
 

Bosonic Quantum Communication across Arbitrarily High Loss Channels

Ludovico Lami ,1,* Martin B. Plenio ,1,† Vittorio Giovannetti,2,‡ and Alexander S. Holevo 3,§

1Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
2NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56127 Pisa, Italy

3Steklov Mathematical Institute, Gubkina 8, 119991 Moscow, Russia

(Received 31 March 2020; accepted 29 July 2020; published 9 September 2020)

A general attenuator Φλ;σ is a bosonic quantum channel that acts by combining the input with a fixed
environment state σ in a beam splitter of transmissivity λ. If σ is a thermal state, the resulting channel is a
thermal attenuator, whose quantum capacity vanishes for λ ≤ 1=2. We study the quantum capacity of these
objects for generic σ, proving a number of unexpected results. Most notably, we show that for any arbitrary
value of λ > 0 there exists a suitable single-mode state σðλÞ such that the quantum capacity of Φλ;σðλÞ is
larger than a universal constant c > 0. Our result holds even when we fix an energy constraint at the input
of the channel, and implies that quantum communication at a constant rate is possible even in the limit of
arbitrarily low transmissivity, provided that the environment state is appropriately controlled. We also find
examples of states σ such that the quantum capacity ofΦλ;σ is not monotonic in λ. These findings may have
implications for the study of communication lines running across integrated optical circuits, of which
general attenuators provide natural models.
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Introduction.—Quantum optics will likely play a major
role in the future of quantum communication [1–4]. Indeed,
practically all quantum communication in the foreseeable
future will rely on optical platforms. For this reason, the
study of quantum channels acting on continuous variable
(CV) systems, that is, finite ensembles of electromagnetic
modes, is a core area of the rapidly developing field of
quantum information [5–7].
In the best studied models of optical communication, one

represents an optical fiber as a memoryless thermal attenu-
ator channel. Mathematically, its action can be thought of as
that of a beam splitterwith a certain transmissivity 0 ≤ λ ≤ 1,
where the input state is mixed with a fixed environment state
σ that is assumed to be thermal. This approximation is well
justified when the signal rate is sufficiently low that memory
effects are negligible, and when the optical fiber is so long
that the “effective” environment state, resulting from aver-
aging several elementary interactions that are effectively
independent, due to the limited correlation length of the
environment, is practically Gaussian and thermal, as follows
from the quantum central limit theorem [8,9]. Indeed, an
impressive amount of literature has been devoted to finding
bounds on the quantum capacity of the thermal attenuator.
We now have exact formulas for the zero-temperature case
[10–15], and tight upper [15–18] and lower [10,19] bounds in
all other cases.
However, the thermal noise approximation is challenged

when memory effects become important [20], or when the
communication channel is so short that the averaging
process cannot possibly take place, as may happen, e.g.,
in miniaturized quantum optical circuits [21–24]. In both

cases, it is conceivable that the environment state may be
manipulated and engineered to facilitate communication.
Namely, one could exploit memory effects to send pulses
that alter it and precede the actual transmission, or one could
design the integrated optical circuit that surrounds the
communication line in order to control the noise that comes
from other elements of the same circuit. Thus, we are led to
investigate general attenuator channels, hereafter denoted
with Φλ;σ , where the environment state σ is no longer
thermal. Unsurprisingly, suchmodels have received increas-
ing attention recently [9,25–29]. As discussed above, we
will be interested in optimizing over the environment state so
as to increase the capacity [30,31].
Other motivations for considering general attenuators

stem, on the one hand, from the need to go beyond the
Gaussian formalism to accomplish several tasks that are
critical to quantum information, e.g., universal quantum
computation [32,33], entanglement distillation [34–36],
entanglement swapping [37,38], error correction [39], and
state transformations in general resource theories [40,41].
On the other hand, general attenuators are among the
simplest examples of non-Gaussian channels that are,
nevertheless, Gaussian dilatable, meaning that they can
be Stinespring dilated [42] by means of a symplectic unitary
[27,28]. This makes them amenable to a quantitative
analysis in many respects. For example, it has been shown
that making the environment state non-Gaussian, e.g., by
means of a photon addition, can be advantageous when
transmitting quantum or private information [27]. In spite of
their increased complexity compared to Gaussian channels,
the entanglement-assisted capacity of a general attenuator
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can, nevertheless, be upper bounded thanks to the condi-
tional entropy power inequality [25,26]. Similar bounds can
be obtained for the quantum [29] and private [43] capacity
as well, by making use of the solution to the mini-
mum output entropy conjecture [44–46] combined with
known extremality properties of Gaussian states [47,48].
Finally, we have mentioned that, by concatenating a large
number n of general attenuators with a fixed total trans-
missivity, one typically obtains an effective channel that
resembles a thermal attenuator. In this regime of large but
finite n, the associated quantum capacity can be bounded
thanks to the quantum Berry-Esseen inequality [[9]
Corollary 13].
Here, we investigate the quantum capacity of general

attenuators Φλ;σ, uncovering some unexpected phenomena.
It has been observed [9, Lemma 16] that output states
of general attenuators with transmissivity λ ¼ 1=2 have non-
negative Wigner functions [49,50]. At first sight, this may
suggest that such channels are somewhat “classical”
[51–53]. Indeed, we show that, for all convex combinations
of symmetric states—and in particular, for all Gaussian
states—Φ1=2;σ is antidegradable, and therefore, its quantum
capacity satisfies QðΦ1=2;σÞ ¼ 0 [54]. Here, we call a state
symmetric if it remains invariant under phase space inversion
up to displacements. However, we also find an example
of a state σ that does not belong to this class and that
makes QðΦ1=2;σÞ > 0.
Next, we tackle the question of whether transmission of

quantum information is possible even for very low values
of the transmissivity 0 < λ ≪ 1. Intuitively, a beam splitter
of transmissivity λ ≤ 1=2 should give away to the envi-
ronment more than it transmits. By the no-cloning theorem,
we could be led to conjecture that the quantum capacity
QðΦλ;σÞ vanishes for all σ as soon as λ ≤ 1=2. Indeed, this
is exactly what happens for thermal attenuators. This
intuition is further supported by the analysis of general
finite-dimensional depolarizing channels Δλ;σðρÞ, defined
by Δλ;σðρÞ ≔ λρþ ð1 − λÞσ, whose quantum capacity also
vanishes for λ ≤ 1=2.
However, we establish the following surprising result:

for all values of λ > 0, one can find suitable states σðλÞ that
make QðΦλ;σðλÞÞ ≥ c, where the constant c > 0 is universal
(Theorem 2). This implies, but is stronger than, the fact that
Φλ;σðλÞ can be used to distribute entanglement [55]. As a
corollary, we also see that QðΦλ;σÞ is, in general, not
monotonic in λ for fixed σ. All this marks a striking
difference with the aforementioned behavior of thermal
attenuators and depolarizing channels and reveals that the
phenomenology of general attenuators is richer than
perhaps expected. Our proof is fully analytical, and goes
by analyzing the single-copy coherent information asso-
ciated with a specific transmission scheme. By a tour de
force of inequalities, we show that the output state of the
channel is majorized by that of the associated comple-
mentary channel. In turn, this makes it possible to lower

bound the coherent information by applying a beautiful
inequality recently proved by Ho and Verdú [67].
Notation.—The Hilbert space corresponding to an

m-mode CV comprises all square-integrable functions
Rm → C, and is denoted by Hm ≔ L2ðRmÞ. Quantum
states are represented by density operators on Hm, i.e.,
positive semidefinite trace class operators with unit trace.
We will denote with aj; a

†
j , respectively, the annihilation

and creation operators corresponding to the jth mode,
and with j0i the vacuum state. The canonical commutation
relations read ½aj; a†k� ¼ δjkI, ½aj; ak� ¼ 0. The unitary
displacement operators on Hm are constructed as DðαÞ ≔
e
P

j
ðαja†j−α�j ajÞ, where α ∈ Cm; they satisfy DðαÞDðβÞ ¼

e
1
2
ðα⊺β�−α†βÞDðαþ βÞ for all α; β ∈ Cm.
For every trace class operator T onHm, its characteristic

function χT∶Cm → C is defined by [6,68]

χTðαÞ ≔ Tr½TDðαÞ�: ð1Þ
TheWigner functionWT of T is the Fourier transform of χT
[6,49,50,68]. Note that Wρ is typically not pointwise
positive for a generic quantum state ρ [51–53].
A beam splitter of transmissivity 0 ≤ λ ≤ 1 acting on two

systems of m modes each is represented by the unitary
operator

Uλ ≔ earccos
ffiffi
λ

p P
j
ða†j bj−ajb†j Þ; ð2Þ

where aj, bj are the annihilation operators on the jth modes
of the first and second system, respectively. Our main
object of study is the general attenuator channelΦλ;σ , which
acts on an m-mode system B as

ΦB
λ;σðρBÞ ≔ TrE

�
UBE

λ ðρB ⊗ σEÞðUBE
λ Þ†

�
: ð3Þ

Dropping the system labels for simplicity, this can be cast
in the language of characteristic functions as

χΦλ;σðρÞðαÞ ¼ χρ
� ffiffiffi

λ
p

α
�
χσ
� ffiffiffiffiffiffiffiffiffiffi

1 − λ
p

α
�
: ð4Þ

A pictorial representation of the action of a general
attenuator is provided in Fig. 1. The thermal attenuators

FIG. 1. A general attenuator acts by mixing the input state ρ in a
beam splitter of transmissivity λ with an environment in a fixed
state σ.
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Eλ;ν ≔ Φλ;τν as well as the pure loss channels Eλ ≔ Eλ;0 ¼
Φλ;j0ih0j are standard examples of single-mode attenuators,
obtained by taking the environment to be in a thermal state
τν ≔ (1=ðνþ 1Þ)P∞

n¼0 (ν=ðνþ 1Þ)njnihnj, where jni is
the nth Fock state.
Quantum channels are useful because they can transmit

quantum information. The maximum rate at which inde-
pendent copies of a channel Φ acting on a system B can
simulate instances of the noiseless qubit channel I2 is called
the quantum capacity of Φ, and denoted with QðΦÞ. For
CV systems, physical transmission of quantum data must
be subjected to an energy constraint. We shall assume that
the relevant Hamiltonian is the total photon number: for an
m-mode system, Hm≔

P
m
j¼1a

†
jaj. The energy-constrained

quantum capacity can be obtained thanks to the following
modified version [14, Theorem 5] of the Lloyd-Shor-
Devetak theorem [69–72]:

QðΦ; NÞ ¼ sup
k

1

k
Q1ðΦ⊗k; kNÞ; ð5Þ

Q1ðΦ; NÞ ≔ sup
Tr½ΨBHB�≤N

IcohðAiBÞðIA⊗ΦBÞðΨABÞ: ð6Þ

where ΨAB ≔ jΨihΨjAB is pure, and IcohðAiBÞρ ≔
Tr½ρABðlog2ρAB − log2ρBÞ� is the coherent information.
The unconstrained quantum capacity is obtained as
QðΦÞ ≔ limN→∞QðΦ; NÞ. In general, the expression in
(5) is intractable. However, for the pure loss channel, the
regularization is not needed, and the quantum capacity can
be expressed in closed form as [10,12–15]

QðEλ; NÞ ¼ maxfgðλNÞ − g(ð1 − λÞN); 0g; ð7Þ

where gðxÞ ≔ ðxþ 1Þlog2ðxþ 1Þ − xlog2x is the bosonic
entropy. No such formula is known for the thermal attenu-
ators, although sharp bounds are available [10,15–19].
Results.—Before expounding our findings, let us forge

our intuition by looking at other channels that present some
analogies with general attenuators. An obvious starting
point is the thermal attenuator Eλ;ν ¼ Φλ;τν. When λ ≤ 1=2,
Eλ;ν is antidegradable, meaning that tracing out B instead of
E in (3) results in a channel that can simulate Eλ;ν via
postprocessing [11,54,73]. This implies that QðEλ;νÞ ¼ 0

for λ ≤ 1=2 [11 p. 3]. On a different note, we can also
consider a generalized depolarizing channel in finite
dimension d, acting as ρ ↦ Δλ;σðρÞ ¼ λρþ ð1 − λÞσ. As
it turns out, its quantum capacity is again zero for λ ≤ 1=2.
In fact, Δλ;σ can be obtained from an erasure channel [74]
via postprocessing. Since the quantum capacity of this
latter object is known [75], by data processing, we obtain
that QðΔλ;σÞ ≤ max fð1 − 2λÞlog2d; 0g for all σ. In par-
ticular, QðΔλ;σÞ ¼ 0 for λ ≤ 1=2.
Our results show that the phenomenology of general

attenuators is way richer than these considerations may

have suggested. We start by looking at the role of the
special point λ ¼ 1=2.
Theorem 1: Let σ be an m-mode state of the form

σ ¼ R
dμðαÞDðαÞσ0ðαÞDðαÞ†, where α ∈ Cm, μ is a prob-

ability measure on Cm, and the states σ0ðαÞ ¼ Vσ0ðαÞV†

are symmetric under the phase space inversion operation
V ≔ ð−1ÞHm , with Hm being the total photon number.
Then, the channel Φ1=2;σ is antidegradable [54], and, in
particular, QðΦ1=2;σÞ ¼ 0.
Proof of Theorem 1.—Under our assumptions, it holds

that Φ1=2;σ ¼
R
dμðαÞΦ1=2;DðαÞσ0ðαÞDðαÞ† . Now, since the set

of antidegradable channels is convex [76, Appendix A 2],
we can directly assume that μ is a Dirac measure, i.e., σ ¼
DðαÞσ0DðαÞ† with σ0 symmetric under phase space inver-
sion. Acting on ρ ⊗ σ with the beam splitter unitary Uλ

yields a global state with characteristic function

χρð
ffiffiffi
λ

p
α −

ffiffiffiffiffiffiffiffiffiffi
1 − λ

p
βÞχσð

ffiffiffiffiffiffiffiffiffiffi
1 − λ

p
αþ

ffiffiffi
λ

p
βÞ:

While the reduced state on the first system is given
by (4), that on the second system has characteristic function
χρð−

ffiffiffiffiffiffiffiffiffiffi
1 − λ

p
βÞχσð

ffiffiffi
λ

p
βÞ, which coincides with that of

VΦ1−λ;VσV†ðρÞV†. Therefore, the weak complementary
channel associated to Φλ;σ via the representation (3) can
be expressed as

Φwc
λ;σ ¼ V ∘ Φ1−λ;VðσÞ;

where Vð·Þ ≔ Vð·ÞV†.
Using the identity VDðαÞV† ¼ Dð−αÞ, we see that,

when σ ¼ DðαÞσ0DðαÞ†, we also have that VðσÞ ¼
D−2αðσÞ, where Dzð·Þ ≔ DðzÞð·ÞDðzÞ†. Noting that
Φ1−λ;DzðσÞ ¼ D ffiffi

λ
p

z ∘ Φ1−λ;σ, we finally obtain that

Φwc
λ;σ ¼ V ∘ D−2

ffiffi
λ

p
α ∘ Φ1−λ;σ:

Thus, if λ ¼ 1=2, the channel is equivalent to its weak
complementary up to a unitary postprocessing. ▪
The class of states σ to which Theorem 1 applies is

invariant under symplectic unitaries and displacement
operators, and it includes many states that are relevant
for applications, for instance, all convex combinations of
Gaussian states (e.g., classical states [77,78]) and all Fock-
diagonal states. Remarkably, the above result no longer
holds if we weaken the assumption on σ. To see this,
for 0 ≤ η ≤ 1, consider the family of single-mode states
ξðηÞ ¼ jξðηÞihξðηÞj, with jξðηÞi ≔ ffiffiffi

η
p j0i − ffiffiffiffiffiffiffiffiffiffiffi

1 − η
p j1i.

A lower bound on the energy-constrained quantum capac-
ity of the channels Φ1=2;ξðηÞ can be obtained by setting

jΨðηÞABi≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1− ηÞp j00i þ ð1− ηÞj01i þ ffiffiffi

η
p j10i and by

considering that [55]

Q(Φ1=2;ξðηÞ; ð1 − ηÞ2) ≥ IcohðAiBÞζABðηÞ; ð8Þ
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where ζABð1=2;ηÞ≔ðIA⊗ΦB
1=2;ξðηÞÞ(ΨABðηÞ), and ΨðηÞ ≔

jΨðηÞihΨðηÞj. The function on the rhs of (8) is strictly
positive for all 0 < η < 1 [55].
The above example shows that quantum communication

can be possible on a general attenuator even for trans-
missivity λ ¼ 1=2. At this point, we may wonder whether,
at least for a fixed energy constraint at the input, there exists
a threshold value for λ below which quantum communi-
cation becomes impossible. Our main result states that this
is not the case; on the contrary, the quantum capacity can be
bounded away from 0 even when λ approaches 0, if the
environment state σ is chosen appropriately. Note that the
bounds by Lim et al. [29] cannot possibly be used to draw
such a conclusion [55].
Theorem 2: For all 0 < λ ≤ 1, there exists a single-

mode (pure) state σðλÞ such that

QðΦλ;σðλÞÞ ≥ QðΦλ;σðλÞ; 1=2Þ ≥ c; ð9Þ

for some universal constant c > 0. Depending on λ, we can
take σðλÞ to be either the vacuum j0i, or a superposition
αj0i þ βj1i, or a Fock state jni with n ≥ 2.
Proof of Theorem 2.—Sketch of the proof. When

1=2 < λ ≤ 1, it suffices to set σðλÞ ¼ j0ih0j and leverage
(7). Around λ ¼ 1=2, positive quantum capacity follows by
perturbing the lower bound in (8) thanks to the Alicki-
Fannes-Winter inequality [79,80]. It remains to establish
the result for 0 < λ ≤ 1=2 − ϵ, where ϵ > 0 is fixed. We
start by making an ansatz for a state jΨiAB to be plugged
into (6). Let us set jΨiAB ≔ ð1= ffiffiffi

2
p Þðj01i þ j10iÞ and

σðnÞ ≔ jnihnj. The output state ωABðn; λÞ ≔ ðIA ⊗
ΦB

λ;σðnÞÞðΨABÞ can be computed, e.g., thanks to the formulas

derived by Sabapathy and Winter [27, Sec. III. B]. One
obtains that

QðΦλ;σðnÞ; 1=2Þ ≥ Iðn; λÞ ≔ IcohðAiBÞωABðn;λÞ

¼ H(pðn; λÞ) −H(qðn; λÞ);

where the two probability distributions pðn; λÞ and qðn; λÞ
over the alphabet f0;…; nþ 1g are defined by

plðn; λÞ ≔
1

2ðnþ 1Þð1− λÞ
�
nþ 1

l

�
ð1− λÞlλn−l

× fð1− λÞðn− lþ 1Þ þ ½ðnþ 1Þð1− λÞ− l�2g;

qlðn; λÞ ≔
1

2ðnþ 1Þð1− λÞ
�
nþ 1

l

�
ð1− λÞlλn−l

× fλlþ ½ðnþ 1Þð1− λÞ− l�2g:

In Fig. 2, we plotted Iðn; λÞ as a function of λ for
increasing values of n. The lower endpoint of the range for
which Iðn; λÞ ≥ c for some fixed c > 0 seems to move

closer and closer to 0 as n grows. However, an analytical
proof of this fact is technically challenging. The crux of our
argument is to show that pðn; λÞ and qðn; λÞ are in a
majorization relation, that is, pðn; λÞ ≺ qðn; λÞ for all n ≥ 2
and all 1=ðnþ 1Þ ≤ λ ≤ 1=n. Given two probability dis-
tributions r and s over the same alphabet f0;…; Ng, we say
that r is majorized by s, and we write r ≺ s, if

P
k
l¼0 r

↑
l ≥P

k
l¼0 s

↑
l holds for all k ¼ 0;…; N, where r↑ and s↑ are

obtained by sorting r and s in ascending order [81]. This
definition captures the intuitive notion of r being “more
disordered” than s. An immediate consequence is that the
entropy of r is never smaller than that of s. But more is true:
a beautiful inequality recently established by Ho and Verdú
[67, Theorem 3] allows us to lower bound the entropy
difference as

HðsÞ −HðrÞ ≥ Dðs↑kr↑Þ; ð10Þ
where DðukvÞ ≔ P

l ullog2ðul=vlÞ is the Kullback-
Leibler divergence. This latter quantity can be, in turn,
lower bounded as DðukvÞ ≥ ku − vk21=ð2 ln 2Þ in terms of
the total variation distance ku − vk1 ≔

P
l jul − vlj

thanks to Pinsker’s inequality [82]. We find that

Iðn; λÞ ¼ H(pðn; λÞ) −H(qðn; λÞ)
≥ D(q↑ðn; λÞkp↑ðn; λÞ)

≥
1

2 ln 2
kq↑ðn; λÞ − p↑ðn; λÞk21

≥
2

ln 2
jq↑nþ1ðn; λÞ − p↑

nþ1ðn; λÞj2

¼ 2

ln 2
jpn−1ðn; λÞ − qnþ1ðn; λÞj2;

where, in the last line, we used the fact, proven in the
Supplemental Material (SM) [55], that pn−1ðn; λÞ ¼
maxl plðn; λÞ and qnþ1ðn; λÞ ¼ maxl qlðn; λÞ for all

FIG. 2. The functions Iðn; λÞ plotted with respect to the
variable λ for several values of n.

PHYSICAL REVIEW LETTERS 125, 110504 (2020)

110504-4



n ≥ 2 and 1=ðnþ 1Þ ≤ λ ≤ 1=n. It remains to lower bound
kðn; λÞ ≔ jpn−1ðn; λÞ − qnþ1ðn; λÞj, which is done by
inspection. We find that (a) kð2; λÞ ≥ ϵ=4 for all
1=3 ≤ λ ≤ 1=2 − ϵ; and (b) kðn; λÞ ≥ c for some universal
constant c > 0 for all n ≥ 3 and 1=ðnþ 1Þ ≤ λ ≤ 1=n,
concluding the proof. ▪
Note that QðΦ1=2;jnihnjÞ≡ 0 for all n by Theorem 1,

while we have just shown that QðΦλ;jnihnjÞ > 0 when
1=ðnþ 1Þ ≤ λ ≤ 1=n. This illustrates the rather surprising
fact that QðΦλ;σÞ can happen not to be monotonic in λ for a
fixed σ. In the SM [55], we prove that monotonicity still
holds under certain circumstances, e.g., when σ ¼ σG is
Gaussian. Combining this with Theorem 1 also shows that
QðΦλ;σGÞ≡ 0 for all λ ≤ 1=2 and all Gaussian σG.
From the proof, we see that, while the energy of the input

of the channel in Theorem 2 is fixed, that of the environ-
ment state diverges as λ approaches 0. Intuitively, this may
be due to the need for the receiver to distinguish the faint
low-energy signals, which requires environmental states
with highly oscillatory phase space structures and, thus,
high energy. Whether this reasoning can be made rigorous
is left as an open problem.
Now, we look at the optimal value of the constant c in

(9). Our argument yields c ≥ 5.133 × 10−6, while numeri-
cal investigations suggest that c≳ 0.066. If only suffi-
ciently small values of λ are taken into account, we can
prove that c ≥ 0.0244. To put this into perspective,
elementary considerations show that c ≤ 1.377 [55].
Conclusions.—We have studied the transmission of

quantum information on general attenuator channels, which
are among the simplest examples of non-Gaussian channels
and may be relevant for applications. We have shown that
their quantum capacity vanishes for transmissivity 1=2 and
for a wide class of environment states. At the same time, we
have uncovered an unexpected phenomenon: namely, for
any nonzero value of the transmissivity, there exists an
environment state that makes the quantum capacity of the
corresponding general attenuator larger than a universal
constant. This also implies that said quantum capacity is
not necessarily monotonically increasing in the transmis-
sivity for a fixed environment state.
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