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Abstract
We present a neighbourhood-style semantic framework for modal epistemic logic
modelling agents who process information using relevant logic. The distinguishing
feature of the framework in comparison to relevant modal logic is that the environment
the agent is situated in is assumed to be a classical possible world. This framework
generates two-layered logics combining classical logic on the propositional level with
relevant logic in the scope of modal operators. Our main technical result is a general
soundness and completeness theorem.

Keywords Epistemic logic · Relevant logic · Neighbourhood semantics

1 Introduction

The paper [49] introduces a semantic framework for modal logics that combines
classical propositional logicwith relevantmodal logic. The frameworkgenerates logics
whose propositional fragment is classical and the modal monotonicity rule

ϕ→ ψ � �ϕ→ �ψ

is restricted: it holds only for formulasϕ→ ψ provable in a given relevantmodal logic,
not for all ϕ→ ψ provable in the “combined” logic itself. In a sense, relevant logic is
confined to the scope of modal operators. The framework models agents attentive to
relevance when deriving consequences from the information at their disposal without
dropping the assumption of classical epistemic logic that the environments these agents
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inhabit are classical possible worlds. This sort of combined epistemic logic goes back
to Levesque’s [32] combination of classical logic with First Degree Entailment.1

Although it is of independent technical interest to study how classical and non-
classical logics interact in a uniform framework, it is especially interesting from an
epistemological point of view to consider the specific non-classical case of relevant
logic.

Relevant logics arguably provide a formalisation of epistemic reasoning (cf. [11,
13])2 and the informational interpretation of Routley-Meyer models aptly describes
the complexity of inferential patterns which occur in epistemic contexts (cf. [35,
42, 58]). Moreover, the strengthening of relevant models allows one to characterise,
via frame correspondences, increasingly stronger epistemic closure principles (see
Fig. 1), thereby obtaining an extremely flexible framework which suitable for many
applications.

In a sense, the logics of [49] embody a version of Harman’s clutter avoidance prin-
ciple (cf. [29]) according to which agents should not clutter their mind with irrelevant
consequences of information they posses – if “irrelevant” is construed as “not fol-
lowing by relevant logic”.3 Two characteristic principles of the combined epistemic
logicsCL based on a relevant logic L of [49] are restrictedmonotonicity and conjunctive
regularity:

(�C) �CL (�ϕ ∧�ψ)→ �(ϕ ∧ ψ)

(�ML) �L ϕ→ ψ �⇒ �CL �ϕ→ �ψ

Although (�C) and (�ML) are not directly at odds with the clutter avoidance prin-
ciple, there are independent reasons to study relevant epistemic logics without these
principles.

Conjunctive regularity (�C) is based on the assumption, embodied in the standard
Kripke-style relational semantics for�, that the epistemic state of an agent consists of
a single set of states representing all the information available to the agent, aggregated
into one piece of information. However, there is ample evidence in the philosophy of
mind and formal epistemology literature that such a picture of epistemic states is too
coarse-grained since, for example, the “information utilizable by cognitive processes
is stored in distinct, independently accessible data structures” [7] (p. 80), and since
agents reason using distinct “frames of mind” [18].

1 In what follows, we use the term “epistemic” as broadly encompassing knowledge, belief, evidence etc.
2 Bílková et al. [11, 13] formulate relevant epistemic logics capturing the idea that the process of forming
beliefs based on various pieces of evidence is shaped by relevant logic. They use an existential relational
modality, which implies that the associated modality is monotonic. The propositional fragments of their
logics are relevant, not classical.
3 The intuitive link is provided by the variable sharing property of relevant logics, according to which
ϕ → ψ is provable in a relevant logic only if ϕ and ψ share at least one propositional variable. Some
cluttering is present in this framework as well, as witnessed by relevantly provable principles such as
ϕ → (ϕ ∨ ψ). It is an interesting topic for future research to develop a version of the framework of [49]
where relevant logic is replaced by Parry-style containment logics (cf. [23, 25, 40]) where ϕ → ψ is
provable only if all propositional variables occurring in ψ occur in ϕ.
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Failures of the monotonicity rule, and even its logic-restricted versions such as
(�ML), are motivated by considerations of justification-based belief (cf. [2]). One
may believe ϕ based on some justification s without having any justification at one’s
disposal for some ψ entailed by ϕ. Combinations of relevant and justification logic
were explored in e.g. [45, 56].

The above considerationsmotivate the generalization of the framework of [49] from
relational models to neighborhood models of relevant epistemic logic.

The distinctive feature of neighborhood semantics (cf. [14, 39]) for epistemic logics
is that an epistemic state is a set of sets of states, representing various independent
pieces of information available to the agent. The fact that the epistemic state is not
necessarily closed under intersections – which leads to failures of (�C) – means that
these pieces of information are not necessarily aggregated by the agent.4

The fact that the epistemic state is not necessarily closed under supersets – which
leads to the failure of (�ML) – implies that epistemic attitudes are not closed under
logical entailment.5

In the present paper, we develop a framework which combines reasons for studying
relevant epistemic logic with reasons for studying modal logics lacking (�C) and
(�ML). For the intuitive reasons sketched above, as well as for the sake of generality,
we do not assume any specific properties of neighborhoods. The characteristic modal
principle of the logics generated by the present framework is the restricted equivalence
principle

(�EL) �L ϕ ↔ ψ �⇒ �CL �ϕ ↔ �ψ.

Hence, we obtain hyperintensional6 epistemic logics where objects of epistemic atti-
tudes are relevant propositions – sets of states representing pieces of information that
are more fine-grained than classical propositions (sets of possible worlds). As usual
in neighborhood semantics, assuming specific properties of neighborhoods – such as
monotonicity or closure under intersections – leads to stronger logics, and the rela-
tional framework of [49] emerges as a special case. Our main technical result is a
modular soundness and completeness theorem encompassing a wide family of logics
combining relevant and classical modal logic.

4 A well-known application of neighborhood semantics avoiding closure under intersections is evidence
logic (cf. [8, 9]),modelling agents that form their beliefs based on evidence coming from a variety of sources.
Neighborhood structures have been fruitfully applied to the logic of linguistic, deontic and metaphysical
notions (cf. [14, 20, 34]). For recent applications in formal epistemology, see [28], where a neighborhood
semantics is provided for the conditional doxastic logic of [3]. Moreover, topological models (building on
the class of S4-neighborhood frames) are used in [4–6] to provide models of several epistemic notions and
their dynamics, such as infallible and defeasible knowledge, full and weak belief.
5 Standefer [54] puts forward a (non-monotonic) relevantmodal logic for tracking the reasons supporting the
agents’ evidence. The logic of “only knowing” of [33] (although in a relational setting) and the conditional
logic of [14, ch.10] (although based on classical logic) are other examples of frameworks employing a
non-monotonic modality.
6 We take a logic to be hyperintensional iff (�E) ϕ ↔ ψ � �ϕ ↔ �ψ does not preserve theoremhood
in the logic. We refer the reader to [48] for a general framework for hyperintensional modal logics and
an overview of the topic, and to [38, 55] for recent approaches to hyperintensionality in the context of
non-classical logics.
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Outline

The rest of the article is structured as follows. Section 2 recalls the neighborhood
semantics for relevant modal logics. Section 3 introduces our original extension of
relevant neighborhood semantics, based on so-called W -models of [49]. The crucial
feature of W -models is that they contain a set of possible worlds – states satisfying
specific frame properties that enforce classical behavior of implication and negation
– and that validity is defined as satisfaction in all possible worlds. In Section 4 we
prove our main technical result, the modular soundness and completeness theorem.
The proofs of some of our results are based on the arguments of [49], which we include
here for the sake of self-containment.

RelatedWork

The combination of relevant logic and classical logic has been studied in a number of
papers in recent years.

Meyer and Mares [37] add a distinguished set of possible worlds in the context of
Routley-Meyer semantics, where DeMorgan negation∼ behaves as Boolean negation
¬. Their resulting logic is an extension of the classical relevant logic CR and of the
classical modal logic S4. Compared to our framework, [37] does not provide a way to
reduce relevant implication and negation tomaterial conditional andBoolean negation.

Levesque [32] puts forward an epistemic logic combining classical logic with First
Degree Entailment FDE. The propositional fragment of his logic is classical and the
characteristic modal principle of the logic is monotonicity restricted to FDE. However,
given the restriction to FDE, a sensible relevant conditional connective is lacking.
Moreover, nesting of modal operators is not allowed in Levesque’s framework (the
latter restriction is lifted in [31]).

The framework of [49] can be seen as a generalization of Levesque’s framework
where FDE can be replaced by any of a wide family of relevant logics with relevant
conditional operators, and where nesting of modal operators is allowed. [50] adds to
the framework of [49] an important component of Levesque’s semantics – the means
to model implicit belief seen as closure of explicit belief under classical consequence.
The framework of [50] is close to the present semantics in that the set of logical states
L is present explicitly in frames and not defined using other means as in [49].

In [58], the framework of [49] is applied to the study of relevant evidence logic, led
by considerations of logical omniscience. Compared to the present framework, [58]
employs monotonic neighborhood models, it uses Fine’s non-standard but equivalent
semantics for relevant logic (cf. [24]), and it takes a subsystem of BM with truth
constants
,⊥ as the fixed underlying relevant logic. The present framework is more
general since it provides a modular characterisation of logics CL which are parametric
on a wider set of relevant logics L. The present framework is also more elegant since
the completeness proof does not rely on the presence of
,⊥ in the language. Hence,
the present paper may be seen as providing a more general framework for logics of
relevant evidence that the one in [58].

A generalization of [49] to a first-order setting was provided in [21]. A fully general
approach to neighborhood semantics for relevant modal first-order logic is undertaken
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in [22], where both the semantics for the modal operators and the ternary relational
semantics for propositional relevant logic are generalized to neighborhood semantics.
This allows one to characterize logics weaker than BM, one of the weakest relevant
logic complete with respect to Routley-Meyer frames considered in [49].

In [46, 47], combinations of classical propositional logic with relevant modal logic
based on relational semantics are studied. The semantics of [47] is two-sorted and
the Hilbert-style axiomatizations provided in the paper use a meta-rule of inference,
which is inconvenient if the underlying relevant logic is undecidable, which is often
the case. The semantics of [46] is one-sorted, thus more elegant, but the Hilbert-style
axiomatizations provided in that paper have two peculiar features: proofs are defined
in a non-standard way as pairs of finite sequences of formulas, and the completeness
proof relies on 
,⊥.

2 Neighborhood Semantics for Relevant Logic

In this section we introduce frame semantics for relevant modal logic based on neigh-
borhood structures. Our presentation in this section is based on Fuhrmann’s [26].
In Section 3.1 we will need to modify Fuhrmann’s approach so as to accommodate
possible worlds in neighborhood frames. We do so by introducing general bounded
structures for modal logic, as done in [51].

Definition 1 (Modal language) Let the modal language L be defined in BNF from a
denumerable set of propositional variables At , where p ∈ At , as follows:

ϕ ∈ L ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | �Lϕ | �ϕ

As usual, we abbreviate ϕ ↔ ψ := ϕ → ψ ∧ ψ → ϕ. & ,∀, ∃,⇒,⇔ will
denote conjunction, universal quantification, existential quantification, implication
and equivalence in the meta-language. The modality � denotes the salient epistemic
attitude, while themainmotivation for�L is technical – it internalises relevant validity
in the object language. However, it is possible to give�L a more substantive epistemic
reading (see [58] and the discussion in Section 3.1).

Frame semantics for substructural logics is based on partially ordered sets (S,≤).
Before defining more precisely the semantics for the modal language, we introduce
some compact notation for operations on partially ordered sets, by which we will be
able to encode each frame component’s monotonicity conditions with respect to ≤.

Definition 2 (Arrow notation) Let (S1,≤1) and (S2,≤2) be two partially ordered sets
and k1, . . . , kn, kn+1 ∈ {↓,↑}. An n-ary function f from (S1,≤1) to (S2,≤2) is said
to be of type k1 . . . kn �→ kn+1 iff:

∧

i≤n

(
si Zi ti

) �⇒ f (s1, . . . , sn)Zn+1 f (t1, . . . , tn)
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where Zi = ≤ in case ki = ↑ and Zi = ≥ in case ki = ↓. We denote as
S1(k1 . . . kn, S2(kn+1)) the set of n-ary functions from S1 to S2 of type k1 . . . kn . �→
kn+1.

As a special case, n-ary relations on (S,≤) are n-ary operations from (S,≤) to
T = ({true, false},�), where it is assumed that false � true. For example, S(↑, T (↑))
denotes the set of all subsets of S that are closed upwards under ≤; S(↓↑, T (↑))
denotes the set of binary relations on S that are anti-monotonic in the first position and
monotonic in the second position; and S(↑, S(↓)) denotes the set of anti-monotonic
unary functions on S. We will usually omit T (↑); hence S(↑)means S(↑, T (↑)). Note
that S1 and S2 need not be identical: for example S(↑,P(P(S))(↑))will denote the set
of monotonic functions f : (S,≤)→ (P(P(S)),⊆). Finally, if B is a binary relation
on S, then B(s) denotes the set {t | Bst}, and if X ⊆ S, then B(X) :=⋃

s∈X B(s).

2.1 Semantics of L-models

Definition 3 (Frame) A frame is a structure

F = (S, L,≤, R, ∗, N , NL )

where (S,≤) is a partially ordered setwith S non-empty, R ∈ S(↓↓↑),∗ ∈ S(↑, S(↓)),
N ∈ S(↑,P(P(S))(↑)), NL ∈ S(↓↑) and L ∈ S(↑) is such that:

∀s∃x(x ∈ L & Rxss) (1)

s ∈ L & Rstu ⇒ t ≤ u (2)

A model based on a frame F is a tuple M = (F, V ) where V : At → S(↑).
Definition 4 (Frame operations) For each frame F, we define the following operations
for all X ,Y ∈ S(↑):

X ∧F Y = X ∩ Y

X ∨F Y = X ∪ Y

X →F Y = {s | ∀t, u(Rstu & t ∈ X ⇒ u ∈ Y )}
¬FX = {s | s∗ /∈ X}
�FX = {s | NsX}
�F

L X = {s | ∀t(NLst ⇒ t ∈ X)}
Definition 5 (Interpretation) For each model M = (F, V ), the interpretation � �M :
L→ S(↑) is defined recursively such that �p�M = V (p) and:

�ϕ ∧ ψ�M = �ϕ�M ∧F �ψ�M

�ϕ ∨ ψ�M = �ϕ�M ∨F �ψ�M

�ϕ→ ψ�M = �ϕ�M →F �ψ�M
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�¬ϕ�M = ¬F�ϕ�M

��ϕ�M = �F�ϕ�M

��Lϕ�M = �F�ϕ�M

A formula ϕ is valid in a model M, written M |� ϕ, iff L ⊆ �ϕ�M ; a formula ϕ is
valid in a class of frames iff it is valid in each model based on a frame in the class.
The set of formulas valid in all models is denoted as BM.E.

In what follows we often write M, s |� ϕ instead of s ∈ �ϕ�M ; we omit reference
to M when it is clear from context; and we use the relational notation, writing NsX
instead of X ∈ N (s) for brevity.

Frames are partially ordered sets of information states, ordered by information
inclusion. That is, s ≤ t means that t contains at least as much information as s.
Information states, or situations, generalize possible worlds in that they are not closed
under the laws of classical logic. Notably, they may support classical contradictions
(may not support classical tautologies), i.e. we may have s |� ϕ ∧ ¬ϕ (s �|� ϕ ∨
¬ϕ), as both (none of) ϕ and its negation holds. However, it does not follow that
contradictory information leads to explosion, i.e. s �|� ϕ ∧ ¬ϕ → ψ . This feature
is due to the rich Routley-Meyer semantics for relevant logic, where negation and
implication are regarded as intensional modalities and are interpreted via suitable
accessibility relations.

The intensional treatment of negation is delivered by the Routley star function
∗, mapping any state s to its maximally compatible state s∗,7 while the intensional
treatment of implication is delivered by the ternary relation R. The introduction of
R lies at the heart of the initial motivation for relevant logics, since it allows one to
invalidate the so-called “paradoxes of strict implication” such as ϕ → (ψ → ψ).
In our epistemic setting, the informational interpretation of the semantics lends to a
reading of R in terms of information combination (cf. [15, 16, 46]). On this view, Rstu
means that “the combination of the pieces of information s and t (not necessarily the
union) is a piece of information in u” [16, p. 67] (see Section 3.1 for further discussion).

N (s), the neighborhood of s, contains the propositions in a fixed agent’s epistemic
state at s. Note that, according to neighborhood semantics, epistemic states consist of
distinct sets of information states, which correspond to distinct propositions agents
have epistemic access to. On the other hand, according to Kripke semantics epistemic
states consist of a single set of information states, which corresponds to the conjunction
of the propositions agents have epistemic access to.

To conclude the presentation of frames for relevant logics, L represents the special
subset of information states that carry logical information. This reading motivates the
plausibility of Conditions (1)–(2): according to (1), there is always a logical informa-
tion state such that its combination with s does not produce new information, while
according to (2) combining a logical information state with s does not result in loss of

7 Note that ∗ can be defined in terms of a compatibility relation C ∈ S(↓,↓) by setting s∗ = t ⇔
Cst & ∀t ′(Cst ′ ⇒ t ′ ≤ t). The existence of s∗ in the above definition of ∗ amounts to assuming that C is
serial and convergent. A more general semantics without these properties can be provided by using C as
negation’s accessibility relation.
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information. Together, Conditions (1)–(2) are sufficient for the validity of the semantic
deduction theorem (see Lemma 2). According to Lemma 2, logical states can be seen
as encapsulating informational links from premises to conclusions of relevantly valid
implications. Finally, NL is the accessibility relation associated with the interpretation
of �L . �L is a conjunctively regular modality which plays a fundamental technical
role in the presence of possible worlds (to be defined in Section 3). Since the tech-
nical role of �L will become clear after W -models are introduced, we postpone the
discussion of NL to Section 3.1.

We present below some well-known results for relevant modal logic. Lemma 1
holds thanks to the monotonicity properties of each accessibility relation and it gener-
alizes the definition of the valuation V to arbitrary formulas. As a result, propositions
expressed by formulas in relevant logic are closed under information containment.
Lemma 2 is crucial in proving soundness (see Theorem 2).

Lemma 1 (Heredity) For all models M, �ϕ�M ∈ S(↑).
Proof The proof, by induction on the complexity of ϕ, is a standard result of relevant
modal logic, and it exploits the interaction between the monotonicity conditions of
the frame components (see Definition 3) and the corresponding frame operations (see
Definition 4). ��
Lemma 2 (Verification) For all models M, M |� ϕ→ ψ iff �ϕ�M ⊆ �ψ�M .

Proof Assume s ∈ �ϕ� and s /∈ �ψ� for some s ∈ S. By (1) we have that there is t ∈ L
such that Rtss, by which we conclude that t �|� ϕ→ ψ . Conversely, assume for some
s ∈ L that s �|� ϕ→ ψ . Then there are t, u such that Rstu, t ∈ �ϕ� and u /∈ �ψ�. By
(2) we have that t ≤ u and by Lemma 1 we conclude that t /∈ �ψ�. ��

Our models are structures with extremely weak constraints, as we do not assume
anything besides the monotonicity condition on ∗, R and N .

A number of further assumptions can be imposed on ∗, which result in the validity of
stronger principles involving negation.While some conditions are naturallymotivated,
like s ≤ s∗∗, which yields the validity of ϕ → ¬¬ϕ, others are not well suited to
a relevant setting, a prominent example being s = s∗, which yields the validity of
ϕ ∧ ¬ϕ→ ψ .8 Further principles are examined in e.g. [10, 17].

Similarly, we can obtain stronger properties of information combination by
imposing further assumptions on R, as illustrated in Fig. 1, where we stipulate
R(st)uv := ∃x(Rstx ∧ Rxuv), Rs(tu)v := ∃x(Rtux ∧ Rsxv). Some conditions,
like weak commutativity (Rstu ⇒ Rtsu), idempotence (Rsss) and associativity
(R(st)uv ⇒ Rs(tu)v) have been advocated as characteristic of information com-
bination (cf. [57]). However, a precise stance on each frame condition concerning R
depends on the specific interpretation of information combination.9

8 In semantics using a compatibility relation C , ϕ→ ¬¬ϕ is valid iff C is symmetric, while ϕ∧¬ϕ→ ψ

is valid iff C is reflexive. Symmetric compatibility relations are widely used in frame semantics for relevant
logics with epistemic applications (cf. [13, 46]), while proximity (i.e. reflexive and symmetric) relations
are used in possibility semantics for orthologic (cf. [30]).
9 Different ways of combining information arise once we make distinctions in the types of information to
be combined. For example, we may distinguish between information in implicational form, programs, and
non-implicational information, data. Then, each of weak commutativty, idempotence and associativity can
fail depending on whether we combine data, programs or apply programs to data (cf. [52]).
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Fig. 1 Some prominent frame conditions with the corresponding axioms and rules

Finally, stronger epistemic properties can be obtained by imposing further con-
straints on N , two prominent examples being closure under information aggregation
and combination. The difference between the (classically indistinguishable) notions
of information aggregation and combination can be explained as follows in a rele-
vant setting. Aggregation is the epistemic action by which ϕ and ψ are conjoined
into ϕ ∧ ψ and, as [53] points out, it requires effort. That is, by the fact alone that
an agent bears distinct instances of a given epistemic attitude towards ϕ and ψ , it
does not follow that the agent bears a single instance of the given epistemic attitude
towards both of these propositions taken together.10 On the other hand, combination
is an epistemic action operated on the information carried by two propositions via
modus ponens, and it differs from aggregation in that the result of combination is
greater than the sum of the combined propositions (cf. [53] for a discussion). For-
mally, aggregation and combination are modeled in neighborhood structures by the
closure of N under finite intersection (NsX & NsY ⇒ Ns(X ∩ Y )) and merging
(Rstu, Ns(X → Y ), Nt X ⇒ NuY ).

10 An anonymous reviewer has pointed out that there is a tension between non-aggregative modal logics,
lacking (�C), and relevant logics, where the agents’ reasoning is closed under aggregation by virtue of
the adjunction rule ϕ, ψ � ϕ ∧ ψ . The tension is dissipated once it is noted that adjunction, as a rule of
inference, poses a stronger requirement than (�C) for aggregation, since ϕ and ψ must be theorems. Note
also that under some important respect relevant logic lacks aggregation in the form of adjunction, as one
might conceive of fusion ⊗ rather than external conjunction ∧ as the “right” conjunction for epistemic
contexts (cf. [52]).
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Figure 1 summarizes the discussion above, providing a table of correspondences
between some frame conditionswediscussed on information combination, compatibil-
ity and the neighborhood function on the one hand, and the axioms/rules characterising
the frame conditions on the other (in the precise sense defined by Theorem 1). For the
sake of generality, and in view of a flexible framework that could be adapted to the
specificmodeler’s purposes, we do not assume any such property but provide a charac-
terisation result of stronger logics via the method of frame correspondences. However,
since equivalent formulas express the same propositions in models, the equivalence
rule (�E) still preserves validity, i.e. � is non-hyperintensional.

2.2 Relevant Modal Axiom Systems

We now introduce the relevant axiom systems that will be considered throughout
the paper. As for the notation, we will use the terminology X.Y to indicate a system
containing X as a propositional subsystem and the modal principles contained in Y.

Definition 6 (Basic relevant modal axiom system) The axiom system BM.E consists
of the following axioms and rules of inference:

• The following axioms and rules of inference for BM:

(A1) ϕ→ ϕ

(A2) ¬(ϕ ∧ ψ)→ (¬ϕ ∨ ¬ψ)

(A3) (¬ϕ ∧ ¬ψ)→ ¬(ϕ ∨ ψ)

(A4) (ϕ ∧ ψ)→ ϕ

(A5) (ϕ ∧ ψ)→ ψ

(A6) ϕ→ (ϕ ∨ ψ)

(A7) ψ → (ϕ ∨ ψ)

(A8) ((ϕ→ ψ) ∧ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ))

(A9) ((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ)

(A10) (ϕ ∧ (ψ ∨ χ))→ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))

(R1) ϕ, ϕ→ ψ � ψ

(R2) ϕ, ψ � ϕ ∧ ψ

(R3) ϕ′ → ϕ, ψ → ψ ′ � (ϕ→ ψ)→ (ϕ′ → ψ ′)
(R4) ϕ→ ψ � ¬ψ → ¬ϕ

• The following axioms and rules of inference for the modalities �L ,�:

(�LC) �Lϕ ∧�Lψ → �L(ϕ ∧ ψ)

(�LM) ϕ→ ψ � �Lϕ→ �Lψ

(�E) ϕ ↔ ψ � �ϕ ↔ �ψ
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In general, if a relevantmodal logicL is defined as a set of formulas valid in all frames
satisfying a selection of frame conditions from Fig. 1, we will denote the selection of
the frame conditions as L-conditions and any model (frame) which satisfies a given
selection of L-conditions as an L-model (L-frame). For any relevant modal logic L, the
axiom system L is an extension of BM.E, obtained by adding to BM.E the axioms and
rules corresponding to the L-conditions according to Fig. 1.

For any axiomatic extension L of BM.E, let derivability in L of a formula ϕ from a
set � of formulas, written � �L ϕ, be defined as usual. Let ϕ be a theorem of L, written
�L ϕ, iff ∅ �L ϕ. The set of theorems of L is denoted as Th(L). An axiom system L′ is
an extension of an axiom system L iff all axioms of L are axioms of L′ and all inference
rules of L are inference rules of L′.

Despite the fact that our general level of analysis allows one to consider axiomatic
extensions of BM.E in a piecemeal fashion, it will be instructive to present here some
notable axiomatic extensions of our minimal system BM.E at the propositional level
discussed in the relevant logic literature (cf. [1, 44]). The propositional extensions are
obtained by adding to BM.E subsets of the propositional axioms and rules of Fig. 1.
In what follows we will adopt the convention of using the same label for axioms/rules
and their corresponding frame conditions, when no confusion arises.

B.E = BM.E+ (DNI)+ (DNE)

DW.E = B.E+ (CP)

TW.E = DW.E+ (B)+ (CB)

T.E = TW.E+ (WB)+ (X)+ (RD)+ (W)

E.E = T.E+ (ER)

R.E = E.E+ (C)

RM.E = R.E+ (M)

Similarly to the propositional case, several modal extensions of L.E, where L is
a propositional extension of BM, have been studied for different epistemic applica-
tions.11 The following are some notablemodal extensions of BM.E, obtained by adding
to BM.E subsets of the modal axioms and rules of Fig. 1. Note that (extensions of)
L.I and L.C are indistinguishable whenever L = CPC (where CPC can be obtained as
R+ ϕ→ (ψ → ϕ)), since �CPC (ϕ ∧ ψ → χ)↔ (ϕ→ (ψ → χ)).

L.M = L.E+ (�M)

L.I = L.M+ (�K)

L.C = L.M+ (�C)

L.R = L.M+ (�C)+ (�K)

11 For example, in [50] L.C is used to model relevant reasoning involving explicit belief, while according to
standard models of belief, its logic is in the vicinity of CPC.KD45 (cf. [3]). Moreover, CPC.S4 contains the
principles characterising the topological analysis of knowledge as the interior operator (cf. [4–6]), while in
most models of knowledge in the computer science and game theory literature, it is assumed that knowledge
is a CPC.S5-modality (cf. [36]).
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L.K = L.R+ (�N)

L.KD45 = L.K + (�D)+ (�4)+ (�5)

L.S4 = L.K + (�T)+ (�4)+ (�D)

L.S5 = L.S4+ (�5)

The axiom systems considered contain some redundancies (we refer the reader to
[12, 44] for a more extensive discussion of relevant axiom systems). Hence, we will
adopt the convention of denoting as L the smallest variant L′ of L such that L′ has the
same axioms as L and all inference rules of L are admissible in L′ (note that the rules
included in the definition of a system are trivially admissible in the system). We note
that (R4) is admissible in any extension L of BM.E containing (CP); (R3) is admissible
in any L containing (B) and (CB); and (ER) is admissible in any L containing (C).
Hence, in line with our convention, (R4) will not be considered as a basic rule of
DW.E (and its extensions) and (R3)will not be considered as a basic rule of TW.E (and
its extensions).

Theorem 1 (L-frame charecterisation) For all L-frames F, F satisfies the L-conditions
iff the corresponding axioms and rules are valid in F.

Proof See [26]. ��
Theorem 2 (L soundness and completeness) For each L, L = Th(L).

Proof See [26]. ��

3 Relevant Reasoners in a Classical World

We now introduce our semantics, based on so-called W -frames. Doing so requires
us to modify frames in three ways: (i) we consider general frames, restricting the
set of admissible propositions to a distinguished set Prop; (ii) we consider bounded
structures, with two distinguished information states, 1 and 0, representing the full
and the empty state respectively; (iii) we add a distinguished set of possible worlds.

3.1 W-models

Bounded general frames for modal logic were studied by Seki [51], and their intro-
duction in neighborhood models for relevant modal logic is a necessary requirement
for the definition of possible worlds, the main ingredient of W -models.

InW -models, the relevant architecture of models remains unchanged. In particular,
the semantic interpretation of formulas is still carried out by the frame operations
of Section 2.1. However, at possible worlds the interpretation of such formulas is
equivalent to the classical Boolean interpretation. Possible worlds, then, contain com-
plete and consistent information, as opposed to information states containing possibly
partial and contradictory information. The crucial feature of our framework is that
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while propositional formulas are interpreted classically at possible worlds, formulas
in the scope of modal operators are interpreted relevantly, since modal accessibil-
ity relations are allowed to reach information states other than possible worlds. We
then define validity to be truth at all possible worlds, so that classical logic provides
a sound and complete axiomatization of the modified semantics with respect to the
propositional fragment of L.
Definition 7 (W -frames) A W-frame is a structure

FW = (S,W ,Prop, L,≤, R, ∗, N , NL )

where:

• Prop ⊆ S(↑) is a set of admissible propositions such that X ∧FW Y , X ∨FW

Y , X →FW Y ,¬FW X ,�FW X , �FW
L X ∈ Prop whenever X ,Y ∈ Prop, where

∧FW ,∨FW ,→FW , ¬FW , �FW and �FW
L are as in Definition 4;

• (S, L,≤, R, ∗, N , NL ) is a frame,with the proviso that N ∈ S→ S(↑,P(Prop)(↑
));
• (S, L,≤, R, ∗, N ) is bounded, i.e. there are elements 0, 1 ∈ S such that, for all
s ∈ S, 0 ≤ s ≤ 1, and such that, for all s, t ∈ S, X ∈ Prop, the following are
satisfied:

1∗ = 0 (3)

0∗ = 1 (4)

N1X (5)

not N0X (6)

NL00 (7)

NLs1 (8)

NL1s ⇒ s = 1 (9)

R010 (10)

R1st ⇒ (s = 0 or t = 1) (11)

• W ⊆ S is a set of possible worlds, i.e. for all w ∈ W and s, t ∈ S the following
are satisfied:

w∗ = w (12)

Rwww (13)

Rwst ⇒ (s = 0 or w ≤ t) (14)

Rwst ⇒ (t = 1 or s ≤ w) (15)

NL(W ) = L (16)

A W-model based on FW is a tuple MW = (FW , V ) where V : At → Prop such
that 1 ∈ V (p) and 0 /∈ V (p) for all p ∈ Pr .
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Consistently with the notation of Section 2, we will denote any W -model MW

(W -frame FW ) which satisfies any selection of frame conditions of Fig. 1 as a CL-
model MCL (CL-frame FCL), with the proviso that X ,Y in the frame conditions are
now elements of Prop. Given the definition of N in W -frames, this proviso is in fact
relevant only in the context of conditions (�M) and (�N).

In our definition of CL-models, conditions (3)–(11) on bounded structures ensure
that L, R, ∗, N , NL continue to satisfy the required monotonicity conditions. Note
that, by (1), L is non-empty, which together with (16) implies that W is non-empty.

Possible worlds can be thought of as the context where the agents’ reasoning pro-
cess takes place and where they gather the information forming their epistemic state.
Alternatively, possible worlds can be thought of as maximally consistent information
states, or worldly-situations, thus obeying to classical logic.

Conditions (12)–(15) above ensure that propositional formulas are interpreted clas-
sically at worlds (see Lemma 6). Equation (12) ensures that worlds contain consistent
information; (13)–(15) express a maximality requirement for worlds combination, by
which no consistent information is lost nor gained by combining a world with itself.
Note that (14)–(15) are responsible for the rich semantic structures we need to employ,
as they provide a technical motivation for introducing the bounds 0 and 1. To see why
we need bounded structures, note that the simplified versions of Conditions (14)–(15),
i.e. Rwst ⇒ w ≤ t and Rwst ⇒ s ≤ w, are not be satisfied by the canonical CL-
model (to be introduced). As will be clear in Section 4.1, the culprits are to be found
in the empty and the full prime theory, respectively, which will be in the canonical
model exactly the bounds 0, 1.

Moreover, we restrict the set of admissible propositions to Prop ⊆ S(↑). The
restriction is characteristic of general frames, which are widely used in modal logics
(cf. [51]). The use of general frames simplifies completeness proofs, as they allow us
to have a uniform canonical model construction for a wide range of modal logics.12

It is interesting to note that we resort to general frames in our framework mainly for
technical reasons, as they are necessary in order for the completeness construction to
yield a CL-model. To see why we need general frames, note that the simplified version
of Condition (5), i.e. N1X for all X ∈ S(↑), is sufficient for Lemma 5 to hold, but is
not satisfied by the canonical CL-model.

Definition 8 (CL-Interpretation) For each CL-model MW = (FW , V ), the CL-
interpretation � �MW : L → Prop is defined recursively as in Definition 5 (using
the corresponding W -frames operations). A formula ϕ is valid in a CL-model MW ,
written MW |� ϕ, iff W ⊆ �ϕ�MW ; a formula ϕ is valid in a class of CL-frames iff it
is valid in each CL-model based on a CL-frame in the class. The set of formulas valid
in all CL-models is denoted as CL.

Definition 9 ((Classical) Consequence) A formula ϕ is a consequence of a set of
formulas � in a CL-model MCL, written � |�MCL ϕ, iff for all s ∈ S and ψ ∈ �,
MCL, s |� ψ only if MCL, s |� ϕ; a formula ϕ is a classical consequence of a set of

12 Cf. [14, p.258] and [39, p.66] for a completeness-via-canonicity argument where the choice of a sup-
plemented canonical model is essential to deal with logics containing (�M).
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formulas � in a CL-model MCL, written � |�c
MCL

ϕ, iff for all w ∈ W , MCL, w |� ϕ

if MCL, w |� ψ for all ψ ∈ �.

To conclude this section, we explain in what sense�L internalises relevant validity.
Having defined validity in CL-models as truth in all possible worlds, Condition (16)
implies that �Lϕ is true at all possible worlds iff ϕ is true at all the logical states.
That is, �Lϕ is valid in all CL-models iff ϕ is valid in all models. This observation,
together with Lemma 4 below, lends a more epistemically perspicuous reading of �L .
According to Lemma 4, the fact that ψ is a relevant consequence of ϕ means that,
according to any possible world the agent is situated in, the logical information at
their disposal supports ϕ → ψ . Given our informational interpretation of the ternary
relation R, we may analyse this as saying that, when an input ϕ is processed in a
logical context, the conclusion ψ is deducible. Pressing further on this point, we can
then analyse w |� �L(ϕ → ψ) as ψ being deducible in w from ϕ based solely on
logical information.

3.2 Properties of CL-models

CL-models exhibit some interesting features of both classical and relevant logic. For a
start, modified versions of Lemmas 1 and 2 (the former restricting the heredity lemma
to admissible propositions, the latter exploiting Condition (16)) hold. Lemma 5, which
relies on Conditions (3)–(11), shows that 0 and 1 are the full and the empty state.
These lemmas are necessary to show Lemma 6, according to which negation and
implication at possible worlds are semantically equivalent to Boolean negation and
thematerial conditional. As a consequence, we are able to show that in CL-models� is
a hyperintensional operator, which is nonetheless semantically closed under relevant
equivalence (Proposition 1). Lemma 10, prepared by Lemmas 7-9, shows how to
construct CL-models from L-models, a fundamental fact to establish completeness.
Finally, Proposition 2 shows that neighborhood semantics constitutes a generalisation
of relational semantics for modal logic.

Lemma 3 (CL-heredity) For all CL-models MW and all ϕ ∈ L, �ϕ�MW ∈ Prop.

Proof By induction on the complexity of ϕ. The base case follows immediately from
the definition of V , while the induction step is established by noting that Definition 7
requires that Prop be closed under the CL-frame operations. ��
Lemma 4 (CL-verification) For all CL-models MW and all ϕ,ψ ∈ L, MW |�
�L(ϕ→ ψ) iff �ϕ�M ⊆ �ψ�M.

Proof The following chain of equivalences holds: W ⊆ ��L(ϕ→ ψ)� iff NL(W ) ⊆
�ϕ→ ψ� iff (by (16)) L ⊆ �ϕ→ ψ� iff (by Lemma 1) �ϕ� ⊆ �ψ�. ��
Lemma 5 (Full/empty states) For all CL-models MW and all ϕ ∈ L:
1. MW , 1 |� ϕ;
2. MW , 0 �|� ϕ.
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Proof By simultaneous induction on the complexity of ϕ. The base case holds by
definition of V in MCL. The cases of ϕ := ψ ∧ χ , ϕ := ψ ∨ χ are trivial.

• ϕ := ¬ψ . 1 |� ¬ψ iff 1∗ �|� ψ iff, by (3), 0 �|� ψ which holds by the induction
hypothesis; 0 �|� ¬ψ iff 0∗ |� ψ iff, by (4), 1 |� ψ which holds by the induction
hypothesis.
• ϕ := ψ → χ . 1 |� ψ → χ iff R1st s |� ψ implies t |� χ , for all s, t such
that. Hence, assume s |� ψ . By (11), either s = 0 or t = 1. If s = 0 then by the
induction hypothesis s �|� ψ , which is a contradiction. Therefore t = 1, by which
we conclude, using the induction hypothesis, that t |� χ . 0 �|� ψ → χ iff s |� ψ

and t �|� χ , for some s, t such that R0st . This holds by (10) and the induction
hypothesis, setting s = 1 and t = 0.
• ϕ := �Lψ . 1 |� �Lψ iff s |� ψ , for all s such that NL1s – which holds since
s = 1 by (9) and 1 |� ψ by the induction hypothesis. 0 �|� �Lψ iff s �|� ψ ,
for some s such that NL0s – which holds by (7) and the induction hypothesis by
setting s = 0. ϕ := �ψ . 1 |� �ψ iff N1�ψ�, which holds by (5) and Lemma 3.
0 �|� �ψ holds since by (6) not N0�ψ�.

��
Lemma 6 (Classical connectives) For all CL-models MCL and all w ∈ W, the follow-
ing hold:

1. MCL, w |� ¬ϕ iff MCL, w �|� ϕ;
2. MCL, w |� ϕ→ ψ iff MCL, w �|� ϕ or MCL, w |� ψ .

Proof Item 1 follows from w = w∗. The left-to-right implication of Item 2 follows
from Rwww. The right-to-left implication is established as follows. Assume Rwst
and s |� ϕ. If w |� ψ , then by (14) s = 0 or w ≤ t . The former contradicts s |� ϕ by
Lemma 5; hence w ≤ t , by which we conclude that t |� ψ . If w �|� ϕ, then by (15)
t = 1 or s ≤ w. If the latter, then by Lemma 3 s �|� ϕ, which is a contradiction; hence
t = 1, by which we conclude by Lemma 5 that t |� ψ . ��

Thanks to the above lemma and the definition of validity in CL-models, (�E) does
not preserve validity in CL-models, i.e. � is a hyperintensional modality. As clarified
by the counterexample provided in Proposition 1, this is because two formulas ϕ and
ψ may be true at the same possible worlds but not at the same information states in a
CL-model. Note that, by Proposition 1, the problem of logical omnisicence (cf. [19]
for details) is avoided with respect to classical consequence (Item 1), while � is still
closed under relevant equivalence (Item 2).

Proposition 1 (Closure properties) For all CL-models MCL and all ϕ,ψ ∈ L, the
following hold, where �� = {�γ | γ ∈ �}:
1. � |�c

MCL
ϕ �⇒ �� |�c

MCL
�ϕ;

2. ϕ ↔ ψ |�MCL �ϕ ↔ �ψ .

Proof Item 1 is established by the following counterexample to the stronger claim
that (�E) preserves validity in CL-models. To this aim, consider the formulas ¬p ∨ q
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and p → q, which are true in the same possible worlds for all CL-model MCL.
Then, take the CL-model MCL with S = {w, s, t}, W = {w}, s∗ = t , t∗ = s,
t /∈ V (p), s ∈ V (p), s /∈ V (q), t /∈ V (q), N (w) = {{s}} and Rsss (the remaining
components can be specified so that MCL is indeed a CL-model). In MCL, we have
that w |� �(¬p ∨ q), since Nw{s} = �¬p ∨ q�, but w �|� �(p → q), since NwX
only if X = {s}, but s �|� p → q. Hence, we conclude that ��ϕ� �= ��ψ�. Item 2
follows by the fact that, for all CL-models MCL and s ∈ S, �ϕ�MCL = �ψ�MCL implies
Ns�ϕ�MCL iff Ns�ψ�MCL . ��

It is easy to see that for every L and every CL-model MCL, there is an L-model M ′
such that whenever MCL |� �Lϕ we have that M ′ |� ϕ. In particular, it suffices to
“forget” about bounds and W , and to take full general frames, i.e. such that Prop =
S(↑).

The converse operation, passing from L-models to CL-models, however, is less
straightforward. To illustrate the procedure, we define, for any L-model M, a function
+ : M �→ M+ as follows:

Definition 10 (+ construction) Let M = (S, L,≤, R, ∗, N , NL , V ) be a model. Then,
let the structure

M+ = (S+,W , Prop, L+,≤+, R+, ∗+, N+, N+L , V+)

be defined as follows for all p ∈ At :

• S+ = S ∪ {w, 0, 1};
• W = {w};
• Prop = {X | X ∈ S+(↑) & X �= ∅};
• L+ = L ∪ {w, 1};
• ≤+ = ≤ ∪ {(w,w)} ∪ {(s, 1) | s ∈ S+} ∪ {(0, s) | s ∈ S+};
• R+ = R ∪ {(w,w,w)} ∪ {(0, s, t), (s, 0, t), (s, t, 1) | s, t ∈ S+};
• ∗+ = ∗ ∪ {(w,w)} ∪ {(0, 1), (1, 0)};
• N+ = {(s, X) | s ∈ S & X ∈ Prop & Ns(X ∩ S)} ∪ {(1, X) | X ∈ Prop}
∪ {(w, X) | w ∈ X ∈ Prop};
• N+L = NL ∪ {(w,w)} ∪ {(w, s) | s ∈ L} ∪ {(s, 1) | s ∈ S+} ∪ {(0, s) | s ∈ S+};
• V+(p) = V (p) ∪ {1}.
Note that N+(0) = ∅. Wewould also like to point out that (i) N+wX iffw ∈ X and

(ii)w ∈ L+ are assumed in order to make sure that (�T), (�N) and (ER), respectively,
are preserved. Instead of usingmultiple definitions of M+ depending on the properties
satisfied by M, we chose to build (i) and (ii) into Definition 10 from the outset even
though they are not necessary in some cases.

The+ function transforms an L-model M into a CL-model M+ such that for every
invalid formulaϕ inM,�Lϕ is invalid inM+ (Lemma10).Aswewill see in Section 4,
this semantic result is crucial in proving Lemma 11. The proof requires a number of
preliminary results, showing respectively that M+ is aW -model (Lemma 7), and that
satisfaction (Lemma 8) and all CL-frame conditions (Lemma 9) are preserved by the
+ function.
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Lemma 7 For all BM.E-models M, M+ is a W-model.

Proof We show (i) that (S+,≤+) is a partially ordered set; (ii) that R+, L+, N+, N+L
respect the corresponding monotonicity conditions; (iii) that Prop is closed under the
frame operations of F+, the frame underlying M+; and (iv) that conditions (3)–(16)
are satisfied so that M+ is bounded and w is a possible world. (i) and (ii) can be
established by inspection of the definition of M+. We show that N+ satisfies the
monotonicity condition. Assume that s ≤+ t . If s = 0 or t = 1, then we are done. If
s = 1, then t = 1 and we are done. If t = 0, then s = 0 and we are done. If s = w,
then t ∈ {w, 1} and we are done in both cases; if t = w, then s ∈ {0, w} and we are
also done. The remaining case implies that s, t ∈ S and s ≤ t . If X ∈ N+(s), then
Ns(X ∩ S). By monotonicity of N in the original model M we have Nt(X ∩ S), and
so N+t X by definition of N+. Given the definition of Prop, (iii) follows from (ii). (iv)
can be established by inspection of the definition of M+. ��
Lemma 8 For all s ∈ S and all ϕ ∈ L, M, s |� ϕ iff M+, s |� ϕ.

Proof Theproof is by induction on the complexity ofϕ. The base case and the induction
steps where the main connective is ∧,∨ are trivial.

• ϕ := ¬ψ . The following chain of equivalences holds: M, s |� ¬ψ iff M, s∗ �|� ψ

iff M+, s∗+ �|� ψ (by the induction hypothesis and the fact that if s ∈ S, then
s∗ = s∗+ ) iff M+, s |� ¬ψ .
• ϕ := ψ → χ . If M, s �|� ψ → χ , then there are t, u ∈ S such that Rstu, M, t |�

ψ and M, u �|� χ . By R ⊆ R+ and the induction hypothesis we have that R+stu,
M+, t |� ψ and M+, u �|� χ , by which we conclude that M+, s �|� ψ → χ .
Conversely, if M+, s �|� ψ → χ , then there are t, u ∈ S+ such that R+stu,
M+, t |� ψ and M+, u �|� χ . By definition of R+, either t = 0 or u = 1 (which
are ruled out by Lemma 5), or t, u ∈ S, in which case Rstu and soM, s �|� ψ → χ

by the induction hypothesis.
• ϕ := �Lψ . If M, s �|� �Lψ , then M, t �|� ψ for some t such that NLst . By

NL ⊆ N+L and the induction hypothesis we have that N+L st and M+, t �|� ψ , by
which we conclude that M+, s �|� �Lψ . Conversely, if M+, s �|� �Lψ , then there
is t such that N+L st and M+, t �|� ψ . By definition of N+L we have that either t = 1
(which contradicts Lemma 5) or t ∈ S, in which case NLst and M, s �|� �Lψ by
the induction hypothesis.
• ϕ := �ψ . If M, s |� �ψ , then Ns�ψ�M . By the induction hypothesis, Lemmas 5
and 7, �ψ�M+ ∈ {�ψ�M ∪ {1}, �ψ�M ∪ {w, 1}}. In both cases, N+s�ψ�M+ by
the definition of N+, which means that M+, s |� �ψ . Conversely, if M+, s |�
�ψ , then N+s�ψ�M+ . By the induction hypothesis, Lemmas 5, and 7, �ψ�M+ ∈
{�ψ�M ∪ {1}, �ψ�M ∪ {w, 1}}. In both cases, Ns�ψ�M by the definition of N+,
which means that M, s |� �ψ .

��
Lemma 9 if M is an L-model, then M+ is a CL-model.

Proof We show that the frame conditions of Fig. 1 are preserved through the ( )+
construction, i.e. each frame condition holds in (the frame underlying)M+whenever it
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holds in (the frame underlying) M. For all conditions, we distinguish cases depending
on whether a state belongs to S or to {w, 0, 1}. All the cases up until (�M) are
established in [49]. We repeat the proofs here for the sake of self-containment.

• (DNI). Assume (DNI) hold in M. To show that (DNI) holds in M+, take s ∈ S+.
If s ∈ S we are done by R ⊆ R+ and s∗ ∈ S. If s ∈ {w, 0, 1}, we are done by
definition of ∗+. The cases (DNE) and (RD) are established similarly
• (X). Assume that (X) holds in M. To show that (X) holds in M+, assume s ∈ L+.
If s ∈ L then (X) holds by L ⊆ L+ and the fact that (X) holds in M. If s = w

(s = 1) (X) holds since w∗ = w ≤+ w (1∗ = 0 ≤+ 1).
• (CP). Assume that (CP) holds inM. To show that (CP) holds inM+, assume R+stu.
If s ∈ S, then either t, u ∈ S and we are done by R ⊆ R+, or t = 0 or u = 1. In
both cases, R+su∗+ t∗+ follows from the definition of ∗+ and R+. If s /∈ S, then
we reason by cases as follows. If s = 0, then we are done since R+0xy for all
x, y. If s = w, then either t = u = w and we are done, or t = 0 or u = 1. In the
latter two cases, we can reason as in the case s ∈ S above. Finally, if s = 1, then
t = 0 or u = 1 and we can reason as in the case s ∈ S again.
• The cases concerning (B), (CB),(W),(C),(WB) follow the same strategy, hence we
show the details only for (B). Assume that (B) holds in M and that R+st x, R+xuv.
To show that (B) holds in M+, we need to show that there is y such that
R+tuy, R+syv. Let T = {s, t, u, v, x}. First, if T ⊆ S, then Rstx and Rxuv

and so we are done, since (B) holds in M and R ⊆ R+. Second, if 1 ∈ T or 0 ∈ T ,
then we distinguish three cases:

1. If 0 ∈ {s, t, u} or v = 1, then we are done. (For instance, if s = 0, then R+s1v
and R+tu1; the other cases are similar.)

2. If x = 0, then by (11) either s = 0 or t = 0 and we are in case 1. If x = 1,
then by (11) either u = 0 or v = 1; in both cases we are in case 1. We will use
(11) without explicit reference below.

3. If s = 1, then t = 0 (case 1) or x = 1 (case 2). If t = 1, then s = 0 (case 1) or
x = 1 (case 2). If u = 1, then x = 0 or v = 1 (case 2). If v = 0, then x = 0
(case 2) or u = 0 (case 1).

Third, if T ⊆ S ∪ {w}, then we are either in case 1 or T = {w}. In the latter case,
set y = w and we are done. These three groups of cases exhaust all possibilities.
• (M). Assume that (M) holds in M. To show that (M) holds in M+, assume R+stu.
If s ∈ S, then either t, u ∈ S and we are done by R ⊆ R+ and ≤ ⊆ ≤+, or t = 0
or u = 1. In the former case, t ≤+ u and in the latter case s ≤+ u. If s = 0, then
s ≤+ u. If s = w, then either t = u = w and we are done, or t = 0 or u = 1
which is dealt with as above. If s = 1, then t = 0 or u = 1 which is dealt with as
above.
• (ER). Assume that (ER) holds inM. To show that (ER) holds inM+, assume s ∈ S+.
If s ∈ S, then by (ER) in M there is x ∈ L such that Rsxs, and so R+sxs by
R ⊆ R+. If s ∈ {w, 0, 1}, then R+sws, and by definition of L+ we have that
w ∈ L+.

We now move to the modal frame conditions.
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• (�M). Assume that (�M) holds in M. To show that (�M) holds in M+, assume
N+sX and X ⊆ Y for X ,Y ∈ Prop. The case s = 0 is ruled out by the definition
of N+. If s = 1, then trivially N+sY . If s = w then by N+wX we have that
w ∈ X and by X ⊆ Y we have that w ∈ Y , hence N+wY . Finally, if s ∈ S, then
we reason as follows. N+sX means that Ns(X∩S). Since X ⊆ Y and (�M) holds
in M, we have Ns(Y ∩ S) and so N+sY by the definition of N+ and Y ∈ Prop.
• (�N). Assume that (�N) holds in M. To show that (�N) holds in M+, assume
s ∈ L+ ⊆ X for X ∈ Prop. If s = 1 or s = w, then trivially N+sX . If s ∈ S,
then s ∈ (L+ ∩ S) ⊆ (X ∩ S). Since (�N) holds in M and L+ ∩ S = L we have
Ns(X ∩ S), and so N+sX .
• (�C). Assume that (�C) holds in M. To show that (�C) holds in M+, assume

N+sX , N+sY for X ,Y ∈ Prop. If s = 1 then trivially N+s(X ∩ Y ). If s = w,
then by definition of N+ we have that w ∈ X and w ∈ Y , hence w ∈ X ∩ Y ,
by which N+s(X ∩ Y ). Finally, if s ∈ S, then by N+sX and N+sY we have
Ns(X ∩ S) and Ns(Y ∩ S). Since (�C) holds in M, we have Ns(X ∩ Y ∩ S).
Since X ,Y ∈ Prop, we have X ∩ Y ∈ Prop and so N+s(X ∩ Y ) by the definition
of N+.
• (�K). Assume that (�K) holds in M. To show that (�K) holds in M+, assume

R+stu, N+s(X →F+ Y ) and N+t X for X ,Y ∈ Prop. If s = 0, t = 0 or u = 1
we are done by definition of N+. If s = 1 by definition of R+ either t = 0 or
u = 1, and we are done. If s = w then either t = 0, u = 1 (and we are done)
or t = u = w. In the latter case, by N+wX and N+w(X →F+ Y ) we have
that w ∈ X →F+ Y and w ∈ X . By R+www then w ∈ Y , and so N+wY .
If s, t, u ∈ S, then we reason as follows. By N+s(X →F+ Y ), N+t X and the
definition of N+ we have Ns(X ∩ S →F Y ∩ S) and Nt(X ∩ S). It is easily
checked that (X →+ Y ) ∩ S = (X ∩ S)→ (Y ∩ S) if N+t X . Since (�K) holds
in M, we have Nu(Y ∩ S) and so N+uY by the definition of N+. The remaining
cases reduce trivially to the above.
• (�T). Assume that (�T) holds in M. To show that (�T) holds in M+, assume

N+sX for X ∈ Prop. Then, s = 0 is ruled out by assumption. If s = w, w ∈ X
by definition of N+. If s = 1, then 1 ∈ X by X ∈ Prop ⊆ S+(↑) and X �= ∅.
Finally, if s ∈ S, then by N+sX we have Ns(X ∩ S). Since (�T) holds in M we
have s ∈ X ∩ S and so s ∈ X .
• (�D). Assume that (�D) holds in M. To show that (�D) holds in M+, assume and

N+s¬F+X for X ∈ Prop. Then s = 0 is ruled out by assumption. If s = 1 then
(�D) trivially holds. If s = w then by definition of∗+ N+w∗+¬F+X . By definition
of N+ w ∈ ¬F+X and by definition of ∗+ w∗+ = w /∈ X , so not N+w∗+X .
Finally, if s ∈ S we reason as follows. By definition of N+ and ∗+ N+s¬F+X
means that Ns¬F(X ∩ S). Since (�D) holds in M we have not Ns∗(X ∩ S), and
so not N+s∗+X .
• (�4). Assume that (�4) holds in M. To show that (�4) holds in M+, assume

N+sX for X ∈ Prop. Then, s = 0 is ruled out by assumption. If s = 1 then
(�4) trivially holds. If s = w, then the assumption w ∈ {t | N+t X} implies
N+s{t | N+t X}. If s ∈ S, by N+sX we have Ns(X ∩ S). Since (�4) holds in M
we have that Ns{t ∈ S | Nt(X ∩ S)}, and so N+s{t | N+t X}.
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• (�5). Assume that (�5) holds in M. To show that (�5) holds in M+, assume not
N+s∗+X for X ∈ Prop. If s ∈ {w, 0, 1}, we reason as in the case of (�4). If s ∈ S,
then we reason as follows. By definition of ∗+ and N+, not N+s∗+X means that
not Ns∗(X∩S). Since (�5) holds in M we have that Ns{t ∈ S | not Nt∗(X∩S)},
and so N+s{t | not N+t∗+X}.

��
Lemma 10 (L to CL) For each L-model M there is a CL-model M ′ such that, for all
ϕ ∈ L, if M ′ |� �Lϕ, then M |� ϕ.

Proof For all BM.E-models M, if M �|� ϕ, then there is s ∈ L such that M, s �|� ϕ.
Then, (i) by Lemma 7 there is a CBM.E-model M+ and (ii) by Lemma 8 M+, s �|� ϕ.
Then, (iii) by construction of M+, s ∈ N+L (W ), hence M+, w �|� �Lϕ, by which we
conclude that M+ �|� �Lϕ. Finally, by Lemma 9 steps (i)-(iii) can be performed for
all L-models. ��

We conclude this section with an observation making precise in which sense the
family of logics considered in [49] constitutes a subclass of that considered in the
present framework.We refer the reader to [50] for the definition of relationalW -models
and denote BM.C the class of all relational W -models. We recall that a neighborhood
function N is augmented iff for all s ∈ S (i) X ⊆ Y , X ∈ N (s) ⇒ Y ∈ N (s) and
(ii)

⋂
N (s) ∈ N (s). We denote with BM.Ea the set of formulas valid in allW -models

such that N is augmented.

Proposition 2 (Neighborhood-relational) BM.Ea = BM.C.

Proof Virtually as in [39]. For any BM.C-model M = (S,W , L,≤, R, ∗, Q, NL , V )

(where Q ⊆ S(↓↑) is the �-accessibility relation) we let N (s) = {X | Q(s) ⊆
X} and Prop = S(↑) define the BM.Ea-model such that M ′ = (S,W ,Prop, L,≤
, R, ∗, N , NL , V ) that M, s |� ϕ ⇔ M ′, s |� ϕ. Conversely, for any BM.Ea-model
M = (S,W ,Prop, L,≤, R, ∗, N , NL , V ) we let Q(s) = {t | t ∈⋂

N (s)} define the
BM.C-model M ′ = (S,W , L,≤, R, ∗, Q, NL , V ) such that M, s |� ϕ ⇔ M ′, s |� ϕ

(note that V , Q in M ′ are well defined since Prop ⊆ S(↑)). ��

4 Axiomatisation

In this section, we introduce the axiom systems for CL, the logic of agents reasoning
according to the relevant logic L while being situated in a classical world. We show
how L and CL interact, in the form of meta-rules, via the �L modal operator. Finally,
we prove the main result of the paper, a modular soundness and completeness theorem
for CL, for any axiom system L of Section 2.2, with respect to the class of CL-models.

4.1 The Axiom System CL

Definition 11 (�L versions) Let the�L -version of an axiom ϕ (rule ϕ1, . . . , ϕn � ψ)
be obtained by prefixing the axiom (each of the premises and conclusion of the rule)
with �L , i.e. �Lϕ (�Lϕ1, . . . ,�Lϕn � �Lψ).

123



I. Sedlár and P. Vigiani

Definition 12 (Axiom system) Let L be the axiom system for one of the relevant modal
logics discussed in Section 2.2. We define CL as the axiom system comprising:

1. An axiom system CPC for classical propositional logic with (R1);
2. The �L -version of each axiom and rule of inference of L;
3. The Bridge Rule (BR) �L(ϕ→ ψ) � ϕ→ ψ .

Theorem 3 (Soundness) For all L and all ϕ, if ϕ ∈ Th(CL), then ϕ ∈ CL.

Proof By induction on the length of CL-proofs, where we use Lemma 4 without men-
tioning it explicitly. As in previous proofs, we will write �ϕ� instead of �ϕ�MCL if MCL
is clear from the context.

• All axioms (rules) of CPC are valid (preserve validity) in all CL-frames thanks to
Lemma 6.
• The The fact that �L -versions of propositional L-axioms are valid is established
as follows. A formula �Lϕ is valid in a CL-model MCL iff NL(W ) ⊆ �ϕ�, which
by (16) means that L ⊆ �ϕ�. For propositional L-axioms ϕ, the latter is shown as
usual in relevant logic (cf. [44]).
• The fact that �L -versions of propositional L-rules of inference preserve validity
in CL-models is established similarly. As an illustration we show the case for �L -
(ER). Assume that�Lϕ is valid inMCL; we need to show that�L((ϕ→ ψ)→ ψ)

is valid in MCL. To show this, assume that W ⊆ ��Lϕ�MCL and pick w ∈ W ,
s, t, u ∈ S such that NLws, Rstu and t ∈ �ϕ → ψ�. We need to show that
u ∈ �ψ�. By (16) we have that s ∈ L and by (2) we have that t ≤ u, hence by
Lemma 3 we have that u ∈ �ϕ → ψ�. By (ER), we have that Ruxu for some
x ∈ L . Then, since l ∈ �ϕ� for all l ∈ L by the first assumption and (16), we
conclude that u ∈ �ψ�.
• The cases corresponding to the �L -versions of the modal axioms and rules are
established as usual in modal relevant logic (cf. [26]) thanks to Lemma 4. As an
illustration, we show the case of �L -(�D).13 Assume that s ∈ ��¬ϕ� for some
arbitrary s ∈ S. We may reason as follows: Ns�¬ϕ� entails Ns¬�ϕ�which entails
that it is not the case that Ns∗�ϕ� (using (�D)) which entails s∗ /∈ ��ϕ� which
entails s ∈ �¬�ϕ�. Hence, ��¬ϕ� ⊆ �¬�ϕ�, which entails that �L(�¬ϕ →
¬�ϕ) is valid by Lemma 4.
• Finally, the fact that (BR) preserves validity is established as follows. Assume

w |� �L(ϕ → ψ) for all w ∈ W . By Lemma 4 we have that �ϕ� ⊆ �ψ�. Hence,
w |� ϕ only if w |� ψ for all w ∈ W . By (6) we conclude that w |� ϕ → ψ for
all w ∈ W .

��
Lemma 11 (L-CL meta-rule) For all L, the following hold:

1. �L ϕ ⇐⇒ �CL �Lϕ;
2. �L ϕ ↔ ψ �⇒ �CL �ϕ ↔ �ψ .

13 This case slightly differs from the one discussed in [26] since there a different frame condition is assumed
to correspond to the axiom �¬ϕ→ ¬�ϕ.
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Proof The left to right implication in item 1 is established by induction on the length
of L-proofs. If ϕ is an L-axiom, then �Lϕ is a CL-axiom by definition of CL. If ϕ is
obtained by applying an L-inference rule to premises ϕ1, . . . , ϕn , then by the induction
hypothesis we have that �CL �Lϕ1, . . . ,�CL �Lϕn . Hence, using the �L -version of
the rule, we may infer �CL �Lϕ. Conversely, if �L ϕ, then M �|� ϕ for some L-
model M. Then, by Lemma 10 there is a CL-model M ′ such that M ′ �|� �Lϕ and by
Theorem 3 we conclude that �CL �Lϕ. Item 2 follows from (�E), item 1, (�LM) and
(BR). ��

It is crucial to note that the converse direction of the meta-rules from the following
proposition does not hold. Note also that an immediate consequence of Lemma 11 is
that �L ϕ → ψ implies �CL ϕ → ψ , by the presence of (BR) in CL. In fact, we can
establish a more general result that illustrates the relationship between L and CL.

Proposition 3 (Bridge) For all L not containing (�N), the following hold:

1. �L ϕ �⇒ �CL ϕ;
2. �CL �Lϕ �⇒ �CL ϕ.

Proof Item 1 is established by induction on the length of L-proofs.

• All implicational axioms of L are provable in CL by Lemma 11 and (BR).14 (X)

is provable in any CL since the propositional fragment of each L is included in
CPC. The cases of the induction step corresponding to rules with implicational
conclusions are established using Lemma 11 and (BR).
• The case corresponding to (R1) is established using the induction hypothesis and
the fact that (R1) is also an inference rule of CL.
• The case corresponding to (R2) is established using the induction hypothesis and
the fact that �CPC ϕ→ (ψ → (ϕ ∧ ψ)).
• The case corresponding to (�E) is established as follows. We assume that (�ϕ→

�ψ) ∧ (�ψ → �ϕ) is the last formula of an L-proof that contains also (ϕ →
ψ) ∧ (ψ → ϕ). By Lemma 11 (item 1), �CL �L((ϕ → ψ) ∧ (ψ → ϕ)), and so
�CL �L((�ϕ→ �ψ)∧(�ψ → �ϕ)) using�L -(�E). Since�CL �L(χ∧χ ′)→
�Lχ (using (�LM), Lemma 11 and (BR)) and CL is closed under conjunction
elimination, we infer that �CL �L(�ϕ→ �ψ) and �CL �L(�ψ → �ϕ). Hence,
(BR) allows us to infer that �ϕ → �ψ and �ψ → �ϕ are both provable in CL,
which means that �CL �ϕ ↔ �ψ .

Item 2 follows from item 1 and Lemma 11. ��

We note that (�N) is problematic: ϕ is not necessarily an implication, so we can
not use Lemma 11 and (BR); using induction hypothesis gives us only�CL ϕ and using
only Lemma 11 gives us �CL �Lϕ, from which we can infer only that �CL �L�ϕ

using �L -(�N).

14 The fact that propositional L-axioms are provable in CL follows from the fact that they are theorems of
CPC. However, L contains also modal axioms which require an argument using Lemma 11 and (BR).
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4.2 Completeness

In order to obtain a completeness result forCLwith respect toCL-models via a canonical
model construction, we introduce some standard definitions and preliminary results.

Definition 13 (Theories) Let (C)L ∈ {L,CL}. A (C)L-theory is any set � of formulas
such that (i) ϕ ∈ � and ψ ∈ � only if ϕ ∧ψ ∈ �; and (ii) if ϕ ∈ � and �(C)L ϕ→ ψ ,
then ψ ∈ �. A (C)L-theory � is prime iff ϕ ∨ ψ ∈ � only if ϕ ∈ � or ψ ∈ �;
proper iff � �= L; regular iff Th((C)L) ⊆ �. A pair of sets of formulas (�,�) is
(C)L-independent iff there are no finite non-empty sets �′ ⊆ � and �′ ⊆ � such that
�(C)L

∧
�′ →∨

�′.

Recall that a proper prime CL-theory is non-empty iff it is regular, and that � is
a regular proper prime CL-theory iff it is a maximally CL-consistent theory (that is,
a proper CL-theory such that ϕ /∈ � entails that the theory generated by � ∪ {ϕ} is
non-proper).

Lemma 12 (Extension Lemma) For all L:

1. If (�,�) is L-independent, then there is a prime L-theory � such that � ⊆ � and
� ∩� = ∅;

2. If (�,�) is CL-independent and both � and � are non-empty, then there is a
non-empty proper prime CL-theory � such that � ⊆ � and � ∩� = ∅.

Proof Item (1) is established as follows. If � = ∅, then let � := ∅. If � �= ∅ and
� = ∅, then let � := L. If both � and � are non-empty, then use the standard “prime
extension” argument (cf. [43, Theorem 5.17]). Item (2) is established similarly (note
that � needs to be proper if � �= ∅). In fact, this is the well-known Lindenbaum
Lemma. ��

Definition 14 (Canonical model) The canonical CL-frame is the structure

Fc
CL = (Sc,Wc,Propc, Lc,≤c, Rc, ∗c, Nc, Nc

L)

where:

• Sc is the set of all prime L-theories, where 0 := ∅ and 1 := L;
• Wc is the set of all non-empty proper prime CL-theories;
• Propc = {[ϕ]L | ϕ ∈ L} for [ϕ]L = {s ∈ Sc | ϕ ∈ s};
• Lc is the set of all regular prime L-theories;
• ≤c is set inclusion;
• Rcstu iff ∀ϕ,ψ , if ϕ→ ψ ∈ s and ϕ ∈ t , then ψ ∈ u;
• s∗c = {ϕ | ¬ϕ /∈ s};
• Ncs[ϕ]L iff �ϕ ∈ s;
• Nc

Lst iff, ∀ϕ, �Lϕ ∈ s only if ϕ ∈ t .

The canonical CL-model is Mc
CL = (Fc, V c) where V c(p) = [p]L.
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The canonical frame is well defined. First, Wc ⊆ Sc since every CL-theory is an
L-theory by Lemma 11 (item 1) and (BR). Second, the neighborhood function Nc is
well defined since [ϕ] = [ψ] iff �L ϕ ↔ ψ . This equivalence follows easily from the
definition of an L-theory and Lemma 12. In particular, [ϕ] = [ψ] only if �L ϕ ↔ ψ ,
which entails �L �ϕ ↔ �ψ by (�E), which entails [�ϕ] = [�ψ].

Note the similarities between the definition of Mc
CL and the canonical L-model of

e.g. [26, 27]. In what follows we omit the superscript from Mc
CL ([ϕ]L) whenever the

context allows us to do that.

Lemma 13 (Canonical Prop) For all f ∈ {∧,∨,¬,→,�,�L },

f F
c
W ([ϕ1], . . . , [ϕn]) = [ f (ϕ1, . . . , ϕn)] .

Proof The lemma is established by a standard case-by-case argument encountered in
the relevant logic literature; cf. [22, 26, 43]. We give the argument for two cases as an
illustration. First, s ∈ ¬FW [ϕ] iff (by definition of ¬FW ) s∗ /∈ [ϕ] iff ϕ /∈ s∗ iff (by
definition of ∗) ¬ϕ ∈ s iff s ∈ [¬ϕ]. Second, s ∈ �FW [ϕ] iff Ns[ϕ] (by definition of
�FW ) iff �ϕ ∈ s (by definition of N ) iff s ∈ [�ϕ]. ��

Weproceed to show that Mc
CL is aCL-model whenever the underlying axiom system

is L. This requires a number of preliminary lemmas.

Lemma 14 Mc
CL is based on a bounded general frame.

Proof It suffices to show the following:

• Prop ⊆ S(↑) and Prop is closed under FW ’s frame operations. This holds by
definition of [ϕ] and ≤c, and by Lemma 13.
• FW is based on a frame. This is established by combining standard arguments
pertaining to canonical models from the relevant modal logic literature (cf. [22,
26, 43], for instance). As an illustration, we show that N ∈ S(↑,P(Prop)(↑)).
Assume for some arbitrary s, t ∈ S and X ∈ Prop that s ⊆ t and NsX . Then for
some ϕ we have that X = [ϕ]. By Ns[ϕ], we have that �ϕ ∈ s and by s ⊆ t we
have that �ϕ ∈ t , hence Nt[ϕ].
• The conditions on bounds are satisfied, which is established as follows. 0 ≤ s ≤ 1
holds since ∅ ⊆ s ⊆ L. Equations (3)–(4) hold since 1∗ = {ϕ | ¬ϕ /∈ 1} = ∅ = 0
and 0∗ = {ϕ | ¬ϕ /∈ 0} = L = 1. To show that (5)–(6) hold, note that, by
X ∈ Prop, there is ϕ such that X = [ϕ]. By definition of FW , we have that
�ϕ ∈ 1 (�ϕ ∈ 0) for all (no) ϕ, hence we conclude using the definition of N that
N1X (N0X ) for all (no) X . Equations (7)–(8) follow easily from the definition
of NL and 0, 1. To show that (9) holds, assume by contradiction that NL1s for
some s �= 1. Hence, there is ϕ /∈ s, by which we conclude by definition of NL

that �Lϕ /∈ 1, which is a contradiction. Equation (10) follows easily from the
definition of R and 0, 1. Equation (11) holds since, if R1st and, by contradiction,
s �= 0 and t �= 1, then there is ϕ ∈ s and ψ /∈ t such that ϕ → ψ ∈ 1, which
contradicts R1st .

��
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Lemma 15 Wc is a set of possible worlds.

Proof We show that Fc
W satisfies conditions (12)–(16).

• Equation (12) holds since non-empty proper prime CL-theories are maximal CL-
consistent theories, and so ϕ ∈ s iff ¬ϕ /∈ s.
• Equation (13) follows from �CPC (ϕ ∧ (ϕ→ ψ))→ ψ .
• Equation (14) is established as follows. Assume for some arbitrary w ∈ W and
s, t ∈ S that Rwst and s �= 0; we have to prove that w ⊆ t . Thus assume for
some arbitrary ϕ,ψ that ϕ ∈ w and ψ ∈ s. Since �CPC ϕ → (ψ → ϕ), we have
that ψ → ϕ ∈ w, and so ϕ ∈ t by the definition of R. Since ϕ was arbitrary, we
established that w ⊆ t .
• Equation (15) is established as follows. Assume for some arbitrary w ∈ W and
s, t ∈ S that Rwst and t �= 1; we have to prove that s ⊆ w. Hence, assume by
contradiction for some arbitrary ϕ ∈ s that ϕ /∈ w. Hence, since w is maximal
we have that ¬ϕ ∈ w and by t �= 1 we have that ψ /∈ t for some ψ . Since
�CPC ¬ϕ → (ϕ → ψ), we have that ϕ → ψ ∈ w, and so we conclude that
ψ ∈ w using the definition of R. But this is a contradiction.
• Equation (16) is established as follows. First, to show that NL(W ) ⊆ L , take
some arbitrary s /∈ L . Hence, ϕ /∈ s for some ϕ ∈ Th(L). By Lemma 11 we
have that �CL �Lϕ, hence �Lϕ ∈ w for all w ∈ W , which implies that there is
no w ∈ W such that NLws. To prove that L ⊆ NL(W ), assume that s ∈ L . If
s = 1, then there is w ∈ W such that NLws by (8), the fact that CL is consistent
(by Theorem 3), and Lemma 12(item 2). If s �= 1, then we reason as follows. The
pair

(
Th(CL), {�Lϕ | ϕ /∈ s}) contains non-empty sets and is CL-independent. If

it were not, then

– �CL ∨
i<n �Lϕi for some n > 0, hence

– �CL �L
∨

i<n ϕi by �CL �Lϕ ∨�Lψ → �L(ϕ ∨ ψ), hence
– �L ∨

i<n ϕi by Lemma 11, hence
–

∨
i<n ϕi ∈ s since s ∈ L , which entails that

– ϕi ∈ s for some i < n since s is prime.

This is a contradiction, so the pair has to be CL-independent. It follows from the
Extension Lemma 12 that there is a non-empty proper prime CL-theory w such
that NLws.

��
Lemma 16 If L is obtained by adding a set of axioms and rules X from Fig. 1 to BM.E,
then the frame conditions corresponding to X hold in Fc

W .

Proof This claim is established by combining standard canonicity arguments found in
the literature on relevant modal logic; cf. [22, 26, 43]. ��
Lemma 17 (Canonical model) For all L, Mc

CL is a CL-model.

Proof By Lemma 14, MCL is based on a bounded general frame. By Lemma15W ⊆ S
is a set of possible worlds. By Lemma 16 that for each frame condition 	 in Fig. 1
corresponding to specific axioms or rules of L, 	 holds in FW . This concludes the
proof. ��
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Lemma 18 (Truth) For all L and all ϕ ∈ L, Mc
CL, s |� ϕ iff ϕ ∈ s.

Proof By induction on the complexity of ϕ. The base case follows from the definition
of V c and the induction step follows from Lemma 13. ��
Theorem 4 (Soundness and Completeness) For all L, T h(CL) = CL.

Proof One direction is Theorem 3, the other one follows from Lemmas 17 and 18. ��

5 Conclusion

In this article we developed a neighborhood-style semantic framework for modal
epistemic logics capturing the idea that objects of epistemic attitudes are fine-grained
relevant propositions that are individuated using relevant logic instead of classical
logic. At the same time, the propositional fragment of the logics generated by our
framework is classical. Hence, these logics are combinations of classical and relevant
logic where the latter is confined to the scope of modal operators. Our main technical
result is a modular soundness and completeness theorem covering a wide range of
logics. The semantic framework presented here generalizes the relational semantic
framework of [49].

Interesting problems for future research include the development of multi-agent
extensions of our logics with group operators for common and distributed epistemic
modalities and different forms of dynamic updates, in the style of [41].
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