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Abstract
We consider a stochastic interacting particle system in a bounded domain
with reflecting boundary, including creation of new particles on the bound-
ary prescribed by a given source term. We show that such particle system
approximates 2D Navier–Stokes equations in vorticity form and impermeable
boundary, the creation of particles modeling vorticity creation at the boundary.
Kernel smoothing, more specifically smoothing by means of the Neumann
heat semigroup on the space domain, allows to establish uniform conver-
gence of regularized empirical measures to (weak solutions of) Navier–Stokes
equations.
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1. Introduction

Let D⊂ R2 be a smooth, bounded, open, convex 2-dimensional domain, and consider 2D
Navier–Stokes equation under no-slip boundary conditions,{

∂tu+(u ·∇)u+∇p= ν∆u, in [0,T]×D,

u= 0, in [0,T]× ∂D.
(1.1)

Reformulating the bulk dynamics in terms of vorticity ω =∇⊥ · u (the curl of u) straightfor-
wardly leads to

∂tω+ u ·∇ω = ν∆ω,

an equation that can be put in closed form expressing u= K[ω] in terms of ω by means of
Biot-Savart law,

K [ω] (x) =
ˆ
D
K(x,y)ω (y)dy, K(x,y) =∇⊥

x G(x,y) , G= (−∆Dir)
−1
,

where the choice of Dirichlet conditions for the Green function (−∆Dir)
−1 makes it so that

the vorticity dynamics encodes the impermeability condition u|∂D · n̂= 0 at the boundary. The
tangential part u⊥|∂D · n̂= 0 of the no-slip boundary condition, on the other hand, is harder
to express in terms of ω only, giving rise to a non-local condition on vorticity (see [3, section
1.1] for an explicit expression). Physically speaking, the condition u⊥|∂D · n̂= 0 is expected to
force production of vorticity, especially in the proximity of the boundary, so that the tangential
velocity at ∂D induced by the bulk of the fluid be compensated [5]. This fact becomes an issue
in the study of approximation methods for Navier–Stokes equations in vorticity form, which
is a natural approach in the 2-dimensional setting.

Previous approaches to approximating vorticity creation at the boundary for 2-dimensional
Navier–Stokes equations [5, 8, 11, 12, 33, 40] have considered (unphysical) Neumann bound-
ary conditions for the vorticity dynamics,{

∂tω+K [ω] ·∇ω = ν∆ω, in D× [0,T] ,

∇ω · n̂= g, in ∂D× (0,T) ,
(NNS)

where g ∈ L2([0,T],L2(∂D)) and ν > 0. The latter system acts as a natural proxy for the (phys-
ical) no-slip condition if one seeks to mathematically describe vorticity production in the
boundary layer by means of the source term of Neumann boundary condition or with an expli-
cit addition of vorticity sheets, recovering the correct PDE dynamics (1.1) in a macroscopic
or iterative limit. The derivation of (1.1) on a generic domain D by means of an approxima-
tion method explicitly describing the effect of the boundary as a singular source of vorticity
remains a mostly open problem.

The present contribution aims to lay the groundwork for the construction of an approx-
imation method for (1.1) based on interacting particle systems uniformly converging to the
PDE system, that is, seeking to provide at the same time a good microscopic description of
vorticity creation, and a good approximation scheme. In order to do so, we generalize to the
bounded domain setting the analytic and probabilistic tools introduced in [17, 20] for the uni-
form approximation of PDEs by (stochastic) interacting particle systems in full-space.
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We consider a system of N particles evolving according to the stochastic differential
equations with reflecting boundary

dxi = F

 N∑
j=1

ωjKn (xi,xj)

dt+
√
2νdBi− dki, (1.2)

each particle starting its evolution at time ti ∈ [0,T] at xi(ti), either located in the interior of
D if ti = 0 or on ∂D if ti > 0. The system is closely related to the one considered in [33], the
main difference being the generation mechanism. Let us briefly and informally describe the
various parts of the dynamics (precise definitions are all deferred to section 3).
Generation of particles, that is initialization of each of the SDEs (1.2), happens either in the

interiorD at time 0 (so to model the initial datum of the limiting PDE) or at the boundary ∂D at
later times (so to model the source term g of the Neumann b.c.). Concretely, we will consider
a grid spanning ({0}×D)∪ ((0,T]× ∂D) indexed by i, and generate the particle xi at grid
point i with an intensity ξi determined by a local average of the boundary datum around xi.
The mesh of the grid (both in time and space) will be 1/n, thus n ∈ N, n→∞ is a convenient
parameter to rule the macroscopic limit: for instance the global number of particles will have
order N= N(n)' n2. Weights (or intensities) ωi of particles will correspond to local averages
of the initial datum ω0 or the boundary datum g around the starting point of the trajectory of xi.
Interaction of particles is given by a regularized version of the singular kernel K, obtained

by applying the Neumann heat semigroup,

Kn (x,y) =
ˆ
D
K(x,z)pε (z,y)dz, ε= ε(n) , x,y ∈ D, (1.3)

with pε the Neumann heat kernel on D and ε→ 0 with a slow enough rate in terms of n.
Kernel smoothing by means of the heat semigroup Pt, compared for instance to smoothing
by convolution with bump functions, has many advantages in our setting: it is well suited for
regularizing functions keeping their support in D, Pt preserves the L1 norm of non-negative
functions, and precise estimates on pt and its derivatives are available.

The interaction term of (1.2) also includes a cutoff,

F : R2 → R2, F(v) =
v
|v|

(|v| ∧M) , M> 0, (1.4)

(which is Lipschitz continuous, and its Lipschitz constant is uniformly bounded inM> 0). In
principle, the presence of the cutoff makes it so that the macroscopic behaviour of the particle
system is described by a different PDE, that is{

∂tω+ div(F(K [ω])ω) = ν∆ω, in D× [0,T] ,

∇ω · n̂= g, in ∂D× (0,T) ,
(c-NNS)

coinciding with (NNS) only when the velocity field in the latter is bounded. As revealed by
suitable a priori estimates, this is in fact the case, so the cutoff F is just a technical device that
will naturally disappear in the macroscopic limit taking M> 0 large enough. Regularization
of interactions is important to ease uniform convergence of empirical measures and well-
posedness of the SDE system.
Brownian noise acting independently on each particle models viscosity, and boundary terms

−dki are defined so that ∂D acts on particles as a reflecting boundary, in the standard setting
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of [35, 46]. In terms of boundary conditions for the macroscopic limit, this would produce
the null Neumann condition n̂ ·∇ω = 0, so an additional effect must be included to model the
source g.

Our main result concerns the uniform convergence (in space) of kernel-smoothed empirical
measures of the particle system under consideration,

Sn (t) =
∑
i∈Ant

ωi δxi(t), ωn (t,x) = PεS
n (t) , (1.5)

where, Pε stands for the action of Neumann heat semigroup on measures, and Ant collects the
indices of particles generated up to time t. The generation of new particles at the boundary
produces discontinuities in time at the level of ωn(t,x), therefore our limit theorem is going to
be set in the space of C(D̄)-valued càdlàg functions, D([0,T],C(D̄)), endowed with the usual
Skorohod topology.

Informally, our main result (theorem 3.4) is the following: the regularized empirical meas-
uresωn(t,x) converge as n→∞, almost surely in the topology of D([0,T],C(D̄)), to the unique
weak solution of (NNS) with Lipschitz continuous initial datum ω0 and bounded Neumann
boundary datum g. As detailed below, we actually obtain a stronger convergence in Sobolev
norms. We will in fact assume that g⩾ 0 in the exposition of our argument, and remove this
further assumption in the later section 6, see theorem 6.1.

The proof or theorem 3.4 consists in a compactness argument, therefore the technical core
of this paper resides in uniform estimates on the particle system. The main additional diffi-
culty compared to the works [17, 20] inspiring our technique is of course the presence of the
boundary, which complicates many analytic operations. For instance, the absence of transla-
tion invariance in the models under consideration prevents derivatives and heat semigroups
from commuting, so one has to resort instead to suitable gradient estimates on the heat kernel
in order to exploit the regularizing properties of heat semigroup. Uniform convergence at time
0 and at the boundary also requires a careful control due to particle generation, but we are able
to deal with rather natural assumptions on ω0,g (compared to the obtained convergence), and
to avoid further technical hypothesis on initial data such as [17, assumption 1.1.3] (a restricting
requirement on the relation between the scale of kernel smoothing and sample size).

Beside the improved notion of convergence to the PDE we are able to obtain, the main
point of our work is the approach to particle approximation for (NNS): our approach is almost
completely functional analytic and based on semigroup theory, in contrast with results in the
perhaps more classical framework of propagation of chaos such as [21, 33]. The motivation for
our approach is that our technique circumvents the need for fine controls on particle dynamics.
We regard this as a step forward in attempting to build a similar particle approximation of the
physical no-slip Navier–Stokes equations (1.1), since in that case particle creation has to be
linked with the velocity at the boundary induced by the bulk of the fluid, making single particle
dynamics very hard to treat (as already commented in [33]).

The particle system under analysis can be thought of as a (regularized) stochastic version
of the well-known point vortex system. However, there are some relevant differences concern-
ing in particular the effect of the boundary on the vortex dynamics, see remark 3.3 below. Let
us only briefly discuss here some qualitative aspects for the sake of a comparison with the
related literature. Due to the regularization of interaction at the microscopic level our approx-
imants share some features with the systems of moderately interacting particles (see [16, 17]
for a comparison), but our focus is on the approximation procedure rather than on the scal-
ing of ε= ε(n). If we were to omit the regularization of the interaction kernel and the cutoff F
(and neglecting for a moment the complications of boundary effects), the scaling of weights ωi
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would make our particle system (1.2) a mean-field rescaled version of the stochastic point vor-
texmodel.While themean field limit of deterministic point vortices system towards 2D Euler’s
equation in the well-posedness class is a recent result [43], our (stochastic) result (towards
2D Navier–Stokes) is of course closer to the ideas of [37, 39]. Concerning the relation with
propagation of chaos theory, besides the above references closely related to our arguments, we
refer for completeness to the work of Jabin–Wang [32, 51] on stochastic particle systems with
general interactions (on full space), including stochastic vortex dynamics, for which we also
mention [10] discussing more general noise. The study of propagation of chaos in stochastic
particle systems in bounded domain dates back at least to [47], we refer to [9] for a discussion
and recent results.

2. Functional analytic setup

In what follows, dx denotes the Lebesgue measure restricted to the domain D, and dσ(x) the
(1-dimensional) volume measure on the smooth boundary ∂D. In order to lighten notation, we
will simply write Lp = Lp(D,dx), avoiding ambiguity by explicitly indicating the underlying
space for any different Lp(X).

We denote by B(X), Bb(X) respectivly the spaces real-valued Borel and bounded Borel
functions on a topological space X.

Landau O’s and o’s have their usual meaning, subscripts indicating eventual dependence
on parameters. The symbol C will denote a positive constant, possibly differing in any of its
occurrence even in the same formula, depending only on eventual subscripts. The expression
A'a,b B indicates that B is both an upper and lower bound for A up to multiplicative constants
depending only on possible subscripts a,b. Expressions A≲a,b B or A≳a,b B indicate respect-
ively an upper and lower bound in the same sense. If p ∈ [1,∞] we denote by p′ its conjugate
exponent, 1/p+ 1/p ′ = 1.

2.1. Sobolev spaces and Neumann heat semigroup

For any α ∈ R, p⩾ 1 the Bessel potential space is defined by

Hα,p
(
Rd
)
=

{
u ∈ S ′ (Rd

)
: ‖u‖α,pH

(
Rd
)
=

∥∥∥∥F−1

((
1+ |·|2

)α/2
Fu(·)

)∥∥∥∥
Lp(Rd)

<∞

}
.

If D⊆ Rd is a smooth bounded domain we set

Hα,p (D) =
{
u|D : u ∈ Hα,p

(
Rd
)}
, ‖u‖Hα,p(D) := inf

{
‖w‖Hs,p(Rd) : w|D = u

}
.

The following statement summarizes standard results, we refer to monographs [31, 48, 49]
for a complete discussion.

Proposition 2.1. It holds:

• (Sobolev embeddings) if 1< p⩽ q<∞, and α⩾ β ⩾ 0,

Hα,p (D) ↪→ Hβ,q (D) , α− d
p
⩾ β− d

q
;

embeddings are compact if the latter inequality is strict;
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• (Morrey’s inequality) if α− d
p > l+λ, l ∈ N and λ ∈ [0,1),

Hα,p (D)
c
↪→ Cl,λ (D̄) .

If α > 1+ 1/p, p ∈ (1,∞) and u ∈ Hα,p(D) then the trace of ∇u on ∂D (defined as usual
as the extension of the restriction to ∂D for smooth functions) is of class Lp(∂D). Therefore,
if n̂ : ∂D→ R2 is the inward pointing unit normal vector field of ∂D, the following definition
of Sobolev space with Neumann boundary conditions is meaningful:

Hα,p
Neu := {u ∈ Hα,p (D) , ∇u|∂D · n̂≡ 0} .

We refer to [49, section 4.3.3] for amore general discussion of boundary conditions for Sobolev
spaces, and to [49, section 2.9.3] for further regularity of the mentioned trace operator in terms
of Besov spaces on ∂D.

Consider the heat equation with Neumann boundary conditions
∂tut (x) = ν∆ut (x) , x ∈ D, t> 0,

n̂ ·∇ut (x) = 0, x ∈ ∂D, t> 0,

u0 (x) = f(x) , x ∈ D,
(2.1)

with f a bounded measurable function on D. It is well-known that the PDE problem is well-
posed, we denote its solution by Pt f(x) = ut(x), t⩾ 0, x ∈ D; moreover Ptf ∈ C∞(D) for all
t> 0. Operators Pt, t> 0 form a Markov semigroup (in the sense of [2]), associated to the
reflected Brownian motion in D (see section 3.2 below).

We now recall classical facts concerning the action of the semigroup Pt on Lp(D) and
Sobolev spaces: we refer to [42, section 7.3] for a detailed discussion. For all p ∈ [1,∞),
Pt extends to an analytic semigroup of contractions Pt = e−tAp : Lp → Lp with infinitesimal
generator

−Ap :D (Ap) = H2,p
Neu ⊂ Lp (D)→ Lp (D) ,

coinciding with the Laplace operator ν∆ on C∞
c (D). The spectrum of Ap is included in

[0,+∞). A first consequence of the fact that Pt is an analytic semigroup is ultracontractivity
on Lp spaces: we refer to [1, section 7.3.2] for the following result.

Proposition 2.2. If 1⩽ p< q⩽∞, then it holds

‖Pt‖Lp→Lq ⩽
CT,ν,p,q
t1/p−1/q

, t ∈ [0,T] . (2.2)

Another consequence of analiticity of Pt is that we can introduce fractional powers of I+Ap
as operators on Lp by means of

(I+Ap)
−α

=
1

Γ(α)

ˆ ∞

0
tα−1e−tPtdt, α > 0,

where the integral converges in the uniform operator topology and defines injective operators
(see [42, section 2.6]). We set

(I+Ap)
0
= I, (I+Ap)

α
= ((I+Ap)

α
)
−1 for α > 0,
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and denote by

Hα,p =D
(
(I+Ap)

α/2
)

the domain of fractional powers for all α ∈ R.

Proposition 2.3. Let p ∈ (1,∞). It holds:

• (group property) for α,β ∈ R and u ∈H2γ,p, γ = α∨β ∨ (α+β),

(I+Ap)
α+β u= (I+Ap)

α
(I+Ap)

β u;

• (adjoint) A∗
p = Ap ′ with 1

p +
1
p ′ = 1;

• (identifications of the domain3) H2α,p can be identified with the interpolation space
[Lp,D(Ap)]α for all α ∈ [0,1]; moreover it holds

Hα,p =


Hα,p (D) for 0⩽ α < 1+ 1

p ;

{u ∈ Hα,p (D) : n̂ ·∇u|∂D = 0} for 1+ 1
p < α < 3+ 1

p ;{
u ∈ Hα,p (D) : n̂ ·∇Alpu|∂D = 0 ∀l ∈ N, l⩽ k

}
for 1+ 2k+ 1

p < α < 3+ 2k+ 1
p .

• (contractivity) for α ∈ R, Pt(Lp)⊂H2α,p for all t> 0 and operators Pt and (I+Ap)α com-
mute onH2α,p; moreover

‖(I+Ap)
αPt‖Lp→Lp ⩽

Cα,ν,p

tα
, t ∈ [0,T] . (2.3)

The action of Pt on f ∈ L1 is given by

Ptf(x) =
ˆ
D
pt (x,y) f(y)dy, t> 0,

where the heat kernel pt(x,y)⩾ 0, t> 0,x,y ∈ D̄, is a smooth function, pt ∈ C∞(D̄2), t> 0,
satisfying (2.1) with the initial condition replaced by ut(x)→ δy as t→ 0. The Neumann heat
kernel can be controlled with the free heat kernel (on the whole plane) up to a multiplicative
constant at the exponent, that is:

pt (x,y)⩽
C

t∧ |D|
e−|x−y|2/(ct), x,y ∈ D̄, (2.4)

with C,c> 0 depending only on the domain D, see [50, equation (3.2)]. The following state-
ment recalls the gradient estimates on heat semigroup and kernel, we refer to [50, theorem
1.2, corollary 1.3, lemma 3.1] for a proof.

3 These identifications and Sobolev embeddings on D are closely related to the ultracontractivity of Pt, we refer again
to [1] for a discussion.
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Proposition 2.4. There exist a constant C> 0 depending only on D such that,

|∇Ptf(x)|⩽ eCtPt (|∇f |(x)) , t⩾ 0, x ∈ D, f ∈ C1
b (D) . (2.5)

Moreover, there exist constants C,c,c ′ > 0 depending only on D such that

∇pt (x,y)⩽ C
(
10<t⩽1t

−3/2 + 1t>1e
−c ′t
)
e−|x−y|2/(ct). (2.6)

As a consequence, for all t> 0 and p ∈ (1,∞),

‖∇Pt‖Lp→C(D̄) ⩽
Cp

(1∧ t)1/2+1/p
. (2.7)

As reported in [50, theorem 3.2], the latter implies the following:

Corollary 2.5. For all p> 1,
∥∥∇(I+Ap)−1/2

∥∥
Lp→Lp

⩽ Cp.

We will also employ a gradient estimate for the heat semigroup acting on distribution spaces.

Lemma 2.6. For all t> 0, α> 0, p ∈ (1,∞),

‖∇Pt‖H−α,p→C(D̄) ⩽
Cα,ν,p

t(α+1)/2+1/p
. (2.8)

Proof. Observe first that, by definition of H−α,p and density of Hα,p in Lp, it holds for
all s> 0

‖Ps‖H−α,p→Lp = sup
f∈Lp

∥∥∥Ps (I+Ap)
α/2 f

∥∥∥
Lp

‖ f‖Lp

= sup
f∈Hα,p

∥∥∥Ps (I+Ap)
α/2 f

∥∥∥
Lp

‖ f‖Lp
⩽
∥∥∥(I+Ap)

α/2Ps
∥∥∥
Lp→Lp

⩽ Cα,ν,p

sα/2
,

the last step using (2.3). For 0< s< twe can combine (2.7) and the estimate of above in order
to obtain

‖∇Pt‖H−α,p→C(D̄) = ‖∇Pt−sPs‖H−α,p→C(D̄)

= ‖∇Pt−s‖Lp→C(D̄) ‖Ps‖H−α,p→Lp ⩽
Cα,ν,p

(t− s)1/2+1/p sα/2
, (2.9)

from which the thesis follows minimizing the right-hand side with respect to the
parameter s.

The following statement collects technical passages involving heat semigroups that will
appear often in our computations, since they concern (duality) relations between operator
norms of semigroups and uniform estimates of their kernels over the space domain D.
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Lemma 2.7. Let α ∈ R, p ∈ (1,∞), t⩾ 0, ε> 0. For all y ∈ D̄ and f ∈Hα,p ′
(D)∩Lp ′

(D) it
holds:

ˆ
D
(I+Ap)

α/2Ptpε (·,y)(x) f(x)dx= Pt+ε (I+Ap ′)
α/2 f(y) = (I+Ap ′)

α/2Pt+εf(y) ,

(2.10)ˆ
D
(I+Ap)

α/2Pt∇ypε (·,y)(x) f(x)dx=∇Pt+ε (I+Ap ′)
α/2 f(y) =∇(I+Ap ′)

α/2Pt+εf(y) .

(2.11)

As a consequence

sup
y∈D̄

‖Ptpε (·,y)‖Hα,p(D) =
∥∥∥Pt+ε (I+Ap ′)

α/2
∥∥∥
Lp ′ (D)→C(D̄)

, (2.12)

sup
y∈D̄

‖Pt∇ypε (·,y)‖Hα,p(D) =
∥∥∥∇Pt+ε (I+Ap ′)

α/2
∥∥∥
Lp ′ (D)→C(D̄)

. (2.13)

Proof. The first two claims follow from (2.4). For y ∈ D̄ consider a sequence yn ∈ D such that
yn → y; as for (2.10), the following chain of equalities holds due to the regularity of f and pε:

ˆ
D
(I+Ap)

α/2Ptpε (·,y)(x) f(x)dx=
ˆ
D
pε (·,y)(x)(I+Ap ′)

α/2Ptf(x)dx

=

ˆ
D

lim
n→+∞

pε (·,yn)(x)(I+Ap ′)
α/2Ptf(x)dx

=

ˆ
D

lim
n→+∞

pε (yn, ·)(x)(I+Ap ′)
α/2Ptf(x)dx

= lim
n→+∞

ˆ
D
pε (yn, ·)(x)(I+Ap ′)

α/2Ptf(x)dx

= lim
n→+∞

Pε (I+Ap ′)
α/2Ptf(yn) .

This implies (2.10) thanks to the fact that (I+Ap ′)α/2 and the heat semigroup commute. The
exchange between limit and integral is allowed thanks to (2.4). The proof of (2.11) follows
from a similar argument. Indeed,

ˆ
D
(I+Ap)

α/2Pt∇ypε (·,y)(x) f(x)dx

=

ˆ
D
∇ypε (·,y)(x)(I+Ap)

α/2Ptf(x)dx

=∇y

ˆ
D
pε (·,y)(x)(I+Ap)

α/2Ptf(x)dx

=∇y

ˆ
D

lim
n→+∞

pε (·,yn)(x)(I+Ap)
α/2Ptf(x)dx

=∇y

ˆ
D

lim
n→+∞

pε (yn, ·)(x)(I+Ap)
α/2Ptf(x)dx

=∇y lim
n→+∞

Pε (I+Ap ′)
α/2Ptf(yn) .
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Equation (2.11) follows from the regularity of Pε(I+Ap ′)α/2Pt and the fact that (I+Ap ′)α/2

and the heat semigroup commute. After these preliminaries, (2.12) and (2.13) are easy to prove
by duality. Indeed, for each y ∈ D̄,

‖Ptpε (·,y)‖Hα,p = sup
f∈Hα,p ′ ,∥ f∥

Lp
′=1

∣∣∣∣ˆ
D
(I+Ap)

α/2Ptpε (·,y)(x) f(x)dx
∣∣∣∣

= sup
f∈Hα,p ′ ,∥ f∥

Lp
′=1

∣∣∣(I+Ap ′)
α/2Pt+εf(y)

∣∣∣
= sup

∥ f∥
Lp

′=1

∣∣∣(I+Ap ′)
α/2Pt+εf(y)

∣∣∣ .
Considering the supremum of both sides for y ∈ D̄ (2.12) follows immediately due to the fact
that (I+Ap ′)α/2Pt+ε ∈ C(D̄). Equation (2.13) is similar. Indeed

‖Pt∇ypε (·,y)‖Hα,p = sup
f∈Hα,p ′ ,∥ f∥

Lp
′=1

∣∣∣∣ˆ
D
(I+Ap)

α/2Pt∇ypε (·,y)(x) f(x)dx
∣∣∣∣

= sup
f∈Hα,p ′ ,∥ f∥

Lp
′=1

∣∣∣∇(I+Ap ′)
α/2Pt+εf(y)

∣∣∣
= sup

∥ f∥
Lp

′=1

∣∣∣∇(I+Ap ′)
α/2Pt+εf(y)

∣∣∣ .
Equation (2.13) then follows considering the supremum of both sides for y ∈ D̄.

We conclude the paragraph recalling the regularizing property of Biot-Savart kernel, fol-
lowing from the one of Green’s function for Dirichlet boundaries, for which we refer to [31,
section 3].

Lemma 2.8. The linear operator K[ω] =−∇⊥(−∆Dir)
−1ω, defined first for ω ∈ C∞(D),

extends to continuous linear maps (still denoted by K)

K : L2(D)→ Lq(D;R2), q ∈ [1,∞),

K : Lp(D)→ C(D̄;R2), p ∈ (2,∞),

K : Hα,p(D)→ Hα+1,p(D;R2), p ∈ (1,∞),α⩾ 0.

Moreover, for all the above extensions K[ω] is divergence-less (in the sense of distributions),
and its normal trace on ∂D (when defined) vanishes.

2.2. Càdlàg functions and Aldous’ criterion

For T > 0, we denote by D([0,T],S) the space of cádlág functions on [0,T] taking values in a
complete metric space (S, d). We will always endow D([0,T],S) with the Skorohod metric: we
refer to [41, section 2.1] for a definition of the latter, which we will not be using directly since
we can rely on the following tightness criterion, [41, theorem 3.2].

Proposition 2.9 (Aldous’ criterion). Consider a sequence of filtered probability spaces
(Ωn,Fn,Pn)n∈N on each of which it is defined a cádlág adapted process (Xnt )t∈[0,T] taking
values in a complete separable metric space (S, d). The laws of processes (Xnt )t∈[0,T] are tight
on D([0,T],S) if the following two conditions are satisfied:
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(1) for every t in a dense subset of [0,T] the laws of Xnt are tight on S;
(2) for all ε,δ > 0 there exists r0 > 0 and n0 ∈ N such that, for any sequence (τn)n∈N with τ n

a Fn-stopping time, it holds

sup
n⩾n0

sup
r∈[0,r0]

Pn
(
d
(
Xn(τn+r)∧T,X

n
τn∧T

)
> δ
)
< ε. (2.14)

2.3. Well-posedness of Navier–Stokes equations with Neumann boundary

In order to identify the limit dynamics of our interacting particle system with solutions
of (NNS), we will need a uniqueness result and a priori estimates. We set the discussion of
the limit PDE in the space of cádlág functions since convergence of the particle system will
take place in that space.

Definition 2.10. Let T > 0; ω ∈ D([0,T];L2(D)), is a weak solution of (NNS) if for all φ ∈
H2,2(D), for t ∈ [0,T],

ˆ
D
φωtdx−

ˆ
D
φω0dx= ν

ˆ t

0

ˆ
D
∆φ ·ωsdxds+

ˆ t

0

ˆ
D
∇φ ·K [ωs]ωsdxds

+ ν

ˆ t

0

ˆ
∂D
φgsdσ (x)ds.

Remark 2.11. The latter is a good definition: thanks to lemma 2.8, integrability in space of the
nonlinear term ∇φ ·K[ω]ω follows from Hölder’s inequality, since both ∇φ and K[ω] are Lq

for all q> 2.

Proposition 2.12. Given ω0 ∈ L2 and g ∈ L2([0,T],L2), there exists a unique weak solution
of (NNS) in the sense of definition 2.10 with ω(0) = ω0. Moreover, the unique solution belongs
to C([0,T];L2(D))∩L2([0,T];H1,2(D)).

The same statement holds for the cutoff PDE (c-NNS) for which in fact, thanks to the
bounded nonlinearity, much stronger well-posendenss results can be obtained.

Proof. Consider two weak solutions ω,ω̃ ∈ D([0,T];L2(D)), let wt = ωt− ω̃t. With standard
passages (we refer for instance to [18, section 3]) one can extend the weak formulation of the
PDE to time-dependent tests

φ ∈ C1
(
[0,T] ;L2

)
∩C

(
[0,T] ;H2,2

)
(this makes use of the right continuity hypothesis on ω), then, taking φt(s,x) = Pt−sψ(x), ψ ∈
H2,2 transforms the PDE into the variation-of-constants form

ωt = Ptω0 −
ˆ t

0
Pt−s (div(K [ωs]ωs))ds+

ˆ t

0
(I− ν∆)Pt−sN [gs]ds.

A similar formula holds for ω̃t. Therefore wt satisfies

wt =−
ˆ t

0
Pt−s (div(K [ws] ω̃s))ds−

ˆ t

0
Pt−s (div(K [ωs]ws))ds.

By Sobolev embedding, for all q> 2,

K [ws] , K [ωs] ∈ D
(
[0,T] ;Lq

(
D;R2

))
,
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hence, by Holder inequality, again for all q> 2,

K [ws] ω̃s, K [ωs]ws ∈ D
(
[0,T] ;L

2q
q+2
(
D;R2

))
.

We can thus control nonlinear terms by means of ultracontractivity (2.2), Hölder inequality
and lemma 2.8:

‖wt‖L2 ≲ν,T,q

ˆ t

0

1

(t− s)
q+2
2q − 1

2

∥∥∥P t−s
2
(div(K [ws] ω̃s))

∥∥∥
L

2q
q+2

ds

+

ˆ t

0

1

(t− s)
q+2
2q − 1

2

∥∥∥P t−s
2
(div(K [ωs]ws))

∥∥∥
L

2q
q+2

ds

≲q

ˆ t

0

1

(t− s)
q+2
2q

(
‖K [ws] ω̃s‖

L
2q
q+2

+ ‖K [ωs]ws‖
L

2q
q+2

)
ds

≲q

ˆ t

0

‖ωs‖L2 + ‖ω̃s‖L2
(t− s)

q+2
2q

‖ws‖L2 ds.

The uniqueness statement now follows from Grönwall’s lemma.
The last statement of the proposition follows from existence of a weak solution belonging

to C([0,T];L2(D))∩L2([0,T];H1,2(D)). This can be proved with a standard Galerkin approx-
imation together with the usual energy estimate (see the beginning of the proof of proposition
2.13 below), we refer to [33, theorem 2.6] for details.

Proposition 2.13. Any weak solution of (NNS) in the sense of definition 2.10 in D([0,T];Lp)
with ω0 ∈ Lp, p> 2, satisfies

‖K [ω]‖L∞([0,T];L∞) ≲T,p,ν ‖ω0‖Lp + ‖ω0‖2L2 + ‖g‖L2([0,T];Lp) + ‖g‖2L2([0,T];L2) . (2.15)

As a consequence, there exists M0 =M0(ω0,g) such that for all M⩾M0 the unique weak
solution of (NNS) coincides with the one of the cutoff PDE (c-NNS) with the same initial and
boundary data.

In order to establish this a priori estimate we first recall a convenient representation for
boundary terms appearing in the weak formulation of (NNS).

Lemma 2.14. Let g ∈ Lp(∂D), p⩾ 2 and ε> 0. There exists a unique weak solution u ∈
H1+ 1

p−ε,p(D) of{
(I− ν∆)u(x) = 0, x ∈ D,
n̂ ·∇u(x) = g(x) , x ∈ ∂D,

that is, for all φ ∈ H1,p ′
(D),

ˆ
D
(φu+ ν∇φ ·∇u)dx= ν

ˆ
∂D
φgdσ (x) .

Moreover, the solution map N[g] = u defines a continuous linear operator N : Lp(∂D)→
H1+1/p−δ,p for any δ > 0.
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We refer to [48, chapter 4] for the (standard) proof. It follows that

ˆ
∂D
φgdσ (x) =

ˆ
D
(I+Ap ′)φN [g]dx, φ ∈ H2,p ′

Neu , g ∈ L
p (∂D) .

Proof of proposition 2.13. For the sake of completeness we sketch the classical argument
for the a priori estimate in the L2 setting. By proposition 2.12 we know that the weak solution
actually belongs to C([0,T];L2(D))∩L2([0,T];H1,2(D)), so we can evaluate

1
2
d
dt

‖ωt‖2L2 =−ν ‖∇ωt‖2L2 +
ˆ
D
∇ωt ·K [ωt]ωtdx+ ν

ˆ
∂D
ωtgtdσ (x) .

The second term on the right-hand side vanishes, and the third one can be controlled thanks to
the properties of the trace of functions in H1(D):

ˆ
∂D
ωtgtdσ (x)⩽ C(‖ωt‖L2 + ‖∇ωt‖L2)‖gt‖L2(∂D)

⩽ 1
2
‖ωt‖2L2 +

1
2
‖∇ωt‖2L2 +C‖gt‖2L2(∂D) .

Therefore, we obtain

1
2
d
dt

‖ωt‖2L2 +
ν

2
‖∇ωt‖2L2 ⩽

ν

2
‖ωt‖2L2 +Cν

ˆ
∂D
ωtgtdσ (x) ,

from which by Grönwall’s lemma we conclude that

‖ω‖2L∞([0,T],L2) + ‖∇ω‖2L2([0,T],L2) ≲ν,T ‖ω0‖2L2 + ‖g‖2L2([0,T],L2(∂D)) . (2.16)

Arguing as in the proof of proposition 2.12, extending the weak formulation of the PDE to
time-dependent tests

φ ∈ C1
(
[0,T] ;Lp

′
)
∩C

(
[0,T] ;H2,p ′

)
and taking φt(s,x) = Pt−sψ(x), ψ ∈H2,p ′

, standard passages allow to rewrite the PDE into
the variation-of-constants form

ωt = Ptω0 −
ˆ t

0
Pt−s (K [ωs] ·∇ωs)ds+

ˆ t

0
(I− ν∆)Pt−sN [gs]ds, (2.17)

from which

‖ωt‖Lp ⩽ ‖ω0‖Lp +
ˆ t

0
‖Pt−s (K [ωs] ·∇ωs)‖Lp ds+

ˆ t

0
‖(I− ν∆)Pt−sN [gs]‖Lp ds.

We control the nonlinear term by means of ultracontractivity (2.2), Hölder inequality and
lemma 2.8: for 2p

p+2 < q< 2< p it holds
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ˆ t

0
‖Pt−s (K [ωs] ·∇ωs)‖Lp ds⩽

ˆ t

0
(t− s)1/p−1/q ‖(K [ωs] ·∇ωs)‖Lq ds

⩽
ˆ t

0
(t− s)1/p−1/q ‖K [ωs]‖L2q/(2−q) ‖∇ωs‖L2 ds

≲q ‖ω‖L∞([0,T],L2)

ˆ t

0
(t− s)1/p−1/q ‖∇ωs‖L2 ds

≲q ‖ω‖L∞([0,T],L2) ‖ω‖L2([0,T],H1,2(D)) ,

the last step following from Hölder inequality and the fact that
´ t
0(t− s)2/q−2/pds<∞. As for

the boundary term, by proposition 2.3, lemma 2.14 and (2.3), for δ > 0,

ˆ t

0
‖(I− ν∆)Pt−sN [gs]‖Lp ds

=

ˆ t

0
‖(I+Ap)

1
2+δ− 1

2p Pt−s (I+Ap)
1
2−δ+ 1

2p N [gs]‖Lpds

≲p,δ

ˆ t

0
(t− s)−1/2−δ+1/(2p) ‖(I+Ap)

1
2−δ+ 1

2p N [gs]‖Lpds

⩽
(ˆ t

0
(t− s)−1−2δ+1/p ds

)1/2

‖g‖L2(0,T;Lp),

where the integral in parentheses is finite if we choose 1
2p > δ.

By lemma 2.8, and combining the estimates above, we deduce that

‖K [ω]‖L∞([0,T],L∞) ≲p sup
t∈[0,T]

‖ωt‖Lp

≲T,p ‖ω0‖Lp + ‖ω0‖2L2 + ‖g‖L2([0,T];Lp) + ‖g‖2L2([0,T];L2) ,

from which the first statement of the Proposition follows.
As for the second statement, it suffices to take

M⩾ CT,p,ν
(
‖ω0‖Lp + ‖ω0‖2L2 + ‖g‖L2([0,T];Lp) + ‖g‖2L2([0,T];L2) + 1

)
,

where CT,p,ν is the constant implied in the previous inequality, making it so that the nonlinear
term of solutions of (NNS) and (c-NNS) coincide by definition of the cutoff F.

2.4. Stochastic integrals and Burkholder–Davis–Gundy inequalities

Let V be a separable Hilbert space, and consider a cylindrical Wiener process W on V with
identity covariance operator; for our purposes V will in fact always be finite-dimensional. Let
(Ω,F ,P) be the standard filtered probability space on which W is defined (and adapted), and
consider a progressively measurable stochastic process (ψt)t∈[0,T] taking values intoHS(V,L2),
the space of Hilbert-Schmidt operators between V and L2 = L2(D). Let us also assume that for
all t ∈ [0,T], P-almost surely,

ˆ t

0
‖ψs‖2HS(V,L2) ds<∞.
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We refer to the classical monograph [13] for the definition of the stochastic integral
´ t
0 ψsdWs

(a continuous L2-valued local martingale) and its basic properties.
The following collects (two versions of) the Burkholder–Davis–Gundy inequality, on which

we will rely to bound uniformly in time terms due to the Brownian noise in the particle
dynamics.

Proposition 2.15. Under the assumptions of above, for any p> 0 it holds

E

[
sup
t∈[0,T]

∥∥∥∥ˆ t

0
ψsdWs

∥∥∥∥p
L2

]
≲p E

[(ˆ T

0
‖ψs‖2HS(V,L2) ds

)p/2]
. (2.18)

Moreover if (St)t⩾0 is an analytic semigroup on L2, for any p> 2 it holds

E

[
sup
t∈[0,T]

∥∥∥∥ˆ t

0
St−sψsdWs

∥∥∥∥p
L2

]
≲p E

[(ˆ T

0
‖ψs‖2HS(V,L2) ds

)p/2]
. (2.19)

The proof can be found in [45], to which we refer for a detailed and more general discussion
on this kind of inequalities.

3. Definition of the model and main results

Since we are considering a finite, fixed time horizon T > 0, for the sake of lightening notation
we assume from now, without loss of generality, T = 1.

3.1. Generation of particles

Let us introduce a grid of mesh 1/n spanning ({0}×D)∪ ((0,1]× ∂D). Let γ : S1 ' (0,1]→
∂D be a diffeomorphism parametrizing the boundary of D; for n⩾ 1 we set

Ln = {0}× Lnin ∪
{

1
2n
,
3
2n
. . .

2n− 1
2n

}
×Lnbd,

Lnin = (Z/n)2 ∩D, Lnbd = {γ (h/n) | h= 1, . . .n} .

We will write

i 7→ (tni , ζ
n
i ) ∈ Ln, i = 1, . . . ,N(n) , (3.1)

to enumerate the points of the grid Ln,N(n) being the cardinality of Ln. From now onwe simply
write N= N(n) implying the dependence on n. We now introduce a partition4 of ({0}×D)∪
((0,1]× ∂D) whose elements are centred at points ζ i:

Qn
i =

{(
ζni +

[
− 1

2n ,
1
2n

]2)∩D, tni = 0,[
tni − 1

2n , t
n
i +

1
2n

]
× γ

(
γ−1 (ζi)+

[
− 1

2n ,
1
2n

])
, tni > 0.

(3.2)

Notice that N(n)' n2 and the area of Qn
i (both if t

n
i = 0 or not) is of order n−2. We denote by

An (t) = {i : 0⩽ tni ⩽ t} , An0 (t) = {i : 0< tni ⩽ t} , (3.3)

4 To be precise, a measurable partition, since boundaries of the Qn
i ’s overlap.
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the set of indices relative to particles created before time t. Given ω0 ∈ Bb(D), g ∈ Bb([0,1]×
∂D) with g,ω0 ⩾ 0, we set

ωni =

{´
Qn
i
ω0 (x)dx tni = 0,´

Qn
i
gs (x)dsdσ (x) tni > 0.

(3.4)

From our assumptions on the mesh of the grid, ω0 and g it follows that

ωni ≲
1
n2

∀n ∈ N, i = 1, . . .N.

3.2. Diffusion processes and reflecting boundaries

Let (Ω,F ,P) a complete, filtered probability space satisfying the standard hypothesis, on
which it is defined a sequence (Bi)i∈N of independent F-Brownian motions. We have the fol-
lowing (probabilistically strong) well-posedness result:

Proposition 3.1. For all n⩾ 1, on (Ω,F ,P), there exists a unique continuous D̄N-valued adap-
ted process xn(t) = (xn1(t), . . . ,x

n
N(t))t∈[0,T] and a continuous R2×N-valued adapted process

kn(t) = (kn1(t), . . . ,k
n
N(t))t∈[0,T] with bounded variation trajectories such that: for i = 1, . . . ,N,

t ∈ [tni ,1],

xni (t)− ζni =

ˆ t

tni

F

 ∑
j∈An(s)

ωnj Kn
(
xni (s) ,x

n
j (s)

)ds+
√
2ν
ˆ t

tni

dBis− kni (t) ,

kni (t) =
ˆ t

tni

n̂(xni (s))d|kni |(s) , |kni |(t) =
ˆ t

tni

1xni (s)∈∂Dd|kni |(s) ,

while for t< tni we impose k
n
i (t) = 0 and xni (t) = ζni .

The proof can be straightforwardly adapted from the one given in [35, 47] for systems of
SDEs with regular coefficients and reflecting boundaries: the only difference is generation of
new particles at the boundary, which is taken care of applying the well-posedness result on
each time interval of length 1/n during which particles are not generated. We also refer to [33,
section 4] for details on a SDE system (closely related to ours) including boundary generation
at random times. Itô’s formula for the process xn(t) takes the following form (for which we
refer again to [35]):

Corollary 3.2. If φ ∈ C2(D̄) with ∇φ · n̂= 0 on ∂D, for i = 1, . . . ,N, t ∈ [tni ,T],

dφ(xni (t)) = F

 ∑
j∈An(t)

ωnj Kn
(
xni (t) ,x

n
j (t)
) ·∇φ(xni (t))dt

+ ν∆φ(xni (t))dt+
√
2ν∇φ(xni (t))dBit.

Notice that the hypothesis ∇φ · n̂= 0 on ∂D makes it so that reflection terms −kni do not
appear in the Itô formula. In our applications, this assumption will be verified thanks to our
choice of regularizing the empirical measure with the heat kernel under Neumann bouondary
conditions.
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Remark 3.3. The classical vortex dynamics in a bounded domain is a system of singular ODEs
of the form

ẋi =
∑
j̸=i

ξjK(xi,xj)+ ξi∇⊥γ (xi,xi) , xi ∈ D, ξi ∈ R∗, i, j = 1, . . .N,

G= (−∆Dir)
−1
, γ (x,y) = G(x,y)+

1
2π

log |x− y| ,

including self-interaction terms induced from the boundary effects; this is necessary for the
system to satisfy in a weak form (as in [44]) the 2-dimensional Euler equations.We refer to [38,
chapter 4] for a general introduction to the topic, to [15, 22, 25, 26, 30] on the issue of well-
posedness of the dynamics and vortex collisions, and to [23, 24, 27–29, 36] on the statistical
mechanics point of view.

Self-interactions diverge logarithmically at ∂D, and this prevents us to include them in our
model because the Brownian part of the dynamics (which we must include to model viscos-
ity) might drive particles onto the boundary causing blow-up of the dynamics at finite time.
Nevertheless, under the Mean-Field scaling of particle intensities we are considering, self-
interactions should be negligible in macroscopic limit. Indeed (heuristically) a self-interaction
term ωi∇⊥γ(xi,xi) in our model would scale as n−2, while the nonlinear and noise terms are
of order 1 as n→∞. Hence, self-interactions due to the boundary appear to be irrelevant for
the purpose of our discussion.

3.3. Convergence to Navier–Stokes equations

The following is the main result of the paper.

Theorem 3.4. Let p> 2, 2p < α < 1, and ε= ε(n)≳ n−1/2. Assume that ω0 ∈ Lip(D̄) and g ∈
Bb([0,1]× ∂D), ω0,g⩾ 0, and let the related notation introduced above prevail. There exists
M> 0 (only depending onω0,g) such that for every η ∈ ( 2p ,α), as n→∞, the kernel-smoothed
empirical measure ωnt =

∑
i∈An(t)ω

n
i pε(·,xni (t)) converges in probability on D([0,1],Hη,p) to

the unique weak solution (given by proposition 2.12) of (NNS) with initial datum ω0 and
boundary source g.

By Morrey’s inequality, the stated convergence implies that on D([0,1],C(D̄)).

4. Uniform bounds

The proof of theorem 3.4 essentially relies on uniformly bounding (in n) the approximating
process ωn(t,x) in terms of strong norms, allowing the application of Aldous’ tightness cri-
terion, proposition 2.9, and to pass to the limit the dynamics obtaining (NNS). The way we
exploit the regularizing effect of the Brownian noise driving particles, that is the parabolic
nature of the corresponding PDE dynamics, consists in formulating the evolution problem in
Duhamel form (that is the variation-of-constants form, or mild formulation), in complete ana-
logy with the a priori estimates for the limiting PDE in the previous section.

4.1. Duhamel formulation of empirical measure dynamics

We adopt, for the remainder of the section, the notation of section 3.2. Let thus (xn1, . . . ,x
n
N)

be the D̄N-valued stochastic process on [0,1] defined by proposition 3.1 as the unique strong
solution of the approximating particle system, and
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Snt =
∑
i∈An(t)

ωni δxni (t).

Adirect application of the Itô formula in corollary 3.2 shows that, ifφ ∈ C2(D̄)with∇φ · n̂= 0
on ∂D, for all t ∈ [0,1] it holds

ˆ
D
φdSnt −

ˆ
D
φdSn0 =

∑
i∈An0(t)

ωiφ(ζi)+ ν

ˆ t

0

ˆ
D
∆φdSnsds

+

ˆ t

0

ˆ
D
F

(ˆ
D
Kn (x,y)dS

n
s (y)

)
∇φ(x)dSns (x)ds

+
√
2ν
ˆ t

0

∑
i∈An(s)

ωi∇φ(xni (s))dBis. (4.1)

Let us now considered the kernel-smoothed empirical measure

ωnt (x) = PεS
n
t =

∑
i∈An(t)

ωni pε (x,x
n
i (t)) , x ∈ D̄,

which, in sight of (4.1), must satisfy for all t ∈ [0,1] and x ∈ D̄

ωnt (x)−ωn0 (x) =
∑
i∈An0(t)

ωni pε (x, ζ
n
i )+ ν

ˆ t

0
∆ωns (x)ds

+

ˆ t

0

ˆ
D
F

(ˆ
D
Kn (y,z)dS

n
s (z)

)
∇ypε (x,y)dS

n
s (y)ds

+
√
2ν
ˆ t

0

∑
i∈An(s)

ωni ∇ypε (x,x
n
i (s))dB

i
s. (4.2)

As in the proof of proposition 2.13, we can derive from the latter formulation of the dynamics
the variation-of-constants form with standard passages. For all t ∈ [0,1] and x ∈ D̄ it holds:

ωnt (x) = Ptω
n
0 (x)+

∑
i∈An0(t)

ωni Pt−tni pε (x, ζ
n
i )

+

ˆ t

0
Pt−s

ˆ
D
F

(ˆ
D
Kn (y,z)dS

n
s (z)

)
∇ypε (x,y)dS

n
s (y)ds

+
√
2ν
ˆ t

0

∑
i∈An(s)

ωni Pt−s∇ypε (x,x
n
i (s))dB

i
s. (4.3)

4.2. Preliminary estimates on particle creation and diffusion

We begin by estimating separately the terms due to particle generation at t= 0 and at the
boundary at later t> 0.

Lemma 4.1. Let ε= ε(n)≳ n−2/(3+α) ≳ n−1/2; for all p> 2, 2
p < α < 1 it holds∥∥∥∥∥∥

∑
i:tni=0

ωinpε (·, ζni )

∥∥∥∥∥∥
Hα,p

⩽ Cα,p.
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The idea of the proof is that, for n large and ε small,

∑
i:tni=0

ωni pε (x, ζ
n
i )≈

ˆ
D
pε (x,y)ω0 (y)dy,

and the right-hand side is bounded if, say, ω0 is Lipschitz continuous.

Proof. We have∥∥∥∥∥∥
∑
i:tni=0

ωinpε (·, ζni )

∥∥∥∥∥∥
Hα,p

⩽
∥∥∥∥ˆ

D
pε (·,y)ω0 (y)dy

∥∥∥∥
Hα,p

+

∥∥∥∥∥∥
ˆ
D
pε (·,y)ω0 (y)dy−

∑
i:tni=0

ωin (I+Ap)
α/2 pε (·, ζni )

∥∥∥∥∥∥
Hα,p

=: Iω0 +R.

We bound the term Iω0 :

Iω0 =
∥∥∥(I+Ap)

α/2Pεω0

∥∥∥
Lp
=
∥∥∥Pε (I+Ap)

α/2
ω0

∥∥∥
Lp
⩽ ‖ω0‖Hα,p . (4.4)

Concerning R, recall that, for i such that tni = 0, ωni =
´
Qn
i
ω0(y)dy. Hence,

ˆ
D
pε (·,y)(x)ω0 (y)dy−

∑
i:tni=0

ωinpε (·, ζni )(x)

=
∑
i:tni=0

ˆ
Qn
i

pε (·,y)(x)− pε (·, ζni )(x)ω0 (y)dy

=
∑
i:tni=0

ˆ
Qn
i

(y− ζni ) ·
ˆ 1

0
∇ypε (·, ζni + ξ (y− ζni ))(x)dξω0 (y)dy

(note that ζni + ξ(y− ζni ) belongs to D̄ since D̄ is convex). Recall that, for every i, |y− ξni |≲ 1/n
on Qn

i . We then have, by (2.13),

R⩽
∑
i:tni=0

ˆ
Qn
i

(y− ζni ) ·
ˆ 1

0
‖∇ypε (·, ζni + ξ (y− ζni ))‖Hα,p dξω0 (y)dy

≲ 1
n

ˆ
D
ω0 (y)dy sup

y∈D̄
‖∇ypε (·,y)‖Hα,p

=
1
n

ˆ
D
ω0 (y)dy

∥∥∥∇Pε (I+Ap ′)
α/2
∥∥∥
Lp ′→C(D̄)

.

Thanks to the gradient bound lemma 2.6, we get

R≲ν,p
1
n
ε−1/2−α/2−1/p ′

‖ω0‖L1 ⩽
1
n
ε−3/2−α/2‖ω0‖L1 . (4.5)
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Putting together the bounds (4.4) and (4.5), we conclude that∥∥∥∥∥∥
∑
i:tni=0

ωinpε (·, ζni )

∥∥∥∥∥∥
Hα,p

≲ν,p ‖ω0‖Hα,p +
1
n
ε−3/2−α/2‖ω0‖L1 .

By the assumption ε= ε(n)≳ n−2/(3+α), we get the desired bound.

Lemma 4.2. Let ε= ε(n)≳ n−2/(2+α) ≳ n−2/3; for all p> 2, 2
p < α < 1 it holds

sup
t∈[0,1]

∥∥∥∥∥∥
∑
i∈An0(t)

ωni Pt−tni pε (·, ζ
n
i )

∥∥∥∥∥∥
Hα,p

⩽ Cα,p.

As for the previous lemma, the idea of the proof is that, for n large and ε small,

∑
i∈An0(t)

ωni Pt−tni pε (·, ζ
n
i )(x)≈

ˆ t

0

ˆ
∂D
Pt−spε (x,y)gs (y)dyds,

and the right-hand side is bounded if, say, g is bounded.

Proof. We have∥∥∥∥∥∥
∑
i∈An0(t)

ωni Pt−tni pε (·, ζ
n
i )

∥∥∥∥∥∥
Hα,p

⩽
∥∥∥∥ˆ t

0

ˆ
∂D
Pt−spε (·,y)gs (y)dsdσ (y)

∥∥∥∥
Hα,p

+

∥∥∥∥∥∥
ˆ t

0

ˆ
∂D
Pt−spε (·,y)gs (y)dsdσ (y)−

∑
i∈An0(t)

ωni Pt−tni pε (·, ζ
n
i )

∥∥∥∥∥∥
Hα,p

=: Ig+R.

We bound the term Ig first: by (2.10), we get∥∥∥∥ˆ t

0

ˆ
∂D
Pt−spε (·,y)gs (y)dsdσ (y)

∥∥∥∥
Hα,p

= sup
∥ f∥

Lp
′=1

ˆ t

0

ˆ
∂D

〈(I+Ap)
α/2Pt−spε (·,y) , f〉gs (y)dsdσ (y)

= sup
∥ f∥

Lp
′=1

ˆ t

0

(
I+A ′

p

)α/2
Pt−s+εf(y)gs (y)dsdσ (y)

⩽ ‖g‖L∞([0,1];Lp(∂D))

ˆ t

0

∥∥∥(I+Ap ′)
α/2Pt−s+ε

∥∥∥
Lp ′→Lp ′ (∂D)

ds.

Using the trace theorem and the contractivity bound (2.3), we get, for some fixed δ > 0 such
that α/2+ 1/(2p ′)+ δ/2< 1,
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Ig ⩽ ‖g‖L∞([0,1];Lp(∂D))

ˆ t

0

∥∥∥(I+Ap ′)
α/2Pt−s+ε

∥∥∥
Lp ′→H1/p ′+δ,p ′ (D)

ds

≲ ‖g‖L∞([0,1];Lp(∂D))

ˆ t

0

∥∥∥(I+Ap ′)
α/2+1/(2p ′)+δ/2Pt−s+ε

∥∥∥
Lp ′→Lp ′

ds

≲α,p ‖g‖L∞([0,1];Lp(∂D))

ˆ t

0
(t− s+ ε)

−(α/2+1/(2p ′)+δ/2) ds

≲α,p ‖g‖L∞([0,1];Lp(∂D)). (4.6)

Concerning R, recall that A0
n(t) = {i : 0< tni ⩽ t} and, for i ∈ An0(t), ωni =

´
Qn
i
gs(y)dsdσ(y). In

particular, we can split

∑
i∈An0(t)

ωni Pt−tni pε (·, ζ
n
i ) =

∑
i:tni+1/(2n)<t

ˆ
Qn
i

Pt−tni pε (·, ζ
n
i )gs (y)dsdσ (y)

+
∑

i:tni⩽t⩽tni+1/(2n)

ωni Pt−tni pε (·, ζ
n
i )

(the last sum possibly being over an empty set) and similarly

ˆ t

0

ˆ
∂D
Pt−spε (·,y)gs (y)dsdσ (y)

=
∑

i:tni+1/(2n)<t

ˆ
Qn
i

Pt−spε (·,y)gs (y)dsdσ (y)

+
∑

i:tni−1/(2n)<t⩽tni+1/(2n)

ˆ
Qn
i∩[0,t]×∂D

Pt−spε (·,y)gs (y)dsdσ (y) .

Hence we can split R as

R⩽

∥∥∥∥∥∥
∑

i:tni+1/(2n)<t

ˆ
Qn
i

(
Pt−spε (·,y)−Pt−tni pε (·, ζ

n
i )
)
gs (y)dsdσ (y)

∥∥∥∥∥∥
Hα,p

+

∥∥∥∥∥∥
∑

i:tni−1/(2n)<t⩽tni+1/(2n)

ˆ
Qn
i∩[0,t]×∂D

Pt−spε (·,y)gs (y)dsdσ (y)

∥∥∥∥∥∥
Hα,p

+

∥∥∥∥∥∥
∑

i:tni⩽t⩽tni+1/(2n)

ωni Pt−tni pε (·, ζ
n
i )

∥∥∥∥∥∥
Hα,p

=: R1 +R21 +R22.

To bound the term R1, we start with an observation: setting

[tni ,s] (ξ) := tni + ξ (s− tni ) , [ζni ,y] (ξ) := ζni + ξ (y− ζni ) , ξ ∈ [0,1]

(notice that [ζni ,y](ξ) ∈ D̄ for all ξ since D̄ is convex), since by definition of heat semigroup it
holds ∂tPt =−ApPt, we can write
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Pt−spε (·,y)(x)−Pt−tni pε (·, ζ
n
i )(x) = (s− tni )

ˆ 1

0
−∂tPt−[tni ,s](ξ)pε (·, [ζ

n
i ,y] (ξ))(x)dξ

+(y− ζni ) ·
ˆ 1

0
∇yPt−[tni ,s](ξ)

pε (·, [ζni ,y] (ξ))(x)dξ

= (s− tni )
ˆ 1

0
ApPt−[tni ,s](ξ)

pε (·, [ζni ,y] (ξ))(x)dξ

+(y− ζni ) ·
ˆ 1

0
∇yPt−[tni ,s](ξ)

pε (·, [ζni ,y] (ξ))(x)dξ.

Applying the latter to R1 we obtain:

R1 ⩽

∥∥∥∥∥∥
∑

i:tni+
1
2n<t

ˆ
Qn
i

ˆ 1

0
ApPt−[tni ,s](ξ)

pε (·, [ζni ,y] (ξ))dξ (s− tni )gs (y)dsdσ (y)

∥∥∥∥∥∥
Hα,p

+

∥∥∥∥∥∥
∑

i:tni+
1
2n<t

ˆ
Qn
i

ˆ 1

0
∇yPt−[tni ,s](ξ)

pε (·, [ζni ,y] (ξ))dξ (y− ζni )gs (y)dsdσ (y)

∥∥∥∥∥∥
Hα,p

=: R11 +R12.

Concerning R11, recall that |s− tni |⩽ 1/(2n) for every s in Qn
i . Hence by (2.12) we have

R11 ⩽
∑

i:tni+
1
2n<t

ˆ
Qn
i

ˆ 1

0

∥∥∥ApPt−[tni ,s](ξ)pε (·, [ζni ,y] (ξ))∥∥∥Hα,p
dξ |s− tni |gs (y)dsdσ (y)

⩽ 1
2n

ˆ 1

0

∑
i:tni+

1
2n<t

ˆ
Qn
i

sup
x∈D̄

∥∥∥Pt−[tni ,s](ξ)pε (·,x)∥∥∥Hα+2,p
gs (y)dsdσ (y)dξ,

=
1
2n

ˆ 1

0

∑
i:tni+

1
2n<t

ˆ
Qn
i

∥∥∥(I+Ap ′)
1+α/2Pt−[tni ,s](ξ)+ε

∥∥∥
Lp ′→C(D̄)

gs (y)dsdσ (y)dξ.

Since H2,p ′
is embedded into C(D̄) for p ′ > 1, we have

R11 ≲p
1
n

ˆ 1

0

∑
i:tni+

1
2n<t

ˆ
Qn
i

∥∥∥(I+Ap ′)
2+α/2Pt−[tni ,s](ξ)+ε

∥∥∥
Lp ′→Lp ′

gs (y)dsdσ (y)dξ.

Note that, if tni + 1/(2n)< t, then t− [tni ,s](ξ)⩾ (t− s)/2 for every s in Qn
i . Thanks to the

contractivity bound (2.3), we get

R11 ≲α,p
1
n

ˆ 1

0

∑
i:tni+

1
2n<t

ˆ
Qn
i

(t− [tni ,s] (ξ)+ ε)
−2−α/2 gs (y)dsdσ (y)dξ

≲ 1
n

ˆ t

0

ˆ
∂D

(t− s+ 2ε)−2−α/2 gs (y)dσ (y)ds

≲ 1
n
ε−1−α/2‖g‖L∞([0,1];L1(∂D)). (4.7)
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Concerning R12, recall that |y− ζni |≲ 1/n for every y in Qn
i . Hence by (2.13) we have

R12 ⩽
∑

i:tni+
1
2n<t

ˆ
Qn
i

ˆ 1

0

∥∥∥∇yPt−[tni ,s](ξ)
pε (·, [ζni ,y] (ξ))

∥∥∥
Hα,p

dξ |y− ζni |gs (y)dsdσ (y)

≲ 1
n

ˆ 1

0

∑
i:tni+

1
2n<t

ˆ
Qn
i

sup
x∈D̄

∥∥∥∇Pt−[tni ,s](ξ)pε (·,x)∥∥∥Hα,p
gs (y)dsdσ (y)dξ

≲ 1
n

ˆ 1

0

∑
i:tni+

1
2n<t

ˆ
Qn
i

∥∥∥∇Pt−[tni ,s](ξ)+ε (I+Ap ′)
α/2
∥∥∥
Lp ′→C(D̄)

gs (y)dsdσ (y)dξ.

Thanks to the gradient bound lemma 2.6, we get

R12 ≲α,p
1
n

ˆ 1

0

∑
i:tni+

1
2n<t

ˆ
Qn
i

(t− [tni ,s] (ξ)+ ε)
−1/2−α/2−1/p ′

gs (y)dsdσ (y)dξ

≲ 1
n

ˆ t

0

ˆ
∂D

(t− s+ 2ε)−3/2−α/2 gs (y)dσ (y)ds

≲α,p
1
n
ε−1/2−α/2‖g‖L∞([0,1];L1(∂D)). (4.8)

We turn now to the bound on R21. By (2.13) we have

R21 ⩽
∑

i:tni−
1
2n<t⩽tni+

1
2n

ˆ
Qn
i∩[0,t]×∂D

‖Pt−spε (·,y)‖Hα,p gs (y)dsdσ (y)

⩽
∑

i:tni−
1
2n<t⩽tni+

1
2n

ˆ
Qn
i∩[0,t]×∂D

sup
x∈D̄

‖Pt−s+εpε (·,x)‖Hα,p gs (y)dsdσ (y)

=
∑

i:tni−
1
2n<t⩽tni+

1
2n

ˆ
Qn
i∩[0,t]×∂D

∥∥∥(I+Ap ′)
α/2Pt−s+ε

∥∥∥
Lp ′→C(D̄)

gs (y)dsdσ (y) .

Notice that ⋃
i:tni−

1
2n<t⩽tni+

1
2n

Qn
i ∩ ([0, t]⊗ ∂D)⊆ [t− 1/n, t]× ∂D.

Therefore, by the embedding H2,p ′
↪→ C(D̄), p ′ > 1, and contractivity bound (2.3),

R21 ≲α,p

ˆ t

t−1/n

ˆ
∂D
gs(y)dσ(y)ds · sup

s⩽t

∥∥∥(I+Ap ′)1+α/2Pt−s+ε

∥∥∥
Lp ′→Lp ′

≲ 1
n
ε−1−α/2‖g‖L∞([0,1];L1(∂D). (4.9)

Finally, we turn to the bound on R22. Similarly to the case of R21, we notice that for each
i ∈ A0(t),

∪i:tni⩽t⩽tni+
1
2n
Qn
i ⊆

[
t− 1/n, t+

1
2n

]
× ∂D.
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Hence, proceeding as for the term R21, we get

R22 ⩽
∑

i:tni⩽t⩽tni+
1
2n

ˆ
Qn
i

gs(y)dsdσ(y)
∥∥Pt−tni pε(·, ζ

n
i )
∥∥
Hα,p

⩽
ˆ t+1/(2n)

t−1/n

ˆ
∂D
gs(y)dσ(y)ds sup

s⩽t

∥∥∥(I+Ap ′)1+α/2Pt−s+ε

∥∥∥
Lp ′→Lp ′

≲ 1
n
ε−1−α/2‖g‖L∞([0,1];L1(∂D)). (4.10)

Putting together the bounds (4.6)–(4.10), we conclude that

∥∥∥∥∥∥
∑
i∈An0(t)

ωni Pt−tni pε (·, ζ
n
i )

∥∥∥∥∥∥
Hα,p

≲α,p ‖g‖L∞([0,1];Lp(∂D)) +
1
n
ε−1−α/2‖g‖L∞([0,1];L1(∂D)).

By the assumption ε= ε(n)≳ n−2/(2+α), we get the desired bound.

We also estimate in a dedicated Lemma the martingale terms appearing in the mild formu-
lation of particle dynamics.

Lemma 4.3. Let p> 2, 2
p < α < 1 and assume that ε= ε(n)≳ n−1/2. Then,

E

 sup
t∈[0,1]

∥∥∥∥∥∥
ˆ t

0

∑
i∈An(s)

ωni Pt−s∇ypε (x,x
n
i (s))dB

i
s

∥∥∥∥∥∥
q

Hα,p

⩽ Cq,p,ν,α. (4.11)

Proof. By Sobolev embedding H1−2/p,2 ↪→ Lp and Burkholder–Davis–Gundy inequal-
ity (2.19) it holds

E

 sup
t∈[0,1]

∥∥∥∥∥∥
ˆ t

0

∑
i∈An(s)

ωni (I+Ap)
α/2Pt−s∇ypε (·,xi (s))dBis

∥∥∥∥∥∥
q

Lp


≲p E

 sup
t∈[0,1]

∥∥∥∥∥∥
ˆ t

0

∑
i∈An(s)

ωni (I+A2)
(1+α−2/p)/2Pt−s∇ypε (·,xi (s))dBis

∥∥∥∥∥∥
q

L2


≲q E


ˆ 1

0

∑
i∈An(s)

(ωni )
2
∥∥∥(I+A2)

(1+α−2/p)/2∇ypε (·,xi (s))
∥∥∥2
L2
ds

q/2
 .

The inner integrand in the right-hand side can be controlled uniformly with respect to the
particles’ positions: by lemma 2.6
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sup
y∈D̄

∥∥∥(I+A2)
(1+α−2/p)/2∇ypε (·,y)

∥∥∥2
L2
= ‖∇Pε‖2H−1−α+2/p,2→C(D̄) ≲α,ν,p ε

−3−α+2/p.

Notice that the denominator is integrable in ds for all δ > 0. We now take into account the
fact that ωni ≲ n−2(‖ω0‖L∞(D) + ‖g‖L∞([0,1]×∂D) uniformly in i, and that N(n)' n2. Hence,
the left-hand side of (4.11) is bounded from above by

L.H.S.≲p,q,ν,α n
−qε−(3+α−2/p) q2 (‖ω0‖L∞(D) + ‖g‖L∞([0,1]×∂D))

q.

Taking ε(n) as in the hypothesis, the last quantity is uniformly bounded in n.

4.3. Estimates for approximating solutions

The following is the core estimate of our argument, providing uniform boundedness in strong
norms for the approximating processes.

Proposition 4.4. Let p> 2, 2
p < α < 1, and ε= ε(n)≳ n−1/2. For all q⩾ 2 it holds

sup
n
E

[
sup
t∈[0,1]

‖ωnt ‖
q
Hα,p

]
⩽ CM,q,p,ν,α. (4.12)

Proof. In order to lighten notation we denote by vnt (x) := F
(´

DKn(x,y)dS
n
s (y)

)
the vector

field acting on a single, smoothened particle. The mild formulation (4.3) allows to bound, by
Minkowski inequality,

E
[
‖ωnt ‖

q
Hα,p

]
≲q E

∥∥∥∥∥∥
∑
i∈An(t)

ωni Pt−tni pε (·, ζ
n
i )

∥∥∥∥∥∥
q

Hα,p


+E

[∥∥∥∥ˆ t

0
Pt−s

ˆ
D
vns (y)∇ypε (x,y)dS

n
s (y)ds

∥∥∥∥q
Hα,p

]

+E

∥∥∥∥∥∥√2ν
ˆ t

0

∑
i∈An(s)

ωni Pt−s∇ypε (x,x
n
i (s))dB

i
s

∥∥∥∥∥∥
q

Hα,p


=: I1 + I2 + I3.

The initial and boundary creation terms I1 and the martingale term I3 are uniformly bounded
(both in n and in t ∈ [0,1]) respectively thanks to lemmas 4.1–4.3. We thus focus on the nonlin-
ear interaction term I2, where the regularizing effect of the heat semigroup is essential. Using
the gradient estimate (2.5) we thus bound, for f ∈ Lp ′

,
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∣∣∣∣∣∣
∑

i∈An(s)

ωi v
n
s (xi (s))

ˆ
D
f(x)(I+Ap)

α/2Pt−s∇ypε (x,xi (s))dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈An(s)

ωi v
n
s (xi (s))

ˆ
D
(I+Ap ′)

α/2Pt−s f(x)∇ypε (x,xi (s))dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈An(s)

ωi v
n
s (xi (s))∇Pε

[
(I+Ap ′)

α/2Pt−s f
]
(xi (s))

∣∣∣∣∣∣
⩽M

∑
i∈An(s)

ωi

∣∣∣∇Pε

[
(I+Ap ′)

α/2Pt−s f
]
(xi (s))

∣∣∣
⩽M

∑
i∈An(s)

ωi e
CεPε

∣∣∣∇(I+Ap ′)α/2Pt−s f
∣∣∣(xi(s))

=MeCε
∑

i∈An(s)

ωi

ˆ
D
pε(x,xi(s))

∣∣∣∇(I+Ap ′)α/2Pt−s f
∣∣∣(x)dx

=MeCε
ˆ
D
Pε(S

n
s )(x)

∣∣∣∇(I+Ap ′)α/2Pt−s f
∣∣∣(x)dx

⩽MeCε ‖ωns ‖Lp
∥∥∥∇(I+Ap ′)α/2Pt−s f

∥∥∥
Lp ′
.

By duality, this implies that∥∥∥∥∥∥
∑

i∈An(s)

ωi v
n
s (xi (s))(I+Ap)

α/2Pt−s∇ypε (·,xi (s))

∥∥∥∥∥∥
Lp

⩽ MeCε

(t− s)(1+α)/2
‖ωns ‖Lp ⩽

MeCε

(t− s)(1+α)/2
‖ωns ‖Hα,p ,

so that

I1/q2 ⩽
ˆ t

0
E

∥∥∥∥∥∥
∑

i∈An(s)

ωi v
n
s (xi (s))Pt−s∇ypε (·,xi (s))

∥∥∥∥∥∥
q

Hα,p

1/q

ds

⩽ Cε

ˆ t

0

M

(t− s)(1+α)/2
E [‖ωns ‖

q
Hα,p ]

1/q ds

with the constant Cε decreasing as ε→ 0, in particular uniformly bounded in n. Altogether,
we arrive to the integral inequality

E
[
‖ωns ‖

q
Hα,p

]1/q ⩽ Cp,q,ν,α,ω0 +C
ˆ t

0

M

(t− s)(1+α)/2
E [‖ωns ‖

q
Hα,p ]

1/q ds

which, by Grönwall’s lemma (as α< 1), implies

sup
n

sup
t∈[0,1]

E
[
‖ωnt ‖

q
Hα,p

]
⩽ CM,q,p,ν,α. (4.13)
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In order to complete the proof, we apply again the mild formulation of the dynamics (4.3) to
estimate

E

[
sup
t∈[0,1]

‖ωnt ‖
q
Hα,p

]
≲q E

 sup
t∈[0,1]

∥∥∥∥∥∥
∑
i∈An(t)

ωni Pt−tni pε (·, ζ
n
i )

∥∥∥∥∥∥
q

Hα,p


+E

[
sup
t∈[0,1]

∥∥∥∥ˆ t

0
Pt−s

ˆ
D
vns (y)∇ypε (x,y)dS

n
s (y)ds

∥∥∥∥q
Hα,p

]

+E

 sup
t∈[0,1]

∥∥∥∥∥∥√2ν
ˆ t

0

∑
i∈An(s)

ωni Pt−s∇ypε (x,x
n
i (s))dB

i
s

∥∥∥∥∥∥
q

Hα,p


=: J1 + J2 + J3.

Once again, the initial and boundary creation terms J1 and themartingale term J3 are uniformly
bounded in n respectively thanks to lemmas 4.1–4.3. As for J2, since

J2 ⩽ E

[(
sup
t∈[0,1]

ˆ t

0

∥∥∥∥Pt−sˆ
D
vns (y)∇ypε (x,y)dS

n
s (y)

∥∥∥∥
Hα,p

ds

)q]
,

we can repeat the computations performed to control I2 obtaining

J2 ≲p,q,ν,α E

[
sup
t∈[0,1]

(ˆ t

0

MeCε

(t− s)(1+α)/2
‖ωns ‖Hα,p ds

)q]
,

where we now apply Hölder inequality,

ˆ t

0
‖ωns ‖Hα,p

ds

(t− s)(1+α)/2
⩽
(ˆ t

0

ds

(t− s)r(1+α)/2

)1/r(ˆ t

0
‖ωns ‖

r ′

Hα,p ds

)1/r ′

,

in which we can choose a small enough r> 0 (depending on α) so that the first factor on the
right-hand side is finite and q/r ′ < 1, hence

J2 ≲p,q,ν,α E

[ˆ 1

0
‖ωns ‖

r ′

Hα,p ds

]
⩽ sup

t∈[0,1]
E
[
‖ωnt ‖

r ′

Hα,p

]
,

which is uniformly bounded in n by (4.13).

It is worth noticing that the gradient estimates for Pt are crucial in controlling the nonlinear
term of the dynamics, but the regularizing effect of Pt was neglected in estimating the initial
empirical measure in lemma 4.1 and the martingale terms in lemma 4.3 (due to the application
of BDG inequality). The singularity of ∇pε appearing in the initial empirical measure and in
the stochastic integrals is not improved by the heat semigroup and produces a restriction on
the asymptotic behaviour of ε= ε(n).

Thanks to the good control provided by proposition 4.4, we can estimate time increments—
which we need for the equicontinuity part of our compactness argument—in a much weaker
norm, thus allowing to exploit the weak formulation of the dynamics, easier to deal with com-
pared to the variation-of-constants form but producing bounds in weaker norms.
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Proposition 4.5. Let p> 2, 2
p < α < 1, ε= ε(n)≳ n−1/2, q⩾ 2, and (τn)n∈N0 be a sequence

of F-stopping times in [0,1]. It holds, for all r ∈ (0,1),

E
[∥∥∥ωn(τn+r)∧1 −ωnτn

∥∥∥q
H−2,p

]
⩽
(
rq/2 +

1
nq

)
CM,q,p,ν,α. (4.14)

Proof. Substituting the weak formulation of particle dynamics (4.2), we estimate by
Minkowski inequality:

E
[∥∥∥ωn(τn+r)∧1 −ωnτn

∥∥∥q
H−2,p

]
≲q E

∥∥∥∥∥∥
∑

i∈An0((τn+r)∧1)∖An0(τn)

ωni pε (·, ζni )

∥∥∥∥∥∥
q

H−2,p


+E

[∥∥∥∥∥
ˆ (τn+r)∧1

τn

ν∆ωns ds

∥∥∥∥∥
q

H−2,p

]

+E

[∥∥∥∥∥
ˆ (τn+r)∧1

τn

ˆ
D
F(K [ωn] (y))∇ypε (·,y)dSns (y)ds

∥∥∥∥∥
q

H−2,p

]

+E

∥∥∥∥∥∥
ˆ τn+r

τn

√
2ν

∑
i∈An(s)

ωni ∇ypε (·,xni (s))dBis

∥∥∥∥∥∥
q

H−2,p


=: I1 + I2 + I3 + I4.

We now proceed estimating each term separately.
Estimates on generation term I1.

I1 ⩽ E

 ∑
i∈An(1)

ωni 1τn<ti⩽(τn+r)∧1

∥∥∥(I+Ap)
−1 pε (·, ζni )

∥∥∥
Lp

q
⩽ E

 ∑
i∈An(1)

ωni 1τn<ti⩽(τn+r)∧1

q sup
y∈∂D

∥∥∥(I+Ap)
−1 pε (·,y)

∥∥∥q
Lp
.

The first factor on the right-hand side of the latter is controlled by

E

 ∑
i∈An(1)

ωni 1τn<ti⩽(τn+r)∧1

q
⩽ E

[(ˆ τn+
1
n+r∧1

τn− 1
n∨0

ˆ
∂D
g(s,y)dyds

)q]
⩽
(
r+

2
n

)q

‖g‖qL∞([0,1];L1(∂D)),
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so we are left to control the second factor. For f ∈ Lp ′
, y ∈ ∂D and a sequence yk ∈ D conver-

ging to y, it holds

ˆ
D
(I+Ap)

−1 pε (x,y) f(x)dx=
ˆ
D
pε (x,y)(I+Ap ′)

−1 f(x)dx

= lim
k→∞

ˆ
D
pε (x,yk)(I+Ap ′)

−1 f(x)dx,

the exchange between the limit and the integral being allowed thanks to the fact that, by pro-
position 2.4, pε(x,y)⩽ C

ε e
−|x−y|2/(cε) ∀x,y ∈ D. We can thus estimate:

sup
y∈∂D

∥∥∥(I+Ap)
−1 pε (·,y)

∥∥∥
Lp
= sup

y∈∂D,∥ f∥
Lp

′=1

∣∣∣∣ˆ
D
(I+Ap)

−1 pε (x,y) f(x)dx

∣∣∣∣
⩽ sup

y∈∂D,∥ f∥
Lp

′=1
lim
k→∞

∣∣∣∣ˆ
D
pε (x,yk)(I+Ap ′)

−1 f(x)dx

∣∣∣∣
⩽ sup

y∈D̄,∥ f∥
Lp

′=1
|(I+Ap ′)

−1Pεf(y)|⩽
∥∥∥(I+Ap ′)

−1Pε

∥∥∥
Lp ′→C(D̄)

⩽
∥∥∥(I+Ap ′)

−1
∥∥∥
Lp ′→C(D̄)

‖Pε‖Lp ′→Lp ′ ≲p,ν 1,

where ‖(I+Ap ′)−1‖Lp ′→C(D̄) ≲p ‖(I+Ap ′)−1‖Lp ′→H2,p ′ ≲p 1 follows by Morrey’s
inequality.
Estimates on the diffusion term I2 follow from a straightforward application of Hölder

inequality,

I2 ⩽ E

[(ˆ (τn+r)∧1

τn

‖ν∆ωns ‖H−2,p ds

)q]

≲ν r
q−1E

[ˆ (τn+r)∧1

τn

‖ωns ‖
q
Lp ds

]
⩽ rqE

[
sup
t∈[0,1]

‖ωnt ‖
q
Lp

]
.

Estimates on the nonlinear term I3. We have:

I3 ⩽ E

[(ˆ (τn+r)∧1

τn

∥∥∥∥ˆ
D
F(K [ωn] (y))∇ypε (·,y)dSns (y)

∥∥∥∥
H−2,p

ds

)q]

⩽ rq−1E

[ˆ (τn+r)∧1

τn

∥∥∥∥ˆ
D
F(K [ωn] (y))∇ypε (·,y)dSns (y)

∥∥∥∥q
H−2,p

ds

]
,
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in which we control, somewhat analogously to proposition 4.4,∥∥∥∥ˆ
D
F(K [ωn] (y))∇ypε (·,y)dSns (y)

∥∥∥∥
H−2,p

=

∥∥∥∥ˆ
D
F(K [ωn] (y))(I+Ap)

−1∇ypε (·,y)dSns (y)
∥∥∥∥
Lp

= sup
f∈Lp ′ ,∥ f∥

Lp
′=1

ˆ
D
F(K [ωn] (y))〈(I+Ap)

−1∇ypε (·,y) , f〉dSns (y)

≲M sup
f∈Lp ′ ,∥ f∥

Lp
′=1

ˆ
D
|∇Pε (I+Ap ′)

−1 f(y)|dSns (y)

≲ν,p e
Cε sup

f∈Lp ′ ,∥ f∥
Lp

′=1

ˆ
D
dSns (y)

ˆ
D
pε (y,x) |∇(I+Ap ′)

−1 f(x)|dx

= sup
f∈Lp ′ ,∥ f∥

Lp
′=1

〈
ωns ,
∣∣∣∇(I+Ap ′)

−1 f
∣∣∣〉≲ ‖ωns ‖Lp .

Therefore I3 is bounded, up to some constant independent of n, by

rqE

[
sup
t∈[0,1]

‖ωnt ‖
q
Lp

]
.

Estimates on themartingale term I4. By Sobolev embedding and Burkholder–Davis–Gundy
inequality, proposition 2.15,

I4 ≲ν,p E

∥∥∥∥∥∥
ˆ τn+r

τn

∑
i∈An(s)

ωni (I+A2)
−1∇ypε (·,xni (s))dBis

∥∥∥∥∥∥
q

H1−2/p,2


= E

[∥∥∥∥∥
N∑
i=1

ωni

ˆ 1

0
1tni⩾s1τn⩽s⩽(τn+r)∧1 (I+A2)

−1/2−1/p∇ypε (·,xni (s))dBis

∥∥∥∥∥
q

L2

]

≲q E

( N∑
i=1

(ωni )
2
ˆ (τn+r)∧1

τn

1tni⩾s

∥∥∥(I+A2)
−1/2−1/p∇ypε (·,xni (s))

∥∥∥2
L2
ds

) q
2
 .

Since N= N(n)' n2 and ωni ≲ n−2‖g‖L∞([0,1]×∂D) uniformly in i, and replacing the expecta-
tion involving particles’s positions with a supremum over D̄, we obtain

I4 ≲ν,p,q
rq/2

nq
sup
y∈D̄

∥∥∥(I+A2)
−1/2−1/p∇ypε (·,y)

∥∥∥q
L2
,

which we combine with a consequence of lemma 2.6,

sup
y∈D̄

∥∥∥(I+A2)
−1/2−1/p∇ypε (·,y)

∥∥∥
L2
⩽ sup

y∈D̄
‖∇ypε (·,y)‖L2 = ‖∇Pε‖L2→C(D̄) ≲ ε−1,

and the assumption ε(n)≳ n−1/2, concluding that I4 ≲ν,p,q rq/2.
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5. Proof of the main result

The proof of theorem 3.4 proceeds as follows.We combine the estimates of the previous section
with Aldous’ Lemma in order to obtain tightness on the space of cádlág functions taking values
in Sobolev spaces. In order to verify that the limiting dynamics coincides with the Navier–
Stokes Equations (NNS) we need almost sure convergence in such a space, which we obtain by
changing the underlying probability space by Skorohod theorem. Convergence in the original
probability space is recovered by uniqueness of the deterministic limit.

In what follows, according to the hypothesis of theorem 3.4, we tacitly assume that p> 2
and 2

p < α < 1 are fixed, as well as ω0 ∈ Lip(D̄) and g ∈ Bb([0,1]× ∂D). We denote by ω
the unique solution of (NNS) given by proposition 2.12 with initial datum ω0 and Neumann
source g.

5.1. Compactness argument

Let (Ω,F ,P) be a complete, filtered probability space satisfying the standard hypothesis, on
which it is defined a sequence (Bi)i∈N of independent F-Brownian motions. For all n⩾ 1,
on this same probability space we can consider the well-posed dynamics of proposition 3.1,
since the latter is a probabilistically strong existence and uniqueness result. In other words,
we can consider for all n the dynamics of particles (xn1(t), . . . ,x

n
N(t))t∈[0,1] and the one of the

regularized empirical measure ωnt =
∑

i∈An(t)ω
n
i pε(·,xni (t)) as stochastic processed defined on

(Ω,F ,P) and F-adapted.
We denote by Ln the law of ωn onD([0,1],Hα,p); we can actually consider any parameters

α,p since samples of the process ωn are smooth in the space variable, but time dependence is
at best cádlág due to the creation of new particles.

We need first to show tightness of the laws (Ln)n∈N:

Lemma 5.1. For all 2
p < η < α, the sequence of laws (Ln)n∈N is tight on D([0,T];Hη,p).

We then need to show that the limiting dynamics is actually a solution of (NNS).

Lemma 5.2. For all 2
p < η < α, any weak limit point of the sequence (Ln)n∈N of measures on

D([0,T];Hη,p) is concentrated on the unique solution ω of (NNS) given by proposition 2.12;
in other words there exists a unique limit point, δω.

These two lemmas imply theorem 3.4.

Proof of theorem 3.4. By lemmas 5.1 and 5.2, every subsequence Ln(k) admits a sub-
subsequence which converges to the unique limit point δω, where ω is the deterministic solu-
tion of (NNS). Then, for example by [7, theorem 2.6], the whole sequence Ln converges
weakly to δω, and then also in probability as the limit point is a Dirac delta (see e.g. the argu-
ment in [7, page 27]). The proof is complete.

5.2. Proof of lemma 5.1

Thanks to the uniform estimates of section 4, we can straightforwardly apply Aldous’ criterion,
proposition 2.9, to the processes ωnt on D([0,T];Hη,p).

Condition (1), that is tightness of laws at fixed time inHη,p, actually holds for all t ∈ [0,1].
This is a trivial consequence of proposition 4.4, Markov’s inequality and the fact thatHη ′,p ↪→
Hη,p with η ′ > η is a compact embedding.

7179



Nonlinearity 36 (2023) 7149 F Grotto et al

Condition (2) of proposition 2.9 is the harder one. Let us show that (2.14) holds: given a
sequence (τn)n of F-stopping times we estimate, for q> 2,

P
(∥∥∥ωn(τn+r)∧1 −ωnτn

∥∥∥
Hη,p

> δ
)

⩽ δ−qE
[∥∥∥ωn(τn+r)∧1 −ωnτn

∥∥∥q
Hη,p

]
≲α,q δ

−qE

[∥∥∥ωn(τn+r)∧1 −ωnτn

∥∥∥ q(α−η)
2+α

H−2,p
· sup
t∈[0,1]

‖ωnt ‖
q(2+η)
2+α

Hα,p

]

≲α,q δ
−qE

[∥∥∥ωn(τn+r)∧1 −ωnτn

∥∥∥ uq(α−η)
2+α

H−2,p

]
E

[
sup
t∈[0,1]

‖ωnt ‖
u ′q(2+η)

2+α

Hα,p

]
,

where the second step is the interpolation inequality between H−2,p and Hα,p, and the third
is Hölder inequality with exponents 1< u,u ′ <∞. A simple computation reveals that, since
q> 2, one can choose u so that the exponents of the norms in the expected values are strictly
larger than 2, therefore we can now apply the uniform estimates of propositions 4.4 and 4.5,
obtaining

P
(∥∥∥ωn(τn+r)∧1 −ωnτn

∥∥∥
Hη,p

> δ
)
≲ν,M,α,p,q δ

−q
(
r
uq(α−η)
2(2+α) + n−

uq(α−η)
2+α

)
.

It is now possible, given δ > 0, to choose r0 > 0 small enough and n0 large enough (taking
then r⩽ r0 and n⩾ n0) so that the right-hand side of the latter inequality is arbitrarily small,
thus satisfying Aldous’ condition and implying tightness of (Ln)n∈N.

5.3. Proof of lemma 5.2

We consider a weak limit point L in D([0,T];Hη,p); for simplicity, we still denote by Ln the
convergent subsequence.

Consider the joint law of ωn and the sequence of Brownian motions (Bi)i∈N0 on the product
space (R2)N ×D([0,T];Hη,p) (which we regard as a product metric space, considering a dis-
tance on (R2)N that makes it separable). In particular, the relation between Brownian motions
and ωn is encoded in the weak formulation of the dynamics:

〈ωnt ,φ〉− 〈ωn0 ,φ〉=
∑
i∈An0(t)

ωni 〈pε (·, ζni ) ,φ〉+ ν

ˆ t

0
〈ωns ,∆φ〉ds

+

ˆ t

0

ˆ
D
F(K [ωns ] (y)) · 〈∇ypε (·,y) ,φ〉dSns (y)ds

+
√
2ν
ˆ t

0

∑
i∈An(s)

ωni 〈∇ypε (·,xni (s)) ,φ〉 · dBis. (5.1)

P-a.s. for each t ∈ [0,1] and φ ∈Hs+2,p ′
with sp ′ > 2 (and 1< p ′ < 2 since p> 2).
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By Skorohod coupling theorem on (R2)N ×D([0,T];Hη,p), [34, theorem 3.30], there exists
a complete probability space (Ω̃,A, P̃) with random elements (ω̃n)n∈N, (B̃i,n)i∈N having the
same joint laws of (ωn)n∈N, (Bi)i∈N, and ω̃ with law L̃ = L , such that ω̃n converges P̃-almost
surely to ω̃. Moreover we can take the filtration F̃n,0 = (F̃n,0

t )t generated by (ω̃n,(B̃i,n)i) and
the P-null sets on (Ω,A) and we define the filtration F̃n by F̃n

t = ∩s>tF̃n,0
t ; by a standard

argument, see e.g. the proof of [4, proposition 2.5, part 1], we get that (ω̃n and (B̃i,n)i are
progressively measurable with respect to F̃n and) (B̃i,n)i is still a cylindrical Brownian motion
with respect to F̃n. Arguing for example as in [6, section 4.3.4] (see also [14, proposition 4.1]
or [19, section 2.4.4]), we can show that (5.1) is satisfied by ω̃n,(B̃i,n)i=1,...,N on the filtered
probability space (Ω̃, F̃n,P).

If we now show that L̃ = δω, so that also L = δω, we obtain the first statement of the
lemma. In proving such claim, we drop tilde signs from ω̃n,(B̃i,n)i to lighten notation5. The
aim is to pass to the limit (5.1), we do so term by term.

5.3.1. Linear terms. It is clear that, P-almost surely,

〈ωnt ,φ〉 → 〈ω̃t,φ〉 , ν

ˆ t

0
〈ωns ,∆φ〉ds→ ν

ˆ t

0
〈ω̃s,∆φ〉ds.

We then need to prove that 〈ωn0 ,φ〉 → 〈ω0,φ〉, that is, ω̃0 = ω0; we do so by showing that as
n→∞, the following quantities vanish:

I1 :=

∣∣∣∣〈ωn0 ,φ〉− ˆ
D
dx
ˆ
D
dypε (x,y)ω0 (y)φ(x)

∣∣∣∣ ,
I2 :=

∣∣∣∣〈ω0,φ〉−
ˆ
D
dx
ˆ
D
dypε (x,y)ω0 (y)φ(x)

∣∣∣∣ .
We treat I1 exploiting the fact that φ is Lipschitz continuous,

I1 =

∣∣∣∣∣∑
i:ti=0

ωni 〈pε (·, ζni ) ,φ〉−
ˆ
D
dx
ˆ
D
dypε (x,y)ω0 (y)φ(x)

∣∣∣∣∣
=

∣∣∣∣∣∑
i:ti=0

ωni Pεφ(ζ
n
i )−〈ω0,Pεφ〉

∣∣∣∣∣⩽ ∑
i:ti=0

ˆ
Qn
i

ω0 (y) |Pεφ(ζ
n
i )−Pεφ(y)|dy

⩽
∑
i:ti=0

ˆ
Qn
i

ω0 (y) |y− ζni |‖Pεφ‖C1(D̄)dy≲
1
n
‖φ‖Hs+2,p ′ ↓ 0.

As for I2, using the regularity of ω0 we assumed by hypothesis,

I2 = |〈ω0,φ〉− 〈Pεω0,φ〉|⩽ ‖φ‖L2‖(I−Pε)ω0‖L2 ↓ 0.

5 The tilde on our limit point ω̃ is retained since a priori it can differ from the solution ω of (NNS).
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5.3.2. Boundary generation terms. They converge to the PDE Neumann source, conveni-
ently represented by

´ t
0〈gs,φ〉∂Dds. The argument is analogous to parts of the proofs of lemma

4.2 and proposition 4.5, therefore we omit some details. We split:∣∣∣∣∣∣
∑
i∈An0(t)

ωni 〈pε (·, ζni ) ,φ〉−
ˆ t

0
〈gs,φ〉∂Dds

∣∣∣∣∣∣
⩽

∣∣∣∣∣∣
∑
i∈An0(t)

ωni 〈pε (·, ζni ) ,φ〉−
ˆ t

0

ˆ
∂D
gs (y)〈pε (·,y) ,φ〉dyds

∣∣∣∣∣∣
+

∣∣∣∣ˆ t

0
〈gs,φ〉∂Dds−

ˆ t

0

ˆ
∂D
gs (y)〈pε (·,y) ,φ〉dyds

∣∣∣∣= J1 + J2.

Let us define In(t) = (tnj − 1/(2n), tnj + 1/2n] with tnj such that t ∈ In(t). We control J1 exploit-
ing again the fact that φ is Lipschitz,

J1 =

∣∣∣∣∣∣
∑
i∈An0(t)

ωni Pεφ(ζ
n
i )−
ˆ t

0

ˆ
∂D
gs (y)Pεφ(y)dyds

∣∣∣∣∣∣
⩽
∑
i∈An0(t)

ˆ
Qn
i

gs (y) |Pεφ(ζ
n
i )−Pεφ(y)|dsdy+

ˆ
In(t)

ˆ
∂D
gs (y) |Pεφ(y)|dyds

≲
∑
i∈An0(t)

ˆ
Qn
i

gs (y) |ζni − y|‖Pεφ‖C1(D̄)dsdy+
1
n
‖g‖L∞([0,1]×∂D) ‖Pεφ‖C(D̄)

≲s,p
1
n
‖φ‖Hs+2,p ′ ↓ 0.

Once again, the second term J2 is the easier one:

J2 ⩽ ‖g‖L1([0,1];L∞(∂D)) ‖(I−Pε)φ‖C(D̄)
⩽ ‖g‖L1([0,1];L∞(∂D)) ‖(I−Pε)(I+Ap ′)φ‖Lp ′ (D) ↓ 0.

5.3.3. Martingale term. By Itô isometry,

E


∣∣∣∣∣∣
ˆ t

0

∑
i∈An(s)

ωni 〈∇ypε (·,xni (s)) ,φ〉 · dBi,ns

∣∣∣∣∣∣
2


= E

 ∑
i∈An(t)

(ωni )
2
ˆ t

tni

|∇Pεφ(x
n
i (s))|2ds


≲ 1
n2

sup
x∈D

|∇Pεφ(x)|≲s,p
1
n2

‖φ‖Hs+2,p ′ ↓ 0.
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5.3.4. Nonlinear term. Observe first that, since we are assuming that ωn → ω̃, P-almost
surely inD([0,1];Hη,p) for all 2

p < η, by lemma 2.8 we also have that K[ωn]→ K[ω̃], P-almost

surely in D([0,1];C1(D̄;R2)). We now proceed to show that

L :=

∣∣∣∣ˆ t

0

ˆ
D
F(K [ωns ] (y))∇Pεφ(y)dS

n
s (y)ds

−
ˆ t

0

ˆ
D
F(K [ω̃s] (y))∇φ (y) ω̃s (y)dyds

∣∣∣∣ P−a.s.−−−−→ 0. (5.2)

To do so, we add and subtract the same quantity three times, apply the triangular inequality
and estimate differences. For the sake of shorter formulas and clearer passages we will write

Kn
t (x) = F(K [ωnt ] (x)) , Kt (x) = F(K [ω̃t] (x)) , x ∈ D̄;

T1 =
ˆ t

0

ˆ
D
Kn
t (y)∇Pεφ(y)dS

n
s (y)ds, T2 =

ˆ t

0

ˆ
D
Kn
t (y)∇Pεφ(y)ω

n
s (y)dyds,

T3 =
ˆ t

0

ˆ
D
Kn
t (y)∇Pεφ(y) ω̃s (y)dyds, T4 =

ˆ t

0

ˆ
D
Kt (y)∇Pεφ(y) ω̃s (y)dyds,

T5 =
ˆ t

0

ˆ
D
Kt (y)∇φ(y) ω̃s (y)dyds.

Notice that T1 and T5 coincide with the terms of the difference in (5.2), therefore the
latter vanishes if |T1 −T2|, |T2 −T3|, |T3 −T4|, |T4 −T5| do so. The first difference is the
harder one, since it involves the pointwise difference between the empirical measure and its
regularization:

|T1 −T2|=

∣∣∣∣∣∣
ˆ t

0

∑
i∈An(s)

ωni K
n
t (x

n
i (s))∇Pεφ(x

n
i (s))ds

−
ˆ t

0

∑
i∈An(s)

ωni

ˆ
D
Kn
t (z)∇Pεφ(z)pε (z,x

n
i (s))dzds

∣∣∣∣∣∣
⩽
(
‖ω0‖L1(D) + ‖g‖L1([0,1]×∂D)

)
· sup
t∈[0,1],
y∈D̄

ˆ
D
|Kn

t (y)∇Pεφ(y)−Kn
t (z)∇Pεφ(z)|pε (z,y)dz,

≲ sup
t∈[0,1],
y∈D̄

ˆ
D
|Kn

t (y)∇Pεφ(y)−Kn
t (z)∇Pεφ(y)|pε (z,y)dz

+ sup
t∈[0,1],
y∈D̄

ˆ
D
|Kn

t (z)∇Pεφ(y)−Kn
t (z)∇Pεφ(z)|pε(z,y)dz.

From there, since F is Lipschitz continuous, and applying the pointwise estimate on heat
kernel (2.4),
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|T1 −T2|≲ sup
t∈[0,1],
y∈D̄

ˆ
D
‖∇Pεφ‖C(D̄) |y− z|‖K [ωnt ]‖C1(D̄)

1
ε
e|z−y|2/(cε)dz

+ sup
t∈[0,1],
y∈D̄

ˆ
D
‖∇Pεφ‖C1(D̄) |y− z|‖K [ωnt ]‖C(D̄)

1
ε
e|z−y|2/(cε)dz

≲s,p sup
t∈[0,1],
y∈D̄

ˆ
D
‖φ‖Hs+2,p ′ |y− z|‖K [ωnt ]‖C1(D̄)

1
ε
e|z−y|2/(cε)dz

⩽ ‖φ‖Hs+2,p ′ sup
y∈D̄,n∈N

‖ωn‖D([0,1];Hη,p)

ˆ
D
|y− z|1

ε
e|z−y|2/(cε)dz

P−a.s.−−−−→ 0.

The other differences now are controlled by the almost sure convergence assumption and func-
tional analytic estimates already repeatedly applied. Bounding

|T2 −T3|⩽M
ˆ t

0

ˆ
D
‖∇Pεφ‖C(D̄) |ω

n
s (y)− ω̃s (y)|dyds

≲s,p,M ‖φ‖Hs+2,p ′ ‖ωn− ω̃‖D([0,1];Hη,p) ,

|T3 −T4|≲M

ˆ t

0

ˆ
D
‖∇Pεφ‖C(D̄) ‖ω̃s‖C(D̄) |K [ωns ] (y)−K [ω̃s] (y)|dyds

≲η,p ‖∇Pεφ‖C(D̄) ‖ω̃‖D([0,1];Hη,p) ‖K‖Hη,p→Hη+1,p ‖ωn− ω̃‖D([0,1];Hη,p) ,

|T4 −T5|⩽M‖ω̃‖D([0,1];C(D̄)) ‖∇(I−Pε)φ‖C(D̄)
≲η,p,M ‖ω̃‖D([0,1];Hη,p) ‖(I−Pε)φ‖Hs+2,p ′

= ‖ω̃‖D([0,1];Hη,p)

∥∥∥(I−Pε)(I+Ap ′)
(s+2)/2

φ
∥∥∥
Lp ′
,

it is clear that differences on the right-hand side converge P-almost surely to 0 as n→∞.

5.3.5. Removing the cutoff. The argument detailed so far implies that the limit ω̃ is a
weak solution, thus the unique weak solution of the cutoff PDE (c-NNS). However, by
proposition 2.13 (second statement) it is now possible to choose M large enough so that
‖K[ω̃]‖L∞([0,1],L∞) <M, so that F(K[ω̃]) = K[ω̃] and thus ω̃ = ω is actually the unique weak
solution of the PDE (NNS) without cutoff. This concludes the proof of the first part of
lemma 5.2.

6. General initial and boundary data

In this sectionwe provide a brief description of changes to the above arguments required to deal
with general boundary data ω0 ∈ Lip(D̄) and g ∈ Bb([0,1]× ∂D), dropping the non-negativity
assumption. The idea is simply to divide boundary data into positive and negative parts, and
to consider particle and PDE dynamics for the two parts, properly taking into account their
interactions.
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6.1. Splitting of PDE and particle dynamics

Let us set

ω+
0 := ω0 ∨ 0, ω−

0 := (−ω0)∨ 0, g+t (x) := gt (x)∨ 0, g−t (x) := (−gt (x))∨ 0.

The limit dynamics (NNS) is then equivalent to a coupled system of PDEs,
∂tω

+ +K [ω+ −ω−] ·∇ω+ = ν∆ω+, in D× [0,T] ,

∂tω
− +K [ω+ −ω−] ·∇ω− = ν∆ω−, in D× [0,T] ,

∇ω+ · n̂= g+, ∇ω− · n̂= g−, in ∂D× (0,T) ,

ω+ (0) = ω+
0 , ω− (0) = ω−

0 , in D.

(6.1)

The notion of weak solution to the latter system is completely analogous to the one of definition
2.10. Moreover, a couple (ω+,ω−) is a weak solution of the system above if and only if the
couple (ω = ω+ −ω−,ω+) is a weak solution of

∂tω+K [ω] ·∇ω = ν∆ω, in D× [0,T] ,

∂tω
+ +K [ω] ·∇ω+ = ν∆ω+, in D× [0,T] ,

∇ω · n̂= g, ∇ω+ · n̂= g+, in ∂D× (0,T) ,

ω (0) = ω0, ω+ (0) = ω+
0 , in D.

(6.2)

Well-posedness of (6.2) follows easily from proposition 2.12. Therefore, also (6.1) is well
posed in D([0,T];L2(D)2).

As for the approximating dynamics, coherently with notation of section 3.1, we define

ωn,±i =

{´
Qn
i
ω±
0 (x)dx tni = 0,´

Qn
i
g±s (x)dsdσ (x) tni > 0.

(6.3)

From our assumptions on the boundary data and on the mesh of the grid, it follows that ωn,±i ≲
1
n2 uniformly in i = 1, . . . ,N, for all n. We introduce two mutually independent sequences of
independentF-Brownian motions (Bi,±)i∈N and particles with positions xn,±i (t) satisfying the
following evolution equations: for t> tni ,

xn,±i (t)− ζni =

ˆ t

tni

F

 ∑
j∈An(s)

ωn,+j Kn
(
xn,±i (s) ,xn,+j (s)

)

−ωn,−j Kn
(
xn,±i (s) ,xn,−j (s)

)ds+
√
2ν
ˆ t

tni

dBi,±s − kn,±i (t) ,

kn,±i (t) =
ˆ t

tni

n̂
(
xn,±i (s)

)
d|kn,±i |(s) , |kn,±i |(t) =

ˆ t

tni

1xn,±i (s)∈∂Dd|k
n,±
i |(s) .

where kn,±i are continuous, adapted, R2-valued processes with bounded variation trajectories,
whereas for t⩽ tni , x

n,±
i (t) = ζni and k

n,±
i (t) = 0.Well-posedness of this particle system follows
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from the same arguments proving proposition 3.1. Similarly to section 4 we introduce the
empirical measures

Sn,±t =
∑
i∈An(t)

ωn,±i δxn,±i (t),

and the regularized empirical measures

ωn.±t (x) = PεS
n,±
t =

∑
i∈An(t)

ωn,±i pε
(
x,xn,±i (t)

)
, x ∈ D̄.

The following statement extends theorem 3.4 to the general case of ω0, g not necessarily non-
negative.

Theorem 6.1. Let p> 2, 2
p < α < 1, ε= ε(n)≳ n−1/2, and ω0 ∈ Lip(D̄), g ∈ Bb([0,1]×

∂D). There exists M> 0 (only depending on ω0, g) such that for every η ∈ (2/p,α), as n→∞,
the stochastic process (ωn,+,ωn,−) converges in probability on D([0,T];Hη,p×Hη,p) to the
unique weak solution of (6.1), therefore ωn,+ −ωn,− converges in the same topology to the
unique solution of (NNS).

6.2. Uniform estimates for split dynamics

The regularized empirical measures satisfy the integral equations and the mild formulations
below:

ωn,±t (x)−ωn,±0 (x) =
∑
i∈An0(t)

ωn,±i pε (x, ζ
n
i )+ ν

ˆ t

0
∆ωn,±s (x)ds

+

ˆ t

0

ˆ
D
F
(
K
[
ωn,+s −ωn,−s

]
(y)
)
∇ypε (x,y)dS

n,±
s (y)ds

+
√
2ν
ˆ t

0

∑
i∈An(s)

ωn,±i ∇ypε
(
x,xn,±i (s)

)
dBi,±s . (6.4)

ωn,±t (x) = Ptω
n,±
0 (x)+

∑
i∈An0(t)

ωn,±i Pt−tni pε (x, ζ
n
i )

+

ˆ t

0
Pt−s

ˆ
D
F
(
K
[
ωn,+s −ωn,−s

]
(y)
)
∇ypε (x,y)dS

n,±
s (y)ds

+
√
2ν
ˆ t

0

∑
i∈An(s)

ωn,±i Pt−s∇ypε
(
x,xn,±i (s)

)
dBi,±s . (6.5)

In order to obtain the required compactness we need to show that

sup
n
E

[
sup
t∈[0,1]

∥∥ωn,+t ∥∥q
Hα,p

]
+ sup

n
E

[
sup
t∈[0,1]

∥∥ωn,−t ∥∥q
Hα,p

]
< CM,q,p,ν,α, (6.6)

E
[∥∥ωn,+τn+r−ωn,+τn

∥∥q
H−2,p

]
+E

[∥∥ωn,−τn+r−ωn,−τn

∥∥q
H−2,p

]
≲M,q,p,ν,α

(
rq/2 +

1
nq

)
. (6.7)

The proof of these inequalities follows the same strategy described in section 4. Indeed, linear
terms, stochastic integrals and generation terms can be treated exactly as in the case of positive
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data. In fact, nonlinear terms present no additional difficulties and the crucial estimate for
the nonlinear term of proposition 4.4 is easily adapted. For f ∈ Lp ′

such that ‖ f‖Lp ′ = 1 the
following chain of inequalities holds:∥∥∥∥∥ ∑

i∈An(s)

ωn,±i F
(
K
[
ωn,+s −ωn,−s

](
xn,±i (s)

))
·
ˆ
D
f(x)(I+Ap)

α/2Pt−s∇ypε
(
x,xn,±i (s)

)
dx

∥∥∥∥∥
≲M

∑
i∈An(s)

ωn,±i

∣∣∣∇Pε

[
(I+Ap ′)

α/2Pt−s f
](
xn,±i (s)

)∣∣∣
≲
∑

i∈An(s)

ωn,±i Pε

∣∣∣∇(I+Ap ′)
α/2Pt−s f

∣∣∣(xn,±i (s)
)

=
∑

i∈An(s)

ωn,±i

ˆ
D
pε
(
x,xn,±i (s)

)∣∣∣∇(I+Ap ′)
α/2Pt−s f

∣∣∣(x)dx
=

ˆ
D
Pε

(
Sn,±

)
(x)
∣∣∣∇(I+Ap ′)

α/2Pt−s f
∣∣∣(x)dx

⩽
∥∥ωn,±s ∥∥

Lp

∥∥∥∇(I+Ap ′)α/2Pt−s f
∥∥∥
Lp ′

≲ 1
(t− s)(1+α)/2

∥∥ωn,±s ∥∥
Hα,p .

Then the proof of (6.6) follows exactly as in proposition 4.4. Similarly, in the proof of (6.7) the
only differences concern the nonlinear terms, and they can be handled with analogous simple
modifications.

Once uniform bounds are recovered, one can proceed to replicate the tightness argument
of section 5.1. Passing to the limit dynamics is similar to that explained in section 5.3, once
again we only outline the (slightly) different treatment required by nonlinear terms.

We consider the weak formulation satisfied by ωn,±t , t ∈ [0,1] and test functions (φ+,φ−) ∈
Hs+2,p ′ ×Hs+2,p ′

with sp ′ > 2, 1< p ′ < 2,

〈
ωn,±t ,φ±〉− 〈ωn,±0 ,φ±〉
=
∑
i∈An0(t)

ωn,±i 〈pε (·, ζni ) ,φ±〉+ ν

ˆ t

0
〈ωn,±s ,∆φ±〉ds

+

ˆ t

0

ˆ
D
F
(
K
[
ωn,+s −ωn,−s

]
(y)
)
· 〈∇ypε (·,y) ,φ±〉dSn,±s (y)ds

+
√
2ν
ˆ t

0

∑
i∈An(s)

ωn,±i 〈∇ypε
(
·,xn,±i (s)

)
,φ±〉 · dBi,±s . (6.8)

We stress once again that linear terms, stochastic integrals and generation terms present no
changes with respect to section 5.3. Since (by means of a Skorohod argument) we can assume

that ωn,±
P−a.s.→ ω± in D([0,1];Hη,p) for all 2

p < η, and by the properties of the Biot-Savart
Kernel,

un := K
[
ωn,+ −ωn,−

] P−a.s.→ K
[
ω+ −ω−]=: u in D

(
[0,1] ;C1

(
D̄;R2

))
.
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A careful analysis of computations in section 5.3 reveals that only the terms |T±
1 −T±

2 |,
and |T±

3 −T±
4 | are affected by the generalization to the coupled positive-negative system.

However, only little changes are needed:

|T±
1 −T±

2 |=
∣∣∣∣ˆ t

0

∑
i∈An(s)

ωn,±i F
(
uns
(
xn,±i (s)

))
∇Pεφ

± (xn,±i (s)
)
ds

−
ˆ t

0

∑
i∈An(s)

ωn,±i

ˆ
D
F(uns (z))∇Pεφ

± (z)pε
(
z,xn,±i (s)

)
dzds

∣∣∣∣
≲ sup

t∈[0,1],
y∈D̄

ˆ
D

∣∣F(unt (y))∇Pεφ
± (y)−F(unt (z))∇Pεφ

± (z)
∣∣pε (z,y)dz

⩽ sup
t∈[0,1],
y∈D̄

ˆ
D

∣∣F(unt (y))∇Pεφ
± (y)−F(unt (z))∇Pεφ

±(y)
∣∣pε(z,y)dz

+ sup
t∈[0,1],
y∈D̄

ˆ
D

∣∣F(unt (z))∇Pεφ
±(y)−F(unt (z))∇Pεφ

±(z)
∣∣pε(z,y)dz

≲ sup
t∈[0,1],
y∈D̄

ˆ
D

∥∥∇Pεφ
±∥∥

C(D̄)
|y− z|‖unt ‖C1(D̄)

1
ε
e|z−y|

2/(cε)dz

+ sup
t∈[0,1],
y∈D̄

ˆ
D

∥∥∇Pεφ
±∥∥

C1(D̄)
|y− z|‖unt ‖C(D̄)

1
ε
e|z−y|2/(cε)dz

≲ sup
t∈[0,1],
y∈D̄

ˆ
D

∥∥φ±∥∥
Hs+2,p ′ |y− z|‖unt ‖C1(D̄)

1
ε
e|z−y|2/(cε)dz

≲
∥∥φ±∥∥

Hs+2,p ′ sup
y∈D̄,n∈N

∥∥ωn,+ −ωn,−
∥∥
D([0,1];Hη,p)

P−a.s.−−−−→ 0,

|T±
3 −T±

4 |≲
ˆ t

0

ˆ
D

∥∥∇Pεφ
±∥∥

C(D̄)

∥∥ω±
s

∥∥
C(D̄)

|uns (y)− us (y)|dyds

≲
∥∥∇Pεφ

±∥∥
C(D̄)

∥∥ω±∥∥
D([0,1];Hη,p)

‖K‖Hη,p→Hη+1,p

×
(∥∥ωn,+ −ω+

∥∥
D([0,1];Hη,p)

+
∥∥ωn,− −ω−∥∥

D([0,1];Hη,p)

)
P−a.s.−−−−→ 0.

The remaining passages then coincide with the non-negative case discussed above.
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