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Introduction

This thesis can be roughly divided in two parts. The first part takes up most of the

thesis. It comprises Chapters 1− 2− 3 and concerns the study of the so-called L-space

conjecture for manifolds that arise as surgeries on fibered hyperbolic two-bridge links.

The material there presented is based on the papers [98] and [99].

The second part of the thesis is the content of Chapter 4. It is based on a joint

work with Ludovico Battista and Leonardo Ferrari [3] where, addressing a conjecture by

LeBrun [69] on Seiberg-Witten invariants of hyperbolic 4-manifolds, we studied L-spaces

among some hyperbolic 3-manifolds with particularly nice geometric properties.

We now proceed to a more detailed introduction to the thesis and to the mathematical

concepts contained therein.

The L-space conjecture

The L-space conjecture is a conjecture in 3-manifolds theory and is a driving force

in modern research within low-dimensional topology. It predicts a way to organise

closed, connected, oriented 3-manifolds according to their “complexity”, which can be

measured in three, conjecturally equivalent, ways. The three properties that should

formalise the notion of complexity belong to areas of low-dimensional topology that, at

least apparently, seem to have very little in common. We now introduce the properties

involved in the conjecture.

Taut foliations

The idea of using codimension one objects to study the topology of a 3-manifold is

classical: for instance, Alexander proved the irreducibility of R3 by exploiting the de-

composition of R3 = R2 × R in horizontal planes ∪t∈RR2 × {t}. This decomposition

provides the easiest example of foliation and we denote it by Fstd. A (codimension−1)

foliation F of a closed orientable 3-manifold M is a decomposition of M into disjoint,

injectively immersed, connected surfaces (called leaves) so that the pair (M,F) is locally

isomorphic to (R3,Fstd). It is of course possible to require various degrees of regularity

of these local isomorphisms; we will be mainly working with the class of C∞,0-foliations.

v



vi INTRODUCTION

This roughly means that the leaves are smoothly immersed and that the tangent planes

to the leaves define a continuous subbundle TF of TM . We will give more details on

this in Chapter 2. We consider coorientable foliations, i.e. those that have orientable

normal line bundle TM/TF . Since M is orientable, this is equivalent to asking that TF
is orientable as a plane bundle.

From now on, unless otherwise stated, manifolds are connected and orientable, and

foliations are coorientable.

Of course the definition of foliation can be extended to every dimension and codi-

mension, and in general it is not true that every n-manifold admits a codimension-k

foliation. For example, it is not difficult to show that if an orientable surface admits a

coorientable foliation by lines, then it must be diffeomorphic to the 2-dimensional torus.

From this point of view, dimension 3 is quite special, since we have the following theorem

by Lickorish:

Theorem 0.0.1 ([74]). Every closed orientable 3-manifold M supports a coorientable

(codimension-1) foliation.

Therefore, asking for a coorientable foliation on a 3-manifoldM does not impose any

restriction on the topology of M . Nevertheless, the foliations provided by the proof of

Theorem 0.0.1 all contain Reeb components.

Example 0.0.2. (Reeb component, see [15, Example 1.1.12]) Consider the submersion

f : R2 × R → R

f(r, z, t) = (r2 − 1)et

where (r, z) are polar coordinates on R2 and the t-coordinate parametrises the third

R-factor. Since f is a smooth submersion, the implicit function theorem implies that

by considering the fibers of f we obtain a (C∞) codimension-1 foliation of R2 × R. We

restrict this foliation to a foliation F̂ of D2 × R, where D2 ⊂ R2 is the set of points

with norm less than or equal to one. Observe that the boundary of D2 × R is a leaf

of this foliation and that translations along the t-component permute the leaves of F̂ .

Therefore this foliation projects to a foliation F of the solid torus with the property

that the boundary is a leaf and all the leaves in the interior are planes, that wind

out asymptotically toward the boundary. A solid torus foliated in this way is a Reeb

component. See Figure 1 for a picture.

Hence, the first step toward a definition of “complexity” from the point of view of

foliation theory can be that of asking for Reebless foliations, i.e. foliations without Reeb

components.

Indeed, supporting a (coorientable) Reebless foliation forces topological restrictions

on M .



vii

Figure 1: A Reeb component.

Theorem 0.0.3 ([83, 97, 90]). Let M be a closed manifold not diffeomorphic to S2×S1

and suppose that M supports a Reebless foliation F . Then

• the leaves of F are π1-injective;

• M is irreducible (i.e. every embedded 2-sphere in M bounds an embedded ball);

• the universal cover of M is diffeomorphic to R3

The definition of taut foliation generalises that of Reebless foliation.

Definition 0.0.4. A foliation F onM is taut if every leaf intersects a closed transversal.

In this definition, by closed transversal we refer to a smooth simple closed curve in

M that is everywhere transverse to the leaves of F .

Remark 0.0.5. If a foliation F contains a Reeb component, then it cannot be taut. In fact

it is not difficult to see that there exist no closed transversals intersecting the boundary

of the Reeb component.

We point out that as a consequence of the Theorem 0.0.3, a closed orientable 3-

manifold with finite fundamental group cannot support a coorientable taut foliation.

Corollary 0.0.6. The 3-sphere, lens spaces, and more generally any M with finite

fundamental group, do not support coorientable taut foliations.

Taut foliations have been extensively studied and they can be used to deduce im-

portant topological properties of the ambient manifold. Notably, Thurston [111] proved

that compact leaves of taut foliations are genus minimising in their homology classes,

and Gabai [38] proved that the converse holds: if S represents a non-trivial element in

H2(M,R), whereM is irreducible, and it is genus minimising in its homology class, then

S is the leaf of a coorientable taut foliation. In particular Gabai’s result implies:

Theorem 0.0.7 ([38]). Every closed irreducible M with b1(M) > 0 supports a taut

foliation.
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This theorem of Gabai implies that in some sense taut foliations are quite common.

In fact a lot of work had to be done to prove the existence of hyperbolic 3-manifolds not

supporting taut foliations. The first examples are due to Roberts-Shareshian-Stein [96].

Some years later, many other examples were found by using techniques coming from

Heegaard Floer homology.

Heegaard Floer homology

Heegaard Floer homology was introduced by Ozsváth and Szabó in [87] . It consists of

a package of topological invariants associated to closed oriented 3-manifolds and in its

simplest form it associates to a 3-manifold M an abelian group of finite rank denoted

by ĤF (M).

The definition of the Heegaard Floer homologies is very complicated and uses ideas

coming from symplectic topology and the study of lagrangians submanifolds in symplec-

tic manifolds. Roughly speaking, ĤF (M) is the Lagrangian Floer homology associated

to a pair of lagrangian tori in the g-fold symmetric product of the surface of genus g.

These tori are obtained from the attaching circles of a Heegaard decomposition of M of

genus g, i.e. a decomposition of M into two handlebodies of genus g. For the purposes

of this thesis, no knowledge of all this machinery is needed. What we want to stress is

that the setting in which these invariants are defined is analytic: elliptic operators and

indices of Fredholm operators are involved. This theory has now found many important

and profound applications in low dimensional topology (see [52] and [50] for some exam-

ples) and so it is intriguing to give new interpretations to these invariant in topological,

geometrical or algebraic terms.

In [86, Proposition 5.1] Ozsváth and Szabó observed the following

Proposition 0.0.8. LetM be a rational homology sphere. Then rkĤF (M) ≥ |H1(M,Z)|.

Definition 0.0.9. A rational homology sphere M is an L-space if ĤF (M) is a free

abelian group with rkĤF (M) = |H1(M,Z)|.

Therefore L-spaces are rational homology spheres with minimal Heegaard Floer ho-

mology. Examples of L-spaces are S3, lens spaces or more generally:

Proposition 0.0.10. ([88, Proposition 2.2]). Every M with finite fundamental group is

an L-space.

By comparing this proposition with Corollary 0.0.6, we see that manifolds with

finite fundamental groups are “simple” both from the point of view of Heegaard Floer

homology and foliation theory. This analogy is not a coincidence:

Theorem 0.0.11 ([85]). If M is an L-space, then M does not support coorientable taut

foliations.
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Remark 0.0.12. We point out that the previous theorem is based on a result by Eliashberg-

Thurston [33] whose proof assumes the foliation to be at least of regularity C2. Later, the

result by Eliashberg-Thurston was generalised independently by Bowden [5] and Kazez-

Roberts [54] to C∞,0- and C1,0-foliations, respectively. Since every C0 topologically taut

foliation is isotopic to a taut C∞,0-foliation, Theorem 0.0.11 holds for this more general

class of foliations. See [23], [54] for more details.

Remark 0.0.13. It was already known that manifolds that are monopole Floer homology

L-spaces do not support coorientable taut foliations [62], see also [60]. Monopole Floer

homologies are another package of invariants of 3-manifolds defined by Kronheimer and

Mrowka, see [59]. It is now known that these invariants are isomorphic to the Heegaard

Floer homologies, [63, 64, 65, 66, 67].

The strength of Theorem 0.0.11 is due to the fact that the class of L-spaces is larger

than the class of manifolds with finite fundamental group. One instance of this fact is

the following theorem:

Theorem 0.0.14 ([89]). Let K be a non-trivial knot in S3 and suppose that there exists

a rational r > 0 such that the r-surgery on K is an L-space. Then the s-surgery on K

is an L-space if and only if s ∈ [2g(K)− 1,∞].

In the previous theorem g(K) denotes the genus of K, i.e. the minimal genus of a

Seifert surface for K.

Example 0.0.15. Let K be the Pretzel knot P (−2, 3, 7). It has genus 5 and it was

shown by Fintushel and Stern [36] that K has positive lens space surgeries; therefore

the r-surgery on K is an L-space, for r ∈ [9,∞]. Since K is hyperbolic, by virtue of the

hyperbolic Dehn filling theorem by Thurston [110], all but finitely many of these surgeries

on K provide examples of hyperbolic manifolds that do not support coorientable taut

foliations.

Left-orderability

The last property involved in the L-space conjecture is stated in terms of fundamental

groups. As we have already seen in the previous sections, manifolds with finite fun-

damental groups are simple from the point of view of Heegaard Floer homology and

foliation theory. On the other hand, we have also seen that there are examples of hy-

perbolic manifolds that are simple from these points of view, thus if the fundamental

group has to play a role in this conjecture then it has be involved in a subtler way. The

candidate notion of “complexity” is the following:

Definition 0.0.16. A group G is left-orderable if there exists a total order on G that

is invariant by left multiplication, i.e. such that g < h if and only if kg < kh for all

k, g, h ∈ G.
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By convention, the trivial group is not left-orderable.

Example 0.0.17. It is not difficult to see that if G is a finite group then G is not

left-orderable. Suppose in fact by contradiction that there exists a left-order on G and

let g ̸= 1 be any element in G. Without loss of generality we can suppose that g > 1.

Then by the definition of left-order we deduce that g2 = gg > g > 1 and by induction

we deduce that gn > 1 for all natural n. Since G is finite, there exists n0 such that

gn0 = 1 and this leads to a contradiction. More generally, we have just proved that if G

has torsion then it is not left-orderable.

Despite the definition of left-orderability of a group G being purely algebraic, this

notion can be interpreted in terms of dynamical properties of G:

Theorem 0.0.18. Let G be a countable group. Then G is left-orderable if and only if

there exists an embedding G→ Homeo+(R).

For a proof of the previous theorem, see [19].

When G is the fundamental group of an irreducible 3-manifold this theorem was

improved by Boyer, Rolfsen and Wiest.

Theorem 0.0.19 ([9]). Let G be the fundamental group of a closed, orientable, irre-

ducible 3-manifold. Then G is left-orderable if and only if there exists a non-trivial

homomorphism G→ Homeo+(R).

The previous theorem is very powerful and gives a very practical way to prove that

many 3-manifolds group are left-orderable and we will make use of it in Chapter 3.

The conjecture and some evidences

We are now ready to state the L-space conjecture.

L-space conjecture. ([52, 7]) For an irreducible oriented rational homology 3-sphere

M , the following are equivalent:

1) M supports a cooriented taut foliation;

2) M is not an L-space, i.e. its Heegaard Floer homology is not minimal;

3) M is left-orderable, i.e. π1(M) is left-orderable.

The equivalence between (1) and (2) was conjectured by Juhász in [52], while the

equivalence between (2) and (3) was conjectured by Boyer, Gordon and Watson in [7].

This conjecture predicts strong connections among geometric, dynamical, Floer homo-

logical, and algebraic properties of 3-manifolds. Despite its boldness, as a result of the

work by many researchers [6, 7, 10, 18, 32, 47, 76] it is now known that the conjecture
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holds for graph manifolds, i.e. manifolds whose JSJ decomposition includes only Seifert

fibered pieces. Moreover, as we have pointed out in the previous sections, results by

Oszváth-Szabó [85], Bowden [5] and Kazez-Roberts [54] imply that in general manifolds

supporting coorientable taut foliations are not L-spaces.

Regarding left-orderability, recently Tao Li proved that ifM has Heegaard genus two

and is left-orderable, then it supports a coorientable taut foliation [72]. On the other

hand, if M supports a coorientable taut foliation, there are two natural ways of trying

to produce a left-order on π1(M). In fact, there are two actions of π1(M) associated

to a coorientable taut foliation. The first one comes from the action on the leaf space

L = M̃/F̃ of the pullback foliation on the universal cover M̃ of M .

Theorem 0.0.20 ([46, 90]). Let F be a coorientable taut foliation on M . Then the leaf

space L of the pullback foliation on M̃ is a simply-connected, non necessarily Haussdorff,

1-manifold.

Of course the action of the fundamental group of M by deck transformations on M̃

induces a non-trivial action on L . Since F is coorientable, L is orientable and this

action is by orientation preserving homeomorphisms. If the leaf space is Haussdorff,

then by virtue of Theorem 0.0.19 we can deduce that M is left-orderable. Also in the

case when L is not Haussdorff one can make use of this action: for example, in [117]

Zung collapses L in a π1(M)-equivariant way to construct an action on the real line.

The second action follows from a construction of Thurston, see [14], and is an action

on S1. One can then try to lift this action to an action on the real line. This was done,

for example, by Hu in [51]. We will also use this method in Chapter 3, where we will

add more details to this discussion.

Since the conjecture has been proved for graph manifolds, it is interesting to study the

conjecture in the case of hyperbolic manifolds. In this direction, in [117] the conjecture

is proved for some manifolds obtained by considering mapping tori of pseudo-Anosov

diffeomorphisms of closed surfaces and then by surgering on some collections of closed

orbits.

In addition, in [30], the conjecture is tested on a census of more than 300, 000 hyper-

bolic rational homology spheres and proved for more than 60% of these manifolds.

My contributions

A natural way to investigate this conjecture is by using Dehn surgery descriptions of

3-manifolds. For instance, it is known that if a non-trivial knot K has a positive surgery

that is an L-space, then K is prime [57], fibered [42, 82] and strongly quasipositive

[48]. Moreover, the r-framed surgery on such a knot K is an L-space if and only if

r ∈ [2g(K) − 1,∞], where g(K) denotes the genus of K [89]. Taut foliations on mani-

folds obtained as surgery on knots in S3 are constructed for example in [94, 95, 29, 28, 58]
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Figure 2: The Whitehead link

and it is possible to prove the left-orderability of some of these manifolds by determining

which of these foliations have vanishing Euler class, as done in [51]. Another approach to

study the left-orderability of surgeries on knots is via representation theoretic methods,

as in [25] and [31].

When it comes to investigate surgeries on links, the story becomes more mysterious.

For instance, there is no generalisation of the result of [89] we cited in the previous

paragraph – even if it holds in some cases, as we will see in Section 1.2 and Section 1.3.

Moreover, links admitting L-space surgeries need not be fibered [78, Example 3.9] nor

quasipositive [16, Proposition 1.5]. Concerning foliations, in [53] Kalelkar and Roberts

construct coorientable taut foliations on some fillings of 3-manifolds that fiber over the

circle and their methods can be applied to surgeries on fibered links as well.

In this thesis we focus our attention on manifolds that can be obtained as surgery on

hyperbolic links (recall that the L-space conjecture holds for graph manifolds). A link

is said to be hyperbolic if its exterior admits a complete finite volume hyperbolic metric

and by virtue of Thurston’s hyperbolic Dehn surgery theorem [110], almost every Dehn

surgery on a hyperbolic link is hyperbolic.

Fibered hyperbolic two-bridge links.

Our main contribution is the study of the conjecture for fibered hyperbolic two-bridge

links. This is an infinite family of two-component links that contains the Whitehead

link, the hyperbolic link with two components depicted in Figure 2. This study was

carried out in [98] and [99]. Our main result is the following:

Theorem A ([98, 99]). Let L be a fibered hyperbolic two-bridge link and let M be a

manifold obtained as Dehn surgery on L. Then M admits a coorientable taut foliation

if and only if M is not an L-space.

Remark 0.0.21. In contrast to the case of knots, the property of being fibered for a link

depends on the choice of an orientation of the components of the link. This happens for
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Figure 3: The link Ln. The figure also describes the slopes on the exterior of Ln yielding

manifolds that are L-spaces (in blue) and manifolds with coorientable taut foliations (in

red).

instance in the case of the (2, 2n) torus link for n > 1, see for example [2, Example 3.1].

On the other hand, changing orientations of the components of L has no effects on the

study of the L-space conjecture for the surgeries on L. For this reason we will consider

links as unoriented and say that a link is fibered if there exists an orientation for which

it is a fibered link.

To the best of the author’s knowledge, Theorem A provides the first example of the

equivalence between conditions 1) and 2) of the conjecture for all manifolds obtained via

Dehn surgery on hyperbolic links with at least 2 components.

More precisely, we are able to determine exactly, for each fibered hyperbolic two-

bridge link L, the set of surgeries on L that are L-spaces and the set of surgeries that

contains coorientable taut foliations. We denote with L(L) the set of slopes on L that

produce L-spaces, and we denote by {Ln}n≥1 the links shown in Figure 3. We point out

that L1 is the Whitehead link.

Recall that by choosing the canonical meridian and longitude for each component we

obtain a canonical parametrisation of Dehn surgeries on a two-component link in S3 by

elements in Q×Q, where Q = Q ∪ {∞}.

Theorem B ([98, 99]). Let L be a fibered hyperbolic two-bridge link. Then

• if L is isotopic to Ln, then L(L) ∩Q2 = [n,∞)× [n,∞);

• if L is isotopic to the mirror of Ln, then L(L) ∩Q2 = (∞,−n]× (∞,−n];

• if L is not isotopic to any of the links Ln or their mirrors, then L(L) ∩Q2 = ∅.
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This implies the following Dehn surgery characterisation of the Whitehead link:

Corollary 0.0.22. Let L be a fibered hyperbolic two-bridge link and suppose that the

(1, 1)-surgery on L is an L-space. Then L is isotopic to the Whitehead link.

We observe that all the links {Ln}n≥1 can be obtained as surgery on a 3-component

link, see Figure 1.4. On the other hand we have the following:

Proposition 0.0.23. It is not possible to obtain the exteriors of all the hyperbolic fibered

2-bridge links as Dehn filling on a fixed cusped hyperbolic manifold N . In particular there

exists no hyperbolic link L such that every hyperbolic fibered two-bridge link is surgery

on L.

Proof. By using the main result of [68], it is easy to see that there exists a family of

fibered hyperbolic 2-bridge links whose volumes grow to infinity. This is the family of

links associated to L(a1, . . . , an) = L(2, 2, . . . , 2) in the notation introduced in Section

1. Since volume decreases under hyperbolic Dehn filling [110], we obtain the result.

As two-bridge links have tunnel number one, all surgeries on these links have at

most Heegaard genus two and therefore as a consequence of the main result of [72] and

Theorem B we have:

Corollary 0.0.24. Let M be obtained as (r1, r2)-surgery on the link Ln, with (r1, r2) ∈
[n,∞) × [n,∞) and suppose that M is irreducible. Then M is not left-orderable. In

particular, for all these manifolds the L-space conjecture holds.

For the case of the Whitehead link, in [98], we were also able to determine which

taut foliations constructed in the proof of Theorem A have zero Euler class, by adapting

the ideas of Hu in [51] to this case. This implies that manifolds supporting such taut

foliations have left-orderable fundamental group. We denote the Whitehead link by WL.

Theorem C ([98]). Let p1, q1 and p2, q2 be two pairs of non vanishing coprime integers.

Let S3
p1
q1
,
p2
q2

(WL) be the
(
p1
q1
, p2q2

)
-surgery on the Whitehead link, with q1, q2 ̸= 0 and

p1, p2 > 0.

Then the foliations constructed in the proof of the Theorem A have vanishing Euler

class if and only if |qi| ≡ 1 (mod pi) for i = 1, 2.

In particular, for all these manifolds the L-space conjecture holds.

We record the following corollary of Theorem A, Theorem C and Corollary 0.0.24:

Corollary 0.0.25. All rational homology spheres obtained by integer surgery on WL

satisfy the L-space conjecture.

This corollary can also be obtained by using the result from [117]. We refer to

Chapter 3 for a more detailed statement of Corollary 0.0.25, which also combines results

from [117].
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Applications to satellite knots and links.

The proof of Theorem A can be used to construct taut foliations on surgeries on some

particular types of satellite knots and links. In [99] we introduce a satellite operation

called two-bridge replacement, see Section 2.4, and prove the following:

Theorem D ([99]). Let L be a fibered link with positive genus or any non-trivial knot and

let L′ denote the link obtained by performing two-bridge replacement on every component

of L. Then all manifolds obtained by doing surgery on each component of L′ along a

non-meridional slope support a coorientable taut foliation.

Since two-bridge replacement generalises Whitehead doubling we deduce the follow-

ing corollary.

Corollary 0.0.26. Let L be a fibered link with positive genus or any non-trivial knot

and let L′ denote the link obtained by replacing each component of L with one of its

Whitehead doubles. Then the manifolds obtained by doing surgery on each component of

L′ along a non-meridional slope support a coorientable taut foliation.

Dodecahedral L-spaces and hyperbolic 4-manifolds

The last part of the thesis will focus on a slightly different topic, and will be about a joint

work with Ludovico Battista and Leonardo Ferrari [3], where we study and classify the

L-spaces among some hyperbolic 3-manifolds with particularly nice geometric properties.

Definition 0.0.27. A hyperbolic 3-manifold is dodecahedral if it can be tessellated by

regular right-angled hyperbolic dodecahedra.

The dodecahedral manifolds tessellated with four or less dodecahedra were classified

in [43]. Using this, we fix the following notation:

Notation 0.0.28. We denote by D the set of the 29 dodecahedral hyperbolic rational

homology spheres tessellated with four or less dodecahedra.

To identify the L-spaces in D , we elaborate on some ideas presented by Dunfield in

[30], and we introduce an algorithm that can be used to prove that a hyperbolic rational

homology sphere is an L-space. With the help of the code provided by Dunfield in [30],

we show that the remaining 3-manifolds are not L-spaces, so we can conclude:

Theorem E ([3]). Among the 29 manifolds in D , 6 are L-spaces and 23 are not.

The information given by Theorem E is very little compared with, for example,

the one from [30], where L-spaces among more than 300, 000 hyperbolic manifolds are

classified. Nevertheless, the geometric properties of the manifolds in D can be used to
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answer a question asked by Agol and Lin in [1]. Before stating the question, we give a

brief introduction to the problem.

Seiberg-Witten invariants are smooth invariants for 4-manifolds with b+2 ≥ 2 and were

defined in [101, 102, 116] by Seiberg and Witten. These invariants, coming from gauge

theory, soon established surprising connections between the topology and the geometry

of smooth 4-manifolds. For example, if a 4-manifold with b+2 ≥ 2 supports a metric

with positive scalar curvature then these invariants all vanish [116], while on the other

hand Taubes [103] proved that any symplectic 4-manifold with b+2 ≥ 2 has a non-zero

Seiberg-Witten invariant. Putting together these results, we have that any symplectic

4-manifold with b+2 ≥ 2 does not support a metric with positive scalar curvature.

In [69] LeBrun conjectured that the Seiberg-Witten invariants of a closed hyperbolic

4-manifold are all zero. In [1] Agol and Lin showed the existence of infinitely many

commensurability classes of hyperbolic 4-manifolds containing representatives with van-

ishing Seiberg-Witten invariants. This is shown by proving that there exist hyperbolic

4-manifolds that contain separating L-spaces. Part of their proof was based on a result

regarding the embeddings of arithmetic hyperbolic manifolds proved by Kolpakov-Reid-

Slavich [56]. However, as a consequence of the techniques employed in [56], the hyperbolic

4-manifolds of [1] are not explicitly constructed. Therefore they ask the following:

Question 1 ([1, Conclusions (1)]). Can one find an explicit hyperbolic 4-manifold N

such that N = N1∪M ′N2, where the separating hypersurface M ′ is an L-space and such

that b+2 (Ni) ≥ 1 for i = 1, 2?

The separating hypersurfaces that we will use are built from the ones in D and to

build the 4-manifold we will follow the construction presented in [79]. The methods

used in [79] allow to construct the 4-manifold in an explicit way. In fact, if M is a

dodecahedral manifold tessellated into n dodecahedra, the result of [79] yields, under

certain hypotheses, a 4-manifold N tessellated into at most 244 · n hyperbolic right-

angled 120-cell [79, Proof of Theorem 3] in which M geodesically embeds. Notice that

this gives a bound on the volume of N that depends only on the number of dodecahedra

that tessellate M . This bound on the number of 120-cells is in general not sharp and in

practice our examples are tessellated by less 120-cells than predicted by this bound.

Using this construction, the manifoldM is non-separating inside N . However, inside

N it is easy to find a certain number of copies of M that, all together, separate. At this

point if M is an L-space one can use an argument as in [1, Corollary 2.5] to obtain a

separating L-space M ′ that is diffeomorphic to the connected sum of several copies of

M . There is also a natural way to ensure that b+2 (Ni) ≥ 1.

With the help of Theorem E, we prove the following:

Theorem F ([3]). There are two hyperbolic 4-manifolds N11 and N28 tessellated with
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29 right-angled 120-cells that can be obtained as N1 ∪M ′ N2, where the separating hyper-

surface M ′ is an L-space and such that b+2 (Ni) ≥ 1 for i = 1, 2.

The manifolds in the statement are built by colouring 4-manifolds with right-angled

corners tessellated in 120-cells and are explicitly described in Chapter 4. The Betti

numbers with coefficients in R and Z2 of the explicit examples that we build are collected

in some tables that can be found in Section 4.3.2.

We point out that dodecahedral manifolds satisfy the hypotheses of [56, Theorem

1.1] and therefore their theorem can be used to prove that they embed in hyperbolic

4-manifolds, but the use of the construction of [79] allows us to describe the 4-manifolds

explicitly.

The proof of Theorem E is achieved by rigorous computer-assisted computations. In

particular, we make use of the code written by Nathan Dunfield [30] and SnapPy [26] in

a Sage [109] environment. All the code used is available at [21], and it can be used to

check if a given manifold is an L-space.

The proof of Theorem F is also computer-assisted. We make use of Regina [13] in a

Sage [109] environment, and in particular of modules written by Tom Boothby, Nathann

Cohen, Jeroen Demeyer, Jason Grout, Carlo Hamalainen, and William Stein. All the

code used is available at [21].

Structure of the thesis

The thesis is organised as follows.

• Chapter 1 is devoted to the study of L-space surgeries on fibered hyperbolic two-

bridge links. In Section 1.1 we recall some useful notions on two-bridge links that

we will need in the second chapter. In Section 1.2 we present the main result of

[93] and use this to study surgeries on the links {Ln}n≥1. In Section 1.3 we present

some results, that can be of independent interest, regarding the structure of the set

of L-space surgeries on links with two unknotted components and linking number

zero.

• Chapter 2 is devoted to the construction of the foliations. In Section 2.1 we

introduce branched surfaces and recall some of their basic properties, together with

the main result of [71]. In Section 2.2 we recall a general method of constructing

branched surfaces in fibered manifolds with boundary and in Section 2.3 we focus

our attention on surgeries on fibered hyperbolic two-bridge links, proving Theorem

A and Theorem B. We conclude the chapter by showing how these results can be

applied to construct taut foliations on surgeries on some satellite knots and links.

In particular these results apply to all Whitehead doubles of non-trivial knots.

This is described in Section 2.4.
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This chapter also contains an appendix, where we study fillings of 3-manifolds

that fiber over the circle with fiber a k-holed torus and with some prescribed

monodromy. The content of the appendix is not needed in the proof of the other

theorems in the thesis, but it can be of independent interest.

• In Chapter 3 we address the left-orderability–side of the conjecture. In Section

3.1 we describe how group cohomology can be used to study the existence of

lifts of certain homomorphisms. In Section 3.2 we study the Euler classes of the

foliations constructed in Chapter 2 on the surgeries on the Whitehead link, and

prove Theorem C.

• Chapter 4 is devoted to the study of dodecahedral L-spaces and the construction of

some hyperbolic 4-manifolds with vanishing Seiberg-Witten invariants. In Section

4.2, we recall the techniques used by Dunfield to classify the L-spaces in [30].

We then elaborate on these techniques and describe an algorithm that can be

used to prove that a hyperbolic rational homology sphere is an L-space and prove

Theorem E. Section 4.3 contains the details of the construction necessary for the

proof of Theorem F. In Section 4.3.1 we recall the general theory of manifolds with

right-angled corners and colourings; then, in Section 4.3.2, we move to the explicit

construction.

Appendices 4.A-4.B contain a detailed description of the algorithm used in Section

4.2, with some examples.
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Chapter 1

L-spaces

The aim of this chapter is to prove that the (r1, r2)-surgery on the two-bridge link Ln

(depicted in Figure 3) is an L-space for r1 ≥ n, r2 ≥ n. This is the content of Proposition

1.2.7 and will be proved in Section 1.2. We first recall some basic notions on two-bridge

links and the main result of [93]. The last section is devoted to prove some additional

results for two-component links with unknotted components and linking number zero.

1.1 Basic notions on two-bridge links

In this first section we briefly recall some facts about two-bridge links that will be useful

for us, especially in Chapter 2. We refer to [11] for proofs and details. A two-bridge link

(with one or two components) can be described by a rational number p
q , where p and q

are coprime integers, p > 0, q is odd and 0 < |q| < p, in the following way. We fix a

sequence of integers (a1, . . . , an) such that

p

q
= a1 +

1

a2 +
1

. . . +
1

an

(*)

and consider the link defined by the diagram in Figure 1.1. We denote this link by

L(a1, . . . , an).

We are interested in the case when L(a1, . . . , an) has two components. This happens

exactly when p is even. When L(a1, . . . , an) is a link we can consider it as oriented link

by orienting the components as in Figure 1.2.

A priori it could happen that the isotopy class of the two-bridge link associated to
p
q depends on the choice of the continued fraction representation of p

q . This is not the

case, by the following theorem by Schubert [100], see also [11].

1
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Figure 1.1: The two-bridge knot or link L(a1, . . . , an).

Figure 1.2: The oriented two-bridge link L(a1, . . . , an).

Theorem 1.1.1. Let L = L(a1 . . . , an) and L′ = L(b1, . . . , bm) be two oriented two-

bridge links and let p
q and p′

q′ be the rational numbers defined as in (*). Then the links

L and L′ are isotopic as oriented links if and only if p = p′ and q′ ≡ q±1 mod 2p. If

p = p′ and q′ ≡ q + p mod 2p or qq′ ≡ 1 + p mod 2p, then L and L′ are isotopic after

reversing the orientation of one of the components.

We denote by b(p, q) the two-bridge link associated to the rational number p
q .

For convenience we also recall some facts on hyperbolic fibered two-bridge links that

we will use in the next chapter. Given a two-bridge link with two components L we can

write L = L(2b1, . . . , 2bn) as unoriented link, where bi is a nonzero integer and n is odd.

Moreover L is fibered if and only if we can find such a description with |bi| = 1 for all i [40,

Proposition 2]1 and by using Theorem 1.1.1 one can see that L is a torus link if and only

1The result presented there is for knots, but the same proof works also for links.
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if any such description with all |bi| = 1 satisfies (b1, . . . , bn) = ±(1,−1, 1, . . . , (−1)n−1).

Two-bridge links are non-split, prime, alternating links (see [11]) and as a consequence

of [81, Corollary 2], a two-bridge link is hyperbolic if and only if is it not a torus

link. Therefore hyperbolic fibered two-bridge links are those that can be written as

L(2b1, . . . , 2bn) where |bi| = 1 for all i’s and at least two consecutives bi’s are equal.

Recall that we will consider links as unoriented and say that a link is fibered if there

exists an orientation for which it is a fibered link.

1.2 L-space surgeries on the links Ln

The aim of this section is to study L-space surgeries on the links {Ln}n≥1, depicted

in Figure 3. Notice that when n > 1 it is not evident from the diagrams of Figure 3

that these links are fibered. This will follow from Lemma 2.3.10, that allows us to find

diagrams for these links of the form L(2b1, . . . , 2bn) where |bi| = 1 for all i’s and at least

two consecutives bi’s are equal.

We start by recalling some definitions and the main result of [93]. Let Y be a rational

homology solid torus, i.e. a compact oriented 3-manifold with toroidal boundary such

that H∗(Y ;Q) ∼= H∗(D2 × S1;Q).

We are interested in the study of Dehn fillings on Y . We define the set of slopes in

Y as

Sl(Y ) = {α ∈ H1(∂Y ;Z)|α is primitive}/± 1.

It is a well known fact that each element [α] ∈ Sl(Y ) determines a Dehn filling on Y ,

that we will denote by Y (α).

Notice that since Y is a rational homology solid torus, there is a distinguished slope

in Sl(Y ) that we call the homological longitude of Y and that is defined in the follow-

ing way. We denote by i : H1(∂Y ;Z) → H1(Y ;Z) the map induced by the inclusion

∂Y ⊂ Y and we consider a primitive element l ∈ H1(∂Y ;Z) such that i(l) is torsion in

H1(Y ;Z). The element l is unique up to sign, and its equivalence class [l] ∈ Sl(Y ) is

the homological longitude of Y . This definition, that may seem to be counterintuitive,

is given so that when Y is the complement of a knot in S3, the homological longitude of

Y coincides with the slope defined by the canonical longitude of the knot.

We want to study the fillings on Y that are L-spaces. For this reason we define the

set of the L-space filling slopes:

L(Y ) = {[α] ∈ Sl(Y )| Y (α) is an L-space}

and we say that Y is Floer simple if Y admits multiple L-space filling slopes, i.e. if

|L(Y )| > 1.
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It turns out that if Y is Floer simple then the set L(Y ) has a simple structure, and this

can be computed by knowing the Turaev torsion of Y . We only recall some properties

of the Turaev torsion and we refer the reader to [113] for the precise definitions.

Fix an identification H1(Y ;Z) = Z⊕T , where T is the torsion subgroup, and denote

by ϕ : H1(Y ;Z) → Z the projection induced by this identification. Then the Turaev

torsion of Y can be normalised to be written as a formal sum

τ(Y ) =
∑

h∈H1(Y ;Z)
ϕ(h)≥0

ahh

where ah is an integer for each h, a0 ̸= 0 and ah = 1 for all but finitely many h with

ϕ(h) ≥ 0. We understand that when ϕ(h) < 0 the coefficient ah is zero.

For example (see [113, Section II.5]) if H1(Y ;Z) = Z the Turaev torsion of Y can be

written as

τ(Y ) =
∆(Y )

1− t
∈ Z[[t]]

where (1 − t)−1 is expanded as an infinite sum in positive powers of t and ∆(Y ) is

the Alexander polynomial of Y normalised so that ∆(Y ) ∈ Z[t], ∆(Y )(0) ̸= 0 and

∆(Y )(1) = 1. In fact, in this case the coefficients of τ(Y ) are eventually constant and

equal to the sum of all the coefficients of ∆(Y ), and this value is exactly ∆(Y )(1) = 1.

We define S[τ(Y )] = {h ∈ H1(Y ;Z)| ah ̸= 0} to be the support of τ(Y ).

We also define the following subset of H1(Y ;Z):

Dτ
>0(Y ) =

{
x− y |x /∈ S[τ(Y )], y ∈ S[τ(Y )] and ϕ(x) > ϕ(y)

}
∩ i(H1(∂Y ;Z))

where i : H1(∂Y ;Z) → H1(Y ;Z) is induced by the inclusion.

We prove here the following lemma, that we will use in the next section.

Lemma 1.2.1. The set Dτ
>0 is always finite.

Proof. Recall that we fixed an identification H1(Y,Z) = Z ⊕ T , where T is the tor-

sion subgroup, and we denoted by ϕ : H1(Y,Z) → Z the projection induced by this

identification. Also recall that the Turaev torsion of Y is normalised so to be written as

τ(Y ) =
∑

h∈H1(Y ;Z)
ϕ(h)≥0

ahh

where ah is an integer for each h, a0 ̸= 0 and ah = 1 for all but finitely many h with

ϕ(h) ≥ 0. This implies in particular that if h ∈ S[τ(Y )] then ϕ(h) ≥ 0. Moreover since

ah = 1 for all but finitely many h with ϕ(h) ≥ 0 we also deduce that there exists a

positive constant c ∈ Z such that if h′ /∈ S[τ(Y )] then ϕ(h′) ≤ c.
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We now prove that Dτ
>0 is finite. To do this, we define for each x /∈ S[τ(Y )] the set

Sτx = {y ∈ S[τ(Y )] |ϕ(x) > ϕ(y)}.

We show that Sτx is always finite and that it is non-empty only for finitely many x /∈
S[τ(Y )]. It follows from the definition of Dτ

>0(Y ) that this implies that Dτ
>0(Y ) is finite.

We fix x /∈ S[τ(Y )] and we have two cases:

• ϕ(x) ≤ 0: in this case, since all the y ∈ S[τ(Y )] satisfy ϕ(y) ≥ 0, we have that Sτx
is empty.

• ϕ(x) > 0: we use again the fact that all the y ∈ S[τ(Y )] satisfy ϕ(y) ≥ 0 to deduce

that

Sτx ⊂ {0, 1, . . . , ϕ(x)− 1} ⊕ T ⊂ Z⊕ T = H1(Y,Z).

Since the torsion subgroup T is finite we have that Sτx is finite.

To conclude the proof we show that the latter case occurs only for finitely many x /∈
S[τ(Y )]. In fact since there exists a positive constant c ∈ Z such that if x /∈ S[τ(Y )] then

ϕ(x) ≤ c we have that the set {x /∈ S[τ(Y )] |ϕ(x) > 0} is contained in {0, 1, . . . , c} ⊕ T ,

and this is a finite set.

We are now ready to state the main result of [93]:

Theorem 1.2.2 ([93]). If Y is Floer simple, then either

• Dτ
>0(Y ) = ∅ and L(Y ) = Sl(Y ) \ [l], or

• Dτ
>0(Y ) ̸= ∅ and L(Y ) is a closed interval whose endpoints are consecutive elements

in i−1(Dτ
>0(Y )).

We explain more precisely the second part of the statement of this theorem. Once

we fix a basis (µ, λ) for H1(∂Y ;Z) we can associate to each element aµ+bλ ∈ H1(∂Y ;Z)
the element a

b ∈ Q = Q ∪ {∞} ⊂ S1. This association defines a map onto Q that yields

an identification between Sl(Y ) and Q.

If the set Dτ
>0 is not empty, then we can apply this map to the set i−1(Dτ

>0) ⊂
H1(∂Y ;Z) and Theorem 1.2.2 states that if Y is Floer simple then L(Y ) is a closed

interval in Sl(Y ) = Q whose endpoints are consecutive elements in the image of i−1(Dτ
>0)

in Q.

We point out the following corollary of Theorem 1.2.2:

Corollary 1.2.3. Let Y be a rational homology solid torus and let [α] ̸= [β] be two

slopes in L(Y ). Then L(Y ) contains the interval in Sl(Y ) between [α] and [β] that does

not contain the homological longitude [l].
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In the case of our interest we consider links L = K1 ⊔ K2 ⊂ S3 with unknotted

components.

By analogy with the definition given for rational homology solid tori we denote by

Sl(L) = Sl(EK1)×Sl(EK2) the set of slopes of the exterior of L, where EKi denotes the

exterior of the knot Ki, for i = 1, 2. Notice that this set parametrises all Dehn surgeries

on L. We also denote by L(L) the set of L-space filling slopes of the exterior of L.
We fix an orientation of the components of L and in this way we obtain canonical

meridian-longitude bases (µi, λi)i=1,2 of the first homology groups of the boundary tori

of its exterior. The choice of these bases also determines an identification Sl(L) = Q×Q.

Given (r1, r2) ∈ Q2
, we denote by

• S3
r1,r2(L) the (r1, r2)-surgery on L;

• S3
r1,•(L) the manifold obtained by drilling K2 and performing r1-surgery on K1;

• S3
•,r2(L) the manifold obtained by drilling K1 and performing r2-surgery on K2.

Recall that if L has two components by using Mayer-Vietoris one can see that the

manifold S3
r1,r2(L) is not a rational homology sphere if and only if {r1, r2} = {0,∞} or

r1r2 = lk(L)2, where lk(L) denotes the linking number of the components of L. Hence

if r1 ̸= 0 the manifold S3
r1,•(L) is a rational homology solid torus with homological

longitude given by lk(L)2
r1

∈ Q. Analogously, if r2 ̸= 0 the manifold S3
•,r2(L) is a rational

homology solid torus with homological longitude given by lk(L)2
r2

∈ Q.

We recall the definition of L-space link from [45]. We give this definition for links with

two components, but it generalises in the obvious way to links with more components.

Definition 1.2.4. ([45]) A link L ⊂ S3 is an L-space link if all sufficiently large integer

surgeries are L-spaces, i.e. if there exist integers p1, p2 such that S3
d1,d2

(L) is an L-space
for all integers d1 > p1 and d2 > p2.

Recall that Theorem 0.0.14 implies that if a knot has a positive L-space surgery then

it is an L-space knot. This is no longer true in the case of links, as Example 2.4 in [78]

shows.

Nevertheless, the following proposition shows that under mild hypotheses Theorem

0.0.14 extends to links with two unknotted components.

Proposition 1.2.5. Let L be a link with two unknotted components. Suppose that

(r1, r2) ∈ L(L) with r1r2 > lk(L)2 and r1 > 0, r2 > 0. Then
(
[r1,∞] × [r2,∞]

)
∩ Q2

is contained in L(L). Analogously, if r1r2 > lk(L)2 and r1 < 0, r2 < 0 then
(
[∞, r1] ×

[∞, r2]
)
∩Q2

is contained in L(L).

Proof. We prove the proposition in the case r1r2 > lk(K)2 and r1 > 0, r2 > 0. The

other case is analogous. We consider the manifold Y = S3
r1,•. We have that r2 ∈ L(Y )
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Figure 1.3: A pictorial sketch of the proof.

and since the components of L are unknotted it follows that also {∞} ∈ L(L). In

fact S3
r1,∞(L) is a lens space, and hence an L-space. Thus we can deduce, by virtue of

Corollary 1.2.3, that the interval between r2 and∞ that does not contain the homological

longitude is contained in L(Y ). By hypothesis, the homological longitude lk(L)2
r1

is smaller

than r2, so we deduce that [r2,∞] ∩ Q ⊂ L(Y ). In other words we have proved that

S3
r1,s(L) is an L-space for all s ≥ r2. Now we fix s ≥ r2 and consider the manifold

Ys = S3
•,s. As a consequence of r1 and ∞ belonging to L(Ys), we can apply again

Corollary 1.2.3 and deduce that the interval between r1 and ∞ that does not contain

the homological longitude is contained in L(Ys). Since r1 ≥ lk(L)2
r2

≥ lk(L)2
s and the latter

is the homological longitude of Ys, we conclude that [r1,∞] ∩Q ⊂ L(Ys) for all s ≥ r2.

This is exactly equivalent to saying that
(
[r1,∞] × [r2,∞]

)
∩ Q2 ⊂ L(L). A pictorial

sketch of the proof is described in Figure 1.3.

In case of links with linking number zero, the previous proposition implies that the

property of being an L-space link is determined by a single positive L-space surgery, as

in the case of knots:

Corollary 1.2.6. If L is a link with linking number zero and two unknotted components

and the (r1, r2)-surgery on L is an L-space, for some positive r1, r2, then L is an L-space

link.

Indeed, the previous corollary can be improved and it can be generalised to Brunnian

links. Since we do not need this for the aims of this section, we postpone the discussion

to the next section.

We are now ready to study L-space surgeries on the links {Ln}n≥1.

Proposition 1.2.7. Let Ln be the link described in Figure 3. Then
(
[n,∞]× [n,∞]

)
∩

Q2 ⊂ L(Ln).

Proof. The link Ln satisfies lk(Ln)
2 = (n−1)2 and its components are unknotted, hence

by Proposition 1.2.5 it is enough to prove that (n, n) ∈ L(Ln). We can see the links Ln



8 CHAPTER 1. L-SPACES

Figure 1.4: How to obtain the links {Ln}n≥1 as surgeries on a 3-component link L .

as surgeries on a three-component link L , as represented in Figure 1.4. We have also

fixed an orientation of this link, that we will use later in the proof.

More precisely we have that S3
a,b,− 1

n−1

(L ) = S3
a+n−1,b+n−1(Ln). This implies that

the statement is equivalent to proving that S3
1,1,− 1

n−1

(L ) is an L-space for all n ≥ 1 and

to prove this we will apply Corollary 1.2.3 to the rational homology solid torus S3
1,1,•(L ).

Denoting this manifold by Y , we have:

• ∞ ∈ L(Y ): in fact S3
1,1,∞(L ) is (1, 1)-surgery on the Whitehead link. This is the

Poincaré homology sphere, which has finite fundamental group and is therefore an

L-space [88, Proposition 2.2];

• 1 ∈ L(Y ): in fact S3
1,1,1(L ) is (0, 0)-surgery on the Hopf link, see Figure 1.5. This

manifold is S3 and therefore an L-space;

• the homological longitude of Y is the slope 2: to prove this we have to do a simple

computation. We fix an orientation for the link and we denote the components of L

with K1, K2 and K3 as in Figure 1.4.

We have that lk(K1,K3) = lk(K2,K3) = 1 and lk(K1,K2) = 0. Consequently, a

presentation matrix for H1(S
3
1,1, p

q
(L ),Z) is given by

A =

1 0 q

0 1 q

1 1 p


and in particular S3

1,1, p
q
(L ) is not a rational homology sphere if and only if the de-

terminant of A is zero. This happens if and only if p = 2q and therefore 2 is the

homological longitude of the manifold S3
1,1,•(L ).
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Figure 1.5: The (1, 1, 1)-surgery on L is (0, 0)-surgery on the Hopf link

What we have just proved implies by Corollary 1.2.3 that [∞, 1]∩Q ⊂ L(Y ). In particular

S3
1,1,− 1

n−1

(L ) is an L-space for all n ≥ 1 and this manifold is exactly the (n, n)-surgery

on Ln.

Remark 1.2.8. In [77, 78], Liu conjectured that a two-bridge link is an L-space link if

and only if it is of the form b(pq − 1,−q), where p and q are odd positive integers. This

conjecture was proved by Dawra in [27]. It is not difficult to prove that the link Ln, as

unoriented link, is isotopic to b(6n+2,−3). It will follow from the results of Chapter 2,

that these are the only fibered nontorus two-bridge L-space links.

1.3 Some general results for links with linking number zero

In this section we focus on the case when L has unknotted components and linking

number zero, and we provide an improvement of Proposition 1.2.5.

Notice that since L has linking number zero, we have an isomorphism

H1

(
S3

p1
q1
,•(L);Z

)
∼= Zp1 ⊕ Z

where the image of the meridian µ1 in H1

(
S3

p1
q1
,•(L);Z

)
is mapped to (1, 0) and the

image of the meridian µ2 in H1

(
S3

p1
q1
,•(L);Z

)
is mapped to (0, 1). Moreover, by fixing

the canonical meridian and longitude for the componentK1 of L we have an identification

Sl(S3
p1
q1
,•) = Q. An analogous result holds for S3

•, p2
q2

(L).

Lemma 1.3.1. Fix p ̸= 0 and q coprime integers. Let S3
p
q
(L) denote either one of

S3
p
q
,•(L) or S3

•, p
q
(L) and suppose that S3

p
q
(L) is Floer simple. Then the set L

(
S3

p
q
(L)

)
has one of the following forms:
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• L

(
S3

p
q
(L)

)
= Q \ {0}, or

• there exists a natural number k > 0 such that either L

(
S3

p
q
(L)

)
= [k,∞] or

L

(
S3

p
q
(L)

)
= [∞,−k].

Proof. We suppose that S3
p
q
(L) = S3

•, p
q
(L), the case S3

p
q
(L) = S3

p
q
,•(L) being analogous.

We denote S3
p
q
(L) with M .

The lemma follows from Theorem 1.2.2 together with a simple inspection on the

possible forms of the set Dτ
>0(M):

• Dτ
>0(M) is empty: in this case we have that L(M) = Q \ {0}.

• Dτ
>0(M) is not empty: recall that by definition Dτ

>0(M) is the subset of H1(M ;Z)
defined as

Dτ
>0(M) =

{
x− y |x /∈ S[τ(M)], y ∈ S[τ(M)] and ϕ(x) > ϕ(y)

}
∩ i(H1(∂M ;Z)).

In our case the projection ϕ associated to the identification

H1(M ;Z) = Z⊕ Zp

is simply the map ϕ(x1, x2) = x1 and therefore the condition ϕ(x) > ϕ(y) in the

definition of Dτ
>0(M) implies that

Dτ
>0(M) ⊂ (Z>0 × Zp) ∩ i(H1(∂M ;Z)).

Since the components of L have linking number zero, i(H1(∂M ;Z)) = Z × {0}
and we denote by S = {n1, . . . , nh} ⊂ Z>0 the first coordinates of the elements of

Dτ
>0(M) ⊂ Z>0 × {0}, listed in ascending order. Recall from Lemma 1.2.1 that

Dτ
>0(M) is always a finite set.

We have that

i−1(Dτ
>0(M)) = {(ni,m) ∈ Z× Z | ni ∈ S and m ∈ Z}

and we know by Theorem 1.2.2 that L(M) is a closed interval in Q whose endpoints

are consecutive elements in the set
{
ni
m | ni ∈ S and m ∈ Z

}
. Since the components

of L are unknotted we know that S3
∞, p

q
(L) is an L-space (it is indeed a lens space)

and therefore that ∞ belongs to L(M). Hence we can conclude that either L(M) =

[nh,∞] or L(M) = [∞,−nh].

This concludes the proof.
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We will use the symbols ⌊x⌋ and ⌈x⌉, where x is a rational number, to denote the

integers

⌊x⌋ = max{k ∈ Z|k ≤ x}

⌈x⌉ = min{k ∈ Z|k ≥ x}.

Recall that a link L with three or more components is Brunnian if all of its sublinks

are unlinks. This in particular implies that all the components of L have pairwise

linking number zero. A link with two components is Brunnian when its components are

unknotted and have linking number zero.

Proposition 1.3.2. Let L be an n-components Brunnian link and suppose that there

exist rationals r1 > 0, r2 > 0, · · · , rn > 0 such that S3
r1,...,rn(L) is an L-space. Then

S3
s1,...,sn(L) is an L-space for all (s1, . . . , sn) satisfyingsi ≥ ⌊ri⌋ if ri ≥ 1

si > ⌊ri⌋ = 0 if 0 < ri < 1.

In particular L is an L-space link.

Proof. We suppose that L has two components, the proof being analogous in the general

case. The proof follows the same lines as the one of Proposition 1.2.5.

We consider Y = S3
r1,• and we denote by I the set L(Y ). We know by hypothesis

that r2 ∈ I and that ∞ ∈ I, the components of L being unknotted. This implies, by

virtue of Lemma 1.3.1, that [⌊r2⌋,∞] ⊂ I when r2 ≥ 1 and that Q \ {0} ⊂ I (and in

particular (0,∞] ⊂ I) when 0 < r2 < 1.

We now fix any s ∈ I ∩ (0,∞] and consider Ys = S3
•,s with the associated set of L-

space surgery slopes Is := L(Ys). By repeating the same argument as before, we deduce

that [⌊r1⌋,∞] ⊂ Is when r1 ≥ 1 and (0,∞] ⊂ Is when 0 < r2 < 1. This concludes the

proof. The case when L has more than two components is completely analogous and one

only has to observe that any surgery on an unlink that is a rational homology sphere is

an L-space, since it has to be a connected sum of lens spaces, and the set of L-spaces is

closed under connected sums [86, Proposition 6.1].

Remark 1.3.3. It will follow from Theorem 1.3.5 that if L has two components and is not

the unlink, then in the previous proposition the case 0 < r1 < 1 or 0 < r2 < 1 cannot

occur.

The previous proposition allows us to generalise the following theorem from [44].

Theorem 1.3.4 ([44]). Assume that L is a non-trivial L–space link with two unknotted

components and linking number zero. Then there exist non-negative integers b1, b2 such

that for p1, p2 ∈ Z we have that S3
p1,p2(L) is an L–space if and only if p1 > 2b1 and

p2 > 2b2.
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More precisely, the theorem we are going to state generalises Theorem 1.3.4 in two

directions:

1. we only ask that (r1, r2)-surgery on L is an L-space, for some positive r1, r2, instead

of requiring L to be an L-space link;

2. we give a complete description of all the L-space surgeries on L, and not only of

the integer ones.

We use the symbol Q∗ to denote the set Q \ {0}.

Theorem 1.3.5 ([98]). Suppose that L is a non-trivial link with two unknotted compo-

nents and linking number zero. Suppose that there exist rationals r1 > 0 and r2 > 0 such

that S3
r1,r2(L) is an L-space. Then there exist non-negative integer numbers b1, b2 such

that

L(L) =
(
[2b1 + 1,∞]× [2b2 + 1,∞]

)
∪
(
{∞} ×Q∗) ∪ (

Q∗ × {∞}
)
.

Proof. We know from Proposition 1.3.2 that L is an L-space link. Therefore we can

apply Theorem 1.3.4 and deduce that there exist non-negative integers b1, b2 such that

L(L) ∩ Z2 =
(
[2b1 + 1,∞)× [2b2 + 1,∞)

)
∩ Z2

Exactly as in the proof of Proposition 1.3.2, we can use Lemma 1.3.1 to deduce that

L(L) ⊃
(
[2b1 + 1,∞]× [2b2 + 1,∞]

)
∪
(
{∞} ×Q∗) ∪ (

Q∗ × {∞}
)
.

and therefore we only have to prove that this inclusion is an equality.

Suppose on the contrary that there exists an L-space surgery slope (r1, r2), with

r1, r2 rationals, such that

(r1, r2) /∈
(
[2b1 + 1,∞]× [2b2 + 1,∞]

)
∪
(
{∞} ×Q∗) ∪ (

Q∗ × {∞}
)
.

We suppose that r1 < 2b1+1. The case r2 < 2b2+1 can be solved in the same way. We

have the following cases:

• 1 ≤ r1 < 2b1 + 1.

By virtue of Lemma 1.3.1 we have that [⌊r1⌋,∞] is contained in L(S3
•,r2). This

implies that S3
⌊r1⌋,• is Floer simple and therefore, by applying again Lemma 1.3.1,

we deduce that it admits integral L-space filling slopes. In this way we produce a

point in

(L(L) ∩ Z2)) \
((

[2b1 + 1,∞)× [2b2 + 1,∞)
)
∩ Z2

)
contradicting Theorem 1.3.4.
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• r1 ∈ (−1, 1).

As a consequence of Lemma 1.3.1 we have that L(S3
•,r2) = Q \ {0}. Therefore if

we fix any negative integer −m < 0 we have that r2 ∈ L(S3
−m,•) and by applying

again Lemma 1.3.1 we deduce that there exist integral L-space filling slopes on

S3
−m,•, contradicting Theorem 1.3.4.

• r1 ≤ −1.

By applying the same argument used in the first case we have that L(S3
•,r2) contains

[∞, ⌈r1⌉]. Therefore S3
⌈r1⌉,• admits integral L-space filling slopes, contradicting

Theorem 1.3.4.

The proof is complete.

As a corollary we deduce a complete description of all the L-space surgeries on the

Whitehead link WL:

Corollary 1.3.6. Let r1, r2 be two rational numbers. The 3-manifold S3
r1,r2(WL) is an

L-space if and only if r1 ≥ 1 and r2 ≥ 1

Proof. Since the Whitehead link is the link L1 of the family {Ln}n≥1 depicted in Figure

3, we know by virtue of Proposition 1.2.7 that [1,∞]2 ∩ Q2 ⊂ L(WL). The Whitehead

link has unknotted components and linking number zero and we can therefore apply

Theorem 1.3.5, that immediately implies the thesis.

So we see that for the Whitehead link the set L(WL)∩Q2 is exactly the set determined

in Proposition 1.2.7. The same holds for the other links {Ln}n>1 but to prove this we

have to wait for next chapter, where we construct taut foliations on all the remaining

surgeries.
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Chapter 2

Taut Foliations

In this chapter we study the existence of taut foliations on the surgeries on fibered

hyperbolic two-bridge links, proving Theorem A and Theorem B. Branched surfaces

will be our main tool. In Section 2.1 we introduce them and recall some of their basic

properties, together with the main result of [71]. In Section 2.2 we recall a general method

to construct branched surfaces in fibered manifolds with boundary and in Section 2.3

we focus our attention on surgeries on fibered hyperbolic two-bridge links: we start by

proving a few lemmas that allow us to construct taut foliations on all finite surgeries on

many fibered two-bridge links; this will reduce our study to the cases of some remaining

subfamilies of two-bridge links (containing the links {Ln}n≥1 of Chapter 1) that we

study separately. We conclude the chapter by showing how these results can be applied

to construct taut foliations on surgeries on some satellite knots and links. In particular

these results apply to all Whitehead doubles of non-trivial knots. This is the content of

Theorem D and it will be proved in Section 2.4

2.1 Background on foliations and branched surfaces

First of all we specify that in this thesis the term foliation will refer to codimension-1

foliations of class C∞,0, as defined for example in [15] and [54]. We recall the definition

here. We denote with Hk the k-dimensional Euclidean closed half space

Hk = {(x1, . . . , xk) ∈ Rk |xk ≥ 0}.

Definition 2.1.1. A C∞,0 codimension-1 foliation F of a smooth 3-manifold M with

(possibly empty) boundary is a decomposition of M into the union of disjoint smoothly

injectively immersed connected surfaces, called the leaves of F , together with a collection

of charts (Ui, ϕi)i∈I covering M such that:

• ϕi : Ui → X is a homeomorphism, where X is either R2 ×R or R2 ×H1 or H2 ×R,

15
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Figure 2.1: Local models for a foliation.

with the property that the image of each component of a leaf intersected with Ui

is a slice R2 × {point} or H2 × {point};

• all partial derivatives of any order in the variables x and y on the domain of each

transition function ϕjϕ
−1
i are continuous; here we have fixed coordinates (x, y, z)

on X .

The three local models for a foliation are depicted in Figure 2.1, where ∂X is shaded.

Remark 2.1.2. The tangent planes to the leaves of a foliation F of a 3-manifoldM define

a continuous plane subbundle of TM , that we denote with TF .

Definition 2.1.3. A foliation F of a 3-manifold M is orientable if the plane bundle TF
is orientable and is coorientable if the line bundle TM/TF is orientable.

Observe that since we work with orientable 3-manifolds, a foliation F is orientable

if and only if is coorientable.

Definition 2.1.4. A foliation F of a 3-manifold M is taut if every leaf of F intersects

a closed transversal, i.e. a smooth simple closed curve in M that is transverse to F .

There are several definitions of tautness and in general they are not equivalent. For

details we refer to [23], where also the relations among these different notions are dis-

cussed.

In this and in the next sections we assume familiarity with the basic notions of the

theory of train tracks; see [110] and [92] for reference. In the cases of our interest train

tracks can also have bigons as complementary regions.

Our goal in this chapter is to construct coorientable taut foliations and branched

surfaces are the main tool we use. We now introduce these objects and recall some basic

facts. We refer to [37] and [84] for more details.

Definition 2.1.5. A branched surface with boundary in a 3-manifold M is a closed

subset B ⊂ M that is locally diffeomorphic to one of the models in R3 of Figure 2.2a)

or to one of the models in the closed half space of Figure 2.2b), where ∂B := B ∩ ∂M is

represented with a bold line.
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Figure 2.2: Local models for a branched surface.

Figure 2.3: Some examples of cusp directions.

Branched surfaces generalise the concept of train tracks from surfaces to 3-manifolds.

When the boundary of B is non-empty it defines a train track ∂B in ∂M .

If B is a branched surface it is possible to identify two subsets of B: the branch

locus and the set of triple points. The branch locus is defined as the set of points where

B is not locally homeomorphic to a surface. It is self-transverse and intersects itself in

double points only. The set of triple points of B can be defined as the points where the

branch locus is not locally homeomorphic to an arc. For example, the rightmost model

of Figure 2.2a) contains a triple point.

The complement of the branch locus in B is a union of connected surfaces. The

abstract closures of these surfaces under any path metric on M are called the branch

sectors of B. Analogously, the complement of the set of the triple points inside the

branch locus is a union of 1-dimensional connected manifolds. Moreover, to each of these

manifolds we can associate an arrow in B pointing in the direction of the smoothing, as

in Figure 2.3. We call these arrows branch directions or cusp directions.

If B is a branched surface in M , we denote by NB a fibered regular neighbourhood

of B constructed as suggested in Figure 2.4.

The boundary of NB decomposes naturally into the union of three compact subsur-

faces ∂hNB, ∂vNB and NB ∩ ∂M . We call ∂hNB the horizontal boundary of NB and

∂vNB the vertical boundary of NB. The horizontal boundary is transverse to the interval

fibers of NB while the vertical boundary intersects, if at all, the fibers of NB in one or

two proper closed subintervals contained in their interior. If we collapse each interval
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Figure 2.4: Regular neighbourhood of a branched surface.

Figure 2.5: Some examples of splittings. The coloured region is the interval bundle J .

fiber of NB to a point, we obtain a branched surface in M that is isotopic to B, and the

image of ∂vNB coincides with the branch locus of such a branched surface.

We also recall the definition of splitting1.

Definition 2.1.6. Given two branched surfaces B1 and B2 in M we say that B2 is

obtained by splitting B1 if NB1 can be obtained as NB2 ∪ J , where J is a [0, 1]-bundle

such that ∂hJ ⊂ ∂hNB2 , ∂vJ ∩ ∂NB2 ⊂ ∂vNB2 and ∂J meets ∂NB2 so that the fibers

agree.

Figure 2.5 shows two examples of splittings, illustrated for the case of 1-dimensional

branched manifolds, i.e. train tracks.

Branched surfaces provide a useful tool to construct laminations on 3-manifolds.

1This operation is referred to as restriction in [84].
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Figure 2.6: Examples of a) sink discs and b) half sink discs.

Definition 2.1.7 (see for example [41]). Let B be a branched surface in a 3-manifold

M . A lamination carried by B is a closed subset Λ of some regular neighbourhood NB of

B such that Λ is a disjoint union of smoothly injectively immersed connected surfaces,

called leaves, that intersect the fibers of NB transversely. We say that Λ is fully carried

by B if Λ is carried by B and intersects every fiber of NB.

Remark 2.1.8. As in Definition 2.1.7, if S is a closed oriented surface and τ is a train

track in S we can define what is a lamination (fully) carried by τ . In this case we say

that an oriented simple closed curve γ is realised by τ if τ fully carries a union of finitely

many disjoint curves that are parallel to γ inside S.

In [70], Li introduces the notion of sink disc.

Definition 2.1.9. Let B be a branched surface in M and let S be a branch sector in B.

We say that S is a sink disc if S is a disc, S ∩ ∂M = ∅ and the branch direction of any

smooth curve or arc in its boundary points into S. We say that S is a half sink disc if

S is a disc, S ∩ ∂M ̸= ∅ and the branch direction of any smooth arc in ∂S \ ∂M points

into S.

In Figure 2.6 some examples of sink discs and half sink discs are depicted. The bold

lines represent the intersection of the branched surface with ∂M . Notice that if S is a

half sink disc the intersection ∂S ∩ ∂M can also be disconnected.

If B contains a sink disc or a half sink disc there is a very simple way to eliminate it,

namely it is enough to blow an air bubble in its interior, as in Figure 2.7, so to obtain

a new branched surface B′. However there is really no difference between B and B′:

in fact it is not difficult to see that B carries a lamination if and only if B′ carries a

lamination.

We do not want to artificially eliminate sink discs with this procedure and so we

recall the notion of trivial bubble. We say that a connected component of M \ int(NB) is
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Figure 2.7: How to eliminate a sink disc or a half sink disc by blowing an air bubble.

a D2 × [0, 1] region if it is homeomorphic to a ball and its boundary can be subdivided

into an annular region, corresponding to a component of ∂vNB, and two D2 regions

corresponding to components of ∂hNB. We say that a D2 × [0, 1] region is trivial if the

map collapsing the fibers of NB is injective on int(D2) × {0, 1}. In this case the image

of D2 × {0, 1} via the collapsing map is called a trivial bubble in B. Trivial bubbles and

trivial D2 × [0, 1] regions are created when we eliminate sink discs as in Figure 2.7.

When M and B have boundary these definitions generalise straightforwardly to the

relative case, see [71].

In [70], Li introduces the definition of laminar branched surface and proves that

laminar branched surfaces fully carry essential laminations2. In [71] he generalises this

definition to branched surfaces with boundary as follows:

Definition 2.1.10 ([70]). Let B be a branched surface in a 3-manifold M . We say that

B is laminar if B has no trivial bubbles and the following hold:

1. ∂hNB is incompressible and ∂-incompressible in M \ int(NB), and no component

of ∂hNB is a sphere or a properly embedded disc in M ;

2. there is no monogon in M \ int(NB), i.e. no disc D ⊂ M \ int(NB) such that

∂D = D ∩NB = α ∪ β, where α is in an interval fiber of ∂vNB and β is an arc in

∂hNB;

3. M \ int(NB) is irreducible and ∂M \ int(NB) is incompressible in M \ int(NB);

4. B contains no Reeb branched surfaces (see [41] for the definition);

5. B has no sink discs or half sink discs.

2For the definition of essential lamination see [41], but we will not need their properties for our

purposes.
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Since ∂hNB is not properly embedded in M \ int(NB) we explain more precisely the

request of ∂-incompressibility in 1. : we require that if D is a disc in M \ int(NB) with

int(D) ⊂ M \ NB and ∂D = α ∪ β where α is an arc in ∂hNB and β is an arc in ∂M ,

then there is a disc D′ ⊂ ∂hNB with ∂D′ = α ∪ β′ where β′ = ∂D′ ∩ ∂M .

The following theorem of [71] will be used profusely in this section.

Theorem 2.1.11 ([71])). Let M be an irreducible and orientable 3-manifold whose

boundary is union of k incompressible tori T1, . . . , Tk. Suppose that B is a laminar

branched surface in M such that ∂M \ ∂B is a union of bigons. Then for any mul-

tislope (s1, . . . , sk) ∈ Qk
that is realised by the train track ∂B, if B does not carry a

torus that bounds a solid torus in M(s1, . . . , sk), there exists an essential lamination

Λ in M fully carried by B that intersects ∂M in parallel simple curves of multislope

(s1, . . . , sk). Moreover this lamination extends to an essential lamination of the filled

manifold M(s1, . . . , sk).

Remark 2.1.12. The statement of Theorem 2.1.11 is slightly more detailed than the

version of [71]. The details we have added come from the proof of Theorem 2.1.11. In

fact the idea of the proof is to split the branched surface B in a neighbourhood of ∂M

so that it intersects Ti in parallel simple closed curves of slopes si, for i = 1, . . . k. In

this way, when gluing the solid tori, we can glue meridional discs of these tori to B to

obtain a branched surface B(s1, . . . , sk) inM(s1, . . . , sk) that is laminar and that by [70,

Theorem 1] fully carries an essential lamination. In particular, this essential lamination

is obtained by gluing the meridional discs of the solid tori to an essential lamination in

M that intersects Ti in parallel simple closed curves of slopes si, for i = 1, . . . , k.

Remark 2.1.13. In [71] the statement of the theorem is given for M with connected

boundary but, as already observed in [53], if M has multiple boundary components we

can split B in a neighbourhood of each boundary tori Ti and the same proof of [71]

works.

2.2 Constructing branched surfaces in fibered manifolds

In this section we recall a general method to build branched surfaces in compact 3-

manifolds with boundary that fiber over the circle. This will be the starting point to

construct taut foliations on surgeries on fibered two-bridge links. First of all, we fix some

notations and recall the definition of fibered link.

Given an oriented surface S with (possibly empty) boundary and an orientation-

preserving homeomorphism h : S → S fixing ∂S pointwise we denote byMh the mapping

torus of h

Mh =
S × [0, 1]

(h(x), 0) ∼ (x, 1)
.
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We orient S × [0, 1] as a product and Mh with the orientation induced by S × [0, 1]. We

also identify S with its image in Mh via the map

S → S × {0} ⊂Mh

x 7→ (x, 0).

The homeomorphism h is called the monodromy of Mh.

Definition 2.2.1. Let L be an oriented link in S3. We say that L is fibered if there

exists a Seifert surface S for L, an orientation preserving homeomorphism h of S fixing

∂S pointwise and an orientation preserving homeomorphism

χ : S3 \ int(NL) →Mh,

where NL denotes a tubular neighbourhood of L in S3, so that

• χ|S is the inclusion S ⊂Mh;

• χ(mi) = {xi} × [0, 1], where mi is a meridian for the i-th component of L and

xi ∈ ∂S is a point.

Let S be an oriented surface with boundary and let h be an orientation preserving

homeomorphism of S fixing ∂S pointwise. We consider pairwise disjoint properly em-

bedded arcs α1, . . . , αk in S and discs Di = αi × [0, 1] ⊂ S × [0, 1]. Each of these discs

has a “bottom” boundary, αi×{0}, and a “top” boundary, αi×{1}. When we consider

the images of these discs in Mh under the projection map

S × [0, 1] →Mh

we have that the bottom and top boundaries become respectively ∪iαi ⊂ S and ∪ih(αi) ⊂ S.

We can isotope simultaneously the discsDi’s in a neighbourhood of S×{1} ⊂ S×[0, 1]

so that when projected toMh their top boundaries define a family of arcs {h̃(αi)}i=1,...k in

S such that for each i, j ∈ {1, . . . , k} the intersection between αi and h̃(αj) is transverse

and minimal. Notice that each arc h̃(αi) is isotopic as a properly embedded arc to h(αi),

via an isotopy that is not the identity on the boundary. We still denote these perturbed

arc by h(αi) and we denote by Di the projected perturbed disc contained in Mh.

If we assign (co)orientations to these discs, since S is (co)oriented, we can smoothen

S ∪D1∪ · · · ∪Dk to a branched surface B by imposing that the smoothing preserves the

coorientation of S and of the discs. In particular, each disc has two possible coorien-

tations and hence it can be smoothed in two differents ways. This operation is demon-

strated in Figure 2.8, where S is a torus with an open disc removed.

The following lemma is probably well-known to experts – for example it is implic-

itly used in [53] – and states that, under very mild hypotheses, if a branched surface

constructed in this way has neither sink discs nor half sink discs then it is laminar.
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Figure 2.8: How to smoothen S ∪D according to the coorientations.

Lemma 2.2.2. Let S be a connected and oriented surface with boundary and let h be

an orientation preserving homeomorphism of S fixing ∂S pointwise. Let {αi}i=1,...,k ⊂ S

be pairwise disjoint properly embedded arcs in S and suppose that S \ ∪ki=1αi has no

disc components. Denote by Di’s the discs in Mh associated to the arcs αi’s in the way

described above and fix a coorientation for these discs. Let B = S∪D1∪· · ·∪Dk denote the

branched surface in Mh obtained by smoothing according to these coorientations. Then

B has no trivial bubbles and satisfies conditions 1., 2., 3. and 4. of Definition 2.1.10.

Proof. We denote by M the mapping torus Mh. We fix for each arc αi a tubular

neighbourhood Nαi in S and we denote with S′ the surface S \ ∪ki=1int(Nαi). The first

observation is that by construction we have

M \ int(NB) ∼= S′ × [0, 1]

with a homeomorphism that identifies

∂hNB = S′ × {0, 1}.

and

∂vNB = ∂′S′ × [0, 1]

where ∂′S′ denotes the closure of ∂S′ \ ∂M .

Basically, the proof follows from the fact that M \ int(NB) is homeomorphic to

S′ × [0, 1] and that S′ has no discs components.

First of all, we notice that since by hypothesis S \ ∪ki=1αi has no discs components,

there are no D2 × [0, 1] regions in M \ int(NB) and in particular no trivial bubbles. We

now verify that conditions 1− 4 of Definition 2.1.10 hold.
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1. • The horizontal boundary ∂hNB is incompressible in M \ int(NB): this follows

from the fact that the inclusions of S′ × {0} and S′ × {1} in M \ int(NB)

are homotopy equivalences. In particular, if a simple closed curve in ∂hNB

bounds a disc in M \ int(NB) then it must be nullhomotopic in ∂hNB and

nullhomotopic simple closed curves in surfaces always bound embedded discs.

• The horizontal boundary ∂hNB is ∂-incompressible in M \ int(NB): suppose

that there is a disc ∆ ⊂ M \ int(NB) such that int(∆) ⊂ M \ NB and

∂∆ = a ∪ b, where a is an arc in ∂hNB and b = ∂∆ ∩ ∂M . We have to find a

disc ∆′ ⊂ ∂hNB with ∂∆′ = a ∪ b′ where b′ = ∂∆′ ∩ ∂M .

Without loss of generality we can suppose that a ⊂ S′ × {0}. The arc b

is an arc in ∂M \ int(NB) with both endpoints in S′ × {0} and since the

connected components of ∂M \ int(NB) are either discs or annuli, there exists

a homotopy in ∂M \ int(NB), relative to the boundary, from the arc b to an

arc b′ ⊂ (S′ × {0}) ∩ ∂M . In particular since the simple closed curve a ∪ b is
nullhomotopic in M \ int(NB), the curve a ∪ b′ is nullhomotopic as well.

To conclude it is enough to observe that since the inclusion of S′ × {0} in

M \ int(NB) is a homotopy equivalence, the simple closed curve a∪ b′ bounds
a disc ∆′ in S′ × {0}.

• No component of the horizontal boundary is a sphere or a properly embedded

disc: this follows by our hypotheses.

2. there is no monogon in M \ int(NB): this is a consequence of the fact that the

branched surface B admits a coorientation.

3. • M \ int(NB) is irreducible: this is a consequence of the fact that each com-

ponent of M \ int(NB) is the product of a surface with boundary with [0, 1].

• ∂M \ int(NB) is incompressible in M \ int(NB): consider any boundary com-

ponent T of M . By construction T \ int(NB) is a union of discs or an annulus

(in case there are no endpoints of the arcs αi on T ). In the former case,

T \ int(NB) is obviously incompressible in M \ NB, while in the latter it is

compressible if and only if it is the boundary of S′ × [0, 1] and S′ × [0, 1] is

diffeomorphic to D2 × [0, 1], but this would contradict our hypotheses.

4. B contains no Reeb branched surfaces: the presence of a Reeb branched surface

would imply that some of the complementary regions of int(NB) are D2 × [0, 1]

regions (see [41]) and we have already observed that there are no such regions.

The proof is complete.

Lemma 2.2.3. Suppose that B is a branched surface constructed as described above and

satisfying the hypotheses of Lemma 2.2.2. Suppose also that B has neither sink discs
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nor half sink discs. If (r1, . . . , rn) is a multislope realised by ∂B then Mh contains a

lamination Λ intersecting the boundary component Ti in parallel curves of slopes ri, for

i = 1, . . . , n. Moreover, every leaf of Λ intersects ∂Mh.

Proof. First of all we observe that the boundary of Mh is union of incompressible tori,

sinceMh is a fiber bundle over the circle whose fiber is not a disc. We use Theorem 2.1.11

to prove thatMh contains the desired lamination. By hypotheses and by construction of

B we know that B is laminar and that ∂Mh\∂B is union of bigons. Moreover any surface

carried by B must intersect ∂Mh. In fact, let Σ be a connected surface carried by B.

Recall that B is obtained by smoothing S∪D1∪· · ·∪Dk, where S is the fiber surface and

D1, . . . , Dk are the discs spanned by arcs α1, . . . , αk. If Σ is somewhere parallel to one of

these discs, then clearly Σ intersects ∂Mh. If this is not the case, then Σ must be parallel

to the fiber surface S and therefore intersect ∂Mh. In particular B does not carry any

torus and we can apply Theorem 2.1.11 to deduce that for every multislope (r1, . . . , rn)

realised by ∂B Mh contains a lamination Λ intersecting the boundary component Ti in

parallel curves of slopes ri, for i = 1, . . . , n. Every leaf of Λ must intersect ∂Mh, being

it carried by B. This concludes the proof.

Proposition 2.2.4. Suppose that B is a branched surface constructed as described above

and satisfying the hypotheses of Lemma 2.2.2. Suppose also that B has neither sink discs

nor half sink discs. If (r1, . . . , rn) is a multislope realised by ∂B then Mh(r1 . . . , rn)

contains a coorientable taut foliation. More precisely there exists a coorientable taut

foliation in Mh intersecting the boundary component Ti in a foliation by curves of slopes

ri, for i = 1, . . . , n.

Proof. Let Λ be the lamination constructed in Lemma 2.2.3 and consider the abstract

closures (in a path metric on Mh) of the complementary regions of Λ. These closures

are [0, 1]-bundles; in fact they are unions, along ∂vNB, of:

• components of Mh \ int(NB), that are products of the type F × [0, 1], where F is

a surface, with

∂hNB ∩ (F × [0, 1]) = F × {0, 1}

and

∂vNB ∩ (F × [0, 1]) = ∂′F × [0, 1]

where ∂′F is the closure of ∂F \ ∂Mh;

• abstract closures of the components of NB \ Λ. Since Λ intersects transversely

the fibers of NB also these closures are products with the same properties of the

components of Mh \ int(NB).
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Each component of the vertical boundary of NB is an annulus S1 × [0, 1] or a disc

[0, 1] × [0, 1], where each interval {∗} × [0, 1] is contained in a fiber of NB. Both the

product structures of the components of Mh \ int(NB) and of the abstract closures of

the components of NB \ Λ define a foliation of the vertical boundary transverse to the

interval fibers. Any of two such foliations are isotopic and therefore also the abstract

closures of the complementary regions of Λ are products.

In particular, since the horizontal boundary of the closures of these complementary

regions are leaves of Λ we can foliate these bundles with parallel leaves to obtain a

coorientable foliation F of Mh that intersects the boundary component Ti in a foliation

by curves of slopes ri, for i = 1, . . . , n. Therefore the leaves of this foliation can be

capped with the meridional discs of the solid tori to obtain a foliation F̂ of the filled

manifold Mh(r1, . . . , rn). Since by construction every leaf of this foliation is parallel to

some leaf of Λ, and all the leaves of Λ intersect ∂Mh, we deduce that the cores of the

glued solid tori define a set of closed transversals that intersect all the leaves of F̂ .

2.3 Fibered hyperbolic two-bridge links

We now focus our attention on fibered hyperbolic two-bridge links: we start by proving

a few lemmas that allow us to construct taut foliations on all finite surgeries (i.e. those

whose surgery coefficients are in Q2) on many fibered two-bridge links; this will reduce

our study to the cases of some remaining subfamilies of two-bridge links (containing

the links {Ln}n≥1 of Chapter 1) that we study separately. Recall from Section 1.1 that

fibered hyperbolic two-bridge links are those that can be described as L(2b1, . . . , 2bn)

where |bi| = 1 for all i’s and at least two consecutives bi’s are equal. In this case

it is possible to draw an explicit fiber surface S for L. This surface is obtained by

starting with the boundary connected sum of a certain number of Hopf bands, and then

plumbing other Hopf bands to this surface. This is determined in a straightforward way

from the coefficients (b1, . . . , bn). One example is described in Figure 2.9. We also fix

an orientation of S, so that in the figure the positive side is coloured in pink, and this

induces an orientation of the link.

From this very easy description of the fiber surface of L we are able to determine

the monodromy of L. More precisely, S can be described in a more abstract way as in

Figure 2.10 and the monodromy is given by the diffeomorphism

h = τ ε22 τ
ε4
4 . . . τ ε2k2k τ

ε1
1 τ

ε3
3 . . . τ

ε2k+1

2k+1 (∗)

where n = 2k+ 1, τi denotes the positive (i.e. the right) Dehn twist along the curve

γi shown in Figure 2.10 and

εi =

−sgn(bi) when i is even

sgn(bi) when i is odd
.
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Figure 2.9: The fiber surface of the link L(−2,−2,−2, 2, 2). The positive side is coloured

in pink.

This basically follows from the fact that the monodromy of the boundary of a positive

(resp. negative) Hopf band is a positive (resp. negative) Dehn twist along its core and

from the way the monodromy of a plumbing or a boundary connected sum (or more

generally a Murasugi sum), behaves with respect to the monodromies of the summands,

see [39, Corollary 1.4].

Figure 2.10: An abstract drawing of the fiber surface S together with the curves γi’s.

2.3.1 The generic case

We are now ready to construct foliations on surgeries on the hyperbolic fibered two-

bridge links. The general strategy is simple: we have an explicit description of the

monodromies of these links and we want to construct branched surfaces in the way
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described in Section 2.2. If we are able to construct these branched surfaces so that they

have neither sink discs nor half sink discs, then by Theorem 2.1.11 and Proposition 2.2.4

we can deduce that all the surgeries corresponding to the multislopes realised by these

branched surfaces contain coorientable taut foliations. For this reason, we will have to

study which multislopes are realised by the boundary train tracks.

In this section we prove a few lemmas that allow us to construct taut foliations on

the surgeries of many fibered two-bridge links. This will reduce our study to the cases

of some remaining subfamilies of two-bridge links, that we discuss in the next section.

First of all we fix some conventions. As we already did in the previous section, we fix

a fiber surface S for the two-bridge link L = L(2b1, . . . , 2bn) and we fix its orientation

as in Figure 2.9. With the induced orientation, L has linking number

lk(L) =

k∑
i=0

b2i+1

where n = 2k + 1. When a link is fibered there is a natural choice of meridians and

longitudes for its components that is in general different from the one induced by the

ambient manifold S3. It is obtained as follows. We fix an oriented fiber surface S for

the link L, so that S3 \ int(NL) ∼= S×[0,1]
∼h

, where NL is a tubular neighbourhood of

L. We fix a point xi in each boundary component of S and we consider the curves

µi = {xi}×[0,1]
∼h

oriented in the direction of ascending t ∈ [0, 1] as meridians and the

boundary components λi of S as longitudes. By definition of fibered link, the meridians

defined in this way coincide with the usual meridians of the link. On the other hand

these longitudes do not coincide in general with the canonical longitudes of the link. In

fact, if for each component Ki of L we denote by li the canonical longitude of Ki we

have

λi +
∑
j ̸=i

lk(Ki,Kj)µi = li (⋆)

as elements in H1(∂NKi ,Z), where NKi is the connected component of NL containing

Ki.

From now on we will refer to the bases (µi, λi) as the Seifert framing, and to the

bases (µi, li) as the canonical framing. Unless otherwise stated we use Seifert framings.

Moreover, we will always suppose n > 1, because when n = 1 the only links obtained in

this way are the Hopf links and we are interested in hyperbolic links.

Remark 2.3.1. In the following lemma, and also later in the section, we construct

branched surfaces by considering oriented arcs in the fiber surface S and then by at-

taching discs as in Section 2.2. We will always coorient the discs with the following

convention: we orient them so that the orientations on their boundaries induce the

given orientation on the arcs and then we use the orientation of the ambient manifold
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Figure 2.11: From left to right, the slopes (r1, r2) in the coloured region yield manifolds

with coorientable taut foliations in the case where there is respectively: at least one

positive river twist, at least one negative river twist, two river twists with different

exponents in the factorisation of the monodromy h.

to coorient them. Analogously, the coorientation of the fiber S is obtained by using the

orientation of S and of the ambient manifold.

A good way to keep in mind the cusps directions of branched surfaces constructed

in the way is the following: looking at the positive side of S, the cusps directions point

to the right along the arcs αi’s with respect to their orientations and point to the left

along the oriented arcs h(αi)’s with respect to their orientations. See Figure 2.12.

To ease the exposition of the following lemmas we fix some notation. With reference

to Figure 2.10 we say that a Dehn twist along one of the curves γ1, γ3, . . . , γn is a bridge

twist, and a Dehn twist along one of the curves γ2, γ4, . . . , γn−1 is a river twist.

Lemma 2.3.2. Let L = L(2b1, . . . , 2bn) with |bi| = 1 for all i’s and let h denote its

monodromy as in Equation (∗). Let M denote the exterior of L. Then

1. if there is at least one positive (resp. negative) river twist in the factorisation of h,

the manifold M(r1, r2) contains a coorientable taut foliation for every multislope

(r1, r2) ∈ (∞, 1)2 (resp. for all (r1, r2) ∈ (−1,∞)2); see Figure 2.11a)-b);

2. if there are two river twists with different exponents in the factorisation of h,

the manifold M(r1, r2) contains a coorientable taut foliation for every multislope

(r1, r2) ∈
(
(−1,∞)× (∞, 1)

)
∪
(
(∞, 1)× (−1,∞)

)
; see Figure 2.11c).

Proof. 1. Suppose that there is a positive river twist along the curve γi. We consider

the arcs α and β as in Figure 2.12. The oriented arcs α and β determine a cooriented

branched surface B obtained by attaching two discs to the fiber surface S as described

in Section 2.2. Since n > 1, S is not an annulus and therefore the complement of α∪β
has no disc components. Due to the fact that we have chosen α and β so that they are

disjoint from γj for j ̸= i it follows that h(α) = τi(α) and h(β) = τi(β), as depicted
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Figure 2.12: The arcs α and β and the cooriented discs spanned by them.

in Figure 2.12. In Figure 2.12 we have also labelled the branch locus of B with the

cusps directions and it can be checked from the picture that there are neither sink

discs nor half sink discs. For this reason we can apply Proposition 2.2.4 and deduce

that M(r1, r2) supports a coorientable taut foliation for all the multislopes (r1, r2)

realised by ∂B. We now want to understand which multislopes are realised by the

boundary train tracks of B.

To do this we assign rational weight systems to our boundary train tracks. Given that

the train tracks are oriented, we can associate to such a weight system the rational

number
wµ

wλ
, where wµ and wλ are the weighted intersections of the train tracks with

our fixed meridians µ and longitudes λ, as we would do with oriented simple closed

curves. This quotient can be interpreted as a slope in the boundary component of M

we are interested in. In fact it can be proved that each slope p
q obtained in this way

is realised by the train track. We want to study slopes fully carried by these train

tracks, hence we have to require that each weight is strictly positive: if the weight

of an arc is zero, the associated slope will not intersect the fibers over that arc. For

details, see [92]. The two boundary train tracks of B are equal to the one illustrated

in Figure 2.13 where we have also endowed it with weight systems, depending on two
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Figure 2.13: On each of the two boundary components ofM the branched surface defines

this boundary train track. The variables x and y take rational values and define weight

systems.

Figure 2.14: The arcs α and β and the boundary train tracks when the river twist is

negative.

variables x, y. The slopes of these weight systems are y− x. Since we have to impose

that each sector has positive weight x must take values in (0,∞) and y must take

values in (0, 1), hence we obtain all the slopes in (∞, 1). Therefore the boundary

train tracks of B realise all the multislopes in (∞, 1)2. By applying Proposition 2.2.4

we obtain taut foliations on M(r1, r2) for all (r1, r2) ∈ (∞, 1)2.

If there is a negative river twist, we consider the same oriented arcs α and β, and on

each of the two boundary components ofM we obtain the train track depicted on the

right-hand side of Figure 2.14. This train track realises all the slopes in (−1,∞) and

so we obtain taut foliations on M(r1, r2) for all (r1, r2) ∈ (−1,∞)2.

2. Suppose now that there are two river twists with different exponents in the factori-

sation of h and suppose that the positive one is along the curve γi and the negative

one is along γj . We suppose i < j but the proof does not change if j < i. We choose

now α and β as in Figure 2.15 and as before we have h(α) = τi(α) and h(β) = τj(β).

Also in this case the complement of α ∪ β contains no disc components. Moreover

the complement of α ∪ β ∪ h(α) ∪ h(β) is connected and this implies that there are

neither sink discs nor half disk discs in the branched surface associated to α and
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Figure 2.15: This picture describes the choice of the arcs α and β when the twist along

the curve γi is positive and the one along γj is negative. The boundary train tracks of

the associated branched surface are also shown.

β. The boundary train tracks (with weight systems) of B are shown in Figure 2.15.

The slopes realised by the one on the left side of the figure are the ones contained

in (∞, 1) and the ones realised by the train track on the right are those contained in

(−1,∞). As a consequence of Proposition 2.2.4 we have taut foliations in M(r1, r2)

for all (r1, r2) ∈ (∞, 1)×(−1,∞). As two-bridge links are symmetric (i.e. there exists

an isotopy that exchanges the components), we deduce that there are taut foliations

also on the surgeries associated to coefficients (r1, r2) ∈ (−1,∞)× (∞, 1).

This concludes the proof.

Remark 2.3.3. Recall that we are working with Seifert framings. However we have

already noticed that the meridians of the Seifert framing coincide with the canonical

meridians of L. This implies that the finite surgeries on L with respect to the Seifert

framing coincide with the finite surgeries on L with respect to the canonical framing.

Corollary 2.3.4. If the factorisation of the monodromy h has two river twists with

different exponents, then all the finite surgeries on the link L contain coorientable taut

foliations.

Proof. It follows from the first part of Lemma 2.3.2 that there are coorientable taut

foliations on M(r1, r2) for (r1, r2) ∈ (∞, 1)2 ∪ (−1,∞)2 and it follows from the second

part of Lemma 2.3.2 that there are coorientable taut foliations onM(r1, r2) for (r1, r2) ∈
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Figure 2.16: From left to right, the slopes (r1, r2) in the coloured region yield manifolds

with coorientable taut foliations in the case where there are respectively: at least two

positive bridge twists, at least twp negative bridge twists, two bridge twists with different

exponents in the factorisation of the monodromy h.

(
(−1,∞) × (∞, 1)

)
∪
(
(∞, 1) × (−1,∞)

)
. The union of these sets is exactly the set of

all finite multislopes.

As a consequence of Corollary 2.3.4, by taking mirrors if necessary, we can reduce

our study to the case where the river twists are all positives, i.e. to links of the form

L = L(2b1,−2, 2b3, . . . ,−2, 2bn). We now focus our attention on bridge twists.

Lemma 2.3.5. Let L = L(2b1, . . . , 2bn) with |bi| = 1 for all i’s and let h denote its

monodromy as in Equation (∗). Let M denote the exterior of L. Then

1. if there are at least two positive (resp. negative) bridge twists in the factorisation of

h, the manifold M(r1, r2) contains a coorientable taut foliation for every multislope

(r1, r2) ∈ (∞, 1)2 (resp. for all (r1, r2) ∈ (−1,∞)2); see Figure 2.16a)-b);

2. if there are two bridge twists with different exponents in the factorisation of h,

the manifold M(r1, r2) contains a coorientable taut foliation for every multislope

(r1, r2) ∈
(
(0,∞)× (∞, 0)

)
∪
(
(∞, 0)× (0,∞)

)
, see Figure 2.16c).

Proof. 1. Suppose that the positive bridge twists are along the curves γi and γj . We

consider the oriented arc α and β as in Figure 2.17. We have h(α) = τi(α): in fact

h = τ ε22 τ
ε4
4 . . . τ ε2k2k︸ ︷︷ ︸

river twists

τ ε11 τ
ε3
3 . . . τ

ε2k+1

2k+1︸ ︷︷ ︸
bridge twists

and the only bridge twist that has effect on α is τi and the river twists have no effect

on τi(α). The same reasoning proves that h(β) = τj(β). Also in this case we obtain

a branched surface that satisfies the hypotheses of Proposition 2.2.4. Therefore we

just need to study the multislopes realised by the boundary train tracks of B. These

are illustrated in Figure 2.17 and they realise all the multislopes in (∞, 1)2.
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Figure 2.17: The arcs α and β, together with their image via the monodromy h and

the cusps directions, are depicted. We also describe the train tracks obtained on the

boundaries of M . To simplify the picture we do not draw the 1-handles; we understand

that the dashed lines are pairwise identified in the obvious way.
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Figure 2.18: The arcs α and β in the case where bridge twist with different exponents

and the boundary train tracks realised on the two boundary components of M .

The case where we have two negative bridge twists is analogous: we choose α and β

in the same way but now so that they turn right when they meet the curves γi and

γj . Everything works in the same way but now we have train tracks as the one in

Figure 2.14 and therefore the multislopes realised are the ones in (−1,∞)2.

2. Suppose that there are two bridge twists with different exponents in the factorisation

of h and suppose that the positive one is along the curve γi and the negative one

is along γj . We choose α and β as in Figure 2.18. Also in this case there are no

sink discs and half sink discs. Moreover, the boundary train tracks of the branched

surface associated to α and β realise all the slopes in (0,∞) (see top of Figure 2.18)

and (∞, 0) (see bottom of Figure 2.18).

Using the fact that two-bridge links are symmetric, we obtain the statement.

Corollary 2.3.6. Let L = L(2b1,−2, 2b3, . . . ,−2, 2bn) with |bi| = 1 and let h denote its

monodromy as in Equation (∗). If there are at least two negative bridge twists and one
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positive bridge twist in the factorisation of h then all the finite surgeries on the link L

contain coorientable taut foliations.

Proof. As a consequence of the fact that the factorisation of h contains positive river

twists, by Lemma 2.3.2 we know that M(r1, r2) contains a taut foliation for all the

multislopes (r1, r2) ∈ (∞, 1)2. Moreover, since there are two negative bridge twists it

follows from the first part of Lemma 2.3.5 that M(r1, r2) contains a taut foliation for all

the multislopes (r1, r2) ∈ (−1,∞)2. As there is also at least one positive bridge twist

we can apply the second part of Lemma 2.3.5 and deduce that M(r1, r2) contains a taut

foliation for all the multislopes (r1, r2) ∈
(
(0,∞) × (∞, 0)

)
∪
(
(∞, 0) × (0,∞)

)
. The

union of these sets is exactly the set of all finite multislopes.

2.3.2 Study of the remaining cases

By Corollary 2.3.4 and Corollary 2.3.6 we have reduced our study to the following three

families of fibered two-bridge links:

• Family 0: links of the form L = L(2,−2, 2, . . . ,−2, 2). These are exactly the

two-bridge torus links and we do not study them;

• Family 1: links of the form L = L(−2,−2,−2, . . . ,−2,−2);

• Family 2: links of the form L = L(2b1,−2, 2b3, . . . ,−2, 2bm) where exactly one bi

is −1 and all the others are equal to 1.

We now focus our attention on the links composing Family 1.

Proposition 2.3.7. Let L be a two-bridge link of the form L = L(−2,−2,−2, . . . ,−2,−2).

Then all the finite Dehn surgeries on L support a coorientable taut foliation.

Proof. It follows by Lemmas 2.3.2 and 2.3.5 that, as the monodromy of L has (at least)

two negative bridge twists and (at least) one positive river twist, then all the surgery

coefficients contained in (∞, 1)2 ∪ (−1,∞)2 yield manifolds with coorientable taut foli-

ations. We recall that these coefficients are associated to the Seifert framing. We now

consider two cases:

• L is not the link L(−2,−2,−2): we construct a branched surface whose boundary

train tracks realise all the multislopes in (∞, 1) × (0,∞). Two-bridge links are sym-

metric, hence this will imply the statement. This branched surface is constructed by

considering the arcs α and β in Figure 2.19 and satisfies the hypotheses of Proposition

2.2.4. Therefore it can be used to construct foliations on all the surgeries associated

to the multislopes realised by its boundary train tracks illustrated in Figure 2.19: the

one on the top realises all the slopes in (0,∞) and the one on the bottom all the slopes

in (∞, 1).
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Figure 2.19: When L is not the link L(−2,−2,−2) we consider the arcs α and β. The

boundary train tracks of the branched surface associated to these arcs are also shown.

• L = L(−2,−2,−2): to study this case we use an idea that will be useful also later

on. We construct taut foliations on all the (r, s)−surgeries on L, where r < 0 or

s < 0. This is enough because we already know that the surgeries associated to

(r, s) ∈ (−1,∞)2 contain taut foliations. Observe that L can be described as surgery

on a 3-components link L, as in Figure 2.20. The link L is also fibered, because it

is boundary of a surface obtained via a sequence of Hopf plumbings, as described in

Figure 2.20.

Moreover the monodromy of the link L is given by h = τ4τ
−1
3 τ2τ

−1
1 , where τi denotes

the positive Dehn twist along the curve ci shown in Figure 2.21.

This description of L will help us to construct the desired taut foliations. The idea is

to find a branched surface in the exterior of L so that the boundary train tracks realise

slope −1 on the boundary component associated to K ′
3. To do this is important to

pay attention to how the surgery coefficients change when passing from L to L. Recall

that the coefficients of the slopes are written by using the identification given by the

Seifert framing. The (a, b,−1)-surgery on L coincides with the (a − 1, b + 1)-surgery

on L, as the following diagram suggests:
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Figure 2.20: How to obtain the link L(−2,−2,−2) as surgery on a 3-component link L.
We also describe a fiber surface for L, obtained via a sequence of Hopf plumbings.

Seifert framing for L︷ ︸︸ ︷
(a, b,−1)

Seifert framing for L︷ ︸︸ ︷
(a− 1, b+ 1)

(a, b+ 2,−1)︸ ︷︷ ︸
Canonical framing for L

(a+ 1, b+ 3)︸ ︷︷ ︸
Canonical framing for L

.

The changes of coefficients indicated by the vertical arrows are a consequence of for-

mula (⋆) and the fact that

lk(K1,K2) = −2, lk(K ′
1,K

′
2) = lk(K ′

2,K
′
3) = −1, lk(K ′

1,K
′
3) = 1.

We construct two branched surfaces in the exterior of L, associated to the arcs αi, βi

and γi, for i = 1, 2, as described in Figure 2.22. It can be checked by direct inspection

that for i = 1, 2 the complement of αi ∪ βi ∪ γi contains no disc components, and that

there are no sink discs and no half sink discs. Hence we can apply Proposition 2.2.4 and

deduce that these branched surfaces carry laminations that extend to taut foliations

on the manifolds obtained by Dehn filling the boundary tori along the multislopes

realised by the boundary train tracks. The boundary train tracks are also depicted in

Figure 2.22 and they realise, respectively, all the multislopes in (∞, 1)×(0,∞)×(∞, 0)

and in (∞, 1)3. In particular, we have taut foliations on S3
r,s,−1(L) = S3

r−1,s+1(L) for

all (r, s) ∈ (∞, 1)× R.

Since L is symmetric, the statement follows.
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Figure 2.21: An abstract drawing of the fiber surface for the link L, together with the

curves ci’s. The boundary component with label i corresponds to the components K ′
i of

the link, for i = 1, 2, 3.

We now focus our attention on the links of Family 2, i.e. on the links of the form

L = L(2b1,−2, 2b3, . . . ,−2, 2bm) where exactly one bi is −1 and all the others are equal

to 1. We first study the case when bi = 1 for some i ̸= 1,m. We write m = 2n + 1 for

some positive integer n.

Lemma 2.3.8. Let L = L(2b1,−2, 2b3, . . . ,−2, 2bm) where b2k+1 = −1 and all the others

bi’s are equal to 1 and suppose that 2k+1 ̸= 1,m. Then L is isotopic as unoriented link

to to L(−2k,−2, 2,−2,−2h), where h = n− k.

Proof. We will prove this algebraically. We start by computing the fraction associated

to the link L(−2k,−2, 2,−2,−2h). We have

−2k +
1

−2 +
1

2 +
1

−2−
1

2h

= −2k +
1

−2 +
1

2−
2h

4h+ 1

= −2k +
1

−2 +
4h+ 1

6h+ 2

=

= −2k +
6h+ 2

−(8h+ 3)
=

16kh+ 6k + 6h+ 2

−(8h+ 3)

and this implies L(−2k,−2, 2,−2,−2h) = b(16kh+6k+6h+2,−(8h+3)), where b(p, q)

denotes the two-bridge link associated to the rational pq .

We now study the fraction corresponding to L. Let
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Figure 2.22: The arcs αi, βi, γi and their images via the monodromy h, together with

the cusp directions of the associated branched surface. The train tracks obtained on the

boundary components are also illustrated.



2.3. FIBERED HYPERBOLIC TWO-BRIDGE LINKS 41

αk,h
βk,h

= 2 +
1

−2 +
1

2 +
1

. . . +
1

−2 +
1

−2 +
qh

ph

where we have coloured the −2 corresponding to 2b2k+1, and where ph
qh

is defined in the

following way

ph
qh

=

length 2h︷ ︸︸ ︷
−2 +

1

2 +
1

−2 +
1

. . . +
1

2

.

It is easy to see that ph
qh

= 2h+1
−2h , and hence ph = 2h+ 1 and qh = −2h.

We now prove by induction on k that

αk,h = 16kh+ 6k + 6h+ 2

βk,h = 16kh− 2h+ 6k − 1

for every h.

• Case k = 1: we have that

α1,h

β1,h
= 2 +

1

−2 +
1

−2 +
qh

ph

= 2 +
1

−2−
1 + 2h

6h+ 2

= 2− 6h+ 2

14h+ 5
=

22h+ 8

14h+ 5

and we use the fact that 22h+8
14h+5 is a reduced fraction to deduce that α1,h = 22h + 8

and β1,h = 14h+ 5.

• Case k > 1: we can use the following equality

αk,h
βk,h

= 2 +
1

−2 +
βk−1,h

αk−1,h

= 2 +
αk−1,h

−2αk−1,h + βk−1,h
=

3αk−1,h − 2βk−1,h

2αk−1,h − βk−1,h
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and the fact that both fractions at the extrema of the this chain of equalities are

reduced to deduce that αk,h = 3αk−1,h − 2βk−1,h and that βk,h = 2αk−1,h − βk−1,h.

Therefore we have

αk,h − βk,h = αk−1,h − βk−1,h = 8h+ 3

αk,h − αk−1,h = 2(αk−1,h − βk−1,h) = 16h+ 6.

These equalities imply

αk,h = αk−1,h + 16h+ 6 = 16kh+ 6k + 6h+ 2

βk,h = αk,h − 8h− 3 = 16kh− 2h+ 6k − 1

and this proves the claim.

To conclude the proof of the lemma we just have to recall from Theorem 1.1.1 that if

β′ ≡ α + β mod 2α then the links b(α, β) and b(α, β′) are isotopic after reversing the

orientation of one of the components. In the case of our interest we have

αk,h + βk,h ≡ −αk,h + βk,h ≡ −(8h+ 3) mod 2αk,h

and this is exactly what we wanted.

The description given by the previous lemma allows us to prove:

Proposition 2.3.9. Let L = L(2b1,−2, 2b3, . . . ,−2, 2bm) where b2k+1 = −1 and all the

others bi’s are equal to 1 and suppose that 2k + 1 ̸= 1,m. Then all the finite Dehn

surgeries on L support coorientable taut foliations.

Proof. By virtue of Lemma 2.3.8 it is equivalent to study surgeries on links of the form

Lk,h = L(−2k,−2, 2,−2,−2h) where h > 0 and k > 0. These links can be obtained as

surgeries on a 4-components fibered link L, as described in Figure 2.23. Our aim now is

to construct foliations on enough surgeries on L.
The monodromy of the link L is given by h = τ5τ3τ7τ

−1
6 τ4τ2τ

−1
1 , where τi denotes

the positive Dehn twist along the curve ci shown in Figure 2.24 and if we label the

components of L and L as described in Figure 2.23, the surgery coefficients change in

the following way

Seifert framing for L︷ ︸︸ ︷
(a, b,−1

k
,−1

h
)

Seifert framing for L︷ ︸︸ ︷
(a, b)

(a− 1, b− 1,−1

k
,−1

h
))︸ ︷︷ ︸

Canonical framing for L

(a− 1 + k + h, b− 1 + k + h)︸ ︷︷ ︸
Canonical framing for L

.



2.3. FIBERED HYPERBOLIC TWO-BRIDGE LINKS 43

Figure 2.23: How to obtain the link L(−2k,−2, 2,−2,−2h) as surgery on a 4-component

link L. We also describe a fiber surface for L, obtained as a sequence of Hopf plumbings.

Figure 2.24: An abstract drawing of the fiber surface for the link L, together with the

curves ci’s. The boundary component with label i corresponds to the components K ′
i of

the link, for i = 1, 2, 3, 4.
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Figure 2.25: The arcs α, β, γ, δ, ϵ and the boundary train tracks of the associated

branched surface.

As usual, when constructing foliations it is more natural to work with the framings

given by the Seifert surfaces.

We construct two branched surfaces in the exterior of L. The first one is associated

to the arcs α, β, γ, δ, ϵ depicted in Figure 2.25. The complement of these arcs in the fiber

surface is not a disc (it is easier to see this by considering the complement of the images

of these arcs via the diffeomorphism h) and the branched surface does not contain sink

discs nor half sink discs. Therefore we can apply Proposition 2.2.4 and deduce that

there exist taut foliations on all the surgeries on L corresponding to multislopes in

(0,∞)× R× (∞, 0)× (∞, 0).

The second branched surface is the one associated to the arcs described in Figure

2.26. In this case we are able to construct foliations on the surgeries corresponding to

multislopes in (∞, 1)4.

This implies that for every k > 0 and h > 0 all the surgeries on the link Lk,h

corresponding to multislopes in (0,∞) × R and in (∞, 1)2 support a coorientable taut

foliation. The conclusion follows using the fact that all these links are symmetric.
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Figure 2.26: The arcs α, β, γ, δ used to construct the second branched surface and the

train tracks obtained on the boundary.
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Now we only have to study the links L = L(2b1,−2, 2b3, . . . ,−2, 2b2n+1) where b1 =

−1 and all the other bi’s are 1, or where b2n+1 = −1 and all the other bi’s are 1. The

link L(a1, a2, . . . , a2n+1) is isotopic to L(a2n+1, . . . , a2, a1), so we can reduce our study

to the case when b2n+1 = −1 and we denote the corresponding link by Ln. Recall that

in Chapter 1 we had already denoted some links by Ln; this is not a coincidence,

Lemma 2.3.10. The link Ln is isotopic as unoriented link to the link L(2,−2,−2n),

illustrated in Figure 3 and studied in Chapter 1.

Proof. We compute the fractions associated to these links. The one associated to

L(2,−2,−2n) is
6n+ 2

4n+ 1
. Therefore by Theorem 1.1.1 the link L(2,−2,−2n) is iso-

topic, after reversing the orientation of one of the components, to the link defined by

the fraction
6n+ 2

−(2n+ 1)
.

The fractions
pn

qn
associated to Ln satisfy the following recursive equation

pn
qn

= 2 +
1

−2 +
qn−1

pn−1

= 2 +
pn−1

−2pn−1 + qn−1
=

3pn−1 − 2qn−1

2pn−1 − qn−1
. (2.1)

Let us find an explicit formula for pn and qn. It follows from Equation (2.1) that

pn − qn = pn−1 − qn−1

and as a consequence the quantity pi − qi does not depend on the index i. Moreover,

Equation (2.1) also implies

pn − pn−1 = qn − qn−1 = 2(pn−1 − qn−1)

and therefore also the quantity pi − pi−1 = qi − qi−1 is constant in i. As when n = 1 we

have
p1

q1
=

8

5
, we deduce pn = 8+ (n− 1)6 = 6n+ 2 and qn = 5+ (n− 1)6. To conclude

the proof is enough to observe that −(2n+ 1) ≡ q−1
n mod 2pn and use again Theorem

1.1.1.

Recall that by Proposition 1.2.7 we have
(
[n,∞]× [n,∞]

)
∩Q2 ⊂ L(Ln), where the

surgery coefficients are to be considered in the canonical framing. Given that L-spaces

do not support coorientable taut foliations, if we prove that all the other (finite) surgeries

on Ln support coorientable taut foliations, then the proofs of Theorem A and Theorem

B will follow.

First of all we focus our attention to the Whitehead link, i.e. the link L1.
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Theorem 2.3.11. Let M be a surgery on the Whitehead link. Then M is not an L-space

if and only if M supports a coorientable taut foliation.

Proof. Since two-bridge links have unknotted components, when one of the surgery co-

efficients is ∞ the possible surgeries are S3, lens spaces and S2 × S1. Therefore we

can limit ourselves to study the case when both the coefficients are finite. We virtue of

Lemma 2.3.5 and Lemma 2.3.2 we deduce that all surgeries associated to coefficients in

(∞, 1)2 ∪ (0,∞)× (∞, 0) ∪ (∞, 0)× (0,∞)

contain coorientable taut foliations, see Figure 2.27. To construct foliations on the

remaining non L-space surgeries, we use the fiber surface constructed as in Figure 2.9.

Figure 2.27: The figure describes what we have been able to prove up to now. The blue

points are the slopes whose corrisponding surgery supports a coorientable taut foliation;

the red points are those whose corresponding surgery is an L-space.

The monodromy is given by h = τ3τ
−1
2 τ1, where τi is the positive Dehn twist along

the curve ci of Figure 2.28.

Figure 2.28: An abstract drawing of the fiber surface for the Whitehead link, together

with the curves ci’s.
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We consider the arcs α and β shown in Figure 2.29. One can check that the branched

surface B associated to these arcs has no sink discs nor half sink discs. We can therefore

use Proposition 2.2.4 and deduce that all surgeries associated to the multislopes realised

by ∂B contain a coorientable taut foliation.

Figure 2.29: The figure describes the arcs α, β, their images via the monodromy h and

the boundary train tracks of the associated branched surface.

The train tracks ∂B are shown in Figure 2.29 and they realise all slopes in (0,∞)×
(−1, 1). This, together with the fact that the Whitehead link is symmetric and that has

linking number zero (and therefore Seifert framings and canonical framings coincide)

concludes the proof.

We now conclude the proofs of Theorems A and B by studying the link Ln for n > 1.

Proposition 2.3.12. Let n > 1 and let Ln = L(2b1,−2, 2b3, . . . ,−2, 2b2n+1), where

b2n+1 = −1 and all the other bi’s are 1 and let M be a surgery on Ln. Then M is not

an L-space if and only if M supports a coorientable taut foliation.

Proof. We know that, in the canonical framing of Ln, surgeries corresponding to rationals

r1, r2 such that r1 ≥ n and r2 ≥ n are L-spaces, hence we have to construct taut foliations

on the remaining ones. Moreover by Lemma 2.3.10 we have Ln = L(2,−2,−2n) as

unoriented links. By using this representation it is evident that Ln = S3
•,•,− 1

n

(L), where
L is drawn in Figure 2.30. This figure also shows a fiber surface S for L obtained via a

sequence of four Hopf plumbings.

We choose four triples α, β, γ of oriented arcs in S and consider the four branched

surfaces in the exterior of L associated to these arcs, as depicted in Figure 2.31 and
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Figure 2.30: How to obtain the links {Ln}n≥1 as surgery on a 3-components link L and

a fiber surface S for L.

Figure 2.32. Each of these triples has the property that its complement in S contains

no disc components.

Moreover, it can be checked that these branched surfaces have neither sink discs nor

half sink discs. Thus, thanks to Proposition 2.2.4 we only need to study the boundary

train tracks of these branched surfaces in order to construct the desired taut foliations.

The multislopes realised by these branched surfaces in the Seifert framing of L are,

respectively:

• all the multislopes in (∞, 1)× R× (−1, 0);

• all the multislopes in (0, 2)× (0,∞)× (∞, 0);

• all the multislopes in (0, 2)× (∞, 0)× (−1, 0);

• all the multislopes in (∞, 2)× (−1, 1)× (−1, 0).

We now prove that by considering Ln as − 1
n surgery on the third component of L,

we have constructed the desired foliations on the surgeries on Ln. First of all we observe

that

lk(K ′
1,K

′
2) = lk(K ′

1,K
′
3) = 1, lk(K ′

2,K
′
3) = −1

and by using formula (⋆) we deduce the following change of surgery coefficients:

Seifert framing for L︷ ︸︸ ︷
(a, b,− 1

n
) →

Canonical framing for L︷ ︸︸ ︷
(a− 2, b,− 1

n
) →

Canonical framing for Ln︷ ︸︸ ︷
(a+ n− 2, b+ n) .

Therefore, for every n ≥ 2, we obtain taut foliations on all the surgeries on Ln corre-

sponding to multislopes in

• A = (∞, n− 1)× R;
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Figure 2.31: How to choose two of the four triples of arcs α, β, γ. The picture also rep-

resents their images via the monodromy of L and the cusp directions and the boundary

train tracks of the associated branched surfaces.
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Figure 2.32: How to choose the two other triples of arcs α, β, γ. The picture also repre-

sents their images via the monodromy of L and the cusp directions and the boundary

train tracks of the associated branched surfaces.
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• B = (n− 2, n)× (n,∞);

• C = (n− 2, n)× (∞, n);

• D = (∞, n)× (n− 1, n+ 1).

We now show that these four sets are enough to deduce that, for all n ≥ 2, all the

surgeries on Ln corresponding to multislopes (r1, r2) where r1 < n or r2 < n support a

coorientable taut foliation. In fact suppose that we have such a pair (r1, r2). Since Ln

is symmetric we can suppose that r1 < n and we have the following cases:

• r1 < n− 1: in this case the pair is contained in the set A;

• n−1 ≤ r1 < n: if r2 > n the pair is contained in B, if r2 < n we conclude by using

the set C and if r2 = n we use the set D.

This concludes the proof.

2.4 Applications to satellite knots and links

In the proof of Theorem A we were able to provide fairly explicit constructions of the

foliations. In this section (and also in Chapter 3) we will see how to use this information.

In this section we will apply the results obtained so far to study some satellite knots and

links.

We start by recalling the satellite operation. Suppose that P is a knot inside a

standard solid torus V = D2 × S1 and assume that P is not contained in a 3-ball of V

nor isotopic to the longitude of V . Let K be a knot in S3 and let ϕ be an orientation

preserving diffeomorphism between V and a tubular neighbourhood of K. The image

of P under ϕ is a knot S, called a satellite of K. The knot K is called the companion

of S and the knot P is called the pattern of S. As the mapping class group of the solid

torus is non-trivial, the knot S is not uniquely determined by K and P . However, if we

fix meridian-longitude bases (µK , λK) and (µV , λV ) for the tubular neighbourhood of K

and for V and impose that ϕ maps µV to µK and λV to λK as oriented curves, then S

is uniquely determined by K and P .

Let L be a fibered hyperbolic two-bridge link, let denote by K0 one of its component

and orient it arbitrarily. Since two-bridge links have unknotted components, the exterior

of K0 is a solid torus V and we can use the other component as pattern P for producing

satellite knots. For convenience, we call two-bridge replacement this specific satellite

operation. We also fix a meridian-longitude basis for V given by (µV , λV ) = (λK0 , µK0),

where µK0 and λK0 are the canonical meridian and longitude of K0.
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Figure 2.33: The (positive clasped) Whitehead pattern. The meridian µV is given by

the longitude of the knot K0 and the longitude λV by its meridian. By considering the

mirror of the Whitehead link one obtains the negative clasped Whitehead pattern.

Remark 2.4.1. If L is the Whitehead link we obtain the Whitehead pattern. This is the

pattern used to define Whitehead doubles of knots, see Figure 2.33. Thus, two-bridge

replacement generalises Whitehead doubling.

We remark that in the definition of two-bridge replacement we ask L to be fibered

and hyperbolic.

Of course if L is a link with d components we can carry out this construction for

each component, by choosing L1, . . . , Ld possibly distinct fibered hyperbolic two-bridge

links.

The proof of Theorem A , together with results from [53] and [73] imply the following:

Theorem 2.4.2. Let L be a fibered link with positive genus or any non-trivial knot and

let L′ denote the link obtained by performing two-bridge replacement on each component

of L. Then all the manifolds obtained by doing surgery on each component of L′ along

a non-meridional slope support a coorientable taut foliation.

Proof. • We first analyse the case where L is a non-trivial knot, and we denote it by K.

We use the notation introduced above, and so we denote by L = K0 ⊔ P the fibered

hyperbolic two-bridge link used in the definition of two-bridge replacement. Moreover

we denote by EK the exterior of K and by EL the exterior of L. We fix the canonical

meridian-longitude basis (µK , λK) for the knot K and we use it to identify slopes on

K with Q ∪ {∞}. The map ϕ, used to define the satellite operation, between the

exterior of K0, that we denote by V , and a tubular neighbourhood of K satisfies:

ϕ(λK0) = ϕ(µV ) = µK

ϕ(µK0) = ϕ(λV ) = lµK + λK
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for some integer l ∈ Z. By [73, Theorem 1.1] if K is a non-trivial knot then there exists

an interval (−a, b), where a, b > 0, such that for every slope s ∈ (−a, b) there exists

a coorientable taut foliation on EK intersecting the boundary torus in a collection of

circles of slope s. Given two coprime integers p, q the map ϕ satisfies

pµK + qλK = ϕ((p− ql)λK0 + qµK0)

and therefore the slope p
q on K corresponds to the slope (pq − l)−1 on K0. Hence the

interval (−a, b) is identified with a neighbourhood U1 of −1
l ⊂ Q. It follows by the

proof of Theorem A that if L is a fibered hyperbolic two-bridge link then for every

integer l ∈ Z and every neighbourhood U of −1
l ⊂ Q there exists a slope r ∈ U such

that for every non-meridional slope r′ on P there is a coorientable taut foliation on EL

intersecting the boundary tori in circles of slopes r and r′ respectively. If we denote

by K ′ the result of two-bridge replacement on K, then EK′ = EK ∪φ EL, where φ is

the restriction of ϕ to the boundary of the solid torus V . By choosing a slope r ∈ U1

guaranteed by the previous observation we are able to find for each non-meridional

slope r′ in EK′ taut foliations F on EK and F ′ on EL that can be glued along φ

to define a coorientable taut foliation in EK′ intersecting the boundary in parallel

curves of slope r′. By capping off with meridional discs, these foliations extend to the

surgeries on K ′.

• When L = K1 ⊔ · · · ⊔ Kd is a fibered link with multiple components and positive

genus we can proceed in analogous way. Let S denote the fiber surface for L. By

intersecting S with the boundaries of tubular neighbourhoods of the knots K1, . . . ,Kd

we obtain longitudes λS1 , . . . λ
S
d . We use them to define meridian-longitude bases for

the components of L and to identify slopes on the exterior of L with Qd
. It follows by

[53, Theorem 1.1] that for every multislope (r1, . . . , rd) in a neighbourhood of 0 ∈ Qd

there exists a coorientable taut foliation in the exterior of L intersecting the boundary

tori in parallel curves of slopes r1, . . . , rd respectively. The statement now follows by

applying to each component of L the same reasoning as in the previous case, where

we never made use of the fact that λK was the canonical longitude of K.

This concludes the proof

Two-bridge replacement generalises Whitehead doubling and we emphasise the fol-

lowing corollary.

Corollary 2.4.3. Let K be a non-trivial knot and let K ′ be any Whitehead double of

K. Then all non-trivial surgeries on K ′ support a coorientable taut foliation.



Appendix

2.A Constructing foliations on fillings of some punctured

torus bundles over the circle

In this appendix we show how to construct foliations on fillings of some punctured torus

bundles over the circle. We start by fixing some notation. We suppose that S is a

torus with k open discs removed. We consider the curves γ0, γ1, . . . , γk and we label the

boundary components of S with numbers in {1, . . . , k} as in Figure 2.A.1. We also orient

S so that the orientation induced on the boundary components is the one of the figure.

Figure 2.A.1: The oriented torus S with the labelled boundary components.

We denote with τi the positive Dehn twist along the curve γi. Notice that since

γi ∩ γj = ∅ for i ̸= j and i, j ∈ {1, . . . , k} we have that τiτj = τjτi for i, j = 1, . . . , k.

We focus on homeomorphisms of S of the following type:

h = τa00 τa11 · · · τakk a0 ∈ Z, ai ∈ Z \ {0} for i ̸= 0

where the factorisation of h should be read from right to left.

We fix the following convention:

Convention: the indices 1, . . . , k have to be considered ordered cyclically; so we set

ak+1 = a1 and think of a1 as consecutive to ak.

Let ∂iS denote the boundary component of S labelled with i. Given such a homeo-

morphism h we assign to ∂iS a label with the following rule:

55
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• we assign to ∂iS the label p+ if ai and ai+1 are both positive;

• we assign to ∂iS the label p− if ai and ai+1 are both negative;

• we assign to ∂iS the label n if ai and ai+1 have different signs.

Figure 2.A.2 shows an example. Notice that in this example, following our convention,

to assign a label to ∂3S we have to check the signs of a3 and a1, since a1 is consecutive

to a3. Also notice that when k = 1, i.e. S has only one boundary component we have

that ∂1S has label p+ when a1 is positive and label p− when a1 is negative.

Figure 2.A.2: Example with h = τ0τ
5
1 τ

10
2 τ−5

3 .

Finally we assign to each boundary component ∂iS two intervals Ii and Ji in Q in

the following way:

• if ∂iS has label p+ we set Ii = Ji = (∞, 1);

• if ∂iS has label p− we set Ii = Ji = (−1,∞);

• let i1 < · · · < i2c the indices of the boundary components labelled with n. We

set Iia = (∞, 0) when a ∈ {1, . . . , 2c} is odd and we set Iia = (0,∞) when a ∈
{1, . . . , 2c} is even.

Therefore we have Ii1 = (∞, 0), Ii2 = (0,∞), Ii3 = (∞, 0) and so on.

On the contrary, we set Jia = (0,∞) when a ∈ {1, . . . , 2c} is odd and Jia = (∞, 0)

when a ∈ {1, . . . , 2c} is even.

Example 2.A.1. In the example of Figure 2.A.2 we have

I1 = J1 = (∞, 1)

I2 = (∞, 0) J2 = (0,∞)

I3 = (0,∞) J3 = (∞, 0).
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We are now ready to state the theorem. In the statement of the theorem, for each

boundary torus Ti of the manifold Mh we have fixed as longitude the oriented curve

∂iS and as meridian the image in Mh of the curve {xi} × [0, 1], oriented as [0, 1], where

xi ∈ ∂iS.

Theorem 2.A.2. Let S be a k-holed torus as in Figure 2.A.1 and let h be a homeomor-

phism of S of the following form:

h = τa00 τa11 · · · τakk

where a0 ∈ Z and ai ∈ Z \ {0} for i = 1, . . . , k. Then:

1. if a0 > 0 (resp. a0 < 0) then Mh(s1, . . . , sk) supports a coorientable taut foliation

for each multislope (s1, . . . , sk) ∈ (∞, 1)k (resp. (−1,∞)k);

2. for any multislope (s1, . . . , sk) ∈ (I1× · · ·× Ik)∪ (J1× · · ·×Jk), the filled manifold

Mh(s1, . . . , sk) supports a coorientable taut foliation, where the intervals Ii’s and

Ji’s are the ones described above.

Remark 2.A.3. Notice that if h′ is conjugated in MCG(S, ∂S) to a homeomorphism h

that satisfies the hypotheses of Theorem 2.A.2, then the conclusion of the theorem holds

also for Mh′ .

2.A.1 Proof of the first part of Theorem 2.A.2

To prove Theorem 2.A.2 we will build branched surfaces inMh satisfying the hypotheses

of Theorem 2.1.11 by following the construction presented before Lemma 2.2.2.

We start by proving the first part of the theorem. We define a branched surface as

follows. We consider the parallel arcs α1, . . . , αk depicted in Figure 2.A.3.

Figure 2.A.3: The parallel arcs α1 . . . , αk

We consider the discs αi × [0, 1], perturb them in a neighbourhood of S × {1} as

explained in the discussion before Lemma 2.2.2, and project them to the mapping torus

Mh. We consider the (co)oriented branched surface B in Mh obtained by adding these

discs Di to the surface S. The discs Di’s are oriented so that the orientation on their
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boundary induces the given orientation on the arcs αi’s. For an example, see Figure

2.A.4, where also some cusp directions are showed. Recall that a good way to deduce

the cusp directions along the arcs αi’s and h(αi)’s is the following: they point to the

right along the arcs αi’s and they point to the left along the arcs h(αi)’s, where the

latter are oriented as the image of the arcs αi’s.

Figure 2.A.4: In this example, a0 = 2 and k = 3. We also show the details of our

branched surface in a neighbourhood of ∂1S.

Lemma 2.A.4. The branched surface B has no sink discs or half sink discs.

Proof. There are k sectors of B that are half discs and that coincide with the discs

Di’s; these sectors are never sink by construction (see Figure 2.8). The other sectors

coincide with the abstract closures of the connected components of S \ (
⋃
i αi ∪ h(αi)).

Being a0 non-zero, these sectors are discs and half discs3. We can organise these sectors

in the following way. We refer to Figure 2.A.4 to visualise the situation. If we cut S

along the arcs αi’s we obtain k oriented annuli A1, . . . , Ak, so that ∂Ai ⊃ −αi ∪ αi+1

for i ∈ {1, . . . , k}, where −αi denotes the arc αi with the opposite orientation. Also

notice that the cusp directions along αi point inside Ai and the cusp directions along

αi+1 point outside Ai.

It follows by the definition of the arcs αi that h(αi) = τa00 (αi). Each of these annuli

intersects h(αj) in |a0| subarcs, for each j = 1, . . . , k. Therefore, when we cut along the

3When the product k|a0| satisfies k|a0| ≤ 3 there are only half disc sectors.
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h(αi)’s we subdivide each of this annuli in k|a0| discs and these discs coincide with the

sectors of B in S. By construction each of these discs is contained in an annulus, say Ai,

and intersects both αi and αi+1 and therefore there is a cusp direction pointing outside

it.

Since the branched surface B has no sink discs or half sink discs we can apply

Proposition 2.2.4 and to conclude the proof of the first part of Theorem 2.A.2 we need

to study the boundary train tracks of B.

Proposition 2.A.5. If a0 > 0, Mh(s1, . . . , sk) contains a coorientable taut foliation for

each multislope (s1, . . . , sk) ∈ (∞, 1)k. If a0 < 0 the same happens for each multislope

(s1, . . . , sk) ∈ (−1,∞)k.

Proof. We study the multislopes realised by ∂B. The boundary train tracks of B are all

the same for each boundary tori, and only depend on the sign of a0. The two possible

types of boundary train tracks are depicted in Figure 2.A.5.

Figure 2.A.5: The two possible boundary train tracks with weight systems.

We also endowed the two train tracks with weight systems. The slopes of these

weight systems are always x − y, but since we have to impose that each sector of the

train tracks has positive weight we have that:

• if a0 > 0, x can vary in (0, 1) and y can vary in (0,+∞);

• if a0 < 0, x can vary in (0,+∞) and y can vary in (0, 1).

By letting x, y vary we have that when a0 > 0 the boundary train tracks realise all

multislopes in (∞, 1)k and when a0 < 0 the boundary train tracks realise all slopes in

(−1,∞)k. By applying Proposition 2.2.4 we conclude the proof.

Remark 2.A.6. In the terminology of [53], if |a0| = 1 then the pair of parallel k-uples

(h̃(α), α)

is good and oriented, where α = (α1, . . . , αk) and h̃(α) = (h̃(α1), . . . , h̃(αk)). In this case

the branched surface constructed in the previous discussion coincides with the branched

surface associated to the sequence (h(α), α) by Kalelkar and Roberts in [53].
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2.A.2 Proof of the second part of Theorem 2.A.2

We now focus our attention on the second part of Theorem 2.A.2 and we define a new

branched surface. We fix a new set of arcs α1, . . . , αk in the following way. We consider

arcs β1, . . . , βk as in Figure 2.A.6 and choose αi so that h(αi) = βi. One example is

depicted in Figure 2.A.7.

Figure 2.A.6: The arcs βi’s.

We now give orientations to the arcs αi’s in order to build our branched surfaces. It

will be simpler to state how to assign orientations to the βi’s and we will orient each αi

as isotopic to h−1(βi), for i = 1, . . . , k.

Definition 2.A.7. We say that an orientation of the arcs βi’s is coherent if the following

hold:

• if a boundary component ∂iS has label p+ or p− the arcs βi−1 and βi intersecting

∂iS are oriented so that the first starts at ∂iS and the second ends at ∂iS, or

viceversa. In this case we say that βi−1 and βi have the same direction;

• if a boundary component ∂iS has label n the arcs βi−1 and βi intersecting ∂iS

are oriented so that both start or both end at ∂iS. In this case we say that βi−1

and βi have opposite directions. In case the arcs both start at ∂iS we say that the

component is of type no (the subscript o stands for “out”) and if both end at ∂iS

we say that is of type ni (i standing for “in”).

See Figure 2.A.7 for an example4. Notice that there is always an even number of

boundary components of S with label n. Moreover the boundary components with label

n are alternately of type no and ni. We will soon use coherent orientations to build

branched surfaces. First of all we prove the following lemma.

Lemma 2.A.8. There always exist exactly two different coherent orientations of the

arcs βi’s.

4recall that the factorisation of the monodromy h is to be read from right to left; this should help to

figure out why h(αi) = βi.
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Figure 2.A.7: An example of a coherent orientation. In this case the arcs β2 and β3

have the same direction, while the arcs β1 and β2 and the arcs β3 and β1 have opposite

directions.

Proof. We fix an orientation of the arc β1. We prove that there exists a unique coherent

orientation of the arcs βi’s agreeing with the fixed orientation on β1 and this implies the

thesis. We orient the arcs βi’s inductively. Suppose that we have oriented β1, . . . , βj .

Then:

• if ∂j+1S has label p+ or p− we orient βj+1 so that it has the same direction of βj ;

• if ∂j+1S has label n we orient βj+1 so that its direction is opposite to the one of

βj .

In other words, once we have fixed an orientation on β1 the coherence condition

completely determines the orientations of β2, . . . , βk. The only thing to be checked in

order to prove that this orientation is actually coherent is the behaviour of βk and β1 at

∂1S. Since there is always an even number of boundary components of S with label n

it follows that:

• if ∂1S has label p+ or p− then the direction changes an even number of times

between β1 and βk and therefore β1 and βk have the same direction;

• if ∂1S has label n then the direction changes an odd number of times between β1

and βk and therefore β1 and βk have opposite directions.

Therefore the orientation defined in this way is coherent and this concludes the proof.

We fix a coherent orientation and as usual we consider the branched surface B that

is the union of S and the images in Mh of the discs αi × [0, 1] ⊂ S × [0, 1]. We denote

the image of αi× [0, 1] with Di and orient the discs Di’s so that the orientation on their

boundary induces the given orientation on the αi’s. Exactly as before we have:

Lemma 2.A.9. The branched surface B has no sink discs or half sink discs.
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Proof. There are k sectors of B that coincide with the discs Di’s and they always have

cusp directions pointing outside. We focus our attention on the sectors contained in S.

We consider the k annuli Ai obtained by cutting S along the arcs of Figure 2.A.3. Each

of these annuli contains in its interior some disc and half disc sectors and intersects two

other half disc sectors. The former are never sink because each of these sectors has in

its boundary two parallel subarcs of some arc of the αi’s, as for example Figure 2.A.8

shows.

Figure 2.A.8: The annulus Ai.

We now claim the following:

Claim: since we have fixed a coherent orientation of the arcs βi’s, the cusp directions

along the arcs αi’s all point in the same direction.

The claim implies that the sectors belonging to two consecutives annuli are never

sink because each of these sectors has in its boundary two subarcs of two consecutive

arcs of the αi’s. For an example, see Figure 2.A.9.

Proof of the claim: We first notice that when ai > 0 (resp. ai < 0) the cusp

direction along the arc αi has the same (resp. opposite) direction of βi (recall that the

cusp direction always points to the right along the oriented arcs αi’s). Therefore to prove

the claim it is sufficient to prove that βi and βj have the same direction if and only if

aiaj > 0, and to prove this it is enough to prove that a1ai > 0 if and only if β1 and

βi have the same direction. We prove this by induction on i. If i = 2 this follows from

the definition of coherent orientation. We suppose now that the thesis is true for i and

we prove it for i + 1. Suppose that a1ai+1 > 0; then if a1ai > 0 we know by inductive

hypothesis that β1 and βi have the same direction. Moreover we deduce that aiai+1 > 0

and by the definition of coherent orientation that βi and βi+1 have the same direction

and therefore also β1 and βi+1 have the same direction. The other cases can be analysed

similarly. This concludes the proof of the claim.

Proposition 2.A.10. Let I1, . . . , Ik and J1, . . . , Jk be the intervals defined in the dis-

cussion before the statement of Theorem 2.A.2 and let B denote the branched surface
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Figure 2.A.9: The figure shows how the choice of a coherent orientation implies that the

cusp directions along the arcs αi’s all have the same direction.

associated to a coherent orientation of the arcs βi’s. Then for one choice of coher-

ent orientation of the arcs βi’s, the train track ∂B realises all multislope (s1, . . . , sk), for

(s1, . . . , sk) ∈ I1×· · ·×Ik. In particular all the fillings associated to these multislopes con-

tain a coorientable taut foliation. Choosing the other coherent orientation yields B whose

boundary train track realise all multislope (s1, . . . , sk), for (s1, . . . , sk) ∈ J1 × · · · × Jk,

and all the filling associated to these multislopes contain coorientable taut foliations.

Proof. We focus our attention on the boundary train tracks of B. For a fixed boundary

component of S we have the four possible configurations showed in Figure 2.A.10 and

for each of this configurations we have two possible way to fix a coherent orientation.

Figure 2.A.10: The four possible configuration of arcs in a neighbourhood of ∂i+1S.

If the boundary component has label p+ or p− the type of the boundary train track

does not depend on the choice of the coherent orientation, and is described in Figure

2.A.11, where for concreteness we have assigned an orientation to the arcs, and where in

the middle picture we have also described the branched surface in a neighbourhood of

the boundary component. If we consider the other coherent orientation, we obtain the

same train tracks. By assigning weights to these train tracks as usual we deduce that if

the label is p+ the train track realises all the slopes in the interval (∞, 1), while if the

label is p− the slopes realised are those in the interval (−1,∞).

On the other hand if the boundary component has label n the choice of the orientation

yields two different train tracks. We represent the possible train tracks in Figure 2.A.12.
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Figure 2.A.11: In this figure we describe the branched surface in a neighbourhood of the

(i+ 1)-th boundary component of Mh and its boundary train track in the case of label

p+ and p−.

Notice that the train tracks depend only on the orientation of the arcs, and not on the

label a) or b) of the configuration.

The train tracks on the left realise all the slopes in the interval (0,∞), while those

on the right realise the slopes in the interval (∞, 0).

By fixing one or the other of the two possible coherent orientations, we have that the

boundary train tracks of B realise all the multislopes in I1 × · · · × Ik and J1 × · · · × Jk.

By virtue of Lemma 2.A.9, we know that B is laminar and we can apply Proposition

2.2.4 to obtain the desired foliations.

Example 2.A.11. For each natural number n we consider the n-component oriented

link Ln in Figure 2.A.13.

We can represent the link Ln in a different way, as in Figure 2.A.14. With this repre-

sentation, it is evident that Ln can be realised as a plumbing of Hopf bands. Therefore

Ln is a fibered link, with fiber surface a torus with n open discs removed, and the

monodromy associated to this fiber is

h = τ−1
0 τ1 . . . τn

where τi is the positive Dehn twist along the curve γi.
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Figure 2.A.12: The possible boundary train tracks associated to a boundary component

with label n. Notice that the train tracks depend only on the orientation of the arcs,

and not on the label a) or b) of the configuration.

We now prove that Ln is a hyperbolic link. We recall the following theorem of Penner

[91]:

Theorem 2.A.12. ([91]) Suppose that C and D are each disjointly embedded collections

of essential simple closed curves (with no parallel components) in an oriented surface

F so that C hits D efficiently and C ∪ D fills F . Let R(C+,D−) be the free semigroup

generated by the Dehn twists {τ+1
c : c ∈ C}∪ {τ−1

d : d ∈ D}. Each component map of the

isotopy class of w ∈ R(C+,R−) is either the identity or pseudo-Anosov, and the isotopy

class of w is itself pseudo-Anosov if each τ+1
c and τ−1

d occur at least once in w.

In the statement of the previous theorem, “C∪D fills F” means that each component

of the complement of C ∪D is a disc, a boundary-parallel annulus, or a puncture-parallel

punctured disc. Moreover “C hits D efficiently” if there is no bigon in F with boundary

made of one arc of a curve c ∈ C and one arc of a curve d ∈ D.

In our case we set C = {γ1, . . . , γn} and D = {γ0} and we can apply this theorem

to deduce that the monodromy associated to Ln is a pseudo-Anosov map; applying

Thurston [112] we deduce these links are hyperbolic.

Moreover Theorem 2.A.2 applies to these links and we can deduce that for any mul-

tislope (s1, . . . , sn) ∈ (∞, 1)n∪ (−1,∞)n, the filling of the exterior of Ln with multislope

(s1, . . . , sn) supports a coorientable taut foliation. Recall that these slopes are referred

to the meridian-longitude bases given by the mapping torus; since the components of
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Figure 2.A.13: The link Ln.

Figure 2.A.14: A description of Ln as a plumbing of Hopf bands.

Figure 2.A.15: Another picture of the link Ln. Without the cores of the Hopf bands it

may be easier to see the isotopy to the link depicted in Figure 2.A.13.
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the link Ln do not have pairwise linking number zero, the longitudes of these bases do

not coincide with the canonical longitudes of the link.
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Chapter 3

Left-orderability

This chapter is devoted to the study of the left-orderability of some surgeries on the

Whitehead link. The main result is Theorem C. We will also record some other results

from the literature regarding the orderability (and non-orderability) of surgeries on the

Whitehead link.

3.1 Central extensions and cohomology of groups

In this section we recall how the problem of finding lifts of certain homomorphisms can

be rephrased in terms of group coholomogy. More precisely we show how equivalences

classes of central extension of a group G by Z can be identified with the cohomology

group H2(G,Z). We start with some definitions.

Definition 3.1.1. A central extension of G (by Z) is a short exact sequence of groups

0 → Z → E → G→ 1

with the property that the image of Z in G is in the center of G.

Definition 3.1.2. Two central extension of G

0 → Z → E → G→ 1

0 → Z → E′ → G→ 1

are equivalent if there exists a homomorphism E → E′ such that the following diagram

commutes
E

1 Z G 1.

E′

69
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The condition in the previous definition forces the homomorphism E → E′ to be

an isomorphism. We denote the set of equivalence classes of central extensions of G by

E(G,Z).
Also recall that the second cohomology group of G with coefficients in Z (and trivial

action on Z) can be defined as

H2(G;Z) = Z2(G;Z)/B2(G;Z)

where

Z2(G;Z) =

{
f : G2 → Z s.t. f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2) = 0

and f(idG, g) = f(g, idG) = 0

}

and

B2(G;Z) =

{
f : G2 → Z s.t. ∃h : G→ Z with f(g1, g2) = h(g1) + h(g2)− h(g1g2)

and h(idG) = 0

}
.

There is a bijection between E(G,Z) and H2(G;Z), defined in the following way:

• given a central extension 0 → Z i→ E
π→ G → 1, consider a set-theoretical section

s : G→ E, i.e. a map satisfying s ◦π = IdG, such that s(idG) = idE . Then we can

associate to s an element f ∈ Z2(G;Z) defined as f(g1, g2) = s(g1)s(g2)s(g1g2)
−1;

• given f ∈ Z2(G;Z), we define the group Gf as the set G × Z endowed with the

multiplication (g1, a)(g2, b) = (g1g2, a+ b+ f(g1, g2)). We can identify a copy of Z
in Gf by considering the subgroup generated by (idG, 1) and there is an obvious

projection Gf
π→ G obtained by projecting on the first factor. We have defined in

this way a central extension of G.

The previous maps induce well-defined maps between E(G,Z) and H2(G;Z) and one can

check that these are inverses one of the other, and that the class of the trivial central

extension G×Z is identified with the class in H2(G;Z) represented by the constant zero

cocycle.

We will soon be interested in studying the following problem. Suppose that we have

a central extension 0 → Z i→ E
π→ G → 1 and let φ : H → G a homomorphism: when

is it possible to lift φ to a homomorphism φ̃ : H → E?

Observe that φ induces by pullback a map φ∗ : H2(G;Z) → H2(H;Z) and let denote

by [fE ] ∈ H2(G;Z) the cohomology class associated to the above central extension of

G. By abuse of notation, we denote by eφ the cohomology class φ∗([fE ]) and omit the

dependence on the central extension.

Proposition 3.1.3. There exists a lift φ̃ : H → E of φ if and only if the class eφ is

trivial in H2(H;Z).
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Proof. (Sketch) We consider the central extension of H defined by using φ in the follow-

ing way: consider the following subgrop of E ×H

Eφ = {(e, h) ∈ E ×H|π(e) = φ(h)}

with projection π′ on H, given by projecting on the second factor. Since π : E → G

is surjective, also π′ is and one can check that the kernel of π′ can be identified with

i(Z)×{idH} ⊂ Eφ, that is a copy of Z. This central extension of H is uniquely associated

to a cohomology class [fEφ ] ∈ H2(H;Z) and one can check that this class is exactly eφ.

By the very definition of Eφ it follows that a lift φ̃ : H → E of φ exists if and only

if there exists a section of π′ : Eφ → H. This happens exactly when the class of this

central extension in E(H,Z) is the trivial, i.e. if and only if [fEφ ] = eφ is trivial.

3.2 Euler classes of foliations on surgeries on the White-

head link

In this section we study the Euler classes of the foliations we have constructed in Chapter

2. We prove the following theorem. Recall that we were able to construct foliations on the

(r1, r2)-surgery on the Whitehead link, where at least one of the two rational coefficient

is smaller than 1.

Theorem C. Let S3
p1
q1
,
p2
q2

(WL) be the
(
p1
q1
, p2q2

)
-surgery on the Whitehead link, with q1, q2 ̸=

0 and p1, p2 > 0.

Then the taut foliations constructed in the proof of the Theorem A have vanishing

Euler class if and only if |qi| ≡ 1 (mod pi) for i = 1, 2.

In particular, for all these manifolds the L-space conjecture holds.

We start by recalling the definition of left-orderable group and briefly explain how

taut foliations can be used to prove that some 3-manifold groups are left-orderable.

Definition 3.2.1. Let G be a group. G is left-orderable if there exists a total order <

on G that is invariant for the left multiplication by elements in G, i.e. such that for any

g, g′ ∈ G we have that g < g′ if and only if hg < hg′ ∀h ∈ G.

If G is the fundamental group of a closed, orientable, irreducible 3-manifold, left-

orderability translates in the following dynamical property.

Theorem 3.2.2 ([9]). Let N be a closed, irreducible, orientable 3-manifold. Then π1(N)

is left-orderable if and only if there exists a non-trivial homomorphism φ : π1(N) →
Homeo+(R).
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This result yields us a theoretical way to connect taut foliations to left-orderability in

the following way. Suppose that F is a cooriented taut foliation on a rational homology

3-sphere N . We can associate to F its tangent bundle TF , that is a plane bundle

over N . Being it an orientable plane bundle, we can associate to TF its Euler class

e(TF) ∈ H2(N ;Z). Moreover, by a construction of Thurston (see [14]), it is possible to

associate to F a non-trivial homomorphism

φ : π1(N) → Homeo+(S1).

The universal cover ˜Homeo+(S1) of Homeo+(S1) can be identified with the subgroup

Homeo+Z (R) ⊂ Homeo+(R) of orientation preserving homeomorphisms of R that com-

mute with integer translations and it defines a central extension of Homeo+(S1). There-

fore, in order to apply Theorem 3.2.2, it is natural to look for lifts φ̃ of φ to ˜Homeo+(S1).

By virtue of Proposition 3.1.3 we have that such a lift exists if and only if eφ is trivial

in H2(π1(N);Z). Recall that since N contains a coorientable taut foliation, its univer-

sal cover is R3. Therefore N is a K(π1(N), 1)-space and the cohomology groups of M

coincide with the cohomology groups of π1(N). There is hope to give an interpretation

of eφ as element in H2(N ;Z). In fact, the following theorem holds:

Theorem 3.2.3 ([8]). Let N be a rational homology sphere. Then the class eφ coin-

cides, up to sign, with e(TF). In particular, if a rational homology sphere contains a

coorientable taut foliation with vanishing Euler class, then it is left-orderable.

We now consider the taut foliations obtained in Chapter 2 and determine which of

them have vanishing Euler class. To do this we will adapt part of the content of [51] to

our context.

We fix some notation. We denote withM the exterior of the Whitehead link WL and

we denote with S the 2-holed torus (constructed for example with the same procedure

of Figure 2.9) that is the fiber surface for WL. We fix a multislope
(
p1
q1
, p2q2

)
, with p1

q1
< 1

or p2
q2
< 1, and we denote with F the foliation in M intersecting ∂M in parallel curves of

multislope
(
p1
q1
, p2q2

)
, as constructed in the proof of Theorem A. This foliation extends to

a foliation F̂ of the filled manifold S3
p1
q1
,
p2
q2

(WL) so that in the glued solid tori N1 and N2

the foliation F̂ restricts to the standard foliations D1 and D2, which are the foliations by

meridional discs. We can suppose without loss of generality that p1, p2 > 0. We orient

the meridional disc Di of Ni so that the gluing map identifies ∂Di with the oriented

curve piµi + qiλi in ∂M .

The second homology group H2(M,∂M ;Z) is isomorphic to Z2 and in particular we

can fix as generators two properly embedded surfaces S1 and S2 that are duals to the

meridians of the two components of the Whitehead link. Since the Whitehead link has
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linking number zero, these surfaces can be taken to be Seifert surfaces for the components

of the link. In particular, these can be chosen to be tori with one disc removed, so that

∂Si = λi. One of these tori is showed in Figure 3.2.1 and the other can be obtained by

an isotopy of S3 exchanging the two components of WL.

Figure 3.2.1: The 1-holed torus depicted in this figure is one of the two generators of

H2(M,∂M ;Z).

We fix a nowhere vanishing section σ of (TF)|∂M that is everywhere pointing out-

side of M . Hence the restrictions of σ to the boundary components of M also define

nowhere vanishing sections σi of (TDi)|∂Ni
everywhere pointing inside Ni, for i = 1, 2.

These sections yield us relative Euler classes in H2(M,∂M ;Z), H2(N1, ∂N1;Z) and

H2(N2, ∂N2;Z), that we denote respectively with eσ(TF), eσ1(TD1) and eσ2(TD2). See

[51] for details.

Finally, we set ai = ⟨eσ(TF), [Si]⟩ and bi = ⟨eσi(TDi), [Di]⟩, where Di is a meridional

disc in Ni.

Remark 3.2.4. Notice that since Di is the standard foliation of the solid torus by merid-

ional discs, we have that bi coincides with ±⟨eσi(TDi), [Di]⟩ = ±χ(Di) = ±1, where

TDi denotes the tangent bundle of Di and where the sign depends on the orientation of

the foliation Di.

We are interested in knowing when e(T F̂) vanishes. The following proposition tells

us exactly when this happens. Recall that without loss of generality we are supposing

p1, p2 > 0, whereas the signs of q1 and q2 are arbitrary.

Proposition 3.2.5. We have that e(T F̂) = 0 if and only if e(TF) = 0 and aiqi ≡ bi

(mod pi).

Proof. The statement of this proposition is the generalisation to our case of the state-

ments of [51, Lemma 3.1] and [51, Theorem 1.4] and the proof that is presented there

adapts almost unaltered. We give a brief sketch of the proof and refer to [51] for the

details. In what follows the cohomology and homology groups are all implicitly assumed

with integer coefficients and we will denote with M the (p1q1 ,
p2
q2
)-surgery on M . Since M

is a rational homology sphere as a consequence of the long exact sequence of the pair

(M,∂M) we have
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0 → H1(∂M)
δ→ H2(M,∂M)

ι→ H2(M) → 0. (3.1)

Moreover as a consequence of the Mayer-Vietoris sequence there is an isomorphism

H2(M,∂M)⊕H2(N1, ∂N1)⊕H2(N2, ∂N2) ∼= H2(M,∂M) (3.2)

defined by mapping the relative classes (cM , cN1 , cN2) to the sum cM + cN1 + cN2 , where

each of these cohomology classes is obtained by extending to M the corresponding rela-

tive class by the zero map.

By using the identification given by the isomorphism in (3.2) we obtain a short exact

sequence:

0 → H1(∂M)
ψ→ H2(M,∂M)⊕H2(N1, ∂N1)⊕H2(N2, ∂N2)

φ→ H2(M) → 0 (3.3)

where

ψ(β) = (δMβ, (δN1 ◦ f∗1 )(β), (δN2 ◦ f∗2 )(β))

with f1 : ∂N1 ↪→ ∂M and f2 : ∂N2 ↪→ ∂M denoting the gluing maps of the solid tori

and with

δM : H1(∂M) → H2(M,∂M)

δN1 : H1(∂N1) → H2(N1, ∂N1)

δN2 : H1(∂N2) → H2(N2, ∂N2)

denoting the maps appearing in the long exact sequences of the pairs (M,∂M), (N1, ∂N1)

and (N2, ∂N2).

We suppose now that e(T F̂) = 0. By naturality of the Euler class, e(TF) is the

image of e(T F̂) = 0 under the map induced by the inclusion M ↪→M and therefore we

have that e(TF) = 0.

Moreover it also holds that

φ(eσ(TF), eσ1(TD1), eσ2(TD2)) = e(T F̂) = 0

and therefore there exists β ∈ H1(∂M) such that ψ(β) = (eσ(TF), eσ1(TD1), eσ2(TD2));

in other words β satisfies 
δMβ = eσ(TF)

(δN1 ◦ f∗1 )(β) = eσ1(TD1)

(δN2 ◦ f∗2 )(β) = eσ2(TD2)

.

The following calculation verifies that aiqi ≡ bi (mod pi):

bi = ⟨eσi(TDi), [Di]⟩ = ⟨(δNi ◦ f∗i )(β), [Di]⟩ = ⟨β, [fi(∂Di)]⟩ =
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= ⟨β, piµi + qiλi⟩ = pi⟨β, µi⟩+ qi⟨β, λi⟩ = pi⟨β, µi⟩+ qiai

where in the last equality we have used that

⟨β, λi⟩ = ⟨β, [∂Si]⟩ = ⟨δMβ, [Si]⟩ = ⟨eσ(TF), [Si]⟩ = ai.

We now prove that if e(TF) = 0 and aiqi ≡ bi (mod pi) for i = 1, 2, then e(T F̂) = 0.

We consider again the short exact sequence in (3.1). The nowhere vanishing section σ

defines an element eσ(T F̂) ∈ H2(M,∂M) that satisfies ι(eσ(T F̂)) = e(T F̂) and therefore

if we prove that eσ(T F̂) belongs to the image of δ : H1(∂M) → H2(M,∂M) we obtain

the thesis. Morever under the isomorphism (3.2) the element (eσ(TF), eσ1(TD1), eσ2(TD2))

corresponds to eσ(T F̂) and therefore it is enough to prove that (eσ(TF), eσ1(TD1), eσ2(TD2))

belongs to the image of ψ in the short exact sequence (3.3).

If we consider the long exact sequence of the pair (M,∂M) we have the following

H1(M ;Z)
ι′M→ H1(∂M)

δM→ H2(M,∂M)
ι′′M→ H2(M)

and since ι′′M (eσ(TF)) = e(TF) = 0 we deduce that there exists β0 ∈ H1(∂M) such

that δM (β0) = eσ(TF) ∈ H2(M,∂M). We now want to modify β0 in order to find

β ∈ H1(∂M) that satisfies

ψ(β) = (eσ(TF), eσ1(TD1), eσ2(TD2))

that is to say, such that 
δMβ = eσ(TF)

(δN1 ◦ f∗1 )(β) = eσ1(TD1)

(δN2 ◦ f∗2 )(β) = eσ2(TD2).

We denote with µ∗i ∈ H1(∂M) the dual of µi ∈ H1(∂M) and we define

β = β0 + n1µ
∗
1 + n2µ

∗
2 where ni = −⟨β0, µi⟩ −

aiqi − bi
pi

.

Since aiqi ≡ bi (mod pi) for i = 1, 2 it follows that ni is an integer. Moreover, since

β − β0 ∈ ι′M (H1(M)) we have that δM (β0) = δM (β) = eσ(TF) ∈ H2(M,∂M). We have

to prove that (δNi ◦ f∗i )(β) = eσi(TDi) for i = 1, 2. Since

H2(Ni, ∂Ni) ∼= Hom(H2(Ni, ∂Ni,Z))

it is enough to prove that ⟨(δNi◦f∗i )(β), [Di]⟩ = ⟨eσi(TDi), [Di]⟩ and this is a consequence

of the following computation (the case i = 2 is analogous).

⟨(δN1 ◦ f∗1 )(β), [D1]⟩ = ⟨β, f1(∂D1)⟩ =

= ⟨β0, p1µ1 + q1λ1⟩+ n1⟨µ∗1, p1µ1 + q1λ1⟩+ n2⟨µ∗2, p1µ1 + q1λ1⟩ =
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= p1⟨β0, µ1⟩+ a1q1 + p1

(
−⟨β0, µ1⟩ −

a1q1 − b1
p1

)
= b1 = ⟨eσ1(TD1), [D1]⟩

where in the last line we have used again that

⟨β0, λ1⟩ = ⟨β0, [∂S1]⟩ = ⟨δMβ0, [S1]⟩ = ⟨eσ(TF), [S1]⟩ = a1.

and that ⟨µ∗2, µ1⟩ = ⟨µ∗2, λ1⟩ = 0

We are now ready to prove the following

Theorem C. Let S3
p1
q1
,
p2
q2

(WL) be the
(
p1
q1
, p2q2

)
-surgery on the Whitehead link, with q1, q2 ̸=

0 and p1, p2 > 0.

Then the taut foliations constructed in the proof of the Theorem A have vanishing

Euler class if and only if |qi| ≡ 1 (mod pi) for i = 1, 2.

In particular, for all these manifolds the L-space conjecture holds.

Proof. First of all we prove that e(TF) = 0. In fact, let T denote one of the boundary

components of M ; the inclusion of T in M induces an isomorphism ι : H2(M ;Z) →
H2(T ;Z). Therefore we have

e(TF) = 0 ⇔ ι(e(TF)) = 0.

By naturality of the Euler class we have that

ι(e(TF)) = e(T (F|T ))

and since F|T admits a nowhere vanishing section we have that the last quantity is zero.

We now want to compute the numbers ai. As a consequence of the proof of Theorem

1.7 in [51] we have that

• bi = 1 if qi < 0, for i = 1, 2;

• bi = −1 if qi > 0, for i = 1, 2;

• ⟨eσ(TF), [S]⟩ = χ(S) = −2.

Since by construction S intersects positively in one point the meridians of the components

of the Whitehead link, we have the equality [S] = [S1 + S2] in H2(M,∂M ;Z) and hence

a1 + a2 = ⟨eσ(TF), [S1]⟩+ ⟨eσ(TF), [S2]⟩ = χ(S) = −2.

As a consequence of [111, Corollary 1, p. 118] for any [F ] ∈ H2(M,∂M ;Z) we have

the inequality

|⟨eσ(TF), [F ]⟩| ≤ |χ(F )|

and since S1 and S2 are 1-holed tori, this implies that ai = ⟨eσ(TF), [Si]⟩ = −1 for

i = 1, 2. Therefore, by virtue of Proposition 3.2.5 we have e(T F̂) = 0 if and only if for

each i = 1, 2 it holds one of the following:
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• qi is positive and qi ≡ 1 (mod pi);

• qi is negative and qi ≡ −1 (mod pi).

In other words e(T F̂) = 0 if and only if

|qi| ≡ 1 (mod pi) for i = 1, 2

that is exactly what we wanted.

We point out the following straightforward consequence of Theorem C.

Corollary 3.2.6. Let d1, d2 be two integers such that d1 < 0 or d2 < 0. Then the

manifold S3
d1,d2

(WL) satisfies the L-space conjecture. □

We conclude by collecting from the literature some results regarding the orderability

(or non-orderability) of some surgeries on the Whitehead link, obtaining a generalisation

of Corollary 3.2.6.

Proposition 3.2.7. Let m ≤ −1 be an integer. Then the manifolds S3
m,r(WL) and

S3
r,m(WL) have left-orderable fundamental group for all rationals r. On the other hand,

all L-space surgeries on WL are non left-orderable. That is to say S3
r1,r2(WL) is non

left-orderable for all rationals r1 ≥ 1, r2 ≥ 2.

In particular, all the rational homology spheres obtained by integer surgery on WL

satisfy the L-space conjecture.

Proof. The second part of the proposition follows from the main result of [72]: an irre-

ducible, orientable, left-orderable M with Heegaard genus at most 2 supports a coori-

entable taut foliation. All surgeries on two-bridge links have at most Heegaard genus

2 and since L-spaces do not support coorientable taut foliations the statement follows.

For what concerns the first part of the proposition, the manifold S3
m,•(WL) fibers over

the circle if and only if m is an integer (see [49]). Moreover, in this case the fiber is a

punctured torus. When m ≤ −1 the monodromy of S3
m,•(WL) can be extended to an

Anosov diffeomorphism ϕ of the torus that preserves the orientations of its stable and

unstable foliations, see [49]. The manifold S3
m,r(WL) can be obtained by surgery along

a closed orbit of ϕ in the mapping torus Mϕ and as a consequence of [117, Theorem

1] we have that all the non-trivial fillings of S3
m,•(WL) have left-orderable fundamental

group. Since WL is symmetric, the same result holds for S3
•,m(WL). This concludes the

proof.

Remark 3.2.8. Notice that even if the content of Corollary 3.2.6 is generalised by Proposi-

tion 3.2.7, the statement of Theorem C is not; in fact there are also non-integer rationals
p1
q1

and p2
q2

that satisfy the hypotheses of Theorem C.
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In [30] Dunfield considers a census of more than 300,000 hyperbolic rational homology

spheres, testing the conjecture for this census. These manifolds are obtained by filling 1-

cusped hyperbolic 3-manifolds that can be triangulated with at most 9 ideal tetrahedra,

see [12]. We checked whether some of these manifolds studied by Dunfield arise as Dehn

surgery on the Whitehead link and obtained the following

Proposition 3.2.9. Among the 307, 301 rational homology spheres studied in [30] at

least 625 are obtained as Dehn surgery on the Whitehead link. In [30] it is proved that:

• 300 of these manifolds are left-orderable;

• 250 are not left-orderable.

It follows from Proposition 3.2.7 that 16 of the remaining 75 manifolds are orderable and

39 are non-left-orderable.

The code of the program can be found at [20]. The surgery coefficients yielding these

manifolds are plotted in Figure 3.2.2.

Figure 3.2.2: In this figure the red dots represent the coefficients whose corresponding

surgery is non-left-orderable and the blue dots represent the coefficients whose corre-

sponding surgery is left-orderable.

The examples of Proposition 3.2.7 and Proposition 3.2.9 are consistent with the

conjecture, and together with Theorem A confirm that the L-space conjecture holds also

for all these manifolds.



Chapter 4

Dodecahedral L-spaces and

hyperbolic 4-manifolds

The last chapter of the thesis will focus on a slightly different topic, and will be about

a joint work with Ludovico Battista and Leonardo Ferrari [3], where we study and

classify the L-spaces among some hyperbolic 3-manifolds with particularly nice geometric

properties. We then use this information to construct some hyperbolic 4-manifolds with

vanishing Seiberg-Witten invariants.

We start the chapter by introducing the problem and recalling some definitions. In

Section 4.2, we recall the techniques used by Dunfield to classify the L-spaces in [30].

We then elaborate on these techniques and describe an algorithm that can be used to

prove that a hyperbolic rational homology sphere is an L-space and prove Theorem E.

Section 4.3 contains the details of the construction necessary for the proof of Theorem

F. In Section 4.3.1 we recall the general theory of manifolds with right-angled corners

and colourings; then, in Section 4.3.2, we move to the explicit construction.

Appendices 4.A-4.B contain a detailed description of the algorithm used in Section

4.2, with some examples.

4.1 Introduction

Definition 4.1.1. A hyperbolic 3-manifold is dodecahedral if it can be tessellated by

regular right-angled hyperbolic dodecahedra.

The dodecahedral manifolds tessellated with four or less dodecahedra were classified

in [43]. Using this, we fix the following notation:

Notation 4.1.2. We denote by D the set of the 29 dodecahedral hyperbolic rational

homology spheres tessellated with four or less dodecahedra (see Table 4.1.1).

79



80 CHAPTER 4. DODECAHEDRAL L-SPACES AND HYPERBOLIC 4-MFDS

To identify the L-spaces in D , we elaborate on some ideas presented by Dunfield

in [30], and we use the algorithm described in Section 4.2. With the help of the code

provided by Dunfield in [30], we show that the remaining 3-manifolds are not L-spaces,

so we can conclude:

Theorem E. Among the 29 manifolds in D , 6 are L-spaces and 23 are not; see Tables

4.1.1 - 4.2.1.

The information given by Theorem E is very little compared with the one from [30],

where L-spaces among more than 300, 000 hyperbolic manifolds are classified. Never-

theless, the geometric properties of the manifolds in D can be used to answer a question

asked by Agol and Lin in [1]. Before stating the question, we give a brief introduction

to the problem.

Seiberg-Witten invariants are smooth invariants for 4-manifolds with b+2 ≥ 2 and

were defined in [101, 102, 116] by Seiberg and Witten. These invariants, coming from

gauge theory, soon established surprising connections between the topology and the

geometry of smooth 4-manifolds. For example, if a 4-manifold with b+2 ≥ 2 has a metric

with positive scalar curvature then these invariants all vanish [116], while on the other

hand Taubes [103] proved that any symplectic 4-manifold with b+2 ≥ 2 has a non-zero

Seiberg-Witten invariant. Putting together these results, we have that any symplectic

4-manifold with b+2 ≥ 2 does not admit a metric with positive scalar curvature.

In [69] LeBrun conjectured that the Seiberg-Witten invariants of a closed hyperbolic

4-manifold are all zero. In [1] Agol and Lin showed the existence of infinitely many

commensurability classes of hyperbolic 4-manifolds containing representatives with van-

ishing Seiberg-Witten invariants. This is shown by proving that there exist hyperbolic

4-manifolds that contain separating L-spaces. More precisely, they used the following

result. For a proof we refer to [61] and also [1, Proposition 2.2].

Proposition 4.1.3. Let N be a 4-manifold given as N = N1 ∪M ′ N2, where M
′ is an

L-space and where b+2 (Ni) ≥ 1 for i = 1, 2. Then all the Seiberg-Witten invariants of N

vanish.

Remark 4.1.4. To be precise, the right notion of L-space to use in the previous propo-

sition is the one of monopole Floer L-space, but the monopole Floer/Heegaard Floer

correspondence, proved by the works of Kutluhan-Lee-Taubes [63, 64, 65, 66, 67], im-

plies that a manifold is a monopole Floer L-space if and only if it is an Heegaard-Floer

L-space. A different proof of the correspondence monopole Floer/Heegaard Floer can be

obtained by combining the works of Taubes [104, 105, 106, 107, 108] and Colin-Ghiggini-

Honda [22].

Part of Agol and Lin strategy to find such examples was based on a result regard-

ing the embeddings of arithmetic hyperbolic manifolds proved by Kolpakov-Reid-Slavich
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[56]. As a consequence of this the hyperbolic 4-manifolds of [1] are not explicitly con-

structed. Therefore they ask the following:

Question 2 ([1, Conclusions (1)]). Can one find an explicit hyperbolic 4-manifold N

such that N = N1∪M ′N2, where the separating hypersurface M ′ is an L-space and such

that b+2 (Ni) ≥ 1 for i = 1, 2?

The separating hypersurfaces that we will use are built from the ones in D and to

build the 4-manifold we will follow the construction presented in [79]. We discuss all

the details in Section 4.3. Here we just premise that the methods used in [79] allow to

construct the 4-manifold in an explicit way. In fact, if M is a dodecahedral manifold

tessellated into n dodecahedra, the result of [79] yields, under certain hypotheses, a 4-

manifold N tessellated into at most 244 · n hyperbolic right-angled 120-cells [79, Proof

of Theorem 3] in which M geodesically embeds. Notice that this gives a bound on the

volume of N . This bound on the number of 120-cells is in general not sharp and in

practice our examples are tessellated by less 120-cells than predicted by this bound.

Using this construction, the manifoldM is non-separating inside N . However, inside

N it is easy to find a certain number of copies of M that, all together, separate. At this

point if M is an L-space one can use an argument as in [1, Corollary 2.5] to obtain a

separating L-space M ′ that is diffeomorphic to the connected sum of several copies of

M . There is also a natural way to ensure that b+2 (Ni) ≥ 1. The details are discussed in

Section 4.3.

With the help of Theorem E, we prove the following:

Theorem F. There are two hyperbolic 4-manifolds N11 and N28 tessellated with 29 right-

angled 120-cells that can be obtained as N1 ∪M ′ N2, where the separating hypersurface

M ′ is an L-space and such that b+2 (Ni) ≥ 1 for i = 1, 2.

The manifolds in the statement are built by colouring 4-manifolds with right-angled

corners tessellated in 120-cells (see Section 4.3) and are explicitly described in Section

4.3.2. It is possible to generalise the notion of colouring lowering the number of 120-cells

in the tessellation to 28; we present this construction in Section 4.3.2, but we do not go

into the details. The Betti numbers with coefficients in R and Z2 of the explicit examples

that we build can be found in Tables 4.3.1 - 4.3.2 - 4.3.3 - 4.3.4. We also tried to obtain

the integral homology, but the computation was too intensive for our computational

resources.

We point out that dodecahedral manifolds satisfy the hypotheses of [56, Theorem

1.1] and therefore their theorem can be used to prove that they embed in hyperbolic

4-manifolds, but the use of the construction of [79] allows us to describe the 4-manifolds

explicitly.

The proof of Theorem E is achieved by rigorous computer-assisted computations. In

particular, we make use of the code written by Nathan Dunfield [30] and SnapPy [26] in
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a Sage [109] environment. All the code used is available at [21], and it can be used to

check if a given manifold is an L-space.

The proof of Theorem F is also computer-assisted. We make use of Regina [13] in a

Sage [109] environment, and in particular of modules written by Tom Boothby, Nathann

Cohen, Jeroen Demeyer, Jason Grout, Carlo Hamalainen, and William Stein. All the

code used is available at [21].

4.2 Finding L-spaces

In this section we describe an algorithm that can determine whether a hyperbolic rational

homology sphere (QHS for short) is an L-space. The two main ingredients of this

algorithm are the Rasmussen-Rasmussen Theorem 1.2.2 and part of the work of Dunfield

in [30].

In [30] Dunfield considered a census Y of more than 300, 000 hyperbolic rational ho-

mology spheres. These are obtained as Dehn fillings of 1-cusped hyperbolic 3-manifolds

that can be triangulated with at most 9 ideal tetrahedra; the latter were enumerated

by Burton [12]. We denote the census of these rational homology solid tori (QHT s for

short) with C . The hyperbolic structure of a QHT is always intended on its interior;

notice that such a metric is always finite-volume, see [4, Proposition D.3.18].

Dunfield, while investigating the L-space conjecture for the manifolds in Y , has in

particular proved the following:

Theorem 4.2.1 ([30, Theorem 1.6]). Of the 307, 301 hyperbolic rational homology 3-

spheres in Y exactly 144, 298 (47.0%) are L-spaces and 163, 003 (53.0%) are non-L-

spaces.

The key idea that Dunfield used to prove Theorem 4.2.1 is to use Theorem 1.2.2 to

start a bootstrapping procedure. In fact by virtue of the Rasmussen-Rasmussen theorem,

it is sufficient to know two L-spaces fillings of a rational homology solid torus in C to

determine exactly its set of L-space filling slopes, and therefore to obtain information

about the L-space status of the manifolds in Y . This, together with the fact that many

of the manifolds in Y admit multiple descriptions as fillings of manifolds in C , allows

to increase simultaneously the level of knowledge about the manifolds in Y and in C .

Notice that the manifolds in Y have bounded volume: since they are fillings of 1-

cusped manifolds that are triangulated with at most 9 ideal tetrahedra, their volume is

bounded by 9v3 < 9.14, where v3 is the maximal volume of a hyperbolic tetrahedron.

Following the bootstrap idea of Dunfield, we now present an algorithm that can be

used to determine in certain cases whether a hyperbolic rational homology sphere is an

L-space. Before describing the algorithm, we recall a definition:
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Index N. dod. Volume H1 L-space

0 2 8.612 Z/11 + Z/11 Yes

1 2 8.612 Z/87 No

2 2 8.612 Z/4 + Z/28 Yes

3 2 8.612 Z/2 + Z/2 + Z/2 + Z/2 No

4 2 8.612 Z/3 + Z/15 No

5 4 17.225 Z/2 + Z/4 + Z/180 No

6 4 17.225 Z/714 No

7 4 17.225 Z/2 + Z/2 + Z/44 No

8 4 17.225 Z/7 + Z/182 Yes

9 4 17.225 Z/4 + Z/44 No

10 4 17.225 Z/2 + Z/4 + Z/60 No

11 4 17.225 Z/2 + Z/2 + Z/120 Yes

12 4 17.225 Z/12 + Z/12 No

13 4 17.225 Z/2 + Z/2 + Z/144 No

14 4 17.225 Z/2 + Z/4 + Z/4 + Z/4 No

15 4 17.225 Z/513 Yes

16 4 17.225 Z/4 + Z/4 + Z/8 No

17 4 17.225 Z/2 + Z/2 + Z/2 + Z/2 + Z/4 No

18 4 17.225 Z/4 + Z/4 + Z/8 No

19 4 17.225 Z/4 + Z/4 + Z/8 No

20 4 17.225 Z/2 + Z/4 + Z/8 No

21 4 17.225 Z/2 + Z/4 + Z/8 No

22 4 17.225 Z/4 + Z/4 + Z/8 No

23 4 17.225 Z/2 + Z/2 + Z/56 No

24 4 17.225 Z/4 + Z/4 + Z/8 No

25 4 17.225 Z/2 + Z/2 + Z/2 + Z/4 + Z/4 No

26 4 17.225 Z/2 + Z/2 + Z/8 + Z/8 No

27 4 17.225 Z/4 + Z/4 + Z/8 No

28 4 17.225 Z/2 + Z/2 + Z/8 + Z/8 Yes

Table 4.1.1: The manifolds in D : the hyperbolic 3-manifolds tessellated with four or less right-angled

dodecahedra that are rational homology spheres. The indexing is the one provided by SnapPy, where

D can be accessed by typing CubicalOrientableClosedCensus(betti=0). We list the index of the

manifold as given in the SnapPy census, the number of right-angled dodecahedra in its tessellation, its

approximated volume, its first homology and whether it is an L-space or not. Compare with Table 4.2.1.
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Definition 4.2.2. A rational homology solid torus Y is Turaev simple when every

coefficient of the Turaev torsion of Y is either 0 or 1.

In [93, Proposition 1.4] it is proved that being Turaev simple is a necessary condition

for being Floer simple. The converse is not true in general.

We also use the following notation: whenM is a QHS, we say that the L-space value

of M is True if M is an L-space and False otherwise.

The algorithm takes in input a rational homology sphere M and returns True if a

proof that M is an L-space is found and False otherwise.

The rough idea of the algorithm is the following:

1. We start with M , a hyperbolic QHS. If it belongs to the Dunfield census, we

return its L-space value; otherwise we go on with Step 2.;

2. we drill the shortest geodesic given by SnapPy out ofM so to obtain Y , a hyperbolic

QHT that is Turaev simple. We fix a meridian-longitude basis of ∂Y so that the

filling 1/0 on Y gives back M , and we identify Sl(Y ) with Q ∪ {∞};

3. using a script provided by Dunfield in [30], we compute ι−1(Dτ
>0(Y )) and we select

an interval I in Sl(Y ) whose endpoints are consecutive elements in ι−1(Dτ
>0(Y ))

and such that 1/0 ∈ I. In the case Dτ
>0(Y ) = ∅ we take I as Sl(Y ) \ [l], where [l]

is the homological longitude of Y ;

4. we search for two slopes in I so that the associated fillings are hyperbolic and have

minimal volumes. We denote these fillings with M1 and M2. By Theorem 1.2.2, if

we prove that they are L-spaces, then M also is;

5. we start two new instances of the algorithm with M1 and M2; if they both return

True, we return True; otherwise, we return False.

The details of the algorithm and one example can be found in Appendices 4.A-4.B.

For the moment, let us underline the following facts:

• the answer True is rigorous, but we stress that the answer False does not imply

that M is not an L-space. In particular, the rational homology torus Y can be

not Floer simple. We simply assure that it is Turaev simple, since this is an easier

condition to check. This means that, even if we start with an actual L-space, the

algorithm can return False: M could be the only filling of Y that is an L-space;

• we need to avoid that the algorithm enters an infinite loop: for example, it can

happen that M is the lowest-volume filling of Y inside I. This would cause an

infinite loop. In the code there is a check to avoid such problems;
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• we do not know whether a rational homology torus Y as in Step 2. always exists,

even if we assume that M is an L-space. See Questions 3 - 4;

• in Step 3. there could be two of such intervals; this happens when 1/0 is an element

of ι−1(Dτ
>0(Y )). In this case, we look for L-spaces in both such intervals;

• there is no guarantee that the volumes of M1 and M2 are smaller than the volume

of M . In particular, the algorithm is not guaranteed to end;

• we need the hyperbolicity ofM for two reasons: SnapPy can drill curves only when

a manifold has a hyperbolic structure, and we use the hyperbolic volume;

• the key idea of the algorithm is to minimize the hyperbolic volume ofM1 andM2 to

approach the Dunfield census. While M having small volume does not guarantee

that M is in Y , in practice this condition makes the algorithm terminate quite

fast.

Despite these potential problems, the algorithm was powerful enough to prove the

following:

Proposition 4.2.3. The manifolds with index 0, 2, 8, 11, 15 and 28 in the census D

(recall Notation 4.1.2) are L-spaces (see Tables 4.1.1 - 4.2.1). □

4.2.1 Classification of Dodecahedral manifolds

We are left with proving that the manifolds in Proposition 4.2.3 are the only ones in D

that are L-spaces. Recall that if M supports a coorientable taut foliation then it is not

an L-space. In [30, Section 7], Dunfield introduced the notion of foliar orientation and

used it to construct co-orientable taut foliations on a given QHS. He also provided an

algorithm that searches for foliar orientations. Applying his algorithm, we are able to

prove the following:

Lemma 4.2.4. The manifolds with index different from 0, 2, 8, 11, 15 and 28 in the

census D are not L-spaces (see Tables 4.1.1 - 4.2.1). □

This lemma, together with Proposition 4.2.3, implies the following:

Theorem E. Of the 29 manifolds in D , 6 are L-spaces and 23 are not; see Tables 4.1.1

- 4.2.1.

In [30], Dunfield provides several algorithms to check the left-orderability and the

non-left-orderability of the fundamental group of a QHS. We apply these algorithms,

and the details can be found in Table 4.2.1. In particular, all the results are consistent

with the L-space conjecture.
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Index N. dod. L-space Co-or. taut foliation Left-orderable π1

0 2 Yes1 No2 No5

1 2 No2 Yes3 ?

2 2 Yes1 No2 No5

3 2 No2 Yes3 Yes4

4 2 No2 Yes3 Yes4

5 4 No2 Yes3 ?

6 4 No2 Yes3 ?

7 4 No2 Yes3 Yes4

8 4 Yes1 No2 No5

9 4 No2 Yes3 Yes4

10 4 No2 Yes3 ?

11 4 Yes1 No2 No5

12 4 No2 Yes3 Yes4

13 4 No2 Yes3 ?

14 4 No2 Yes3 Yes4

15 4 Yes1 No2 No5

16 4 No2 Yes3 ?

17 4 No2 Yes3 Yes4

18 4 No2 Yes3 Yes4

19 4 No2 Yes3 Yes4

20 4 No2 Yes3 ?

21 4 No2 Yes3 Yes4

22 4 No2 Yes3 ?

23 4 No2 Yes3 Yes4

24 4 No2 Yes3 Yes4

25 4 No2 Yes3 Yes4

26 4 No2 Yes3 Yes4

27 4 No2 Yes3 Yes4

28 4 Yes1 No2 No5

Table 4.2.1: The manifolds in D : the hyperbolic 3-manifolds tessellated with four or less right-angled

dodecahedra that are rational homology spheres. The indexing is the one provided by SnapPy, where

D can be accessed by typing CubicalOrientableClosedCensus(betti=0). The apices indicate in which

way we obtain the result. In particular: 1) algorithm in Section 4.2; 2) Theorem 0.0.11 by [85, 5, 54];

3) algorithm in [30], see [30, Section 7]; 4) algorithm in [30], see [30, Section 9]; 5) algorithm in [30], see

[30, Section 5]. Compare with Table 4.1.1.
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Figure 4.3.1: An example of charts for a 2-manifold with right-angled corners.

4.3 Building up the 4-manifold

We now show how the existence of a dodecahedral manifold that is an L-space can be

used to prove Theorem F. To do this, we recall some concepts behind the construction

in [79].

4.3.1 Embedding dodecahedral manifolds in 4-manifolds with corners

Let Dn be the disc model for the hyperbolic space and On = {x ∈ Dn | xi ≥ 0} the

positive orthant. A hyperbolic n-manifold with (right-angled) corners W is a topological

n-manifold equipped with an atlas taking values in open subsets of On and transition

maps that are restrictions of isometries. One can visualize this as the natural extension

of a manifold with geodesic boundary, where the atlas takes values in open subsets of

{x ∈ Dn | x1 ≥ 0}.
The boundary ∂W is the set of points in W that do not admit a neighborhood

homeomorphic to Rn; it is stratified into vertices, edges, ..., s-faces,..., and facets. Each

s-face is an s-manifold with corners, and distinct s-faces meet at right-angles. A facet

is called isolated if it does not meet any other facet, and as such it must be a geodesic

boundary component of W .

Under certain hypotheses, gluing manifolds with corners along (possibly more than

one) pair of isometric facets yields another manifold with corners, as the following ex-

ample shows.

Example 4.3.1. Consider the surface S in Figure 4.3.2-right, obtained by gluing two

copies of the right-angled pentagon on the left along the coloured edges. This is a

hyperbolic manifold with corners, with edges F1, F2 and F3 and vertices p and q. We

have F1 ∩ F2 = {p, q}, while the facet F3
∼= S1 is isolated.

More generally, similarly to right-angled polytopes [55, Section 2], a manifold with

corners can be coloured along its facets. More precisely, let FW be the set of facets of a

manifold with corners W . A k-colouring of W is a surjective map λ : FW → {1, ..., k}
that associates distinct numbers (called colours) to adjacent facets. Let e1, . . . , ek be
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Figure 4.3.2: An example of a right-angled pentagon and the manifold with corners

obtained by mirroring it along the red edges.

the canonical basis of Zk2. We can define the topological space Mλ = (W × Zk2)/∼,
where distinct W × {u}, W × {v} are glued along the identity on a facet F ∈ FW if

u− v = eλ(F ).

Proposition 4.3.2 ([79], Proposition 6). The resulting Mλ is a connected, orientable,

hyperbolic n-manifold tessellated into 2k copies of W . If W is compact Mλ is closed.

Example 4.3.3. Take the manifold with corners from Example 4.3.1 and its colouring

λ given by λ(Fi) = i. These colours are represented by red, blue and purple respectively

in Figure 4.3.3.

An useful method to visualize the manifold Mλ is by iteratively mirroring along

facets with the same colour. This procedure goes as follows:

• we start with a manifold M with corners and a k-colouring λ;

• we mirror M along the facets F such that λ(F ) = k. We obtain a new manifold

M ′ with corners. The facets of M ′ are of two types:

– the facets in M that are adjacent to a facet with colour k are mirrored along

their intersection with these facets. Notice that, by using the combinatorics

of the intersections of faces of On, one can prove that the intersection of two

facets is empty or a common sub-facet (see also [35, Definition 2.2] and the

discussion thereafter). As an example, see what happens to the blue facet

from Figure 4.3.3, (a) to Figure 4.3.3, (b);

– the facets in M that do not intersect any facet with colour k are doubled:

each of them produces two isometric copies of itself. As an example, see what

happens to the purple facet from Figure 4.3.3, (a) to Figure 4.3.3, (b);
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Figure 4.3.3: From left to right, the four steps described in Example 4.3.3.

• we build a natural colouring λ′ on M ′: each facet of M ′ comes from a facet of M ,

by mirroring or doubling. We assign to each facet the colour of the corresponding

facet in M . This is a (k − 1)-colouring;

• if k− 1 = 0, we have no facets lefts and we have obtained Mλ; otherwise we start

again this procedure with M ′ and λ′.

By performing this on our example, after mirroring along the red and blue facets we

get a compact manifold with 23−1 = 4 copies of F3
∼= S1 as boundary (see Figure 4.3.3,

(c)). Then, by mirroring this manifold along its boundary, we get Mλ and the 4 copies

of F3 as a separating submanifold.

Remark 4.3.4. We point out that there can exist manifolds with corners that do not

admit any colouring. In fact it can happen that some facet F of a manifold with corners

W is not embedded. In this case, such a facet is technically adjacent to itself and a

colouring of W should assign two different colours to F , which is impossible. This is an

important issue we will take care of. See also Example 4.3.7.

Concerning dodecahedral manifolds, [79, Proposition 4 - Remark 5] gives us the

following:

Proposition 4.3.5. Every dodecahedral manifold M embeds geodesically in the interior

of a connected, complete, compact, orientable hyperbolic 4-manifold W with corners. If

M is connected and tesselated into k dodecahedra, W is tesselated into 2k 120-cells.

Remark 4.3.6. Notice that the 120-cell is a compact hyperbolic 4-dimensional polytope

that has 120 3-facets that are right-angled dodecahedra. For more information on this,

see [80, Section 1]. The idea of the construction in [80] is to take one 120-cell Hi for

each right-angled dodecahedron Di of the decomposition of M , then consider each Di

as one facet of Hi, and then extend each gluing between two faces F ∈ Di and G ∈ Dj

to a gluing of the dodecahedral facets A ∈ Hi and B ∈ Hj such that Di ∩ A = F and
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Figure 4.3.4: The Löbell polyhedron R(6) in the disc model of the hyperbolic space. In

blue, one hexagonal facet. Opposite to it, there is another hexagonal facet, that is not

visible. All the other facets are pentagons.

Dj ∩ B = G. This operation produces a manifold with corners W ′ in which M is an

isolated facet. The manifold W is obtained by considering the mirror of W ′ along M .

This can be visualized by mirroring the manifold with corners in Figure 4.3.2 along F3.

We denote these two copies of W ′ inside W as W ′
+ and W ′

−. As a consequence of this

construction, we have that

FW = (FW ′
+
\M) ⊔ (FW ′

−
\M),

and a facet in FW ′
+
\M is never adjacent to a facet in FW ′

−
\M . This decomposition

induces a natural involution

s : FW → FW ,

that sends each facet F of W to the corresponding facet in the other copy of W ′ in W .

We now describe a situation where a construction analogous to the one contained in

the proof of Proposition 4.3.5 yields a manifold with corners with some non embedded

facets. For the cases of our interests we tackle this issue in Proposition 4.3.14.

Example 4.3.7. Recall that the regular right-angled hyperbolic hexagon is one facet of

the Löbell polyhedron R(6). This is a 3-dimensional right-angled hyperbolic polyhedron

with 14 faces: 2 hexagonal faces and 12 pentagonal faces arranged in the same pattern

as the lateral surface of a dodecahedron. Löbell polyhedra were defined in [115], see also

[114] and see Figure 4.3.4 for a picture of R(6).

Therefore if a closed surface S is tessellated by regular right-angled hyperbolic

hexagons, by performing the same construction of Proposition 4.3.5 it is possible to

embed geodesically S in the interior of a hyperbolic 3-manifold with corners tessellated

by copies of R(6). We now consider a regular right-angled hyperbolic hexagon E and

glue two of its edges as depicted in Figure 4.3.5 a). In this way we obtain a 2-dimensional

manifold with corners and by colouring its three facets we obtain a closed hyperbolic
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Figure 4.3.5: On the left, the gluing that give raise to the non-embedded facet in Example

4.3.7. On the right, the facets of R(6) not adjacent to the one that is identified with the

hexagon; the two pentagons that become the same facet after the gluing are coloured.

surface S tessellated by hexagons. When extending the gluings among the hexagons to

the faces of the R(6) polyhedra we have that two adjacent pentagonal faces (the coloured

ones in Figure 4.3.5 b)) of the polyhedron placed above E are glued along one edge and

become a non-embedded facet of the final 3-manifold with corners in which S embeds.

We now introduce a special, yet very natural, type of colourings that will be useful

for our constructions. Recall from Remark 4.3.6 that there is an involution s on the set

of facets of the manifold W provided by Proposition 4.3.5.

Definition 4.3.8. A colouring λ of W is symmetric if λ ◦ s = λ (see Figure 4.3.6).

In other words, a colouring of W is symmetric if and only if corresponding facets in

the two copies of W ′ in W have the same colour. Asking for a symmetric colouring is

not a restrictive request; in fact we have the following:

Lemma 4.3.9. If the manifold with corners W admits a k-colouring then it also admits

a symmetric h-colouring with h ≤ k.

Proof. Suppose that we have a k-colouring λ : FW → {1, . . . , k}. We can define a new

colouring λ̄ such that:

• on a facet F ∈ FW ′
+
\M it takes value λ(F );

• on a facet F ∈ FW ′
−
\M it takes value λ ◦ s(F ).

We now show that the map λ̄ assigns to adjacent facets different colours. Let F,G be

two adjacent facets in FW . From Remark 4.3.6, they both belong to FW ′
+
\M or to

FW ′
−
\M . In the first case, λ̄ takes the same value as λ, hence they have different image.

In the second case, F and G are adjacent if and only if s(F ) and s(G) are, hence

λ̄(F ) = λ ◦ s(F ) ̸= λ ◦ s(G) = λ̄(G).
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The new colouring λ̄ could be not surjective onto {1, . . . , k}. In this case, we fix a

bijection b from the image of λ̄ and {1, . . . , h} and consider b ◦ λ̄.

Remark 4.3.10. Note that the manifold Mλ obtained from a symmetric k-colouring

of W is isometric to the manifold Mµ obtained by the colouring µ on W ′ such that

µ(F ) = λ(F ) if F ̸= M (where F is seen both as a facet of W ′ and as W ′
+
∼= W ′) and

µ(M) = k + 1. Indeed, if we mirror W ′ along M (which was given a different colour

than the rest of W ′) and colour its copy with the same colours on corresponding facets,

we get back the symmetric colouring λ on W .

LetM be a dodecahedral manifold, W the manifold with corners provided by Propo-

sition 4.3.5 and N the manifold obtained by a symmetric k-colouring of W . We now

describe how the copies of M are located in N .

Lemma 4.3.11. The disconnected manifold M × Zk2 embeds totally geodesically in N

as a separating submanifold. More precisely, the image of M × Zk2 separates N in two

isometric connected components N+ and N−.

Proof. We have that M × Zk2 embeds totally geodesically in W × Zk2. We also have the

quotient W ×Zk2
π−→ (W ×Zk2)/∼ = N , which identifies facets of W ×Zk2. Since M ×Zk2

lies in int(W )× Zk2, we have that it embeds geodesically in N as well. From now on we

will identify M × Zk2 with its image in N .

It follows by the construction of W (see Remark 4.3.6) that M separates W in two

isometric copies ofW ′\M and thereforeM×Zk2 separatesW×Zk2 in two isometric copies

of (W ′\M)×Zk2. Of course the image of these two copies via π is exactly the complement

of M ×Zk2 inside N and since they are saturated sets for the Zk2 action their images are

disjoint open sets in W . In order to conclude the proof we are then left to prove that

their images are connected and isometric. This is a consequence of the colouring being

symmetric. In fact each colouring of W induces, by restriction, a colouring of each of

the two copies of W ′ \M . If the colouring is symmetric, then the induced colourings on

the the two copies of W ′ \M coincide. By definition, the images of the two copies of

(W ′ \M)×Zk2 in W are exactly the manifolds obtained by colouring W ′ \M with these

induced colourings, and therefore they are connected and isometric.

Remark 4.3.12. The construction described in the proof above can also be visualized in

Figure 4.3.6 and 4.3.7 where the geodesic hypersurface is the purple circle. In this case,

we have that N+
∼= N− and N is the mirror of N+ along its boundary.

We are now ready to prove that if M is an L-space the manifold N contains a

separating L-space:

Proposition 4.3.13. Suppose that the dodecahedral manifoldM is an L-space. Then the

manifold N can be written as N = N1 ∪M ′ N2, where M
′ is an L-space and b+2 (Ni) ≥ 1
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Figure 4.3.6: The manifold W built in Proposition 4.3.5, with a symmetric and a non-

symmetric colouring (see Definition 4.3.8). The manifold obtained using the symmetric

colouring is isometric to the one in Figure 4.3.3. See also Figure 4.3.7.

Figure 4.3.7: A schematic picture of the embedding of the separating dodecahedral space,

described in the proof of Lemma 4.3.11.
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for i = 1, 2. In particular, by Proposition 4.1.3, the Seiberg-Witten invariants of N all

vanish.

Proof. We use the same notations of Lemma 4.3.11 and we divide the proof in few steps.

• Step 1: b+2 (N) ≥ 2.

Recall that the Euler characteristic of a closed, connected, orientable 4-manifold

satisfies

χ = 2− 2b1 + b2

and that b2 = b+2 + b−2 . Moreover, as a consequence of the Hirzebruch signa-

ture formula and [17, Theorem 3], hyperbolic 4-manifolds have signature zero and

therefore b+2 = b−2 ; hence, the Euler characteristic of N satisfies

χ(N) = 2(1− b1(N) + b+2 (N)).

This formula implies that if χ(N) > 4 then b+2 (N) ≥ 2. In order to conclude we

note that if N is tessellated into n 120-cells, then

χ(N) =
17

2
· n.

This can be proved by using the notions of orbifold covering and characteristic

simplex, see e.g. [80, Section 1.4]. As a consequence, we have that χ(N) > 8.

• Step 2: b+2 (N+) = b+2 (N−) ≥ 1 and b+2 (N+) + b+2 (N−) = b+2 (N).

Recall from the construction of N and from the proof of Lemma 4.3.11 that N

is obtained by gluing together N+ and N− along their boundaries (that are made

up by 2k disjoint copies of the dodecahedral manifold M). Also recall that N+

is isometric, and therefore diffeomorphic, to N−. This implies that b+2 (N+) =

b+2 (N−). Since N+ and N− are glued along a disjoint union of rational homology

spheres, by applying the Mayer-Vietoris sequence we deduce that H2(N,Q) ∼=
H2(N+,Q)⊕H2(N−,Q) and that

b+2 (N) = b+2 (N+) + b+2 (N−).

Since b+2 (N) ≥ 2 we also deduce that b+2 (N+) ≥ 1 and b−2 (N−) ≥ 1.

• Step 3: there exists an L-space M ′ such that N = N1 ∪M ′ N2.

The L-spaceM ′ is diffeomorphic to the connected sum of copies ofM andM , where

M denotes M with the opposite orientation. This operation of connected sum can

be performed inside N in the following way: we label the boundary components of

N+ with numbers {1, 2 . . . , 2k} and we consider (2k − 1) pairwise disjoint properly
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Figure 4.3.8: A schematic picture of the construction presented in the proof of Step 3.

embedded arcs α1, . . . , α2k−1 in N+ so that αi connects the i-th and the (i + 1)-

th boundary components of N+. If we denote with U a tubular neighbourhood of

these arcs in N+ we have that N = N1∪∂N2 where N1 = N−∪U and N2 = N+\U ,

and where ∂N1 = ∂N2 is exactly the connected sum M ′. Since M is an L-space,

M ′ is an L-space as a consequence of [86, Proposition 6.1]. See Figure 4.3.8 for

a schematic picture of this construction. By studying the orientations induced on

the copies of W embedded in N , one can state more precisely that

M ′ ∼= 2k−1M#2k−1M,

even if we do not need this for our construction.

• Step 4: b+2 (N1) = b+2 (N2) ≥ 1.

By virtue of Step 2, to prove that

b+2 (N1) = b+2 (N2) ≥ 1

it will be sufficient to show that b+2 (N1) = b+2 (N−) and b+2 (N2) = b+2 (N+). The

manifold N1 is obtained by gluing 4-dimensional 1-handles to N−, that is to say,

by gluing copies of D1 × D3 to N− along ∂D1 × D3. Since the gluing regions have

vanishing first and second homology groups, it is a consequence of the Mayer-

Vietoris sequence that

H2(N1,Z) = H2(N−,Z)

and that

b+2 (N1) = b+2 (N−).

We are left to prove that b+2 (N2) = b+2 (N+) holds. To do this we notice that since

N is obtained by gluing N+ and N− along a rational homology sphere, we can
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apply the same reasoning of Step 2 to deduce that

b+2 (N) = b+2 (N1) + b+2 (N2),

and as a consequence of b+2 (N1) = b+2 (N−) we have that

b+2 (N2) = b+2 (N)− b+2 (N1) = b+2 (N)− b+2 (N−) = b+2 (N+).

This concludes the proof.

4.3.2 Some concrete examples

To conclude we now use the theory and the construction introduced in the previous

section to present some explicit examples of hyperbolic 4-manifolds fulfilling the require-

ments of Question 2. Recall from Theorem E that we have six dodecahedral manifolds in

the census D that are L-spaces. To produce our examples we want to apply Proposition

4.3.13 and to do this we need to find colourings of the manifols with corners containing

our dodecahedral L-spaces. Before trying to find colourings, we have to check whether

in the cases of our interests the construction of Proposition 4.3.5 yields manifolds with

embedded facets (recall Example 4.3.7). Notice that by [43], the six manifolds in D that

are L-spaces admit only one tessellation in right-angled dodecahedra up to combinatorial

isomorphism. We have the following:

Proposition 4.3.14. Let M be one of the six dodecahedral L-spaces in D (see Table

4.1.1). Then the manifold W built as in Remark 4.3.6 using its tessellation in dodeca-

hedra has embedded facets if and only if M has index 11 or 28.

Proof. The proof is computer-based. We build the manifolds following the instructions

of Remark 4.3.6 starting with all the six dodecahedral L-spaces in D and we find non-

embedded facets when performing this construction starting with the manifolds indexed

with 0, 2, 8, 15. The code that we used can be found in [21].

Let W11 (resp. W28) be the manifold with corners built as in Remark 4.3.6 starting

with the dodecahedral manifold in D with index 11 (resp. 28). We have the following:

Lemma 4.3.15. The manifolds with cornersW11 andW28 admit a symmetric 6-colouring.

Proof. The proof is computer-based. To search for a colouring of a manifold with corners

W , we build a graph GW in the following way: we take one vertex for each facet and we

add one edge between two vertices if the corresponding facets are adjacent.

Once we have GW , finding a colouring for the manifold with corners W is equivalent

to finding a colouring of the graph GW . The problem of colouring a graph is well known

and Sage [109] provides a natural environment to search for minimal colouring of graphs.
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In our cases, the graph GW11 is made out by two equivalent connected components with

334 vertices, one corresponding to the facets of W ′
+ and one corresponding to the ones

ofW ′
−. In order to find a symmetric colouring ofW11 it is sufficient to colour only one of

these two components and then extend the colouring as in the proof of Lemma 4.3.9. By

using the Mixed Integer Linear Programming solver CPLEX [24] we find a 6-colouring

in less than 5 minutes. We are also able to prove that GW11 is not 5-colourable.

The same holds also for GW28 . We just point out that the fact that these graphs have

the same number of vertices is not a casuality: this number in fact depends only on the

number n of dodecahedra in the tessellation of the dodecahedral 3-manifold. Namely,

the total number of vertices in GW is

2 · n ·
(
20

8
+

12

2
+ 30 + 12 + 20 + 12 + 1

)
,

where this formula descends from the discussion in [79, Proof of Lemma 7].

From now on we choose one specific 6-colouring for W11 (resp. W28), that we denote

by λ11 (resp. λ28) and that can be found in [21]. We denote the hyperbolic 4-manifold

obtained by this coloured manifold with corners (recall Proposition 4.3.2) withN11 (resp.

N28). The following holds:

Theorem 4.3.16. The manifold N11 (resp. N28):

1. is a connected, orientable, closed, hyperbolic 4-manifold;

2. is tessellated in 29 right-angled hyperbolic 120-cells;

3. can be written as N1 ∪M ′ N2, where M
′ is an L-space and b+2 (Ni) ≥ 1 for i = 1, 2.

In particular, its Seiberg-Witten invariants all vanish;

4. has Betti numbers with coefficients in R and Z2 as described in Table 4.3.1 (resp.

Table 4.3.2).

Proof. Point 1 is a direct consequence of Proposition 4.3.2. The same proposition also

tells us that N11 (resp. N28) is tessellated in 26 copies ofW11 (resp.W28); since the latter

is tessellated in 8 120-cells, we also obtain Point 2. We point out that this tesselation

is explicit; in particular, in [21] there is the list of maps that describe the gluings of

the facets of these 29 120-cells. Point 3 is a direct consequence of Proposition 4.3.13.

The proof of Point 4 is computer-based. Using its tessellation in 120-cells, we obtain a

description of N11 (resp. N28) as a CW-complex. In this way we can also check that the

Euler characteristic is consistent with the one obtained from the formula described in

the proof of Proposition 4.3.13, Step 1. We can now compute the Betti numbers using

cellular homology. In particular:
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• with Z2 coefficients, we write all the matrices that represent the boundary maps

of the cellular chain complex in the standard bases (the ones given by the n-cells

in degree n). Computing their rank we recover the Betti numbers;

• with R coefficients, we write two matrices that represent the boundary maps of

the cellular chain complex in the standard bases: the one from the 1-cells to the

0-cells and the one from the 2-cells to the 1-cells. Computing the rank of these

matrices we are able to verify that b0 = 1 and to determine the b1, and we recover

the other Betti numbers using the Poincaré Duality and the Euler characteristic.

Using these matrices and the Universal Coefficient Theorem, one should be able

to find all the integral homology. However, the computation is too heavy for our

computer resources.

The proof is complete.

N11 b0 b1 b2 b3 b4

R 1 725 5800 725 1

Z2 1 746 5842 746 1

Table 4.3.1: The Betti numbers of N11.

N28 b0 b1 b2 b3 b4

R 1 741 5832 741 1

Z2 1 769 5888 769 1

Table 4.3.2: The Betti numbers of N28.

Generalised colourings

In this section we briefly describe a well-known generalisation of the notion of colouring

(see [35] for a complete discussion). Let W be a compact n-manifold with corners. Let

S be Zm2 , and let e1, . . . , em be its standard basis. We say that an element v ∈ S is odd

if it is a sum of an odd number of elements in the standard basis, and even otherwise.

Definition 4.3.17. A generalised m-colouring of W is a map ρ : FW → S such that:

• the elements in {ρ(F )}F∈FW
generate S;

• if Fi1 , . . . , Fir share a common subface, their images through ρ are linearly inde-

pendent.
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Given a generalised m-colouring ρ, we can define the topological space Mρ = (W ×
S)/∼, where distinct W ×{u}, W ×{v} are glued along the identity on a facet F ∈ FW
if u− v = ρ(F ). The analogous of Proposition 4.3.2 holds, and can be shown combining

[79, Proposition 6] and [55, Lemma 2.4]:

Proposition 4.3.18. The resulting Mρ is a (possibly non-orientable) connected hyper-

bolic n-manifold tessellated into 2m copies of W . If the elements in {ρ(F )}F∈FW
are all

odd, it is orientable.

Remark 4.3.19. Given a k-colouring λ : W → {1, . . . , k}, one can associate to it a gener-

alised k-colouring ρλ by taking S = Zk2 and defining ρ(F ) = eλ(F ). This is a generalised

colouring because in a compact manifold with corners, facets that share a common sub-

face are pairwise adjacent (see Example 4.3.3). The manifolds Mλ and Mρ are naturally

isometric.

Manifolds obtained by colourings are easier to visualize than those obtained by gen-

eralised colourings. On the other hand, generalised colourings often give the chance

to obtain manifolds tessellated with a lower number of copies of W , as the following

proposition shows (see also [34, Proposition 3.1.16]):

Proposition 4.3.20. Let λ be a k-colouring of a compact n-manifold with corners W .

Let ρλ : FW → Zk−1
2 be the map:

ρ(F ) =

{
eλ(F ) if λ(F ) ̸= k

e1 + . . .+ ek−1 if λ(F ) = k
. (4.1)

If k is even and k > n, ρλ is a generalised (k − 1)-colouring such that all the elements

in {ρλ(F )}F∈FW
are odd.

Proof. The set {ρλ(F )}F∈FW
generates Zk−1

2 because it contains e1, . . . , ek−1. To finish

the proof we just need to show that if Fi1 , . . . , Fir share a common subface, their images

through ρλ are linearly independent. Since the dimension of W is n, we know that

r ≤ n < k. Since λ is a colouring, we know that the set A = {λ(Fi1), . . . , λ(Fir)}
contains r distinct elements. Then we can conclude that:

• if k ̸∈ A, ρλ(Fi1), . . . , ρλ(Fir) are independent because they are part of a basis, see

also Remark 4.3.19;

• otherwise, there is an element of {1, . . . , k} that is not in A. It is then easy to

show that ρλ(Fi1), . . . , ρλ(Fir) are independent.

The proof is complete.
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Using the previous proposition, it is easy to obtain a generalised 5-colouring of W11

(resp.W28) starting with λ11 (resp. λ28) that produces an orientable manifoldM11 (resp.

M28) that is double-covered by N11 (resp. N28) and satisfies:

Proposition 4.3.21. The manifold M11 (resp. M28):

1. is a connected, orientable, closed, hyperbolic 4-manifold;

2. is tessellated in 28 right-angled hyperbolic 120-cells;

3. can be written as N1 ∪M ′ N2, where M
′ is an L-space and b+2 (Ni) ≥ 1 for i = 1, 2.

In particular, its Seiberg-Witten invariants all vanish;

4. has Betti numbers with coefficients in R and Z2 as described in Table 4.3.3 (resp.

Table 4.3.4).

Proof. Everything works exactly as in proof of Theorem 4.3.16.

M11 b0 b1 b2 b3 b4

R 1 37 2248 37 1

Z2 1 707 3588 707 1

Table 4.3.3: The Betti numbers of M11.

M28 b0 b1 b2 b3 b4

R 1 53 2280 53 1

Z2 1 713 3600 713 1

Table 4.3.4: The Betti numbers of M28.

4.4 Questions and further developments

Applicability of the algorithm. Despite the potential problems that the algorithm

described in Section 4.2 may encounter, in practice it was pretty fast in proving that the

six manifolds of Theorem E are L-spaces. In some cases, it helped avoiding some curves

at the beginning of the algorithm to converge faster (see [21] for more details).

It would be interesting to use it to study larger families of manifolds. The greatest

bottleneck appears to be the computation of the Turaev torsion, whose complexity seems

to grow very fast with the number of tetrahedra in the ideal triangulation of the QHT .
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The authors were made aware by Nathan Dunfield in a mail exchange that by using

a similar approach it was possible to show that the Seifert-Weber manifold is an L-

space with bare hands. This is a hyperbolic manifold tessellated by one hyperbolic

dodecahedron with 2
5π dihedral angles, and was proved to be an L-space in the context

of the monopole Floer homology in [75] with completely different methods. Also our

algorithm confirms that this is the case.

In [30, Remark 4.9], Dunfield points out that there are 118 rational homology solid

tori in C that is not known whether they are Floer simple or not. We used the algorithm

to search for L-space fillings of these manifolds and we were able to prove that at least

116 of these are Floer simple. The two remaining ones are o936740 and o941707.

Limitations of the algorithm. The first step of the algorithm consists in drilling

a curve from the rational homology sphere that one wants to study hoping to find a

rational homology solid torus that is Floer simple, but we do not know if such a curve

exists, even when if we start with an L-space. So we leave here the following question:

Question 3. Let M be an L-space. Does there exist a Floer simple rational homology

solid torus Y such that M is a Dehn filling on Y ?

A more specific question that applies to our algorithm would be:

Question 4. Let M be a hyperbolic L-space. Does there exist a geodesic γ such that

drilling γ out of M yields a Floer simple rational homology solid torus?
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Appendix

4.A The algorithm

In this appendix we explain in detail how the algorithm described in Section 4.2 works.

The code can be found in [21]. The pseudocode presented here is written to improve the

readability, not the speed of the algorithm; the implemented version is slightly different.

Whenever we have a rational homology solid torus Y , we suppose it is given with a

chosen basis for H1(∂Y,Z); for this reason we always identify Sl(Y ) with Q ∪ {∞}.
The algorithm essentially goes back and forth alternating between these two func-

tions:

• is certified L space(M): takes as input M , a hyperbolic QHS, and searches

for a nice drilling: it returns Y and I, where Y is a Turaev simple hyperbolic

QHT such that the 1/0 filling on Y gives back M and I is an interval in Sl(Y )

that contains 1/0 and whose endpoints are elements in ι−1(Dτ
>0(Y )) (in the case

Dτ
>0(Y ) = ∅ we take I as Sl(Y ) \ [l], where [l] is the homological longitude of Y );

• small fillings(Y, I): takes as input Y , a Turaev simple hyperbolic QHT , and
I, an interval in Sl(Y ), and returns the two QHS with smallest volume among

the fillings Y (α) with α ∈ I.

While these two functions operate, they try to identify all the manifolds they work

with, with the hope to obtain information about their L-space value using the Dunfield

census Y . If we discover that two fillings with coefficient in I are L-spaces, we use Theo-

rem 1.2.2 to conclude that all the fillings with coefficients in I are L-spaces. Eventually,

we hope we will conclude that the initial manifold is an L-space.

We need some globally-defined variables:

• old mnfds: a list of the manifolds that we already found. We want to avoid them,

because otherwise the algorithm would enter an infinite loop. Its starting value is

the empty list;

• M C: Max Coefficient, a positive integer. When we search for minimal volume

fillings on Y , we search among the fillings h/k with |h|, |k| ≤ M C.

103
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Data: M a hyperbolic QHS.
Result: True if a proof that M is an L-space is found, False otherwise.

————————————————————————–

add M to old mnfds;

C = finite collection of simple closed curves in M , provided by SnapPy;

X = {M ∖ the interior of a tubular neighborhood of c}c∈C ;
/* For every Y in X, we fix a peripheral basis such that the

filling 1/0 on Y gives back M. */

for Y ∈ X do

if Y belongs to Dunfield census then
return ”L-space value of M found using the census”

found = False ;

while found == False do

if there is no hyperbolic Y in X∖old mnfds then
return False

Y = smallest volume hyperbolic Y ∈ X∖old mnfds;

if Y is Turaev simple then

found = True ;

else

X = X ∖ {Y };
Possible intervals = intervals in Sl(Y ) that contains 1/0 and whose

endpoints are elements in ι−1(Dτ
>0(Y )) (in the case Dτ

>0(Y ) = ∅ we consider

Sl(Y ) \ [l], where [l] is the homological longitude of Y );

if Possible intervals == {I1; I2} then

return (small fillings(Y, I1) or small fillings(Y, I2)) ;
else if Possible intervals == {I} then

return small fillings(Y, I);

Algorithm 1: is certified L space
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Data: Y Turaev simple hyperbolic QHT ; I, an interval in Sl(Y ) that contains
1/0 and whose endpoints are in ι−1(Dτ

>0(Y )).

Result: True if a proof that Y (1/0) is an L-space is found, False otherwise.

————————————————————————–

add Y to old mnfds;

pairs = {(h, k)|h ∈ [−M C, M C], k ∈ [0, M C], gcd(h, k) = 1};
X = {Y (h/k)|(h, k) ∈ pairs, (h, k) ̸= (−1, 0), (h, k) ∈ I};
/* X is a list more than a set: even if Y (h/k) is diffeomorphic

to Y (h′/k′), we count them as two elements in X. For this

reason we avoid the case (h, k) = (−1, 0). */

L space found=0;

for M ∈ X do

if M is in Dunfield QHS Census then

if ”L-space value of M found using the census” == False then
return False

else

L space found=L space found+1;

X = X ∖ {M};
if L space found ≥ 2 then

return True

if L space found == 1 then

if there is no hyperbolic M in X∖old mnfds then
return False

M = smallest volume hyperbolic M ∈ X∖old mnfds;

return is certified L space(M)

if L space found == 0 then

if there are no two hyperbolic manifolds in X∖old mnfds then
return False

M1,M2 = two smallest volume hyperbolic manifolds in X∖old mnfds;

return (is certified L space(M1) and is certified L space(M2));

Algorithm 2: small fillings
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4.B Reading the output of the algorithm

Here we comment how to read the output of the function is certified L space. Sup-

pose we give the following commands:

M=Cubica lOr ientableClosedCensus ( b e t t i =0) [15 ]

va l=i s c e r t i f i e d L s p a c e (M, save QHT=True , path save QHT=

” ./ proo f s /RA dod 15/” )

print ( va l )

At line 2, we set the options

save QHT=True, path save QHT="./proofs/RA dod 15/";

they mean that we want to save the QHT s that we find while the algorithm is running

as SnapPy triangulations. These will be saved in the directory ./proofs/RA dod 15/

(remember to create the directory, otherwise nothing will be saved). The output we

obtain is the following:

I n i z i a l i z i n g . . .

: M has volume 1 7 . 2 2 4 8 . . . and homology Z/513

: Computing Turaev t o r s i o n d r i l l i n g . . .

1 : T(1 , 2) has volume 1 4 . 2 7 7 7 . . . and homology Z/329

1 : Computing Turaev t o r s i o n d r i l l i n g . . .

11 : The mani fo ld T1 f i l l e d with (−1 , 2) i s [ s345 ( −1 ,3) ] , i t s

L−space value i s 1

12 : T1(0 , 1) has volume 8 . 9 6 6 0 6 . . . and homology Z/143

12 : Computing Turaev t o r s i o n d r i l l i n g . . .

121 : The mani fo ld T12 f i l l e d with (1 , 1) i s [ v3245 ( 1 , 2 ) ] , i t s

L−space value i s 1

122 : T12 (3 , 5) has volume 6 . 3 0 6 9 0 . . . and homology Z/59

122 : T12 (3 , 5) i s t12195 (−1 ,−3) , whose L−space value i s known to be 1

2 : T(1 , 3) has volume 1 3 . 8 5 4 8 . . . and homology Z/237

2 : Computing Turaev t o r s i o n d r i l l i n g . . .

21 : The mani fo ld T2 f i l l e d with (0 , 1) i s [ v2876 ( −1 ,2) ] , i t s

L−space value i s 1

22 : T2(−1 , 3) has volume 9 . 6 9 8 1 7 . . . and homology Z/66

22 : Computing Turaev t o r s i o n d r i l l i n g . . .

221 : T22(−2 , 3) has volume 6 . 5 1 2 1 6 . . . and homology Z/87

221 : T22(−2 , 3) i s o9 36980 (1 , 2 ) , whose L−space value i s known to be 1

222 : T22(−3 , 4) has volume 6 . 3 8 8 9 8 . . . and homology Z/94

222 : T22(−3 , 4) i s o9 34893 (−3 ,2) , whose L−space value i s known to be 1

True

Since the value of val is True, we conclude that the given manifold is an L-space.

The idea of the algorithm is the following: we start with the manifold M . We drill it
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and we obtain T . By filling T we obtain M1 and M2. By drilling M1 we obtain T1.

By filling T1 we obtain M11 and M12, and so on.

At the beginning of each line there is a number, which represents which QHS we are

referring to. For example, Line 7 starts with 12; this means we are referring to M12.

A drilling-filling tree is a tree where each node is either a QHS or a QHT , and we

have a labeled edge between A and B if B is obtained by Dehn-filling A, and the edge

is labelled with the coefficients of the filling.

From this output we discover the existence of a drilling-filling tree as in Figure 4.B.1,

that can be used to prove, through Theorem 1.2.2, that the given manifold is an L-space.

Figure 4.B.1: One example of drilling-filling tree. The manifolds that are L-

spaces belonging to the Dunfield census are highlighted in red. In this case

M=CubicalOrientableClosedCensus(betti=0)[15].

When 1/0 is contained in ι−1(Dτ
>0), we have two possible intervals to work with. In

this case the output looks like the following (we extract some lines from a bigger output):

2211 : T221(−2 , 3) has volume 7 . 9 1 0 8 2 . . . and homology Z/2 + Z/2 + Z/12

2211 : Computing Turaev t o r s i o n d r i l l i n g . . .

22111 : T2211 (3 , 4) has volume 7 . 3 2 7 7 2 . . . and homology Z/2 + Z/2 + Z/8

22111 : Computing Turaev t o r s i o n d r i l l i n g . . .

22111 : Double i n t e r v a l . .

22111A1 : T22111 (1 , 2) has volume 9 . 4 9 1 8 9 . . . and homology Z/2 + Z/2 + Z/8

22111A1 : Computing Turaev t o r s i o n d r i l l i n g . . .

22111A11 : T22111A1 (2 , 1) has volume 1 1 . 0 4 0 3 . . . and homology Z/2 + Z/42

22111A11 : Computing Turaev t o r s i o n d r i l l i n g . . .
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Figure 4.B.2: A portion of a drilling-filling tree. In this case the slope 1/0 is contained

in ι−1(Dτ
>0) and therefore there are two intervals I1 and I2 in Sl(T22111) to work with.

The manifold v2553(−4, 1) is highlighted in blue since it belongs to the Dunfield census

and it is not an L-space.

22111A111 : The mani fo ld T22111A11 f i l l e d with (0 , 1) i s

[ v2553 ( −4 ,1) ] , i t s L−space value i s −1

22111B1 : T22111 (8 , 5) has volume 8 . 9 2 9 3 2 . . . and homology Z/4 + Z/24

22111B1 : Computing Turaev t o r s i o n d r i l l i n g . . .

22111B11 : T22111B1 (2 , 3) has volume 9 . 2 6 7 6 2 . . . and homology Z/108

22111B11 : Computing Turaev t o r s i o n d r i l l i n g . . .

At Line 5, the code is telling us that T22111, obtained by drilling M22111, has two

intervals we want to work with. The fillings on the first of these intervals will have

labels starting with 22111A and the ones on the second one will have labels starting

with 22111B. From this output we discover the existence of a drilling-filling tree as in

Figure 4.B.2. When we find a double interval, we have two possible intervals in Sl(Y )

where we can look for L-spaces. If for some filling in the first one the algorithm returns

False, we go on looking in the other one.
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versità di Pisa, 2021.

[35] Leonardo Ferrari, Alexander Kolpakov, and Leone Slavich. Cusps of hyperbolic 4-

manifolds and rational homology spheres. Proceedings of the London Mathematical

Society, 123(6):636–648, 2021.

[36] Ronald Fintushel and Ronald J Stern. Constructing lens spaces by surgery on

knots. cl. Math. Z, 175:33–51, 1980.

[37] William Floyd and Ulrich Oertel. Incompressible surfaces via branched surfaces.

Topology, 23(1):117–125, 1984.

[38] David Gabai. Foliations and the topology of 3-manifolds. Journal of Differential

Geometry, 18(3):445 – 503, 1983.

[39] David Gabai. The Murasugi sum is a natural geometric operation II. Contemp.

Math, 44:93–100, 1985.

[40] David Gabai and William H Kazez. Pseudo-Anosov maps and surgery on fibred

2-bridge knots. Topology and its Applications, 37(1):93–100, 1990.

[41] David Gabai and Ulrich Oertel. Essential laminations in 3-manifolds. Annals of

Mathematics, 130(1):41–73, 1989.

[42] Paolo Ghiggini. Knot Floer homology detects genus-one fibred knots. American

journal of mathematics, 130(5):1151–1169, 2008.



112 BIBLIOGRAPHY

[43] Matthias Goerner. A census of hyperbolic Platonic manifolds and augmented

knotted trivalent graphs. arXiv preprint arXiv:1602.02208, 2016.

[44] Eugene Gorsky, Beibei Liu, and Allison H Moore. Surgery on links of linking

number zero and the Heegaard Floer d-invariant. Quantum Topology, 11(2):323–

378, 2020.

[45] Eugene Gorsky and András Némethi. Links of plane curve singularities are L–space

links. Algebraic & Geometric Topology, 16(4):1905–1912, 2016.
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