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1 Introduction

There are strong indications that gravity is holographic. As originally proposed by [1, 2],
the holographic principle states that the description of a gravitational system inside a
d-dimensional region of spacetime is encoded in its (d − 1)-dimensional boundary. This
remarkable property is manifest in the celebrated result of Bekenstein and Hawking [3–5]
that the entropy of black holes is determined by the area law,

SBH ≃ (RBHMP )d−2 . (1.1)

Here, RBH denotes the radius of the event horizon of a Schwarzschild black hole and MP is the
Planck mass in a d-dimensional gravitational theory. The holographic nature manifest in this
area law implies that the entropy determining the number of black hole degrees of freedom is
not proportional to the volume of the black hole, as it would be expected for a large number
of particles in a box, but rather to the area of the surface that surrounds it. Another famous
manifestation of holography in quantum gravity is the AdS/CFT correspondence, which states
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that quantum gravity in a d-dimensional anti-de Sitter space can be isomorphically mapped
to a conformal field theory formulated on its (d − 1)-dimensional conformal boundary [6, 7].

As discovered by Hawking, black holes are not absolutely stable, but when coupled to
quantum field theory they can decay into particles [4]. In the semiclassical limit, the black
hole decay spectrum is thermal and characterized by the Hawking temperature, TBH, which is
given by the surface gravity and thus is inversely proportional to the size of the event horizon,

TBH ≃ R−1
BH . (1.2)

This fact makes it clear that black holes are behaving similarly to thermodynamic systems
and in fact obey laws of black hole thermodynamics. Specifically, the first law relates the
change of black hole mass to that of the area or entropy,

dMBH = TBHdSBH . (1.3)

The second law states that the horizon area, namely the black hole entropy, classically does
not decrease as a function of time,

dSBH ≥ 0 . (1.4)

Black hole thermodynamics also suggests the remarkable fact that the entropy could be
understood from counting microstates forming a black hole of a given mass. This expectation
was first confirmed by [8], for certain supersymmetric black holes constructed as configurations
of D-branes in string theory.

Instead, the entropy of a system of particles in quantum mechanics is not expected to be
given by an area law, but rather it is extensive, i.e. proportional to the volume of the box in
which particles are moving. The extensive entropy behavior is true for massless particles that
are light compared to the ultraviolet (UV) cut-off scale, ΛUV, of the low energy effective field
theory (EFT) of quantum gravity. However this behavior may change, especially if there
are towers with a large number of particles and with masses up to ΛUV that can collapse
and form a black hole. Such towers of particle species occur naturally in quantum gravity,
and this expectation is encoded in the swampland distance conjecture [9] which predicts an
infinite tower of light particles at infinite distance in moduli space. Additionally, according
to the emergent string conjecture [10], at the boundary of the moduli space, there are only
two possibilities for a leading tower: light string excitations, signaling the emergence of a
tensionless string, or Kaluza-Klein (KK) states, corresponding to decompactification to a
higher-dimensional EFT.

In [11], it has been argued that the collective behavior of a tower of species is holographic
and can be described in terms of species thermodynamics. This means that species carry
entropy, temperature and also an overall total mass which precisely follow the rules of
(black hole) thermodynamics. Indeed, the very reason why species thermodynamics can be
formulated is arguably that species themselves are closely related to black holes. Indeed,
in [11, 12] this connection has been outlined comparing minimal black holes to “typical”
ensembles of species, whose thermodynamic quantities match.1 This interconnection arises due

1With “typical” we mean that momenta in some reference frame (corresponding to the rest frame of the
associated minimal black hole) are of the order of the mass gap, while occupation numbers are order one.
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to the species scale Λsp [13–18], which provides an upper bound for ΛUV in any gravitational
EFT. In fact, Λsp can be defined as (an upper bound on) the scale at which gravitational
interactions become strong,

Λsp = MP

N
1

d−2
sp

, (1.5)

where Nsp is the number of light particles species. Note that this definition is implicit since
Nsp also depends on Λsp. An alternative, but related definition sets Λsp as the scale at which
higher-derivative operators in the gravitational EFT become relevant. The species scale and
its moduli dependence have been recently subject of intense investigations [11, 19–37].

The inverse of the species scale, the species length Lsp = Λ−1
sp , sets the shortest possible

length that can be resolved in any EFT before gravity becomes strongly coupled. When
inverting the relation (1.5) to get Nsp ≃ (LspMP )d−2, we see that Nsp is following an area
law, just as depicted in (1.1) for black holes. Based on this analogy, it was proposed in [11]
that Nsp is indeed a non-extensive quantity playing the role of the species entropy Ssp. More
in general, the entropy of the tower of particle species can be defined as

Ssp ≃ (LspMP )d−2 , (1.6)

up to additive log corrections. This proposal is in fact well-motivated by the observation that
Lsp corresponds to the radius of the smallest possible black hole that can be constructed
as classical solution of the gravitational EFT. This is deemed a minimal black hole. Hence,
the species entropy Ssp coincides with that of the minimal black hole, while the species
temperature (for Schwarzschild-like black holes) is given by the inverse radius of the minimal
black hole, namely

Tsp = Λsp . (1.7)

It sets the highest possible temperature that can be obtained in the EFT.
In this paper, we extend the correspondence between species on the one side and

minimal black holes on the other side, as well as the thermodynamic properties they share,
studying (near-extremal) charged black holes. For this purpose, we start reviewing the
N-portrait description [38], which we conveniently adapt to describe massive species particles
as constituents. This description, although used only as a representation, will turn out to
be beneficial for our purposes, since it will allow to compute entropy, temperature and also
energy of species in an efficient way, and to compare these results with the appropriate
thermodynamic laws, such as (1.3).

Another purpose of this paper is to compute the species temperature for various kinds of
species. For electrically neutral species, corresponding to Schwarzschild-like black holes, the
temperature in terms of the species scale is given by (1.7). However, for charged and also
spinning species this relation will be refined. Charged species correspond to charged minimal
black holes, such as Reissner-Nordström solutions. To derive their energy and temperature,
we will extend the N-portrait picture to charged constituents, for both the extremal (BPS)
and near-extremal (non-BPS) case (see also [39]) As a result, we will see that the temperature
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for near-extremal charged species will be reduced compared to Schwarzschild-like species and,
instead of (1.7), its parametric dependence in terms of Λsp will be given by

Tsp = Λ2
sp . (1.8)

The implications of this outcome find application in the scenario pertaining to the
Dark Dimension [40], where we show that temperature and decay rates of near-extremal
species can nicely accommodate the properties of KK dark matter particles, as proposed
in [41, 42]. This result may underline the already recognized link between Dark matter
graviton gases and black holes [43].

The computation of the species temperature is also useful to investigate the decay
properties of towers of species and to predict their decay rate on rather general grounds.
We will discuss the thermal Hawking-like decay of species, whose rate is of the order of
the species temperature. In addition, when the tower of species has departed from the
semiclassical regime, we estimate the quantum decay rate which is dictated by the mass of
the species particles and further suppressed compared to the thermal one. This discussion
can be also relevant in cosmology, to gain general information about species production
and decay in an expanding hot universe.

2 Minimal black holes as species bound states

In this section, we study Schwarzschild-like black holes as bound states of species. Being
governed by a single parameter, they are arguably the simplest class to be considered. Within
the N-portrait picture, we propose a definition of minimal black holes and use it to define the
species scale, entropy and temperature. Then, we comment on the duality between species
as particles and as black hole geometries. Finally, we provide a microscopic counting of
the entropy of these minimal Schwarzschild-like black holes supporting the thermodynamic
interpretation of species.

2.1 The black hole N-portrait with massive species

The black hole N-portrait [17, 38, 44, 45] provides a quantum-mechanical description of black
holes which does not rely on classical geometry. In this picture, black holes are described as
bound states (Bose-Einstein condensates) of Ng weakly-interacting massless gravitons with
critical wave length Rc =

√
NgLp. Interactions among gravitons are controlled by the coupling

αg = L2
P

R2
c

≃ 1
Ng

, (2.1)

which is weak when Ng ≫ 1, namely when Rc ≫ LP . Since the number of ways in which
the constituents can form a black hole is of order n ≃ expNg, the entropy is

SBH ≃ Ng . (2.2)

The black hole radius and mass are given respectively by RBH = Rc ≃
√

NgLP and MBH ≃√
NgMP . Hence, the model is completely characterized by the parameter Ng. One can notice

that the above relations give the species scale in a theory with Ng massless species.
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In addition to massless gravitons, we now include also a number Nsp of massive particles
species as part of the black hole constituents. We closely follow the discussion of [17].
Depending on whether these species couple non-gravitationally, such as quarks and leptons
in the Standard Model, or if they couple gravitationally, such as towers of massive spin-2 KK
gravitons, their effect on the black hole bound state is different. For the time being, we assume
that species do not carry charges except for their masses. We thus concentrate on the case of
gravitational species which are sourced by the energy momentum tensor, just like the graviton.
Another justification for this assumption is that typical towers in string theory, namely KK
or string towers [10], always contain spin-2 particles and thus couple gravitationally.

In the presence of additional Nsp species as constituents, a black hole is formed when
a modified quantum criticality condition is met, namely

αg = L2
P

R2
c

≃ 1
NgNsp

. (2.3)

In other words, the consequence of having additional species is that the effective total number
of black hole constituents is now given by

Ntot = NgNsp , (2.4)

meaning that the gravitational species contribute to Ntot not additively but multiplicatively.
This is analogous to considering e.g. two independent KK towers with Nsp,1 and Nsp,2 for
which the total number of species is given by the product Ntot = Nsp,1Nsp,2 [20].

We can determine how the black hole radius and mass are affected by the insertion of
Nsp. From the relation (2.3) and introducing the species length Lsp =

√
N spLP = 1/Λsp,

it follows that the black hole radius RBH is

RBH = Rc ≃
√

NgNspLP =
√

NgLsp, (2.5)

while the mass is given by

MBH ≃
√

NgNspMP =
√

NgLsp/L2
P . (2.6)

The number n of ways in which the Ntot constituents can form a black hole bound state
is of order n ≃ expNtot. Hence, at leading order in an expansion at large Ntot, the black
hole entropy can be estimated as

SBH ≃ NgNsp . (2.7)

Let us finally consider the loss of mass of black holes due to the thermal Hawking radiation.
In the N-portrait picture, black holes decay via leakage of gravitons, which can occur due to
the fact that the escape energy slightly exceeds the energy of the whole condensate. For large
entropy, the corresponding decay rate ΓBH, which in natural units is basically the associated
Hawking temperature TBH, can be computed in the semiclassical approximation to be

ΓBH ≃ TBH ≃ 1√
NgNspLP

= 1√
NgLsp

. (2.8)
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The N-portrait picture including massive gravitational species can be easily generalized
to Schwarzschild-like black holes in arbitrary d spacetime dimensions. Concretely, one can
derive the following relations between mass, temperature, Schwarzschild radius and entropy
(in d-dimensional Planck units):

MBH =
(
RBH

)d−3 = S
d−3
d−2
BH ,

TBH =
(
RBH

)−1 = S
− 1

d−2
BH . (2.9)

This is in agreement with the first law of black hole thermodynamics,

dMBH = TBH dSBH , (2.10)

leading to

1
TBH

= ∂SBH
∂MBH

. (2.11)

Let us emphasize that the above thermodynamic relation between black hole temperature
and entropy is only true in the semiclassical approximation, i.e. in the asymptotic regime
SBH → ∞. For small black holes, and in particular after the decay of roughly half of the
black hole, additional quantum effects become relevant. They will result in a non-thermal
black hole decay whose rate will be slower than that of the thermal Hawking radiation. If we
parametrize the quantum suppression of the black hole decay with a power law dependence
on the entropy, we are led to a quantum decay rate [46]

ΓBH,qm ≃ TBH
Sn

BH
≃ S

1−n(2−d)
2−d

BH . (2.12)

At the moment, we simply assume for Schwarzschild-like black holes that n ≥ 0. Later, we
will try to determine n for different particle species.

2.2 Definition of minimal black hole, species entropy and temperature

We now describe how to construct minimal black holes as bound states of species. The size of
the minimal black hole corresponds to the minimal pixel that can be resolved in any effective
theory of gravity, namely to the shortest possible length [17],

RBH,min ≃ Lsp . (2.13)

Hence, the minimal black hole in the N-portrait picture is the bound state of gravitons
and species in which the number of massless graviton constituents is set to its minimal
value, i.e. one: Ng = 1.

Effectively, the number Ng of massless gravitons of the original N-portrait picture without
species is replaced by Nsp, the number of massive species modes. In general, the minimal
black hole constituents do not have all equal mass, but may form a tower of states with
a certain mass spacing.
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Following this prescription for the entropy, mass and temperature of the minimal black
hole in d-dimensions we obtain respectively:

SBH,min ≃ Nsp , (2.14)

MBH,min ≃ N
d−3
d−2

sp MP , (2.15)

TBH,min ≃ N
− 1

d−2
sp MP . (2.16)

Any other black hole in the effective field theory will have radius, mass and entropy equal
or larger than those above,

SBH ≥ SBH,min, RBH ≥ RBH,min, MBH ≥ MBH,min . (2.17)

Having provided a working definition of minimal black hole, we can now employ it to
define the various quantities associated to the thermodynamics of species. Given a tower of
Nsp particle species, we define its entropy and mass to be that of the associated minimal
black hole, namely

Ssp ≡ SBH,min, (2.18)
Msp ≡ MBH,min . (2.19)

In turn, this leads to the following expressions in terms of the species scale Λsp:

Ssp ≃ Λ2−d
sp , (2.20)

Msp ≃ Λ3−d
sp . (2.21)

Similarly to black holes, species particles are in general not stable, but they can interact
among themselves and with other particles. These interactions will lead to a decay of the
non-stable (non-BPS) species, in analogy to the decay of the corresponding minimal black hole.
Due to this decay, the species tower will loose mass and entropy. For species corresponding
to Schwarzschild-like black holes, the decay rate in the limit of large entropy is dominated
by the semiclassical Hawking decay rate of the associated minimal black hole. In this case,
independently from the microscopic nature of the interactions among species, one can derive
a temperature for the particle species,

Tsp ≡ TBH,min ≃ Λsp . (2.22)

Hence, the temperature of any black hole in the effective theory must be equal or smaller
than the species temperature,

TBH ≤ Tsp . (2.23)

Note that the species entropy and temperature obey the same relations as their black hole
companions, namely in d-dimensions and for the case Schwarzschild-like case we have that

Tsp = S
− 1

d−2
sp . (2.24)
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We emphasize again that this temperature is relevant for the decay of the species in the
semiclassical approximation with Ssp → ∞. Once roughly half of the species have decayed,
the semiclassical approximation breaks down and quantum effects become relevant. As a
result, the decay rate of the species is reduced. Following the analogous discussion on black
holes, we assume that the quantum decay rate of species can be parametrized as

Γsp,qm ≃ Tsp
Sn

sp
≃ S

1−n(2−d)
2−d

sp ≃ Λ1+n(d−2)
sp . (2.25)

Let us now try to determine the value of the suppression parameter n of the species decay.
We assume that for large Ssp the species originally possess a thermal distribution as given by
the temperature Tsp in (2.22) and (2.24). Therefore, this distribution is peaked at particles
species with mass

⟨msp⟩ ≃ Tsp ≃ Λsp . (2.26)

We can justify this as follows. In d external spacetime dimensions plus q extra dimensions,
consider a KK tower of mass scale m at equilibrium with temperature T ≫ m. Neglecting
interactions, and up to a volume prefactor which will cancel when considering the Boltzmann
distribution, the partition function can be approximated by the classical expression

ZKK =
∑

k⃗∈Zq−{0}

∫
dd−1p

(2π)d−1 e−
1
T

√
p2+m2k2 ∝

∑
k⃗∈Zq−{0}

(
m

T
|k|
) d

2
K d

2

(
m

T
|k|
)

. (2.27)

Here, |k| ≡
√

k · k is the norm of the lattice vector k⃗ ∈ Zq, while Kν(z) the modified Bessel
function. The probability distribution for k is just

p(k) =
(

m
T |k|

) d
2 K d

2

(
m
T |k|

)
∑

l⃗∈Zq−{0}
(

m
T |l|

) d
2 K d

2

(
m
T |l|

) , (2.28)

and thus the distribution of the species masses, mk = m|k|, for large |k| is approximately
proportional to

|k|q−1
(

m

T
|k|
) d

2
K d

2

(
m

T
|k|
)

|k|≫1∼ m
q−1+ d−1

2
k e−

mk
T , (2.29)

where we also provided the large-mass (equivalently low-temperature) asymptotics using
that Kν(z) ∼

√
π
2z e−z for z ≫ 1. The latter expression shows the expected Boltzmann

suppression factor. For q > 1 extra dimensions there is indeed a peak for an order-one value
of the argument, namely at mk ∼ T . For q = 1 extra dimensions there is no peak in the
function z

d
2 K d

2
(z), but the expectation value of mk can be still estimated: for m ≪ T , the

(unnormalized) expectation value of a generic power kγ is given by

∑
k>0

kγK d
2

(
m

T
k

)
∼
(

T

m

)γ ∫ Nspm/T =Λsp/T

0
du uγ K d

2
(u) , (2.30)
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which for T ≲ Λsp is of order (T/m)γ , since the integral converges even when the upper
integration limit is taken to infinity. The properly normalized expectation value of |k| for
q = 1 is thus a ratio of these powers, with γ = 1 and γ = 0, hence

⟨mk⟩ = m⟨|k|⟩ ∼ m
T

m
= T . (2.31)

Summarising, for T ∼ Λsp one finds the expected behavior both with and without a peak
in the distribution.

After half of the species have decayed, i.e. for finite Ssp, the species start to behave
like particles. We can then use a standard single particle description and, following simple
dimensional arguments (otherwise, see e.g. [47, 48]), the quantum-mechanical decay rate of
a particle with mass msp is approximately given in Planck units as

Γsp,qm ≃ md−1
sp ≃ T d−1

sp ≃ Λd−1
sp . (2.32)

In terms of entropy suppression this corresponds to n = 1 in eq. (2.25), which is compatible
with the analysis of [46].

2.3 Duality between species particles and black hole geometry

The above definitions of species entropy and temperature as those of the associated minimal
black hole can be interpreted in terms of a duality between particles and geometry: the single
species being particles, while their collective behaviour corresponds to a particular space-time
geometry. More precisely, the entropy of a large number of particle species is identical to,
and in fact inherited from, that of the corresponding minimal black hole. In this regime, the
species entropy is not an extensive quantity with a volume scaling behavior, but rather it
follows an area law, just like that of the associated minimal black hole. Furthermore, the decay
rate of a large number of particle species is collectively determined by the thermodynamic
species temperature. On the other hand, a small numbers of species behave like quantum-
mechanical particles and decay according to the rules of quantum mechanics. Hence, when
the number of species decreases beyond a certain critical value, there will be a transition from
a thermodynamic to a particle-like description. Additionally, this picture is linked to the idea
of spacetime as a condensate or bound state of some generic quantum gravity microstates.

This kind of particle/geometry duality is consistent with the definition of species scale
as the UV cut-off scale at which gravity becomes strongly coupled. In fact, it is natural to
assume that at strong coupling species are forming the minimal black holes as bound state,
such that there is a transition between the particle and the geometric description. Summing
over the gravitational species in a loop diagram provides the higher curvature corrections
to the Einstein action, whose strengths are controlled by the species scale [25, 27, 29, 32].
This is also related to the idea of emergence, namely that gravity and strings can emerge
when integrating out towers of species particles [24, 36, 49–54].

The above picture is also closely related to the Black Hole Entropy Distance Conjec-
ture [55], which states that in the limit of large black hole entropy, SBH → ∞, there is a tower
of light states, which can be related to black hole microstates [55] with energies m such that

SBH → ∞ ⇒ m ∼ (SBH)−γ → 0 , γ > 0 . (2.33)

– 9 –



J
H
E
P
0
6
(
2
0
2
4
)
1
2
7

For the entropy of the minimal black hole, i.e. for the species entropy, there is an analogous
behaviour, namely

Ssp → ∞ ⇒ mtower ∼ (Ssp)−γ → 0 . (2.34)

Now, the light states are the species themselves and mtower is the mass scale of the tower
which may be seen as lightest energy fluctuation of a minimal black hole (namely mKK or
Ms for KK or string towers).

2.4 Kaluza-Klein species bound states as minimal black holes

The thermodynamic picture of species can be supported with a direct counting argument,
in both the particle and the black hole representation of species. We start from the former
and then look at the latter.

For concreteness, we consider a tower of species such as

Mn = n
1
p ∆m, (2.35)

where ∆m is a mass spacing that we need not to specify further and p is a parameter modelling
the density of the tower. For example, one has p = 1 for a single KK tower, while one takes
p → ∞ to extrapolate the result for a string tower [20]. The number of species is then

Nsp =
( Λsp
∆m

)p

. (2.36)

As computed in [11], the total mass of the tower up to n = Nsp is given by the generalized
harmonic number H

(q)
n ,

Msp =
Nsp∑
n=1

Mn = ∆m H
(− 1

p
)

Nsp
. (2.37)

By looking at the asymptotic behaviour for Nsp ≫ 1, we find

Msp ≃ p

p + 1ΛspNsp ≃ p

p + 1MpN
d−3
d−2

sp . (2.38)

Hence, the dependence of the total mass of the tower on Nsp coincides with that of the mass
of the black hole, up to unimportant order one factors which we are not keeping track of. This
conclusion holds also for p → ∞, namely for a string tower, supporting the thermodynamic
interpretation within the picture of species as particles [11, 12].

Next, we repeat the same calculation in the black hole picture. The idea is to count the
number of microstates in a black hole, which we assume to be Schwarzschild-like and formed
out of Nsp species as in (2.36). This has been done in [52] for p = 1 and here we generalize it
to generic p. Given the black hole mass MBH and the scale ∆m, we can define the number

N = MBH
∆m

, (2.39)

– 10 –
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which counts the total mass level associated to the black hole. This level can be reached
combining (multi)particle states with levels up to Nsp. For a minimal Schwarzschild-like
black hole, we have then

N =
Md−2

p

Λd−2
sp

Λsp
∆m

= N
p+1

p
sp . (2.40)

We want to find that the entropy of the black hole is given by Nsp and not by N ≫ Nsp as
one might have naively expected. By definition, the entropy is the logarithm of the number
of microstates. These are in our case related to the number of partitions of N into Nsp
parts.2 To find the appropriate relation, we start from the number of (weak) compositions
of N into Nsp parts, CN,Nsp , which is given by

CN,Nsp =
(

N + Nsp − 1
N

)
∼ NNsp−1

(Nsp − 1)! , (2.41)

where in the last steps we wrote the asymptotic behaviour for N ≫ Nsp. This regime is
justified in our case due to (2.40). Compositions differing by the order of their elements
are considered the same partition. Hence, to get the appropriate number of partitions we
should divide by the number of compositions which are equal up to ordering. For p = 1, this
is Nsp! and one recovers the expression used in [52]. However, for generic p > 1 the factor
Nsp! overestimates the degeneracy. To understand this, notice that we can equivalently think
of (2.36) as the number of species coming from p different KK-towers. When elements of
two partitions are the same but arise from different towers, we consider the partitions to be
different. In other words, a multiparticle state with mass 2∆m1 is considered different from
another with mass ∆m1 +∆m2, even for ∆m1 = ∆m2. Due to this fact and assuming towers
to be homogeneously populated, since the quantum numbers of multiple towers multiply we
estimate that the degeneracy in the number compositions with p different towers is reduced
from Nsp! down to (Nsp!)

1
p . Hence, we calculate the entropy as

eSBH ≃
CN,Nsp

(Nsp!)
1
p

∼ NNsp−1

(Nsp!)
1
p (Nsp − 1)!

∼ NNsp

(Nsp!)
p+1

p

, (2.42)

where we used that Nsp ≫ 1. Employing the relation (2.40) between N and Nsp, we find

SBH ∼ log N
p+1

p
Nsp

sp

(Nsp!)
p+1

p

∼ p + 1
p

Nsp (2.43)

and thus SBH ≃ Nsp as desired, even when extrapolating the result for p → ∞. This
combinatorial estimate agrees with the microcanonical result obtained in [12].

To summarize, the above computation confirms the thermodynamic interpretation for
species both in the case in which these are particles-like or in which they are constituents of

2More precisely, we should consider the number of partitions of N with largest part Nsp. A classic result
in combinatorics (see e.g. [56], Example I.7) shows that this is equal to the number of partitions of N into
Nsp parts.
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Schwarzschild-like black holes. We found once more that the total species mass corresponds
to the mass of the minimal black hole and is related to the species entropy as

Msp,KK = MBH,min = S
d−3
d−2
sp,KK = Λ3−d

sp , (2.44)

while the species temperature is

Tsp,KK = R−1
BH,min = S

1
2−d

sp,KK = Λsp . (2.45)

3 Minimal charged black holes

In this section, we study minimal charged black holes and their species thermodynamics.
In particular, we give a recipe to construct minimal charged black holes via the attractor
mechanism and also as bound states of massive, charged species. As we are going to explain,
some of the thermodynamic relations previously studied in the uncharged case are going to
be revisited. In particular, the parametric dependence between the Hawking temperature
and entropy will change, with the result that the semiclassical decay rate of the charged
species is in general slower than that of uncharged ones.

3.1 Extremal and non-extremal charged black holes

We now deal with a multi-parameter family of black hole metrics, characterized by mass MBH,
together with electric and magnetic charges QBH,i and P i

BH. To exemplify our discussion,
let us consider the Reissner-Nordström black hole in Einstein-Maxwell gravity, which is
specified by mass MBH and electric charge QBH. Its entropy is given by the radius RBH,+
of the outer horizon,

SBH ≃
R2

BH,+
L2

P

. (3.1)

To define the temperature, it is convenient to introduce the extremality parameter3

c =
√

M2
BH − Q2

BH , (3.2)

namely RBH,± = MBH ± c. Demanding it to be real, one gets the extremality bound for
charged black holes4

M2
BH ≥ Q2

BH (3.3)

and extremal black holes correspond to c = 0. In the presence of charges, the first law of
black hole thermodynamics (2.10) is modified in the following way

dMBH = TBHdSBH +ΦdQBH, (3.4)
3We will work in Planck units and be cavalier on unimportant numerical factors.
4Later on we will discuss a refinement of the extremality bound due to the presence of higher-derivative

corrections to the Einstein-Maxwell action.
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TBH

SBH

excluded region

T0

Figure 1. Parameter space for Reissner-Nordström black holes. Schwarzschild black holes (blue
line, SBH = 1/T 2

BH) are at the boundary between the allowed region (Q2
BH > 0) and the excluded

one (Q2
BH < 0). The red line is the line of constant extremality parameter c = SBHTBH. For

TBH > T0 = 1/c, one cannot keep c constant while staying in the allowed region. The figure is taken
from [57].

hence
d(MBH − ΦQBH) = TBHdSBH − QBHdΦ = dc, (3.5)

where Φ = QBH/RBH,+ is the electric potential at the black hole horizon. From this relation
we can read off the temperature and the charge as

TBH = ∂c

∂SBH

∣∣∣
Φ

, QBH = − ∂c

∂Φ
∣∣∣
SBH

. (3.6)

Therefore, the black hole temperature can be expressed in terms of c and the entropy as

TBH ≃ c

SBH
. (3.7)

We see that for finite entropy extremal black holes have zero temperature. The reverse case is
also possible, namely small black hole with vanishing entropy but finite temperature have c = 0.
Compared to neutral black holes, charged black holes have always a smaller temperature and
therefore their semiclassical decay rate is reduced as well, compared e.g. to the Schwarzschild
case. The physical region of the parameter space for the Hawking temperature and entropy
is shown in the in figure 1, which is taken from [57].

As discussed before, on top of the semiclassical reduction of the Hawking temperature,
after half of their life time (charged) quantum black holes undergo yet another suppression of
their decay rate. We then write the quantum decay rate of charged black holes as

ΓBH,qm ≃ TBH
Sn

BH
≃ (SBH)−1−n , (3.8)

for some parameter n which we are going to determine in the following.
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3.2 Moduli-dependent species entropy and temperature

Before introducing the definition of minimal charged black holes as bound states of charged
species, we would like to give a recipe to extract the moduli dependence of the species
entropy which is particularly well-suited for charged black holes in string theory. This
method has already been employed in [27], particularly in the presence of certain higher-
derivative curvature corrections which source additional contributions to the entropy, besides
the Bekenstein-Hawking part, in the form of a topological string free energy.

Consider the entropy at the horizon, SBH = SBH(Q, P ), as a function of the electric
and magnetic charges Q, P . For definiteness, we have in mind a 1/2-BPS black hole in
N = 2 supergravity, but the procedure can possibly be extended to other setups. In order to
construct a minimal charged black hole, one can perform the following steps:

• Set the electric or magnetic charges to minimal values,

P = Pmin or Q = Qmin . (3.9)

This is typically constrained by charge quantization and by the requirement of having
a non-vanishing entropy.

• Replace the remaining charges in terms of the moduli ϕ via the attractor equations,

Q = Q(ϕ) or P = P (ϕ), such that SBH = SBH(ϕ). (3.10)

• Check that the Black Hole Entropy Distance Conjecture [55] is satisfied at the boundary
of the moduli space,

SBH(ϕ) → ∞ for ϕ → ∞ . (3.11)

If this is not the case, restart from the first point and change the choice of minimal
charges; e.g. if magnetic charges were minimized, try again by minimizing electric ones.

Let us briefly illustrate this procedure with a simple and well-known example of a
non-extremal black hole solution in N = 2 supergravity. The solution is realized in type
IIA string theory via a Calabi-Yau compactification with a system of Q D0-branes and
three D4-branes wrapped P1, P2, P3 times around Calabi-Yau 4-cycles. To simplify the
setup further, we set the magnetic charges equal to each other, P1 = P2 = P3 ≡ P . The
volume V2 of a 2-cycle is parametrize by a Kähler modulus and corresponds to the smallest
possible homological cycle on a simply connected Calabi-Yau. When performing a large
2-cycle volume limit at fixed weak string coupling, the number of KK modes is proportional
to V2, namely NKK ≃ V2. The linear power can be fixed by using that the species scale in
decompactification limits is the higher dimensional Planck scale.5 We want to recover this
result by following the steps outlined above.

5Notice that we can also take a large volume, strong coupling limit. In particular, if we let gs ∼ V
3
2

2 in
order to move just within the vector multiplet moduli space, then the eleventh dimensions of M-theory opens
up, gs ∼ (R11Mp,11d) 3

2 . Then, we can identify precisely the KK species with a tower of D0-branes.
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The lowest order black hole entropy, i.e. without higher curvature contributions, and
the extremality parameter c are related in the following way [57, 58]6

SBH ≃ (
√
V2P 2 + c2 + c)2 . (3.12)

As a check, one can see that this expression reduces to the known one, SBH ≃
√

QP 3, in
the extremal case, where also V2 ≃

√
Q/P . According to the above procedure, we set the

magnetic charge to the minimal value P = 1 and we get

Ssp ≃ (
√
V2 + c2 + c)2 . (3.13)

Assuming V2 ≫ c2, which is natural at large volume, the entropy of the minimal black
hole becomes

Ssp = SBH,min = V2 ≃ NKK. (3.14)

Hence, we recovered that the species entropy is governed by the volume of a 2-cycle, which
is a moduli-dependent proxy for number of KK particles.

We can finally derive the species temperature

Tsp ≃ c

Ssp
≃ cΛ2

sp . (3.15)

In complete analogy with the previous discussion on charged (minimal) black hole, for fixed
c it scales like Tsp ∼ S−1

sp (namely along the dashed curve in figure 1). As for the quantum
mechanical decay rate of the species tower after half of its life time, assuming again that the
species distribution is peaked at a mass scale msp ≃ Tsp, we get that (for d = 4)

Γsp,qm ≃ T 3
sp ≃ Λ6

sp . (3.16)

When compared with (3.8), this corresponds to the value n = 2.

3.3 Minimal charged black holes as species bound states

In analogy with the discussion on Schwarzschild-like black holes, we would like to construct
minimal charged black holes as bound states of charged species. Hence, let us consider a
tower of states with masses and charges (mn, qn), with n = 1, . . . , Nsp. We assume that at
each level the species particles respect the tower weak gravity conjecture [59] (see [60] for a
recent and careful analysis), which means that the tower is super-extremal, namely

|qn| ≥ mn ∀ n . (3.17)

The total mass and charge of the minimal black hole, being the same as the total species
mass and charge, are then given as

QBH,min ≡ Qsp =
Nsp∑
n=1

qn , MBH,min ≡ Msp =
Nsp∑
n=1

mn . (3.18)

6Up to numerical factors, the formula (3.12) can be found from (4.44) of [57] after identifying the volume
at the horizon with that at infinity, Vh ≡ V∞. This can be accomplished by tuning the values of the scalars at
infinity and is in accordance with the Black Hole Entropy Distance Conjecture, since we are in a regime in
which the black hole is growing in size. Notice that we fixed a typo in the analogous formula (4.4) of [11].
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Assuming that all qn have the same sign, it follows that the minimal black hole is also
super-extremal, i.e. |QBH,min| ≥ MBH,min. At first sight, this seems to violate the extremality
bound for black holes. However, as discussed in [61–65] for small black holes, of which minimal
black holes are an example, the extremality bound gets changed due to higher-derivative
terms in the effective action. In our case, the relevant four-derivative operators are

α1(FµνF µν)2 , α3FµνFρσW µνρσ , (3.19)

where F µν is the electromagnetic field-strength and W µνρσ is the Weyl tensor. The αi are
dimensionless Wilson coefficients in Planck units, in the notation of [63]. In the presence of
these higher curvature corrections, the black hole extremality bound is changed as [62, 63]

QBH,min
MBH,min

≤ 1 + α

Q2
BH,min

, α = 2
5(4π)2(2α1 − α3). (3.20)

Here, we are working in d = 4 for concreteness. Black holes saturating this bound are
extremal, otherwise they are non-extremal. It follows that also the extremality parameter
gets modified in the presence of these corrections and it takes the form

c2 = M2
BH,min − Q2

BH,min +
2αM2

BH,min
Q2

BH,min
+

α2M2
BH,min

Q4
BH,min

. (3.21)

For large charges, one can neglect the last term in the above equation. Assuming furthermore
that M2

BH,min ∼ Q2
BH,min, the extremality parameter simplifies to

c2 = M2
BH,min − Q2

BH,min + 2α . (3.22)

For c = 0 the minimal black hole is extremal, while for c > 0 it is sub-extremal.
In general dimension d, the higher-derivative corrections are weighted by the UV cutoff

Λ according to
a1
Λd

(FµνF µν)2 ,
a3
Λ2 FµνFρσW µνρσ , (3.23)

where one expects ai = O(1). Thus α1 = Md
P

Λd a1 and α3 = M2
P

Λ2 a3. Therefore, away from
the species limit αi = O(1) and the extremality parameter is modified by a suitable linear
combination α. In the species limit the gravitational sector of higher-derivative corrections
is expected to have Λ ≪ MP and α1 ≫ α3 ≫ 1, unless there is a parametric suppression of
the ai, but in principle the electromagnetic sector considered above may have O(1) Wilson
coefficients in Planck units. One way for this to occur is if the electromagnetic coupling g

is small, so that the canonical normalization in 1
4FµνF µν translates into factors of g2 in the

expressions for the Wilson coefficients.7 At any rate, insofar as the linear combination α ≥ 0
black holes can satisfy the corrected extremality bound even when formed by super-extremal
constituents, since the extremality parameter is corrected as [64]

c2 = M2
BH,min − Q2

BH,min + 2α M
2 d−4

d−3
BH,min . (3.24)

7A more physical intuition behind such potential discrepancy is that the species contributing to electro-
magnetic higher-derivative corrections can be a small, charged, subset.
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3.3.1 Non-extremal KK-like tower

As an example, let us consider a toy model with a tower of charged particles with equally
spaces spectrum given as

mn = m0 n , n = 1, . . . , Nsp . (3.25)

We assume that the electric charges of these particles are given by

qn = m0(n + β) , n = 1, . . . , Nsp. (3.26)

Enforcing the tower weak gravity conjecture, i.e. that the entire tower be super-extremal,
implies that β ≥ 0. Actually, to really have a conserved U(1) gauge symmetry the tower
must be extremal: it should not decay and β = 0. In this case, we would also have that
Tsp = 0.8 However if the U(1) gauge symmetry is mildly broken, the charges qn are not
conserved anymore and the species can decay. In this case, β ̸= 0 and the species will
possess a non-vanishing temperature. We will investigate the construction in string theory
of this system in section 5.

We can see this explicitly by studying the total mass and charge of species. By summing
over the tower up to Nsp, we get

Msp =
Nsp∑
n=1

mn = S
d−3
d−2
sp

(
1 + S

− 1
d−3

sp + . . .

)
= Λ3−d

sp + Λsp + . . . ,

Qsp =
Nsp∑
n=1

qn = S
d−3
d−2
sp

(
1 + (1 + β)S− 1

d−3
sp + . . .

)
= Λ3−d

sp + (1 + β)Λsp + . . . , (3.27)

where we used Nsp = Ssp and dots represent terms that are subleading for large Nsp. For
d = 4, we can insert the above species mass and charge in the extremality bound including
the contributions from the higher-derivative terms discussed above, namely relations (3.21)
and (3.22). Demanding c ≥ 0 leads to

α ≳ β. (3.28)

For d > 4, in the species limit Λsp ≪ MP the higher-derivative corrections to the extremality
parameter scale as αΛ2(4−d)

sp and dominate over the contributions coming from the tower,
which scale as βΛ4−d

sp . Then, at leading order in the species entropy the extremality parameter
can be expressed as

c ≃
√

αΛ4−d
sp ≃

√
α(Ssp)

d−4
d−2 , (3.29)

while the species temperature is

Tsp ≃ c

Ssp
=

√
α

(Ssp)
2

d−2
≃

√
α(Λsp)2 . (3.30)

8Strictly speaking, this condition saturates the extremality bound at leading order in the large-charge
expansion. Just like ordinary charged black holes, absent any (BPS or otherwise) protection, one expects
that the extremality threshold be corrected by inverse powers of the charge. This is indeed what allows
superextremal particle species to yield subextremal black holes in our setting.
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One can check that all thermodynamic relations for charged black holes, respectively for
charged species, are satisfied. Note that, when compared to that of an uncharged tower
in (2.45), the temperature derived here in the charged case is suppressed by a factor of S− 1

d−2
sp .

Finally, let us determine the quantum decay rate of the species particles. Assuming again
that the charged species decay as quantum mechanical particles of mass msp ≃ Tsp we get

Γsp,qm ≃ T d−1
sp ≃ Λ2(d−1)

sp . (3.31)

In terms of entropy suppression, this corresponds to n = 2 in (3.8), i.e. Γsp,qm ≃ TspS−2
sp .

4 Comments on species cosmology and the Dark Dimension

In this section, we collect some comments and observations on the role of species in cosmology
in general and in the Dark Dimension scenario [40] in particular. The main point we would
like to make is that the thermodynamics of near-extremal species naturally suggests their
possible use as dark matter candidates.

4.1 Species decay in an expanding universe

Towers of massive species may potentially play an interesting role in cosmology, both at early
and late times. In particular, within the Dark Dimension scenario [40], it was suggested that
a tower of KK gravitons can play the role of dark matter particles [41, 42]. To understand
this proposal, is important to first discuss the production and decay of species in a universe
expanding at a certain temperature Tuniv(t), as a function of time t. For concreteness, when
considering near-extremal species, we will refer to the toy model in the preceding section,
here applied to the KK modes of an appropriate internal space.

Recall that a tower of species is characterized by a thermodynamic temperature, Tsp,
setting the maximal possible temperature the tower can acquire. Therefore, it is reasonable
to assume that a tower of species gets thermally produced at the time ti in the early universe
when the temperature of the universe reaches that of the species, namely when

Tuniv(ti) ≃ Tsp . (4.1)

In the last sections we have discussed two different scenarios: neutral, Schwarzschild-like
species, and near-extremal charged species. In terms of the species scale the corresponding
temperatures in Planck units are

Neutral Species : Tuniv(ti) ≃ T neutral
sp ≃ Λsp , (4.2)

Near extremal Species : Tuniv(ti) ≃ T near−ext
sp ≃ Λ2

sp . (4.3)

We see that initial temperature of neutral species is as high as the UV cut-off scale, whereas
the initial temperature of near-extremal species is parametrically smaller by a factor Λsp, and

T near−ext
sp (ti) ≪ T neutral

sp (ti). (4.4)

At the moment of their production, the mass distribution of species, msp(T ), is thermal
and peaked around its maximum, mmax

sp = Tuniv(ti). Immediately after being produced,
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species start to thermally decay with rate Γsp ≃ Tuniv(ti) ≃ mmax
sp . Actually, production

of species and their subsequent thermal decay typically take place during the radiation
epoch of the universe, when the energy density ρ grows with temperature according to
the d = 4 Stefan’s law, ρ(t) ∼ (Tuniv(t))4, while the time-dependent scale factor of the
universe, a(t) ∼ t1/2, grows with the inverse temperature as a(t) ≃ (Tuniv(t))−1. It follows
that during the radiation epoch the expansion parameter H(t) = ȧ(t)/a(t) is related to
the temperature of the universe as

H(t) ≃ (Tuniv(t))2 . (4.5)

Comparing then the expansion rate of the universe with the thermal decay rate of species
at the time when they are produced, Γsp,th, we see that

Γsp,th ≃ Tuniv(ti) > (Tuniv(ti))2 ≃ H(ti) . (4.6)

Therefore, species thermally decay with faster rate than the expansion of the universe. This
process roughly lasts until half of the species have decayed. Then, as discussed previously, we
expect species to acquire a quantum mechanical behavior and the fast thermal decay rate
is replaced by the slower quantum mechanical one, which in d = 4 behaves as Γsp,qm ≃ T 3

sp.
Crucially, this is now slower than the expansion rate of the universe,

Γsp,qm ≃ T 3
univ < T 2

univ ≃ H, (4.7)

which means that species decouple from expansion. From this moment on, the expansion of
the universe takes place in a background with approximately constant UV cut-off Λsp.

4.2 Species decay in the Dark Dimension scenario

We apply now these general facts on the decay of species in an expanding universe to the
Dark Dimension scenario. The starting point is the Anti-de Sitter conjecture (ADC) [66],
specialized to the case of positive vacuum energy density, which implies a UV/IR mixing
between the UV cut-off Λsp and the IR cosmological constant Λcc. Concretely, the ADC
states that in the limit of vanishing cosmological constant there must be a light tower of
states, whose mass scale m is parametrically related to Λcc in the following way

ADC : m ≃ Λα
cc M1−4α

P . (4.8)

The parameter α is bounded as
1
d
≤ α ≤ 1

2 , (4.9)

where the upper bound is model-independent and originates from the Higuchi bound [67],
while the lower bound can be inferred by considering 1-loop Casimir potentials in d dimen-
sions [40, 68]. Applying then constraints from experiments, one is led to the Dark Dimension
Scenario [40] and its implications [41, 43, 69–73] with d = 4, α = 1/4 and a tower of KK
species coming from the compactification of one (large) extra dimension of size9

Rdd ≃ Λ−1/4
cc ≃ 1µm . (4.10)

9An important correction factor λ ≲ 10−3 is understood in the subsequent relations.
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This length scale corresponds to a KK mass scale of order

mKK ≃ Λ1/4
cc ≃ 1 eV (4.11)

and it leads to a species scale

Λsp ≃ (Λcc)
1

12 . (4.12)

As for the temperatures of the KK species in terms of Λcc, from (4.2) and (4.3) we get

Neutral Species : T neutral
sp ≃ (Λcc)

1
d(d−1) −−→

d=4
(Λcc)

1
12 , (4.13)

Near extremal Species : T near−ext
sp ≃ (Λcc)

2
d(d−1) −−→

d=4
(Λcc)

1
6 . (4.14)

We can now compare these temperatures with the mass scales relevant to realize the
scenario in which the KK species play the role of dark matter candidates, as proposed
in [41]. There, it was argued that in order for the internal dimension to be sufficiently
stabilized compared to the de Sitter mass scale, the initial temperature of the production
of KK modes should be of order

Tuniv(ti) ≃ (Λcc)
1

2(d−1) −−→
d=4

Λ1/6
cc ≃ 1 GeV . (4.15)

This precisely agrees with the temperature (4.14) of the near-extremal species in d = 4, which
we argued to be the temperature and the mass scale at which species are produced during
the radiation period of the expanding universe. Moreover, for phenomenological reasons it
is important to point out that the charge we are considering in this scenario is associated
with a new U(1)dd gauge symmetry possibly dynamically broken.

Hence, the thermodynamics of near-extremal species naturally provides the desired initial
temperature at the time when the dark matter particles are produced. This result emphasizes
the already acknowledged connection between dark matter as KK graviton, and black holes
in the context of early time universe [43].

The decay of the dark matter KK particles after their production at Tuniv(ti) can be
constrained by the requirement of getting the correct dark matter abundance in the universe.
Concretely, starting from a distribution that is initially peaked at around Tuniv(ti), the
bulk of the species masses has to shift down to about 1–100 keV today. We can compare
this value with the decay rate of the KK species. Right at the beginning, just after their
production, these decay with a thermodynamic rate of order ΓKK,th ≃ Tuniv(ti), which is
much faster than the required decay rate of dark matter particles. However, as argued
before, after roughly half of the species life time, their decay is slowed down to the quantum
mechanical rate ΓKK,qm ≃ Tuniv(ti)3. This is just what is needed to get the correct dark matter
distribution [41]. In conclusion, we argued that general facts of species thermodynamics
naturally lead to the correct initial temperature and the correct decay rate required for
near-extremal KK species to be viable dark matter candidates.
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5 Constructions in string theory

In this section, we explore constructions in string theory which can potentially provide a
microscopic origin for the (near-)extremal species discussed above. Concretely, we will look
at models in which supersymmetry is either broken à la Scherk-Schwarz or at the string
scale M−1

s = 2π
√

α′. In both cases, the effects of supersymmetry breaking are controlled
by a (small) parameter, which allows us to obtain light towers of super-extremal species,
i.e. with masses (slightly) smaller than charges.

5.1 Kaluza-Klein towers in Scherk-Schwarz compactifications

A natural starting point is the simplest Scherk-Schwarz compactification of type IIB string
theory, where one reduces the theory on a circle with antiperiodic boundary conditions for
fermions. From a field theory analysis one can notice that supersymmetry is spontaneously
broken and that bosonic and fermionic Kaluza-Klein modes have different masses. This
can be confirmed in string theory by computing the torus partition function, T , whose
integral over the fundamental domain yields the one-loop spacetime vacuum energy. The
expression contains various sectors, as required by modular invariance, and (up to a prefactor)
it takes the form [74]

T = |V8 − S8|2
∑

m,n∈Z q
α′
4 (m

R
+ n

R̃
)2

q̄
α′
4 (m

R
− n

R̃
)2

ηη̄

+ |V8 + S8|2
∑

m,n∈Z(−1)mq
α′
4 (m

R
+ n

R̃
)2

q̄
α′
4 (m

R
− n

R̃
)2

ηη̄

+ |O8 − C8|2
∑

m,n∈Z q
α′
4

(
m
R

+
n+ 1

2
R̃

)2

q̄
α′
4 (m

R
− n

R̃
)2

ηη̄

+ |O8 + C8|2
∑

m,n∈Z(−1)mq
α′
4

(
m
R

+
n+ 1

2
R̃

)2

q̄
α′
4 (m

R
− n

R̃
)2

ηη̄
.

(5.1)

Here, the circle has radius R and its T-dual radius is given by R̃ = α′

R . The affine characters
O8, V8, S8, C8 are associated to the four conjugacy classes of the transverse isometry algebra
so(8), and correspond schematically to a scalar, a vector, and two spinors of opposite
chirality, while the lattice sums comprise Kaluza-Klein and winding modes indexed by m

and n. We omitted the remaining factors of ηη̄ arising from the bosonic oscillators in the
non-compact dimensions.

For sufficiently small radii, the O8Ō8 terms contain a level-matched tachyon, whose
corresponding squared mass for m = 0 and n = 0,−1 is given by

m2
tachyon = − 1

2α′ +
R2

16α′2 . (5.2)

However, we are interested in the large R limit, where this issue does not arise.10 In this limit
only the first and the second line of (5.1) keep a finite mass (for n = 0) due to the twist in the

10One subtle aspect of breaking supersymmetry is that R is not a proper modulus, and it is generically
subject to a force due to string-loop effects. Here we neglect this issue and focus on the nature of the light
tower of wrapped D-branes.
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winding modes. In particular, expanding the characters one sees that the bosonic combinations
V8V̄8 and S8S̄8 contain the projector proportional to (1 + (−1)m), and thus only states with
even m are kept. Similarly, the combinations which are fermionic in spacetime keep only
states with odd m. As a result, the Kaluza-Klein towers associated to massless states have
masses M = |m|

2R , with |m| = 2k or 2k+1 for bosons and fermions respectively so that one has

mk,bosons =
k

R
, mk,fermions =

k + 1
2

R
. (5.3)

As discussed before, compactifying on a circle introduces U(1) charges coupled to the
graviphoton, and one obtains extremal KK and winding towers, since the charge is the mass
itself. In order to obtain a shift between mass and charge, we consider D1-branes wrapped on
the circle, along the lines of [75]. Because of supersymmetry breaking the tension is corrected,
and for large radii R ≫

√
α′ the correction can be estimated as δTD1 ≃ − 1

2πR2 . The shift
in the mass mD1 = 2πRTD1 is thus additive and small in this limit, but the mass itself is
large relative to the 9d Planck scale, since it is proportional to R/gs.

In order to circumvent this issue and produce a tower lighter than the Planck mass,
we further compactify five dimensions on a square torus of radius L. The 4d Planck scale
is now MP ∝

√
M8

s RL5

g2
s

, and thus the ratio

mD1
MP

∝ (MsR)
1
2 (MsL)−

5
2

(
1 + gs

2π

δTD1
M2

s

)
(5.4)

is bounded as gs → 0. Taking for instance L = R ≫
√

α′ the correction δTD1 simplifies
as in [75], and thus

mD1
MP

∼ 1
M2

s R2

(
1− gs

4π2M2
s R2

)
. (5.5)

In the above expression, one can also read off the winding charge qD1 = 1
M2

s R2 , with respect to
which these states are super-extremal. Otherwise, one can also keep R string-sized (but still
above the tachyon threshold). In this case, the shift δTD1 is O(M2

s ) and can be numerically
extracted, for instance, from the tree-channel annulus amplitude Ã11 evaluated at zero
separation between the branes. In either case, there are also light extremal KK modes, and
for L = R ≫

√
α′ they are lighter than the wrapped D1-branes by a factor of gs

M2
s R2 . It

seems plausible that the correction to their masses due to supersymmetry breaking, if any,
be multiplicative rather than additive, since in the large-radius limit the effect ought to be
captured by a field theory analysis of gravitational interactions.

5.2 Non-supersymmetric brane configurations

In light of the emergent string conjecture [10, 76], which holds that the lightest towers of
species in string theory arise only as Kaluza-Klein towers or excitations of weakly coupled
strings, another interesting limit to consider is weak string coupling gs → 0 in (orientifold or
heterotic) models where supersymmetry is broken at the string scale. The simplest examples,
which have no tachyons in ten dimensions, are the Sugimoto [77] and Sagnotti [78, 79]
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orientifold models and the unique such heterotic model [80, 81]. These are characterized,
among other features, by an exponential potential,

δSSUSY-breaking = −M8
s

2

∫
d10x

√
−g T eχϕ, (5.6)

arising due to supersymmetry-breaking effects. Here, χ = −1 , 0 for the orientifold and
heterotic models (in string frame), encoding the leading contribution due to annulus and
torus amplitudes respectively.11 The fixed and calculable constant α′T is of order one, as
befits the breaking of supersymmetry at the string scale, but its precise value is irrelevant
for our purposes.

In such settings, weakly coupled (and possibly long-lived) vacua can be constructed [85]
with suitable brane configurations, and supersymmetry breaking can renormalize and decrease
the effective tension T of branes relative to their charge q [83, 86–88]. This renormalization is
multiplicative, of the form Teff = q/(1 + δ), rather than additive as in the preceding settings.
Specifically, the examples where the supersymmetry-breaking effects in the backreacted
geometries are known correspond to D1-branes and D3-branes in the orientifold models,
and NS5-branes in the heterotic model. For D1-branes and NS5-branes the multiplicative
shift is δD1 =

√
3
2 − 1 and δNS5 =

√
5
3 − 1 respectively, while for D3-branes one finds

δD3 ∝ g2
sN log u ≪ 1, which depends on the string coupling, the number N of D3-branes

sourcing the geometry, and the holographic coordinate u describing the transverse distance
to the sourcing stack (at least within the regime of validity of the EFT computation). As in
the preceding section, this means that compactifying to four dimensions on a square torus
of radius R ≫

√
α′ and wrapping D1-branes on a 1-cycle yields particles whose masses are

multiplicatively corrected according to

mD1
MP

∼
√

2
3

1
M2

s R2 =
√

2
3 qD1 . (5.7)

Without compactifying, examples of such constructions so far describe branes that are heavy
as gs → 0, which is not suitable for our purposes.

In order to see which objects become light in the limit of weak string coupling, let us
consider a charged probe p-brane with a generic string frame action

Sprobe = −T

∫
dp+1ξ

√
−g e−σ ϕ + q

∫
Cp+1, (5.8)

where the pullback to the worldvolume of the bulk fields is implicit. The coupling to the
dilaton ϕ is characterized by σ, which is 0 for F-strings, 1 for D-branes and 2 for NS-branes.
Passing to Einstein frame in d spacetime dimensions, the effective tension reads

Teff = T e(2 p+1
d−2−σ)ϕ , (5.9)

and thus, as gs = eϕ → 0, the brane is light whenever p + 1 > d−2
2 σ. Barring exotic

branes along the lines of [89–92], the only possibilities in d = 10 are F-strings and Dp-branes
with p > 3. In order to be able to obtain charged black holes in four or more extended

11For recent reviews of this and related aspects of non-supersymmetric models, see [82–84].

– 23 –



J
H
E
P
0
6
(
2
0
2
4
)
1
2
7

dimensions, the only possibilities left in these models are thus F-strings in the heterotic
model and D5-branes in either orientifold model. These are actually not included in the cases
listed above, but fortunately the effects of supersymmetry breaking are subleading in the
near-horizon limit for these objects [93]. Thus, one can still study the effective tension of
probe branes, organizing the expansion around an extremal solution with radius R (which
determines the ADM tension and charge) in powers of

ρ ≡ TR2gγ
s ≪ 1 , (5.10)

where γ = 3/2 (5/2) for the orientifold (heterotic) case is the Einstein-frame counterpart
of the exponent in (5.6).

Computing the leading corrections to the supersymmetric solution and the corresponding
potential felt by a probe, one obtains the following results from [93].

For D5-branes, it turns out that the probe potential vanishes even to linear order in the
supersymmetry-breaking parameter ρ. Therefore, the simplest setting left to consider is given
by F-strings in the heterotic model, where the leading corrections to their backreaction takes a
simple form [93]. The near-horizon backreacted geometry due to a stack of straight, coincident
and extremal F-strings in Einstein frame is corrected at leading order in ρ according to

ds2 =
[(

r

R

) 9
2
+ 107
8960 ρ

(
r

R

) 25
2
]

dx2
1,1+

[(
r

R

)− 3
2
− 45
8960 ρ

(
r

R

) 13
2
](

dr2+r2 dΩ2
7

)
, (5.11)

eϕ = gs

[(
r

R

)3
+ 356
8960 ρ

(
r

R

)11
]

, B2 =
√

gs

[(
r

R

)6
+ 9
224 ρ

(
r

R

)14
]

dx∧dt . (5.12)

Evaluating the Nambu-Goto action including the coupling to the B-field for an F-string
probing this background,

SF1 = − 1
2πα′

∫
d2x

√
−g e

ϕ
2 + 1

2πα′

∫
B2 , (5.13)

one obtains the leading-order potential

VF1 =
√

gs

2πα′ ρ

( 107
8960 + 1

2
356
8960 − 9

224

)(
r

R

)14
= −

√
gs

2πα′
15ρ

1792

(
r

R

)14
, (5.14)

where we highlighted the contributions from the metric warping, the dilaton and the B-field
in this order. This potential is repulsive, reflecting the fact that the effective tension-to-charge
ratio of the F-string due to the supersymmetry-breaking effects is renormalized to

(
T

q

)
eff

=
1 + 107

8960 + 1
2

356
8960

1 + 9
224

= 1849
1864 ≈ 0.99 . (5.15)

These strings can be wrapped on small cycles to give rise to slightly subextremal particles
with a multiplicative shift in the extremality ratio. In order to take into account the presence
of the dynamical tadpole, the simplest setting to consider is given by Dudas-Mourad vacua.
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5.2.1 F-strings in Dudas-Mourad vacua

According to the above results, one may be tempted to build quasi-extremal (species) black
holes using fundamental strings in the Sagnotti model. In order to produce black holes
rather than black strings, naively one ought to hide the spatial extent of the strings in some
internal dimensions. The presence of the dilaton tadpole makes it difficult to stabilize the
internal dimensions in a controlled fashion leaving an asymptotically flat extended spacetime.
However, there is a workaround, with the proviso of giving up parametric control globally.
The effective field equations with the inclusion of the tadpole potential (5.6) afford solutions
with flat spacetime fibered over an interval, along which the dilaton also runs. The simplest
solution of this type was found by Dudas and Mourad [94], and its dimensional reduction
over this interval was recently revisited in [95]. Similar solutions in lower dimensions, reduced
over tori, have been thoroughly analyzed in [96–98]. The simplest setting to obtain a black
hole in the nine-dimensional Dudas-Mourad reduction is simply to place the string along
the internal interval. However, the endpoints of the interval feature strongly coupled and/or
curved regions, and it is unclear to which extent these affect the reliability of the solution. For
instance, it has been argued that, while perturbatively stable, the Dudas-Mourad geometry
may be affected by strong-coupling instabilities due to the endpoints of the interval [99].
Another setup, which avoids placing the black string in the problematic region, involves
reducing the geometry (say on a torus) to four dimensions, wrapping the black string on
an internal cycle. This results in a black hole in a geometry fibered over an interval of
length proportional to g

−γ/2
s . Reducing to four external dimensions, this scenario would look

somewhat similar to black holes in the dark dimension, where the Dudas-Mourad interval
plays the role of the mesoscopic extra dimension. However, in this setting spacetime would
remain flat, and additional ingredients are required to produce a quasi-de Sitter scenario.

6 Conclusion

In this work, we extended the notion of species thermodynamics [11] along various directions.
First, by exploiting the N-portrait description of minimal black holes, we made the correspon-
dence between towers of species and minimal black holes more concrete. We started from the
case of neutral (uncharged) towers, such as KK towers originating from compactification on a
certain compact space. Here, we could show explicitly that counting the microstates of the
KK bound state precisely matches with the thermodynamic entropy of the corresponding
minimal black hole. It follows that the thermodynamic black hole relations between mass,
temperature and entropy are fulfilled for a tower of KK modes.12 Next we extended the
N-portrait picture for charged species and charged minimal black holes. With respect to the
uncharged case, the thermodynamic relations are modified, with the result the temperature
of charged, near-extremal species is suppressed compared to their neutral counter parts. This
has interesting consequence on the behavior of near-extremal towers of species in the early
universe. In particular, in an expanding universe charged species are more stable and do

12The question what kind of species tower satisfies thermodynamic black hole relations and an associated
bottom-up black hole derivation of the emergent string conjecture was recently investigated in more detail
in [12].
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Mass in 4d Planck units Mass-to-charge shift
D1 (Scherk-Schwarz) light additive, ≪ 1
F1 (heterotic) light multiplicative, ≈ 10−2

D1 (orientifold) light multiplicative, O(1)
NS5 (heterotic) heavy multiplicative, O(1)

Table 1. Comparison of various candidates for near-extremal species black holes in non-supersymmetric
string constructions. Our ideal target are particle-like light species with a parametrically small additive
shift in mass relative to the charge. The most promising candidate are wrapped D1-branes on large
circles in Scherk-Schwarz settings. Configurations of this type have soft supersymmetry breaking, but
also dynamical tadpoles.

not decay as fast as neutral species. In particular, we find a possible way to explain the
initial temperature of KK gravitons [41], as near-extremal black holes. In the last section we
considered how near-extremal species can possibly be obtained in string and brane construc-
tions with (spontaneously) broken supersymmetry. Concretely, we looked at KK species in
Scherk-Schwarz compactifications and at towers of species arising from various (wrapped)
strings and branes configurations in the non-supersymmetric and tachyonic-free orientifold
and heterotic models. These results are summarized in table 1.

Our findings can be extended along various directions. It would be important to improve
further the thermodynamic picture of species and see to what extent it can give a rationale
behind swampland conjectures, at the boundary but possibly even in the interior of the
moduli space, which remains far less explored. It would be also interesting to explore
the consequence of species thermodynamics in cosmology and possibly determine general
predictions of phenomenological interest from theoretical considerations. More quantitative,
it would be of clear importance to provide a concrete microscopic embedding of the scenarios
here investigated, also in relation to the Dark Dimension. We hope to come back to these
questions in the future.
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A Species entropy from graviton propagator

In this appendix, we provide a derivation of the species entropy which does not proceed
via black holes and it generalizes the known quantum field theory argument to the case of
a CFT which is not necessarily weakly interacting.

One of the standard arguments supporting the existence of a species scale Λsp < MP

makes use of perturbative quantum field theory. As reviewed for example in [24], by looking
at the corrections to the graviton propagator in a theory with Nsp scalars, one finds that the
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one-loop correction is of the same order as the tree level term when Λsp = MP /N
1

d−2
sp .13 This

argument typically relies on the species being weakly coupled to gravity but also amongst
themselves. We argue now that the latter assumption can be removed. At the same time,
within a CFT which is not necessarily weakly coupled, we will connect Nsp to the species
entropy introduced in [11].

Let us denote with hµν the linearized graviton and with Tµν the species stress tensor.
Assuming that the coupling hµνT µν is small (without imposing that species are weakly
interacting among themselves), we can compute the leading correction to the graviton
propagator. Second-order perturbation theory for gravitons reveals that such correction is
controlled by the Fourier transform F of the (Euclidean) matter correlator [100]

⟨Tµν(x)Tρσ(0)⟩ = πµνρσ
c(|x|)
|x|4

+ πµν πρσ
f(|x|)
|x|4

. (A.1)

Here c, f are dimensionless functions of their argument, while πµν ≡ ∂µ∂ν − δµν□ and
πµνρσ = 2πµνπρσ − 3(πµρπνσ + πµσπνρ) is the polarization tensor.

When contracting with external gravitons one can therefore focus on the first term,
and one obtains the relative correction

p2

M2
P

F
(

c(|x|)
|x|4

)
(p) , (A.2)

which, up to numerical factors, gives

p2

M2
P

∫ ∞

ϵ

dr

r
c(r) J1(|p|r)

|p|r
= p2

M2
P

∫ ∞

ϵ|p|

ds

s2 J1(s) c

(
s

|p|

)
, (A.3)

where J1 is the Bessel function of the first kind. Notice that we introduced an UV cutoff ϵ

which in principle may be identified with the species scale itself. More generally, the species
scale gives an upper bound on the ultraviolet cutoff of gravitational effective theories. For a
CFT c is a constant and, in the weakly coupled case, it reduces to Nsp at leading order.14

Expanding the integral (A.3) for small ϵ, we get schematically

p2

M2
P

c

∫ ∞

ϵ|p|

ds

s2 J1(s) ≃
p2

M2
P

c
(
const − 2 log(ϵ|p|) +O((ϵ|p|)2)

)
(A.4)

and by choosing ϵ ≃ 1/MP we reproduce the known term −c p2

M2
P

log p2

M2
P

[101]. By asking
that this be order one, namely comparable to the tree level term, one recovers the species
scale (or more precisely an upper bound), up to a multiplicative logarithmic correction whose
role is unclear. Since in no point we assumed the CFT to be weakly coupled, the above
calculation is valid also in the strongly coupled case where c is not necessarily Nsp. Rather,
the function in (A.3) can be interpreted as an effective number of (interacting) species Neff.

To make the connection with the species entropy [11], let us recall that in a CFT at a
temperature T and in a volume V the entropy is S ≃ c V T 3. Then, at the minimal volume

13If species are strictly massless, one finds also a multiplicative logarithmic correction whose role is unclear.
We believe that it is an artefact of the massless case and it shall not appear when species are massive [52].

14This case was actually already considered in [14].
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V ≃ Λ−3
sp and at the species temperature Tsp ≃ Λsp one finds Ssp ≃ c. This result thus

generalizes the expression for Λsp in terms of the number of species when their dynamics is
strongly coupled. However, the integral expression in (A.3) is more general and can take
into account massive towers of degrees of freedom as well, and may provide a more concrete
connection with the general proposal for the species scale away from weakly coupled limits.
Nevertheless, (A.3) gives different subleading corrections to the species scale for weakly
coupled species, which can be compared to the usual definition.

For instance, when considering critical type IIA string theory one has that the tree-level
contribution to c at weak string coupling is in fact the number of species Nsp ∼ g−2

s [15]. Then,
one can expect the presence of a subleading term at string one-loop. Including this correction,
c ∼ g−2

s + α for some constant α, and thus Λ−8
sp ∝ g−2

s + α in ten-dimensional Planck units.
By comparison with the expression proposed in [34, 35], Λ−6

sp ∝ g
−3/2
s + β g

1/2
s , one identifies

α = 4
3 β, with β = π2ζ(3)/3. However, the above definition of species scale could in general

differ from the one encoded in the typical higher-derivative corrections to the Einstein-Hilbert
term, where with typical we mean those corrections suppressed with Λsp in such a way to have
order-one Wilson coefficients. In general, some operators may have fine-tuned coefficients.
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