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Abstract. A gradient-enhanced functional tensor train cross approximation method for the
resolution of the Hamilton--Jacobi--Bellman (HJB) equations associated with optimal feedback control
of nonlinear dynamics is presented. The procedure uses samples of both the solution of the HJB
equation and its gradient to obtain a tensor train approximation of the value function. The collection
of the data for the algorithm is based on two possible techniques: Pontryagin Maximum Principle and
State-Dependent Riccati Equations. Several numerical tests are presented in low and high dimension
showing the effectiveness of the proposed method and its robustness with respect to inexact data
evaluations, provided by the gradient information. The resulting tensor train approximation paves
the way towards fast synthesis of the control signal in real-time applications.
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1. Introduction. Stabilization of nonlinear dynamical systems is a fundamen-
tal problem in control theory, with applications in mechanical systems, chemical en-
gineering, and fluid flow control, among many other areas. Nonlinear stabilization is
often approached by means of feedback (closed-loop) controllers which, in contrast to
open-loop controls, offer enhanced stability properties with respect to external dis-
turbances. The synthesis of optimal feedback controls resorts to the use of dynamic
programming, which characterizes the optimal feedback law in terms of the solution
of a Hamilton--Jacobi--Bellman (HJB) nonlinear Partial Differential Equation (PDE).
The main drawback of this approach lies in the fact that the HJB equation must be
solved on the state space of the dynamical system, often leading to solving a nonlin-
ear PDE in arbitrarily high dimensions. This limitation is referred to as the curse
of dimensionality , a term coined by Richard Bellman in the '60s and still an active
subject of research. Under some specific structural assumptions, as in the case of
linear dynamics and a quadratic cost functional, the HJB equation is equivalent to
the matrix Algebraic Riccati Equation (ARE), for which high-dimensional solvers are
readily available [35, 7]. Unfortunately, for the fully nonlinear setting, no reformula-
tion is possible and the HJB PDE must be solved directly. In this direction, over the
last years there has been significant progress toward the solution of high-dimensional
HJB PDEs arising in optimal control, including max-plus algebra methods [39, 1, 12],
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A2154 SERGEY DOLGOV, DANTE KALISE, AND LUCA SALUZZI

sparse grids [21], tree-structure algorithms [3, 20], applications of artificial neural
networks [29, 13, 38, 40, 58, 43, 50], and regression-type methods in tensor formats
[52, 49]. The above-mentioned techniques can scale up to very high-dimensional HJB
PDEs; however, the effective implementation of real-time HJB-based controllers re-
mains an open problem.

In this work we develop a data-driven approach based on the knowledge of the
value function and its gradient on sample points. Similar ideas have been proposed
in [33, 32] in the framework of sparse grids, in [5] with sparse polynomial regres-
sion, in [48, 52] via tensor train representation and Monte Carlo quadrature, and in
[41, 42, 9, 44] using supervised learning and deep neural networks. The aforemen-
tioned works exploit the link between the HJB equation and Pontraygin's Maximum
Principle (PMP), a first-order optimality condition which is interpreted as a charac-
teristic curve of the HJB PDE. The latter is used to generate synthetic data for the
solution of the HJB equation, whose global solution is then recovered by supervised
learning. A similar idea is proposed in [2] where the authors propose a suboptimal
feedback law obtained via a feedforward neural network. In this case the training set
is generated via the State-Dependent Riccati Equation (SDRE) strategy [6, 11, 4], an
extension of the Riccati solution to nonlinear dynamics.

Generally speaking, the proposed methodology belongs to a class of surrogate
models, where instead of solving numerically expensive PMP and SDRE problems for
each given state of the system, an offline approximation of the entire value function
is precomputed in a compressed storage format. This format is then used for a cheap
online evaluation of an approximate control signal for any given state of the system,
which allows one to control the system in real time even on a low-performance device
(e.g., FPGA). In this paper we propose approximating the value function together
with its gradient in a tensor product decomposition, computed via adaptive sampling
of either PMP or SDRE. We show that sampling from this prebuilt tensor format of
the value function is 100 times faster than the online computation of SDRE solutions,
effectively enabling real-time control synthesis.

Tensor decompositions have emerged as efficient approximation techniques for
high-dimensional tensors [27, 25], and, when such tensors encapsulate expansion co-
efficients of functions in a structured basis, multivariate functions [10, 23]. The idea
behind tensor decompositions is to approximate a given tensor (or a function) by
separation of variables. Convergence of such decompositions for functions of certain
regularity [55], or particular classes of value functions [14] has been established. Hier-
archical tensor decompositions [27], in particular the tensor train decomposition [45],
have become most widely used due to efficient and numerically stable computational
algorithms. Those can typically be written in a recursive form that scales linearly
with the dimension. The main workhorse is the Alternating Linear Scheme [30, 17],
an analogue of the coordinate gradient descent, which optimizes a desired objective
function by iterating over the tensor decomposition factors, computing only one factor
at a time.

This optimization framework can be used for solving regression problems, such as
the Variational Monte Carlo [47, 18, 48, 19]. In this case, one draws random samples
from the sought function, and seeks for its tensor approximation by minimizing the
misfit on the given samples over the elements of the tensor factors. This problem is
also called Tensor Completion [36, 24]. In addition to the straightforward coordinate
descent, one can formulate the misfit optimization as a gradient flow on a Riemannian
manifold of the tensor decomposition [56], which turns out to be more accurate in a
higher-error regime.
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DATA-DRIVEN TT GRADIENT CROSS FOR HJB EQUATIONS A2155

Although Tensor Completion works well for smooth functions and rapidly con-
verging decompositions, the predefined sampling may miss localized but significant
regions of a more irregular function. Cross approximation methods [46, 54, 26, 53]
have been designed to adapt the sampling sets to minimize the conditioning of the
interpolation problem, and to improve the approximation accuracy. Moreover, the
structure of the sampling sets in the cross methods is aligned to the structure of the
sought tensor decomposition, which enables a more efficient linear algebra.

In addition to optimizing the locations of the data samples, one can assimilate
more information per each sample. In some problems (such as the optimal control
considered here), each evaluation of the sought function comes together with a value
of the gradient of this function at little or no extra cost. In this case, one can extend
the regression problem such that weighted misfits in both the function and its gradient
are minimized. This allows one to take fewer samples for the same accuracy [51, 2],
or to achieve a higher accuracy for the same amount of samples. The latter property
becomes especially useful when the function values are noisy. In this paper we develop
an algorithm to solve the gradient-enhanced regression problem on a tensor train
decomposition of the value function of an optimal control problem.

The contributions of this paper can be summarized as follows:
1. We propose a framework for synthetic data generation for infinite horizon

nonlinear stabilization problems based on the pointwise solution of SDREs.
2. We formulate a gradient-augmented supervised learning problem where a ten-

sor train approximation of the value function is adaptively trained upon syn-
thetic SDRE samples.

3. We develop a two-box approach (based on the two ingredients above) to
improve the accuracy in cases where stabilization towards the origin requires
enhanced precision of the control law.

4. We present a comprehensive computational assessment of the proposed
methodology over high-dimensional nonlinear tests motivated by optimal con-
trol of multiagent systems.

The rest of this paper is structured as follows. In section 2 we give a brief intro-
duction on the infinite horizon optimal control problems and on the two techniques
used to generate the dataset: the SDREs and the finite horizon PMP. In section 3 we
develop the construction of Gradient Cross for the approximation of the value func-
tion. Finally, in section 4 we will demonstrate the efficiency of the proposed algorithm
in low- and high-dimensional numerical tests.

2. The infinite horizon optimal control problem and suboptimal feed-
back laws. In this section we formulate the deterministic infinite horizon problem
for which we are interested in synthesizing a feedback law. We first present the opti-
mal feedback synthesis using the HJB formalism to subsequently discuss suboptimal
feedback laws which can be effectively cast in a data-driven environment. We consider
system dynamics in control affine-form given by\biggl\{ 

\.y(s) = f(y(s)) +B(y(s))u(s), s\in (0,+\infty ),
y(0) = x\in \BbbR d.

(2.1)

We denote by y : [0,+\infty ) \rightarrow \BbbR d the state of the system, by u : [0,+\infty ) \rightarrow \BbbR m

the control signal and by \scrU = L\infty ([0,+\infty );U) the set of admissible controls where
U \subset \BbbR m is a compact set. We assume that the system dynamics f : \BbbR d \rightarrow \BbbR d and
B :\BbbR d \rightarrow \BbbR d are \scrC 1(\BbbR d) functions, verifying f(0) =B(0) = 0. Whenever we want to
stress the dependence of the control signal from an initial state x\in \BbbR d, we will write
u(t, x).
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A2156 SERGEY DOLGOV, DANTE KALISE, AND LUCA SALUZZI

We consider the following undiscounted infinite horizon cost functional:

J(u(\cdot , x)) :=
\int +\infty 

0

y(s)\top Qy(s) + u\top (s)Ru(s)ds ,(2.2)

where Q \in \BbbR n\times n is a symmetric positive semidefinite matrix and R \in \BbbR m\times m is a
symmetric positive definite matrix. Our goal is to synthesize an optimal control in
feedback form, that is, a control law that is fully determined upon the current state of
the system. We begin by the defining the value function for a given initial condition
x\in \BbbR d:

V (x) := inf
u\in \scrU 

J(u(\cdot , x)) ,(2.3)

which, by standard dynamic programming arguments, satisfies the following HJB
PDE for every x\in \BbbR d :

min
u\in U

\bigl\{ 
(f(x) +B(x)u)\top \nabla V (x) + x\top Qx+ u\top Ru

\bigr\} 
= 0.(2.4)

The HJB PDE (2.4) is challenging first-order fully nonlinear PDE cast over \BbbR d, where
d can be arbitrarily large, and thus intractable through conventional grid-based meth-
ods. However, in the unconstrained case, i.e., U =\BbbR m, the minimizer of the l.h.s. of
(2.4) can be computed explicitly as

u\ast (x) = - 1

2
R - 1B(x)\top \nabla V (x) ,(2.5)

leading to an unconstrained version of the HJB PDE given by

\nabla V (x)\top f(x) - 1

4
\nabla V (x)\top B(x)R - 1B(x)\top \nabla V (x)+x\top Qx= 0 .(2.6)

In this work, we are interested in recovering an approximation of the optimal feed-
back law (2.5) circumventing the solution of the high-dimensional HJB PDE (2.6).
Instead, we will approximate V (x) in a regression framework, assuming measurements
from both the value function V (x) and its gradient \nabla V (x) are available at sampling
points. The idea behind this approach resides in the fact that, for a given sample
state x, the value function and its gradient can be recovered by minimizing the cost
(2.2) without resorting the HJB PDE, and independently from other sampling points.
However, generating a single sample of V (x) by solving the associated infinite horizon
optimal control problem (2.2) is already a computationally demanding task, unsuit-
able for the generation of a large-scale dataset. Instead, we propose two alternatives
which trade optimality in minimizing (2.2) by fast computability: an SDRE approach
and a finite horizon PMP formulation. In this way, we generate a synthetic dataset
which approximates the value function and its gradient, leading to a suboptimal, yet
asymptotically stabilizing feedback law.

2.1. State-Dependent Riccati Equation. Since the value function is a posi-
tive function, with no loss of generality it can be represented as

V (x) = x\top \Pi (x)x,(2.7)

where \Pi (x)\in \BbbR n\times n is a symmetric matrix-valued function with its gradient given by
the following formula:

\nabla V (x) = 2\Pi (x)x+

\left(   x\top d
dx1

\Pi (x)x
...

x\top d
dxd

\Pi (x)x

\right)   .(2.8)
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DATA-DRIVEN TT GRADIENT CROSS FOR HJB EQUATIONS A2157

In the particular case of a linear dynamics (i.e., A(x) = A and B(x) =B), \Pi (x) = \Pi 
is constant and it is well known that the HJB equation (2.6) becomes the ARE

A\top \Pi +\Pi A - \Pi BR - 1B\top \Pi +Q= 0.

An intermediate parametrization can be considered in the nonlinear case, by writing
the dynamics in semilinear form

\.y=A(y(t))y(t) +B(y(t))u(t).(2.9)

In this case, (2.6) can be approximated as

A\top (x)\Pi (x) +\Pi (x)A(x) - \Pi (x)B(x)R - 1B(x)\top \Pi (x) +Q= 0 ,(2.10)

which is obtained by applying the ansatz V (x) = x\top \Pi (x)x with a gradient approxima-
tion \nabla V (x) = 2\Pi (x)x, that is, by neglecting the second term in (2.8). The resulting
equation is known as SDRE. First, we note that the SDRE is a functional equation
which must hold for every x \in \BbbR d, hence analytical solutions are only available in
limited cases. However, under the assumption that the pair (A(x),B(x)) is stabiliz-
able for all x\in \BbbR d, in [6] the authors prove that the feedback law associated with the
SDRE

u(x) = - R - 1B(x)\top \Pi (x)x(2.11)

is locally asymptotically stabilizing (that is, for states in a neighborhood of the origin).
Since the SDRE is an approximation of the HJB PDE leading to an optimal feedback
law, we claim that the SDRE control is a suboptimal feedback law.

A natural implementation of the SDRE control law for nonlinear stabilization is
through a receding horizon approach. In the SDRE setting, this means that given
a current state xk of the trajectory, every matrix in (2.10) is frozen at xk and an
algebraic Riccati equation is solved for \Pi (xk). Then, the resulting feedback law u(xk)
from (2.11) is applied to evolve the dynamics for a short horizon, until the next
state xk+1 where the computation is repeated. This implementation is feasible for
low-dimensional dynamics, but becomes quickly unpractical as the number of states
grows, as it requires the solution of large-scale algebraic Riccati equations at a very
high rate. Here instead, we propose a supervised learning approach where (2.10)
is used to generate a dataset to approximate \Pi (x) offline, so that online feedback
calculations are limited to the evaluation of the feedback law (2.11), which requires
the evaluation of \Pi (x)x, or the approximate gradient of V (x). The approximation
of the value function using a functional tensor train format is discussed in detail in
section 2.3.

When approximating the value function via supervised learning, as presented in
section 3, we will augment our regression dataset with values of both V (x) and its
gradient. This computation relies on the formula (2.8), which requires derivatives of
the SDRE solution \Pi (x). Without loss of generality, let us consider the case B(x) =B.
Computing derivatives of (2.10) with respect to a generic coordinate xi and denoting
by W =BR - 1B\top , we obtain the following Lyapunov equation for d

dxi
\Pi (x):

d

dxi
\Pi (x) (A(x) - W\Pi (x)) +

\bigl( 
A(x)\top  - \Pi (x)W

\bigr) d

dxi
\Pi (x)(2.12)

= - d

dxi
A(x)\top \Pi (x) - \Pi (x)

d

dxi
A(x), i= 1, . . . , d.
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A2158 SERGEY DOLGOV, DANTE KALISE, AND LUCA SALUZZI

Therefore, for each sampled state x, the computation of V (x) and its gradient requires
the solution of one ARE (freezing x in (2.10)) and d Lyapunov equations (2.12), where
d is the dimension of the dynamical system. If the matrix A(x) does not depend on
a variable xi, its derivative with respect to that variable will be a null matrix and by
(2.12) also the matrix d

dxi
\Pi (x) = 0d, will be null. Hence, it will not contribute in the

computation of the gradient of the value function. It will be sufficient to solve (2.12)
just k times, where k is the number of variables appearing in A(x).

2.2. Pontryagin Maximum Principle. Another option to generate an ap-
proximation of the infinite horizon value function is the use of PMP. We refer to
Chapter 5.3 in [34] for a complete description of this methodology. However, PMP
provides first-order optimality conditions for a finite horizon optimal control problem.
Since we are dealing with an infinite horizon, it is necessary to provide a final time T
for which the value function and its derivative decay to zero for every initial condition
chosen in a reference domain. In this framework, the suboptimality originates from
the truncation of the infinite horizon. For an initial condition x and time horizon T ,
introducing the adjoint variable p : [0, T ]\rightarrow \BbbR d, the PMP system reads for (2.2)

\left\{           

d
dty

\ast (t) = f(y(t)) +B(y\ast (t))u\ast (t),
y\ast (0) = x,

 - d
dtp

\ast 
i (t) =

\sum d
j=1 p

\ast 
j (t)\partial yi(fj(y

\ast (t)) +Bj(y
\ast (t))u\ast (t)) + 2(Qy\ast )i, i= 1, . . . , d,

pi(T ) = 0,
u\ast (t) = - 1

2R
 - 1B(y\ast (t))\top p\ast (t) .

(2.13)

In [57] the author shows that the optimal adjoint corresponds to the gradient of
the value function along the optimal trajectory. Hence, the value function on the
initial condition x will be computed along the optimal trajectory and the optimal
control,

V (x) =

\int +\infty 

0

y\ast (s)\top Qy\ast (s) + u\ast (s)\top Ru\ast (s)ds(2.14)

\approx 
\int \top 

0

y\ast (s)\top Qy\ast (s) + u\ast (s)\top Ru\ast (s)ds,

while its gradient will be given by initial value of the adjoint, i.e.,

\nabla V (x)\approx p(0).(2.15)

Equality (2.14) holds with the assumption that the optimal control u\ast (s) and the
optimal trajectory y\ast (s) reached the zero level in the time interval [0, T ].

2.2.1. Control constrained problem. Unlike the SDRE approach, using PMP
enables the addition of control constraints. For the sake of simplicity, we discuss
the scalar control case, i.e., m = 1, with a control signal restricted to an interval
[ - umax, umax]. We are going to consider the same approach used in [14]. In order to
impose the control constraints, let us choose the following penalty function:

\scrP (u) = umax tanh(u/umax),

and let us change the control penalty term u\top Ru in the cost functional (2.2) with the
following term:

W (u) = 2R

\int u

0

\scrP  - 1(\mu )d\mu .(2.16)
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DATA-DRIVEN TT GRADIENT CROSS FOR HJB EQUATIONS A2159

Note that the choice of this penalty function will keep the control in the interval
[ - umax, umax].

The corresponding PMP system becomes

\left\{           

d
dty

\ast (t) = f(y(t)) +B(y\ast (t))\scrP (u\ast (t)),
y\ast (0) = x,
 - d

dtp
\ast 
i (t) =

\sum n
j=1 p

\ast 
j (t)\partial yj (fj(y

\ast (t)) +Bj(y
\ast (t))\scrP (u\ast (t))) + 2(Qy\ast )i, i= 1, . . . , d,

pi(T ) = 0,
u\ast (t) = - 1

2R
 - 1B(y\ast (t))\top p\ast (t).

(2.17)

In this case we need to compute the value function using the control cost functional
(2.16), leading to the formula

V (x) =

\int \top 

0

y\ast (s)\top Qy\ast (s) +W (u\ast (s))ds,(2.18)

while the gradient is still obtained by the initial value of the adjoint p(0).

2.3. Functional tensor train. The value function defined by (2.3) lives in the
same dimension of the dynamical system (2.1). We are interested in dealing with
high-dimensional dynamical systems, e.g., those deriving from the semidiscretization
of PDEs or from complex systems. For this reason we need an efficient procedure to
deal with high-dimensional functions. We are going to consider the Functional Tensor
Train (FTT) to mitigate this problem. We sketch the main aspects, further details
can be found in [10, 23].

First, let us fix for each variable xk a set of nk basis functions \Phi k(xk) :=

\{ \Phi (1)
k (xk), . . . ,\Phi 

(nk)
k (xk)\} and a set of collocation points Xk = \{ x(i)

k \} nk
i=1. For unique-

ness of the representation we assume that the Vandermonde matrix \Phi k(Xk)\in \BbbR nk\times nk

is nonsingular. Classical choices for the basis functions are the Lagrange basis or the

Legendre polynomials. Now, given a multivariate function V :X :=\times d

k=1
Xk \rightarrow \BbbR , we

are interested in the following approximation, which we call FTT:

V (x)\approx \~V (x) :=

r0\sum 
\alpha 0=1

r1\sum 
\alpha 1=1

\cdot \cdot \cdot 
rd\sum 

\alpha d=1

G
(1)
(\alpha 0,\alpha 1)

(x1) \cdot \cdot \cdot G(k)
(\alpha k - 1,\alpha k)

(xk) \cdot \cdot \cdot G(d)
(\alpha d - 1,\alpha d)

(xd).

(2.19)

The summation ranges rk are called TT ranks and the factor G
(k)
(\alpha k - 1,\alpha k)

(xk) is called
kth TT core. Without loss of generality, we can fix r0 = rd = 1. The TT core is a
linear combination of the nk basis functions:

G
(k)
(\alpha k - 1,\alpha k)

(xk) =

nk\sum 
i=1

\Phi 
(i)
k (xk)H

(k)
(\alpha k - 1,i,\alpha k)

=\Phi k(xk) \cdot H(k)
(\alpha k - 1,\alpha k)

,

where H(k) \in \BbbR rk - 1\times nk\times rk is a three-dimensional tensor, H
(k)
(\alpha k - 1,i,\alpha k)

\in \BbbR is its ele-

ment, and H
(k)
(\alpha k - 1,\alpha k)

\in \BbbR nk is a vector from H(k), sliced at the given indices \alpha k - 1, \alpha k.

Similarly, we introduce a matrix slice H
(k)
(i) \in \BbbR rk - 1\times rk and a matrix valued function

G(k)(xk) :Xk \rightarrow \BbbR rk - 1\times rk . This allows us to ease the notation, and write (2.19) in a
matrix form as follows:

\~V (x) =G(1)(x1) \cdot \cdot \cdot G(k)(xk) \cdot \cdot \cdot G(d)(xd).
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A2160 SERGEY DOLGOV, DANTE KALISE, AND LUCA SALUZZI

In the following sections we are going to refer to the TT rank of a tensor as the
maximum among all the TT ranks, r=maxk=0,...,d rk.

The TT decomposition was initially written for discrete tensors [45]. A relation
to function approximation is established via the same Cartesian basis,

\~V (x) =

n1,...,nd\sum 
i1,...,id=1

H(i1,...,id)\Phi 
(i1)
1 (x1) \cdot \cdot \cdot \Phi (id)

d (xd).

This corresponds to the TT decomposition

H(i1,...,id) =

r0,...,rd\sum 
\alpha 0,...,\alpha d=1

H
(1)
(\alpha 0,i1,\alpha 1)

\cdot \cdot \cdot H(d)
(\alpha d - 1,id,\alpha d)

.(2.20)

Counting the number of elements in the tensors in the r.h.s., we notice that the TT
decomposition needs

\sum 
k rk - 1nkrk =\scrO (dnr2) degrees of freedom (where we introduce

n :=maxk nk), in contrast to \scrO (nd) elements in the full tensor of coefficients H. Other
tensor decompositions can be used, such as the Hierarchical-Tucker format [28, 27]
or the range-separated tensor format [8]. However, in this paper we prefer to use the
TT format as the most simple yet general representation, which is suitable for value
functions as they are usually smooth.

The TT format admits fast linear algebraic operations. For instance, we can com-
pute multivariate integrals of \~V (x) by using a tensor product of high-order univariate

quadratures. Let \{ x(i)
k \} and \{ w(i)

k \} be quadrature nodes and weights, respectively.
Then the integral

\int 
V (x)dx can be approximated by\Biggl( 

\cdot \cdot \cdot 

\Biggl( \Biggl[ 
n1\sum 

i1=1

w
(i1)
1 G(1)(x

(i1)
1 )

\Biggr] 
\cdot 

\Biggl[ 
n2\sum 

i2=1

w
(i2)
2 G(2)(x

(i2)
2 )

\Biggr] \Biggr) 
\cdot \cdot \cdot 

\Biggr) 
\cdot 

\Biggl[ 
nd\sum 

id=1

w
(id)
d G(d)(x

(id)
d )

\Biggr] 
,

requiring \scrO (dnr2) operations in this order. Similarly, we can compute derivatives and
approximate

\nabla xk
V (x)\approx G(1)(x1) \cdot \cdot \cdot G(k - 1)(xk - 1) \cdot 

\biggl[ 
d

dxk
G(k)(xk)

\biggr] 
\cdot G(k+1)(xk+1) \cdot \cdot \cdot G(d)(xd),

(2.21)

again needing \scrO (dnr2) operations per point. Additions, inner and pointwise products,
as well as actions of linear operators can be written as explicit TT decompositions with
a cost that is linear in d. Such explicit decompositions are likely to have overestimated
TT ranks. However, if a tensor (2.20) (or a function (2.19)) is given in a TT format,
a quasi-optimal reapproximation can be done in \scrO (dnr3) operations by using QR and
SVD factorizations. For details, we refer to [45].

Explicit TT formats are a rare exception though. In general, a function may
have no exact decomposition, and an approximation must be sought from (as few as
possible) evaluations of the function. This can be achieved by solving a Least Squares
problem, by minimizing the sum of squares of errors at given (e.g., random) points
over the elements of TT cores [47, 18, 48, 19]. However, a priori chosen point sets
may miss an important region of the domain, which will make the approximation
inaccurate. Alternatively, TT-Cross methods [46, 54, 53] adapt the sampling points
iteratively towards the optimal locations for the current iterate. However, existing
methods employ only the values of the function itself, which may be suboptimal if the
values of the gradient are also available for free.
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DATA-DRIVEN TT GRADIENT CROSS FOR HJB EQUATIONS A2161

3. Gradient Cross and value function approximation. As discussed in the
previous sections, we want to recover the feedback map for the optimal control prob-
lem given the knowledge of the value function and its gradient in specific points. In
this section we develop a new algorithm in which this information about the value
function will enrich the approximation via the FTT. More precisely, given certain sam-
ple points \{ xi\} Ni=1 and a dataset \{ V (xi), \nabla V (xi)\} Ni=1 computed by either Pontryagin
or SDRE, we are interested in determining the coefficient tensors \{ H(1), . . . ,H(d)\} 
which characterize the FTT representation \~V (x) introduced in (2.19). The regression
problem can be formulated as

min
H(1),...,H(d)

N\sum 
i=1

| \~V (xi) - V (xi)| 2 + \lambda \| \nabla \~V (xi) - \nabla V (xi)\| 2,

where \lambda > 0 is a parameter which weights the contribution of the derivatives, and the
gradient of the FTT can be computed considering univariate derivatives (2.21). The
resolution of the minimization problem will be addressed in the next sections, first
presenting the bivariate case, and then extending the algorithm to higher dimensions.

3.1. Bidimensional Gradient Cross. Given a bidimensional function
V (x1, x2), we will denote by V0(x1, x2) the function itself and by V1(x1, x2) and
V2(x1, x2) its partial derivatives with respect to x1 and x2. Let us fix two sets of
collocation points X1 \in \BbbR n1 and X2 \in \BbbR n2 for each dimension. One may use the
matrix Vi(X1,X2) = [Vi(x

(j)
1 , x

(k)
2 )] \in \BbbR n1\times n2 for i \in \{ 0,1,2\} to construct a discrete

approximation of the function, but these evaluations are expensive, in particular in
dimension larger than two.

For this reason we are interested in a TT representation of the form

V (x1, x2)\approx G(1)(x1)G
(2)(x2)(3.1)

with

G(1)(x1) =\Phi 1(x1)H
(1), G(2)(x2) =H(2)\Phi \top 

2 (x2),

where H(1) \in \BbbR n1\times r, H(2) \in \BbbR r\times n2 , and \{ \Phi k(x)\} k=1,2 are prefixed basis functions.
More precisely, we are looking for two sets of indices I1 and I2 with cardinality

\#I1 =\#I2 = r, and the corresponding interpolating approximations

G(1)(x1) \^G
(2)(x2) and \^G(1)(x1)G

(2)(x2)

such that G(k)(Xk(Ik)) = \ttI r, where \ttI r is the identity matrix, and \^G(1)(x1) =
V (x1,X2(I2)), \^G(2)(x2) = V (X1(I1), x2). This kind of approximation can be ob-
tained via an alternating direction procedure by solving a sequence of least squares
problems.

Starting from an initial guess for H(2) and I2, we want to solve the following
problem in the x1-direction:

min
H(1)

2\sum 
i=0

\lambda i\| Vi(X1,X2(I2)) - \~V 1
i \| 2,(3.2)

with

\~V 1
i =

\left\{     
\Phi 1(X1)H

(1)G(2)(X2(I2)), i= 0,

\Phi \prime 
1(X1)H

(1)G(2)(X2(I2)), i= 1,

\Phi 1(X1)H
(1)\partial x2

G(2)(X2(I2)), i= 2.
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A2162 SERGEY DOLGOV, DANTE KALISE, AND LUCA SALUZZI

In what follows we will fix \lambda 0 = 1 and \lambda 1 = \lambda 2 = \lambda are the regularization parameters.
Let us consider for simplicity Lagrangian basis, i.e., \Phi k(Xk) = \ttI nk

\in \BbbR nk\times nk for
k = 1,2. Moreover, we know by hypothesis that G(2)(X2(I2)) = \ttI r. Then, (3.2) is
equivalent to the resolution of the following Lyapunov equation:\bigl( 

\ttI n1
+ \lambda \Phi \prime 

1(X1)
\top \Phi \prime 

1(X1)
\bigr) 
H(1) + \lambda H(1) \~G2

\~G\top 
2(3.3)

= V0(X1,X2(I2)) + \lambda \Phi \prime 
1(X1)

\top V1(X1,X2(I2)) + \lambda V2(X1,X2(I2)) \~G
\top 
2 ,

where \~G2 = \partial x2G
(2)(X2(I2)) = (\Phi \prime 

2(X2(I2))\Phi 2(X2(I2))
\dagger )\top , where \Phi 2(X2(I2))

\dagger =
(H(2))\top is the Moore--Penrose pseudoinverse of \Phi 2(X2(I2)), arising from the con-
dition G(2)(X2(I2)) = \ttI r.

Having solved (3.3), we first execute the QR decomposition of the matrix H(1) =
HR1 to improve the numerical stability and then we apply the maximum volume
(maxvol) method [22] to the matrix H. The maxvol algorithm selects the most rele-
vant indices I1 such that the coefficient matrix C := HH[I1, :]

 - 1 satisfies
maxi,j | C[i, j]| \leq 1+ \delta , where \delta > 0 is an arbitrary threshold. This procedure will pro-
vide an approximation of the maximum volume submatrix H[I\ast , :], i.e., the submatrix
with maximum determinant in modulus among all the possible r \times r submatrices.
Taking C as the new H(1) ensures G(1)(X1(I1)) = \ttI r for the next steps.

Afterwards, we can pass to the least squares problem in the y-direction

min
H(2)

2\sum 
i=0

\lambda i\| Vi(X1(I1),X2) - \~V 2
i \| 2,(3.4)

with

\~V 2
i =

\left\{     
G(1)(X1(I1))H

(2)\Phi 2(X2)
\top , i= 0,

\partial x1
G(1)(X1(I1))H

(2)\Phi 2(X2)
\top , i= 1,

G(1)(X1(I1))H
(2)\Phi \prime 

2(X2)
\top , i= 2.

After the first step we have G(1)(X1(I1)) = \ttI r by construction. Then, (3.4) corre-
sponds to the resolution of a Lyapunov equation

\lambda \~G\top 
1
\~G1H

(2) +H(2)
\bigl( 
In2

+ \lambda \Phi \prime 
2(X2)

\top \Phi \prime 
2(X2)

\bigr) 
(3.5)

= V0(X1(I1),X2) + \lambda \~G\top 
1 V1(X1(I1),X2) + \lambda V2(X1(I1),X2)\Phi 

\prime 
2(X2) ,

where \~G1 = \partial x1G
(1)(X1(I1)). The remaining procedure is identical: we solve (3.5),

compute the QR decomposition of the solution, and apply the maxvol method, ob-
taining I2 and H(2). The strategy is repeated until either we converge according to
residual criteria or we reach a maximum number of iterations. The method is sketched
in Algorithm 3.1.

For the initial guess H(2) one may consider a normally distributed pseudorandom
matrix H(2) \in \BbbR r\times n2 and apply steps 7 and 8 of Algorithm 3.1 to obtain the initial
set I2.

With non-Lagrangian bases (i.e., if \Phi k(Xk) \not = \ttI nk
), we simply need to amend

lines 5 and 8 of Algorithm 3.1 to [I1,\Phi 1(X1)H
(1)] = maxvol(\Phi 1(X1)H) and

[I2,\Phi 2(X2)(H
(2))\top ] = maxvol(\Phi 2(X2)H), respectively. This ensures that we select

optimal grid points, not optimal coefficients.
The most reliable residual criterion is to compute the mean square approximation

error on some validation set (e.g., random points), and to compare it to a chosen
threshold. However, a large validation set may inflate the computing time significantly,
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DATA-DRIVEN TT GRADIENT CROSS FOR HJB EQUATIONS A2163

Algorithm 3.1 Bidimensional TT Gradient Cross with Lagrangian bases.

1: Choose an initial I2 and H(2), a tolerance tol and a maximum number of
iteration itmax

2: while res > tol and it\leq itmax do
3: Solve (3.3) obtaining H(1)

4: Compute the QR decomposition H(1) =HR1

5: [I1,C] =maxvol(H), replace H(1) =C.
6: Solve (3.5) obtaining H(2)

7: Compute the QR decomposition (H(2))\top =HR1

8: [I2,C] =maxvol(H), replace H(2) =C\top .
9: Update res
10: it= it+ 1
11: end while

while a small set may underestimate the error. In the course of existing alternating
algorithms [16] it was found that it is sufficient to compare consecutive iterations.
Therefore, we proceed with the following definition in line 9 of Algorithm 3.1:

res=max

\Biggl\{ 
\| H(1)

it  - H
(1)
it - 1\| F

\| H(1)
it \| F

,
\| H(2)

it  - H
(2)
it - 1\| F

\| H(2)
it \| F

\Biggr\} 
,

where it is the iteration number.
Once the value function is approximated by Algorithm 3.1, we can compute the

optimal control and optimal trajectory starting from a given initial point x0 \in \BbbR 2.
The formula for the synthesis of the optimal control is given by

u(x) = - 1

2
R - 1B(x)\top \nabla V (x),

where x= (x1, x2)\in \BbbR 2. The computation of the gradient in this case is simply given
by considering the derivatives in (3.1),

\partial x1
V (x) =\Phi \prime 

1(x1)H
(1)G2(x2),

\partial x2
V (x) =G1(x1)H

(2)\Phi \prime 
2
\top 
(x2).

3.2. Multidimensional Gradient Cross. Now we are going to generalize the
result obtained in the previous section to an arbitrary dimension d. The FTT repre-
sentation in this case reads

\~V (x) =G(1)(x1) \cdot \cdot \cdot G(k)(xk) \cdot \cdot \cdot G(d)(xd).

We will use the alternating strategy in this case, too. For this reason it is convenient
to group all the terms before and after the kth TT core, obtaining a more compact
formula

\~V (x) =G(<k)(x<k) \cdot G(k)(xk) \cdot G(>k)(x>k),

where

G(<k)(x<k) =G(1)(x1) \cdot \cdot \cdot G(k - 1)(xk - 1), k\geq 2,(3.6)

G(>k)(x>k) =G(k+1)(xk+1) \cdot \cdot \cdot G(d)(xd), k\leq d - 1.(3.7)
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A2164 SERGEY DOLGOV, DANTE KALISE, AND LUCA SALUZZI

We are again interested in finding interpolation sets X<k \subset X1 \times \cdot \cdot \cdot \times Xk - 1 and
X>k \subset Xk+1 \times \cdot \cdot \cdot \times Xd with rk - 1 and rk points, respectively. Let us suppose that in
the kth step the sets X<k and X>k are given. Combining the previous expressions,
we can write

 - \rightarrow 
V k := vec

\bigl( 
V (X<k,Xk,X>k)

\bigr) 
\approx \~V k

:=
\Bigl( 
G(<k)

\bigl( 
X<k

\bigr) 
\otimes \Phi k (Xk)\otimes G(>k)

\bigl( 
X>k

\bigr) \Bigr) 
\cdot vec(H(k)),

where vec(\cdot ) stretches a tensor into a vector with the same order of elements, and \otimes 
is the Kronecker product of matrices. Similar to the bidimensional case, we are going
to denote the function values by

 - \rightarrow 
V k

0 and the derivative values with respect to the ith

component by
 - \rightarrow 
V k

i . Our aim is to solve the following least squares problem:

min
H(k)

d\sum 
i=0

\lambda i\| 
 - \rightarrow 
V k

i  - \~V k
i \| 2,(3.8)

where

\~V k
i =

\left\{         
\bigl( 
G(<k)

\bigl( 
X<k

\bigr) 
\otimes \Phi k (Xk)\otimes G(>k)

\bigl( 
X>k

\bigr) \bigr) 
\cdot vec(H(k)), i= 0,\bigl( 

\partial iG
(<k)

\bigl( 
X<k

\bigr) 
\otimes \Phi k (Xk)\otimes G(>k)

\bigl( 
X>k

\bigr) \bigr) 
\cdot vec(H(k)), i= 1, . . . , k - 1,\bigl( 

G(<k)
\bigl( 
X<k

\bigr) 
\otimes \Phi \prime 

k (Xk)\otimes G(>k)
\bigl( 
X>k

\bigr) \bigr) 
\cdot vec(H(k)), i= k,\bigl( 

G(<k)
\bigl( 
X<k

\bigr) 
\otimes \Phi k (Xk)\otimes \partial iG

(>k)
\bigl( 
X>k

\bigr) \bigr) 
\cdot vec(H(k)), i= k+ 1, . . . , d.

This least squares problem can be solved as a three-dimensional Sylvester equation
as shown in Appendix A.1. Having obtained the solution H(k), we can consider the
unfolding matrix H

(k)
L = [H

(k)

(\alpha k - 1,i,\alpha k)
]\in \BbbR rk - 1nk\times rk and compute its QR factorization

H
(k)
L = \~H

(k)
L R(k), then assemble an unfolded TT core

\~G
(k)
L =

\bigl( 
\ttI rk - 1

\otimes \Phi k(Xk)
\bigr) 
\~H
(k)
L \leftrightarrow \~G(k)(xk) =

nk\sum 
i=1

\Phi 
(i)
k (xk) \~H

(k)
(i) .

Now we can use the maxvol method on \~G
(k)
L to find the set Ik, which is a subset of

[\alpha k - 1]
rk - 1

\alpha k - 1=1 \times [i]nk
i=1. We can split Ik into corresponding components

I\alpha k = \{ \alpha k - 1 : \alpha k - 1, i\in Ik\} , and Ixk = \{ i : \alpha k - 1, i\in Ik\} .(3.9)

In turn, those enumerate elements in X<k and Xk. Therefore, we can define the new
interpolation set

X<k+1 :=X<k(I
\alpha 
k )\times Xk(I

x
k )(3.10)

that allows us to continue the iteration. Finally, the new TT core tensor is recovered
from the interpolating unfolding matrix H

(k)
L := \~H

(k)
L ( \~G

(k)
L [Ik, :])

 - 1.
Passing on to the (k + 1)th step, we need to compute G(<k+1)(X<k+1). Com-

puting the corresponding evaluations of all k cores constituting G(<k+1) will result
in an \scrO (d2) complexity of the entire algorithm. However, since we can assume that
G(<k)(X<k) was available in the current step, we can obtain G(<k+1)(X<k+1) with a
cost independent of k (and d). These computations are shown in Appendix A.2.

We proceed in the same fashion until either the discrepancy between the consec-
utive iterations is below the stopping tolerance, or a maximum number of iteration
has been reached.
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DATA-DRIVEN TT GRADIENT CROSS FOR HJB EQUATIONS A2165

Algorithm 3.2 Gradient TT Cross.

1: Choose initial TT cores H(k), point sets X>k, a tolerance tol, and a
maximum number of iterations itmax.

2: while res > tol and it\leq itmax do
3: for k= 1, . . . , d do
4: Find H(k) as the minimizer in (3.8) by solving (A.1).

5: (Optionally) Reduce the TT rank rk via truncated SVD of H
(k)
L to error

threshold tol

6: (Optionally) Increase rk by expanding H
(k)
L := [H

(k)
L , Z

(k)
L ] with TT core of

error Z
(k)
L

7: Compute the QR decomposition H
(k)
L = \~H

(k)
L R(k)

8: [Ik, (\ttI rk - 1
\otimes \Phi k(Xk))H

(k)
L ] =maxvol((\ttI rk - 1

\otimes \Phi k(Xk)) \~H
(k)
L )

9: Compute the next point set X<k+1 as shown in (3.9), (3.10)
10: Compute the next sampled cores as shown in (A.3)
11: Update res
12: end for
13: it= it+ 1
14: end while

The method needs a little modification to adapt the TT ranks to a given error
threshold. First, if the ranks are overestimated, we can reduce them by computing the
singular value decomposition (SVD) instead of the QR decomposition of H

(k)
L , and

truncate the former to ensure that the sum of squares of the truncated singular values
is below the desired threshold. Second, if the ranks are underestimated, we can expand
H

(k)
L with some extra \rho k columns Z

(k)
L , thereby increasing the TT rank rk to rk+\rho k. It

was shown [17] that Z(k) can be taken as TT cores of a TT approximation of the error
z(x) := V (x) - \~V (x). This interplay of the reduction and expansion of the TT ranks
will eventually stabilize near optimal ranks for the given error. The entire procedure
is summarized in Algorithm 3.2. The expansion cores Z(k) are obtained by running an
independent instance of the same algorithm computing a TT approximation \~z(x) \approx 
z(x) with fixed TT ranks \rho 1 = \cdot \cdot \cdot = \rho d - 1 = \rho instead of lines 5 and 6.

3.3. Two Boxes approach. Our scope is to solve the HJB equation (2.4) in a
computational domain \Omega which is usually a hypercube [ - a,a]d containing all initial
conditions of interest and their subsequent optimal trajectories. We discretize the
domain separately along each dimension. For the high-dimensional numerical tests
we consider Gauss--Legendre nodes and the corresponding Legendre polynomials on
the nodes. This choice allow us to obtain accurate solution in the vicinity of the
boundary, but it may be less accurate closer to the origin, where the system stabilizes.
For this reason we introduce an additional step: the Two Boxes (TB) algorithm. First,
we solve the optimal control problem on the whole domain using the TT Gradient
Cross, constructing an approximation of the value function V on \Omega . Afterwards, we
construct the optimal trajectory \~y0(t) and the optimal control \~u0(t) starting from
the origin, \~y0(0) = 0. The exact path and control are zero constant functions since
the origin is an equilibrium of the dynamics, but the approximation may escape from
the origin due to approximation errors. In this case we consider the maximum value
reached by the dynamics until a final time T . This maximum will be denoted as
\~y0max := maxtmaxi | \~y0i (t)| , and we will set aTB = 2\~y0max. Afterwards, we construct a
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A2166 SERGEY DOLGOV, DANTE KALISE, AND LUCA SALUZZI

new value function VTB on the subdomain [ - aTB , aTB ]
d. Since the new domain is

closer to the origin and smaller than the entire domain, we expect a tensor with smaller
TT ranks and evaluations needed in the gradient cross. We will use the information
provided by both value functions, defining the optimal feedback map as

u\ast (x) =

\biggl\{ 
F (\nabla VTB(x)), \| x\| \infty \leq aTB ,
F (\nabla V (x)) otherwise,

with F (g(x)) = - 1
2R

 - 1B(x)\top g(x).
If \~y0max is small enough, the value function VTB would be close to the solution

of the Linear Quadratic Regulator (LQR) problem. In the LQR setting the value
function reads VLQR = x\top \Pi x, where \Pi is the solution of the Riccati equation

A\top (0)\Pi +\Pi A(0) - \Pi B(0)R - 1B(0)\top \Pi +Q= 0 .

In this case we can construct the optimal control as

u\ast (x) =

\biggl\{ 
 - R - 1B(0)\top \Pi x, \| x\| \infty \leq aTB ,
 - 1

2R
 - 1B(x)\top \nabla V (x) otherwise.

We notice that the second choice provides a faster procedure, since it implies just one
resolution of a Riccati equation.

4. Numerical tests. In this section we assess the proposed methodology through
different numerical tests. First, we investigate the effect of adding gradient informa-
tion in the regression in a series of closed-form high-dimensional functions with noisy
evaluations. The second numerical test deals with a two- dimensional optimal control
problem in which the exact value function is known. We test the efficiency of the
method under noise and the effect of introducing control constraints. In the third
example we study the three-dimensional Lorenz system. We study the performance
of the algorithm reducing the control energy penalty in the cost functional. The last
test deals with the Cucker--Smale model, where first we compare the PMP and SDRE
approaches for data generation. We study the effect of varying the parameter \lambda and
the selection of an optimal parameter. In the last part of the section, a comparison
with a Neural Network approach is presented together with the application of the
TB approach. The numerical simulations reported in this paper are performed on a
Dell XPS 13 with Intel Core i7, 2.8GHz, and 16GB RAM. The codes are written in
MATLAB R2021a.

Let us introduce some notations useful for the next sections. We denote by JT the
total discrete cost functional computed by applying directly SDRE to approximate the
optimal control problem up to a fixed final time T . The total discrete cost functional
computed via TT Gradient Cross up to T will be denoted by \~JT . Similarly, \~y\ast (t)
denotes the discrete trajectory at time t controlled with TT, and \~u\ast (t) denotes the
corresponding discrete optimal control at time t.

We define the errors in the computation of the cost function and optimal control
as

errJ := | JT  - \~JT | , erru :=

\sqrt{}    nt - 1\sum 
i=0

(ti+1  - ti)| u(ti) - \~u(ti)| 2,

respectively, where nt is the number of time steps ti produced by the RK4 ODE solver,
and the maximum absolute optimal state value at the final time T as

\~ymax(T ) :=max
i

| \~y\ast i (T )| .
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DATA-DRIVEN TT GRADIENT CROSS FOR HJB EQUATIONS A2167

4.1. High-dimensional function approximation. In this first numerical ex-
periment we test the gradient cross algorithm for the approximation of high-dimensional
functions. We will study the behavior of the algorithm in presence of different noise
levels. We are going to consider the following two functions in dimension d:

(a) f(x) = exp( - 
\sum d

i=1 xi/(2d)), x\in [ - 1,1]d,

(b) f(x) = exp( - 
\prod d

i=1 xi), x\in [ - 1,1]d.
We fix the dimension d= 100, the stopping error threshold for the gradient cross

tol = 10 - 4, and we discretize the interval [ - 1,1] with 33 Legendre--Gauss nodes for
each direction. The noise is introduced by adding independent identically distributed
normal random numbers with mean 0 and standard deviation \sigma to the values of the
function f(x) and all components of the gradient \partial if(x). The error is computed with
respect to the adaptive TT-Cross [53] with tolerance 10 - 12 and in absence of noise.

It is easy to see that the function (a) has an exact rank-1 TT decomposition, so
we will run the TT-Cross with a fixed rank 1. In Figure 4.1 we show a comparison in
terms of the mean approximation error for different \lambda . The noise magnitude \sigma varies
in the set \{ 0\} \cup \{ 10 - k, k= 1, . . . ,6\} . In absence of noise, the gradient cross with \lambda = 0
performs with high precision. Increasing the noise, the higher \lambda is, the better is the
approximation.

0 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

Noise amplitude

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100 Approximation error

=0

=10-5

=10-3

=10-2

0 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

Noise amplitude

10-8

10-6

10-4

10-2

100

102

104

106 Approximation error

=0

=10-5

=10-3

=10-2

Fig. 4.1. Mean approximation error for function (a) (top) and function (b) (bottom) for dif-
ferent \lambda and noise amplitudes \sigma . The gradient cross (with \lambda > 0) is much more accurate than a
gradient-free method (\lambda = 0) if a noisy approximate TT approximation is sought.
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A2168 SERGEY DOLGOV, DANTE KALISE, AND LUCA SALUZZI

Function (b) is a function of rank higher than 1, and it is already possible to
notice a different behavior. For every noise amplitude it is possible to find a \lambda \not = 0
which obtains a better result compared to the cross approximation without gradient
knowledge. In particular, the gradient cross gives a meaningful approximation with
an error of 0.1 even with the largest noise magnitude \sigma = 0.1, in which case the error
of the standard TT-Cross (corresponding to \lambda = 0) is larger than 1.

4.2. 2D dynamics with exact solution. The second numerical test deals with
an example with exact solution. Given the state dynamics\biggl[ 

\.x1

\.x2

\biggr] 
=

\biggl[ 
0 1
x2
1 0

\biggr] \biggl[ 
x1

x2

\biggr] 
+

\biggl[ 
0
1

\biggr] 
u(4.1)

and the associated cost functional

J =
1

2

\int \infty 

0

\bigl( 
\| x(s)\| 2 + | u(s)| 2

\bigr) 
ds,(4.2)

the solution of the corresponding SDRE is

\Pi (x) =

\left[  \surd x4
1+1

\sqrt{} 
2
\surd 

x4
1+1+2x2

1+1

2

\surd 
x4
1+1+x2

1

2\surd 
x4
1+1+x2

1

2

\sqrt{} 
2
\surd 

x4
1+1+2x2

1+1

2

\right]  .(4.3)

We apply the TT gradient cross described in the previous section and we test it under
the effect of noises of different amplitude \sigma . We discretize the interval [ - 1,1] using
14 Lagrangian basis functions and we fix the stopping error threshold for the gradient
cross tol = 10 - 4. The collection of the data for the value function and its gradient
is performed via the resolution of SDREs. We will consider the case without the
knowledge of the gradient (i.e., \lambda = 0) and the case with \lambda = 10 - 4. The mean errors
in Table 4.1 are computed on a sample of 100 random initial conditions. Since the
control is computed taking into account the gradient of the value function, the sum
of the considered errors provides an H1 error estimate. It is possible to notice that in
all cases the introduction of the gradient information yields a better approximation.
In Figure 4.2 we show the optimal trajectories and the optimal control computed
starting from the initial condition x0 = (1, - 1). The right panel of the figure shows
the visual coincidence of the three solutions without the presence of noise, which was
intuitable by the first row of Table 4.1. The left panel shows the comparison of the
solutions under a noise amplitude \sigma = 10 - 2. The choice \lambda = 0 and \lambda = 10 - 4 cannot
retrieve the starting behavior of the exact control signal, which is zero at the initial
time, while fixing \lambda = 1 we can observe a better match.

Table 4.1
Mean errors in the cost functional of the 2D model and in the control for different amplitudes

of noise.

errJ erru

\sigma \lambda = 0 \lambda = 10 - 4 \lambda = 1 \lambda = 0 \lambda = 10 - 4 \lambda = 1

0 8.6-9 9.8e-9 2.6e-8 5.0e-7 4.4e-7 1.1e-6

10 - 4 9.1e-6 6.2e-6 3.4e-6 3.5e-4 1.1e-4 6.4e-5

10 - 3 6.1e-5 6.2e-5 3.5e-5 2.6e-3 1.7e-3 8.7e-4
10 - 2 6.8e-4 6.8e-4 3.2e-4 1.2e-2 1.1e-2 5.5e-3

10 - 1 6.6e-2 2.0e-2 6.2e-3 0.16 0.11 6.0e-2
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0 1 2 3 4 5
-0.05
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0.1
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0.2
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0.3

0.35
Optimal control

No gradient

Gradient =10
-4

Gradient =1

Exact

0 1 2 3 4 5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Optimal control

No gradient

Gradient =10
-4

Gradient =1

Exact

Fig. 4.2. Optimal control without noise (top) and with noise amplitude \sigma = 10 - 2 (bottom)
starting from x0 = (1, - 1).

Constrained control. We focus on the optimal control problem (4.1)--(4.2) cou-
pled with control constraints, i.e., | u| \leq umax. As remarked in section 2.2.1, in this
case the value function and its gradient will be computed via the PMP, composing
the optimal control as

u\ast = umax tanh

\biggl( 
u

umax

\biggr) 
to enforce the control constraint and the optimization of the cost functional (2.18).
We solve the problem in the domain [ - 2,2]2 and we consider as initial condition
(x1(0), x2(0)) = (2,2). In the first test, we fix the TT-rank r = 5. In Table 4.2 we
report the values of the total cost obtained using different \lambda and different constraints.
Both in the unconstrained case (umax =\infty ) and in the constrained cases, it is possible
to pick a \lambda \not = 0 which performs better than the case with \lambda = 0. It is not necessarily
the largest \lambda , as an exceedingly large \lambda deteriorates the conditioning of the normal
equation (A.1). In the left panel of Figure 4.3 we show the optimal trajectories for
\lambda = 0 in the unconstrained case. In this case the optimal control manages to steer
the dynamical system to the equilibrium. However, if we constrain the control to
umax = 20 (right panel of Figure 4.3), we notice that the control is unable to stabilize
the system.
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A2170 SERGEY DOLGOV, DANTE KALISE, AND LUCA SALUZZI

Table 4.2
Cost functional \~JT for different \lambda and umax with r = 5. In each column there is a nonzero \lambda 

that gives the smallest cost.

u\mathrm{m}\mathrm{a}\mathrm{x} =\infty u\mathrm{m}\mathrm{a}\mathrm{x} = 25 u\mathrm{m}\mathrm{a}\mathrm{x} = 20

\lambda = 0 70.2131 81.9607 93.5168

\lambda = 10 - 4 70.2124 81.4676 92.0130
\lambda = 10 - 3 70.2139 81.1542 91.9481

\lambda = 10 - 2 70.2134 81.1451 92.0824

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Optimal trajectory

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Optimal trajectory

Fig. 4.3. Optimal trajectory (blue: x1(t), red: x2(t)) for umax = \infty (top) and umax = 20
(bottom) with \lambda = 0 and TT rank r = 5. This TT rank is too small to approximate the value
function accurate enough to stabilize the trajectory. (Figure in color online.)

This is fixed by increasing the TT-rank of our approximation to r = 6. We can
see by the right panel of Figure 4.4 that now the solution reaches the origin. In the
left panel of Figure 4.4 we show the different behaviors of the control according to the
different constraints, fixing \lambda = 10 - 3. Finally, we show in Table 4.3 the total cost for
the different choices of \lambda and umax with r= 6. Reducing the size of the constraint box,
the difference between the no-gradient regression and choosing the best \lambda increases,
confirming that the gradient cross achieves a better result for the constrained case in
presence of information of both the value function and its gradient.
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0 0.5 1 1.5 2
-35

-30

-25

-20

-15

-10

-5

0
Optimal control
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Optimal trajectory

Fig. 4.4. Optimal control for different umax (top) and optimal trajectory (blue: x1(t), red:
x2(t)) of the 2D model for umax = 20 (bottom) with \lambda = 10 - 3 and r= 6. This TT rank is sufficient
to stabilize the system. (Figure in color online.)

Table 4.3
Cost functional \~JT of the 2D model for different \lambda and umax with r= 6.

u\mathrm{m}\mathrm{a}\mathrm{x} =\infty u\mathrm{m}\mathrm{a}\mathrm{x} = 25 u\mathrm{m}\mathrm{a}\mathrm{x} = 20

\lambda = 0 70.2123 81.9629 93.2145

\lambda = 10 - 4 70.2124 81.4544 91.9991
\lambda = 10 - 3 70.2130 81.1660 91.8594

\lambda = 10 - 2 70.2131 81.1548 92.0458

4.3. Lorenz system. The third example deals with the Lorenz system given by\left\{     
\.x= \sigma (y - x),

\.y= x(\rho  - z) - y+ u,

\.z = xy - \beta z

(4.4)

with the following cost functional:

J =

\int \infty 

0

\bigl( 
| x(s)| 2 + | y(s)| 2 + | z(s)| 2 + \gamma | u(s)| 2

\bigr) 
ds.(4.5)

The same example has been considered in [37]. We fix \sigma = 10, \beta = 8/3, \rho = 2, and
(x(0), y(0), z(0)) = ( - 1, - 1, - 1). Data collection is performed via SDRE and we will
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Fig. 4.5. Optimal trajectory (top) and optimal control (bottom) of the Lorenz model with \gamma =
0.001 and \lambda = 1.

consider two cases: \lambda = 0 and \lambda = 1. We will vary the regularization parameter \gamma in
(4.5) in the range \{ 0,0.1,0.01,0.001\} . We consider six Legendre basis functions on
the interval [ - 1,1] and the stopping error threshold for the gradient cross is 10 - 2.

In Figure 4.5 we show the optimal trajectory and the optimal control with \gamma =
0.001 and \lambda = 1. In Figure 4.6 we show the number of time steps needed for \tto \ttd \tte \ttfour \ttfive 
solver to compute the optimal trajectory in logarithmic scale. It is evident that for
small values of the regularization parameter \gamma , the ODE solver needs more time steps
in the no-gradient case compared to the gradient case. The norm of the difference of
the two value functions is 1.2 \cdot 10 - 6, and the difference of the total cost functionals is
3.5 \cdot 10 - 7, which is within the requested error threshold. However, the value function
approximation computed with \lambda = 1 appears smoother, allowing one to obtain a
similar trajectory with fewer time steps.

4.4. Cucker--Smale model. Let us consider the dynamics governed by the
Cucker--Smale model with Na interacting agents given by\biggl[ 

\.y
\.v

\biggr] 
=

\biggl[ 
\BbbO Na \BbbI Na

\BbbO Na
\scrA Na

(y)

\biggr] \biggl[ 
y
v

\biggr] 
+

\biggl[ 
\BbbO Na

\BbbI Na

\biggr] 
u,(4.6)
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106 Number of steps for ode45 in semilogy

Fig. 4.6. Numbers of time steps needed for the computation of the controlled trajectory of the
Lorenz model using ode45 for different regularization parameters \gamma . For large values of \gamma the two
curves overlap, while we note an increasing difference for small \gamma . For the smallest \gamma = 10 - 3,
the no-gradient method needs three orders of magnitude more time steps compared to the gradient
method.

Table 4.4
Comparison between SDRE, PMP, and PMPJ on the Cucker--Smale model with Na = 2. Here

SDRE is the best method.

CPU \~JT \~y\mathrm{m}\mathrm{a}\mathrm{x}(T )

SDRE 0.5s 0.150168 1.5e-8

PMP 33s 0.150173 2.0e-6
PMPJ 24s 0.150173 6.2e-7

with

[\scrA Na
(y)]i,j =

\Biggl\{ 
 - 1

Na

\sum 
k \not =iP (yi, yk) if i= j,

1
Na

P (yi, yj) otherwise,

P (yi, yj) =
1

1+ \| yi  - yj\| 2
.

Our aim is to minimize the following cost functional:

J(y(\cdot ), v(\cdot ), u(\cdot )) = 1

Na

\int \infty 

0

\| y(s)\| 2 + \| v(s)\| 2 + \| u(s)\| 2 ds.

We consider a state domain \Omega = [ - 0.5,0.5]2Na , 5 Legendre basis functions in each
variable, and the gradient cross stopping tolerance is equal to 10 - 2. We first compare
PMP and SDRE to check their performances in producing samples of the cost. In this
case we fix Na = 2 and final time T = 20 for the corresponding finite horizon control
problem for PMP. The PMP system (2.13) is solved via the MATLAB function \ttb \ttv \ttp \ttfour \ttc .
It is possible to supply this function with the Jacobian of the differential equation to
accelterate the algorithm and to obtain a more accurate solution. We will denote by
PMP the resolution of the system (2.13) without the the knowledge of the Jacobian,
while by Pontraygin's Maximum Principle with Jacobian (PMPJ) the one enriched
by this further information. The results of the comparison are shown in Table 4.4.
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A2174 SERGEY DOLGOV, DANTE KALISE, AND LUCA SALUZZI

Fig. 4.7. Error in the Cucker--Smale cost functional (top) and \~y\mathrm{m}\mathrm{a}\mathrm{x}(T ) (bottom) for \lambda = 0
(blue) and \lambda = 10 - 3 (green). Shaded area denotes mean \pm 1 standard deviation over 10 runs. Here
\lambda = 10 - 3 gives a more accurate approximation. (Figure in color online.)

We can notice that SDRE is 66 times faster than PMP and 48 times faster com-
pared to PMPJ, obtaining almost the same result in terms of the total cost, and a
much smaller absolute value of the final state than PMPJ and PMP. In the following
run we use the SDRE approach to generate the data for the TT Gradient Cross.

We turn our attention to higher-dimensional problems. We first analyze the
behavior of the Gradient Cross algorithm increasing the dimension d = 2Na. In
Figure 4.7 we compare the error in the cost functional and the maximum reached by
the dynamics at the final time increasing the dimension d from 4 to 20. We consider
two cases, one in the absence of gradient information (\lambda = 0) and the other one
with \lambda = 10 - 3. The shaded areas in the plots are encircled by mean \pm 1 standard
deviation over 10 trials. For example, in the case of the error in the cost we consider
the mean errJ(d) and the corresponding standard deviation \sigma errJ (d). The shaded area
is created considering for each dimension the interval [errJ(d) - \sigma errJ (d), errJ(d) +
\sigma errJ (d)]. We see that the mean and the standard deviation are both lower in the
case with gradient information and this difference grows with increasing dimension
of the problem. In Figure 4.8 we show the comparison in terms of TT ranks and
evaluations needed by the Gradient Cross. It is important to point out that the TT
ranks fluctuate in the same interval [11.5, 16] for all dimensions, proving that we
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DATA-DRIVEN TT GRADIENT CROSS FOR HJB EQUATIONS A2175

Fig. 4.8. TT ranks (top) and number of evaluations (bottom) for \lambda = 0 (blue) and \lambda = 10 - 3

(green). Shaded area denotes mean \pm 1 standard deviation over 10 runs. Both methods show
comparable complexity, though \lambda = 10 - 3 has less variation from run to run. (Figure in color
online.)

are really solving the curse of dimensionality. In terms of the number of evaluations,
for lower dimensions the case with \lambda = 10 - 3 presents a higher mean, but for higher
dimensions we obtain a decreasing behavior in contrast to the case with \lambda = 0.

The choice of the parameter \lambda is crucial in this approach. We show a comparison of
the performances for different \lambda and in different dimensions. Since the computational
costs of our previous tests are comparable, we will focus instead on the error in the
cost functional and on \~ymax(T ). We consider a finite set \Lambda for the variable \lambda and
we minimize the total cost and the final maximum value on this set. The result of
the minimization will provide the best choice for the parameter \lambda . In Figure 4.9
we report the results for these quantities. The parameter \lambda is taken from the set
\Lambda = \{ 0\} \cup \{ 10 - k, k= 0, . . . ,6\} , and the dimension d varies in the range \{ 10,20,30,40\} .
The minimum for each dimension is marked with a circle. First, we can notice that in
all the cases the parameter \lambda = 0 never represents the optimal choice. We can notice
that we obtain a parameter independent on the dimension since in almost all cases
\lambda = 10 - 6 represents the optimal choice.

In Table 4.5 we report the averaged elapsed time in computing the suboptimal
control applying directly SDRE (first column), via the value function precomputed by
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Fig. 4.9. Error in the Cucker--Smale cost functional (top) and \~y\mathrm{m}\mathrm{a}\mathrm{x}(T ) (bottom) for different
\lambda and dimensions. It is possible to notice that \lambda = 10 - 6 represents the optimal choice in almost all
cases studied.

Table 4.5
Averaged CPU time for a single computation of the suboptimal control for the different methods.

d SDRE TT Two Boxes

10 1.4e - 3s 1.8e - 5s 1.7e - 5s

20 5.4e - 3s 6.9e - 5s 6.4e - 5s
30 1.0e - 2s 1.6e - 4s 1.4e - 4s

40 2.2e - 2s 3.3e - 4s 1.9e - 4s
100 1.3e - 1s 5.3e - 3s 4.5e - 3s

the TT (second column) and via the value function precomputed by the TB approach
(third column). We immediately note that the evaluation of TT is two orders of mag-
nitude faster than the online SDRE solution, proving the efficiency in precomputing
the value function when a real-time solution is needed. By comparing the final two
columns we notice a small speed-up, showing the beneficial application of LQR in a
region close to the origin.

Comparing with neural networks. The aim of this section is to compare the
proposed technique with a supervised learning approach discussed in [2]. In this work
the authors generate a dataset using an SDRE approach and train a neural network
to directly learn a suboptimal feedback map u(x). We will compare against this
approach in the framework of agent-based dynamics.
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Fig. 4.10. Error in the cost functional (top) and \~y\mathrm{m}\mathrm{a}\mathrm{x}(T ) (bottom) for TT and NN for different
dimensions. The TT approximation is more accurate in terms of both indicators for all dimensions.

In Figure 4.10 we compare the two approaches varying the dimension d \in 
\{ 10,20,30,40\} . The choice of the parameter \lambda for TT follows the previous para-
graph. For the neural networks (NN) approach we consider the number of samples
equal to the number of evaluations needed for TT, in this way the two strategies will
have the same computational complexity. We can deduce that the TT approach is up
to one order of magnitude more accurate in terms of both indicators.

Now we fix the dimension d = 40 and we show the optimal trajectories for the
two approaches in Figure 4.11. As noticed in this figure and in the right panel of
Figure 4.10, the NN is far from the equilibrium, while TT is evidently close. In
Figure 4.12 we show the optimal trajectories starting from x0 = 0 \in \BbbR 40 for TT
(left panel) and NN (right panel). We note that all the components deviate from
the equilibrium. The first Na components stabilize around a point different from the
origin, while the last Na components return to 0.

To improve the stabilization near the origin, we apply the TB approach to reduce
the quantity \~ymax(T ) for both methods. We recall that we are going to consider the
subdomain [ - aTB , aTB ]

40, where aTB = 2\~y0max with \~y0max computed from Figure 4.12.
We set aTB = 0.009 for TT and aTB = 0.0126 for NN and we apply LQR in the
smaller box. The results are shown in Table 4.6. As discussed previously, without
the application of the TB algorithm, TT results are more accurate. Coupling the
two methods with TB and LQR, we see by the second line of Table 4.6 a remarkable
improvement in terms of the final state magnitude. Finally, we show in Figure 4.6 the

© 2023 Luca Saluzzi

D
ow

nl
oa

de
d 

09
/1

5/
23

 to
 1

76
.2

45
.1

1.
15

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A2178 SERGEY DOLGOV, DANTE KALISE, AND LUCA SALUZZI

0 2 4 6 8 10

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Optimal trajectory

0 2 4 6 8 10
-0.2

-0.1

0

0.1

0.2

0.3

0.4
Optimal trajectory

Fig. 4.11. Optimal trajectory for TT (top) and NN (bottom) with d = 40. Neither of the
methods stabilize the trajectory exactly towards the origin.

optimal trajectories in this case, where the stabilization to the origin is more visible
for both approaches.

Finally, we test the TT approach and the NN strategy fixing the dimension d=
100. For the TT cross we fix \lambda = 10 - 4 and the resulting approximation has TT rank
equal to 16, in line with the outcome of the left panel of Figure 4.8. Table 4.7 shows
the results of the comparison considering both the simple algorithm and the coupling
with the TB approach. We set aTB = 8.6 \cdot 10 - 3 for TT and aTB = 1.2 \cdot 10 - 2 for NN,
applying LQR in the smaller box. In this case we note that the TT approximation is
two orders of magnitude more accurate than NN in both methods in terms of the error
in the cost functional. Furthermore, the application of TB is beneficial for \~ymax(T )
for both methods, keeping the error in the cost functional unaffected.

5. Conclusions. We have developed a data-driven method for the approxima-
tion of high-dimensional infinite horizon optimal control laws. A key feature of the
data-driven methodology is that it circumvents the solution of a HJB PDE, a task
that quickly becomes overwhelmingly expensive as the dimension of the state space
grows. The value function associated to the feedback law has been written in an
FTT form and its approximation has been enriched by the knowledge of both the
value function and its gradient at specific sampling points. Synthetic data genera-
tion has been performed using two different methods: PMP and the SDRE approach.
Through different numerical tests we have shown that the SDRE-based regression per-
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Fig. 4.12. Optimal trajectory for TT (top) and NN (bottom) with d = 40 starting from the
origin. The spurious nonzero state value at the final time is used to define the switching threshold
in the TB approach.

Table 4.6
Comparison between NN and TT with \lambda = 10 - 6 for d = 40. With the TB technique, both

methods are more capable to stabilize the state.

Method NN errJ TT errJ NN \~y\mathrm{m}\mathrm{a}\mathrm{x}(T ) TT \~y\mathrm{m}\mathrm{a}\mathrm{x}(T )

Simple 2.3e-4 2.5e-5 6.2e-3 4.3e-3
TB + LQR 2.0e-4 3.7e-5 4.8e-4 3.3e-4

Table 4.7
Comparison between NN and TT with \lambda = 10 - 4 for d= 100. The TT approximation achieves

an accuracy of two of magnitudes more than NN in terms of error in the cost functional.

Method NN errJ TT errJ NN \~y\mathrm{m}\mathrm{a}\mathrm{x}(T ) TT \~y\mathrm{m}\mathrm{a}\mathrm{x}(T )

Simple 2.7e-4 2.8e-6 6.0e-3 1.5e-3

TB + LQR 2.7e-4 2.8e-6 4.0e-4 4.2e-4

forms more accurately and efficiently, whereas PMP can still be necessary in the case
of state/control constraints. The numerical tests have shown that the introduction of
gradient-enhanced supervised learning methodology yields the following advantages
with respect to the no-gradient formulation:
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Fig. 4.13. Optimal trajectory for TB TT (top) and TB NN (bottom) with d= 40. Both methods
are stabilizing.

\bullet the algorithm presents more stability in presence of noise,
\bullet the H1 norm of the error is better controlled,
\bullet improved performance for control-constrained cases,
\bullet the feedback map appears more regular and can be integrated with larger

time steps,
\bullet it is characterized by a lower standard deviation on the trial set,
\bullet the Error/Evals cost for different \theta and dimensions is always minimized

picking \lambda \not = 0.
We also showed that the maximum TT rank in the representation of the values

function grows almost linearly, yielding a effective mitigation of the curse of dimen-
sionality.

In the future we aim at coupling the proposed algorithm with Model Order Re-
duction techniques in order to deal with problems in considerably higher dimension
such as fluid flow control. Since we are not restricted to consider a reduced space in
a very low dimension, we are able to work with challenging problems using an ex-
tended reduced order basis, leading to a more accurate control design. Further exten-
sions include the study of robust controllers through differential games and Hamilton--
Jacobi--Isaacs PDEs as in [31], by resorting to representation via SDREs [4, 15], and
data-driven tensor approximation for stochastic control problems in the spirit of [29].
Data access. MATLAB codes implementing the gradient cross and numerical ex-
amples are available at https://github.com/saluzzi/TT-Gradient-Cross.
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Appendix A. Supplementary materials for the multidimensional
Gradient Cross.

A.1. Resolution of the multidimensional least squares problem. We
report here the computation for the resolution of the regression problem treated in
section 3.2.

Deriving the normal equation for the problem (3.8) we obtain\Bigl( 
A< \otimes M \otimes M> +M< \otimes A\otimes M> +M< \otimes M \otimes A>)vec(H

(k)
\Bigr) 
=
 - \rightarrow 
F ,(A.1)

where

A< =

k - 1\sum 
i=1

\lambda i

\Bigl( 
\partial iG

(<k)
\bigl( 
X<k

\bigr) \Bigr) \top \Bigl( 
\partial iG

(<k)
\bigl( 
X<k

\bigr) \Bigr) 
,

M< =G(<k)
\bigl( 
X<k

\bigr) \top 
G(<k)

\bigl( 
X<k

\bigr) 
,

A= \lambda 0\Phi k (Xk)
\top 
\Phi k (Xk) + \lambda k\Phi 

\prime 
k (Xk)

\top 
\Phi \prime 

k (Xk) ,

M =\Phi k (Xk)
\top 
\Phi k (Xk) ,

A< =

d\sum 
i=k+1

\lambda i

\Bigl( 
\partial iG

(>k)
\bigl( 
X>k

\bigr) \Bigr) \top \Bigl( 
\partial iG

(>k)
\bigl( 
X>k

\bigr) \Bigr) 
,

M> =G(>k)
\bigl( 
X>k

\bigr) \top 
G(>k)

\bigl( 
X>k

\bigr) 
,

 - \rightarrow 
F =

k - 1\sum 
i=1

\lambda i

\Bigl[ 
\partial iG

(<k)
\bigl( 
X<k

\bigr) \top \otimes \Phi \top 
k \otimes G(>k)

\bigl( 
X>k

\bigr) \top \Bigr]  - \rightarrow 
V k

i

+ \lambda 0

\Bigl[ 
G(<k)

\bigl( 
X<k

\bigr) \top \otimes \Phi \top 
k \otimes G(>k)

\bigl( 
X>k

\bigr) \top \Bigr]  - \rightarrow 
V k

0

+ \lambda k

\Bigl[ 
G(<k)

\bigl( 
X<k

\bigr) \top \otimes \Phi \prime \top 
k \otimes G(>k)

\bigl( 
X>k

\bigr) \top \Bigr]  - \rightarrow 
V k

k

+

d\sum 
i=k+1

\lambda i

\Bigl[ 
G(<k)

\bigl( 
X<k

\bigr) \top \otimes \Phi \top 
k \otimes \partial iG

(>k)
\bigl( 
X>k

\bigr) \top \Bigr]  - \rightarrow 
V k

i .

To solve the normal equation (A.1) we first compute a generalized diagonalization
for the three couples of Gram matrices (M<,A<), (M,A), and (M>,A>),

M<V< =A<V<L< , MV =AV L, M>V> =A>V>L> ,

then (A.1) can be rewritten in the following form:

(A< \otimes A\otimes A>) (V< \otimes V \otimes V>) \cdot L3 \cdot 
\bigl( 
V \top 
< \otimes V \top \otimes V \top 

>

\bigr) 
(A< \otimes A\otimes A>) vec(H

(k)) =
 - \rightarrow 
F ,

(A.2)

where L3 = (L< \otimes L\otimes \ttI +L< \otimes \ttI \otimes L> + \ttI \otimes L\otimes L>) is diagonal. Now the linear
system (A.2) is easily solvable by inverting individual terms under the Kronecker
products, and the diagonal matrix.

A.2. Update of the core evaluations. As stated in section 3.2, in the (k+1)th
step we can evaluate the core G(<k+1)(X<k+1) with a cost independent of k and d.
Indeed, for each of the rk elements in I\alpha k and Ixk we compute the matrix products
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G(<k+1)
\bigl( 
X<k+1(\alpha k)

\bigr) 
=G(<k)

\bigl( 
X<k(I

\alpha 
k (\alpha k))

\bigr) 
G(k) (Xk(I

x
k (\alpha k))) ,(A.3)

\partial iG
(<k+1)

\bigl( 
X<k+1(\alpha k)

\bigr) 
= \partial iG

(<k)
\bigl( 
X<k(I

\alpha 
k (\alpha k))

\bigr) 
G(k) (Xk(I

x
k (\alpha k))) ,

i= 1, . . . , k - 1,

\partial kG
(<k+1)

\bigl( 
X<k+1(\alpha k)

\bigr) 
=G(<k)

\bigl( 
X<k(I

\alpha 
k (\alpha k))

\bigr) 
\partial kG

(k) (Xk(I
x
k (\alpha k))) ,

\alpha k = 1, . . . , rk,

where G(<k)(X<k) and \partial iG
(<k)(X<k) are available from the previous step, and need

only slicing at I\alpha k (\alpha k).
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