian compared
to ω2 − V (sufficient condition) is to be assessed by hand (see section 6 and also [23] for a
discussion).

Let us denote by σ− and σ+ the two zeros of Θ, and by r−∗ and r+
∗ the equivalent zeros

of ω2−V i.e. its turning points. First, we fix the shift ambiguity of σ by setting σ(r+
∗ ) = σ+.

This choice has both the numerator and the denominator inside the square root of eq. (3.8)
vanish linearly, keeping the ratio finite. Then integrating equation (3.8) gives∫ σ

σ+
Θ1/2(σ̃)dσ̃ =

[
σ

2Θ
1/2 + i

(
ν + 1

2

)
log

(
σ + 2Θ1/2)]σ

σ+
=
∫ r∗

r+
∗

(
ω2 − V

)1/2dr̃∗ , (3.9)

where we have used the explicit form of Θ in eq. (3.2). This implicitly defines the coordinate
σ. In addition, for the schwarzian in eq. (3.7) to remain bounded, by integrating eq. (3.8)
between the turning points we get an “area law”∫ σ+

σ−
Θ1/2dσ =

∫ r+
∗

r−∗

(
ω2 − V (r)

)1/2dr∗ . (3.10)

2A uniformly valid Airy matching is also easily obtained by considering Θ(σ) = ±σ [23].
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Using σ± = ±(1− i)
√
2ν + 1, we get a constraint for the integral of the potential near the

turning points: ∫ r+
∗

r−∗

(
ω2 − V (r)

)1/2dr∗ = π

(
ν + 1

2

)
. (3.11)

This condition will be used to obtain the value of ω when solving for linear quasi-normal
modes (where we will impose a quantization condition on ν). Alternatively, it will give the
value of ν for nonlinear quasi-normal modes, where this time we will start from a given
value of ω.

To recap, we now have found the generic solution of eq. (2.3):

Ψ(r) =
( Θ(σ(r))

ω2 − V (r)

)1/4
ϕ
(
σ(r)

)
, (Uniform approximation) (3.12)

where ϕ is a solution to the simpler equation (3.1), Θ is given in eq. (3.2) and σ is determined
from eq. (3.9). We highlight that, contrary to WKB approximate solutions, eq. (3.12)
exhibits no divergence close to the turning points we matched, making our expression
ready to plot (see figure 1). We now have to impose the correct boundary conditions to
this solution. Let us discuss separately the cases of linear and nonlinear modes.

4 Linear modes

We study linear modes of angular number ℓ̄ which will be different from the nonlinear
angular number ℓ. The linear mode amplitude Ψ̄ obeys eq. (2.3) where the source term S

is set to zero. The auxiliary field ϕ̄ obeys the homogeneous part of equation (3.1), whose
solutions are given in eq. (3.3). From eq. (3.12) this means that

Ψ̄(r) =
( Θ̄(σ̄)

ω̄2 − V̄ (r)

)1/4(
ADν̄

(
eiπ/4σ̄

)
+ B D−ν̄−1

(
e3iπ/4σ̄

))
, (4.1)

where A and B are two amplitudes that are determined by initial conditions and boundary
conditions at the horizon and infinity, and we have introduced an overbar on all quantities
related to first-order modes. Notice that, in order to make the field Ψ̄ dimensionless, the
amplitudes should scale as A,B ∝ ω̄1/2. Additionally, the fundamental assumption that Ψ̄
is a small perturbation of a background Schwarzschild spacetime translates into the fact
that its amplitude is small, i.e. ω̄−1/2A ≪ 1, ω̄−1/2B ≪ 1. This assumption will ensure
that second-order modes are always smaller than first-order (linear) ones, as they should
be proportional to the square of the linear amplitude, see eq. (2.4). Now, it remains to
impose the correct boundary conditions. To ensure that waves leave the system at infinity
and enter the black hole close to its horizon, we must impose the following QNM boundary
conditions:

Ψ̄(r) ∼ Ψ̄∞e−iω̄r∗ , for r∗ → ∞ , (4.2)
Ψ̄(r) ∼ Ψ̄Heiω̄r∗ , for r∗ → −∞ , (4.3)

where the choice of sign inside of the exponential is dictated from our convention for the
Fourier transform (1.1), and Ψ̄∞ and Ψ̄H are two constants. The following subsection
works out the constraints that eq. (4.2) imposes on A,B.
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4.1 Quantization condition

We now determine the quantization condition that will give the quasi-normal modes
spectrum. At the same time, we compute the asymptotic behavior of the wavefunction
at large |r∗| accurately to O(1) phases, because it will play a role in section 5. The
hasty reader that is only interested in the quantization condition should focus on equa-
tions (4.4), (4.5), (4.10)–(4.13) and equations (4.2), (4.3), jumping straight to eq. (4.16).

In order to determine the behavior of Ψ̄ in eq. (4.1) we have to relate the asymptotic
behavior of σ̄ and r∗. By noticing that V vanishes and its integral is finite for both large
positive and negative r∗, we get from eq. (3.9) the following asymptotic behavior:

σ̄ = 2
(
ω̄r∗

)1/2 +O
( log r∗

r
1/2
∗

)
, for r∗ → ∞ , (4.4)

σ̄ = −2
(
− ω̄r∗

)1/2 +O
( log(−r∗)
(−r∗)1/2

)
, for r∗ → −∞ . (4.5)

We will need in the following the expression of σ̄2 up to O(1). Evaluating the expansion
of eq. (3.9) to the next order, we get

σ̄2

4 = ω̄r∗ + C̄∞ − i

2

(
ν̄ + 1

2

)
log(4ω̄r∗) +O

( log r∗
r∗

)
, for r∗ → ∞ , (4.6)

σ̄2

4 = −ω̄r∗ + C̄H − i

2

(
ν̄ + 1

2

)
log(−4ω̄r∗) +O

( log(−r∗)
r∗

)
, for r∗ → −∞ , (4.7)

where C̄∞ and C̄H are two constants given by

C̄∞ = −ω̄r̄+
∗ +

∫ ∞

r̄+
∗

[(
ω̄2 − V̄

)1/2 − ω̄

]
dr̃∗ +

(
ν̄ + 1

2

)[
π

4 + i

2

(
log

(
2ν̄ + 1

)
− log 2− 1

)]
,

(4.8)

C̄H = ω̄r̄+
∗ +

∫ r̄+
∗

−∞

[(
ω̄2 − V̄

)1/2− ω̄

]
dr̃∗ +

(
ν̄ + 1

2

)[
− 3π

4 + i

2

(
log

(
2ν̄+1

)
− log 2−1

)]
.

(4.9)

Finally, there remains to obtain the behavior of the parabolic cylinder functions for large
σ̄, which are

Dν̄
(
eiπ/4σ̄

)
∼ eiπν̄/4σ̄ν̄e−iσ̄2/4 , (4.10)

D−ν̄−1
(
e3iπ/4σ̄

)
∼ e−iπν̄/4

√
2π

Γ[1 + ν̄] σ̄
ν̄e−iσ̄2/4 + e−3iπ(1+ν̄)/4σ̄−ν̄−1eiσ̄2/4 , (4.11)

for σ̄ → ∞, and

Dν̄
(
eiπ/4σ̄

)
∼ e−3iπν̄/4(−σ̄)ν̄e−iσ̄2/4 + e−iπ(1+ν̄)/4

√
2π

Γ[−ν̄] (−σ̄)−ν̄−1eiσ̄2/4 , (4.12)

D−ν̄−1
(
e3iπ/4σ̄

)
∼ eiπ(1+ν̄)/4(−σ̄)−ν̄−1eiσ̄2/4 , (4.13)
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for σ̄ → −∞. Plugging together eqs. (4.1), (4.4) to (4.7) and (4.10) to (4.13) we get to the
following asymptotic behavior of Ψ̄

Ψ̄ ∼ 1√
2ω̄

[
e−iω̄r∗−iC̄∞

(
Aeiπν̄/4 + B

√
2π

Γ(1 + ν̄)e−iπν̄/4
)
+ B eiω̄r∗+iC̄∞e−3iπ(1+ν̄)/4

]
,

for r∗ → ∞ (4.14)

Ψ̄ ∼ 1√
2ω̄

[
e−iω̄r∗+iC̄H

(
Beiπ(1+ν̄)/4 +A

√
2π

Γ(−ν̄)e−iπ(1+ν̄)/4
)
+A eiω̄r∗−iC̄H e−3iπν̄/4

]
,

for r∗ → −∞ (4.15)

We see that, in order to impose the QNM boundary conditions eqs. (4.2) and (4.3) we have
to choose

B = 0 , ν̄ = n ∈ N , (4.16)

since 1/Γ(−n) = 0.

4.2 Discussion

To recap, we have now found the (linear) solution to the homogeneous equation (2.3)
which is

Ψ̄(r) = A
( Θ̄(σ̄)

ω̄2 − V̄ (r)

)1/4
Dn
(
eiπ/4σ̄

)
, (4.17)

where A is a small but otherwise arbitrary amplitude that can be fixed e.g. by the initial
conditions of a ringdown signal. This solution is plotted in figure 1 for ℓ̄ = 2 and n = 0,
showing that as advertised in section 3 the profile for Ψ̄ is accurate both close to the
minimum of V and at infinity. The quantization condition giving the value of ω̄n is obtained
from eq. (3.11): ∫ r̄+

∗

r̄−∗

(
ω̄2

n − V̄ (r)
)1/2dr∗ = π

(
n + 1

2

)
. (4.18)

This equation can be numerically solved for ω̄ once given the RW/Zerilli potential in
eq. (2.2). On the technical side, we have to ensure that in eq. (4.18) the integration path
is chosen correctly.

This is nontrivial due to the presence of branch cuts and many Riemann sheets. The
prescription we use is to start from real values of ω̄, where turning points r̄±∗ are real
and the correct path is obviously identified as a straight line. As the imaginary part of
ω̄ is increased, we track the turning points as they move away from the real axis. This
prescription also correctly identifies which two of the many (complex) turning points of
ω̄2 − V̄ are to be used. Our integral in eq. (4.18) is then completely well defined. We plot
the position of the turning points for ℓ̄ = 2 as a function of the overtone number in figure 2.

Alternatively, one can also recover the usual WKB formula of Schutz and Will [9] by
approximating the RW/Zerilli potential with a Taylor expansion up to second order near
its maximum situated at r̂∗:

ω̄2 − V̄ (r) ≃ ω̄2 − V̄0 −
V̄ ′′

0
2
(
r∗ − r̂∗

)2 ⇒ ω̄2 − V̄0√
−2V̄ ′′

0

= i

(
n + 1

2

)
. (4.19)
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(Ψ̄
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r∗

0.10

0.25

∆

Figure 1. Wavefunction in the uniform approximation: plot of the real and imaginary parts of
the wavefunction defined in eq. (4.17) for ℓ̄ = 2, n = 0 versus a very accurate numerical solution
Ψ̄Leaver using Leaver’s algorithm [6], as a function of the tortoise coordinate r∗ and in units in
which GM = 1. The solutions are normalized so that Ψ̄ ≃ e−iω̄r∗ for r∗ → ∞. The inset shows
the fractional deviation ∆ = |(Ψ̄ − Ψ̄Leaver)/(Ψ̄ + Ψ̄Leaver)| of the uniform approximation solution
versus Leaver’s wavefunction. Our approximation is accurate both close to the maximum of V and
far from it, although the accuracy degrades for large values of r∗.

*

*
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-4
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2
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n

0

1

2

3

Figure 2. Turning points (in pairs) r̄±
∗ for the Zerilli potential with ℓ̄ = 2 as a function of the

overtone number n in the complex plane, in units where GM = 1. When n increases, the turning
points approach the two poles of the Zerilli potential (cyan ∗). This feature allows the integral in
eq. (4.18) to blow up as n → ∞.

The QNM frequencies given by our approximation eq. (4.18), and 6-th order WKB results
are compared to the most accurate numerical estimates in table 1.

The comparison reveals that 6-th order WKB performs better than our method for
small n, albeit at the price of significant complexity: this comes as no surprise since we
are only performing a lowest-order computation, and our result could be improved by
taking into account the schwarzian in eq. (3.7). Both approaches show improved accuracy
as ℓ̄ increases. A remarkable feature of our approach is that, while WKB’s agreement
with the numerical solution worsens as n increases, our approximation remains accurate
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independently of n; this is clearly showcased by looking at the (very extreme) ℓ̄ = 2,
n = 1000 mode.

We will now explain this behavior. Employing higher and higher order matching
polynomials when using WKB has two positive, but distinct, effects

1. It improves the approximation of V that one uses very close to the top of the potential,
which is crucial to obtain very precise results.

2. V is well approximated in a larger and larger domain, meaning that even for turning
points which are quite separated (this happens for large n), the approximate potential
is accurate.

We already showed in eq. (4.19) that our method reconstructs a quadratic WKB matching.
This is not surprising, since we used a quadratic auxiliary potential Θ(σ). The improvement
that our method brings is that, thanks to the local deformations that σ(r) accounts for, V

is now well approximated by Θ even far from the maximum. Then, in some heuristic sense,
our approximation works at first order in the first effect, but at all orders in the second
one. Since the second effect determines how accuracy behaves with n, while the first one
has more to do with “absolute” accuracy, the results in table 1 can be understood. These
observations also suggest that, if one were to increase the order of the polynomial Θ(σ)
beyond σ2, one would consistently do better than WKB at the same order.

A numerical fit of the relative errors of uniform approximations and 6-th order WKB
using the data in table 1 indicates that uniform approximations should outperform 6-th
order WKB roughly for

n(ℓ) ≳ 4 + ℓ/3 . (4.20)

Note that we have used the Zerilli potential for our numerical estimates, however since
the Regge-Wheeler and Zerilli potential are isospectral [2] we could have as well used the
RW potential. We preferred the Zerilli potential because for the RW potential in the
complex r̄∗ plane, the relevant turning points of ω̄2 − V̄ RW approach the same limiting r̄∗
point for large n, making the integral more susceptible to numerical instabilities. As can
be seen from figure 2, this is not the case for the Zerilli potential.

We now briefly explain how we computed the first column of table 1.

Efficient computation of ω̄. Inverting equation (4.18) to find ω̄ for given n may seem
like a daunting task. While (unless approached in special limits) the integral is not doable
analytically, we mention how we obtained the frequencies without a painful scanning in
ω̄ ∈ C.

If we have a target ν̄ ≡ n ∈ N and a rough guess ω̄0 of the related frequency, we can
do the integral and compute its ν̄0. Then the following holds (up to subleading corrections
in δω̄)∫

(ω̄2 − V̄ )1/2dr∗ ≃
∫
(ω̄2

0 − V̄ )1/2dr∗ + ω̄0 δω̄

∫ 1
(ω̄2

0 − V̄ )1/2dr∗ +O(δω̄2) =

= π

(
ν̄ + 1

2

)
= π

(
ν̄0 +

1
2

)
+ πδν̄ , δν̄ ≡ ν̄ − ν̄0

(4.21)
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where all integrals are all convergent and between the same turning points r̄±∗ .3 We are
then led to

δω̄ = π

ω̄0
(ν̄ − ν̄0)

(∫ 1
(ω̄2

0 − V̄ )1/2dr∗

)−1

+O(ν̄ − ν̄0)2 (4.22)

so that our guess ω̄0 can be improved to ω̄0 + δω̄ if δν̄ is small. To obtain a guess, we
used the frequency of modes with slightly smaller n or ℓ̄; we then run the above algorithm,
observing very fast convergence (1-2 iterations are sufficient). For n = 1000 in table 1, we
used the numerical result as seed. A prediction independent of this input would require a
more careful study of the convergence properties of our algorithm.

5 Nonlinear modes

Having proven the validity of our method to compute the linear spectrum of QNM, we now
use the technique to compute the amplitude of second-order modes using the nonlinear
RW/Zerilli equation described in section 2. We first explain how to compute the nonlinear
amplitude using uniform expansions before discussing the implications of our results.

5.1 Ratio of amplitudes

We now consider the differential equation (2.3) for a nonlinear mode, sourced by two linear
modes Ψ̄1 and Ψ̄2 of frequencies ω̄1, ω̄2 and mode numbers (ℓ̄1, m̄1, n1), (ℓ̄2, m̄2, n2). We
also denote by A1 and A2 the amplitudes of the linear modes entering eq. (4.17). Since the
source term is quadratic in the linear modes we know that the frequency ω of the nonlinear
mode is given by [31]

ω = ω̄1 + ω̄2 , or ω = ω̄1 − (ω̄2)∗ , (5.1)

where the star denotes complex conjugation. In the following, we will focus on the first
case ω = ω̄1 + ω̄2, the treatment of the second one being very similar.4 On the other hand,
a whole range of values of ℓ are allowed according to the usual rules of multiplication of
spherical harmonics [31–34]:

|ℓ̄1 − ℓ̄2| ≤ ℓ ≤ ℓ̄1 + ℓ̄2 , m = m1 + m2 . (5.2)

We want to solve eq. (2.3) using the same method of uniform approximation as before,
by comparing it with the simpler eq. (3.1). Once ω and ℓ are given, we can compute the
value of ν for nonlinear modes following eq. (3.11). We give in table 2 a sample of values
of ν for a range of values of ℓ̄1, ℓ̄2 and ℓ. Then, using the method of variation of constants
we first find the solution to the differential equation on ϕ, eq. (3.1):

ϕ(σ)
A1A2

= eiπ(ν+1/2)/2[(cA − FB(σ))ϕA(σ) + (cB + FA(σ))ϕB(σ)
]

, (5.3)

FA(σ) =
1

A1A2

∫ σ

σ+
Λ(σ̃)ϕA(σ̃)dσ̃ , FB(σ) =

1
A1A2

∫ σ

σ+
Λ(σ̃)ϕB(σ̃)dσ̃ , (5.4)

3Note that, when expanding in δω̄, the contribution coming from varying the extrema of the integral
vanishes.

4To recover the second possibility ω = ω̄1 − (ω̄2)∗ we would have to consider a source term of the form
S = ŜΨ̄1(Ψ̄2)∗ in eq. (2.3).
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ℓ̄ n Uniform 6-th order WKB Exact
2 0 0.3854 + 0.0909i (3.1%) 0.37371 + 0.08892i (0.014%) 0.37367 + 0.08896i

1 0.3590 + 0.2796i (3.1%) 0.34672 + 0.27388i (0.0089%) 0.34671 + 0.27391i

2 0.3146 + 0.4868i (2.8%) 0.30005 + 0.47883i (0.2%) 0.30105 + 0.47828i

3 0.2670 + 0.7146i (2.4%) 0.24551 + 0.71159i (1.2%) 0.25150 + 0.70515i

1000 0.000 + 249.771i (0.06%) − 0.051 + 249.618i

3 0 0.6075 + 0.0935i (1.3%) 0.59944 + 0.09270i (0.000049%) 0.59944 + 0.09270i

1 0.5909 + 0.2837i (1.3%) 0.58264 + 0.28129i (0.00088%) 0.58264 + 0.28130i

2 0.5605 + 0.4830i (1.3%) 0.55160 + 0.47906i (0.013%) 0.55168 + 0.47909i

3 0.5215 + 0.6956i (1.3%) 0.51111 + 0.69049i (0.1%) 0.51196 + 0.69034i

4 0.4807 + 0.9219i (1.2%) 0.46688 + 0.91799i (0.39%) 0.47017 + 0.91565i

5 0.4428 + 1.1591i (1.1%) 0.42437 + 1.16253i (1.%) 0.43139 + 1.15215i

4 0 0.8153 + 0.0946i (0.76%) 0.80918 + 0.09416i (0.000014%) 0.80918 + 0.09416i

1 0.8029 + 0.2857i (0.76%) 0.79663 + 0.28433i (0.000038%) 0.79663 + 0.28433i

2 0.7792 + 0.4822i (0.76%) 0.77270 + 0.47990i (0.0018%) 0.77271 + 0.47991i

3 0.7467 + 0.6870i (0.75%) 0.73967 + 0.68390i (0.017%) 0.73984 + 0.68392i

4 0.7088 + 0.9021i (0.73%) 0.70064 + 0.89846i (0.079%) 0.70152 + 0.89824i

5 0 1.0173 + 0.0952i (0.49%) 1.0123 + 0.09487i (5 · 10−6%) 1.01230 + 0.09487i

1 1.0073 + 0.2867i (0.49%) 1.00222 + 0.28582i (7 · 10−6%) 1.00222 + 0.28582i

2 0.9879 + 0.4818i (0.49%) 0.98269 + 0.48033i (0.0004%) 0.98270 + 0.48033i

3 0.9604 + 0.6826i (0.49%) 0.95496 + 0.68054i (0.004%) 0.95500 + 0.68056i

4 0.9267 + 0.8908i (0.48%) 0.92081 + 0.88819i (0.02%) 0.92108 + 0.88820i

6 0 1.2162 + 0.0955i (0.35%) 1.21201 + 0.09526i (2 · 10−6%) 1.21201 + 0.09527i

1 1.2078 + 0.2873i (0.35%) 1.20357 + 0.28665i (3 · 10−6%) 1.20357 + 0.28665i

2 1.1914 + 0.4816i (0.35%) 1.18707 + 0.48056i (0.0001%) 1.18707 + 0.48056i

3 1.1677 + 0.6801i (0.35%) 1.16326 + 0.67858i (0.001%) 1.16327 + 0.67859i

4 1.1379 + 0.8840i (0.35%) 1.13323 + 0.88207i (0.007%) 1.13332 + 0.88210i

7 0 1.4134 + 0.0957i (0.26%) 1.40974 + 0.09551i (6 · 10−7%) 1.40974 + 0.09551i

1 1.4061 + 0.2876i (0.26%) 1.40247 + 0.28716i (10−6%) 1.40247 + 0.28716i

2 1.3919 + 0.4815i (0.26%) 1.38818 + 0.48071i (0.00004%) 1.38818 + 0.48071i

3 1.3711 + 0.6785i (0.26%) 1.36735 + 0.67735i (0.0005%) 1.36736 + 0.67735i

4 1.3446 + 0.8796i (0.26%) 1.34070 + 0.87816i (0.003%) 1.34074 + 0.87818i

Table 1. The quasi-normal frequencies of a Schwarzschild black hole in units where GM = 1, com-
paring our uniform approximation method, 6th order WKB and numerical results. In parenthesis
the relative error on the absolute value with respect to the numerical result | ω̄exact−ω̄approx.

ω̄exact
|. Note

that, while we present truncated values of ω̄, we used more accurate values to compute errors.
The data in the second and third column of table 1 (for ℓ̄ ≤ 4) can be found for example in [11].
We also computed the exact frequencies using the convenient implementation of Leaver’s method
that is found in the Black Hole Perturbation Toolkit [53]. Similarly, [54] provides code to compute
the WKB prediction. Lastly, numerical frequencies for ℓ̄ = 2, n ≤ 1000 can be found in [55].
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where ϕA/B are given in eq. (3.3), and cA/B are two constants that we will tune in order to
ensure QNM boundary conditions. Notice that we have conveniently normalized ϕ by the
product of amplitudes A1A2 to which it should be proportional. In appendix B we show
that the two integrals defining FA and FB are convergent for r∗ → ±∞.5 As we anticipated
in section 2, this is intimately related to the asymptotic features of the source term Ŝ, and
the integrals may have failed to converge had we worked in another gauge where Ŝ did not
display these asymptotics. Thus, it is now trivial to read the asymptotic behavior of the
nonlinear mode Ψ given in eq. (3.12), as it just parallels the case of linear modes:

Ψ
A1A2

∼ eiπ(ν+1/2)/2
√
2ω

[
e−iωr∗−iC∞

((
cA − FB(∞)

)
eiπν/4 +

(
cB + FA(∞)

) √
2π

Γ(1 + ν)e−iπν/4
)

+
(
cB + FA(∞)

)
eiωr∗+iC∞e−3iπ(1+ν)/4

]
, for r∗ → ∞ , (5.5)

Ψ
A1A2

∼ eiπ(ν+1/2)/2
√
2ω

[
e−iωr∗+iCH

×
((

cB + FA(−∞)
)
eiπ(1+ν)/4 +

(
cA − FB(−∞)

) √
2π

Γ(−ν)e−iπ(1+ν)/4
)

+
(
cA − FB(−∞)

)
eiωr∗−iCH e−3iπν/4

]
, for r∗ → −∞ , (5.6)

where C∞ and CH can be obtained from the linear expressions in eqs. (4.8) and (4.9) just
by replacing ω̄ → ω, ν̄ → ν, ℓ̄ → ℓ and r̄+

∗ → r+
∗ . QNM boundary conditions impose

cB = −FA(∞) , cA = FB(−∞) + i
Γ(−ν)√

2π
eiπν/2(FA(∞)− FA(−∞)

)
. (5.7)

Finally, we can get the amplitude of the nonlinear mode normalized by the product of linear
modes at infinity, which is the important quantity for ringdown models in gravitational-
wave observations:

Ψ
Ψ̄1Ψ̄2

∼
√

2ω̄1ω̄2
ω̄1 + ω̄2

ei(C̄∞,1+C̄∞,2−C∞)eiπ(1+3ν−n1−n2)/4

×
∫ ∞

−∞

Λ(σ̃)
A1A2

(
i
Γ(−ν)√

2π
eiπν/2ϕA(σ̃)− ϕB(σ̃)

)
dσ̃ , for r∗ → ∞ . (5.8)

From this equation one can numerically compute this ratio of amplitudes. Indeed, notice
that the source term Λ is related to the original source S present in the RW/Zerilli equation
by eq. (3.6), and S itself depends on r which is related to σ via eq. (3.9). Moreover, notice
that the

√
ω̄ factor is needed in order to make the ratio of amplitude dimensionless since

Λ, A1 and A2 are dimensionful.

5.2 Discussion

In tables 2 and 3 we give the numerical value of the ratio in eq. (5.8) for the Zerilli equation
(i.e. both Ψ, Ψ̄1 and Ψ̄2 are of even parity) with a range of values of ℓ, ℓ̄1 and ℓ̄2. Some

5More precisely, they are composed of both a convergent and divergent piece. However, the divergent
part drops off in the asymptotic field ϕ in eq. (5.3), while the convergent piece amount to sending σ → ±∞,
see appendix B for more details.
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ℓ ℓ̄1 ℓ̄2 ω ν Ψ/(Ψ̄1Ψ̄2)
2 2 2 0.771 + 0.182i 0.337− 1.92i (5.39− 1.19i)× 10−2

3 0.993 + 0.184i 0.314− 2.91i (3.35− 0.39i)× 10−2

4 1.20 + 0.186i 0.298− 3.81i (2.34− 0.20i)× 10−2

3 3 1.21 + 0.187i 0.304− 3.88i (2.32− 0.18i)× 10−2

4 1.42 + 0.188i 0.295− 4.76i (1.72− 0.12i)× 10−2

5 1.62 + 0.189i 0.288− 5.61i (1.33− 0.10i)× 10−2

4 4 1.63 + 0.189i 0.290− 5.63i (1.33− 0.10i)× 10−2

5 1.83 + 0.190i 0.287− 6.47i (1.06− 0.09i)× 10−2

6 2.03 + 0.190i 0.283− 7.29i (8.71− 0.87i)× 10−3

3 2 2 0.771 + 0.182i 0.409− 0.860i (7.12− 3.68i)× 10−2

3 0.993 + 0.184i 0.375− 1.93i (4.16− 0.73i)× 10−2

4 1.20 + 0.186i 0.352− 2.90i (2.71− 0.30i)× 10−2

5 1.40 + 0.186i 0.336− 3.81i (1.93− 0.17i)× 10−2

3 3 1.21 + 0.187i 0.357− 2.96i (2.68− 0.25i)× 10−2

4 1.42 + 0.188i 0.343− 3.90i (1.91− 0.15i)× 10−2

5 1.62 + 0.189i 0.332− 4.80i (1.45− 0.11i)× 10−2

6 1.83 + 0.189i 0.323− 5.67i (1.14− 0.09i)× 10−2

4 4 1.63 + 0.189i 0.334− 4.83i (1.44− 0.11i)× 10−2

5 1.83 + 0.190i 0.326− 5.71i (1.14− 0.09i)× 10−2

6 2.03 + 0.190i 0.319− 6.57i (9.19− 0.85i)× 10−3

7 2.29 + 0.190i 0.314− 7.42i (7.57− 0.83i)× 10−3

Table 2. Values of ω, ν and of the ratio of nonlinear to linear amplitudes Ψ/(Ψ̄1Ψ̄2) when ℓ = 2, 3
and both Ψ, Ψ̄1 and Ψ̄2 are of even parity, in units where GM = 1. We only give the values
where the Clebsch-Gordan coefficient is nonzero i.e. |ℓ̄1 − ℓ̄2| ≤ ℓ ≤ ℓ̄1 + ℓ̄2, and we restrict to
observationally relevant modes with ℓ, ℓ̄1, ℓ̄2 ≥ 2. Moreover, we consider only second-order QNMs
sourced by fundamental modes, i.e. n1 = n2 = 0.

regularities emerge from the table; for example, notice that while the real part of ν is
nearly constant, its imaginary part is approximately equal to ℓ̄1 + ℓ̄2 − ℓ. This behavior
could be confirmed e.g. by looking at the eikonal limit of our computations, which we
plan to investigate in a near future. A clear trend that we can deduce from table 3 is
that the ratio (5.8) is maximized when the Clebsch-Gordan upper bound is saturated, i.e.
ℓ = ℓ̄1 + ℓ̄2.6 Since the damping times of the nonlinear modes, equal to the inverse of
the imaginary part of ω, are all of the same order in table 2, this means that for fixed
linear amplitudes the nonlinear modes with ℓ = ℓ̄1 + ℓ̄2 should be the dominant ones. This
is a robust conclusion of our toy-model; of course, it remains to be elucidated whether
this feature persists in a more realistic ringdown model of nonlinear modes, where one
would have to take into account the exact expression of the source term (instead of the
simple model eq. (2.6)) and Clebsch-Gordan coefficients. Moreover, the actual amplitude

6The same conclusion cannot be inferred directly from table 2 because the range of ℓ considered never
satisfies this equality.
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ℓ ℓ̄1 ℓ̄2 ω ν Ψ/(Ψ̄1Ψ̄2)
4 2 2 0.771 + 0.182i 0.472 + 0.212i (−1.73 + 0.01i)× 10−1

3 0.993 + 0.184i 0.423− 0.926i (5.54− 2.16i)× 10−2

4 1.20 + 0.186i 0.391− 1.94i (3.41− 0.54i)× 10−2

5 1.40 + 0.186i 0.368− 2.89i (2.27− 0.24i)× 10−2

6 1.60 + 0.186i 0.351− 3.81i (1.64− 0.14i)× 10−2

3 3 1.21 + 0.187i 0.396− 2.01i (3.35− 0.45i)× 10−2

4 1.42 + 0.188i 0.376− 2.99i (2.24− 0.20i)× 10−2

5 1.62 + 0.189i 0.360− 3.91i (1.63− 0.13i)× 10−2

6 1.83 + 0.189i 0.347− 4.81i (1.24− 0.10i)× 10−2

7 2.02 + 0.189i 0.338− 5.69i (9.90− 0.94i)× 10−3

4 4 1.63 + 0.189i 0.362− 3.94i (1.63− 0.13i)× 10−2

5 1.83 + 0.190i 0.351− 4.85i (1.24− 0.10i)× 10−2

6 2.03 + 0.190i 0.351− 5.74i (9.88− 0.93i)× 10−3

7 2.29 + 0.190i 0.333− 6.60i (8.07− 0.85i)× 10−3

8 2.42 + 0.190i 0.347− 7.47i (6.72− 0.82i)× 10−3

5 2 3 0.993 + 0.184i 0.473 + 0.109i −(1.21 + 0.19i)× 10−1

4 1.20 + 0.186i 0.431− 0.954i (4.65− 1.58i)× 10−2

5 1.40 + 0.186i 0.402− 1.95i (2.89− 0.44i)× 10−2

6 1.60 + 0.186i 0.389− 2.90i (1.95− 0.21i)× 10−2

7 1.80 + 0.187i 0.363− 3.82i (1.43− 0.13i)× 10−2

3 3 1.21 + 0.187i 0.436− 1.02i (4.52− 1.26i)× 10−2

4 1.42 + 0.188i 0.409− 2.04i (2.84− 0.34i)× 10−2

5 1.62 + 0.189i 0.389− 3.00i (1.93− 0.17i)× 10−2

6 1.83 + 0.189i 0.373− 3.93i (1.42− 0.12i)× 10−2

7 2.02 + 0.189i 0.360− 4.83i (1.09− 0.09i)× 10−2

8 2.22 + 0.189i 0.349− 5.72i (8.75− 0.93i)× 10−3

4 4 1.63 + 0.189i 0.391− 3.03i (1.92− 0.17i)× 10−2

5 1.83 + 0.190i 0.376− 3.97i (1.41− 0.12i)× 10−2

6 2.03 + 0.190i 0.363− 4.88i (1.09− 0.09i)× 10−2

7 2.29 + 0.190i 0.353− 5.77i (8.73− 0.92i)× 10−3

8 2.42 + 0.190i 0.344− 6.64i (7.20− 0.84i)× 10−3

9 2.62 + 0.191i 0.337− 7.50i (6.00− 0.83i)× 10−3

Table 3. Same as table 2, but for ℓ = 4, 5. We have highlighted in blue the values of the ratio
whose order-of-magnitude is 10−1, which precisely correspond to the values for which ℓ = ℓ1 + ℓ2.
At the moment we do not have any physical explanation on the sign difference of the blue ratios,
which seems to be related to a slower decay of the integrand when ℓ = ℓ1 + ℓ2.

of the nonlinear modes will also depend on the product of amplitudes of linear modes
A1 × A2, which tends to be suppressed as one moves away from the dominant mode
ℓ̄1, ℓ̄2 = 2 produced in black-hole mergers, at least for approximately equal mass, quasi-
circular binaries [56–60].

Nonetheless, our results show that it should be technically possible to deduce the
amplitude of nonlinear modes in a ringdown signal solely from the measurement of the
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linear amplitudes A1, A2. As such, we can envision two interesting applications of our
method, which we plan to explore in the near future:

• Improvement of ringdown models. Typical ringdown models depend on the
N complex amplitudes of the N linear modes that one includes in the model [61].
Within the regime of perturbation theory, it should be possible to add to the signal,
on top of the linear modes, the associated nonlinear modes without introducing any
free parameter. Our approach, were the correct source S in eq. (2.3) known, would
enable one to compute the amplitude of the nonlinear modes and to improve ringdown
models without any additional cost from a data analysis perspective.

• Tests of General Relativity. Alternatively, one can view our results as hinting
properties of the nonlinear-to-linear amplitude ratio in GR. For instance, it should be
possible to include additional free amplitudes in a ringdown model at the frequencies
of nonlinear modes, in the spirit of [27, 28], and compare the value obtained from
data to the GR prediction. This would constitute a new test probing GR further into
its non-linear regime.

6 Accuracy of uniform expansions

All our previous results have been obtained using the method of uniform expansions which
is itself an approximation. It is thus quite natural to ask what is the accuracy of this
approximation. Going back to section 3, we see that the only approximation we have made
so far is to neglect the second term on the right-hand side of eq. (3.7) in order to be able
to compute σ′. This is valid when∣∣∣∣∣12 (σ′)1/2

ω2 − V

d2

dr2
∗
(σ′)−1/2

∣∣∣∣∣≪ 1 . (6.1)

Once we have obtained the numerical solution for σ(r) from eq. (3.9), it is easy to check
this inequality. In figure 3 we show the magnitude of the ratio in eq. (6.1) both for the
ℓ̄ = 2, n = 0 linear solution and the ℓ = 4, ℓ̄1 = ℓ̄2 = 2, n1 = n2 = 0 nonlinear solution,
as a function of r∗. In the linear case, the ratio (6.1) reaches a maximal value of ≃ 0.08.
Notice, however, that it does not translate directly into a 8% error in the estimation of the
QNM frequencies, as from table 1 the error of our method, compared to a more accurate
numerical result, is only of 3% for the linear ℓ̄ = 2, n = 0 QNM frequency.

In the nonlinear case, the approximation seems to work much better, as the maximum
of the ratio (6.1) is only of 0.02. Since we cannot yet precisely compare our results to the
numerical relativity ones in e.g. [27, 28],7 it remains quite difficult to estimate the actual
error in the ratio of nonlinear-to-linear amplitudes, eq. (5.8), but we can give an upper
bound of 2% in this particular case. This accuracy could then be improved by computing

7We would need to plug in the exact expression of the source term in the right gauge and derive the
asymptotic waveform; notice that this source term generically contains even and odd-parity first-order
perturbations [33], unlike the example discussed in appendix A.
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Figure 3. Accuracy of the uniform approximation: we plot the ratio (6.1) both for the ℓ̄ = 2, n = 0
linear solution and the ℓ = 4, ℓ̄1 = ℓ̄2 = 2, n1 = n2 = 0 nonlinear solution, as a function of r∗ in
units where GM = 1. The ratio is always small, signalling that the error on QNMs frequencies and
nonlinear amplitudes is at the percent level.

next-to-leading order terms in the uniform expansion as is done in e.g. [50–52]. Whether or
not these higher-order corrections would be needed in ringdown models given the sensitivity
of gravitational-wave detectors such as LISA [62] is an interesting question that we leave
to further work.

7 Conclusions

In this work we have discussed the application of the so-called method of uniform ap-
proximation to black hole perturbation theory. As we have shown, this method provides
reliable predictions of both the linear quasi-normal frequencies (table 1), and the amplitude
of the nonlinear modes (tables 2 and 3). Concerning the linear spectrum, one important
advantage of this technique is providing accurate formulas for the QNM frequencies even
at large overtone number n, while the WKB approach loses accuracy as n increases. Other
advantages of our formalism compared to WKB are that it does not require any matching
between approximate solutions in different regions of the integration domain, and its rela-
tive simplicity and compact formulas. Contrary to what was done in [22] where V (r) was
then expanded around the minimum, we preferred to numerically evaluate all integrals to
maximize precision.

We then investigated the predictions of our method for the amplitude of second-order
perturbations sourced by linear QNMs. For simplicity, we assumed a toy model source
eq. (2.6) for the RW/Zerilli equation at second order in the main body of our work. As
we show in appendix A for the case of ℓ = 4, ℓ̄1 = ℓ̄2 = 2, the same method can be
straightforwardly applied to the full GR source, when the dynamical variables are chosen
in such a way that this source displays the appropriate falloff conditions. In the context
of this particular toy-model, our numerical results suggest that the amplitude of nonlinear
QNMs is maximized when the right Clebsch-Gordan inequality is saturated, ℓ = ℓ̄1 + ℓ̄2.
A realistic source will have a more complex dependence on ℓ, ℓ1, ℓ2, making it difficult to
establish at this point whether the same happens in GR or not. We evaluated the accuracy
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of our technique in section 6, finding an error of at most the percent level due to the
uniform approximation, with respect to an exact solution of the quadratic problem with
the toy model source.

The wavefunction can also be approximately computed, both numerically at finite r∗
and analytically in the limit of r∗ → ±∞. We believe one of the main strengths of the
method to be the analytic control that it provides on the problem, a feature that could
allow one to analytically study eq. (4.18) and eq. (5.8) for excited overtones n → ∞ or in
the eikonal limit ℓ → ∞.

Our results indicate that the amplitude of second-order QNMs, properly normalized
by the product of amplitudes of the linear modes which generate it, can be computed in
General Relativity. Thus, it should be possible to use this fact in order to improve ringdown
modelling or design tests of GR, as we discussed in section 5.2. For this we would need to
derive the expression of the source term in the RW/Zerilli-type equation in a suitable gauge,
and then relate the amplitude of the RW/Zerilli-type scalar to the asymptotic waveform,
a task which we plan to undertake soon. Moving to more and more realistic scenarios,
it would be interesting to employ our method in the case of Kerr spacetime. Even more
ambitiously, it would be interesting to model the source terms in cases of departure from
GR and standard BH geometry, e.g. using the formalism in [12] and leveraging as much as
possible the properties of the near-light ring geometry.
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A Exact source term in a particular case

In this appendix we will benchmark our toy-model for Ŝ, eq. (2.4), by comparing it to the
expression given in ref. [29], valid for two even first-order perturbations with ℓ̄1 = ℓ̄2 = 2,
m̄1 = m̄2 = ±2, n1 = n2 (since the two modes are the same, we will simply denote them
by Ψ̄), generating an even second-order perturbation with ℓ = 4, m = ±4:

Ŝexact = f1(r) + f2(r)
Ψ̄′

Ψ̄
+ f3(r)

(Ψ̄′

Ψ̄

)2
, (A.1)

where a prime denotes differentiation with respect to r, and the functions f1, f2, f3 are
given by

f1(r) =
−iω̄

126

√
70
π

[
− ω̄2 r(7r + 4GM)

r − 2GM
(A.2)

+3276r7+476r6GM−1470r5G2M2−1389r4G3M3−816r3G4M4−800r2G5M5−555rG6M6−96G7M7

r3(3r + GM)2(2r + 3GM)2(r − 2GM)

+ 9 r − 2GM

ω̄2r7(3r + GM)2(2r + 3GM)4

(
2160r9 + 11760r8GM + 30560r7G2M2 + 41124r6G3M3

+ 31596r5G4M4 + 11630r4G5M5 − 1296r3G6M6 − 4182r2G7M7 − 1341rG8M8 − 144G9M9)] ,
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(A.3)
f2(r) =

−iω̄

126

√
70
π

[
− 4G2M2 (r − 2GM)2

r2(3r + GM)2 + 6(r − 2GM)
ω̄2r6(3r + GM)2(2r + 3GM)3

×
(
144r8 + 4116r7GM + 2154r6G2M2 − 2759r5G3M3 − 8230r4G4M4

− 9512r3G5M5 − 3540r2G6M6 − 1119rG7M7 − 144G8M8)] , (A.4)

f3(r) =
−iω̄

126

√
70
π

[
− (r − 2GM)(7r + 4GM)

r
− 3(r − 2GM)

ω̄2r5(3r + GM)2(2r + 3GM)2

×
(
228r7 + 8r6GM − 370r5G2M2 + 142r4G3M3 − 384r3G4M4

− 514r2G5M5 − 273rG6M6 − 48G7M7)] . (A.5)

Notice that we have both a sign difference and a ω̄−2 factor with respect to ref. [29] because
of our different Fourier convention and normalization of the fields, and that we corrected
a typo in the denominator of the first function f1 (we replaced the 3r − GM by 3r + GM

otherwise Ŝ would not have the correct asymptotic limit). Notice also that the most
generic source term can a priori contain odd parity first-order perturbations [33], but the
expression (A.1) given in ref. [29] ignores these terms for simplicity.

The asymptotic behavior of Ŝ written in eq. (2.5) is not manifest in eq. (A.1), and
is obtained only after subtle cancellations involving the asymptotic expansion of Ψ̄, as
explained in [29]. Indeed, notice that the asymptotic limits of the fi functions are

f1 ∼ f3 ∼ O(r) , f2 ∼ O
( 1

r2

)
, for r → ∞ , (A.6)

f1 ∼ O
( 1

r − 2GM

)
, f2 ∼ f3 ∼ O(r − 2GM) , for r → 2GM . (A.7)

The precision to which Ψ̄ is needed in order to ensure this cancellation is challenging for
our numerical solution for Ψ̄ written in eq. (4.17). However, there are other techniques such
as Leaver’s method [6] which are very efficient for getting the numerical profile of linear
quasi-normal modes. We have thus chosen to implement Leaver’s algorithm as presented
in e.g. [6, 29] in order to get the numerical profile Ψ̄. Results are shown in figure 4, where
we show the real and imaginary parts of our numerical solution for Ŝ. We also plot a
«rescaled» version of our toy model, defined by

Ŝrescaled(r) =
a

r2

(
1− 2GM

r

)
, a ≃ −2.7− 2.8i , (A.8)

and an «improved» version of the toy model,

Ŝimproved(r) =
1
r2

(
1− 2GM

r

)(
b0 + b1

GM

r
+ b2

G2M2

r2

)
,

b0 ≃ −2.0− 0.2i, b1 ≃ −8.3− 8.0i, b2 ≃ 16− 1.5i , (A.9)

where in both cases the fitting constants are obtained by a least-square algorithm. As can
be seen, even the simple rescaled version of the toy model is quite good at approximating
the true source term, while the improved version is essentially identical.
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Figure 4. Exact source term: plot of the real and imaginary parts of the exact source term Ŝexact
in eq. (A.1) versus a rescaled and improved version of the toy-model defined in eqs. (A.8) and (A.9),
as a function of the tortoise coordinate r∗ and in units in which GM = 1. The inset shows the
fractional difference ∆ = |(Ŝ − Ŝexact)/(Ŝ + Ŝexact)|.

Finally, we have also applied our method described in section 5 in order to get the
ratio of nonlinearity with the different profiles for Ŝ:

Ψ
Ψ̄2

∣∣∣∣∣
Ŝexact

≃ −0.091+0.463i ,
Ψ
Ψ̄2

∣∣∣∣∣
Ŝrescaled

≃ 0.477+0.488i ,
Ψ
Ψ̄2

∣∣∣∣∣
Ŝimproved

≃ −0.093+0.462i ,

(A.10)
The absolute value ∼ 0.472 of our result with the exact profile for Ŝ matches the estimates
found in e.g. [29, 44] with a ∼ 10% discrepancy . Because of the oscillatory nature of
the integral involved in section 5, the result for rescaled toy model is quite off the exact
prediction, however the improved toy model fully recovers the exact result.

B Convergence of integrals

In this appendix we will show that the two integrals defining FA and FB, eq. (5.4), are
composed of a divergent piece and a convergent integral when the tortoise coordinate is
large, r∗ → ±∞. However, it’s important to note that the divergent part just drops off in
the asymptotic limit of the field ϕ in eq. (5.3), leaving us with a finite value.

To see this, let us first note that the coordinate σ is not real when |r∗| is large, since
we have the relations eqs. (4.4) and (4.5) and ω is complex. Let us first focus on the limit
r∗ → ∞, the treatment of the limit r∗ → −∞ being similar. When sending r∗ to real
infinity, the coordinate σ does instead go to a complex infinity following σ ≃ 2(ωr∗)1/2.
Because of the imaginary part of ω, the integral defining FA/B is in fact exponentially
divergent. Let us now show that this divergence is immaterial and that we could as well
assume that σ → ∞.

Let us introduce a real coordinate σR “close” to σ at large r∗. We choose σR =
2(|ω|r∗)1/2 for definiteness, but we could have worked with other choices as well. We now
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split the integral defining FA/B in two pieces,
∫ σ

σ+ =
∫ σR

σ+ +
∫ σ

σR (assuming analyticity of
the integrand in the region of interest). Our aim is to first show that the second piece
JA/B =

∫ σ
σR gives a subleading contribution to ϕ(σ), eq. (5.3), in the limit r∗ → ∞. Noting

that both σR and σ are large, we can take the large-r∗ limit in the integrand to find:

JA ≃ Cst×
∫ r∗

r∗|ω|/ω

e−2iωr̃∗

r̃2
∗

dr̃∗ (B.1)

where we have changed the variable of integration from σ̃ to r̃∗, used the asymptotic limit
Ŝ ≃ r−2

∗ for r∗ → ∞ and from now on in this appendix we will not compute the exact
value of the constants in front of the dominant term of the asymptotic expansions. The
integral can be performed exactly. The lower bound vanishes for large r∗, while the upper
bound still diverges exponentially because of the imaginary part of ω. Similarly, we find

JB ≃ e−iπν/2
√
2π

Γ(1 + ν)JA +Cst×
∫ r∗

r∗|ω|/ω

1
r̃2
∗
dr̃∗ (B.2)

This time the second integral completely vanishes at both ends. Plugging this result into
eq. (5.3) defining ϕ, we get

JAϕB − JBϕA ≃ O
(
r
−9/4
∗

)
× e−iωr∗ (B.3)

This shows that, at large distances, the contribution to Ψ of the second integral, from σR

to σ, is (from eq. (3.12)) O
(
r−2
∗
)
× e−iωr∗ , i.e. an outgoing wave suppressed by the falloff

of the source term. This is asymptotically negligible compared to the standard outgoing
wave e−iωr∗ and does not change the ratio of amplitudes at large distances. The reasoning
is exactly the same for the limit r∗ → −∞. Notice that the falloff conditions assumed by
the source term are quite crucial in order for these terms not to contribute.

Let us now show that the first piece of the integral defining FA/B , eq. (5.4) with σR as
upper bound, is convergent for σR → ±∞. To avoid clutter, we will from now on remove
the R superscript on σ, keeping in mind that we are sending σ to real infinity. Let us first
evaluate the convergence as σ → ∞. We have to relate the asymptotic behavior of the
background coordinates σ̄1 and σ̄2 to σ; this can be easily obtained from eq. (4.6). Using
eqs. (4.17) and (4.10) we get

Ψ̄1Ψ̄2
A1A2

∼ Cst× σν+1/2e−iσ2/4 , (B.4)

Moreover, from eq. (2.5) we know that Ŝ = O(r−2) = O(σ−4) for large σ. Finally combining
the definition of Λ = S/(σ′)3/2 and the factorization S = ŜΨ1Ψ2, we get to

Λ(σ)
A1A2

∼ Cst× σν−2e−iσ2/4 , for σ → ∞ . (B.5)

Thus,
Λ(σ)
A1A2

ϕA(σ) ∼ Cst× σ2ν−2e−iσ2/2 , (B.6)

Λ(σ)
A1A2

ϕB(σ) ∼ Cst× σ2ν−2e−iσ2/2 +Cst× σ−3 . (B.7)
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Figure 5. Plot of the real and imaginary parts of the integrand in eq. (5.8) in the particular case
ℓ = 4, ℓ̄1 = ℓ̄2 = 2, n̄1 = n̄2 = 0, as a function of the coordinate of integration σ̃, in units where
GM = 1.

This means that the integral defining FA and FB converges as long as Re(ν) < 3/2, which
is verified for all the values of ν that we consider. Now for σ → −∞ we get

Ψ̄1Ψ̄2
A1A2

∼ Cst× |σ|ν+1/2e−iσ2/4 . (B.8)

Since now Ŝ = O(1 − 2GM/r) = O
(
e−σ2/(8GMω)) for σ → −∞ (with Reω > 0), we get

much better convergence as σ → −∞:

Λ(σ)
A1A2

ϕA(σ) ∼ Cst× |σ|2ν+2e−iσ2/2e−σ2/(8GMω) +Cst× σe−σ2/(8GMω) , (B.9)

Λ(σ)
A1A2

ϕB(σ) ∼ Cst× σe−σ2/(8GMω) , (B.10)

so that the integral converges whatever the value of ν is. In figure 5 we show a plot of the
integrand in eq. (5.8) in the particular case ℓ = 4, ℓ̄1 = ℓ̄2 = 2, n̄1 = n̄2 = 0. It clearly
shows the asymptotic behavior derived analytically in this appendix.
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