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1 Introduction and summary

Different scenarios for supersymmetry breaking in String Theory [1–6] have been explored
over the years. The resulting pictures are captivating, but they all entail, in one way or
another, strong back reactions on the vacuum. To wit, quantum corrections to Scherk-
Schwarz compactifications [7–15] lead to runaway potentials (and possibly to tachyonic
modes), which also emerge, already at the (projective) disk level, in the three non-tachyonic
ten-dimensional strings [16–24] of [25–35]. While supersymmetry is absent in the first two,
Sugimoto’s model in [29–35] rests on a non-linear realization of supersymmetry [36–38], and
in fact it is the simplest setting for brane supersymmetry breaking [29–35]. Fluxed AdS
vacua for the three non-tachyonic ten-dimensional strings of [25–35], where curvatures and
string couplings are everywhere weak, do exist [39–42], but they generally host unstable
modes [43, 44]. In contrast with the standard Kaluza-Klein constructions that play a
ubiquitous role for supersymmetric strings [1–6], the Dudas-Mourad vacua [45] rest on an
internal interval, and are perturbatively stable [43, 44]. However, they include regions where
the expected corrections sized by the string coupling, and/or by the space-time curvature,
become unbounded.

This paper concerns a class of type IIB [46, 47] compactifications to four-dimensional
Minkowski space with internal fluxes [48] that avoid the emergence of regions where the
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string coupling becomes large.1 It is a sequel of [50], where a number of properties of these
vacua were elucidated, including the presence of an effective BPS orientifold at one end
of the internal interval. Furthermore, supersymmetry is fully broken when this orientifold
lies at a finite distance from another singularity, while it is partly recovered in the limit
where the two ends are separated by an infinite distance. The analysis also showed that,
for a natural choice of boundary conditions, the massless Fermi modes present in these
vacua are those of N = 4 supergravity [51–54] coupled to five vector multiplets. Our task
here is to investigate the nature of the corresponding bosonic modes, taking a close look
at the available choices of self-adjoint boundary conditions [44], while also analyzing their
implications for vacuum stability.

These backgrounds are characterized by a constant dilaton profile ϕ0, which we set to
zero for simplicity, and by metric and five-form profiles that depend on a single coordinate
r, and read

ds2 = ηµν dx
µ dxν[

2 |H| ρ sinh
(

r
ρ

)] 1
2
+
[
2 |H| ρ sinh

(
r

ρ

)] 1
2
[
e
−

√
10

2ρ
r
dr2 + e

−
√

10
10ρ

r
(
d yi

)2
]
,

H(0)
5 = H

dx
0 ∧ . . . ∧ dx3 ∧ dr[

2 |H| ρ sinh
(

r
ρ

)]2 + dy1 ∧ . . . ∧ dy5

 . (1.1)

The xµ are coordinates of a four-dimensional Minkowski space, and positive values of the
coordinate r parametrize the interior of an internal interval. The five yi coordinates have a
finite range,

0 ≤ yi ≤ 2π R , (1.2)

and parametrize an internal torus, which for simplicity we take to be the direct product
of five circles of radius R. These vacua thus depend on the two constants H and ρ, and
supersymmetry is fully broken for finite values of ρ. We shall often use the conformal
coordinate

z(r) = z0

∫ r

0
dξ sinh ξ

1
2 e−

√
10 ξ
4 , (1.3)

where
z0 =

(
2Hρ3

) 1
2 . (1.4)

The upper bound for z, which will play a role in the ensuing discussion, is

zm ≃ 2.24 z0 . (1.5)

Half of the supersymmetries originally present in ten dimensions are recovered in the
ρ → ∞ limit [50], albeit within a curved spacetime that still includes the singularity at
r = 0. After the coordinate transformation

ξ H = 2
5 (2H r)

5
4 , (1.6)

1As in the original vacua of [45], the strong curvatures present in these types of vacua can be also confined
to small portions of the internal space with suitable choices of their free parameters [48, 49].
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the limiting behavior of the solution reads

ds2 = ηµν dx
µ dxν(

5
2 H ξ

) 2
5

+ d ξ2 +
(5
2 H ξ

) 2
5 (
d yi

)2
,

H(0)
5 = H


dx0 ∧ . . . ∧ dx3 ∧ dξ(

5
2 H ξ

) 9
5

+ dy1 ∧ . . . ∧ dy5

 , (1.7)

and describes indeed a non-homogeneous curved background including an internal torus
with an effective ξ-dependent size. As ξ → 0, the volume of the internal torus shrinks to
zero and the scale factor of the spacetime coordinates blows up, while conversely as ξ → ∞
the volume of the internal torus blows up while the scale factor of the spacetime coordinates
shrinks to zero. Both limits are thus delicate within supergravity [51–54] although, as we saw
in detail in [50], this limiting form of the vacuum does preserve half of the supersymmetries
of ten-dimensional Minkowski space. One can also absorb the constant H, while rescaling
the radius R of the internal torus by a factor H 1

5 .
Alternatively, the backgrounds of eqs. (1.1) can be presented in the form

ds2 = ηµν dx
µ dxν

[h sinh (r̃)]
1
2
+ [sinh (r̃)]

1
2

[
ℓ2 e−

√
10
2 r̃ dr̃2 + (2Φ ℓ)

2
5 e−

√
10

10 r̃
(
d ỹi

)2
]
,

H(0)
5 = 1

2h
dx0 ∧ . . . ∧ dx3 ∧ dr̃

[sinh (r̃)]2
+Φ dỹ1 ∧ . . . ∧ dỹ5 , (1.8)

where r̃ > 0 is a dimensionless variable, ℓ is the length scale of the interval, h is a
dimensionless parameter and Φ is the five-form flux in the internal torus. Here

r̃ = r

ρ
, ỹi = yi

2πR , (1.9)

so that the ỹi are dimensionless coordinates of unit range, and the new parameters are
related to those in eqs. (1.1) according to

h = 2H ρ , ℓ = (2H)
1
4 ρ

5
4 = h

1
4 ρ , Φ = H (2π R)5 , z0 = ℓ h

1
4 . (1.10)

The volume of the six-dimensional internal space, which comprises the torus and the
r-interval, scales as

V6 ∼ Φ ℓ2 ∼ H
3
2 ρ

5
2 R5 , (1.11)

and similarly the volume of the internal torus, which can be defined as V6
ℓ , scales as

V5 ∼ Φ ℓ ∼ H
5
4 ρ

5
4 R5 . (1.12)

Both quantities diverge in the supersymmetric limit ρ → ∞, which thus occurs in a
ten-dimensional curved space with one singularity at the origin, as we had anticipated.

The fermionic zero modes present in these backgrounds were determined in [50]: for
finite values of ρ or ℓ they are four Majorana gravitini and 20 Majorana spinors, the massless
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fermions of N = 4 supergravity coupled to five N = 4 vector multiplets, despite the breaking
of supersymmetry.2 In the following sections we shall analyze in detail the corresponding
bosonic zero modes and their excitations, with the aim of addressing the perturbative
stability of these vacua at the classical level. As in [44], other parameters beyond those
appearing in the background are generally encoded in the boundary conditions. Moreover,
as we shall see, additional modes can be confined to boundaries. Only a subset of the
possible self-adjoint boundary conditions grant stability, but in all cases we find an ample
range of these choices.

The four-dimensional bosonic modes that we shall exhibit originate from the ten-
dimensional fields of type-IIB supergravity [46, 47, 51–54], and have r-profiles and discrete
momenta k in the internal torus. Linearized perturbations of the backgrounds can be
characterized by their four-dimensional spin and their internal quantum numbers, and
different representations of the residual symmetry groups can be studied independently. For
example, starting from the ten-dimensional metric and the four-form gauge field, which can
be decomposed as

gMN = g
(0)
MN + hMN , BM1...M4 = B

(0)
M1...M2

+ δBM1...M4 , (1.13)

after a suitable gauge fixing the perturbations hMN and δBM1...M4 give rise to tensor, vector
and scalar modes of different types. The metric and the selfdual four-form are the only two
fields with non-trivial vacuum profiles, and for this reason they generally mix, are more
difficult to analyze and can affect other modes. In addition, the selfdual five-form is by
itself somewhat unfamiliar. All modes afford Fourier decompositions in the internal space,
so that for example the perturbations of the ten-dimensional metric can be decomposed
according to

hMN (x, r, y) = hMN (x, r) +
∑
k ̸=0

h
(k)
MN (x, r) eik·y . (1.14)

The modes with vanishing internal momentum k, and in particular hMN (x, r) in this
example, fill effectively multiplets of a continuous SO(5) symmetry. The SO(5) tangent-
space symmetry endows them with the internal quantum numbers that we alluded to
above, although only a discrete subgroup of SO(5) is actually an isometry of the torus. On
the other hand, the remaining modes carry lattice momenta k, and fill effectively SO(4)
multiplets corresponding to their stability groups. In practice, these will emerge as SO(5)
multiplets subject to orthogonality constraints. These properties will play an important
role in our analysis, and the internal quantum numbers of the modes that we shall identify
will correspond indeed to SO(5) representations for k = 0, and to SO(4) representations for
k ̸= 0. For brevity, however, we shall usually drop the superscript (k) present in eq. (1.14)
when discussing modes with non-vanishing internal momenta. It would be interesting to
address generalizations of this type of setup where the internal torus is replaced by a more
general Ricci-flat internal manifold.

2More precisely, as explained in [50], this is the case if Fermi fields are subject to identical “Λ projections”
at the two ends of the r interval. Here we focus on this interesting option, but opposite “Λ projections”
would eliminate the massless Fermi modes.
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Since the resulting spacetime is flat for the backgrounds of interest, the vacua of
eq. (1.1) are perturbatively unstable if m2 < 0 for some four-dimensional modes, and we
shall perform a detailed scrutiny to this end. As in [43, 44, 50], the four-dimensional masses
can be related to the eigenvalues of one-dimensional Schrödinger-like operators acting on
one or two wavefunctions, whose potentials are determined by the background.

The field equations lead, in general, to operators that are not manifestly Hermitian, so
that the replacement of the independent variable r with the “conformal” variable of eq. (1.3),
whose range 0 ≤ z ≤ zm is finite and proportional to z0, together with redefinitions of the
different fields, will be instrumental to cast them into standard forms. Remarkably, as in
the nine-dimensional vacua discussed in [44], in all cases the resulting potentials develop
double poles at the two ends, where they behave as

V ∼
µ2 − 1

4
z2 , V ∼

µ̃2 − 1
4

(z − zm)2 . (1.15)

The constants µ and µ̃ depend on the mode sector, while the scale dependence is only encoded
in zm. Moreover, µ̃ is zero for hµν , hij , dilaton and axion perturbations, which share the
same Schrödinger operator, while it is a real number between zero and about 2.3 in all other
sectors. On the other hand, the parameter µ associated to the z = 0 end is curiously either 1

3
of 2

3 in all cases. The squared masses are eigenvalues of Hermitian operators and, as we saw
in [50] for Fermi fields, these steps also determine the normalization conditions, a necessary
ingredient to identify the actual physical modes. In most cases, these normalizations can
be simply recovered from the four-dimensional kinetic terms determined by ten-dimensional
action, but the self-dual tensor field does introduce some complications. However, despite
its reduced manifest symmetry, the non-standard Henneaux-Teitelboim action of [55], when
properly adapted, suffices to grant covariant descriptions in the backgrounds of eq. (1.1).

The completeness of the modes thus identified is essential to make statements on
perturbative stability. It is granted if the Schrödinger-like operators are not only Hermitian
but also self-adjoint, and this property demands judicious choices of boundary conditions.
These are determined by the asymptotics of the wavefunctions at the ends of the interval [44],
which reflects, in its turn, the singular behavior (1.15) of the potentials. Additional sets of
parameters thus emerge, which impinge on the positivity of the Hermitian Schrödinger-like
operators, and the stability of the resulting mass spectra generally places some constraints
on them [44].

The massless modes are exactly calculable in most cases, with suitable boundary
conditions, while in a few instances the allowed squared masses emerge as eigenvalues of
operators that are manifestly positive, again with suitable boundary conditions. Two sectors
with k ̸= 0, the non-singlet vector modes of section 10.2 and the non-singlet scalar modes
of section 11.2, did not allow exact statements, and approximation methods were necessary
to address their stability. We thus relied on the variational principle of non-relativistic
Quantum Mechanics, which can be adapted to the present setting and allows reliable
numerical estimates of the lowest eigenvalues and of their dependence on k and on the
boundary conditions. In this fashion, we could identify background-dependent constraints
on the boundary conditions that grant stability in both cases.
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In general, different boundary conditions lead to different spectra, and the residual
global symmetries required for the backgrounds of interest are instrumental to discriminate
among them. These symmetries include infinitesimal translations and Lorentz rotations
in spacetime, together with infinitesimal translations along the internal torus. The corre-
sponding currents are already present in the background, and do not flow across the ends
of the interval provided [50, 56]

√
−g T r

µ|∂ M = 0 ,
√
−g Sr

µν |∂ M = 0 ,
√
−g T r

i|∂ M = 0 , (1.16)

where T r
µ and T r

i are components of the energy-momentum tensor and Sr
µν are components

of the spin portion of the angular momentum current. Enforcing eq. (1.16) selects special
boundary conditions for the fields. The solutions of the linearized equations that we shall
examine in detail, with special emphasis on the low-lying modes, determine the leading
contributions to these no-flow conditions. One can thus use them independently for the
different sectors of the spectrum to identify the boundary conditions compatible with
them. While in a quantum theory of gravity global symmetries are expected not to be
conserved [57–60], and therefore these requirements do not appear mandatory, they will
prove nonetheless useful to characterize the choices of boundary conditions.

The contents of this paper are as follows. In section 2 we briefly review the self-adjoint
boundary conditions for Bose fields at the ends of the interval in the presence of singular
potentials as in eq. (1.15). We also describe a class of exactly solvable trigonometric
potentials related to hypergeometric functions that can closely approximate the Schrödinger
potentials of all sectors in our background. In section 3 we begin our detailed analysis of
bosonic modes, starting from the dilaton-axion system. We examine the possible self-adjoint
boundary conditions and the stability regions for the corresponding Schrödinger equation,
and present an analytic solution for its zero mode. The same analysis applies to the axion,
and to the spin-2 hµν and spin-0 hij modes of gravity. In section 4 we discuss the modes
of the type-IIB three-forms. All these fields lack vacuum profiles, but their equations are
affected by the five-form background via Chern-Simons couplings. As a result, their massless
modes require a special treatment, which finally leads to third-order equations and to some
unfamiliar features for their spectra. We also determine the corresponding stability regions
for the boundary conditions. In section 5 we first discuss a convenient parametrization for
the components of the self-dual tensor field, and then present the perturbed self-duality
equations, after making a convenient gauge choice. To the best of our knowledge, this is the
first time that this type of detailed analysis is carried out, to this extent, for a self-dual tensor
field. We then discuss the perturbed Einstein equations, including tensor contributions. To
this end, we rely extensively on appendices A, B and C, which contain a number of useful
technical details on the background and on the perturbed equations for the various fields.
In sections 6, 7 and 8 we examine the modes arising from the self-dual tensor or from the
ten-dimensional metric, with no mixings among them. The tensor modes of section 6 arising
from the five-form alone have some unfamiliar features, including the possible presence of
zero modes within all possible Kaluza-Klein excitations. This would clearly seem unphysical,
but actually the different occurrences correspond to different choices of boundary conditions,
and thus to different vacua. These choices would also lead to tachyons for k = 0, and
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are thus excluded a priori by the requirement of vacuum stability. In sections 7 and 8 we
discuss the spin-2 hµν and spin-0 hij modes, and show that the corresponding Schrödinger
equations are identical to that of the dilaton-axion sector. In section 9 we analyze the
vector modes that are singlets under the internal symmetries and show that there are only
massive excitations among them, since the zero mode is not normalizable. In section 10
we consider non-singlet vector modes. The modes of this type with k = 0, which are
valued in the fundamental representation of SO(5), lead to a one-dimensional Schrödinger
system. We show that they are stable with suitable self-adjoint boundary conditions, and
determine the corresponding zero mode. The sector with k ̸= 0 is more difficult to analyze,
since it leads to a two-component Schrödinger system. After reducing it to a manifestly
Hermitian form, we estimate the lowest allowed values for m2 and their dependence on the
lattice momentum k and on the choice of self-adjoint boundary conditions, resorting to the
variational principle. We show the existence of self-adjoint boundary conditions that grant
stability also in this case. Their parameter space is background dependent, and widens as
the ratio Φ

ℓ4 , or equivalently as the ratio R
ρ , decreases. In section 11 we discuss non-singlet

scalar perturbations. For k = 0 these are valued in the fundamental representation of
SO(5), and with appropriate self-adjoint boundary conditions they are again stable, as in
the preceding sectors. We also determine the corresponding massless mode. For k ̸= 0,
the modes belonging to this sector are valued in the fundamental representation of SO(4)
and lead again to a two-component Schrödinger system. After some redefinitions their
squared mass can be related to the eigenvalues of an operator that, with proper self-adjoint
boundary conditions, does not contain any unstable modes, but their parameter space is
again background dependent, and widens as the ratio Φ

ℓ4 decreases. In section 12 we discuss
singlet scalar modes. For k = 0, after suitable redefinitions, their squared masses emerge
from an operator that is strictly positive with proper self-adjoint boundary conditions.
We show that stability persists within finite range of boundary conditions. We defer to a
different publication the analysis of scalar singlets with k ̸= 0, which is more involved and
requires different techniques, for reasons that we explain in section 13, where we collect our
conclusions and some perspectives for future work. Appendix D contains some details on
small-k limit for the modes discussed in section 10.2, and finally appendix E contains some
details on our variational tests for sections 10.2 and 11.2.

2 Self-adjoint extensions and solvable (µ, µ̃) potentials

In the Introduction we stated that, as in the nine-dimensional cases analyzed in [44], the
potentials for the various mode sectors in this class of vacua can be characterized by a pair
of parameters (µ, µ̃) that determine their leading singularities at the ends of the internal
interval. Let us first consider the sectors where the analysis of the fluctuations leads
to a single second-order equation. This case was widely studied, over the years, in the
Mathematical literature [61–66], and in [44] we formulated the whole setup in a way that
seems particularly transparent to us, while also adapting it to the stability issue that is
central to this work.
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Case Sector µ µ̃

1 φ, a, hµν , hij
1
3 0

2 Bµν
2
3 1.72

2 bµν
ij(g1) 1

3 1.09
2 Vµ

1
3 2.18

2 hµi
2
3 1.18

2 ϕi
2
3 2.27

2 ϕ 2
3 1

3 Bµi
1
3 0.54

3 Bij
2
3 0.63

3 b(2)
µ

ij(g2) 2
3 0.09

Table 1. Values of µ and µ̃ for the different sectors of Bose modes with k = 0. The notation
bµν

ij(g1) and b(2)
µ

ij(g2) is meant to stress that the values of µ and µ̃ refer to the Schrödinger-like
equations for g1 or g2 in section 6.

2.1 One-dimensional sectors

We shall determine the values of µ and µ̃ in the following sections, but for convenience we
collect the results in table 1. Note that the values of µ are either 1

3 or 2
3 , while the values of

µ̃ range from 0 to about 2.3.
As explained in [44], the possible self-adjoint extensions of Schrödinger-like operators

in an interval terminating at a pair of singular points can be characterized via the limiting
behavior of the wavefunctions at the two ends. This is determined by µ and µ̃, and the
condition that H ψ be in L2 constrains in general the choice of the wavefunctions [61–66].
Referring to table 1, two independent choices of limiting behaviors are thus allowed, in
all cases of interest, at z = 0, while two choices are allowed at zm when 0 ≤ µ̃ < 1 and a
single one is allowed when µ̃ ≥ 1. In general, the asymptotic behavior at the left can be
characterized by a pair of coefficients C1 and C2, according to

ψ ∼ C1√
2µ

(
z

zm

) 1
2 +µ

+ C2√
2µ

(
z

zm

) 1
2−µ

if 0 < µ < 1 ,

ψ ∼ C1

(
z

zm

) 1
2
log

(
z

zm

)
+ C2

(
z

zm

) 1
2

if µ = 0 (2.1)

while at the other there are different options, depending of the value of µ̃:

ψ ∼ C3√
2 µ̃

(
1− z

zm

) 1
2 +µ̃

+ C4√
2 µ̃

(
1− z

zm

) 1
2−µ̃

if 0 < µ̃ < 1 ;

ψ ∼ C3

(
1− z

zm

) 1
2
log

(
1− z

zm

)
+ C4

(
1− z

zm

) 1
2

if µ̃ = 0 ;

ψ ∼ C3√
2 µ̃

(
1− z

zm

) 1
2 +µ̃

if µ̃ ≥ 1 . (2.2)

– 8 –



J
H
E
P
1
1
(
2
0
2
3
)
0
6
1

When µ̃ ≥ 1, the possible self-adjoint boundary conditions depend on a single parameter,

C2
C1

= tan
(
α

2

)
. (2.3)

When 0 ≤ µ < 1 and 0 ≤ µ̃ < 1, defining the two vectors

C(0) =
(
C1
C2

)
, C (zm) =

(
C4
C3

)
, (2.4)

the self-adjointness condition becomes

C(zm) = U C (0) , (2.5)

where U is a generic U(1, 1) matrix, so that

U† σ2 U = σ2 . (2.6)

U is parametrized according to
U = ei β U , (2.7)

where β is a phase and U is a generic SL(2, R) matrix, and in the global SL(2, R) parametriza-
tion

U (ρ, θ1, θ2) = cosh ρ (cos θ1 1− i σ2 sin θ1) + sinh ρ (σ3 cos θ2 + σ1 sin θ2) , (2.8)

where 0 ≤ ρ <∞, −π ≤ θ1,2 < π.
The Schrödinger equation determines in general the relation

C (zm) = V C (0) , (2.9)

where V is an SL(2, R) matrix, consistently with our definitions and the constancy of the
Wronskian, and the eigenvalue equation is in general [44]

Tr
[
U−1 V

]
= 2 cosβ . (2.10)

The large-ρ limit of eq. (2.5) yields independent boundary conditions at the ends
depending on the two parameters θ1 and θ2, which can be cast in the form

cos
(
θ1 − θ2

2

)
C1 − sin

(
θ1 − θ2

2

)
C2 = 0 ,

sin
(
θ1 + θ2

2

)
C4 − cos

(
θ1 + θ2

2

)
C3 = 0 (2.11)

when 0 ≤ µ < 1 and 0 ≤ µ̃ < 1.
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2.2 Matrix generalization of the setup

In some of the following sections we shall need a generalization of these results involving
n-component states ψ and n× n matrix potentials, so that near the z = 0 boundary the
Hamiltonian will have the limiting form

H = −∂2
z + 1

z2 V0 , (2.12)

with V0 a Hermitian matrix with eigenvalues
[
µ2

1 − 1
4 , . . . , µ

2
n − 1

4

]
. In a similar fashion,

near the other end of the interval the Hamiltonian will have the limiting form

H = −∂2
z + 1

(zm − z)2 Vm , (2.13)

with Vm a Hermitian matrix with eigenvalues
[
µ̃2

1 − 1
4 , . . . , µ̃

2
n − 1

4

]
. In general, the two

matrices V0 and Vm are diagonalized into D0 and Dm by different unitary matrices U0 and
Um, so that

V0 = U0D0 U
†
0 , Vm = UmDm U †

m . (2.14)

Consequently, if 0 < µi < 1 the limiting behavior of the wavefunction close to the left end
of the interval has the general form

ψ ∼ U0


C11√
2 µ1

z
1
2 +µ1 + C12√

2 µ1
z

1
2−µ1

. . .
Cn1√
2 µn

z
1
2 +µn + Cn2√

2 µn
z

1
2−µn

 . (2.15)

In complete analogy with the one-dimensional case, if some µi is larger than one the
L2 condition demands that the corresponding Ci2 vanish. Finally, if some µi = 0 the
corresponding line becomes

Ci1 z
1
2 log z + Ci2 z

1
2 . (2.16)

The limiting behavior at the other end is similar, up to the replacement of µi with µ̃i, z
with zm − z and Ci 1,2 with new coefficients Ci 3,4.

The Hamiltonian H is self-adjoint if[
∂z ψ

† χ− ψ† ∂z χ
]zm

0
= 0 , (2.17)

and therefore, if 0 ≤ µi < 1,∑
i

[C⋆
i1Di2 − C⋆

i2Di1 + C⋆
i3Di4 − C⋆

i4Di3] = 0 , (2.18)

where we have denoted by Cij and Dij the coefficients of ψ and χ. One can now define
the 2n-component vector C(0)ia, with C(0)i1 = Ci1 and C(0)i2 = Ci2 and C(zm)ia, with
C(zm)i1 = Ci4 and C(zm)i2 = Ci3 and i = 1, . . . , n, and the preceding condition becomes

C†(0) 1n ⊗ σ2 D(0) = C†(zm) 1n ⊗ σ2 D(zm) . (2.19)
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Consequently the self-adjoint boundary conditions are parametrized by elements U of
U(n, n) such that

C(zm) = U C(0) , (2.20)

together with a similar relation for the D coefficients. The independent boundary conditions
are then obtained when both sides of eq. (2.19) vanish, which is the case if the linear
conditions,

C(0) = ΛC(0) , (2.21)

hold, where Λ Hermitian, Λ2 = 1, and

{Λ, 1⊗ σ2} = 0 . (2.22)

One can thus write
Λ = M1 ⊗ σ1 +M3 ⊗ σ3 , (2.23)

with M1,3 Hermitian matrices such that

M1
2 +M3

2 = 1 , [M1,M3] = 0 . (2.24)

The two matrices M1 and M3 can be simultaneously diagonalized, and can be cast in
the form

M1 = Ω† diag
(
sinα1 , . . . , sinαn

)
Ω , M3 = Ω† diag

(
cosα1 , . . . , cosαn

)
Ω , (2.25)

with Ω a unitary n×n matrix of unit determinant. In detail, the boundary conditions (2.21)
read

Cia =
[
M1i

j σ1a
b +M3i

j σ3a
b
]
Cjb , (2.26)

or regrouping the coefficients into a rectangular matrix

ΩC = (D1 σ1 +D3 σ3) ΩC , (2.27)

where
D1 = diag

(
sinα1 , . . . , sinαn

)
D3 = diag

(
cosα1 , . . . , cosαn

)
. (2.28)

For an n× n second-order system, the general boundary conditions of this type thus
involve n(n+1)−1 parameters. Similar considerations apply at the other end, with n angles
α̃i and another unitary n × n matrix Ω̃ of unit determinant. All in all, the independent
boundary conditions are thus parametrized by 2n angles and a pair of special unitary n× n

matrices. For n = 1, these considerations recover the choices of self-adjoint boundary
conditions discussed in the preceding pages. However, only n of the 2n components of C
are arbitrary, due to the condition (2.21), so that effectively one ends up with n parameters
at each end. If some of the µi ≥ 1 (say, m of them), the number n is simply replaced by
n−m in the preceding considerations, and similarly for the µ̃i.
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2.3 Exactly solvable hypergeometric potentials

Before exhibiting the actual potentials for the various sectors of our problem, is it convenient
to introduce a family of exactly solvable Schrödinger systems that generalize those considered
in [44], for which µ = µ̃, and share the same type of limiting behavior. These systems are
characterized by the trigonometric potentials [65, 66]

V (µ, µ̃, z) = π2

4 z2
m

 µ2 − 1
4

sin2
(

π z
2 zm

) +
µ̃2 − 1

4

cos2
(

π z
2 zm

)
 , (2.29)

where 0 < z < zm, which can be obtained starting from the hypergeometric equation [67]
and performing a change of independent variable followed by a redefinition of the function,
in order to cast the result into the Schrödinger form

−Ψ′′(z) + V (µ, µ̃, z) Ψ(z) = π2m2

z2
m

Ψ(z) . (2.30)

For µ = µ̃ the potential reduces to

V (µ, z) = π2

z2
m

µ2 − 1
4

sin2
(

π z
zm

) , (2.31)

and the resulting spectra were discussed in detail in [44].
For µ ̸= 0, which is always the case in table 1, the general solution of eq. (2.30) reads [67]

Ψ(z) = A w1(z) +B w2(z)
u(z)µ− 1

2 v(z)−µ̃− 1
2
, (2.32)

where

w1(z) = 2F1
[
a, b ; c ;u2(z)

]
,

w2(z) = u(z)2(1−c)
2F1

[
a− c+ 1, b− c+ 1 ; 2− c ;u2(z)

]
, (2.33)

and the 2F1 are hypergeometric functions [67]. Moreover

u(z) = sin
(
π z

2 zm

)
, v(z) = cos

(
π z

2 zm

)
,

a = µ̃− µ+ 1
2 +m, b = µ̃− µ+ 1

2 −m, c = 1− µ , (2.34)

where, without loss of generality, one can assume that µ and µ̃ be positive. The two
functions

w3(z) = 2F1
[
a, b ; a+ b− c+ 1 ; v2(z)

]
,

w4(z) = v(z)2(c−a−b)
2F1

[
c− a, c− b ; c− a− b+ 1 ; v2(z)

]
(2.35)
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provide an alternative basis of solutions, and are related to previous pair according to [67]

w1(z) =
Γ (c) Γ (c− a− b)
Γ (c− a) Γ (c− b) w3(z) +

Γ (c) Γ (a+ b− c)
Γ (a) Γ (b) w4(z) ,

w2(z) =
Γ (2− c) Γ (c− a− b)
Γ (1− a) Γ (1− b) w3(z) +

Γ (2− c) Γ (a+ b− c)
Γ (a− c+ 1) Γ (b− c+ 1) w4(z) . (2.36)

Even in this more general setting, one can introduce first-order operators Aϵ1,ϵ2 and
A†

ϵ1,ϵ2 , where

Aϵ1,ϵ2 = ∂z +
π

4 zm
(2 ϵ1 µ+ 1) cot

(
π z

2 zm

)
+ π

4 zm
(2 ϵ2 µ̃− 1) tan

(
π z

2 zm

)
, (2.37)

which depend on the signs ϵ1 and ϵ2. One can then show that

Aϵ1,ϵ2 A†
ϵ1,ϵ2 = −∂2

z + Vϵ1,ϵ2(z) , (2.38)

where
Vϵ1,ϵ2(z) = V (z)− π2

4 z2
m

(
1 + ϵ1 µ− ϵ2 µ̃

)2
. (2.39)

The different Hamiltonians
Hϵ1,ϵ2 = −∂2

z + Vϵ1,ϵ2(z) (2.40)

have the same eigenvectors as H but have shifted eigenvalues, so that

m2
ϵ1,ϵ2 = m2 − 1

4
(
1 + ϵ1 µ− ϵ2 µ̃

)2
. (2.41)

The solutions of
A†

ϵ1,ϵ2 Ψϵ1,ϵ2 = 0 , (2.42)

are

Ψϵ1,ϵ2(z) = C

[
sin
(
π z

2 zm

)] 1
2 +ϵ1 µ [

cos
(
π z

2 zm

)] 1
2−ϵ2 µ̃

. (2.43)

When they are normalizable, they are zero modes of Hϵ1,ϵ2 .
In order to discuss the possible self-adjoint boundary conditions for V (z) in the different

sectors of the spectrum, one must distinguish different ranges for µ̃.

• The case µ > 1 and µ̃ > 1 does not occur in table 1, but it is simple and instructive. The
L2 condition at the origin implies that A = 0 in eq. (2.32), and the limiting behavior
at the other end of the interval is determined by eqs. (2.36). The corresponding L2

condition demands that the coefficient of w4(z) vanish, so that a− c+ 1 or b− c+ 1
must be negative integers, which determine altogether the stable spectrum

m2 =
(
µ+ µ̃+ 1

2 + n

)2
, n = 0, 1, . . . . (2.44)

Consequently

m2
ϵ1,ϵ2 = 1

4 [(1 + ϵ1)µ+ (1− ϵ2) µ̃+ 2 (n+ 1)] [(1− ϵ1)µ+ (1 + ϵ2) µ̃+ 2n] . (2.45)

In this case, among the zero mode wavefunctions (2.43), only Ψ+− is normalizable,
and the corresponding zero-mass eigenvalue is recovered for n = 0.
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Figure 1. The left panel illustrates the first stable eigenvalues of the potential (2.29) for µ = 2
3 ,

µ̃ = 1.72, tan
(

α
2
)
= 1 (blue dashed line) and for tan

(
α
2
)
= −0.21 (orange dotted line). The

right panel illustrates the presence of a tachyonic mode for the same values of µ and µ̃ and
−0.21 < tan

(
α
2
)
< 0.

• If 0 < µ < 1 and µ̃ ≥ 1, which corresponds to case 2 in table 1, both solutions in
eq. (2.32) are normalizable, but one must again demand that the resulting contribution
proportional to w4(z) vanish near the other end of the interval. In this case, the
allowed self-adjoint boundary conditions are related to the ratio of the two coefficients
A and B and, according to eq. (2.3), they can be parametrized via an angle α, so that

A

B
= tan

(
α

2

)(
π

2

) 2 µ

. (2.46)

The resulting eigenvalue equation reads

tan
(
α

2

)
= C2
C1

= −
(
π

2

)−2 µ Γ (1 + µ) Γ
(

µ̃−µ+1
2 +m

)
Γ
(

µ̃−µ+1
2 −m

)
Γ (1− µ) Γ

(
µ̃+µ+1

2 +m
)
Γ
(

µ̃+µ+1
2 −m

) , (2.47)

and can be solved graphically, as in figure 1 for both real values of m, which correspond
to stable modes, and for imaginary ones, which correspond to tachyonic modes.

Some special cases are exactly solvable.

– For α = 0 the denominator should have poles, so that the spectrum is given by

m2 =
(
n+ µ̃+ µ+ 1

2

)2
, (2.48)

which is stable, with no tachyons and no massless modes.

– For α = ±π the numerator must have a pole, so that

m2 =
(
n+ µ̃− µ+ 1

2

)2
, (2.49)

which is again stable, with no tachyons and no massless modes.
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– For general values of α, one can solve the eigenvalue equation graphically, as
illustrated in figure 1, and there is an infinite spectrum of real m eigenvalues that
correspond to stable modes with, in addition, at most one imaginary eigenvalue
for m, which corresponds to a tachyonic mode. No tachyons are present if

C2
C1

= tan
(
α

2

)
< −

(
π

2

)−2 µ Γ(1 + µ)
Γ(1− µ)

Γ2
(

µ̃−µ+1
2

)
Γ2
(

µ̃+µ+1
2

) or C2
C1

> 0 . (2.50)

Two typical examples are displayed in figure 1

• If 0 < µ < 1 and 0 < µ̃ < 1, which corresponds to case 3 in table 1, one is free to use
arbitrary combinations of the independent solutions at the two ends of the interval,
and the self-adjoint boundary conditions relate them by a U(1, 1) matrix, according
to eq. (2.5). Taking eqs. (2.1), (2.2) and (2.32) into account, one can first conclude
that

C1 = B
√
2µ
(
π

2

) 1
2 +µ

, C2 = A
√
2µ
(
π

2

) 1
2−µ

, (2.51)

and then eqs. (2.36) determine C4 and C3 as
(

π
2
)µ̃√µ

µ̃ C4

Γ (a+ b− c) = C1
Γ (2− c)

(
π
2
)−µ

Γ (a− c+ 1) Γ (b− c+ 1) + C2
Γ (c)

(
π
2
)µ

Γ (a) Γ (b) ,(
π
2
)−µ̃

√
µ
µ̃ C3

Γ (c− a− b) = C1
Γ (2− c)

(
π
2
)−µ

Γ (1− a) Γ (1− b) + C2
Γ (c)

(
π
2
)µ

Γ (c− a) Γ (c− b) . (2.52)

One can verify that the two pairs (C1, C2) and (C4, C3) are related by an SL(2, R)
transformation V , as in eq. (2.9). The boundary conditions can now be parametrized
via eq. (2.8) and an additional phase β, and the eigenvalue equation (2.10) reads

ξ (−µ, µ̃,m) (cos θ1 cosh ρ− cos θ2 sinh ρ)
+ ξ (µ,−µ̃,m) (cos θ1 cosh ρ+ cos θ2 sinh ρ)
− ξ (µ, µ̃,m) (sin θ1 cosh ρ+ sin θ2 sinh ρ)
+ ξ (−µ,−µ̃,m) (sin θ1 cosh ρ− sin θ2 sinh ρ) = 2 cosβ , (2.53)

where

ξ (µ, µ̃,m) =

(
π
2
)µ−µ̃

√∣∣∣ µ̃µ ∣∣∣ Γ(1− µ) Γ(µ̃)

Γ
[

1
2(−µ+ µ̃+ 1)−m

]
Γ
[
m+ 1

2(−µ+ µ̃+ 1)
] . (2.54)

In the ρ → ∞ limit, which translates into independent boundary conditions at the
ends of the interval, this expression reduces to

ξ (−µ, µ̃,m) (cos θ1 − cos θ2) + ξ (µ,−µ̃,m) (cos θ1 + cos θ2)
− ξ (µ, µ̃,m) (sin θ1 + sin θ2) + ξ (−µ,−µ̃,m) (sin θ1 − sin θ2) = 0 . (2.55)
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Some special cases are exactly solvable.

– If θ1 = θ2 = 0, eq. (2.55) reduces to ξ (µ,−µ̃,m) = 0, which is solved by

m2 =
(
n− µ+ µ̃− 1

2

)2
, n = 0, 1, . . . . (2.56)

There is a zero mode when µ+ µ̃ = 1, which is in principle possible within the
ranges that concern this case, but never occurs in table 1;

– In a similar fashion, if θ1 = θ2 = π
2 , eq. (2.55) reduces to ξ (µ, µ̃,m) = 0, which

is solved by

m2 =
(
n− µ− µ̃− 1

2

)2
, n = 0, 1, . . . . (2.57)

– If θ1 = −θ2 = π
2 , eq. (2.55) reduces to ξ (−µ,−µ̃,m) = 0, which is solved by

m2 =
(
n+ µ− µ̃+ 1

2

)2
, n = 0, 1, . . . . (2.58)

– Finally, if θ1 = 0 and θ2 = π, eq. (2.55) reduces to ξ (−µ, µ̃,m) = 0, which is
solved by

m2 =
(
n+ µ+ µ̃+ 1

2

)2
, n = 0, 1, . . . . (2.59)

• If 0 < µ < 1 and µ̃ = 0, both solutions in eq. (2.32) are normalizable, and the
asymptotic behavior at the left end defines again the two coefficients C1 and C2
according to eq. (2.51), while C3 and C4 are defined according to

ψ ∼
√
1− z

zm

[
C4 + C3 log

(
1− z

zm

)]
. (2.60)

One can obtain the connection formulas as the µ̃→ 0 limit of the preceding expressions
in eqs. (2.35) and (2.36). Consequently, the behavior in the vicinity of the right end
of the interval is now

w1(z) ∼ ξ1(µ,m) + ξ2(µ,m) log
(
1− z

zm

)
,

w2(z) ∼ ξ1(−µ,m) + ξ2(−µ,m) log
(
1− z

zm

)
, (2.61)

where

ξ1(µ,m) =−

(
π
2
)µΓ(1−µ)[ψ (−m− µ

2 +
1
2

)
+ψ

(
m− µ

2 +
1
2

)
−2ψ (1)+2 log

[
π
2
]]

√
2 |µ|Γ

(
−m− µ

2 +
1
2

)
Γ
(
m− µ

2 +
1
2

)
ξ2(µ,m) =−

2
(

π
2
)µΓ(1−µ)√

2 |µ|Γ
(
−m− µ

2 +
1
2

)
Γ
(
m− µ

2 +
1
2

) , (2.62)

with
ψ(z) = Γ′(z)

Γ(z) , ψ(1) = −γ , (2.63)
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and γ ∼ 0.577 the Euler-Mascheroni constant. The linear relations among the
coefficients are now

C4 = C2 ξ1(µ,m) + C1 ξ1(−µ,m) ,
C3 = C2 ξ2(µ,m) + C1 ξ2(−µ,m) , (2.64)

and consistently with [44] they define an SL(2, R) transformation V . The resulting
eigenvalue equation is

(cosh ρ cos θ1 − sinh ρ cos θ2) ξ1(−µ,m) + (cosh ρ sin θ1 − sinh ρ sin θ2) ξ2(−µ,m)
+ (cosh ρ cos θ1 + sinh ρ cos θ2) ξ2(µ,m)− (cosh ρ sin θ1 + sinh ρ sin θ2) ξ1(µ,m)
− 2 cosβ = 0 . (2.65)

In the ρ → ∞ limit, which translates into independent boundary conditions at the
ends of the interval, this expression reduces to

(cos θ1 − cos θ2) ξ1(−µ,m) + (sin θ1 − sin θ2) ξ2(−µ,m)
+ (cos θ1 + cos θ2) ξ2(µ,m)− (sin θ1 + sin θ2) ξ1(µ,m) = 0 . (2.66)

Some special cases are exactly solvable:

– if θ1 = θ2 = 0, eq. (2.66) is solved by

m2 =
(
n− µ− 1

2

)2
, n = 0, 1, . . . ; (2.67)

– if θ1 = 0 and θ2 = π, the solution is

m2 =
(
n+ µ+ 1

2

)2
, n = 0, 1, . . . . (2.68)

Before turning to the different sectors of the actual spectrum, let us describe some
features of the multi-dimensional case.

2.4 A simple matrix generalization of the hypergeometric model

One can generalize the preceding setup to cases when the wavefunction has n components,
replacing µ and µ̃ in eq. (2.29) by real diagonal matrices, so that

µ → diag
(
µ1 , . . . , µn

)
, (2.69)

and similarly for µ̃. In this case there are n decoupled hypergeometric equations, whose
solutions, however, can be mixed by the boundary conditions.

For simplicity, we can confine our attention to boundary conditions given independently
at the two ends, and to the special cases of interest in this paper in sections 10.2 and 11.2,
where n = 2, 0 < µ1,2 < 1, while 0 < µ̃1 < 1 and µ̃2 > 1. In these cases, the choice of
self-adjoint boundary conditions involves five angles at the left end and one additional
parameter at the right end.
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Let us begin from the first end. Making use of eq. (2.27) and denoting the product ΩC
by C̃, the independent boundary conditions at the left end can be cast in the form

C̃11 = cosα1 C̃11 + sinα1 C̃12 ,

C̃21 = cosα2 C̃21 + sinα2 C̃22 , (2.70)

or equivalently
C̃11 = cot α1

2 C̃12 , C̃21 = cot α2
2 C̃22 . (2.71)

Now the actual C coefficients are related to the C̃ by an SU(2) matrix Ω†, and one can
parametrize Ω as

Ω =
(

cos γ eiα sin γ eiβ

− sin γ e−iβ cos γ e−iα

)
, (2.72)

so that finally
Ci1 = Ẽij Cj2 , (2.73)

with
Ẽ = Ω†E Ω , E =

(
cot α1

2 0
0 cot α2

2

)
. (2.74)

For Ω = 1 one recovers the boundary conditions for independent equations that encompass
all cases with k = 0. When α1 = α2, Ω commutes with E and disappears altogether, and a
similar simplification occurs, for a generic E, when Ω is diagonal.

If µ̃2 ≥ 1, as will be the case in section 10.2, one must demand that at the right end
C24 = 0, in order get L2 solutions, and moreover the ratio

C13
C14

= cot α̃1
2 (2.75)

can be taken to parameterize the independent choices of self-adjoint boundary conditions
there. The continuation to the right end of the interval of the hypergeometric solutions
then yields the relations(

π
2
)µ̃i
√

µi
µ̃i
Ci4

Γ (µ̃i)
= Ci1

Γ (1 + µi)
(

π
2
)−µi

Γ
(

µ̃i+µi+1
2 +m

)
Γ
(

µ̃i+µi+1
2 −m

)
+ Ci2

Γ (1− µi)
(

π
2
)µi

Γ
(

µ̃i−µi+1
2 +m

)
Γ
(

µ̃i−µi+1
2 −m

) ,
(

π
2
)−µ̃i

√
µi
µ̃i
Ci3

Γ (−µ̃i)
= Ci1

Γ (1 + µi)
(

π
2
)−µi

Γ
(

µi−µ̃i+1
2 +m

)
Γ
(

µi−µ̃i+1
2 −m

)
+ Ci2

Γ (1− µi)
(

π
2
)µi

Γ
(

1−µ̃i−µi
2 +m

)
Γ
(

1−µ̃i−µi
2 −m

) , (2.76)

and taking eq. (2.73) into account, the r.h.s. only involves the Cj2. These ingredients
determine the eigenvalue equation as follows. One first expresses the Ci1 in terms of the
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Ci2 using eq. (2.73), so that the preceding relations become√
µi

µ̃i
Ci4 = P4ij Cj2 ,

√
µi

µ̃i
Ci3 = P3ij Cj2 (2.77)

where

P4ij =
Ẽij Γ (1 + µi) Γ (µ̃i)

(
π
2
)−µi−µ̃i

Γ
(

µ̃i+µi+1
2 +m

)
Γ
(

µ̃i+µi+1
2 −m

) +
δij Γ (1− µi) Γ (µ̃i)

(
π
2
)µi−µ̃i

Γ
(

µ̃i−µi+1
2 +m

)
Γ
(

µ̃i−µi+1
2 −m

) ,
P3ij =

Ẽij Γ (1 + µi) Γ (−µ̃i)
(

π
2
)−µi+µ̃i

Γ
(

µi−µ̃i+1
2 +m

)
Γ
(

µi−µ̃i+1
2 −m

) +
δij Γ (1− µi) Γ (−µ̃i)

(
π
2
)µi+µ̃i

Γ
(

1−µ̃i−µi
2 +m

)
Γ
(

1−µ̃i−µi
2 −m

) . (2.78)

One must now demand that C24 = 0, while also relating C13 and C14 according to
eq. (2.75), and the resulting eigenvalue equation

cot α̃1
2 = P422 P311 − P421 P312

P422 P411 − P421 P412
(2.79)

depends on six parameter, the five parameters contained in Ẽ and α̃1.
The other case of interest, µ̃1 = 0 and µ̃2 > 1, will present itself in section 11.2. Now

the preceding equations (2.76) for i = 1 are replaced by

C14 = C12 ξ1(µ1,m) + C11 ξ1(−µ1,m) ,
C13 = C12 ξ2(µ1,m) + C11 ξ2(−µ1,m) , (2.80)

where ξ1 and ξ2 are defined in eqs. (2.62), while they still hold for i = 2. The final form of
the eigenvalue equation is then

cot α̃1
2 =

P422
(
ξ2(µ1,m)− ξ2(−µ1,m) Ẽ11

)
− ξ2(−µ1,m) Ẽ12 P421

P422
(
ξ1(µ1,m) + ξ1(−µ1,m) Ẽ11

)
− ξ1(−µ1,m) Ẽ12 P421

, (2.81)

and the number of free parameters remains the same.

3 The perturbed dilaton-axion system

In a generic metric of the form

ds2 = e 2 A(r) dx2 + e 2 B(r) dr2 + e 2 C(r) dy2 , (3.1)

and in the harmonic gauge
B = 4A+ 5C , (3.2)

the perturbed dilaton equation follows from the quadratic terms in the type-IIB effective
action, which for manifolds without boundaries contains the terms

S = − 1
4 k2

10

∫
d10 x

{
e2(B−A) ηµν ∂µ φ∂ν φ+ ϵ2(B−C) δij ∂i φ∂j φ+ (∂r φ)2

}
, (3.3)
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and can be cast in the form

□φ+ e2(A−C) ∇2 φ+ e2(A−B) ∂2
r φ = 0 . (3.4)

Here □ and ∇2 denote the d’Alembertian operator for four-dimensional Minkowski space
and the Laplace operator for the internal torus. In the analysis of the different sectors we
shall rely implicitly on the self-adjoint action discussed in [68], which differs from eq. (3.3) by
the addition of boundary terms, in order to explore general self-adjoint boundary conditions.
In this sector this action reduces to

Ss.a. =
1

4 k2
10

∫
d10 x

{
e2(B−A) φ□φ+ e2(B−C) φ∇2 φ+ φ∂r

2 φ
}
, (3.5)

and one can now separate variables letting

φ(x, r, y) = φ(x) f(r) eik·y , (3.6)

while also defining the four-dimensional squared mass via

□φ(x) = m2 φ(x) , (3.7)

so that the perturbed dilaton equation becomes

f ′′(r)− k2 e2(B−C) f(r) +m2 e2(B−A) f(r) = 0 . (3.8)

This equation determines the allowed values of m2, and in fact one can recast it in a
form where these become eigenvalues of a Hermitian second-order operator. We can now
describe the procedure in detail, since it will recur in the following sections. The first step
consists in trading r for the conformal variable z, defined via

dz = eB−A dr , (3.9)

with z(0) = 0. Note that z has a finite range for the background of eqs. (1.1), 0 ≤ z ≤ zm,
with zm given by

zm =
∫
eB−A dr ≃ 2.24 z0 , (3.10)

and
z0 = ρ h

1
2 =

(
2Hρ3

) 1
2 . (3.11)

Here and in the rest of the paper z-derivatives will be often denoted by a subscript, so that,
for instance

Az ≡ dA

dz
= eA−B A′(r) , (3.12)

where A′(r) denotes the derivative with respect to r. Performing this change of variable,
the original equation (3.8) becomes

d2 f

dz2 + (Bz −Az)
df

dz
+
[
m2 − k2 e2(A−C)

]
f = 0 . (3.13)
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Figure 2. The left panel shows the normalized zero-mode wavefunction (3.25). The right panel
compares the actual dilaton potential (black, solid) with its approximation (2.29) with (µ, µ̃) =

( 1
3 , 0
)

(red, dashed), which is almost superposed to it. They are in units of 1
z02 , with zm and z0 defined in

eqs. (3.10) and (3.11).

The second step entails, in this case, the field redefinition

f = e−
1
2 (B−A)g , (3.14)

which finally leads to the manifestly Hermitian Schrödinger-like equation

−d
2 g

dz2 + V g = m2 g . (3.15)

The potential is
V = 1

4 (Bz −Az)2 + 1
2 (Bzz −Azz) + k2 e2(A−C) , (3.16)

and its detailed expression as a function of r, which can be obtained using results in
appendix A, reads

V = − e
r
ρ

√
5
2

4 z2
0 sinh

(
r
ρ

)3

1 + 1
4

(
cosh

(
r

ρ

)
−
√

5
2 sinh

(
r

ρ

))2
+ k2 e2(A−C) . (3.17)

Note that
V = 1

z2
0

[
f1

(
z

z0

)
+ (kρ)2 f2

(
z

z0

)]
, (3.18)

where
k = |n|

R
, (3.19)

with |n| an integer-valued vector independent of R, and consequently for k = 0 all squared
masses are proportional to 1

z2
0
, while in general they also depend on the ratio ρ

R .
The k-independent portion of the potential is displayed in figure 2 as a function of z

z0
:

it has the form of an inverted well, with singularities at the two ends z = 0 and z = zm,
where

V ∼
µ2 − 1

4
z2 , V ∼

µ̃2 − 1
4

(z − zm)2 , (3.20)

with µ = 1
3 and µ̃ = 0, so that it belongs to case 1 in section 2. The supersymmetric limit is

recovered as ρ→ ∞, where the interval becomes of infinite length, and then V approaches

Vsusy = − 5
36 z2 + n2

R2

( 1
3 |H| z

) 2
3
. (3.21)
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Figure 3. The distribution function Πϕ

(
r
ρ

)
for the dilaton zero mode, in units of 1

ρ . The average
value of r is about 2.1 ρ.

One can actually recast eq. (3.15) in the form[
AA† + k2 e2(A−C)

]
g = m2 g , (3.22)

where the operators A and A† are

A = ∂z +
1
2 (3Az + 5Cz) , A† = −∂z +

1
2 (3Az + 5Cz) . (3.23)

One can thus find a massless mode for the dilaton, solving the first-order equation

A† g = 0 . (3.24)

The solution reads
g = g0 e

3A+5C
2 , (3.25)

where g0 a constant, and this wavefunction is normalizable, since∫ zm

0
dz g2 =

∫ ∞

0
dr e2(B−A) g2

0 (3.26)

is clearly finite. The corresponding normalized r-distribution

Πϕ(r) ≃
3
2 ρ sinh

(
r

ρ

)
e
− r

ρ

√
5
2 , (3.27)

which is localized in the vicinity of the effective BPS orientifold, is displayed in figure 3.
Note that the actual dilaton zero-mode wavefunction

φ(x, r, y) = φ(x) f0 (3.28)

has a constant r profile.
The behavior of the zero-mode wavefunction (3.27) near the right end of the interval is

g ∼
(
1− z

zm

) 1
2
, (3.29)

without a log term, so that, in the notation of the previous section, C3 = 0. In a similar
fashion, the dominant behavior of the actual zero mode near the left end of the interval is

g ≃
(
z

zm

) 1
6
− 0.71

(
z

zm

) 5
6
. (3.30)
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Figure 4. The left panel shows how shifting slightly eq. (2.29) can optimize the correspondence with
the dilaton potential in the middle region. The potentials are multiplied by the ratio z2

m

π2 in order to
enhance their differences. The dashed curve corresponds to a shift a ≃ 0.26, which is also suggested
by perturbation theory, while the dotted curve corresponds to a ≃ 0.255. The right panel compares
the normalized ground-state wavefunction (3.25) (black, solid) with its approximation obtained
combining the two zero modes in eq. (2.43), in such a way that the leading behavior corresponds to
eq. (3.30).

The two limiting behaviors define the self-adjoint boundary conditions characterizing the
zero mode. The argument presented in [44] shows that, with this choice of boundary
conditions, no instabilities are present in this sector.

More general boundary conditions can be explored relying on the model potential (2.29)
with (µ, µ̃) =

(
1
3 , 0
)

V ≃ π2

4 z2
m

 − 5
36

sin2
(

π z
2 zm

) −
1
4

cos2
(

π z
2 zm

)
+ π2

z2
m

a2 , (3.31)

where we have allowed for an overall shift determined by a. The preferred values are
a = 0.255 (dashed curve) and a = 0.26 (dotted curve), as shown in figure 4, and the latter
is also suggested by perturbation theory. The resulting spectrum is now determined by
eq. (2.66), but the actual masses mdil are related to m according to

m2
dil = m2 + a2 , (3.32)

so that the massless mode corresponds to m = ia. The large-ρ boundary conditions leading
to a massless mode are displayed in the left panel of figure 5. Those corresponding to
C3 = 0 lie on the diagonal θ1 = −θ2, on account of the second of eqs. (2.11), while the
second of eqs. (2.64), with m ≃ 0.26 i gives

C1
C2

= tan θ1 = −
ξ2
(

1
3 , i a

)
ξ2
(
−1

3 , i a
) ≃ −0.74 , (3.33)

to be compared with the coefficient 0.71 that enters eq. (3.30), which is thus captured up
to an error of about 3%. The resulting stability region is displayed in the right panel of
figure 5. A large portion of the moduli space is excluded, but there is nonetheless a wide
range of boundary conditions that can make the dilaton massive. An alternative procedure
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Figure 5. The curves in the left panel identify the boundary conditions leading to a massless
mode. The zero mode (3.25) lies at the intersection of the vertical and horizontal dashed lines for
(θ1, θ2) ≃ (−0.2, 0.2)π, on the line θ1 + θ2 = 0 that characterizes boundary conditions leading to
C3 = 0. The shaded regions in the right panel identify the boundary conditions leading to instabilities.

to determine the shift a, which we shall favor in the following, is to determine it so that
the ratio of C1 and C2 coincides with the result that can be deduced from the exact zero
mode, which would be −0.71 in this case. This would lead to a ≃ 0.3, and to a very similar
stability region.

Summarizing, the requirement of stability removes a large portion of the moduli space
of self-adjoint boundary conditions for the dilaton, and massless modes are only present on
the curve in the left panel of figure 5. There are two equivalent special points on this curve,
which correspond to the solution of eq. (3.24). Using the same boundary conditions for the
axion, which solves an identical equation, can thus lead to a pair of massless scalars. With
this choice, no additional instabilities can emerge from the modes with k ̸= 0, since the
corresponding spectrum is lifted in mass, as is manifest in eq. (3.17).

4 The perturbed type-IIB three-forms

We can now turn to the modes of the two type-IIB three-forms. This is a more intricate
sector, with some unfamiliar features, as we are about to see. In the following, it will be
convenient to work with the complex combination

H ≡ dB = dB1
2 + i dB2

2 (4.1)

of the type-IIB three-form field strengths, so that B will now denote the corresponding
complex two-form gauge field. In this notation the self-adjoint action describing the
quadratic fluctuations in this sector [46, 47] becomes

S = 1
4 k2

10

∫
M

[
−1
2 B ∧ d ⋆ H− 1

2 B ∧ d ⋆ H− i
(
B ∧H − B ∧H

)
∧ H(0)

5

]
, (4.2)
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and the corresponding field equations read3

d ⋆H = −2 iH ∧H(0)
5 , (4.3)

or, in components

DM HMNP = −2 i
3 H(0)

5 NP QRS HQRS . (4.4)

These equations are clearly invariant under

δ B = dΛ , (4.5)

while the boundary contributions to the variation of the action,

δ S = 1
4 k2

10

∫
∂ M

[
−1
2 Λ ∧

(
d ⋆ H+ 2 iH ∧H(0)

5

)
+ c.c

]
, (4.6)

only vanish on shell. Note that, even if one started from the conventional first-order action,
the Chern-Simons term would still yield a non-vanishing contribution. There are two
options to deal with this kind of problem: one can constrain the gauge parameter to vanish
on the boundary, or alternatively one can introduce Stueckelberg fields living there that
compensate the variation in eq. (4.6). In this case the second option would rest on a complex
nine-dimensional one-form A living on the boundary such that

δ A = − Λ |∂M , (4.7)

and on the modified action

Stot = S − 1
4 k2

10

∫
∂ M

[1
2 A ∧

(
d ⋆ H+ 2 iH ∧H(0)

5

)
+ c.c

]
. (4.8)

Varying A and its complex conjugate A one simply obtains eqs. (4.3) reduced to the
boundary. Removing A via eq. (4.7) is possible, but at the cost of limiting the residual
gauge transformations to those vanishing on the boundary, as we have said. When A is
retained, one does not modify the bulk equations provided the boundary term is stationary
under variations of B. The complete variation of the action (4.8) reads

δ Stot =
1

4 k2
10

∫
M

[
−1
2 δ B

(
d ⋆H+ 2 iH ∧H(0)

5

)
+ c.c.

]
+ δ Stot|∂M

, (4.9)

and includes a boundary term, whose form we can now spell out after introducing the 9 + 1
dimensional decomposition

B = C +D dr , d = d9 + dr ∂r , (4.10)

3The factor 2 in this equation and the previous ones is consistent with the original work in [46, 47],
and the differences with respect to the excellent work in [69] reflect our different definition of H5 and our
identical normalization for the three-forms.
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where C is a nine-dimensional two-form and D is nine-dimensional one-form. In terms of A
and of these two quantities, one can see the total boundary term in eq. (4.9) is

δ Stot|∂M
= 1

4 k2
10

∫
∂M

{
δ C
[
−1
2 e−B ⋆9

(
d9 D + ∂r C

)
+ i

(
C + d9A

)
∧H(0)

5

]
+ 1

2 e−B ∂r δ C ⋆9
(
C + d9A

)
+ 1

2 e
−BδD d9 ⋆9

(
C + d9A

)
− δ A

[
i d9 C ∧ H(0)

5 + 1
2 e−B d9 ⋆9 (d9 D + ∂r C )

]
+ c.c

}
, (4.11)

where ⋆9 denotes the nine-dimensional curved (r-dependent) Hodge dual.
The contribution involving δD vanishes provided

d9 ⋆9 (C + d9A) = 0 . (4.12)

This is an equation of motion for A that describes a complex vector, massless in four dimen-
sions, for which the divergence of C is a source. Moreover, the contribution proportional to
δA is the induced equation of motion on the boundary for the original bulk fields, which is
tantamount to eq. (4.3) if considered together with its r-component

eB d9 ⋆9 d9 C + ∂r

(
e−B ⋆9 ∂r C

)
+ 2 i (d9 D + ∂r C) ∧H(0)

5 = 0 . (4.13)

Finally, the vanishing of the remaining terms,

δ C
[
−1
2 e−B ⋆9

(
d9 D + ∂r C

)
+ i

(
C + d9A

)
∧H(0)

5

]
+ 1

2 ∂r δ C ⋆9
(
C + d9A

)
, (4.14)

is a gauge-invariant counterpart of the self-adjoint condition(
∂z Ψ δΨ−Ψ ∂z δΨ

)∣∣∣
∂M

= 0 , (4.15)

discussed at length in [68] for a scalar field, together with the corresponding expression for
gravity.

Let us now address the gauge fixing of this formulation, taking into account that the
gauge parameter Λ can be decomposed according to

Λ = Λ2 + Λ1 dr , (4.16)

where we have distinguished in it a nine-dimensional two-form Λ2 and a nine-dimensional
one-form Λ1. Then, taking eq. (4.10) into account, one can conclude that

δ C = d9 Λ2 , δD = d9 Λ1 + ∂r Λ2 , δ A = − Λ2 |∂M . (4.17)

There are two options at this point.

• A first option is removing D altogether, which leaves a residual gauge symmetry
associated to Λ2 gauge parameters satisfying the condition

∂r d9 Λ2 = 0 . (4.18)
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The bulk equations of motion then become

eB d9 ⋆9 d9 C + ∂r

(
e−B ⋆9 ∂r C

)
+ 2 i ∂r C ∧ H(0)

5 = 0 ,

d9

[
i C ∧ H(0)

5 + 1
2 e−B ⋆9 ∂r C

]
= 0 . (4.19)

A complex massless vector field A lives on the boundary, and the solution for C is a
source for it. Strictly speaking, it might seem that two different A fields are left at
the two ends of the interval, but the residual gauge symmetry with an r-independent
Λ2 can be used to remove one of them.

• There is a second option, which is less convenient. It consists in enforcing the Lorentz
gauge condition d ⋆ B = 0, which becomes

d9 ⋆9 D = 0 , ⋆9 ∂r D − d9 ⋆9 C = 0 (4.20)

in the 9+1 decomposition. This turns eq. (4.3) into

□10 B − 2 i ⋆
(
dB ∧H(0)

5

)
= 0 , (4.21)

so that the kinetic contribution becomes simpler, but the equations still involve both
C and D.

In order to make progress, it is now important to take into account the detailed form of
the background. To this end, it is useful to distinguish the spacetime and toroidal coordinates
among the nine residual ones. In this fashion, one can identify in B a four-dimensional
two-form, two types of one-forms and scalars, according to

b = 1
2 Bµν dx

µ dxν , a = Bµr dx
µ , ai = Bµ i dx

µ , Bri , Bij , (4.22)

and one can similarly decompose Λ into a four-dimensional one-form λ and scalars Λr and
Λi, so that

δ b = d4 λ , δ a = d4 Λr − ∂r λ , δ Bij = i (ki Λj − kj Λi) ,
δ ai = d4 Λi − i ki λ , δ Bri = ∂r Λi − i ki Λr . (4.23)

For k ̸= 0, in the spirit of what we said in the Introduction, one can eliminate the
longitudinal parts of Bij , Bri and ai. Both for k ̸= 0 and for k = 0, in view of the preceding
discussion, a and Bri could be eliminated using the gauge parameters λ and Λi. However,
in all cases one should retain on the boundary the A field, within which one can distinguish
a complex four-dimensional one-form A4 and five complex scalars Ai. There is however a
further simplification: the Chern-Simons term plays a role only in the equations for Bµν and
Bµr, on account of the special form of the five-form field strength present in the background
of eqs. (1.1).

We can now examine the available modes, treating separately those corresponding to
different SO(5) representations since, as we have stressed in the Introduction, this is an
internal symmetry for the k = 0 sector, on which our analysis is largely focused.
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4.1 The modes originating from Bµν and Bµr

The modes originating from Bµν and Bµr entail some complications, due to the role played
by the Chern-Simons term that, as we have seen, contributes to the small fluctuations due
to the five-form background profile (1.1). Let us now focus on the modes of this type with
k = 0. In this case there are only two types of curvature components, Hµνρ and Hµνr, so
that the decomposition

B = b+ a dr , (4.24)

where b is a four-dimensional complex two-form and a is a four-dimensional complex
one-form, translates into

H = d4 b+ (∂r b+ d4 a) dr , (4.25)

with d4 the four-dimensional exterior derivative. The gauge transformations act on a and b
as

δ a = d4 Λr − ∂r Λ , δ b = d4 Λ , (4.26)

and allow one to remove a altogether, but at the expense of introducing an A field on the
boundary, as we have stressed. One is thus left with the system

d4

[
e−4A ⋆4 ∂r b−

i h

ρ
b

]
= 0 ,

e2A+10C d4 ⋆4 d4 b+ ∂r

[
e−4A ⋆4 ∂r b−

i h

ρ
b

]
= 0 (4.27)

in the bulk, and on the boundary

e5C
[
d4 ⋆4 d4A+ d4 ⋆4 b

]
= 0 . (4.28)

Here ⋆4 denotes the four-dimensional flat Hodge dual, and we have used the harmonic
gauge condition (3.2) for the background. As we have seen, a residual r-independent gauge
transformation can remove A from one of the two boundaries, where the last equation still
sets to zero the divergence of b.

It is now convenient to define

u = e−4A ⋆4 ∂r b , (4.29)

so that eqs. (4.27) become

d4 u− i h

ρ
d4 b = 0 , (4.30)

e2A+10C d4 ⋆4 d4 b+ ∂r u+ i h

ρ
⋆4 e

4A u = 0 ,

and combining them leads to an equation for u that is of first order in r:

∂r u− i ρ

h
e2A+10C d4 ⋆4 d4 u+ i h

ρ
e4A ⋆4 u = 0 . (4.31)
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Note that, using eqs. (4.25), (4.29) and the first of eqs. (4.30), one can link H to u according
to

H = − i ρ
h
d4 u− e4A ⋆4 u dr , (4.32)

or
H = − iρ

h
(∂r u dr + d4 u)−

(
ρ

h

)2
e2A+10C d4 ⋆4 d4 u dr . (4.33)

One can now exhibit different modes within u, making use of the key identity

⋆4d4 ⋆4 d4 + d4 ⋆4 d4 ⋆4 = −□ = −m2 , (4.34)

which defines the four-dimensional mass-shell condition. To this end, one can apply d4 and
then d4 ⋆4 to eq. (4.31), and combining the result with the d4 of eq. (4.34) leads to the
system

∂r d4 u+ i h

ρ
e4A d4 ⋆4 u = 0 ,

∂r d4 ⋆4 u+ im2 ρ

h
e2A+10C d4 u− i h

ρ
e4A d4 u = 0 . (4.35)

The first equation can now be solved for d4 ⋆4 u, and substituting the result into the second
gives a second-order equation in r involving only d4 u and not d4 ⋆4 u:

∂r

(
e−4A ∂r d4 u

)
+m2 e2A+10C d4 u−

(
h

ρ

)2
e4A d4 u = 0 . (4.36)

One can now separate variables in eq. (4.36), letting

d4 u(x, r) = d4 U(x) f(r) , (4.37)

which is equivalent to
u(x, r) = U(x) f(r) + d4 Λ(x, r) , (4.38)

with Λ(x, r) a four-dimensional one-form also depending on r, which is not necessarily
separable. This decomposition should be consistent with the initial equation (4.31), and
substituting in it eq. (4.38) leads to

∂r d4 Λ(x, r) +
i h

ρ
e4A ⋆4 d4 Λ(x, r) = − i h

ρ
e4A ⋆4 U(x) f(r)− U(x) f ′(r)

+ i ρ

h
e2A+10C f(r)d4 ⋆4 d4 U(x) . (4.39)

The parameter Λ of eq. (4.38) is defined up to an exact form, and consequently it can be
chosen to be transverse. The exterior derivative of this equation then gives

d4 ⋆4 U(x) f(r)−m2 ⋆4 Λ(x, r) = i ρ

h
e−4A d4U f

′ , (4.40)

which determines Λ algebraically for the modes with m2 ̸= 0. One can verify that eq. (4.39)
is identically satisfied if one makes use of this solution for Λ(x, r). Therefore, the massive
spectrum can be analyzed referring solely to a Schrödinger system, as in section 3, starting
from eq. (4.36).
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4.2 The massive sector

As we have seen, all the preceding equations are consistent with the separation of vari-
ables (4.38) in the massive case, where Λ is determined algebraically by eq. (4.40). One
can then focus on eq. (4.36), assuming that d4 u ̸= 0. In fact, if d4 u = 0, eqs. (4.35) imply
that d4 ⋆4 u = 0, and taking these results into account eq. (4.34) implies that m = 0. We
shall return to this case later.

For the time being, let us thus concentrate on modes with d4u ̸= 0, which are complex
massive two-forms and are dual to complex massive vectors in the resulting four-dimensional
spacetime. In view of eq. (4.36) f satisfies

∂r

(
e−4A ∂r f

)
+m2 e2A+10C f −

(
h

ρ

)2
e4A f = 0 . (4.41)

In terms of the conformal variable z defined in eq. (3.9), this equation takes the form

− (∂z +Bz − 5Az) ∂z f +
(
h

ρ

)2
e2(A−5C) f = m2 f , (4.42)

and the further redefinition
f(r) = e

5 A−B
2 Ψ(z) (4.43)

finally yields the Schrödinger-like equation

Ã Ã†Ψ = m2 Ψ . (4.44)

The two operators

Ã = ∂z +
7
2 Az +

5
2 Cz , Ã† = −∂z +

7
2 Az +

5
2 Cz , (4.45)

can be identified after making use of the identities for the background in eqs. (A.19), and
the resulting Schrödinger potential,

V = 1
64 z2

0

e
√

5
2

r
ρ

sinh
(

r
ρ

)3

[
2
√
10 sinh

(2 r
ρ

)
+ cosh

(2 r
ρ

)
+ 27

]
, (4.46)

is displayed in figure 6.
Eq. (4.44) now implies that

Ψ = C e
7 A+5 C

2 (4.47)

is an exact normalizable zero mode of the Schrödinger system. Note that this result
translates into

f(r) = C e4A = C

h sinh
(

r
ρ

) , (4.48)

in view of eq. (4.43), consistently with eq. (4.105). Taking the measure into account, the
zero mode (4.48) corresponds to the normalized r-distribution

Πf (r) =
1
ρ

√
5
2 e

− r
ρ

√
5
2 . (4.49)
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Figure 6. The left panel shows the normalized zero-mode wavefunction (4.47). The right panel
compares the actual Bµν potential (black, solid), its approximation (2.29) with (µ, µ̃) =

( 2
3 , 1.72

)
(red, dotted) and the improvement of the latter obtained with a slight negative shift, all in units of

1
z02 . zm and z0 are defined in eqs. (3.10) and (3.11).

The arguments presented in [44] show that the self-adjoint boundary conditions satisfied
by this zero mode would identify a complete spectrum of excitations for the Schrödinger
operator (4.44) that is free from tachyonic instabilities. However, we originally assumed
that m ̸= 0, and in fact this expression for f(r) does not satisfy eq. (4.40) if m = 0, unless
the two conditions

d4 ⋆4 U(x) = 0 , d4 U(x) = 0 (4.50)
hold. Moreover, even if these conditions hold, one should make sure that the original
equation (4.31) be satisfied. This condition will be spelled out in detail in the next two
sections, where the actual nature of the zero modes will emerge. In contrast, when m ̸= 0
the Schrödinger problem is equivalent to the original equation.

Summarizing, from the Schrödinger system one can retain, without further ado, the
whole spectrum aside from the zero mode that can possibly be present. When a zero mode
is present, it must be handled with care, as we shall see. Nonetheless, the zero mode
profile (4.48) will now prove useful in characterizing the optimal shift of the hypergeometric
approximation of the actual potential (4.46).

At the two ends the potential is dominated once more by the behavior in eq. (1.15),
with µ = 2

3 and µ̃ = 1.72. Consequently, we are now in case 2 of table 1, so that the limiting
behavior near the left end is given by the first of eqs. (2.1), while near zm it is given by the
last of eqs. (2.2), and is actually fixed to be

ψ ∼
(
1− z

zm

)2.22
. (4.51)

Self-adjoint boundary conditions thus depend on a single parameter characterizing, close to
the origin, the relative weight of the two independent contributions

ψ ∼ C1

(
z

zm

) 7
6
+ C2

(
z

zm

)− 1
6
, (4.52)

which can be identified with the ratio between C2 and C1. For the zero mode (4.47) the
self-adjoint boundary conditions are determined by

C2
C1

∼ −2.85 . (4.53)
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This result can determine an optimal shift of the hypergeometric approximation (2.29) of
the potential. One can see from figure 1 that, in the hypergeometric model, the ground
state should correspond to m ≃ 0.99, so that the optimal potential for this sector is

V ≃ V

(2
3 , 1.72, z

)
− π2

z2
m

(0.99)2 . (4.54)

Taking the shift into account, the hypergeometric eigenvalue equation becomes in general

C2
C1

≃ −
( 2
π

) 4
3 Γ

(
5
3

)
Γ
(
1.03 +

√
m2

Bµν
+ (0.99)2

)
Γ
(
1.03−

√
m2

Bµν
+ (0.99)2

)
Γ
(

1
3

)
Γ
(
1.69 +

√
m2

Bµν
+ (0.99)2

)
Γ
(
1.69−

√
m2

Bµν
+ (0.99)2

) . (4.55)

This approximation reveals the presence of an instability region corresponding to

−2.85 < C2
C1

< 0 . (4.56)

On the other hand, outside this region, if C2
C1

differs from the “critical” value −2.85, the
spectrum consists of purely massive complex two-forms, which are dual to complex massive
vectors, as we have stressed.

For k ̸= 0, one can gauge away all excitations that are longitudinal in k, and then these
perturbations continue not to mix with others. The resulting masses increase, as dictated
by the additional positive potential k2ϵ2(A−C).

We can now turn to a detailed analysis of the zero modes that can be contained in u.

4.3 The massless sector

When the boundary conditions allow a massless sector, the resulting setup is rather peculiar.
In analyzing it, we shall explore two solutions of the massless equations of increasing
complexity.

4.3.1 The case d4 U(x) = 0

If d4 U(x) = 0, eq. (4.40) implies that d4 ⋆4 U(x) = 0, and then f(r) is arbitrary. Letting

d4 Λ = −U(x) f(r) + d4 g(x, r) , (4.57)

so that
d4 g(x, r) = u(x, r) , (4.58)

eq. (4.39), or equivalently (4.31), leads to

∂r d4 g(x, r) +
i h

ρ
e4A ⋆4 d4 g(x, r) = 0 . (4.59)

Decomposing now the complex two-form d4 g into selfdual and anti-selfdual parts according
to

d4 g = (d4 g)+ + (d4 g)− , (4.60)
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with
(d4 g)± = 1

2 (1∓ i ⋆4) d4 g , (4.61)

leads to
(d4 g)± = (d4 g)± (x)

[
tanh

(
r

2 ρ

)]±1
, (4.62)

and finally to
u = (d4 g)+ (x) tanh

(
r

2 ρ

)
+ (d4 g)− (x) coth

(
r

2 ρ

)
(4.63)

or
u = d4 g = d4 g(x) coth

(
r

ρ

)
+ i ⋆4 d4 g(x)

sinh
(

r
ρ

) . (4.64)

The condition d4 u = 0, which was our starting point, demands that

d4 ⋆4 d4 g(x) = 0 . (4.65)

Making use of eq. (4.64) gives
b = − i ρ

h
u , (4.66)

up to an r-independent two-form that is pure gauge, and using eqs. (4.32), (4.64) and (4.65)
gives

H = i

h sinh
(

r
ρ

)
i ⋆4 d4 g(x) coth

(
r

ρ

)
+ d4 g(x)

sinh
(

r
ρ

)
 dr . (4.67)

The norm is determined by the sum of the two contributions∫
H ∧ ⋆H = V5

∫
dr d4 ḡ ∧ ⋆4 d4 g

h sinh
(

r
ρ

) ,

∫
2 Im

(
b ∧ H

)
∧ H(0)

5 = −V5

∫
dr dV5 d4 ḡ ∧ ⋆4 d4 g

h sinh
(

r
ρ

) . (4.68)

These terms cancel, and actually they are both total derivatives if eq. (4.65), which is a
constraint in this case, is used. Therefore, the modes obtained in this fashion have vanishing
norm, and must be rejected. In the next section we shall recover eq. (4.65), but as an
equation of motion, not as a consistency condition.

4.3.2 The case d4 U(x) ̸= 0

If d4 U(x) ̸= 0, eq. (4.40) with m = 0 implies that

f ′(r) = γ e4A f(r) , d4 ⋆4 U(x) = i ρ γ

h
d4U(x) , (4.69)

where γ is a constant. Substituting in eq. (4.36) now leads to

d4 U

[
γ2 −

(
h

ρ

)2]
e4A f = 0 , (4.70)
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so that
γ = ±h

ρ
. (4.71)

There are thus two solutions of this type,

f+(r) = tanh
(
r

2 ρ

)
, d4 (1 + i ⋆4)U+(x) = 0 ,

f−(r) = coth
(
r

2 ρ

)
, d4 (1− i ⋆4)U−(x) = 0 , (4.72)

where the overall constants are included in U±(x), which are both consistent with the
separation of variables (4.38). Consequently one can conclude that

U+(x) = U++(x) +A+−(x) , U−(x) = U−−(x) +A−+(x) , (4.73)

where U++ and A−+ are selfdual two-forms, U−− and A+− are anti-selfdual two-forms,
and furthermore

d4A
+− = 0 , d4A

−+ = 0 . (4.74)

In general, a complex (anti-)selfdual two-form G±
2 , such that

⋆4 G±
2 = ±iG±

2 (4.75)

can be expressed in terms of a real two-form G2 according to

G±
2 = (1∓ i ⋆4)G2 . (4.76)

Consequently one can write

U++ = (1− i ⋆4)u+ , A+− = (1 + i ⋆4) a+ ,

U−− = (1 + i ⋆4)u− , A−+ = (1− i ⋆4) a− , (4.77)

where u± and a± are real two-forms, with

d4 a
± = 0 , d4 ⋆4 a

± = 0 . (4.78)

Collecting all these contributions, the general massless u profile of this type, obtained
combining the two separable solutions that we started from, reads

u(x, r) =
[
a+ + u+ + i ⋆4

(
a+ − u+

)]
tanh

(
r

2 ρ

)
+
[
a− + u− − i ⋆4

(
a− − u−

)]
coth

(
r

2 ρ

)
+ d4Λ(x, r) , (4.79)

where d4 Λ is determined by eq. (4.31). One can thus conclude that

d4 u(x, r) = d4 (1− i ⋆4)u+ tanh
(
r

2 ρ

)
+ d4 (1 + i ⋆4)u− coth

(
r

2 ρ

)
. (4.80)

In particular, for a divergence-free u with u+ = −u− this expression recovers the zero mode
of the Schrödinger system.
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In order to determine Λ, taking eqs. (4.78) into account, one can let

d4 Λ(x, r) = − (1 + i ⋆4) a+ tanh
(
r

2 ρ

)
− (1− i ⋆4) a− coth

(
r

2 ρ

)
+ d4 λ(x, r) , (4.81)

thus eliminating all terms involving a± from u(x, r), which becomes

u(x, r) = (1− i ⋆4)u+ tanh
(
r

2 ρ

)
+ (1 + i ⋆4)u− coth

(
r

2 ρ

)
+ d4λ(x, r) , (4.82)

and now d4 λ can be determined by eq. (4.31). Decomposing it into selfdual and anti-selfdual
portions according to

d4 λ(x, r) = (d4 λ(x, r))+ + (d4 λ(x, r))− , (4.83)

and using the identity
(1− i ⋆4) d4 ⋆4 d4 (1− i ⋆4) = 0 (4.84)

for massless modes, one can see that (d4 λ)± (x, r) satisfy the decoupled first-order equations

∂r (d4 λ(x, r))± ∓ h

ρ
e4A (d4 λ(x, r))± = i ρ

h
e2A+10C f∓(r)d4 ⋆4 d4 U

∓∓(x) . (4.85)

These are solved by

(d4 λ)± =
[
tanh

(
r

2 ρ

)]±1 [
C±(x) + igh

4

∫ r

r0
ds e

− 5s

ρ
√

10
(
e

s
2ρ ± e

− s
2ρ

)4
ξ∓(x)

]
, (4.86)

where the C±(x) are proportional to (d4 λ)± at r = r0, and

ξ∓(x) = d4 ⋆4 d4U
∓∓(x) = d4 ⋆4 d4 (1± i ⋆4)u∓(x) . (4.87)

In fact, given the different r dependence of (d4 λ)±, the decomposition (4.83) is only
consistent if

d4C
± = 0 , (4.88)

and consequently
d4 ⋆4 d4 λ = 0 , (4.89)

so that d4 λ is also co-closed. One finally obtains

u(x, r) = (1− i ⋆4)u+ tanh
(
r

2 ρ

)
+ (1 + i ⋆4)u− coth

(
r

2 ρ

)
(4.90)

+
[
tanh

(
r

2 ρ

)] [
C+(x) + igh

4

∫ r

r0
ds e

− 5s

ρ
√

10
(
e

s
2ρ + e

− s
2ρ

)4
ξ−(x)

]
+
[
coth

(
r

2 ρ

)] [
C−(x) + igh

4

∫ r

r0
ds e

− 5s

ρ
√

10
(
e

s
2ρ − e

− s
2ρ

)4
ξ+(x)

]
,

which is consistent with the decomposition (4.80).
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We can now compute the gauge-invariant field strength H, whose expression in terms
of u(x, r) is given in eq. (4.32). One thus finds

H = − i ρ
h
d4 (1− i ⋆4) u+ tanh

(
r

2 ρ

)
− i ρ

h
d4 (1 + i ⋆4)u− coth

(
r

2 ρ

)
− e4A i dr (1− i ⋆4)u+ tanh

(
r

2 ρ

)
+ e4A i dr (1 + i ⋆4)u− coth

(
r

2 ρ

)
− e4A dr ⋆4 d4 λ , (4.91)

and

b = − i ρ
h

(1− i ⋆4)u+ tanh
(
r

2 ρ

)
− i ρ

h
(1 + i ⋆4)u− coth

(
r

2 ρ

)
− ⋆4 d4

∫
e4A λ(x, r) . (4.92)

Let us begin by analyzing the asymptotic behavior of these quantities as r → ∞. To
this end, it is important to note that in this limit the second contribution on the left-hand
side of eqs. (4.85) can be neglected, and consequently

d4 λ ∼ i ρ2 h

4
(
2−

√
5
2

) e r
ρ

(
2−
√

5
2

)
d4 ⋆4 d4

[
(1 + i ⋆4)u− + (1− i ⋆4)u+

]
, (4.93)

while
H ∼ − i ρ

h

[
d4 (1− i ⋆4) u+ + d4 (1 + i ⋆4)u−

]
, (4.94)

or
H ∼ − i ρ

h
d4 µ , (4.95)

where
µ = u+ + u− − i ⋆4

(
u+ − u−

)
, (4.96)

since the other contributions are sub-dominant in the limit.
Near the right end of the interval the leading behavior of b is

b ∼ − i ρ
h
u , (4.97)

and the only two-derivative contribution to the kinetic action integral thus originates from
the first term in eq. (4.2), and is proportional to

∫
e

(
2−
√

5
2

)
r
ρ d4 µ̄ ∧ ⋆4 d4 µ . (4.98)

Consequently, a finite result only obtains if the two conditions

d4
(
u+ + u−

)
= 0 , d4 ⋆4

(
u+ − u−

)
= 0 , (4.99)

hold for normalizable massless modes. These conditions are solved letting

u± = d4 γ ± ⋆4 d4 δ, (4.100)
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where γ and δ are two real one-forms, which could be taken to be divergence-free. Conse-
quently, the overall content of u± corresponds at most to a pair of real vectors, and

ξ∓(x) = ±d4 ⋆4 d4 ⋆4 d4 (δ − iγ) . (4.101)

Making use of eq. (4.100), one can conclude that

H = 2 ρ
h

d4 ⋆4 d4 (γ + i δ)
sinh

(
r
ρ

) −
2 dr

[
cosh

(
r
ρ

)
⋆4 −i

]
h sinh2

(
r
ρ

) d4 (γ + i δ)−e4A dr ⋆4 d4 λ ,

⋆H = 2 ρ h dr dV5 ⋆4 d4 ⋆4 d4 (γ + i δ) sinh
(
r

ρ

)
e
− r

ρ

√
5
2

−
2 d V5

[
cosh

(
r
ρ

)
⋆4 −i

]
sinh

(
r
ρ

) ⋆4 d4 (γ + i δ) +d4 λ , (4.102)

b = − 2 i ρ
h sinh

(
r
ρ

) [1 + i ⋆4 cosh
(
r

ρ

)]
(d4 γ + ⋆4 d4 δ)− ⋆4 d4

∫
e4A λ(x, r) ,

but taking eq. (4.89) into account one can see all terms involving λ do not contribute to
the action (4.2). Consequently∫

H ∧ ⋆H = 4 ρ2
∫
dr dV5 d4 ⋆4 d4 (γ − i δ) ∧ ⋆4 d4 ⋆4 d4 (γ + i δ) e−

r
ρ

√
5
2

−
∫ 4 dr dV5

h sinh
(

r
ρ

) (d4 γ ∧ ⋆4 d4 γ + d4 δ ∧ ⋆4 d4 δ
)
,

−2
∫

Im
(
b ∧H

)
∧ H(0)

5 =
∫ 4 dr dV5

h sinh
(

r
ρ

) d4 δ ∧ ⋆4 d4 δ . (4.103)

The terms involving δ that are singular at the origin cancel among the two contributions
above, so that finiteness only demands that γ = 0. One is thus left with a real vector δ,
whose contribution to the action, in the first term, is finite but contains higher derivatives.

The corresponding measure is precisely the one captured by the Schrödinger system for
the massive modes. Keeping only δ one finds indeed

H = 2 i ρ
h

d4 ⋆4 d4 δ

sinh
(

r
ρ

) − 2
dr
[
1 + i ⋆4 cosh

(
r
ρ

)]
h sinh2

(
r
ρ

) d4 δ ,

u = 2
i cosh

(
r
ρ

)
− ⋆4

sinh
(

r
ρ

) d4 δ ,

b = 2 ρ
h sinh

(
r
ρ

) [⋆4 − i cosh
(
r

ρ

)]
d4 δ , (4.104)

so that
d4 u = −2 d4 ⋆4 d4 δ

sinh
(

r
ρ

) . (4.105)
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We have thus recovered for d4 u the r profile of the massless mode of the Schrd̈inger system
in eq. (4.48). However, the x dependence of u is determined by a real vector δ. The results
of the preceding section are recovered if

d4 ⋆4 d4 δ = 0 , (4.106)

so that δ reduces to the field g introduced there. The novelty here is the absence of this
constraint.

The equation for δ in four dimensions,

d4 ⋆4 d4 ⋆4 d4 δ = 0 , (4.107)

follows if one substitutes eqs. (4.104) in the ten-dimensional equations (4.27). It has a
peculiar form, and contains an odd number of derivatives. However, it is consistent with
the four-derivative equation that follows from the effective action

S4 =
∫
d4 ⋆4 d4 δ ∧ ⋆4 d4 ⋆4 d4 δ . (4.108)

Note also that only d4 u has a separable form in x and r.
Denoting d4 δ by F , eq. (4.107) can be cast in the form

∂[µ ∂
ρ Fν] ρ = 0 , (4.109)

which is equivalent to
∂ρ Fν ρ = ∂ν σ , □σ = 0 , (4.110)

where σ is a massless scalar field. All in all, one is thus left with a real massless vector
and a real massless scalar in this sector. To these massless modes one must add a complex
massless vector that lives generically in the boundary.

Summarizing, as we have seen in section 4.2, the massive modes of this sector are
complex two-forms, which in four dimensions are dual to complex massive vectors. Naively,
when massless modes are present, what happens in circle compactification would suggest
the presence of a complex scalar from Bµν and a complex vector from Bµr. The surprise is
that the peculiar system (4.31) actually leads to a third-order equation, which results in
the halving of the massless modes, in a way that resonates with chiral projections of Fermi
systems. In addition, in an interval, as we have seen, another vector mode lives on the
boundary, in a way reminiscent of what is familiar for twisted sectors in orbifolds [70, 71]
or orientifolds [16–24] in String Theory, or from the Horava-Witten construction [72, 73].

4.4 The modes originating from Bµi and Bri

For this mode sector, one can start from

B = ai(x)f(r) dyi , (4.111)

where the ai are five 4D complex one-forms since, as we already stressed after eq. (4.23), Λi

can be used to remove the Bri, but as in the previous section this is at the cost of introducing
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Figure 7. The r-distributions Πϕ

(
r
ρ

)
of eq. (3.27) (blue, solid), Πf

(
r
ρ

)
of eq. (4.48) (yellow,

dashed), ΠBµi

(
r
ρ

)
of eq. (4.121) (green, dotted), ΠBij

(
r
ρ

)
of eq. (4.139) (red, long-dashed), in

units of 1
ρ . The corresponding mean values of r

ρ are about 2.1, 0.6, 4.2 and 1.1.

a set of complex scalars Ai living in the boundary. The field strength corresponding to B is
in this case

H = f d4 ai dy
i + f ′ ai dy

i dr , (4.112)

and the equations of motion give

f ′d4 ∗4 ai = 0 , m2feB+3C + (f ′e−2C−2A)′ = 0 . (4.113)

Letting
f = g e−

A+3C
2 , (4.114)

one obtains a manifestly Hermitian Schrödinger-like equation(
∂z +

(Az + 3Cz)
2

)(
−∂z +

(Az + 3Cz)
2

)
g = m2 g , (4.115)

of the familiar AA† form, with the potential

V = −1
4 (Az + 3Cz) (5Az + 7Cz)− 4W5

2 . (4.116)

This is displayed in figure 8 as a function of z, together with the corresponding hypergeo-
metric approximation. In terms of r its detailed form is

V = e
√

5
2

r
ρ

32 z2
0 sinh

(
r
ρ

) [√10 sinh
(2r
ρ

)
− 31

10 cosh
(2r
ρ

)
− 69

10

]
. (4.117)

At the two ends of the interval, this potential has the singular limiting behavior of
eq. (1.15), with µ = 1

3 and µ̃ = 0.54, and thus belongs to case 3 of section 2. As for the
dilaton-axion pair, there are boundary conditions given independently at the two ends that
are parametrized by a pair on angles (θ1, θ2).

Before examining the possible choices of boundary conditions, let us remark that the
AA† form of the Schrödinger system implies the presence of the zero mode

g = g0 e
A+3C

2 , (4.118)
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Figure 8. The left panel shows the normalized zero-mode wavefunction (4.118). The right panel
compares the actual Bµi potential (black, solid) with its approximation (2.29) with (µ, µ̃) =

( 1
3 , 0.54

)
(red, dashed), both in units of 1

z02 . zm and z0 are defined in eqs. (3.10) and (3.11).

which corresponds to
f = g0 , (4.119)

where g0 is a constant. This zero mode is normalizable, since∫ zm

0
dz eA+3C =

∫ ∞

0
dr e4(A+2C) <∞ , (4.120)

and the corresponding normalizable r-distribution is

ΠBµi =
3
5 ρ

[
sinh

(
r

ρ

)]
e
− 4r

ρ
√

10 . (4.121)

Note that the zero-mode wavefunction has the dominant behaviors

g ∼
(
z

zm

) 1
6
− 0.35

(
z

zm

) 5
6

(4.122)

close to z = 0, and

g ∼
(
1− z

zm

)−0.04
− 0.14

(
1− z

zm

)1.04
(4.123)

close to z = zm.
The arguments of [44] lead one to conclude that this whole sector is stable with the

boundary conditions of this zero mode, which correspond to (θ1, θ2) = π (−0.15, 0.06), in
the notation of section 2, in view of eqs. (2.11). The comparison with the hypergeometric
potentials of eq. (2.29) requires a slight shift of the latter, as can be seen from figure 8. The
precise shift can be determined demanding that the exact zero mode lie on the resulting
massless curve, and amounts to adding to the hypergeometric potential the constant

∆V ≃ (0.22)2 π
2

z2
m

. (4.124)

Once this is done, one can rely on the hypergeometric approximation, and in particular on
the corresponding exact eigenvalue equation (2.55), to identify the boundary conditions
resulting in stable modes, which correspond to the unshaded region displayed in figure 9

In conclusion, this sector can yield altogether, ten massless real Abelian vectors in the
bulk, with suitable boundary conditions, which are accompanied by ten real massless scalars
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Figure 9. The point (θ1, θ2) = (−0.15, 0.06)π identifies the special boundary conditions for Bµi

corresponding to the zero mode (4.118). The shaded regions identify the boundary conditions leading
to instabilities.

living in the boundary. When allowing for nonzero values of k, it is convenient not to
eliminate Bri but rather to impose the transversality of all fields to k. In this fashion, one
can see that Bri is set to zero by the equations of motion while m2, as usual, is replaced by
m2 − e2(A−C) k2, and the whole spectrum is lifted in this sector, which thus contains no
unstable modes for suitable boundary conditions.

4.5 The modes originating from Bij

Turning now to the modes that are scalar fields valued in the antisymmetric of SO(5), let
us first note that the two-form is in this case

B = 1
2 Bij dy

idyj , (4.125)

while the corresponding field strength is

H = 1
2(d4Bij + ∂r Bijdr)dyidyj (4.126)

for k = 0. The non-trivial equation is in this case

m2e6A+6C Bij + ∂r

(
e−4C∂r Bij

)
= 0 , (4.127)

and in terms of the z variable it becomes

m2 Bij + (∂z + 3Az + Cz) ∂zBij = 0 . (4.128)

The redefinition
Bij = e−

1
2 (3A+C) g(z) bij(x) (4.129)

leads once more to a manifestly Hermitian Schrödinger-like equation of the AA† form,(
∂z +

(3Az + Cz)
2

)(
−∂z +

(3Az + Cz)
2

)
g = m2 g , (4.130)
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Figure 10. The left panel shows the normalized zero-mode wavefunction (4.133). The right panel
compares the actual Bij potential (black, solid) with its approximation (2.29) with (µ, µ̃) =

( 2
3 , 0.63
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z02 . zm and z0 are defined in eqs. (3.10) and (3.11).

with the potential
V = 1

4 (3Az + Cz)2 + 1
2 ∂z (3Az + Cz) , (4.131)

which is displayed in figure 10 as a function of z. In terms of r its detailed form is

V = e
√

5
2

r
ρ

320 z2
0 sinh

(
r
ρ

) [−6
√
10 sinh

(2r
ρ

)
+ 21 cosh

(2r
ρ

)
+ 119

]
. (4.132)

Close to z = 0 the potential has the singular limiting behaviors of eq. (1.15), with
µ = 2

3 and µ̃ = 0.63, so that it corresponds to case 3 in table 1, as for the previous sector.
There is a normalizable ground state, which corresponds to

g = g0 e
3A+C

2 , (4.133)

with a constant g0, and thus to Bij independent of r:

Bij = g0 bij(x) . (4.134)

Note that the zero-mode wavefunction has the dominant behaviors

g ∼
(
z

zm

)− 1
6
− 0.35

(
z

zm

) 7
6

(4.135)

close to z = 0, and

g ∼
(
1− z

zm

)−0.13
+ 0.18

(
1− z

zm

)1.13
(4.136)

close to z = zm. The arguments of [44] lead one to conclude that this whole sector is
stable with the boundary conditions of this zero mode, which correspond to (θ1, θ2) =
π (−0.16, 0.05), in the notation of section 2. The comparison with the hypergeometric
potentials of eq. (2.29) requires a slight shift of the latter. The shift can be determined
demanding that the exact zero mode lie on the resulting massless curve, and amounts to
adding to the hypergeometric potential the constant

∆V ≃ −(0.08)2 π
2

z2
m

. (4.137)
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Figure 11. The point (θ1, θ2) = π (−0.05, 0.16) identifies the special boundary conditions corre-
sponding to the zero mode (4.118). The shaded regions identify the boundary conditions leading
to instabilities.

Once this is done, one can rely on the hypergeometric approximation, and in particular on
the corresponding exact eigenvalue equation (2.55), to identify the boundary conditions
for Bij resulting in stable modes, which correspond to the unshaded region displayed in
figure 11

The Schödinger system also indicates that the norm of the zero mode (4.133) would be
proportional to ∫

dz e3A+C =
∫ ∞

0
dr e6(A+C) , (4.138)

which is finite, as we have anticipated. This expression identifies the r-distribution

ΠBij (r) =
1
ρ

3√
10

e
− r

ρ
3√
10 . (4.139)

Only Hµij is present for these zero modes, and therefore the no-flow conditions of [56] are
identically satisfied.

With non-vanishing internal momenta k, the Chern-Simons term still does not contribute
while, once more, m2 is replaced by m2 − e2(A−C) k2. All the preceding choices of boundary
conditions remain possible, once the wavefunctions are modified by the addition of suitable
k-dependent corrections. Once this restriction is taken into account, the k2 term lifts the
mass spectrum further, and no instabilities emerge with suitable boundary conditions.

5 The perturbed Einstein-five-form system

A peculiar feature of type-IIB supergravity [46, 47] is the presence of a four-form gauge
field whose field strength satisfies the self-duality condition

H5 = ⋆H5 . (5.1)

– 43 –



J
H
E
P
1
1
(
2
0
2
3
)
0
6
1

We have already seen its crucial role in the class of backgrounds at stake, and now we
want to explore its perturbations. Eq. (5.1) is indeed the complete four-form equation
of motion, together with the Bianchi identity for H5, once the field strength is properly
dressed with fermionic terms and Chern-Simons forms, which are however irrelevant for the
linearized analysis.

Linear perturbations of the four-form gauge field in eq. (5.1) mix with metric perturba-
tions, and eq. (5.1) is to be combined with the linearized Einstein equations, which can be
deduced starting from

RMN = 1
24
(
H2

5

)
MN

. (5.2)

The type of system one is confronted with is rather unfamiliar and, as we shall see, is
somewhat complicated. In organizing the analysis, it is always useful to distinguish various
sectors of modes relying on an internal symmetry, whenever this is present. The internal
toroidal directions are helpful in this respect, and it will be important, as in the preceding
sections, to distinguish matters according to whether or not the toroidal momentum
k vanishes.

As we have already seen, the modes with k = 0 have an SO(5) internal symmetry
inherited from the internal space. In flat space, after a IIB compactification on S1 × T 5,
the original 35 modes of the 10D self-dual five-form field strength would translate, within
this sector, into 35 massless modes independent of the r coordinate. They would build a
multiplet of Abelian vectors in the 10 of SO(5), together with two scalar multiplets in the 10
and 5 representations of SO(5). This can be seen in the four-dimensional light-cone gauge,
leaving aside the components along r, which are linked to the others by the self-duality
relations (5.1). In this fashion, one must deal with three types of four-dimensional modes,
Bijkl, Bijka and Bijab. Here (i, j, k) = 1, .., 5 correspond to the internal directions and
(a, b) = 1, 2 correspond the two four-dimensional directions transverse to the light cone. If
massless in four dimensions, these three sets of fields, up to internal and spacetime dualities,
would indeed describe a 5 of scalars, a 10 of vectors and an additional 10 of two-tensors,
which are dual to scalars. These modes would add to 35 other modes originating from the
metric field. These are the two graviton polarizations from hµν , a multiplet of vectors hµi

in the 5 of SO(5), an additional singlet vector hµr, a 5 of scalars hri, a singlet, hrr, and
finally a 14 and a singlet scalar from hij . In the present context, one expects to find, in
general, a subset of these massless modes emerging in the bulk.

Although some of these massless modes will disappear in our background, the comparison
with this benchmark will often prove a convenient tool in the following. When modes
become massive due to the behavior along r but still correspond to k = 0, the SO(5)
remains manifest, but the ten scalars from the five form can be eaten by the corresponding
10 vectors, or equivalently the vectors can be eaten by the ten two-forms. On the gravity
side, the pattern is more familiar from Kaluza-Klein theory.

For any given choice of k ̸= 0, the relevant symmetry is the SO(4) associated to the
four internal directions orthogonal to it, as we have already stated. While so far we have
largely confined our attention to k = 0 modes, reserving only brief comments to sectors with
non-vanishing internal momenta, here it will be important to also scrutinize perturbations
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with k ̸= 0, since they will entail special subtleties and, as we saw in detail in [43], can host
instabilities as a result of mixings.

5.1 Perturbing the tensor equations

Perturbing eqs. (5.1) around the background leads to

δHP1...P5 = h[P1
M1 H(0)

5 P2...P5]M1
− 1

2 hM
M H(0)

5 P1...P5

+
g

(0)
P1M1

. . . g
(0)
P5M5

5!
√
−g(0)

ϵM1...M5N1...N5 δHN1...N5 , (5.3)

where the antisymmetrizations have unit coefficients, quantities bearing the superscript
(0) refer to the background, δH denotes perturbations of the tensor field strength and h

denotes perturbations of the metric, defined in eq. (1.13). Moreover, H(0)
5 is defined in

eq. (1.1), and here the Levi-Civita tensor, such that ϵ01...9 = −1, will be lowered with the
Minkowski metric.

The perturbation δH is to be expressed in terms of the four-form gauge field, whose
independent components can be conveniently parametrized as follows:

δBµνρσ = ϵµνρσ b , δBµνρr = ϵµνρ
σ bσ, δBµνρi = ϵµνρ

σ bσi ,

δBµνri = bµνi , δBµνij = bµνij , δBµrij = b
(1)
µij ,

δBµijk = 1
2 ϵijklm b(2)lm

µ , δBrijk = 1
2 ϵijklm blm , δBijkl = ϵijklm bm . (5.4)

Using eqs. (5.3) and the results collected in appendix B, and in particular eqs. (B.4), one
can see that the independent self-duality conditions reduce to

∂[µ b
(2)

ν]
lm + 1

2 ϵ
pqrlm ∂p bµνqr = −e

−4A−4C

2 ϵµνρσ

×
(
∂[ρ b(1) σ]lm + ∂r b

ρσlm − ∂[l bρσ|m]
)
,

∂µ b
lm − ∂r b

(2)
µ

lm + 1
2 ϵ

pqslm ∂p b
(1)

µqs = −e2A+6C
(
∂[l bµ

m] + 1
2 ϵ

αβγ
µ ∂α bβγ

lm
)
,

∂µ b
m − ∂n b

(2)
µ

mn = e−2C
[
h

2 ρ hµ
m

+ e−6A
(
∂m bµ − ∂r bµ

m − 1
2 ϵ

αβγ
µ ∂α bβγ

m
)]

,

∂r b
m − ∂n b

mn = e−2C
[
h

2 ρ hr
m − e10C (∂m b− ∂µ b

µm)
]
,

∂p b
p =

[
h

4 ρ
(
−e−2A hα

α − e−2B hrr + e−2C hi
i
)

+ e−8A (∂r b− ∂τ b
τ )
]
, (5.5)

where we expressed the background metric in terms of the three functions A(r), B(r) and
C(r), as in eq. (3.1).
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5.2 Tensor gauge fixing of the Einstein-five form system

In order to analyze the modes arising from the Einstein-five-form sector, one must perform
a gauge fixing of the resulting equations.

Diffeomorphisms act on metric fluctuations hMN as

δξ hMN = ∇M ξN +∇N ξM ,

and consequently the Ricci curvature perturbations transform according to

δξ (δ RNR) = ∇N ξP R(0)
P R +∇R ξ

P R(0)
NP , (5.6)

where R(0)
MN is the background Ricci curvature. They are thus covariant under diffeomor-

phisms, albeit not invariant as would be the case when working around flat space.
The four-form gauge potential is also affected by tensor gauge transformations, and a

convenient presentation of their combined action with diffeomorphisms is

δξ,Λ (δ BMNP Q) = ξR H(0)
5 RMNP Q + ∂[M ΛNP Q] ,

δξ (δHSMNP Q) =
(
∇[Sξ

R
)
H(0)

5 MNP Q]R + 5 ξR∇R H(0)
5 SMNP Q . (5.7)

Here Λ is a three-form gauge parameter and, as in other portions of this paper, square
brackets denote antisymmetrizations without overall factors. The independent components
of ΛMNP can be conveniently parametrized as

Λνρσ = ϵνρστ Λτ , Λνρr = Λνρ , Λνρi , Λνri = Λνi ,

Λrij = Λ(1)
ij , Λµij , Λijk = 1

2 ϵijklm Λ(2) lm . (5.8)

Diffeomorphisms and tensor gauge transformation thus act on the independent fields
according to

δ hµν = ∂µ ξν + ∂ν ξµ + 2 ηµν A
′ e2(A−B) ξr ,

δ hµr = ∂µ ξr +
(
∂r − 2A′) ξµ , δ hµi = ∂µ ξi + ∂i ξµ ,

δ hrr = 2
(
∂r −B′) ξr , δ hri =

(
∂r − 2C ′) ξi + ∂i ξr ,

δ hij = ∂i ξj + ∂j ξi + 2 δij C
′ e2(C−B) ξr ,

δ b = h

2 ρ e
−10C ξr − ∂µ Λµ , δ bi =

h

2 ρ e
−2C ξi + ∂j Λ(2)

ij ,

δ bµ = − h

2 ρ e
6A ξµ − 1

2 ϵµνρσ ∂
ν Λρσ − ∂r Λµ , (5.9)

while the remaining tensor components are invariant under diffeomorphisms and have the
tensor gauge transformations

δ bµ i = −1
2 ϵµνρσ ∂

ν Λρσ i − ∂i Λµ , δ bµνi = ∂[µ Λν]i + ∂r Λµνi − ∂i Λµν ,

δ bµνij = ∂[µ Λν]ij + ∂[i Λµν|j] , δ b
(1)
µij = ∂µ Λ(1)

ij − ∂r Λµij + ∂[i Λµ|j] , (5.10)

δ b(2)
µij = ∂µ Λ(2)

ij −
1
2 ϵijklm ∂k Λµ

lm , δ bij = ∂r Λ(2)
ij −

1
2 ϵijklm ∂k Λ(1) lm .
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Using the tensor gauge transformations one can now set

BrMNP = 0 , (5.11)

for all choices of M , N and P , thus removing all fields whose gauge transformations involve
the radial derivative of a parameter with the same Lorentz structure. In analogy with what
we said for the two-forms, this gauge fixing brings along other modes living in the boundary,
which can be associated to a nine-dimensional three form.

The gauge condition (5.11) translates into

bµ = 0 , bµνi = 0 , b(1)
µij = 0 , bij = 0 , (5.12)

and reduces the system of tensor equations to

∂[µ b
(2)

ν]
lm + 1

2 ϵ
lmnpq ∂n bµνpq = −e

−4A−4C

2 ϵµνρσ ∂r b
ρσlm ,

∂r b
(2)

µ
lm = e2A+6C

[
∂[l bµ

m] + 1
2 ϵ

αβγ
µ ∂α bβγ

lm
]
,

∂µ b
m − ∂n b

(2)
µ

mn = e−2C
[
h

2 ρ hµ
m − e−6A ∂r bµ

m
]
,

∂r b
m = e−2C

[
h

2 ρ hr
m − e10C (∂m b− ∂µ b

µm)
]
, (5.13)

∂p b
p = h

4 ρ
[
− e−2A hα

α − e−2B hrr + e−2C hi
i
]
+ e−8A ∂r b .

This simpler system is still invariant under some residual gauge transformations, with
arbitrary parameters Λρσ, Λµi and Λ(1)

ij , while the radial dependence of the others is
determined by

∂r Λµ = −1
2 ϵµνρσ ∂

ν Λρσ − h

2 ρ e
6A ξµ , ∂r Λµνi = ∂i Λµν − ∂[µ Λν]i ,

∂r Λµij = ∂µ Λ(1)
ij + ∂[i Λµ|j] , ∂r Λ(2)

ij = 1
2 ϵijklm ∂k Λ(1) lm . (5.14)

These residual symmetries will be instrumental to exhibit the modes actually emerging
from this unfamiliar sector. Indeed, even in the flat-space limit, where the metric functions
A, B, C and the parameter h are all vanishing, the recovery of the expected modes that we
have listed at the beginning of this section is not evident. There is actually a subtlety here,
when comparing with the case of circle compactification, whose internal zero modes, which
would be independent of r in the present notation, cannot be gauged away. That would
require gauge parameters linear in r, which are not allowed in order to maintain periodicity,
consistently with the global translational symmetry on the circle. In our case the internal
r-space is an interval, and the requirement of periodicity is replaced by proper boundary
conditions. Therefore, the parameters on the right-hand side of eqs. (5.14) are arbitrary,
which justifies our choice. We shall see this explicitly in the following sections, where we
shall also fix diffeomorphism invariance on a case-by-case basis. As we have already stressed,
however, other modes appear generically at the ends of the interval.

– 47 –



J
H
E
P
1
1
(
2
0
2
3
)
0
6
1

5.3 Perturbing the Einstein equations

When the complete Einstein equations (5.2) are linearized around the background, their
left-hand side becomes

RMN = R
(0)
MN + δ RMN , (5.15)

where
−2 δ RNR = □10 hNR +∇N ∇R hS

S −∇P (∇N hP R +∇R hP N ) , (5.16)

where the derivatives and the d’Alembertian are covariant with respect to the background.
The components of the first-order correction to the energy-momentum tensor can be obtained
in a similar fashion, and these steps lead to the linearized Einstein equations

□10 hNR +∇N ∇R hS
S −∇P (∇N hP R +∇R hP N )

= − 1
12
(
δH5(N · H(0)

5R) − 4H(0)
5NK · H(0)

5RL hKL
)
. (5.17)

The spacetime components of eqs. (5.17) are

αβ :
(
e−2A □+ e−2C ∆

)
hαβ − e−2B (∂r − 2A′) ∂(α hβ)r

+ ηαβ A
′ e2(A−B)[e−2A (∂r − 2A′)hµ

µ − e−2B (∂r − 2B′)hrr + e−2C (∂r − 2C ′)hi
i
]

− 2 ηαβ A
′ e2(A−B)[e−2A ∂µ hµr + e−2C ∂i hir

]
+ e−2B[ (∂r − 4A′) ∂r + 4 (A′)2]hαβ

+ ∂α ∂β

(
e−2A hµ

µ + e−2B hr
r + e−2C hi

i

)
− e−2A ∂µ ∂(α hβ)µ − e−2C ∂i ∂(α hβ)i

= h

2 ρ

{
4 e2(A−B) ∂r b ηαβ − h

ρ
e−10C (ηαβ hρ

ρ − hαβ)
}
, (5.18)

while the αr components are

αr :
(
e−2A □+ e−2C ∆

)
hαr − e−2A (∂r − 2A′) ∂ρ hαρ

+
(
A′ −B′) e−2B ∂α hrr − e−2C (∂r − 2A′) ∂i hiα

+ e−2A (
∂r − 2A′) ∂α h

µ
µ + e−2C (∂r −A′ − C ′) ∂α hi

i

− e−2A ∂α ∂
ρ hρr − e−2C ∂α ∂

i hri = 0 , (5.19)

and the αi components are

αi : e−2A □hαi + e−2C ∆hαi + e−2B
[(
∂r −A′ − C ′)2 − (A′ − C ′)2]hαi

− e−2B (∂r − 2A′) ∂α hir − e−2B (∂r − 2C ′) ∂i hαr

+ ∂α ∂i

(
e−2A hµ

µ + e−2B hr
r + e−2C hk

k

)
− e−2A∂ρ (∂α hρi + ∂i hρα)− e−2C ∂j (∂α hij + ∂i hαj)

= −h e
−8C

2 ρ

[
4
(
∂α bi − ∂n b

(2)
αi

n
)
− h

ρ
e−2C hαi

]
. (5.20)
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Moreover, the rr component is

rr :
[
e−2A □− e−2B B′ (∂r − 2B′)+ e−2C ∆

]
hrr

− 2 e−2A (
∂r −B′) ∂µ hµr − 2 e−2C (

∂r −B′) ∂i hri

+ e−2A (∂r −B′) (∂r − 2A′)hµ
µ + e−2C (∂r −B′) (∂r − 2C ′)hi

i

= h

2 ρ

[
4 ∂r b−

h

ρ
e6A hρ

ρ
]
, (5.21)

while the ri components are

ri :
(
e−2A □+ e−2C ∆

)
hir − e−2C (∂r − 2C ′) ∂k hki

+ ∂i

{
e−2A [(∂r −A′ − C ′)hα

α − ∂α hαr
]
+ e−2B (C ′ −B′)hrr

+ e−2C
[(
∂r − 2C ′)hk

k − ∂k hkr

] }
− e−2A (∂r − 2C ′) ∂α hαi

= 2h
ρ

(∂i b− ∂µ b
µ

i) . (5.22)

Finally, the internal ij components are

ij :
(
e−2A □+ e−2C ∆

)
hij − e−2B (∂r − 2C ′) ∂(i hj)r − 2 δij C

′′ e2(C−2B) hrr

+ δij C
′ e2(C−B)[e−2C (∂r − 2C ′)hk

k − e−2B (∂r − 2B′)hrr + e−2A (∂r − 2A′)hµ
µ
]

− 2 δij C
′ e2(C−B)[e−2C ∂k hkr + e−2A ∂µ hµr

]
+ e−2B[ (∂r − 4C ′) ∂r + 4 (C ′)2]hij

+ ∂i ∂j

(
e−2C hk

k + e−2B hrr + e−2A hµ
µ

)
− e−2C ∂k ∂(i hj)k − e−2A ∂µ ∂(i hj)µ

= − h

2 ρ

[
4 δij e

−8C ∂p b
p − h

ρ
e−10C

(
δij hk

k − hij

)]
. (5.23)

Summarizing, the equations of motion for the coupled Einstein-five form system are
eqs. (5.13), together with eqs. (5.18)–(5.23). We can now analyze their modes, starting
from some sectors where the contributions from gravity and the five-form are decoupled,
whose dynamics is thus simpler. These are fields in the antisymmetric of SO(5), which
originate solely from the four-form gauge field, spin-two modes and scalar modes in the
symmetric traceless SO(5) representation, which originate solely from the gravity sector.
All other modes are mixed, which makes their analysis more involved and will treated in
sections 9–12.

6 Tensor modes decoupled from gravity perturbations

According to eqs. (5.13), this sector involves the two fields b(2)
µ

lm and bµν
lm, which are

both valued, for k = 0, in the antisymmetric of SO(5), and no gravity contributions. We
begin our analysis from the modes with k = 0, which are somewhat simpler.
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6.1 k = 0 tensor modes

For the modes with k = 0, eqs. (5.13) reduce to

∂[µ b
(2)

ν]
lm = −e

−4A−4C

2 ϵµνρσ ∂r b
ρσlm ,

∂r b
(2)

µ
lm = e2A+6C 1

2 ϵ
αβγ

µ ∂α bβγ
lm , (6.1)

and it is now clearly convenient to let

βµν
lm = 1

2 ϵµνρσ b
ρσlm , (6.2)

so that the equations simplify, and become

∂[µ b
(2)

ν]
lm = −e−4A−4C ∂r βµν

lm , ∂r b
(2)

µ
lm = e2A+6C ∂α βαµ

lm . (6.3)

These equations link quantities that are invariant under residual gauge transformations,
with parameters independent of r:

δ βµνij = ϵµνρσ ∂
ρ Λσ

ij , δ b(2)
µij = ∂µ Λ(2)

ij . (6.4)

One can now separate the radial dependence introducing a factor f(r) for βµνij and a
factor f (2)(r) for b(2)

µij , according to

βµνij(x, r) = f(r)βµνij(x) , b(2)
µij(x, r) = f (2)(r) b(2)

µij(x) . (6.5)

This leads to the system

f ′ = a1 e
4A+4C f (2) , f (2)′ = a2 e

2A+6C f , (6.6)

where a1 and a2 are two real constants, and the resulting space-time modes satisfy

∂[µ b
(2)

ν]
lm = −a1 βµν

lm ,

a2 b
(2)

µ
lm = ∂α βαµ

lm . (6.7)

From these equations, if a1a2 ̸= 0 one obtains a second-order Proca equation

□ b(2)
ν

lm − ∂ν ∂
ρ b(2)

ρ
lm + a1 a2 b

(2)
ν

lm = 0 , (6.8)

with a squared mass
m2 = −a1 a2 , (6.9)

and β is completely determined in terms of b(2).
On the other hand, if a1 = a2 = 0, f and f (2) are independent of r, and then all

non-trivial curvature components arising from the two potentials βµνij and b(2)
µij ,

Hµνρij = −ϵµνρσ ∂λ β
λσ

ij , Hµνrij = ∂r bµνij ,

Hµνijk = 1
2 ϵijklm ∂[µ b

(2) lm
ν] , Hµrijk = −1

2 ϵijklm ∂r b
(2) lm
µ , (6.10)

vanish, on account of eqs. (6.1), so that this type of solution is pure gauge.
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The actual values of m2 are determined by eqs. (6.6), and as in other sectors it is
convenient to recast the system into a manifestly Hermitian form and then attain self-
adjointness by a proper choice of boundary conditions. To this end, let us define the two
functions g+ and g− via

f(r) = g−(r) e
A−C

2 , f (2)(r) = g+(r) e−
A−C

2 , (6.11)

while also introducing the variable z of eq. (3.9). These steps lead to

A g− = a1 g
+ , A† g+ = −a2 g

− , (6.12)

where
A = ∂z +

Az − Cz

2 , A† = −∂z +
Az − Cz

2 . (6.13)

Combining the two first-order equations and making use of eq. (6.9) leads to either of the
two manifestly Hermitian Schrödinger-like equations

A†A g− = m2 g− , AA† g+ = m2 g+ , (6.14)

which include the potentials

V ∓ = 1
4 (Az − Cz)2 ∓ 1

2∂z (Az − Cz) , (6.15)

or, in detail,

V −(r) = e
√

5
2

r
ρ

320 z2
0 sinh3

(
r
ρ

) [10√10 sinh
(2 r
ρ

)
− 19 cosh

(2 r
ρ

)
− 81

]
,

V +(r) = e
√

5
2

r
ρ

320 z2
0 sinh3

(
r
ρ

) [−14
√
10 sinh

(2 r
ρ

)
+ 41 cosh

(2 r
ρ

)
+ 99

]
. (6.16)

Their limiting behaviors at the two ends are once more of the form (1.15), with
(µ, µ̃) =

(
1
3 , 1.09

)
for g− and (µ, µ̃) =

(
2
3 , 0.09

)
for g+. However, only a subset of the

solutions of the two Schrödinger-like equations solves the original first-order system (6.12),
as we now explain.

Let us first note that the solution of A g− = 0 is not normalizable. Consequently, a1
cannot vanish, and it is thus convenient to absorb it in g+, turning the system (6.12) into

A g− = g+ , A† g+ = m2 g− . (6.17)

The second equation yields, for m = 0, a zero mode for g+, which solves

A† g+ = 0 (6.18)

and reads
g+ = g0 e

1
2 (A−C) . (6.19)
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Figure 12. The left panel shows the normalized zero-mode wavefunctions of eqs. (6.20) (black,
dashed) and (6.19) (red, dotted). The right panel compares the corresponding potentials V −

and V + of eq. (6.16) (black, long-dashed and black, solid) with their approximations (2.29) with
(µ, µ̃) =

( 1
3 , 1.09

)
and (µ, µ̃) =

( 2
3 , 0.09

)
(red,dash-dotted and red, dashed), both in units of 1

z02 . zm

and z0 are defined in eqs. (3.10) and (3.11).

This corresponds to a constant f (2) and behaves as z− 1
6 close to the origin. However, one

must also solve the first equation in (6.17), and a normalizable solution reads

g− = −e
C−A

2 g0

∫ zm

z
dz′ eA(z′)−C(z′) ∼ eB−A+C

2 = e
7 A+9 C

2 . (6.20)

Identifying the upper end of the integral with zm is crucial in order to obtain a normalizable
mode. In fact, the integral in eq. (6.20) can be simply computed, and the result is

g− = −
√
10 ρ
2 g0

[
h sinh

(
r

ρ

)] 1
4
e
− 9

4
√

10
r
ρ , (6.21)

which behaves as r 1
4 ∼ z

1
6 at the origin. These zero modes describe ten massless vectors, as

dictated by eqs. (6.7), and have a constant internal profile f (2).
Consequently ∫ zm

0
dz

(
g−
)2 ∼

∫ ∞

0
dr e 3B−2A−C (6.22)

is clearly convergent, since the integrand vanishes as r at the origin and as e−
r
ρ

10−7
√

10
10 at

the other end. All in all, one can work with the Schrödinger equation

A†A g− = m2 g− , (6.23)

determining g+ via g+ = A g−. The proper normalization integral is also determined by
g−, according to ∫

dz

[(
g+
)2

+
(
g−
)2] = (

1 +m2
) ∫

dz
(
g−
)2
. (6.24)

The main subtlety, in this case, is that the proper zero mode is not the solution of A g− = 0,
but the other independent massless solution of the second-order equation (6.23), which is
given in eq. (6.21).

We can now identify the stable self-adjoint boundary conditions for this sector referring
to g−, which corresponds to case 2 in section 2. The self-adjoint boundary conditions are
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Figure 13. The left panel illustrates the stable eigenvalues of the potential V − of (6.16) for µ = 1
3 ,

µ̃ = 1.09, while the red dashed line corresponds to the value C2
C1

= −0.7 that leads to a massless
mode. The right panel illustrates the presence of a tachyonic mode, with m2 = −x2, for the same
values of µ and µ̃ and −0.7 < C2

C1
< 0.

thus determined by the behavior at the origin,

g− ∼ C1

(
z

zm

) 5
6
+ C2

(
z

zm

) 1
6
, (6.25)

and can be parametrized by the ratio C2
C1

, and for the zero mode (6.21)

C2
C1

≃ −0.7 . (6.26)

As in previous cases, we now approximate V − of eq. (6.16) with a hypergeometric
potential (2.29) with (µ, µ̃) =

(
1
3 , 1.09

)
and a suitable shift ∆V , which we determine

demanding that the boundary condition (6.26) correspond to a massless solution for the
shifted potential. In this fashion one finds

∆V ≃ −(0.15)2 π
2

z2
m

, (6.27)

and the resulting hypergeometric eigenvalue equation becomes

C2
C1

= −
(
π

2

)− 2
3 Γ

(
5
3

)
Γ
(
0.88 +

√
m2 + 0.152

)
Γ
(
0.88−

√
m2 + 0.152

)
Γ
(
1.21 +

√
m2 + 0.152

)
Γ
(
1.21−

√
m2 + 0.152

) . (6.28)

The solutions are illustrated in figure 13, and comprise and infinite number of massive
modes and at most a single tachyonic mode. These results are qualitatively similar to what
we displayed in figure 1, and the instability region corresponds in this case to the range

−0.7 < C2
C1

< 0 . (6.29)

Note that the tachyon mass grows indefinitely, in absolute value, as the ratio C2
C1

approaches
zero from negative values.
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We can now examine how the choice of self-adjoint boundary conditions affects the flow
of the energy-momentum tensor across the boundary. In this sector, the relevant component
of the energy-momentum tensor behaves as

√
−g T r

µ ∼ g+ g− , (6.30)

so that the no-flow conditions (1.16) are violated, at the origin, whenever C2 ̸= 0, since
g+ g− ∼ C2

2 at z = 0, and in particular by the boundary condition (6.26) allowing the
zero mode.

Summarizing, within the stable region C2
C1

≥ 0 or C2
C1

≤ −0.7 there are three classes
of boundary conditions: there is a unique choice leading to a massless spectrum for ten
vectors in the antisymmetric of SO(5) corresponding to eq. (6.26), while all other choices
lead to purely massive spectra. Among them, a special choice, obtained as C2

C1
approaches

zero from above, respects the no-flow condition.

6.2 k ̸= 0 tensor modes

We can now discuss the modes with a non-vanishing internal momentum k. The starting
point is now the system in eqs. (5.13), and including (complex) Fourier modes eik·y in the
internal torus leads to the first-order equations

∂[µ b
(2)

ν]
lm + i

2 ϵ
pqrlm kp bµνqr = −e

−4A−4C

2 ϵµνρσ ∂r b
ρσlm ,

−∂r b
(2)

µ
lm = −e2A+6C 1

2 ϵ
αβγ

µ ∂α bβγ
lm ,

kn b
(2)

µ
mn = 0 , (6.31)

where we omit the k suffix for brevity. Taking the divergence with respect to the internal
coordinates gives

km ∂r b
ρσlm = 0 , km ∂[α bβγ]

lm = 0 . (6.32)

Using the residual gauge symmetries of eqs. (5.14), one can demand that km bρσlm = 0,
because the first equation grants that is independent of r, while all preceding gauge choices
only involved the r-dependent portions of the gauge parameters. As a result, one can work
with fields that are transverse in the internal space.

Now the momentum k picks a direction in the internal space, so that for k ̸= 0 the
two fields in eqs. (6.31) are in the antisymmetric 6 of the residual internal SO(4) that is
transverse to it. One can thus decompose them further into portions that are self-dual
and antiself-dual with respect to this SO(4) group, which we denote by b(ϵ) and b(2,ϵ), with
ϵ = ±1, such that

b(ϵ) ρσ lm = ϵ

2 ϵ
lmpqs ks

|k| b
(ϵ) ρσ

pq , b(2,ϵ) ρ lm = ϵ

2 ϵ
lmpqs ks

|k| b
(2,ϵ) ρ

pq . (6.33)
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As a result, for example, b(ϵ) ρσ is SO(4)-valued along directions transverse to k, and the
system becomes

∂[µ b
(2,ϵ)

ν]
lm + i |k| ϵ b(ϵ)

µν
lm = −e

−4A−4C

2 ϵµνρσ ∂r b
(ϵ) ρσlm ,

−∂r b
(2,ϵ)

µ
lm = −e2A+6C 1

2 ϵ
αβγ

µ ∂α b
(ϵ)

βγ
lm
. (6.34)

One can now separate variables, letting

b(2,ϵ)
ν

lm(x, r) = f ϵ
2(r) b(2,ϵ)

ν
lm(x) , b(ϵ)

µν
lm(x, r) = f (ϵ)(r) b(ϵ)

µν
lm(x) , (6.35)

and the first of eqs. (6.34) implies that this is only possible if b(ϵ)
µν

lm is also self-dual or
antiself-dual in spacetime, so that

b(ϵ,ζ)
µν

lm = i
ζ

2 ϵµνρσ b
(ϵ,ζ)ρσ lm , (6.36)

with ζ = ±1. As a result, f and f2 satisfy

iζ e−4(A+C) df
(ϵ,ζ)

dr
− i |k| ϵ f (ϵ,ζ) = a1 f2

(ϵ,ζ) ,

df
(ϵ,ζ)
2
dr

= iζa2 e
2A+6C f (ϵ,ζ) , (6.37)

where a1 and a2 are two constants, not necessarily real anymore since we are dealing with
Fourier modes, while the spacetime equations become

∂[µ b
(2,ϵ)

ν]
lm = a1 b

(ϵ,ζ)
µν

lm
,

a2 b
(2,ϵ)

ν
lm = −∂α b(ϵ,ζ)

αµ
lm
. (6.38)

If a1 ̸= 0, the first implies that the field strength of bµ
(2,ϵ)lm must also satisfy eq. (6.36),

and combining them yields, as before, a second-order Proca equation for b(2)
µ

lm,

□ b(2,ϵ)
µ

lm − ∂µ ∂
ν b(2,ϵ)

ν
lm −m2 b(2,ϵ)

µ
lm = 0 , (6.39)

with
m2 = −a1 a2 , (6.40)

where a1 and a2 are the constants entering eqs. (6.37).
In order to recast the system in a manifestly Hermitian form, we turn once more to the

z variable of eq. (3.9) and redefine the two functions f and f2 according to

f (ϵ,ζ) = g− e
A−C

2 +χ , f
(ϵ,ζ)
2 = g+ e

C−A
2 +χ , (6.41)

where
∂z χ = |k|

2 ϵ ζ eA−C , (6.42)

and for brevity we leave the two signs ϵ and ζ implicit in g±. The end result is

A g− = −i ζ a1 g
+ , A† g+ = −i ζ a2 g

− (6.43)
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where now

A = ∂z +
Az − Cz

2 − ∂z χ, A† = −∂z +
Az − Cz

2 − ∂z χ , (6.44)

which modify the combinations in eqs. (6.13). The solution to A g− = 0 is

g− = c1 e
C−A

2 +χ , (6.45)

and, as for k = 0, is not normalizable. As a result, a1 must be different from zero and can
again absorbed in g+. The system (6.43) can thus be replaced with

A g− = g+ , A†A g− = m2 g− , (6.46)

where the Schrödinger-like equation is now[
−∂2

z + V − + |k|2

4 e2(A−C)
]
g− = m2 g− , (6.47)

with V − the first potential in eq. (6.16), and the additional |k|2 term is subdominant, at
both ends, with respect to V −. Therefore the leading singularities remain the same as for
k = 0, and the allowed self-adjoint boundary conditions are still determined by the ratio
C2
C1

. Since one is adding to the potential of the preceding section a positive contribution, all
modes corresponding to stable boundary conditions for k = 0 are simply lifted in mass by
the internal momentum. Moreover, the tachyonic modes, which have a continuous spectrum
of masses determined by the boundary conditions, can be lifted to zero mass. In fact, for
all values of k there are massless modes, which are obtained solving

A† g+ = 0 , A g− = g+ , (6.48)

whose internal wavefunctions are

g+ = c2 e
A−C

2 −χ , g− ∼ e
C−A

2 +χ
∫ z

zm

dz′ eA(z′)−C(z′)−2χ(z′) . (6.49)

Here χ can determined exactly as a function of r solving eq. (6.42), and reads

χ = −
√
10 ϵ ζ ρ |k| e−

r

2 ρ
√

10 . (6.50)

It approaches a constant at both ends of the interval, but nonetheless it changes the value of
the ratio C2

C1
by k-dependent terms. Note that the emergence of additional massless modes

occurs in all sectors, when starting from tachyonic boundary conditions. The peculiar
feature of this sector is that, even for k ̸= 0, the r-profile of these modes can be still deduced
from the first-order equation (6.46).

Summarizing, for all values of C2
C1

in the range (6.29) there is a boundary condition
lifting a k = 0 tachyon to a massless mode carrying an internal momentum. However, for
all boundary conditions that yield only stable modes for k = 0 the complete spectrum for
k ̸= 0 is also stable.
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7 Spin-2 modes from hµν

We can now turn to modes involving perturbations of the metric field. The simplest case is
obtained considering a traceless and divergence-free hµν , whose massless modes can describe
long-range gravity in lower dimensions. This spin-2 portion cannot mix with anything else,
and therefore one can set to zero all other perturbations when addressing it. The dynamical
αβ Einstein equation (5.18) then reduces to

(
e−2A □− e−2C k2

)
hαβ + e−2B[ (∂r − 4A′) ∂r + 4 (A′)2]hαβ − h2

2 ρ2 e−10C hαβ = 0 , (7.1)

while the other equations are identically satisfied. As usual, the d’Alembertian operator
defines m2, so that the preceding result is equivalent to[(

∂r − 2A′)2 + (m2 e−2A − k2 e−2C
)
e2B

]
hαβ = 0 , (7.2)

where we used some properties of the background, and in particular eqs. (A.15). It is
now convenient to introduce once more the variable z of eq. (3.9), and redefining the field
according to

hαβ = e−
1
2 B+ 5

2 A h̃αβ , (7.3)

leads finally to the Schrödinger-like equation[
∂2

z +m2 − k2 e2(A−C) − 1
4 (Bz −Az)2 − 1

2 (Bzz −Azz)
]
h̃αβ = 0 . (7.4)

This equation is identical to the one obtained for the dilaton-axion system in (3.22),
and leads to the same spectra for the self-adjoint boundary conditions discussed there. The
same considerations apply, and in particular there are boundary conditions granting spectra
with m2 ≥ 0, as in figure 5. For k = 0 there is the zero mode (3.25), which translates in
this case into the graviton wavefunction

hαβ(r) = e2A h̃(0)
αβ , (7.5)

which satisfies the boundary condition

∂r

(
r

1
2 hµν

)
∼ 0 . (7.6)

The finite normalization integral for this ground-state wavefunction,∫ ∞

0
dr e2B−6A hαβ h

αβ ∼
∫ ∞

0
dr e2(B−A) , (7.7)

also determines a finite value of the four-dimensional Planck mass, as discussed in [50].
This zero mode is crucial, since it grants the existence of a long-range four-dimensional
effective gravity. It corresponds to the same self-adjoint boundary conditions identified in
section 3. As for the dilaton, for any given boundary condition the spectrum for k ̸= 0 is
lifted upwards in mass, and therefore all stable choices remain stable also in the presence of
an internal momentum.
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8 Scalar modes from hij

Metric perturbations arising from hij are also simple to analyze. These are symmetric
traceless SO(5) two-tensors for k = 0, which are also transverse in the internal space if k ̸= 0
and cannot mix with other modes. All Einstein equations are then identically satisfied,
aside from the ij equation (5.23), which reduces to

(ij) :
(
e−2A □+ e−2C ∆

)
hij + e−2B[ (∂r − 4C ′) ∂r + 4 (C ′)2]hij

= − h2

2 ρ2 e
−10C hij . (8.1)

In terms of Fourier modes and of the z variable, this becomes(
m2 − e2(A−C) k2

)
hij +

(
∂z + 3 (Az + Cz)

)(
∂z − 2Cz

)
hij = 0 , (8.2)

after using some identities for the background collected in appendix A. One can now turn
this equation into a manifestly Hermitian form, letting

hij = h̃ij e
− 3A+C

2 , (8.3)

and the result is identical to eq. (7.4) or eq. (3.22). Therefore, the arguments of the
preceding section apply almost verbatim, the only difference being that the spacetime profile
of the massless mode, which is now valued in the 14 of SO(5), is in this case

hij ∼ eB−A . (8.4)

As a result hij ∼ r
1
2 as r → 0, or equivalently as z 1

6 as z → 0, s. Moreover, this wavefunction
behaves as (zm − z)−

2√
10 as z → zm.

9 Singlet vector modes

We can now turn to the four-dimensional vector modes that are invariant under the effective
internal symmetry group (SO(5) or SO(4), as we have seen, depending on the values of k).
These vector modes originate partly from the tensor, with

bµi =
1
Σ ∂i V1 µ , (9.1)

and partly from gravity, with the relevant fluctuations parametrized as

hµν = 1
Σ ∂(µ V2 ν) , hµr = V3 µ , hµi =

1
Σ ∂i V4 µ , (9.2)

where Σ is a scale that grants the different fields the standard dimension. Moreover, the
four vector fields V1, V2, V3 and V4 are all assumed to be divergence-free,

∂µ Va µ = 0 (a = 1, . . . , 4) , (9.3)
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in order not to include scalar components in them. As a result, the tensor equations (5.13)
become

∂[l bµ
m] = 0 , h

2 ρ hµ
m − e−6A ∂r bµ

m = 0 ,

∂µ b
µm = 0 , hµ

µ = 0 , (9.4)

and the only non-trivial one is the second, which leads to

∂m
[
h

2 ρ V4 µ − e−6A ∂r V1 µ

]
= 0 , (9.5)

while the others are identically satisfied. Now V2 µ can be gauged away, and the Einstein
equations (5.18)–(5.20) reduce to

(αβ) : ∂(α

[
e−2B (∂r − 2A′)V3 β) +

k2

Σ e−2CV4 β)

]
= 0 ,

(αr) :
(
e−2Am2 − e−2C k2

)
V3 α + k2

Σ e−2C (∂r − 2A′) V4 α = 0 ,

(αi) : ∂i

{e−2A

Σ m2 V4 α − e−2B (∂r − 2C ′)V3 α (9.6)

+ 1
Σ e−2B

[(
∂r −A′ − C ′)2 − (A′ − C ′)2]V4 α − e−10C

2 ρ2 Σ h2 V4 α

}
= 0 ,

while the rest, the (rr), (ri) and (ij) equations, are all identically satisfied. One can also
remove the overall ∂α from the first group of equations, while the (αi) equation, together
with the V1 µ and V4 µ fields, is only present for nonzero momenta.

9.1 k = 0 modes

For k = 0 only the first two of eqs. (9.6) are left, with only V3, and give

(αβ) :
(
∂r − 2A′)V3 β = 0 ,

(αr) : m2 V3 α = 0 . (9.7)

Therefore, there is in principle a massless vector with a wavefunction in the radial direction

V3 µ = hµr = e 2A V (0)
3 µ(x) . (9.8)

This, however, is not a normalizable mode, since the norm inherited from the Einstein-Hilbert
action,∫ ∞

0
dr

√
−g ∂ρ hµr ∂σhνr η

µν ηρσ e−2(2A+B) = −
∫ ∞

0
dr V (0)

3 µ □V (0)
3 ν η

µν , (9.9)

diverges. In conclusion, this sector describes no modes altogether.
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Figure 14. The k = 0 portion of the Schrödinger potential for f in eq. (9.17) (black, solid) and its
approximation (2.29) (red, dashed) with (µ, µ̃) =

( 1
3 , 2.18

)
, in units of 1

z02 . zm and z0 are defined in
eqs. (3.10) and (3.11).

9.2 k ̸= 0 modes

For k ̸= 0, the system becomes

(αβ) : e−2B (∂r − 2A′)V3 β + k2

Σ e−2CV4 β = 0 ,

(αr) :
(
e−2Am2 − e−2C k2

)
V3 α + k2

Σ e−2C (∂r − 2A′) V4 α = 0 ,

(αi) : e
−2A

Σ m2 V4 α − e−2B (∂r − 2C ′)V3 α

+ 1
Σ e−2B

[(
∂r −A′ − C ′)2 − (A′ − C ′)2]V4 α − e−10C

2 ρ2 Σ h2 V4 α = 0 . (9.10)

The first of these equations determines V4 in terms of V3, and this relation can be used in
the second, which becomes

e2(A−B) (∂r − 2A′ − 2B′ + 2C ′) (∂r − 2A′)V3 α +
(
m2 − k2 e2(A−C)

)
V3 α = 0 , (9.11)

while the third equation follows from the first two. Notice that the scale Σ does not enter
this eigenvalue equation, which determines the mass spectrum.

In terms of z-derivatives, making use of eq. (3.9), eq. (9.11) becomes

(∂z − 3Az −Bz + 2Cz) (∂z − 2Az)V3 α +
(
m2 − k2 e2(A−C)

)
V3 α = 0 , (9.12)

and letting
ω = 5Az + 3Cz

2 , V3 α = e
9 A+3 C

2 Ṽα(x) f(z) , (9.13)

leads to the manifestly Hermitian equation

(∂z − ω) (∂z + ω) f +
(
m2 − k2 e2(A−C)

)
f = 0 . (9.14)

We have thus reached once more a familiar form[
A†A+ k2 e2(A−C)

]
f = m2 f , (9.15)

where now
A = ∂z + ω , A† = −∂z + ω , (9.16)
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so that the Schrödinger potential is

V = e
√

5
2

r
ρ

320 z2
0 sinh3

(
r
ρ

) [10√10 sinh
(2 r
ρ

)
+ 29 cosh

(2 r
ρ

)
− 129

]
. (9.17)

The limiting behavior of the potential at the two ends is as in eq. (1.15), with µ = 1
3

and µ̃ = 1
15

(
4
√
10 + 20

)
≃ 2.18. Since µ̃ > 1, the only limiting behavior allowed at the

right end is

f ∼
(
1− z

zm

) 55+8
√

10
30

, (9.18)

while there are different options at the left end, with

f ∼ C1

(
z

zm

) 5
6
+ C2

(
z

zm

) 1
6
, (9.19)

and the self-adjoint boundary conditions are determined by the ratio C2
C1

. Note that the
solution of Af = 0 that we found in the previous section is not normalizable, due to its
behavior as r → ∞, but there is another independent massless solution of the Schrödinger
equation (9.15) with k = 0. It can be determined by the Wronskian method, and is given by

f = e
11A+13C

2 . (9.20)

It is normalizable and is characterized by

C2
C1

≃ −0.47 . (9.21)

Note that this zero mode is not a solution of eqs. (9.10) for k = 0, but nonetheless it can
be used to determine the shift for the hypergeometric approximation to the k-independent
portion of the potential,

∆V ≃ − π2

z2
m

(0.39)2 . (9.22)

The resulting eigenvalue equation reads

C2
C1

= −
(
π

2

)− 2
3 Γ

(
4
3

)
Γ
(
1.42 +

√
m2 + (0.39)2

)
Γ
(
1.42−

√
m2 + (0.39)2

)
Γ
(

2
3

)
Γ
(
1.76 +

√
m2 + (0.39)2

)
Γ
(
1.76−

√
m2 + (0.39)2

) , (9.23)

so that the corresponding instability region for the k = 0 portion of the potential is

−0.47 < C2
C1

< 0 . (9.24)

In conclusion, if C2
C1

lies outside this range, only massive modes emerge from this sector,
when one takes into account the complete k-dependent potential in eq. (9.15). However,
fine-tuning the ratio as a function of the toroidal radius it is possible to lift a tachyonic
mode of the k-independent potential to zero mass, whenever it is present.
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10 Non-singlet vector modes

These modes also originate partly from the self-dual tensor and partly from gravity, and
can be exhibited letting

b(2)
µ

ij = 1
Σ ∂[iW1µ

j] ,
1
2 ϵ

αβµν bµν
ij = 1

Σ2 ∂[i∂[αW2
β]j] + 1

2Σ2 ϵ
αβµν ∂[µ∂

[iW̃
j]
2 ν] ,

bµ
i =W3 µ

i , hµ
i =W4 µ

i , (10.1)

where Σ is again a scale that grants the different fields standard dimensions. All other
perturbations are set to zero. Moreover, in order to leave aside scalar and singlet vector
modes, the W fields thus defined are chosen to be divergence-free both in spacetime and in
the internal space, where the second condition is only relevant for k ̸= 0. In this fashion,
the tensor equations reduce to

∂[i∂[µW1 ν]
j] = −e

−4A−4C

Σ ∂r ∂
[i
(
∂[µW2ν]

j] + 1
2 ϵµν

αβ ∂[αW̃2β]
j]
)
,

1
Σ ∂r ∂

[iW1µ
j] = e2A+6C

(
∂[iW3 µ

j] + m2

Σ2 ∂
[iW2µ

j]
)
,

−k2

Σ W1µ
i = e−2C

[
h

2 ρ W4 µ
i − e−6A ∂r W3 µ

i
]
. (10.2)

Moreover, only the αi Einstein equation (5.20) is left, and reads

αi : e−2Am2W4 αi − e−2C k2W4 αi + e−2B
[(
∂r −A′ − C ′)2 − (A′ − C ′)2]W4 αi

= e−8C

[
2k2 h

ρΣ W1 α i +
h2

2 ρ2 e
−2C W4 α i

]
, (10.3)

after taking into account that the fields are divergence-free, and after using, as in previous
cases, the conditions □ = m2 and ∆ = −k2.

10.1 k = 0 modes

We can now solve these equations, starting from the toroidal zero modes. In this case W1,
W2 and W̃2 are absent, while W3 is linked to W4 according to

∂r W3 µ
i = h

2 ρ e
6AW4 µ

i . (10.4)

This leaves in principle an r-independent contribution to W i
3 µ, which does not affect the

tensor field strength of appendix B and therefore can be gauged away. Only W4 is thus left
as an independent field in this sector. It is divergence-free, as we have stated, and satisfies

e−2Am2W4 αi + e−2B
[(
∂r −A′ − C ′)2 − (A′ − C ′)2]W4 αi =

h2

2 ρ2 e
−10C W4 αi , (10.5)

or, using the results for the background metric in appendix A,

m2W4 αi + e2(A−B) (∂r − 2C ′) (∂r − 2A′)W4 αi = 0 . (10.6)
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Figure 15. The potential V of eq. (10.10) (black, solid) with its approximation (2.29) (red, dashed)
with (µ, µ̃) =

( 2
3 , 1.18

)
, in units of 1

z02 . zm and z0 are defined in eqs. (3.10) and (3.11).

Turning to the z variable of eq. (3.9) and performing the redefinition

W4 αi = e−
A+3C

2 Zαi(x)f(z) (10.7)

leads finally to the manifestly Hermitian Schrödinger-like equation for f ,

(−∂z + β) (∂z + β) f = m2 f , (10.8)

with
β = −1

2 (5Az + 3Cz) . (10.9)

The Schrödinger potential is now

V = e
√

5
2

r
ρ

320 z2
0 sinh3

(
r
ρ

) [2√10 sinh
(2 r
ρ

)
+ 9 cosh

(2 r
ρ

)
+ 131

]
, (10.10)

and is displayed as a function of z in figure 15. Note that the Schrödinger-like equation is
once more of the form

AA† f = m2 f , (10.11)

with
A = −∂z + β , A† = −∂z + β . (10.12)

Close to z = 0 the potential is as in eq. (1.15), with µ = 2
3 , while µ̃ = 1

15

(
4
√
10 + 5

)
≃

1.18.
The allowed wavefunctions thus behave as

f ∼
(
1− z

zm

)1.68
(10.13)

near the right end of the interval, while there are different options at the left end that are
compatible with the leading behavior of the potential, with

f ∼ C1

(
z

zm

) 7
6
+ C2

(
z

zm

)− 1
6
, (10.14)

and self-adjoint boundary conditions are characterized by fixed values of the ratio between
these two coefficients.
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There is a normalizable ground-state wavefunction,

f(r) = f0 e
5A+3C

2 , (10.15)

with f0 a constant, which solves A† f = 0 and corresponds to the special choice of boundary
conditions

C2
C1

≃ −2.42 . (10.16)

This result translates into the spacetime wavefunction

W4 αi(x, r) = f0 Zαi(x) e2A . (10.17)

Comparing with the hypergeometric potential (2.29) determines the corresponding
shift,

∆V ≃ − π2

z2
m

(0.71)2 , (10.18)

so that the eigenvalue equation for this sector reads

C2
C1

= −
(
π

2

)− 4
3 Γ

(
4
3

)
Γ
(
0.76 +

√
m2 + (0.71)2

)
Γ
(
0.76−

√
m2 + (0.71)2

)
Γ
(

1
3

)
Γ
(
1.42 +

√
m2 + (0.71)2

)
Γ
(
1.42−

√
m2 + (0.71)2

) . (10.19)

A tachyonic instability is present, in this sector, within the range

−2.42 < C2
C1

< 0 . (10.20)

The limiting form of W4 in eq. (10.17), which diverges proportionally to r− 1
2 as r → 0,

violates the no-flow conditions of [56]. This can be seen relatively simply starting from the
Kaluza-Klein toroidal reduction to five dimensions, so that the gravity field components
of interest, hµi, behave as Abelian vector fields. The further reduction on the interval can
then be analyzed referring to their Maxwell energy momentum tensor, and this leads simply
to the preceding conclusion.

10.2 k ̸= 0 modes

For nonzero internal momenta, one must consider the full system of eqs. (10.2) and (10.3),
but the transversality conditions that the fields satisfy allow one to remove the overall
∂i. We can now describe how one can build from them a manifestly Hermitian system of
second-order equations for these modes.

10.2.1 The Schrödinger-like system

Taking the exterior derivative of the first equation and making use of the transversality
conditions implies that W̃2 vanishes identically for m2 ̸= 0. On the other hand, for m2 = 0
it can be regarded as a mere redefinition of W2, which does not enter the other equations.
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In the following we shall thus remove W̃2 altogether, and as a result one can also remove
one spacetime derivative from the first of eqs. (10.2), so that the system reduces further to

W1 µ
i = −e

−4A−4C

Σ ∂r W2µ
i ,

1
Σ ∂r W1µ

i = e2A+6C

(
W3 µ

i + m2

Σ2 W2µ
i

)
,

−k2

Σ W1µ
i = e−2C

[
h

2 ρ W4 µ
i − e−6A ∂r W3 µ

i
]
. (10.21)

Note that the second-order equation (10.3) relates W1 to W4, so that it is natural to deduce
from this system another second-order equation linking these two fields. In order to do this,
one can start from the second of eqs. (10.21), which implies

∂r W3 µ
i = 1

Σ e−2A−6C (∂r − 2A′ − 6C ′) ∂r W1 µ
i − m2

Σ2 ∂r W2µ
i . (10.22)

Combining it with the first gives

∂r W3 µ
i = 1

Σ e−2A−6C (∂r − 2A′ − 6C ′) ∂r W1 µ
i + e4A+4C m2

Σ W1µ
i , (10.23)

and substituting these results into the last of eqs. (10.21) gives

−k2

Σ W1µ
i = h

2 ρ e
−2C W4µ

i − e−8(A+C)

Σ
(
∂r − 2A′ − 6C ′) ∂r W1 µ

i

− e2(C−A)

Σ m2W1 µ
i . (10.24)

This is the second equation we were after, to be considered in combination with eq. (10.3).
One can now separate variables, letting

Waµ
i(x, z) = wµ

i(x) Wa(z) , (a = 1, 2) (10.25)

which leads to the matrix form
MY = m2 Y , (10.26)

where Y is a column vector containing the two fields W1 and W4,

Y =
(
W1
W4

)
, (10.27)

and

M =
(
K2 − e2(A−B) (∂r − 2A′ − 6C ′) ∂r

h Σ
2 ρ e

2A−4C

2 hK2

ρ Σ e−6C K2 − e2(A−B) (∂r − 2C ′) (∂r − 2A′)

)
, (10.28)

with
K = |k| eA−C . (10.29)
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The mass spectrum is determined by this system, and therefore it is convenient to try
to reduce it to a manifestly Hermitian Schrödinger-like form. To this end, we turn once
more to the z variable of eq. (3.9), so that M becomes

M =
(
K2 − (∂z +Az − Cz) ∂z

h Σ
2 ρ e

2A−4C

2 hK2

Σ ρ e−6C K2 − (∂z + 3Az + 3Cz) (∂z − 2Az)

)
. (10.30)

This operator is still not manifestly Hermitian, but after redefining the fields according to

Y = ΛZ , (10.31)

with

Λ =

√ Σ
2 |k| e

C−A
2 0

0
√

2 |k|
Σ e−

A+3C
2

 , Z =
(
Z1
Z2

)
, (10.32)

the system finally takes the desired form,

M̃Z = m2 Z . (10.33)

Now the matrix is

M̃ =

K2 + (−∂z + αz) (∂z + αz) |k|h
ρ e2(A−3C)

|k|h
ρ e2(A−3C) K2 + (−∂z + βz) (∂z + βz)

 , (10.34)

where
αz = Cz −Az

2 , βz = −5Az + 3Cz

2 , (10.35)

and is manifestly Hermitian and independent of Σ. The scalar product∫
dz
(
|Z1|2 + |Z2|2

)
= Σ

2 |k|

∫
dz

[(2 |k|
Σ

)2
eA−C |W1|2 + eA+3C |W4|2

]
(10.36)

can also be deduced from these results, and the contribution within square brackets is
precisely what the effective action would yield. Note that, although M̃ is well defined in
the k → 0 limit, the scalar product is singular when expressed in terms of the original
variables. The behavior of M̃ in this limit and its implications for the boundary conditions
are examined in detail in appendix D.

10.2.2 Boundary conditions and stability analysis

We can now address the possible emergence of instabilities for nonzero values of k. This
very problem jeopardizes [43] the non-supersymmetric AdS × S vacua of [39, 40], but here
there is an important novelty, since the toroidal radius R is a free parameter, insofar as it is
large enough with respect to the Planck scale to make the present low-energy setup reliable.

To begin with, let us note that letting

Q =
(
∂z + αz K

K ∂z + βz

)
, (10.37)
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Figure 16. The bounded function u of eq. (10.39), in units of |k|ρ
z2

0
.

where K was defined in eq. (10.29), M̃ can be cast in the form

M̃ = Q†Q− uσ1 , (10.38)

with σ1 the familiar Pauli matrix and

u = − |k|
(
4Az e

A−C + h

ρ
e2(A−3C)

)
= |k| ρ

2 z2
0

e
3 r

ρ
√

10

cosh2
(

r
2 ρ

) , (10.39)

where z0 is the scale first defined in eq. (1.4).
Note that u is a positive and bounded function of r, which is displayed in figure 16, but

nonetheless the presence of the Pauli matrix σ1 in eq. (10.38) yields negative contributions
to the m2 eigenvalues. As a result, M̃ is not a manifestly positive operator, but for large
values of k the contribution of u is subdominant with respect to the K2 terms in Q†Q. The
internal momentum k is quantized in units of 1

R , with R the radius of the internal torus,
and enters all these expressions via the dimensionless combination

ξ = k ρ ∼ |k zm|
(3H zm)

1
3
. (10.40)

Therefore, there is a minimum nonzero value for ξ in this sector, corresponding to the
minimal non-vanishing internal momenta. It can be expressed in several equivalent ways, as

ξ0 =
(

zm
2

3H R3

) 1
3

≃ ρ

R
≃ 2π

(
ℓ

Φ 1
4

) 4
5
, (10.41)

where the flux Φ and the length ℓ of the interval were defined in the Introduction. For
ξ0 larger than a critical value ξc, and thus for R

ρ below a corresponding critical value,
no unstable modes can be present, since as we have stressed the terms depending on K
eventually dominate. However, special choices of boundary conditions may remove the
tachyons altogether, and in order to address this question and to obtain an estimate for ξc

one needs to characterize how m2 depends on the boundary conditions, while also taking
into account the contributions depending on the internal momentum k.

Our next goal is to characterize the independent self-adjoint boundary conditions at
the two ends of the interval that grant the positivity of Q†Q. Let us begin by considering
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the behavior at the origin, which is more intricate. At the z = 0 end, the eigenvalue
equation (10.33) reduces to

Q†
0Q0 Z = 0 , (10.42)

where Q0, the dominant term in Q near z = 0, is given by

Q0 = ∂z +
1
6 z + ξ

(
zm

z

) 1
3
σ1 . (10.43)

The contributions involving u and m2 are negligible with respect to these singular terms,
which include some k-dependent contributions at this end. As a result, the analysis can be
split into a pair of steps. One first solves

Q†
0 Ψ = 0 , (10.44)

obtaining

Ψ =
(
z

zm

) 1
6
{
cosh

[
3 ξ
2

(
z

zm

) 2
3
]
+ σ1 sinh

[
3 ξ
2

(
z

zm

) 2
3
]}

Ψ0 , (10.45)

with Ψ0 a constant vector, and the complete solution of Q†
0Q0 Z = 0 can then be obtained

solving the inhomogeneous equation

Q0 Z = Ψ . (10.46)

It reads

Z =
(
zm

z

) 1
6
{
cosh

[
3 ξ
2

(
z

zm

) 2
3
]
− σ1 sinh

[
3 ξ
2

(
z

zm

) 2
3
]}

×
{
χ0 +

∫ z
zm

dy y
1
3
[
cosh

(
3 ξ y

2
3
)
+ σ1 sinh

(
3 ξ y

2
3
)]

Ψ0

}
, (10.47)

where χ0 ia another constant vector.4 We now let

χ0 =
(
C12
C22

)
, Ψ0 = 4

3

(
C11
C21

)
, (10.48)

and the limiting behavior of the preceding expression close to z = 0 then yields

Z1 ∼ C11

(
z

zm

) 7
6
+ C12

(
z

zm

)− 1
6
+ ξ

2

[
C21

(
z

zm

) 11
6
− 3C22

(
z

zm

) 1
2
]
,

Z2 ∼ C21

(
z

zm

) 7
6
+ C22

(
z

zm

)− 1
6
+ ξ

2

[
C11

(
z

zm

) 11
6
− 3C12

(
z

zm

) 1
2
]
. (10.49)

This limiting behavior will be important in the following, since it characterizes generic
wavefunctions Z such that M̃Z is also in L2, insofar as the left end of the interval is

4In this section, for simplicity, we are not rescaling the Cij by the µi, as in section 10.2, since µ1 = µ2,
and therefore this would only introduce an overall factor in the following equations.
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concerned. Note that the structure of eqs. (10.49) is fully determined by the ξ-independent
terms, which rest on the indicial exponents for the limiting diagonal system discussed in
appendix D. Yet, the additional terms that we have identified are instrumental to guarantee
that the k-dependent terms contained in M̃ do not give rise to divergent contributions
from the z = 0 end.

As discussed in section 2, the boundary terms that ought to vanish in order to grant
self-adjointness are of the form[

Z̃† ∂zZ −
(
∂z Z̃

†
)
Z
]z=zm

z=0
, (10.50)

with Z and Z̃ a pair of two-component vectors whose asymptotic behavior at the origin is as
in eq. (10.49), with coefficients C and C̃. We shall focus on the natural choice of conditions
given independently at the two ends.At the origin the coefficients must thus satisfy

C̃∗
12C11 − C̃∗

11C12 + C̃∗
22C21 − C̃∗

21C22 = 0 , (10.51)

which is independent of ξ, as expected.
The linear relations granting that eq. (10.51) holds were discussed in section 2 for

systems involving n-component vectors. However, in the present n = 2 case there is an
alternative, more convenient formulation that we can now describe. Let us therefore start
by considering the two-component vectors

X1 =
(
C11
C12

)
, X2 =

(
C22
C21

)
, (10.52)

and their counterparts X̃1,2, while also recasting eq. (10.51) as the invariance condition for
a quadratic form resting on σ2:

X̃
†
1 σ2 X1 = X̃

†
2 σ2 X2 . (10.53)

The self-adjoint boundary conditions given independently at z = 0 rest on a U(1, 1) matrix
U , such that

U † σ2 U = σ2 , (10.54)

which links the two vectors X1,2 according to

X2 = U X1 . (10.55)

The U matrix is conveniently parametrized as

U (ρ, θ1, θ2, β) = eiβ [cosh ρ (cos θ1 1− i σ2 sin θ1) + sinh ρ (σ3 cos θ2 + σ1 sin θ2)] , (10.56)

and the self-adjoint boundary conditions at z = 0 thus depend, in general, on four real num-
bers.

Moreover, an integration by parts leads to∫ zm

0
dz Z†Q†QZ =

∫ zm

0
dz |QZ|2 −

[
Z†QZ

]z=zm

z=0
, (10.57)
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where the first term on the r.h.s. is manifestly positive. Consequently, the contribution
from the z = 0 end is not negative if the limiting contributions from Z†QZ at both ends
are positive. In particular, at z = 0 one is led to

Re [C∗
12 C11 + C∗

22 C21] ≥ 0 , (10.58)

where the self-adjointness condition was taken into account. Making use of eq. (10.55), this
positivity condition at z = 0 is equivalent to demanding the positivity of the symmetric
matrix

S = σ1 + U † σ1 U , (10.59)

as shown in [44]. In terms of the global parametrization (2.8), the restrictions thus enforced
on the parameters read

sin (θ1 + θ2) ≥ 0 , tanh2 ρ cos2 θ2 − cos2 θ1 ≤ 0 . (10.60)

Identical conditions emerged, in a similar context, in section 3.2.5 of [44].
Our next task is to identify the possible independent self-adjoint boundary conditions

at z = zm. These depend on the values (µ̃1, µ̃2) = (0.09, 1.1) that were given after eq. (D.2).
This analysis is simpler, since the k-dependent terms vanish in the limit, and consequently
the dominant terms in M̃ are captured by the diagonal matrix

Q†
∞ Q∞ , (10.61)

with

Q∞ =

 ∂z +
1
2 +µ̃1
zm−z 0
0 ∂z +

1
2 +µ̃2
zm−z

 . (10.62)

The allowed limiting behaviors are

Z1 ∼ C13

(
zm − z

zm

) 1
2 +µ̃1

+ C14

(
zm − z

zm

) 1
2−µ̃1

, Z2 ∼ C23

(
zm − z

zm

) 1
2 +µ̃2

, (10.63)

since µ̃2 > 1, and therefore only one of the two possible options for Z2 leads to normalizable
solutions. The contribution from the upper end to the boundary term in eq. (10.50) yields
the condition

C̃∗
14C13 − C̃∗

13C14 = 0 , (10.64)

and consequently the ratio between C13 and C14 must be a real number, and we let

cot
(
α̃

2

)
= C13
C14

. (10.65)

Turning now to the positivity condition, let us note that there is a difference with respect
to the other end, since Q∞ annihilates the least singular contribution to Z1, while Q0 was
suppressing the most singular one. As a result, the boundary contribution from zm to
eq. (10.57) is now dominated by

−1− µ̃1
zm

|C14|2
(
1− z

zm

)−2 µ̃1

, (10.66)

– 70 –



J
H
E
P
1
1
(
2
0
2
3
)
0
6
1

0.5 1.0 1.5 2.0 2.5 3.0
3.4 ξ

5

10

15

m
2

0.5 1.0 1.5 2.0 2.5 3.0
3.4 ξ

-5

5

10

15

20

m
2

Figure 17. m2 as a function of ξ, with (ρ, θ1, θ2, β) =
(
2,−π

2 ,
π
2 , 0
)

(left panel) and with
(ρ, θ1, θ2, β) = (0, 0, 0, 0) (right panel). The dots are examples of possible allowed values for ξ,
if the quantization of k is taken into account.

which is singular and negative. Although this term can be canceled by the bulk contribution
in eq. (10.57), positivity is clearly guaranteed if C14 = 0, or α̃ = 0, and we shall abide to
this choice in the following.

We can now explore whether, for the self-adjoint boundary conditions granting positivity
of Q†Q, which in this case are characterized by α̃ = 0 and by the restrictions on the U(1, 1)
parameters in eq. (10.60), instabilities can arise when the k-dependent terms in M̃ are fully
taken into account. Finding this out exactly is difficult, but one can rely on the variational
principle, according to which the ground-state energy of the Schrödinger system is given by

m2
0 (U, α̃) = Inf

Ψ∈S

[
⟨Ψ|M̃ |Ψ⟩
⟨Ψ|Ψ⟩

]
, (10.67)

where the infimum is over the set S of all normalizable wavefunctions Ψ for which M̃Ψ
is also normalizable, and which satisfy the boundary conditions (10.55) and (10.65). In
practice, working within a subset S0 ⊂ S determined by a finite number of parameters and
minimizing over them can yield results that approximate closely from above the actual
value of m2

0:

m2 (S0) = Inf
Ψ∈S0

[
⟨Ψ|M̃ |Ψ⟩
⟨Ψ|Ψ⟩

]
≥ m2

0 . (10.68)

Negative values of m2 (S0) arising from these estimates thus signal the presence of tachyonic
instabilities.

Some details on our variational tests are collected in appendix E, and their indications
can be summarized as follows:

• self-adjoint boundary conditions exist for which no tachyons are present for all values
of ξ0. An example of this type, with (ρ, θ1, θ2, β) =

(
2,−π

2 ,
π
2 , 0

)
, is presented in the

left panel of figure 17;

• other boundary conditions lead to the absence of tachyons provided ξ0 is larger than
a critical value ξc. An example of this type, with (ρ, θ1, θ2, β) = (0, 0, 0, 0) determines
ξc ≃ 3.4, and is presented in the right panel of figure 17.
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In conclusion, no tachyonic modes are present in this sector with proper choices of
boundary conditions. The parameter space characterizing them depends on the background
through the combination ξ0 of eq. (10.41), and its measure grows as ξ0 ∼ ρ

R increases.

11 Non-singlet scalar modes

We can now turn to scalar perturbations, and we begin by considering the modes that for
k = 0 are valued in the fundamental representation of SO(5). These originate from the
field profiles

bi = ϕi
1 , bµ

i = 1
Σ ∂µϕ

i
2 , b(2)

µ
ij = 1

Σ2 ∂µ∂
[iϕ3

j] ,

hij = 1
Σ ∂(iϕ4

j) , hµ
i = 1

Σ ∂µϕ
i
5 , hr

i = ϕi
6 , (11.1)

which involve the independent scalar fields ϕa
i, with a = 1, . . . , 6. A convenient choice of

gauge fixing, using the ξi of eqs. (5.9), is in this case

ϕi
5 = 0 , (11.2)

and, as for the preceding sectors, we begin our analysis from the modes with k = 0.

11.1 k = 0 modes

In this case the fields ϕ3 and ϕ4 disappear, and in the gauge of eq. (11.2) the tensor
equations (5.13) reduce to

ϕi
1 = − 1

Σ e−2C−6A∂r ϕ
i
2,

∂r ϕ
i
1 = e−2C

[
h

2 ρ ϕ6
i + m2

Σ e10Cϕi
2

]
. (11.3)

In addition, the αi and αr Einstein equations (5.20) and (5.22) reduce to

e−2B (∂r − 2A′)ϕi
6 = 2h

ρ
e−8C ϕi

1 ,

m2 Σ e−2Aϕi
6 = −m2 2h

ρ
ϕi

2 . (11.4)

When m ̸= 0, making use of this last equation, one can express ϕ6 in terms of ϕ2, and then
the first of eqs. (11.4) becomes identical to the first of eqs. (11.3), while the second becomes

e−2B+8C(∂r − 2B′ + 8C ′)(∂r − 2A′)ϕi
6 = e−2C

[
h2

ρ2 ϕ6
i −m2 e10C−2Aϕi

6

]
. (11.5)

Note, however, that the end result also applies if m = 0, as can be seen retracing the
preceding steps.

Working in terms of the variable z of eq. (3.9) and performing the field redefinition
and the separation of variables

ϕi
6(x, z) = e

7A−3C
2 χi

6(x) f(z) , (11.6)
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Figure 18. The left panel shows the normalized zero-mode wavefunctions of eqs. (11.6). The right
panel compares the corresponding potential V of eq. (11.8) (black, solid) with its approximation (2.29)
(red,dashed) with (µ, µ̃) =

( 2
3 , 2.27

)
, in units of 1

z02 . zm and z0 are defined in eqs. (3.10) and (3.11).

leads to the manifestly Hermitian Schrodinger-like equation(
∂z +

3
2(Cz −Az)

)(
∂z −

3
2(Cz −Az)

)
f(z) = −m2χi

6 +
h2

ρ2 e
2A−10Cf(z) . (11.7)

The corresponding potential

V (r) = e
√

5
2

r
ρ

320 z2
0 sinh3

(
r
ρ

) [18√10 sinh
(2 r
ρ

)
+ 9 cosh

(2 r
ρ

)
+ 131

]
(11.8)

is displayed in figure 18.
Using eqs. (A.19), eq. (11.7) can be surprisingly recast in the form

A†A f(z) = m2 f(z) , (11.9)

where
A = ∂z −

9
2 Az −

7
2 Cz , A† = −∂z −

9
2 Az −

7
2 Cz , (11.10)

using the identities involving Az and Cz collected in appendix A.
Close to z = 0 the potential is as in eq. (1.15), with µ = 2

3 , while µ̃ = 1
5

(
2
√
10 + 5

)
≃

2.27. Consequently, a single limiting behavior is allowed at zm, with f(z) ∼ (zm − z)2.77,
but close to z = 0 there is more freedom, and in general

f(z) ∼ C1

(
z

zm

) 7
6
+ C2

(
z

zm

)− 1
6

(11.11)

so that self-adjoint boundary conditions exist for arbitrary fixed ratios C2
C1

. A particular
choice solves Af(z) = 0,

f(z) = C e
9 A+7 C

2 . (11.12)

This wavefunction is normalizable, as the reader can simply verify, and corresponds to the
choice

C2
C1

= −6.2 , (11.13)

and thus to the profile
ϕi

6(x, z) = e8A+2C χi
6(x) (11.14)

for hr
i.
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As in other sectors, one can approximate the potential by the hypergeometric form
of eq. (2.29), up to a shift that can be determined demanding that the resulting massless
mode correspond to the ratio between C2 and C1 in eq. (11.13). In this case one finds

∆V = − π2

z2
m

(1.23)2 , (11.15)

so that the instability region for this sector is

−6.2 < C2
C1

< 0 . (11.16)

11.2 k ̸= 0 modes

Let us now turn to modes with a nonzero internal momentum k. As in previous cases, the
scalars are valued in the fundamental representation of the SO(4) transverse to k, and the
fields satisfy the conditions

ki ϕ
i
a = 0, a = 1, . . . 6 . (11.17)

The longitudinal excitations will contribute to the singlet scalar spectrum.

11.2.1 The Schrödinger-like system

In the gauge of eq. (11.2), the tensor equations become

∂r ϕ
j
3 = e2A+6C Σϕj

2 ,

ϕi
1 −

k2

Σ2 ϕ3
i = − 1

Σ e−6A−2C ∂r ϕ
i
2 ,

∂r ϕ1
i = e−2C

[
h

2 ρ ϕ6
i + m2

Σ e10Cϕi
2

]
. (11.18)

The αi Einstein equation (5.20) reduces to

e−2B (∂r − 2A′)ϕi
6 − e−2C k2

Σ ϕi
4 = e−8C 2h

ρ

(
ϕi

1 −
k2

Σ2 ϕ
i
3

)
, (11.19)

while the ri and ij Einstein equations (5.22) and (5.23) reduce to
(
e−2Am2 − e−2C k2

)
ϕi

6 +
1
Σ e−2C (∂r − 2C ′)k2ϕi

4 = −2m2 h

ρΣ ϕi
2 , (11.20)

m2e−2Aϕi
4 − Σ e−2B (∂r − 2C ′)ϕi

6 + e−2B[ (∂r − 4C ′) ∂r + 4 (C ′)2]ϕi
4 = − h2

2 ρ2 e
−10Cϕi

4 ,

which can also be cast in the form

k2e−2C
[
Σϕi

6 −
(
∂r − 2C ′)ϕi

4

]
= 2m2 h

ρ

[
ϕi

2 +
ρΣ
2h e

−2A ϕi
6

]
,

m2 ϕi
4 − Σ e2(A−B) (∂r − 2C ′) [Σϕi

6 −
(
∂r − 2C ′)ϕi

4

]
= 0 . (11.21)

This is a complicated-looking system for five different fields, which comprises one
second-order equation and five first-order ones. Note that there is still a local symmetry
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that allows one to shift ϕi
1 and ϕi

3 by r-independent amounts in such a way that
(
ϕi

1 − k2

Σ2 ϕ
i
3

)
is unaffected. Up to this gauge symmetry, the system determines uniquely ϕi

1, ϕi
3 and ϕi

4 in
terms of ϕi

2 and ϕi
6.

We can now obtain a system of second-order equations for ϕi
2 and ϕi

6. To this end, one
can use the second of eqs. (11.18) in eq. (11.19), obtaining

e−2B Σ
(
∂r − 2A′)ϕi

6 − e−2C k2 ϕi
4 = −2h

ρ
e−6A−10C ∂r ϕ

i
2 . (11.22)

Next, one can combine the derivative of the second of eqs. (11.18) with the first and the
third, obtaining the first equation we were after

e−6A−2C (∂r − 6A′ − 2C ′) ∂rϕ
i
2 = −Σh

2 ρ e
−2C ϕi

6 −
(
m2 e8C − k2 e2A+6C

)
ϕi

2 . (11.23)

In order to obtain the second, one can differentiate eq. (11.22), and adding it to the first of
eqs. (11.20) gives

e−2B (∂r − 2B′) (∂r − 2A′)ϕi
6 +

(
e−2Am2 − e−2C k2

)
ϕi

6

= − 2h
Σ ρ

[
e−6A−10C (∂r − 6A′ − 10C ′) ∂r +m2

]
ϕi

2 . (11.24)

One can also combine eqs. (11.23) and (11.24) in order to eliminate the second derivative of
ϕ2 from the second equation, and the system can be presented in the more convenient form

−
[
e2(A−B) (∂r − 6A′ − 2C ′) ∂r − k2e2(A−C)

]
ϕi

2 −
Σh
2 ρ e

−10C ϕi
6 = m2 ϕi

2 ,

−
[
e2(A−B) (∂r − 2B′) (∂r − 2A′)− k2 e2(A−C) − h2

ρ2 e
2A−10C

]
ϕi

6

+ 2h
Σ ρ

(
8C ′e−4A−10C∂r − k2e4A−2C

)
ϕi

2 = m2 ϕi
6 . (11.25)

Now, as a first step toward attaining a manifestly Hermitian form, we turn to the
independent variable z of eq. (3.9), and the system becomes

−
[
(∂z − 3Az + 3Cz) ∂z − k2 e2(A−C)

]
ϕi

2 −
Σh
2 ρ e

−10C ϕi
6 = m2 ϕi

2 ,

−
[
(∂z − 5(Az + Cz)) (∂z − 2Az)− e2(A−C) k2 − h2

ρ2 e
2A−10C

]
ϕi

6

+ 2h
Σ ρ e

2A
(
8Cz∂z − k2e2(A−C)

)
ϕi

2 = m2 ϕi
6 .

Separating variables letting

ϕi
a(x, z) = ϕi(x) fa(z) (a = 2, 6) , (11.26)

in matrix notation the system becomes

MΨ = m2 Ψ , with Ψ =
(
f2
f6

)
(11.27)
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and

M =
(
−
[
(∂z − 3Az + 3Cz) ∂z −K2] −Σ h

2 ρ e
−10C

2 h
Σ ρ e

2A
[
8Cz∂z −K2] −

[
(∂z − 5(Az + Cz)) (∂z − 2Az)−K2 − 16W2

5
] ) .

(11.28)
The two quantities K2 and W5 that enter this expression were defined in eqs. (10.29)

and (A.20), and a number of related properties can be found in appendix A. Note that the
differential operator M is, once more, not in a manifestly Hermitian form. This form can
reached, as in section 10.2, by a convenient change of basis, which is now slightly more
involved.

In general, letting
Ψ = ΛΨ̃ , (11.29)

with Λ an invertible matrix, one obtains for Ψ̃ the new system

M̃ Ψ̃ = m2 Ψ̃ , (11.30)

with
M̃ = Λ−1 MΛ . (11.31)

In this sector the matrix Λ and its inverse are not diagonal, and read

Λ =
(
eξ1 0
−eξ3 eξ2

)
, Λ−1 =

(
e−ξ1 0

eξ3−ξ1−ξ2 e−ξ2

)
, (11.32)

where

eξ1 = e
3
2 (A−C)

√
Σ

2 |k| , eξ2 = e
1
2 (7 A+5 C)

√
2 |k|
Σ , eξ3 = e

1
2 (7 A−3 C) h

ρΣ

√
2Σ
|k| . (11.33)

These redefinitions lead to the manifestly Hermitian operator

M̃ =
(
(−∂z + αz) (∂z + αz) +K2 + 16W2

5 −4W5 K
−4W5 K (−∂z + βz) (∂z + βz) +K2

)
, (11.34)

where
αz = 3

2 (Az − Cz) , βz = −1
2 (3Az + 5Cz) , (11.35)

and the scalar product, after separating variables, takes the form∫
dz

[∣∣∣Ψ̃1
∣∣∣2 + ∣∣∣Ψ̃2

∣∣∣2]
= Σ

2 |k|

∫
dz

[(2 |k|
Σ

)2
e3(C−A) |f2|2 + e−(3A+5C)

∣∣∣∣f2 + e−2A ρΣ
2h f6

∣∣∣∣2
]
. (11.36)

The correspondence with the scalar product implied by the Schrödinger system (11.9) of
the previous section can be exhibited dividing this expression, which becomes singular for
vanishing k, by an overall factor proportional to |k|, and focusing on the first term.
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Actually, using the result in section 11.1, M̃ can be recast in a form that is very similar
to eq. (10.34),

M̃ =

 (−∂z + α̃z) (∂z + α̃z) +K2 − |k|h
ρ e2(A−3C)

− |k|h
ρ e2(A−3C) (−∂z + βz) (∂z + βz) +K2

 , (11.37)

where
α̃z = −9

2 Az −
7
2 Cz , βz = −1

2 (3Az + 5Cz) , (11.38)

and the sign of the off-diagonal terms is not significant, since it could be flipped conjugating
by σ3, or equivalently redefining one of the two wavefunctions by an overall sign.

11.2.2 Boundary conditions and stability analysis
As before, self-adjoint boundary conditions are determined by the leading behavior of the
wavefunctions at the two ends, and thus by the indices µi and µ̃1 that first emerged in
eq. (1.15). In this case µ1 = 2

3 and µ2 = 1
3 , so that close to the origin, proceeding as in

section 10.2, one can identify the limiting behavior5

Ψ̃1 ∼ C11√
2

(
z

zm

) 7
6
+ C12√

2

(
z

zm

)− 1
6
+ 2 ξ

[
−3
5 C21

(
z

zm

) 3
2
+ C22

(
z

zm

) 5
6
]

+ 3
4
√
2
ξ2
[
19
40 C11

(
z

zm

) 5
2
− 3C12

(
z

zm

) 7
6
log

(
z

zm

)]
,

Ψ̃2 ∼ C21

(
z

zm

) 5
6
+ C22

(
z

zm

) 1
6
+
√
2 ξ
[
−1
5 C11

(
z

zm

) 11
6
+ 3C12

(
z

zm

) 1
2
]

+ 1
8 ξ

2
[
27
5 C21

(
z

zm

) 13
6
− C22

(
z

zm

) 3
2
]
, (11.39)

where
ξ = |k zm|

(3H zm)
1
3

(11.40)

is the dimensionless quantity that already emerged in eq. (10.40). These expressions are
more complicated than those obtained in section 10.2, but the additional terms proportional
to k2 are needed to grant that M̃ Ψ̃ be in L2.

The behavior at the other end of the interval is simpler, since M̃ is dominated by the
diagonal matrix

M̃ =


(
−∂z +

1
2 +µ̃1
zm−z

)(
∂z +

1
2 +µ̃1
zm−z

)
0

0
(
−∂z +

1
2

zm−z

)(
∂z +

1
2

zm−z

)
 , (11.41)

with the two indices µ̃1 ≃ 2.27 and µ̃2 = 0. Consequently, the limiting behavior of the
wavefunctions close to zm is captured by

Ψ̃1 ∼
(
1− z

zm

)2.77
, Ψ̃2 ∼

(
1− z

zm

) 1
2
[
C23 log

(
1− z

zm

)
+ C24

]
, (11.42)

since the other possible exponent for Ψ̃1 would be incompatible with the L2 condition.
5For simplicity, all these Cij coefficients were redefined by an overall factor

√
3 with respect to section 2.
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As in section 10.2, the limiting behaviors at the origin that grant self-adjointness are
parametrized by a U(1, 1) matrix such that(

C22
C21

)
= U

(
C11
C12

)
, (11.43)

while the allowed choices at the other end are parametrized by

cot
(
α̃

2

)
= C23
C24

. (11.44)

At the upper end positivity is guaranteed if C23 = 0, while at the lower end one is led
again to eq. (10.58), and thus positivity is surely guaranteed if the conditions in eq. (10.60)
hold. We shall focus on these options in the following.

Before ending the section, let us note that in this sector M̃ admits the decomposition

M̃ = Q̂† Q̂+∆ , (11.45)

where
Q̂ =

(
∂z + αz 0

0 ∂z + βz

)
(11.46)

and
∆ =

(
K2 + 16W2

5 −4W5 K
−4W5 K K2

)
, (11.47)

is a manifestly positive-definite matrix, since its trace and determinant are both positive,
while Q̂† Q̂ can be positive definite with self-adjoint boundary conditions determined by αz

and βz. However, ∆ contains contributions proportional to 1
z2 , and therefore the self-adjoint

boundary conditions for M̃ are different in general, so that eq. (11.45) does not suffice to
imply its positivity.

With general self-adjoint boundary conditions appropriate to M̃, our variational tests
summarized in appendix E provide evidence that stability is generally granted, in this
sector, by values of ξ0 of eq. (10.41) beyond a few units, while special choices of boundary
conditions lead to spectra that are fully stable without any conditions on ξ0.

12 Singlet scalar modes

We can now conclude our analysis with a discussion of the most intricate sector of the
spectrum, which concerns scalar singlets. These originate from a number of different tensor
and metric perturbations, which can be parametrized as follows:

b = ϕ1 , bi = 1
Σ ∂iϕ2 , bi

µ = 1
Σ2 ∂µ∂

iϕ3 ,

hµν = ηµνϕ4 +
1
Σ2 ∂µ∂νϕ5 , hµr = 1

Σ ∂µϕ6 , hµi =
1
Σ2 ∂µ∂iϕ7 ,

hrr = ϕ8 , hri =
1
Σ ∂iϕ9 , hij = δijϕ10 +

1
Σ2 ∂i∂jϕ11 . (12.1)
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Since the background values of the dilaton-axion pair are constant, their perturbations
decouple from these other scalar modes. For this reason we could treat them separately
in section 3, and the same happened in section 4 for the perturbations arising from the
two-forms Bi

MN , so that here we can set all of them to zero. One can also fix diffeomorphism
invariance, using the three parameters ξµ, ξr and ξi, making the convenient gauge choice

ϕ5 = ϕ6 = ϕ7 = 0 , (12.2)

but these steps leave nonetheless, in general, eight fields within this sector. They also
introduce boundary fields, as in other sectors. For brevity we shall not discuss them,
although they can change the massless spectrum, since they cannot give rise to instabilities.
Moreover, here we confine our attention to the k = 0 modes, where some simplifications
occur, leaving the general case, which involves a number of novel features, to a future
publication [68].

For k = 0, only the four fields ϕ1, ϕ4, ϕ8 and ϕ10 are left. The tensor equations reduce
to

h

4 ρ
(
−4 e−2A ϕ4 − e−2B ϕ8 + 5 e−2C ϕ10

)
+ e−8A ∂r ϕ1 = 0 , (12.3)

and determine ϕ1 in terms of the different metric perturbations, while the αβ Einstein
equation involves two different structures, associated to ∂α∂β and ηαβ , and the corresponding
terms are to vanish separately. This gives for the modes belonging to this sector the two
additional equations

αβ1 : 2 e−2A ϕ4 + e−2B ϕ8 + 5 e−2C ϕ10 = 0 , (12.4)
αβ2 : e−2Am2 ϕ4 +A′ e2(A−B)[4 e−2A (∂r − 2A′)ϕ4

− e−2B (∂r − 2B′)ϕ8 + 5 e−2C (∂r − 2C ′)ϕ10
]

+ e−2B[ (∂r − 4A′) ∂r + 4 (A′)2]ϕ4 = 2 h
ρ
e2(A−B) ∂r ϕ1 −

3
2
h2

ρ2 e
−10C ϕ4 . (12.5)

The remaining Einstein equations become

αr : 3 e−2A (∂r − 2A′)ϕ4 +
(
A′ −B′) e−2B ϕ8 + 5 e−2C (∂r −A′ − C ′)ϕ10 = 0 ,

rr : e−2Am2 ϕ8 −B′ ∂r

(
e−2B ϕ8

)
+ 4 e−2A (∂r −B′) (∂r − 2A′)ϕ4 + 5 e−2C (∂r −B′) (∂r − 2C ′)ϕ10

= 2 h
ρ
∂r ϕ1 − 2 h

2

ρ2 e
6A ϕ4 ,

ij : e−2Am2 ϕ10 + 4C ′ e2(C−A−B) (∂r − 2A′)ϕ4 − e2(C−2B) [2C ′′ + C ′ (∂r − 2B′)]ϕ8

+ e−2B[∂2
r + C ′ ∂r − 6 (C ′)2]ϕ10 = 2 h

2

ρ2 e
−10C ϕ10 . (12.6)

One can now eliminate ϕ8 using eq. (12.4), and then eq. (12.3) reduces to

∂r ϕ1 = h

2 ρ
(
e6A ϕ4 − 5 e8A−2C ϕ10

)
, (12.7)
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and determines ϕ1 up to an r-independent contribution that is pure gauge, so that only ϕ4
and ϕ10 are left. After the convenient redefinitions

e−2A ϕ4 = χ4 , e−2B ϕ8 = χ8 , e−2C ϕ10 = χ10 , (12.8)

the αβ1 Einstein equation (12.4) reduces to the simple algebraic constraint

2χ4 + χ8 + 5χ10 = 0 , (12.9)

and eliminating χ8 now leads to a system of four equations for the two fields χ4 and χ10

αβ2 : m2 χ4 + e2(A−B)
[
10A′ ∂r +

5h2

ρ2 e8A

]
χ10

+ e2(A−B)
[
∂2

r + 6A′ ∂r +
h2

ρ2 e
8A

]
χ4 = 0 ,

rr : −m2 (2χ4 + 5χ10) + e2(A−B)
[(
4∂r + 8A′ − 2B′) ∂r +

h2

ρ2 e
8A

]
χ4

+ e2(A−B)
[
5
(
∂r + 2C ′) ∂r +

5h2

ρ2 e8A

]
χ10 = 0 ,

ij : m2 χ10 + e2(A−B)
[
6C ′ ∂r −

h2

ρ2 e
8A

]
χ4

+ e2(A−B)
[
∂2

r + 10C ′ ∂r −
5h2

ρ2 e8A

]
χ10 = 0 ,

αr :
(
3 ∂r + 6A′ + 10C ′)χ4 + 5

(
∂r + 2A′ + 6C ′)χ10 = 0 . (12.10)

In terms of the z variable of eq. (3.9), this system takes the more compact form

10
(
Az ∂z +8W2

5

)
χ10+

[
(∂z +9Az +5Cz)∂z +m2+16W2

5

]
χ4 = 0 ,

2
[
(2∂z +6Az +5Cz)∂z −m2+8W2

5

]
χ4+5

[
(∂z +3Az +7Cz)∂z −m2+16W2

5

]
χ10 = 0 ,

2
(
3Cz ∂z −8W2

5

)
χ4+

[
(∂z +3Az +15Cz)∂z +m2−80W2

5

]
χ10 = 0 ,

(∂z +2Az) (3χ4+5χ10)+10Cz (χ4+3χ10) = 0 . (12.11)

However, the rr equation is a linear combination of the αβ and ij ones, once the αr equation
is used. Moreover, the three second-order equations can be combined into another first-order
one. This is in fact the rr Einstein equation, which we often refer to as “Hamiltonian
constraint”,

−m2 (3χ4 + 5χ10) + e2(A−B)
[
−20(A′ + C ′)∂r +

5h2

ρ2 e8A

]
χ10

+e2(A−B)
[
−4(3A′ + 5C ′)∂r +

h2

ρ2 e
8A

]
χ4 = 0 , (12.12)
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or, in terms of the z variable,

m2 (3χ4 + 5χ10) + 20
[
(Az + Cz) ∂z − 4W2

5

]
χ10 + 4

[
(3Az + 5Cz) ∂z − 4W2

5

]
χ4 = 0 .

(12.13)
In this fashion, one ends up with two first-order equations linking χ4 and χ10, and all second-
order equations follow from them. Therefore, the system only contains one independent
scalar degree of freedom, from which all other wavefunctions can be deduced.

In flat space, with the internal T 5 and an S1 along the r-direction, these equations would
allow two r-independent wavefunctions for m = 0, and actually a pair of four-dimensional
massless scalars χ4(x) and χ10(x). The constant parts of χ8 and χ10 would be associated
to independent deformations of the radius of the S1 and the overall size of the internal
torus. In our case the length ℓ of the r-interval is fixed by the background, and indeed a
single independent constant part is left by the preceding conditions, since the first three of
eqs. (12.10) demand that r-independent quantities satisfy

χ4 + 5χ10 = 0 . (12.14)

Equivalently, using eq. (12.9), constant shifts of B and C, which are captured by χ8 and
χ10, are surprisingly not independent, but

χ8 = 5χ10 . (12.15)

The reason behind this result is explained in detail in [50]: the equal radii R of the internal
torus can be scaled out, so that the background only depends on two parameters, the
conserved flux Φ and the length ℓ of the r-interval, whose perturbation is described by
χ8. As a result, the size of the internal torus is effectively determined by the combination
(Φ ℓ)

1
5 , as can be seen in eqs. (1.8). Note, however, that there is no massless field in four

dimensions associated to this deformation, which is just a constant shift.
In flat space, for m2 ̸= 0 eqs. (12.10) or, equivalently, eq. (12.12), demand that

χ ≡ 3χ4 + 5χ10 = 0 . (12.16)

This is a familiar result in Kaluza-Klein theory: massive scalar excitations are eaten by
corresponding massive vectors. In our background, however, it is actually convenient to
obtain a second-order equation for this very field,

χ ≡ 3χ4 + 5χ10 , (12.17)

which will be singular in the flat limit. To this end, we also let

ψ = χ4 + 3χ10 , (12.18)

and then the αr Einstein equation becomes
(
∂r + 2A′)χ+ 10C ′ ψ = 0 , (12.19)
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Figure 19. The potential V of eq. (12.28) (black, solid) with its approximation (2.29) (red,dashed)
with (µ, µ̃) =

( 2
3 , 1
)
, in units of 1

z02 . zm and z0 are defined in eqs. (3.10) and (3.11).

and determines ψ algebraically, while eq. (12.12) takes the form

0 = −m2χ− 2 e2(A−B)
[(
2A′ + 5C ′) ∂r +

h2

4 ρ2 e
8A

]
χ

+ 10 e2(A−B)
[
C ′ ∂r +

h2

4 ρ2 e
8A

]
ψ . (12.20)

In terms of the z-variable of eq. (3.9), these equations become

(∂z + 2Az)χ+ 10Cz ψ = 0 ,

m2χ+ 2
[
(2Az + 5Cz) ∂z + 4W2

5

]
χ− 10

[
Cz ∂z + 4W2

5

]
ψ = 0 , (12.21)

where W5 was defined in eq. (A.20). The two equations (12.21) can now be combined into
a second-order one,

∂z (∂z + 2Az)χ+
(
4W2

5
Cz

− Czz

Cz

)
(∂z + 2Az)χ+m2χ

+ 2
[
(2Az + 5Cz) ∂z + 4W2

5

]
χ = 0 , (12.22)

that, using the results collected in appendix A, can be cast in the form

m2χ+ ∂2
z χ+

[
3(3Az + 5Cz) +

8W2
5

Cz

]
∂z χ+ 16W2

5

(
1 + Az

Cz

)
χ = 0 , (12.23)

The redefinition
χ = Y Cz e

− 1
2 (3A+5C) , (12.24)

leads finally to the Schrödinger-like equation

m2 Y = −d
2 Y

dz2 + V Y , (12.25)

and letting

α = 4W2
5

Cz
+ 3

2 (3Az + 5Cz) , (12.26)

– 82 –



J
H
E
P
1
1
(
2
0
2
3
)
0
6
1

the potential takes the form

V = −16W2
5

(
1 + Az

Cz

)
+ α2 + dα

d z
, (12.27)

or in detail

V = 5e
√

5
2 r

256 z2
0 sinh5

(
r
ρ

) [√
10− 5 coth

(
r
ρ

)]2
[
−84

√
10 sinh

(4 r
ρ

)
+ 128

√
10 sinh

(2 r
ρ

)

− 928 cosh
(2 r
ρ

)
+ 267 cosh

(4 r
ρ

)
+ 1221

]
. (12.28)

Consequently, near the two ends V behaves as in eq. (1.15), with µ = 2
3 and µ̃ = 1. As a

result, the allowed wavefunctions have the limiting behaviors

Y ∼ C1

(
z

zm

) 7
6
+ C2

(
zm

z

) 1
6

and Y ∼
(
1− z

zm

) 3
2
, (12.29)

and self-adjoint boundary conditions are determined by the ratio x = C2
C1

. In fact, eq. (12.25)
can be cast in the formally positive form

m2 Y = A†A Y + V Y , (12.30)

where now
A = d

dz
− α, A† = − d

dz
− α , (12.31)

and
V = −16W2

5

(
1 + Az

Cz

)
= 16W2

5√
10
2 coth

(
r
ρ

)
− 1

> 0 . (12.32)

The A†A portion of the potential has a zero mode,

Y ∼ e
∫

α dz , (12.33)

which is normalizable and behaves as

Y ∼
(
z

zm

) 7
6

(12.34)

close to the left end of the interval, where α ∼ 7
6 z . For this zero mode the absence of the

z−
1
6 contribution indicates that

C2
C1

= 0 . (12.35)

The A†A portion of the potential can be approximated by the shifted hypergeometric
potential of eq. (2.39) with ϵ1 = 1 and ϵ2 = −1, whose zero mode in eq. (2.43) has the same
boundary condition (12.35). The corresponding shift,

∆V = −
(4
3

)2 π2

z2
m

, (12.36)
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Figure 20. The left panel illustrates how the stable eigenvalues of the shifted hypergeometric
potential V1,−1 of eq. (2.39) with µ = 2

3 , µ̃ = 1 depend on the boundary conditions. The right panel
illustrates the corresponding tachyonic eigenvalues, with m2 = −x2, for the same values of µ and µ̃.

can be read from eq. (2.39). By the general argument of [44], the AA† potential has a stable
spectrum if C2 = 0, and a closer look at the eigenvalue equation shows that every other
boundary condition gives rise to an unstable mode (see figure 20). Therefore, in this sector
there is at least one stable boundary condition for the full potential in eq. (12.30), where
the would be massless mode becomes slightly massive, due to the positive contribution V.
As a result, a small range of stable boundary conditions exists for the complete potential,
where stability holds for C2

C1
≥ 0.

13 Conclusions and open issues

In this paper we have explored in detail the bosonic modes that can emerge in a family of
four-dimensional IIB Randall-Sundrum-like [74, 75] non-supersymmetric vacua, and the
resulting indications for vacuum stability. These backgrounds are supported by a flux of
the self-dual five-form field strength that is homogeneous in spacetime and in an internal
five-torus, and depend on a parameter ρ that determines the size of an internal interval
and the corresponding scale of supersymmetry breaking.6 The vacua thus obtained have a
constant dilaton profile, and thus overcome the strong string-coupling problem that typically
plagues broken supersymmetry, but the interval introduces some complications related to
the choices of boundary conditions at its ends. The α′ corrections can be bounded, away
from the singularities [50] at the ends of the interval, within wide portions of the internal
space. All these reasons, together with the well-known stability problems of string vacua in
the absence of supersymmetry, motivated us to undertake the detailed analysis presented in
the preceding sections, combining a number of different techniques.

Our analysis relied, all along, on the most general self-adjoint boundary conditions that
are in principle available for the different fields, and thus, implicitly, on second-order actions
for the internal profiles. For example, for a free complex scalar field ϕ in D dimensions the

6The presence of an interval with singularities at its ends establishes a connection between this work and
the ongoing activity devoted to “dynamical cobordism” [76–82]. The link will be made more precise in [68],
where we shall compute tensions and charges at the ends of the interval.
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second-order action
S2 =

∫
dDx ϕ □ϕ , (13.1)

allows the most general self-adjoint boundary conditions, while only a subset of them
eliminate the boundary terms that emerge when varying the standard first-order action

S2 = −
∫
dDx ∂µ ϕ ∂µ ϕ . (13.2)

In this fashion, we also ran across a peculiar property of gauge fields in the presence of an
internal interval: additional modes localized on the boundary can emerge, in general, unless
one confines the attention to gauge transformations that vanish there. We could thus classify
the stable boundary conditions for the different sectors of the spectrum, and we could also
tackle, in rather general terms, the possible instabilities of their Kaluza-Klein excitations.
These represent an essentially insurmountable problem [43] for the non-supersymmetric
AdS vacua of the ten-dimensional strings of [25–35], since the length scales of the internal
sphere and of the AdS spacetimes are correlated by the Einstein equations. In our setting,
which includes an internal torus, or more generally with a Ricci-flat internal manifold, there
are boundary conditions compatible with a stable spectrum, although the available choices
can depend on the background when mixings involving Kaluza-Klein modes occur. For the
Kaluza-Klein excitations, the boundary conditions that yield massless modes with k = 0 can
bring along a finite number of tachyons, as we saw in sections 10.2 and 11.2). However, this
pathology can be eluded if the parameter ρ in eqs. (1.1) lies one or two orders of magnitude
above the radius R of the internal torus. Equivalently, this condition sets on the scale of
supersymmetry breaking

µS = 1
ℓ h

1
4
, (13.3)

which we identified in [50], the upper bound

µS (Φh)
1
4 < O

(
10−2

)
. (13.4)

Alternatively, one can select boundary conditions granting the absence of tachyons for all
values of k, but these typically eliminate the massless modes with k = 0.

While the preceding results are clearly encouraging, our analysis is still incomplete,
since we left out the Kaluza-Klein excitations of singlet scalars. These appear resilient to
our approach, since they lead to a three-component Schrödinger system where the potential
cannot be put in a symmetric form with the techniques used in the other cases. We are
thus leaving to a future work a proper identification of the norm of these perturbations,
and of its correspondence with the convenient Henneaux-Teitelboim action [55], together
with a final statement on the stability region determined by this sector.

The first two columns in table 2 collect the maximum numbers of massless modes found
explicitly in the previous sections. In four dimensions, these correspond to a graviton, 26 real
vectors and 53 real scalars, which are a large fraction of the modes that would emerge, from
the type-IIB theory, after a toroidal compactification to four dimensions. These numbers
are purely indicative, since we are focusing on the quadratic terms, and interactions and/or
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4D hel.× SO(5) 4D m = 0 Content 10D origin Equation
(0, 1) 1 dilaton ϕ (3.25)
(0, 1) 1 axion a (3.25)
(±1, 0) 1 real vector, 1 real scalar B1,2

µν ,B1,2
µr (4.110)

2 (±1, 5) 10 real vectors B1,2
µi , B1,2

ri (4.118)
2 (0, 15) 30 real scalars B1,2

ij (4.134)
(±1, 10) 10 real vectors Bµνij (6.19)
(±2, 1) 1 graviton hµν (7.5)
(0, 14) 14 real scalars hij (8.4)
(±1, 5) 5 real vectors hµi, Bµνρi (10.17)
(0, 5) 5 real scalars hri, Bµνρi, Bijkl (11.14)
(0, 1) 1 real scalar⋆ b, bi, bµ

i, hµν , hrr

Table 2. The maximum numbers of four-dimensional real massless bosonic modes that can arise
from the bulk, for generic values of R, within the stability window of eq. (13.4). The scalar singlet in
the last line, accompanied by the (⋆) symbol, could be fine-tuned to zero mass. However, we do not
have an analytic form for its wavefunction, which originates from the second-order equation (12.25).
There are at most 26 vectors and 53 scalars, for a total of 107 massless bosonic degrees of freedom
after including the graviton.

quantum corrections could lift in mass many of these modes. In addition, their number
could be reduced by choices of boundary conditions dictated by symmetry requirements.
For example, some of these modes lead to the flow [56], across the boundary, of charges that
would be conserved in its absence. This was the case for the ten vector modes of section 6
arising from the four-form gauge field, and for the five vector modes from hµi of section 11.1
arising from the metric field, and self-adjoint boundary conditions eliminating the flow can
make all these modes massive. Table 3 collects the additional massless modes that could be
present on the boundary.

Summarizing, the bosonic spectrum of the vacua of eqs. (1.1) confronted us with a
number of technical difficulties, revealing some novelties and bringing along some surprises.
The main novelty was the indication that stable vacua may be attained in non-supersymmetric
compactifications to four-dimensional Minkowski space. The main surprises were the
emergence of additional moduli related to boundary conditions and of corresponding
boundary modes, and two technical findings. In section 4.3.2 massless modes of the type-IIB
three-forms led to dynamical equations with three derivatives, and in section 6.2 massless
modes emerged, for all internal momenta, from the first-order equations of tensor modes.
This last result is not pathological, since these modes were excitations of tachyonic ground
states with different k-dependent boundary conditions.

Identifying the effective four-dimensional theory resulting from this type of compact-
ifications would be clearly an interesting further step, for which the present work can
provide some indications. Local supersymmetry is a key requirement, and boundary terms
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4D hel.× SO(5) 4D m = 0 Content corresponding gauge parameters
(±1, 0) 2 real vectors Λ1,2

µ

(0, 5) 10 real scalars Λ1,2
i

(0, 5) 5 real scalars Λµνi

(±1, 10) 10 real vectors Λµij

(0, 10) 10 real scalars Λijk

(±1, 0) 1 real vector ξµ

(±0, 5) 5 real scalars ξi

Table 3. The maximum numbers of four-dimensional real massless bosonic modes that can arise
from the boundary of the internal interval. There are in principle 56 degrees of freedom of this type,
if one concentrates them on one of the two boundaries. The resulting vector equations are gauge
invariant, in view of the discussion presented in [68].

will be needed to grant it, as we saw for bosonic gauge symmetries. The T 5 reduction
to five dimensions of the type-IIB theory, which would yield the corresponding maximal
supergravity, could provide some useful guidance [83, 84]. Finally, the widespread activity
devoted, over the years, to supersymmetric flux compactifications (for reviews, see [85, 86])
rests on different geometrical setups and has typically addressed supersymmetric vacua.
Generalizing the geometric approach to non-supersymmetric settings should elicit detailed
links with the present work, and is likely to lead to further progress.
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A Conventions and properties of the background

In this appendix we collect some useful properties of the background described in section 1.
Our main conventions are the following. Capital Latin labels like M denote curved ten-
dimensional indices, and Greek or Latin labels like (µ, r, i) denote their spacetime or internal
portions. Moreover, when we need to distinguish the curved radial index r from the
remaining nine-dimensional ones, we denote them collectively by m, while primed labels
like a′ denote the flat internal indices (r, a) and others like i′ will denote the corresponding
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curved ones. We use a “mostly-plus” signature, defining the Riemann curvature tensor via7

[∇M ,∇N ]VP = RMNP
Q VQ , (A.1)

so that
RMNP

Q = ∂N ΓQ
MP − ∂M ΓQ

NP + ΓQ
NR ΓR

MP − ΓQ
MR ΓR

NP . (A.2)

We also define the Ricci tensor as

RMP = RMNP
N . (A.3)

For backgrounds of the type

ds2 = e 2 A(r) dx2 + e 2 B(r) dr2 + e 2 C(r) dy2 , (A.4)

where the xµ-coordinates, with µ = 0, . . . , 3, refer to the four-dimensional spacetime, while
the yi-coordinates, with i = 1, . . . , 5 refer to the internal torus, the Christoffel symbols are

Γµ
νr = A′ δµ

ν , Γi
jr = C ′ δi

j ,

Γr
rr = B′ , Γr

µν = −ηµν A
′ e2(A−B) , Γr

ij = −δij C
′ e2(C−B) . (A.5)

The components of the Ricci tensor read

R(0)
µν = −ηµνe

2A
[
3
(
A′)2 e−2B + 5A′C ′e−2B +

(
A′eA−B

)′
e−A−B

]
= −ηµν e

2(A−B) [A′ (4A′ + 5C ′ −B′)+A′′] ,
R(0)

rr = −
[
4
(
A′eA−B

)′
eB−A + 5

(
C ′eC−B

)′
eB−C

]
= −

[
4A′(A′ −B′) + 5C ′(C ′ −B′) + 4A′′ + 5C ′′] ,

R(0)
ij = −δije

2C
[
4
(
C ′)2 e−2B + 4A′C ′e−2B +

(
C ′eC−B

)′
e−B−C

]
= −δije

2(C−B) [C ′ (4A′ + 5C ′ −B′)+ C ′′] , (A.6)

and in the “harmonic” gauge, where

B = 4A+ 5C , (A.7)

they reduce to

R(0)
µν = −ηµν e

2(A−B)A′′ ,

R(0)
rr = −

[
4
(
A′eA−B

)′
eB−A + 5

(
C ′eC−B

)′
eB−C

]
=
[
4A′(3A′ + 5C ′) + 20C ′(A′ + C ′)− 4A′′ − 5C ′′] ,

R(0)
ij = −δij e

2(C−B)C ′′ . (A.8)
7These conventions are as in [48] and [49].
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Consequently the scalar curvature takes the form

R(0) = e−2B [−8A′′ − 10C ′′ + 4A′(3A′ + 5C ′) + 20C ′(A′ + C ′)
]
, (A.9)

and the components of the Einstein tensor read

G(0)
µν = ηµν e

2(A−B)
[
3A′′ + 5C ′′ − 2

(
3 (A′)2 + 10A′C ′ + 5(C ′)2

)]
,

G(0)
rr = 2

[
3 (A′)2 + 10A′C ′ + 5(C ′)2

]
,

G(0)
ij = δij e

2(C−B)
[
4
(
A′′ + C ′′)− 2

(
3 (A′)2 + 10A′C ′ + 5(C ′)2

)]
. (A.10)

For the vacua of interest the Einstein equations

G(0)
MN = 1

4!
(
H(0)

5
2
)

MN = 1
24 g(0)P P ′

g(0)QQ′
g(0)RR′

g(0)SS′ H(0)
5 MP QRS H(0)

5 NP ′Q′R′S′

(A.11)
reduce to

G(0)
µν = R(0)

µν = − h2

4 ρ2 e2A−10C ηµν , G(0)
rr = R(0)

rr = − h2

4 ρ2 e2B−10C ,

G(0)
ij = R(0)

ij = h2

4 ρ2 e−8C δij . (A.12)

In particular, the rr equation is the “Hamiltonian constraint”

3
(
A′)2 + 10A′C ′ + 5

(
C ′)2 = − h2

8 ρ2 e8A = −H
2

2 e8A , (A.13)

and making use of it turns the Einstein tensor into
√
−g G(0)

µν = gµν

[
3A′′ + 5C ′′ +H2 e8A

]
,

√
−g G(0)

rr = −grr H
2 e8A ,

√
−g G(0)

ij = gij

[
4
(
A′′ + C ′′)+H2 e8A

]
. (A.14)

Note that the Einstein equations (A.12) imply the useful relations

A′′ = −C ′′ = h2

4 ρ2 e8A . (A.15)

Eqs. (1.1) solve the background equations, up to the contact terms localized on the
boundaries discussed in [68].

There are some useful identities for the tensor background of eqs. (1.1). The simplest
ones are (

H(0)
5

)2

µν
= −6 h

2

ρ2 e2A−10C ηµν ,
(
H(0)

5

)2

rr
= −6 h

2

ρ2 e8A ,

(
H(0)

5

)2

ij
= 6 h

2

ρ2 e−8C δij , (A.16)

but for studying perturbations one also needs to compute the components of(
H(0)

5

)2

MN,P Q
= g(0)R1S1

g(0)R2S2
g(0)R3S3 H(0)

5 MNR1R2R3
H(0)

5 P QS1S2S3
(A.17)
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which are determined by symmetry and by the comparison with the preceding expressions,
and read (

H(0)
5

)2

µρ,νσ
= −3

2
h2

ρ2 e4A−10C (ηµν ηρσ − ηµσ ηνρ) ,(
H(0)

5

)2

µr,νr
= −3

2
h2

ρ2 e10A ηµν ,
(
H(0)

5

)2

µi,νj
= 0 , (A.18)

(
H(0)

5

)2

ik,jl
= 3

2
h2

ρ2 e−6C (δij δkl − δil δjk) ,
(
H(0)

5

)2

ir,jr
= 0 .

In terms of the z variable of eq. (3.9), the equations for the background become

3 (Az)2 + 10Az Cz + 5 (Cz)2 = −2 W2
5 ,

Azz = 4W2
5 − (3Az + 5Cz)Az ,

Czz = −4W2
5 − (3Az + 5Cz)Cz , (A.19)

where we have introduced the convenient combinations

W5 = h

4 ρ e
A−5C , K = |k| eA−C , (A.20)

which are used repeatedly in the main body of the paper. Recalling also that

h = 2H ρ , z0 =
(
2H ρ3

) 1
2 = ρ h

1
2 , (A.21)

the limiting behavior of several useful quantities close to z = 0 is

z

z0
= 2

3

(
r

ρ

) 3
2
− 1√

10

(
r

ρ

) 5
2
+ 19

168

(
r

ρ

) 7
2
+O

[(
r

ρ

) 9
2
]
,

r

ρ
=
( 3 z
2 z0

) 2
3
{
1 + 1√

10

( 3 z
2 z0

) 2
3
+ 47

420

( 3 z
2 z0

) 4
3
+O

[(
z

z0

)2
]}

. (A.22)

Consequently

eA = 1
h

1
4

(2 z0
3 z

) 1
6
{
1− 1

4
√
10

( 3 z
2 z0

) 2
3
− 121

2240

( 3 z
2 z0

) 4
3
+O

[(
z

z0

) 7
3
]}

eC = h
1
4

( 3 z
2 z0

) 1
6
{
1− 1

4
√
10

( 3 z
2 z0

) 2
3
+ 23

2240

( 3 z
2 z0

) 4
3
+O

[(
z

z0

) 7
3
]}

,

Az = − 1
6 z − 1

6
√
10

( 3
2 z0

) 2
3
z−

1
3 − 8

105

( 3
2 z0

) 4
3
z

1
3 +O

[(
z

z0

)]
,

Cz = 1
6 z − 1

6
√
10

( 3
2 z0

) 2
3
z−

1
3 + 1

105

( 3
2 z0

) 4
3
z

1
3 +O

[(
z

z0

)]
,

W2
5 = 1

36 z2 + 1
18

√
10

( 3
2 z0

) 2
3
z−

4
3 + 1

2520

( 3
2 z0

) 4
3
z−

2
3 +O

[(
z

z0

)0
]
. (A.23)
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The leading behavior of the metric, K2 and the five-form backgrounds is

ds2 ∼ dx2 + dz2

(3 |H| z)
1
3
+ (3 |H| z)

1
3 d y⃗ 2 , K2 ∼ |k|2

(3 |H| z)
2
3
,

H5 ∼ H

{
dx0 ∧ . . . ∧ dx3 ∧ dz

[3 |H| z]
5
3

+ dy1 ∧ . . . ∧ dy5
}
. (A.24)

The limiting behavior for large r, and thus for z close to the finite value zm of
eq. (3.10) corresponding to the right end of the interval, for the quantities entering the
non-supersymmetric backgrounds of eqs. (1.1), are

zm−z
z0

∼
√
2
3
(√

10+2
)
e
− r

4ρ(
√

10−2)
[
1− 4

√
10−11
26 e

− 2 r
ρ

]
,

e
− r

2 ρ ∼
[√

5−
√
2

2

(
zm−z
z0

)]√
10+2

3

1+6−
√
10

26

[√
5−

√
2

2

(
zm−z
z0

)] 4(
√

10+2)
3

 ,

e2A ∼
√

2
h

[√
5−

√
2

2

(
zm−z
z0

)]√
10+2

3

1+19−
√
10

26

[√
5−

√
2

2

(
zm−z
z0

)] 4(
√

10+2)
3

 ,

e2C ∼

√
h

2

[√
5−

√
2

2

(
zm−z
z0

)]−√
10
5

1+−105+11
√
10

130

[√
5−

√
2

2

(
zm−z
z0

)] 4(
√

10+2)
3

 ,

Az ∼− 1
6

√
10+2
zm−z

, Cz ∼
1√
10

1
zm−z

, (A.25)

W5 ∼
√
2

2z0

[√
5−

√
2

2

(
zm−z
z0

)] 2
√

10+1
3

, K2 ∼ 2(|k| ρ)2

z2
0

[√
5−

√
2

2

(
zm−z
z0

)] 2
√

10+16
15

.

B Intermediate results for tensor perturbations

In this appendix we collect some intermediate results that are needed to obtain the tensor
equations of section 5. As explained there, we parametrize the independent components of
the tensor gauge field perturbations δBMNP Q according to eq. (5.4). The corresponding
field strengths then take the form

δ Hµνρσr = ϵµνρσ (∂r b− ∂τ b
τ ) , δ Hµνρσi = ϵµνρσ (∂i b− ∂τ b

τ
i) ,

δ Hµνρri = ϵµνρσ

(
∂i b

σ − ∂r b
σ

i −
1
2 ϵ

αβγσ ∂α bβγi

)
,

δ Hµνρij = −ϵµνρσ

(
∂[i b

σ
j] +

1
2 ϵ

αβγσ ∂α bβγij

)
,

δ Hµνrij = ∂[µ b
(1)
ν]ij + ∂r bµνij − ∂[i bµν|j] ,

δ Hµνijk = 1
2 ϵijklm

(
∂[µ b

(2)
ν]

lm + 1
2 ϵ

pqrlm ∂p bµνqr

)
,

δ Hµrijk = 1
2 ϵijklm

(
∂µ b

lm − ∂r b
(2)

µ
lm + 1

2 ϵ
pqslm ∂p b

(1)
µqs

)
,
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δ Hµijkl = ϵijklm

(
∂µ b

m − ∂n b
(2)

µ
mn
)
, δ Hrijkl = ϵijklm (∂r b

m − ∂n b
mn) ,

δ H ijklm = ϵijklm ∂p b
p . (B.1)

Starting from the self-duality conditions

HM1···M5 =
√
−g
5! ϵM1···M10 g

M6N6 · · · gM10N10 HN6···N10 , (B.2)

and expanding them to first order in the tensor and gravity perturbations gives

δ HM1···M5 =

√
−g(0)

5! ϵM1···M10 g
(0)M6N6 · · · g(0)M10N10 δ HN6···N10 +

1
2 h

M
M H

(0)
M1···M5

−

√
−g(0)

4! ϵM1···M6
i7···i10 hM6i6 e−8C H

(0)
i6i7···i10

(B.3)

−

√
−g(0)

4! ϵM1···M6
µ7···µ10 hM6r e−8AH

(0)
rµ7···µ10

−

√
−g(0)

3! ϵM1···M6
µ7···µ9r hM6µ6 e−6A−2B H

(0)
µ6µ7···µ9r ,

where the ϵ tensors are flat, so that their indices are raised and lowered with the flat metric,
ϵ0...9 = 1, and the indices of the metric perturbations hMN are raised with the background
metric.

One can now specialize the left-hand side to the independent cases, which leads to the
five groups of independent tensor equations

δ Hµ1···µ4r = e2B−10C

5! ϵµ1···µ4 ϵ
i6···i10 δ Hi6···i10

+ h e8A

4 ρ
(
e−2A hµ

µ + e−2B hrr − e−2C hk
k

)
ϵµ1···µ4 ,

δ Hµ1µ2µ3ri =
e2B−2A−8C

4! ϵµ1···µ3
µ4 ϵi

j7···j10 δ Hµ4j7···j10

− h

2 ρ e
2B−2A−10C ϵµ1···µ3

µ4 hµ4i , (B.4)

δ Hµ1µ2rij = e4(A+C)

2! 3! ϵµ1µ2
µ3µ4ϵij

klm δ Hµ3µ4klm ,

δ Hµ1rijk = e2A+6C

2! 3! ϵµ1
µ2µ3µ4 ϵijk

lm δ Hµ2µ3µ4lm ,

δ Hrijkl =
e8C

4! ϵ
µ1···µ4 ϵijkl

m δ Hµ1···µ4m + h

2 ρ ϵijkl
m hmr e

−2C ,

where now all indices are raised and lowered with the flat metric. Making use of eqs. (B.1)
leads finally to eqs. (5.5).

With the gauge choice
BrMNP = 0 , (B.5)

which translates into the conditions

bµ = 0 , bµνi = 0 , b
(1)
µij = 0 , bij = 0 , (B.6)
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the field strengths finally reduce to

δHµνρσr = ϵµνρσ ∂r b , δHµνρσi = ϵµνρσ (∂i b−∂τ b
τ

i) ,

δHµνρri =−ϵµνρσ ∂r b
σ

i , δHµνρij =−ϵµνρσ

(
∂[i b

σ
j]+

1
2 ϵ

αβγσ ∂α bβγij

)
,

δHµνrij = ∂r bµνij , δHµνijk =
1
2 ϵijklm

(
∂[µ b

(2)
ν]

lm+ 1
2 ϵ

pqrlm ∂p bµνqr

)
,

(B.7)

δHµrijk =−1
2 ϵijklm ∂r b

(2)
µ

lm , δHµijkl = ϵijklm

(
∂µ b

m−∂n b
(2)

µ
mn
)
,

δHrijkl = ϵijklm ∂r b
m , δHijklm = ϵijklm ∂p b

p .

C Intermediate results for the Einstein equations

In this appendix we collect some technical results needed to obtain the perturbed Einstein
equations discussed in section 5 starting from

RMN = 1
24
(
H5

2
)

MN
. (C.1)

C.1 Intermediate results for the Ricci curvature

The perturbed Christoffel symbols read

δ ΓP
MN = 1

2
(
∇M hP

N +∇N hP
M −∇P hMN

)
, (C.2)

where the gradient ∇ refers to the background, and from the Palatini identity

δ RMNP
Q = ∇N δ ΓQ

MP −∇M δ ΓQ
NP (C.3)

one can deduce the perturbed Ricci curvature

−2 δ RNR = □10 hNR +∇N ∇R hS
S −∇P (∇N hP R +∇R hP N ) . (C.4)

Using the results collected in appendix A, one can compute the divergences of gradients
that are needed in eq. (C.4). Their general expression is

∇P ∇N hP R = gP Q
(
∂Q ∇N hP R − ΓS

QN ∇S hP R − ΓS
QP ∇N hSR − ΓS

QR ∇N hP S

)
,

(C.5)
where the metric g and the connection Γ refer to the background. Some simplifications occur
since the background satisfies the harmonic gauge conditions (A.7), which are equivalent to

gP Q ΓS
P Q = 0 , (C.6)

and one is left with

∇P ∇N hP R = gP Q
(
∂Q ∇N hP R − ΓS

QN ∇S hP R − ΓS
QR ∇N hP S

)
. (C.7)
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C.2 The perturbed energy-momentum tensor

The right-hand side of the perturbed Einstein equations involves the variation of
(
H2

5
)

MN

about the background values, which reads

δ
[(
H2

5

)
MN

]
= δH5(M · H(0)

5N) − 4H(0)
5MK · H(0)

5NL hKL , (C.8)

where hKL denotes, as before, the metric perturbation, and where indices are raised and
lowered with the background metric. Taking into account the background in eqs. (1.1) and
eqs. (1.10), one thus finds

δH5(µ · H(0)
5ν) =

h

2 ρ e
2(A−B) δH5

ρστ
r(µ ϵν)ρστ ,

δH5(µ · H(0)
5r) = 0 ,

δH5(µ · H(0)
5i) =

h

ρ
e−8C ϵik1···k4 δH5µ

k1···k4 − 6 h
2

ρ2 e
−10C hµi ,

δH5r · H(0)
5r = h

2 ρ δH5
µρστ

r ϵµρστ ,

δH5(r · H
(0)
5i) = 6 h

2

ρ2 e
−10C hri +

h

ρ
ϵβ1···β4 δH5i

β1···β4 ,

δH5(i · H
(0)
5j) =

h

2 ρ e
−8C δH5

klmn
(i ϵj)klmn , (C.9)

where indices are now raised with the flat metrics ηµν and δij . Finally, δH5 must be
expressed in terms of the components of the four-form gauge field listed in eqs. (5.4), which
lead to eqs. (B.7) after gauge fixing.

The final form of the perturbed energy-momentum tensor

T (1)
MN = 1

24
(
δH5(M · H(0)

5N) − 4H(0)
5MK · H(0)

5NL hKL
)

(C.10)

is

T (1)
µν = − h

4 ρ e
2(A−B) ∂r b ηµν + h2

4 ρ2

[
e−10C (ηµν hρ

ρ − hµν) + e10A−4Bηµν hrr

]
,

T (1)
µr = − h2

4 ρ2 e
8A−2B hµr ,

T (1)
µi = e−8C

[
h

ρ

(
∂µ bi − ∂n b

(2)
µi

n
)
− h2

4 ρ2 e
−2C hµi

]
,

T (1)
rr = −h

ρ
∂r b+

h2

4 ρ2 e
6A hρ

ρ ,

T (1)
ri =

h2

4 ρ2 e
−10C hri −

h

ρ
(∂i b− ∂µ b

µ
i) ,

T (1)
ij = h

ρ
δij e

−8C ∂p b
p − h2

4 ρ2 e
−10C

(
δij hk

k − hij

)
, (C.11)

and the equations that we actually write are

−2 δ RMN = −2T (1)
MN . (C.12)
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Figure 21. The k = 0 portion of the Schrödinger potential for W1 in eq. (D.1) (black, solid) and its
approximation (2.29) (red, dashed) with (µ, µ̃) =

( 2
3 , 0.09

)
, in units of 1

z02 . zm and z0 are defined in
eqs. (3.10) and (3.11).

D The non-singlet vector modes as k → 0

In this appendix we discuss the possible self-adjoint boundary conditions for the non-singlet
vector modes at the left end of the internal interval, focusing on the k-independent part of
the operator M̃ of eq. (10.34), or if you will on its small-k limit, which is diagonal. The
potential in the (1, 1) entry,

V1(r) =
1

320 z2
0

e
√

5
2

r
ρ

sinh3
(

r
ρ

) [
−14

√
10 sinh

(2 r
ρ

)
+ 41 cosh

(2 r
ρ

)
+ 99

]
(D.1)

only emerges for k ̸= 0, while the potential in the (2, 2) entry is the one already discussed
in section 10.1 for k = 0.

One can rely once more on the correspondence with the hypergeometric potentials
od eq. (2.29) to identify stability regions in the small-k limit. To this end, one needs to
examine the limiting behavior of M̃ as z appraoches the two ends of the interval. From
eq. (10.35) and from appendix A, one can see that, as z → 0,

M̃ ∼
(
−∂2

z + 7
36 z2

)
1 , (D.2)

which is of the form (2.12) with µ1 = µ2 = 2
3 . In a similar fashion, as z → zm, M̃ is of the

form (2.13), with µ̃1 = 0.09 and µ̃2 = 1.1. The resulting setting is the first case discussed in
section 2.4, and the self-adjoint boundary conditions given independently at the two ends
thus depend on six real parameters.

The dominant terms in eq. (10.34) identify a two-dimensional vector space of normaliz-
able zero modes spanned by

Z(1) =
(
e

A−C
2

0

)
, Z(2) =

(
0

e
5A+3C

2

)
. (D.3)

For the first zero mode
C11
C12

= −0.16 , C13
C14

= 0.2 , (D.4)
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Figure 22. The point (α1, α̃1) = π (−0.9, 0.87) identifies the special boundary conditions corre-
sponding to the zero mode Z(1). The shaded regions identify the boundary conditions leading to
instabilities for the k-independent portion of M̃.

while for the second zero mode
C21
C22

= −0.41 . (D.5)

As in the simpler one-component systems that we have analyzed, one can approach the
k = 0 portion of M̃ by a pair of shifted hypergeometric potentials, with shifts

∆V1 = π2

z2
m

(0.1)2 , ∆V2 = − π2

z2
m

(0.71)2 , (D.6)

relying once more on the one-component formalism of section 2. The two potentials V1 and
V2 are displayed in figures 21 and 15, together with their hypergeometric approximations.
Letting, in the notation of eq. (2.71)

C11
C12

= cot
(
α1
2

)
,

C13
C14

= cot
(
α̃1
2

)
,

C22
C21

= tan
(
α2
2

)
, (D.7)

one can thus identify the stability regions in the (α1, α̃1) plane displayed in figure 22, and
the results of section 10.1 translate, for α2, into the stability interval

−2.42 < tan
(
α2
2

)
< 0 . (D.8)

As we have seen, the matrix M̃ in eq. (10.34) becomes diagonal as k → 0, and we
could thus identify two zero modes. Z(2) is indeed the expected zero mode that we found in
section 10.2, while the presence of Z(1) is somewhat surprising, since it is also normalizable.
The point is that the k → 0 limit is singular for the original theory, which can be seen from
the need to perform the redefinition of eq. (10.32). Consequently, in this limit Z(1) would
correspond to a field W1 of vanishing norm with respect to W4, while the original operator
in eq. (10.30) is definitely not Hermitian for k = 0.
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When the k-dependent terms in M̃ are taken into account, their mean value computed
with the vectors in eq. (D.3) diverges. As a result, the dominant terms that we have analyzed
are suitable to identify self-adjoint boundary conditions but are not a good starting point
for perturbation theory. For this reason our variational tests relied on the k-dependent
corrections described in section 10.2.

E Self-adjoint variational tests

This appendix provides some details on the variational estimates of the lowest m2 eigenvalues
described in sections 10.2 and 11.2.

For our estimates of section 10.2, we resorted to a pair of test functions Z1(z) and
Z2(z) that comply to the limiting behavior at the two ends, taking into account the ξ-
dependent corrections that we identified, which grant delicate compensations between
singular contributions from kinetic and potential terms:

Z1 =
{
C11

(
z

zm

) 7
6
+C12

(
z

zm

)− 1
6
+ ξ

2

[
C21

(
z

zm

) 11
6
−3C22

(
z

zm

) 1
2
]}

exp
[
− az4

zm
4−z4

]

+γ1

(
zm−z
zm

) 1
2 +µ̃1

exp
[
− a (zm−z)4

zm
4−(zm−z)4

]
,

Z2 =
{
C21

(
z

zm

) 7
6
+C22

(
z

zm

)− 1
6
+ ξ

2

[
C11

(
z

zm

) 11
6
−3C12

(
z

zm

) 1
2
]}

exp
[
− az4

zm
4−z4

]

+γ2

(
zm−z
zm

) 1
2 +µ̃2

exp
[
− a (zm−z)4

zm
4−(zm−z)4

]
. (E.1)

The exponential factors separate the contributions from the two ends, which is instrumental
to grant the needed cancellations. The self-adjoint boundary conditions that we have
explored are parametrized, in general, by an SL(2, R) matrix and a phase β, so that

C22 = eiβ [(cosh ρ cos θ1 + sinh ρ cos θ2) C11 + (− cosh ρ sin θ1 + sinh ρ sin θ2)C12] ,
C21 = eiβ [(cosh ρ sin θ1 + sinh ρ sin θ2)C11 + (cosh ρ cos θ1 − sinh ρ cos θ2)C12] . (E.2)

The variational parameters for this case were thus a, γ1, γ2, C11 and C12. For simplicity,
we have set β = 0 in all our tests.

At the right end of the interval the Hamiltonian M̃ approaches a diagonal Q†Q

form, which is granted to be positive for the asymptotic behaviors compatible with the L2

conditions, which are annihilated by Q, so that the contributions associated to γ1,2 are not
expected to lower significantly our estimates for the minimal m2 eigenvalue. Therefore, we
concentrated our efforts on test functions with γ1 = 0 and γ2 = 0. Furthermore, different
choices for a of order one gave similar results. In this fashion, C11 and C12 were our actual
variational parameters, with resulting estimates of the form

m2 = c†N c

c†D c
, (E.3)
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Figure 23. Estimates for the lowest m2(ξ) (in units of 1
z02 ) for non-singlet vector modes obtained

for (θ1, θ2, ρ) = (−π
2 ,

π
2 , 2) (left panel), and for (θ1, θ2, ρ) = (0, 0, 0) (right panel).

where c is a two-component vector collecting them and N and D two real symmetric
matrices depending on ξ and on the SL(2, R) parameters, which we built numerically. In
this setup, the best estimate is determined by the lowest eigenvalue of D−1N .

The main indications that we collected from our numerical tests are the following:

• there are self-adjoint boundary conditions where no tachyons emerge for all values
of k. An example of this type has (ρ, θ1, θ2, β) = (2,−π

2 ,
π
2 , 0), and a plot of the

corresponding m2 as a function of ξ is shown in the left panel of figure 23;

• there are other boundary conditions where tachyonic modes are not present only for
sufficiently small values of R, as explained in section 10.2. An example of this type
has (ρ, θ1, θ2, β) = (0, 0, 0, 0), and a plot of the corresponding m2 as a function of ξ is
shown in the right panel of figure 23.

The variational tests for the scalar modes of section 11.2 proceeded along similar lines,
but relied on the slightly more complicated functions

Ψ̃1 =
{
C11√
2

(
z

zm

) 7
6
+ C12√

2

(
z

zm

)− 1
6
+ 2 ξ

[
−3
5 C21

(
z

zm

) 3
2
+ C22

(
z

zm

) 5
6
]

+ 3
4
√
2
ξ2
[
19
40 C11

(
z

zm

) 5
2
− 3C12

(
z

zm

) 7
6
log

(
z

zm

)]}
exp

[
− a z4

zm
4 − z4

]

+ γ1

(
1− z

zm

)2.77
exp

[
− a (zm − z)4

zm
4 − (zm − z)4

]
,

Ψ̃2 =
{
C21

(
z

zm

) 5
6
+ C22

(
z

zm

) 1
6
+
√
2 ξ
[
−1
5 C11

(
z

zm

) 11
6
+ 3C12

(
z

zm

) 1
2
]

+ 1
8 ξ

2
[
27
5 C21

(
z

zm

) 13
6
− C22

(
z

zm

) 3
2
]}

exp
[
− a z4

zm
4 − z4

]

+ γ2

(
1− z

zm

) 1
2
exp

[
− a (zm − z)4

zm
4 − (zm − z)4

]
. (E.4)
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Figure 24. Estimates for the lowest m2(ξ) (in units of 1
z02 ) for non-singlet scalar modes obtained

for (θ1, θ2, ρ) =
(
−π

2 ,
π
2 , 0
)

(left panel), and for (θ1, θ2, ρ) = (1.2π, 0.3π, 2) (right panel).

We were forced to proceed to second order in ξ to eliminate all singular contributions to
the mean value of the Hamiltonian. As before, and for similar reasons, we worked with
γ1 = γ2 = 0, exploring values of a of order one.

In this sector we found again self-adjoint boundary conditions leading to no unstable
modes for all values of ξ0, as in the left panel of figure 24, or for values of ξ0 larger than a
few units, as in the right panel of figure 24. However, unstable boundary conditions were
more difficult to find in this case.

In all cases, our tests convey useful information only for low-enough values of ξ, since
the test functions contain higher-order corrections in ξ that we left out. However, the formal
arguments in section 10.2 indicate that the large-ξ behavior leads to positive m2 ∼ |k|2,
due to the diagonal terms in the Hamiltonians.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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