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36University of Mississippi, University, Mississippi 38677, USA
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45INFN Sezione di Pisaa; Dipartimento di Fisica,
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Using a sample of (470.9 ± 2.8) × 106 BB pairs, we measure the decay branching fraction
B(B0

→ D∗−π+π−π+) = (7.26± 0.11 ± 0.31) × 10−3, where the first uncertainty is statistical and
the second is systematic. Our measurement will be helpful in studies of lepton universality by mea-
suring B(B0

→ D∗−τ+ντ ) using τ+
→ π+π−π+ντ decays, normalized to B(B0

→ D∗−π+π−π+).
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PACS numbers: 13.20.He, 14.40.Nd

The BABAR Collaboration measured the branching
fraction ratios for B semileptonic decays to D and D∗

R(∗) =
B(B → D(∗)τ−ντ )

B(B → D(∗)ℓ−νl)
, (1)

where ℓ− is an electron or a muon, to be in excess
of standard model (SM) predictions [1]. The use of
charge conjugate reactions is implied throughout this
article. After combining the results for R and R∗,
the excess is inconsistent with lepton universality at
the 3.4σ level. The Belle Collaboration [2] and the
LHCb Collaboration [3] conducted similar measure-
ments with comparable results. A measurement of
B(B0 → D∗−τ+ντ ) using τ+ → π+π−π+ντ decays,
normalized to B(B0 → D∗−π+π−π+), may yield the ob-
servation of a further deviation from the SM. Such a mea-
surement has not been done before and may make use of
a clean kinematic signature. This possibility relies in part
on a measurement of B(B0 → D∗−π+π−π+), for which
the current world average value is (7.0± 0.8)× 10−3 [4].
The LHCb Collaboration measured this value to be
(7.27± 0.11(stat.)± 0.36(syst.)± 0.34(norm.))×10−3 [5],
where the final uncertainty is due to using B0 → D∗−π+

decays for normalization purposes. This measurement
has not been included in the world average value as
yet. In this article, we report on a measurement of
B(B0 → D∗−π+π−π+).
We use data recorded with the BABAR detector at the

PEP-II asymmetric-energy e+e− collider at SLAC. The
BABAR detector is described in detail elsewhere [6, 7].
The data sample corresponds to an integrated luminosity
of 424.2± 1.8 fb−1 collected at the Υ (4S) resonance [8],
which corresponds to the production of (470.9±2.8)×106

BB pairs. We use Monte Carlo (MC) simulations to
understand background processes and signal reconstruc-
tion efficiencies. The EvtGen event generator [9] is used
to simulate particle decays. This includes a sample of
e+e− → qq(γ) events, where q is a u, d, s, or c quark,
with an equivalent luminosity of 2,589 fb−1 and a sam-
ple of 1, 427 × 106 BB pairs. The detector response is
simulated with the Geant4 [10] suite of programs.
We fully reconstruct the B0 → D∗− π+ π− π+ decay

chain by adding the four-momenta of particle candidates.
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The D∗− mesons are reconstructed in the D∗− → D0π−

and D0 → K+π− final states. A D0 candidate is recon-
structed from two charged-particle tracks, of which one is
identified as a K+ meson based on information obtained
using the tracking and Cherenkov detectors. We require
D0 candidates to have an invariant-mass value within
±20MeV/c2 of the nominal D0 mass [4], which corre-
sponds to 3 standard deviations in its mass resolution.
Each D0 candidate is combined with a charged-particle
track with momentum less than 0.45GeV/c in the e+e−

center-of-mass (CM) frame to form a D∗− candidate. We
require the difference between the reconstructed mass of
the D∗− candidate and the reconstructed mass of the D0

candidate to lie between 0.1435 and 0.1475GeV/c2. The
D∗− candidate is combined with three other charged-
particle tracks to form a B0 candidate. We do not explic-
itly apply particle identification to select charged pions,
but assign the pion mass hypothesis to all tracks other
than the K+ daughter of the D0. All other reconstructed
tracks and neutral clusters in the event are collectively re-
ferred to as the rest of the event (ROE). We use a neural
network classifier [11] to suppress non-BB backgrounds.
The classifier makes use of nine variables, each of which
is calculated in the CM frame:

• the cosine of the angle between the B0 candidate’s
thrust axis [12] and the beam axis;

• the sphericity [13] of the B0 candidate;

• the thrust of the ROE;

• the sum over the ROE of p, where p is the magni-
tude of a particle’s momentum;

• the sum over the ROE of 1
2 (3 cos

2 θ − 1)p, where θ
is the polar angle of a particle’s momentum;

• the cosine of the angle between the thrust axis of
the B0 candidate and the thrust axis of the ROE;

• the cosine of the angle between the sphericity axis
of the B0 candidate and the thrust axis of the ROE;

• the ratio of the second-order to zeroth-order Fox-
Wolfram moment using all reconstructed particles
[14];

• the cosine of the angle between the thrust axis cal-
culated using all reconstructed particles and the
beam axis.

Each of these nine variables contributes to separating B0

decays from non-BB decays. We apply a selection on
the output of the neural network classifier that rejects
69% of reconstructed signal candidates from non-BB de-
cays, and retains 80% of correctly reconstructed B0 can-
didates. Finally, we require the B0 candidate to have a
CM frame energy within ±90MeV of

√
s/2, where

√
s
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FIG. 1: (color online) The mES distribution of B0 candidates
for data (points), MC simulations (histograms), and the un-
binned extended-maximum-likelihood fit to the data (curves).
The MC distributions are shown as stacked histograms. The
B0

→ D∗−D+
s with D+

s → π+π−π+ decays are part of the
MC signal. The MC signal contribution is normalized such
that its stacked histogram has the same integral as the data.
The components of the MC simulations and the fit are de-
scribed in the legend. The mES peak of the MC signal is
slightly above that of the data. This shift has a negligible
effect on the signal yield.

is the nominal invariant-mass of the initial state. This
corresponds to 4 standard deviations in the energy reso-
lution. We retain all B0 candidates that pass our selec-
tion criteria instead of selecting a best candidate for each
event. In MC-simulated signal and background events
that have at least one B0 candidate passing all selection
criteria, there are on average 1.57 and 1.37 B0 candidates
per event, respectively. We do not apply corrections to
the number of B0 candidates per event, as the B0 candi-
date multiplicity in data is consistent with the weighted
average of those in the signal and background simulation.

After applying all selection criteria, we determine the
energy-substituted mass mES =

√

s/4− p2
B

for the se-
lected B0 candidates, where pB is the CM-frame mo-
mentum of a B0. Figure 1 shows the mES distribution
for the data and for MC-simulated events. The mES dis-
tribution of correctly reconstructed signal candidates has
a peak near the B0 mass.

The mES distribution of signal events is modeled using
a Crystal Ball [15] probability density function (PDF),
with cutoff and power-law parameters determined using
MC-simulated events. We consider only B0 candidates
that are correctly reconstructed. We model the back-
ground mES distribution as follows. The non-peaking
backgrounds from e+e− → qq(γ) events and from BB
pairs are modeled using an ARGUS function [16]. Each of
the peaking backgrounds from B+B− and B0B0 is mod-
eled by a Gaussian distribution for which the normaliza-
tion, mean, and width, are determined by a fit to the cor-
responding simulated event sample. We perform a one-

dimensional unbinned extended-maximum-likelihood fit
in order to estimate the number of signal candidates.
We allow the mean and width parameters of the Crys-
tal Ball function, the curvature parameter of the ARGUS
function, and the normalization of the non-peaking back-
ground, to vary in the fit. The cutoff parameter for the
ARGUS function is fixed to

√
s/2, and the peaking back-

ground PDF shapes and normalizations are fixed to their
MC-estimated values. The peaking background contribu-
tions are estimated to be 590± 120 and 1450± 130 can-
didates from B+B− and B0B0 decays, respectively; some
originate from signal decays where one or more pion is
misreconstructed even when there is a correctly recon-
structed B0 candidate. There is also a contribution from
B+ → D∗−X and B0 → D∗−X decays, where X denotes
any combination of π and ρ mesons other than ρ0π+ or
π+π−π+. The fit to the mES distribution shown in Fig. 1
results in a signal yield of 17800± 300.

The distribution for the MC signal peaks 0.2 MeV/c2

higher in mES value than the data. This arises from a
value of the simulated B0 mass that is different from
that found in Ref. [4]. We weight the simulated events
in order to match the data mass peak and we repeat the
measurement of the simulated efficiencies for the signal
and the peaking background. The change is negligible
and produces a negligible correction on the branching
fraction measurement.

We define the signal region to be
5.273 < mES < 5.285 GeV/c2, and a sideband region to
be 5.240 < mES < 5.270 GeV/c2. About 97.6% of signal
events are contained within the signal region. To obtain
the 3π invariant mass distribution for the signal events
in Fig. 2, we subtract the events in the sideband region
of the mES in Fig. 1, normalized to the fitted background
component in the signal region, from the total 3π mass
distribution. By integrating the dashed line in Fig. 1, we
obtain 68883 events in the sideband-region and 24427
background events in the signal region. These values
make use of the peaking background estimates described
in the previous paragraph.

As expected from the branching fractions in Ref. [4],
the main contribution comes from a+1 (1260) decays, and
a contribution from the decay D+

s
→ π+π−π+ is also

apparent. There is as well activity in the 1.7–1.9 GeV/c2

region, which may be due to the JP = 0− π(1800) meson.
The analysis of the a+1 region is complicated and will be
the subject of a separate study.

The D+
s

events result from the doubly-charmed decay
B0 → D∗−D+

s in which the D+
s decays weakly to π+ π−

π+. Since the D+
s

decay results from an entirely differ-
ent B0 decay mode, it represents a contamination of our
D∗−π+π−π+ sample. We remove theD+

s
contribution by

subtracting the events in the 1.9–2.0 GeV/c2 region of the
3π invariant-mass distribution of Fig. 2 that exceed the
interpolation of the bin contents in the 1.8–1.9 GeV/c2

and 2.0–2.1 GeV/c2 regions. The removed D+
s

contri-
bution amounts to 233 ± 63 events, and the remaining
events in the 1.9–2.0 GeV/c2 region total 326± 35.
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FIG. 2: The background-subtracted invariant-mass spectrum
of the 3π system. The indicated mass value of the a+

1 is
obtained from Ref. [4]. The B0

→ D∗−D+
s , D+

s → π+π−π+

decay, which is removed in the final result, is visible in the
spectrum. The spectrum is obtained prior to the efficiency
correction. The inset shows the distribution around the D+

s

region.

TABLE I: Summary of systematic uncertainties. The uncer-
tainties are assumed to be uncorrelated, and so are added in
quadrature.

Source Uncertainty (%)
Fit algorithm and peaking backgrounds 2.4
Track-finding 2.0
π+π−π+ invariant-mass modeling 1.7
D∗− and D0 decay branching fractions 1.3
Υ (4S) → B0B0 decay branching fraction 1.2
K+ identification 1.1
Signal efficiency MC statistics 0.9
Sideband subtraction 0.7
BB counting 0.6
Total 4.3

We estimate the reconstruction efficiency as a function
of 3π invariant-mass using MC-simulated events. This is
shown in Fig. 3. Since we model the mES PDF of the
signal only considering B0 candidates that are correctly
reconstructed, we apply exactly the same procedure of
determining the signal yield in our study of the recon-
struction efficiency in order to determine the branching
fraction correctly. The efficiency of the decay channel
D∗−a+1 , where the a+1 decays to ρ0π+ and the ρ0 to
π+π− was studied. The simulation assumes a mass of
1.230 GeV/c2 and a width of 400 MeV for the a+1 [4].
The reconstruction efficiencies of B0 → D∗−ρ0π+ and
B0 → D∗−D+

s
decays are consistent with B0 → D∗−a+1

decays. Taking into account the efficiency as a function
of the 3π mass, and removing the D+

s
background, the

total number of produced B0 → D∗−π+π−π+ events is
estimated to be 84400± 1200.
Table I summarizes the systematic uncertainties for

)2 (GeV/cπ3m
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FIG. 3: The reconstruction efficiency as a function of 3π
invariant-mass using MC-simulated events. The uncertain-
ties are statistical.

this analysis. The uncertainties of our extended-
maximum-likelihood fit algorithm and peaking back-
grounds are estimated together by taking into account
the uncertainties of the fixed parameters in the fit. The
values we used are shown in Table II. These values are
obtained entirely from studies of MC-simulated back-
ground samples. Therefore, we consider varying the
mean and width of the mES distributions for the peaking
B+B− and B0B0 backgrounds, the number of B0B0 and
B+B− peaking background events, and the Crystal Ball
PDF cutoff and power-law parameter values for the sig-
nal. These values are sampled from an eight-dimensional
Gaussian function with means, widths, and correlations
that correspond to the fit results for the PDF’s for sig-
nal and peaking backgrounds from simulated events. The
systematic uncertainty is taken as the standard deviation
of the distribution of the number of signal events from
an ensemble of fits, and is found to be 2.4%. The sys-
tematic uncertainty due to track-finding consists of two
components: 1.54% for laboratory momenta less than
0.18 GeV/c, a region dominated by tracks from the decay
D∗− → D0π−, and 0.26% for greater than this value [17].
The two components are added in quadrature. The pion
from the D∗− → D0π− decay has momentum less than
0.180GeV/c 62% of the time. The corresponding frac-
tion for other pions in the signal B0 decay is 5%. The
3π invariant-mass of the D+

s contamination has the same
mass location and width in the data and MC-simulated
events. However, there are differences between the full re-
constructed 3π invariant-mass spectrum for the data and
that obtained fromMC-simulated events. We studied the
signal yield before and after reweighting the 3π invariant-
mass spectrum in the MC-simulated events to match the
data. The observed change due to the reweighting of the
3π mass distribution is 1.7%, which we assign as the as-
sociated systematic uncertainty. This also accounts for
uncertainties in the relative contributions of the different
decay modes and the mass and width of the a+1 reso-
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TABLE II: Fit parameters obtained from MC-simulated events. These parameters are fixed to the central values in the signal
extraction procedure. We perform a toy study where we simultaneously vary these by the quoted uncertainties (along with
their correlations, which are not shown in the table) to study systematic effects on the signal yield.

Parameter Value
B+B− peaking background mES Gaussian mean 5.2796 ± 0.0006 GeV/c2

B+B− peaking background mES Gaussian width 0.0036 ± 0.0003 GeV/c2

Number of B+B− peaking background 590 ± 120
B0B0 peaking background mES Gaussian mean 5.2806 ± 0.0002 GeV/c2

B0B0 peaking background mES Gaussian width 0.0029 ± 0.0002 GeV/c2

Number of B0B0 peaking background 1450 ± 130
Signal’s Crystal Ball PDF cutoff value 2.09 ± 0.08
Signal’s Crystal Ball PDF power-law value 3.7± 0.5

nance. We use the D∗− and D0 decay branching frac-
tion uncertainties from Ref. [4]. We use the value of
B(Υ (4S) → B0B0) = 0.486± 0.006 from Ref. [4] for the
branching fraction of the decay Υ (4S) → B0B0, which
has a relative uncertainty of 1.2%. The kaon identifi-
cation uncertainty is estimated by comparing the num-
ber of D∗− events in data and MC simulations with and
without implementing identification requirements. Ac-
cording to dedicated studies using BABAR data control
samples, we correct for kaon-identification efficiency dif-
ferences between data and MC simulation by a factor
of 0.978 ± 0.011, where the uncertainty is chosen to be
half the difference from unity. The signal efficiency MC
statistical uncertainty is 0.9%. Nominally, we subtract
the 3π mass distribution in the sideband from that of
the signal region. However, the 3π mass distribution of
both peaking and non-peaking backgrounds in the signal
region may not necessarily be the same as that in the
sideband. To estimate the associated systematic uncer-
tainty, we test the sideband subtraction procedure using
only MC-simulated background events. After applying
efficiency corrections to the resulting distribution, we ob-
tain an integral of 571. Dividing this by the number of
efficiency-corrected signal in the data, this translates to
a 0.7% difference, which we assign as the associated sys-
tematic uncertainty. The number of B mesons produced
is uncertain to 0.6% [8]. We studied the MC modeling
of decay angle correlations, and found the associated sys-
tematic uncertainty to be negligible. As described earlier
in the text, there is a peaking background contribution in
the mES distribution due to signal events that are misre-
constructed. The rate of this background depends on the
branching fraction of signal events. Using our measured
branching fraction value, we apply corrections to the ex-
pected number of B0B0 peaking background and repeat
the signal extraction procedure on the data. There is a
small bias on the branching fraction value but it is negli-
gible compared to the systematic uncertainty due to the

other peaking backgrounds.
From the number of fitted signal events, corrected

for efficiency and normalized to the total number of
produced B0 mesons in the data sample, and taking into
account the D∗− and D0 branching fractions we derive
B(B0 → D∗−π+π−π+) = (7.26± 0.11± 0.31)× 10−3,
where the first uncertainty is statistical and the sec-
ond systematic. The result is consistent with the
current world average and is 2.4 times more precise.
This result can be used as input for measurements
of R(∗) using hadronic τ decays in the search for
deviations from the SM. The inclusive branching frac-
tion value without removing the D+

s contamination is
(7.37± 0.11± 0.31)× 10−3.
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