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Abstract
The theory of isospectral flows comprises a large class of continuous dynamical sys-
tems, particularly integrable systems and Lie–Poisson systems. Their discretization is
a classical problem in numerical analysis. Preserving the spectrum in the discrete flow
requires the conservation of high order polynomials, which is hard to come by. Exist-
ing methods achieving this are complicated and usually fail to preserve the underlying
Lie–Poisson structure. Here, we present a class of numerical methods of arbitrary
order for Hamiltonian and non-Hamiltonian isospectral flows, which preserve both
the spectra and the Lie–Poisson structure. The methods are surprisingly simple and
avoid the use of constraints or exponential maps. Furthermore, due to preservation of
the Lie–Poisson structure, they exhibit near conservation of the Hamiltonian function.
As an illustration, we apply the methods to several classical isospectral flows.
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1 Introduction

Lie–Poisson systems and isospectral flows are two well-studied classes of dynamical
systems. The former appear as Poisson reductions of Hamiltonian systems for which
the configuration and symmetry space is a Lie group (see the monograph [17] and
references therein). The classical example is the free rigid body as viewed by Poincaré
[26]. The latter, isospectral flows, appear as Lax formulations of integrable systems
(see the survey papers [5,30,31] and references therein). The classical example is the
Toda lattice as viewed by Flaschka [8,29].

The study of numerical methods for the two classes of systems is by now classi-
cal subjects in numerical analysis. The motivation for such schemes came through
the strong connection between matrix factorizations in numerical linear algebra and
isospectral flows (see the survey papers [6,23]). This was initiated by the remarkable
discovery that the iterative Q R-algorithm for computing eigenvalues is a discretization
of the (non-periodic) Toda flow [7,28].

The general form of an isospectral flow is

Ẇ = [B(W ), W ], W ∈ S ⊂ gl(n,C). (1)

Here, [·, ·] denotes the matrix commutator, S is a linear subspace of the Lie algebra
gl(n,C), and the function B : S → n(S) maps into the normalizer algebra n(S) (see
Sect. 3 for details). The most studied setting is when S = Sym(n,R) is the space
of symmetric real matrices, for which the normalizer is the Lie algebra of skew-
symmetric real matrices n(S) = so(n). Another setting is when S = g is a Lie
subgroup of gl(n,C), for which the normalizer is the subalgebra itself n(S) = g.

Let us now discuss the connection between isospectral flows and Lie–Poisson sys-
tems. The predominant example connecting the two isManakov’s n-dimensional rigid
body [16].

Recall that a Lie–Poisson system evolves on the dual g∗ of a Lie algebra g. Given
a Hamiltonian function H on g∗, the flow W (t) ∈ g∗ is given by

Ẇ = ad∗d H(W )(W ), (2)
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where the operator ad∗ is defined by

〈ad∗U (W ), V 〉 = 〈W , [U , V ]〉 ∀U , V ∈ g. (3)

Without loss of generality, we may assume that g is a subalgebra of gl(n,C). To
identify gl(n,C)∗ with gl(n,C), we use the Frobenius inner product

〈W , V 〉 = Tr(W †V ),

where W † denotes the conjugate transpose. In this way, we also identify g∗ with the
subspace g ⊂ gl(n,C). Next we extend the Hamiltonian to all of gl(n,C) by taking it
to be constant on the affine spaces given by translations of the orthogonal complement
of g. Then, d H corresponds to ∇H . From definition (3) and the identification of g∗
with g, we get

ad∗W (M) = � [W †, M],
where � is the orthogonal projection gl(n,C) → g. We thus arrive at an explicit
formulation of the Lie–Poisson system (2), namely

Ẇ = � [∇H(W )†, W ]. (4)

Now, the key observation is that if the representation of g as a subalgebra of gl(n,C)

is closed under conjugate transpose, then Eq. (4) becomes the isospectral flow

Ẇ = [∇H(W )†, W ]. (5)

Such a representation is possible if and only if g is a reductive Lie algebra (see
Sects. 2–3 for details). Thus, we arrive at the statement that Lie–Poisson systems
for any reductive Lie algebra can be viewed as isospectral flows. Recall that most
classical Lie algebras are reductive, for example gl(n,C), gl(n,R), sl(n,C), sl(n,R),
u(n), su(n), so(n), and sp(n).

An interesting consequence of Eq. (5) is that whenever the function B(W ) in the
isospectral flow (1) can be written as B(W ) = ∇H(W )†, then it can be extended to a
Lie–Poisson systemon gl(n,C) (or possibly a smaller reductive Lie algebra containing
S). Indeed, just extend the Hamiltonian function H to be constant of the affine fibers
orthogonal to S. In this way, we obtain an extended system foliated into invariant
affine subspaces generated by S. The Toda flow is an example where this construction
is possible (see Sect. 5.2).

The key feature of isospectral flows is, of course, that the eigenvalues of W are pre-
served. Equivalently, given any analytic function f extended to matrices, the function

F(W ) = Tr( f (W ))

is a first integral regardless of the choice of B(W ) in (1). From the perspective of
Lie–Poisson systems (5), this means that F(W ) is a Casimir function associated with
the Lie–Poisson structure (3). Although there are infinitely many Casimir functions,
only a finite number of them can be functionally independent.
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In this paper, we develop spectral preserving numerical methods for flows of
form (1) which, in the case of Hamiltonian isospectral flows (5), also preserves the
Lie–Poisson structure. There already exist at least four ways to achieve this:

• If the Hamiltonian can be written as a sum of explicitly integrable Hamiltonians
one can use splitting method (see [22] and references therein).

• The Lie–Poisson system on g∗ 
 g can be extended to a constrained canonical
Hamiltonian system on T ∗G 
 T G ⊂ TGL(n,C). One can then use the sym-
plectic RATTLEmethod (or higher order versions of it) for the constrained system
(see [13,21]).

• One can use symplectic Lie group methods on T ∗G as developed in [3]. These
methods rely on an invertible mapping between the Lie algebra and (an identity
neighborhood of) the Lie group, such as the exponential map (works in general)
or the Cayley map (works for quadratic Lie groups).

• One can, in some cases, use collective symplectic integrators, which rely on Cleb-
sch variables originating from a Hamiltonian action of G on a symplectic vector
space (see [18,19] for details).

Compared to these methods, our approach is: (i) simpler since the algorithms are
formulated directly on the algebra g ⊂ gl(n,C); (ii) free of constraints; (iii) free of
algebra-to-group maps, such as the exponential or Cayley map; (iv) generic as they
apply to any isospectral Hamiltonian flow. Furthermore, through the framework of
Poisson reduction (cf. [17]) our methods are directly related to classical symplectic
Runge–Kutta methods (or partitioned symplectic Runge–Kutta methods). Therefore,
they merit the designation Isospectral Symplectic Runge–Kutta (IsoSyRK) methods.

The paper is organized as follows. In Sect. 2, we give the definitions of the new
methods andwe state ourmain results. InSect. 3,wedevelop adiscrete reduction theory
for isospectral Lie–Poisson flows. These results are instrumental in Sect. 4, where
we specialize our construction to symplectic Runge–Kutta methods. All numerical
examples are given in Sect. 5.

2 Main Results

A Runge–Kutta method is defined by its Butcher tableau (cf. [9])

c A

bT (6)

where A ∈ R
s×s and b, c ∈ R

s . Furthermore, if

bi ai j + b j a ji = bi b j , (7)

for i, j = 1, . . . , s, then the corresponding Runge–Kutta method is symplectic when
applied to canonical Hamiltonian systems on R

2n [27]. However, directly applying
a symplectic Runge–Kutta method to the Hamiltonian isospectral flow (5) does not
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yield a Poisson integrator. Nor does it, in general, preserve the isospectral property, as
is well known.

Definition 1 (IsoSyRK) Given a Butcher tableau (6) fulfilling the symplectic condi-
tion (7), the corresponding Isospectral Symplectic Runge–Kutta method for flow (1)
is the map

�h : gl(n,C) � Wk �−→ Wk+1 ∈ gl(n,C)

defined by

Xi = −
(

Wn +
s∑

j=1
ai j X j

)
h B(W̃i )

Yi = h B(W̃i )
(

Wk +
s∑

j=1
ai j Y j

)

Ki j = h B(W̃i )
( s∑

j ′=1
(ai j ′ X j ′ + a j j ′Ki j ′)

)

W̃i = Wk +
s∑

j=1
ai j (X j + Y j + Ki j )

Wk+1 = Wk +
s∑

i=1
bi [h B(W̃i ), W̃i ],

for i, j = 1, . . . , s, where h > 0 denotes the step size.

Theorem 1 The method in Definition 1 fulfills the following properties:

(1) It has the same order as the underlying Runge–Kutta method.
(2) It is isospectral; for any analytic function f extended to matrices

Tr( f (Wk+1)) = Tr( f (Wk)).

(3) It is equivariant with respect to Lie algebra morphisms;
if A : gl(n,C) → gl(n,C) is a linear invertible mapping fulfilling for all
X , Y ∈ gl(n,C)

A[X , Y ] = [AX ,AY ],
then the following diagram commutes

Wk W ′
k

Wk+1 W ′
k+1

A

�h B �hA◦B◦A−1
A
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(4) It is a Lie–Poisson integrator if the isospectral flow is Hamiltonian, i.e., of form
(5). Furthermore, if the isospectral flow is Hamiltonian, it is equivariant with
respect to linear Lie–Poisson isomorphisms B : gl(n,C)∗ → gl(n,C)∗.

(5) It restricts to a Lie–Poisson integrator for any Lie subalgebra g ⊂ gl(n,C)

defined by
W ∈ g ⇐⇒ W † J + J W = 0, (8)

where J 2 = cI for some c ∈ R\{0}.
(6) It restricts to a Lie–Poisson integrator for any Lie subalgebra given by arbitrary

intersections of gl(n,R), sl(n,C), and Lie algebras of form (8).
(7) It extends to a Lie–Poisson integrator for direct products of Lie algebras of the

form in item (6).
(8) It restricts to an isospectral integrator on the orthogonal complement g⊥ ⊂

gl(n,C) of any Lie algebra g of the form in item (6), provided that B restricts to
a mapping B : g⊥ → g.

Proof The theorem is a combination of results proved in Theorem 3, Corollary 1,
Theorems 4 and 6. ��

Remark 1 Items (5)–(6) of Theorem 1 imply that the IsoSyRK methods constitute
Lie–Poisson integrators for the classical Lie algebras sl(n,C), sl(n,R), so(n), u(n),
su(n), sp(n,C), and sp(n,R). Item (8) implies that they also preserve the classical
isospectral setting as flows on symmetric or Hermitian matrices, since, for example,
so(n)⊥ = Sym(n,R).

We also have an analogous, albeit slightly weaker, result for partitioned symplectic
Runge–Kutta methods, such as defined by two Butcher tableaux (cf. [9])

c A

bT

ĉ Â

b̂�
. (9)

If, for i, j = 1, . . . , s, the coefficients in the tableaux fulfill

bi âi j + b̂ j a ji = bi b̂ j ,

b̂i = bi ,
(10)

then the corresponding partitioned Runge–Kutta method is symplectic when applied
to canonical Hamiltonian systems on R

2n .

Definition 2 (IsoSyPRK) Given two Butcher tableaux (9) fulfilling the symplectic
conditions (10), the corresponding Isospectral Symplectic Partitioned Runge–Kutta
method for flow (1) is the map

�h : gl(n,C) � Wk �−→ Wk+1 ∈ gl(n,C)
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defined by

Xi = −h
(

Wn +
s∑

j=1
ai j X j

)
B(W̃i )

Yi = h B(W̃i )
(

Wn +
s∑

j=1
âi j Y j

)

Ki j = h B(W̃i )
( s∑

j ′=1
(ai j ′ X j ′ + â j j ′Ki j ′)

)

W̃i = Wn +
s∑

j=1
ai j X j + âi j (Y j + Ki j )

Wn+1 = Wn + h
s∑

i=1
bi [B(W̃i ), W̃i ].

for i, j = 1, . . . , s, where h > 0 denotes the step size.

Theorem 2 The method in Definition 2 fulfills the following properties:

(1) It has the same order as the underlying partitioned Runge–Kutta method.
(2) It is isospectral; for any analytic function f extended to matrices

Tr( f (Wk+1)) = Tr( f (Wk)).

(3) It is equivariant with respect to Lie algebra morphisms;
if A : gl(n,C) → gl(n,C) is a linear invertible mapping fulfilling for all
X , Y ∈ gl(n,C)

A[X , Y ] = [AX ,AY ],
then the following diagram commutes

Wk W ′
k

Wk+1 W ′
k+1

A

�h B �hA◦B◦A−1
A

(4) It is a Lie–Poisson integrator if the isospectral flow is Hamiltonian, i.e., of form
(5). Furthermore, if the isospectral flow is Hamiltonian, it is equivariant with
respect to linear Lie–Poisson isomorphisms B : gl(n,C)∗ → gl(n,C)∗.

(5) If it restricts to a Lie–Poisson integrator for a Lie subalgebra g ⊂ gl(n,C) defined
by

W ∈ g ⇐⇒ W † J + J W = 0,

where J 2 = cI for some c ∈ R\{0} and bi �= 0 for i = 1, . . . , s, then the two
Butcher tableaux coincide. (It is a standard Runge–Kutta method.)
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Proof The theorem is a combination of results proved in Theorem 3, Corollary 1,
Theorems 5 and 6. ��

3 Reduction Theory for Isospectral Lie–Poisson Integrators

Let us consider Lie–Poisson systems of form (5). Conditions under which the flow
remains in a linear subspace S of gl(n,C) are intrinsically connected to the gl(n,C)-
normalizer of S. We recall here its definition:

Definition 3 Let G be a Lie group and g its Lie algebra. Furthermore, let S ⊆ g be a
linear subspace. Then, the two sets

N (S) = {g ∈ G | g−1Sg ⊆ S}
n(S) = {ξ ∈ g | [ξ, S] ⊆ S}

are, respectively, called the G-normalizer and the g-normalizer of S. Notice that N (S)

is a subgroup of G and n(S) is a Lie subalgebra of g.

We now give some examples of Definition 3. We first give the following definition.

Definition 4 Let g ⊆ sl(n,C) be a Lie algebra and J ∈ GL(n,C). Then, g is said to
be a J -quadratic Lie algebra if A† J + J A = 0, for any A ∈ g.

Examples of normalizers:

(1) S = sl(n,C) with n(S) = gl(n,C).
(2) S = g ⊂ sl(n,C) is a J -quadratic Lie subalgebra with n(S) = g ⊕ C Id. A

typical case is S = su(n) for which n(S) = u(n), corresponding to J = Id.
(3) S = g⊥, where g ⊂ sl(n,C) is a J -quadratic Lie subalgebra, with n(S) =

g ⊕ C Id.1 A typical case is S = Sym(n,R) and n(S) = o(n), corresponding
to J = Id.

Remark 2 If S = g is a Lie subalgebra of gl(n,C) onemay ask under which conditions
the isospectral Hamiltonian system (5) coincides with the Lie–Poisson system on g.
Recall that ∇H is the gradient of H with respect to the Frobenius inner product. It is
not a restriction to assume that∇H(W ) ∈ g for all W ∈ gl(n,C) (since we can extend
H to be constant on the affine complements of g). Due to the conjugate transpose on
∇H(W ) it is not, however, enough that ∇H(W ) ∈ g; instead we need ∇H(W )† ∈ g.
A sufficient condition for this to be true is that g is closed under conjugate transpose:
g† ⊂ g. Such g are, up to representation, the semisimple Lie algebras ([14], Prop.
6.28). This means that, after the identification of the dual of the Lie algebra g with
itself (using the Frobenius inner product), a Lie–Poisson system on a semisimple Lie
algebra g coincides with a Lie–Poisson system on gl(n,C) restricted to g. In fact,
slightly more is true: due to the bracket in the right hand side of (5) it is enough that

[g†, g] ⊂ g.

1 Orthogonal complements are taken with respect to the Frobenius inner product. We always have that
n(S⊥) = n(S)†.
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This holds when g is a reductive Lie algebra, i.e., the direct sum of a semisimple Lie
algebra and an abelian Lie algebra.

A Lie–Poisson systems on a Lie algebra g can be viewed as the Lie–Poisson reduc-
tion of a canonical Hamiltonian system on T ∗G with a G-symmetric Hamiltonian.
Going backwards, one may “unreduce” any Lie–Poisson system to a canonical Hamil-
tonian system on the cotangent bundle of the corresponding Lie group. Our objective
is to show that the isospectral symplectic Runge–Kutta methods (cf. Sect. 2) originate
as a “discrete Lie–Poisson reduction” of symplectic Runge–Kutta methods.

We thus proceed by extending Eq. (5) to a canonical system on
T ∗GL(n,C). To do so, one needs the momentum map (cf. [17]) associated with the
right action of GL(n,C) on T ∗GL(n,C):

(Q, P) · G = (QG, P(G−1)†),

for G, Q ∈ GL(n,C) and P ∈ T ∗
QGL(n,C). The momentum map for this (Hamilto-

nian) action is given by

μ : T ∗GL(n,C) → gl(n,C)∗ 
 gl(n,C), μ(Q, P) = Q†P.

This momentum map provides a left-invariant Hamiltonian function H̃(Q, P) =
H(Q†P) on T ∗GL(n,C), i.e., an Hamiltonian function invariant with respect to the
left action

G · (Q, P) = (G Q, (G−1)†P). (11)

The fact that the momentum map is a Poisson map between T ∗GL(n,C)

and gl(n,C)∗ means that a symplectic map in � : T ∗GL(n,C) → T ∗GL(n,C)

which is equivariant with respect to action (11) descends to a corresponding map
φ : gl(n,C)∗ → gl(n,C)∗. In terms of numerical integrators, this means that a
GL(n,C)-equivariant symplectic integrator on T ∗GL(n,C) induces a Poisson inte-
grator on gl(n,C)∗. As we shall see, this is precisely how the isospectral symplectic
Runge–Kutta methods come about.

Using the momentummap (11), the canonical Hamiltonian system on T ∗GL(n,C)

is given by
Q̇ = Q∇H(Q†P)

Ṗ = −P∇H(Q†P)†,
(12)

where H is the same Hamiltonian as in (5).
We now translate the condition of staying on S from (5) to (12).

Proposition 1 Consider a solution (Q(t), P(t)) of Hamilton’s equations (12) for a
given initial point (Q(0), P(0)) and let S ⊆ gl∗(n,C) be a linear subspace as before.
Then, there exists a time T > 0 such that the following three statements are equivalent:

(1) Q(t)†P(t) ∈ S, for any 0 ≤ t ≤ T ;
(2) Q(0)†P(0) ∈ S and ∇H(Q†P)†(t) ∈ n(S), for any 0 ≤ t ≤ T ;
(3) Q(0)†P(0) ∈ S and there exists a fixed G ∈ GL(n,C) such that G Q(t)† ∈

N (S), for any 0 ≤ t ≤ T .
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Proof Let U be a neighborhood of Q(0)†P(0) such that the map exp−1 : U ⊂
GL(n,C) → gl(n,C) is well defined. Then, let T be a positive real number such that
exp(

∫ t
0 ∇H(Q†P)†(s)ds) ∈ U , for 0 ≤ t ≤ T .

1) ⇒ 2) We have that S � d Q†P
dt = [∇H(Q†P)†, Q†P], since S is a linear space

and (Q†P)(t) ∈ S, for any 0 ≤ t ≤ T . But this means that ∇H(Q†P)† has to be in
n(S), for any 0 ≤ t ≤ T .

2) ⇒ 1) For 0 ≤ t ≤ T , we have that:

(Q†P)(t) = exp

(∫ t

0
∇H(Q†P)†(s)ds

)
Q(0)†P(0) exp

(
−

∫ t

0
∇H(Q†P)†(s)ds

)
,

which proves the statement, since N (S) ⊇ exp(n(S)).
2) ⇒ 3) Let G ∈ GL(n,C) such that G Q(t)† ∈ N (S). Then, we have:

G Q(t)† = exp

(∫ t

0
∇H(Q(s)†P(s))†ds

)
G Q(0)†,

which proves the statement, since N (S) ⊇ exp(n(S)).
3) ⇒ 2) By the formula above, we have

G Q†(t)(G Q(0)†)−1 = exp

(∫ t

0
∇H(Q(s)†P(s))†ds

)
.

Since the left-hand side is in N (S) for any 0 ≤ t ≤ T , we have ∇H(Q(t)†P(t))† ∈
n(S) for any 0 ≤ t ≤ T , by the definition of T . ��

Although the statements in Proposition 1 are equivalent for the exact flow, they
are different after discretization. Indeed, in order to understand the conditions for our
isospectral symplectic Runge–Kutta methods to preserve the flow on S we need the
definition of weak and strong first integrals.

Definition 5 Let M be a smooth manifold and N ⊂ M a smooth submanifold. Con-
sider the following dynamical system on N :

ż = X(z)
z(0) = z0,

(13)

with X a smooth vector field on N and z0 ∈ N . Assume further that X can be extended
on a ε−neighborhood Nε of N in M .

Then, a differentiable function I : Nε → C is said to be aweak, respectively, strong
first integral of (13) if

〈d I (z), X(z)〉 = 0 for all z ∈ N
〈d I (z), X(z)〉 = 0 for all z ∈ Nε.
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In numerical analysis, it is often the case that integration schemes on a submanifold
N actually depend on how N is embedded in a larger (vector) space M . That is, the
integration scheme is not intrinsic to N (for example evaluations of the vector field
outside of N may occur). In this situation, the difference between strong and weak
first integrals is essential. Indeed, for non-intrinsic methods one can at best expect to
conserve strong first integrals. Motivated by this, we make the following:

Assumption 1 Let Sε be a ε−neighborhood of S in gl(n,C). We assume that ∇H†

can be extended to Sε such that ∇H(W )† ∈ n(S) for all W ∈ Sε.

Since S is a linear space the natural way to extend ∇H† is to take it to be constant
on the affine complements of S. With this extension, the gradient of the Hamiltonian
requires only an orthogonal projection of W to S.

Under Assumption 1, our Proposition 1 says that (Q†P) ∈ S is determined byweak
first integrals of the Hamiltonian system (12) provided that the gradient of the Hamil-
tonian is in n(S). In fact, having (Q†P) ∈ S is equivalent to [∇H(Q†P)†, Q†P] ∈ S
which in general is not true for Q†P in an ε−neighborhood of S. Instead, an equiva-
lent formulation corresponding to strong first integrals is given by the third statement,
which says that there exists a fixed matrix G such that G Q† ∈ N (S). Therefore,
only the numerical methods that have G Q† ∈ N (S) as a discrete invariant correspond
to integrators that preserve S. In particular, if N (S) is a quadratic Lie group one can
expect symplectic Runge–Kutta methods to yield a discrete flow that preserves S since
they preserve general quadratic first integrals. On the other hand, the same cannot be
expected from symplectic partitioned Runge–Kutta methods, since they only preserve
special (bilinear) quadratic first integrals.

We summarize our findings in the following theorem.

Theorem 3 Consider a Lie–Poisson system of form (5) evolving on a linear subspace
S ⊂ gl(n,C). Let �h : T ∗GL(n,C) → T ∗GL(n,C) be a symplectic numerical
method for the corresponding canonical Hamiltonian system (12) obtained by exten-
sion from S in accordance with Assumption 1.

(1) If �h is equivariant with respect to action (11), i.e.,

G ·�h(Q, P) = �h(G · (Q, P)).

then it descends to a Lie–Poisson integrator φh on gl(n,C).
(2) If, in addition, �h preserves the foliation

FG = {Q | G Q† ∈ N (S)}, G ∈ GL(n,C)

then φh restricts to an integrator on S.

Based on the results in Theorem 3, we can now generalize the results to a general
B(·), i.e., to isospectral flows that are not necessarily Hamiltonian. This extension
requires that the underlying method can be expanded in a B-series or P-series (cf. [9]
for definitions and notation).2 Consider first the generalization of Assumption 1:

2 Please notice the following clash of notation: B-series and P-series have nothing to do with the function
B and the variable P as defined in this paper.
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Assumption 2 Let Sε be a ε−neighborhood of S in gl(n,C). We assume that B(·) can
be extended to Sε such that B(W ) ∈ n(S) for all W ∈ Sε.

Then, based on Theorem 3, we have the following result.

Corollary 1 Consider an isospectral flow of form (1) evolving on a linear subspace
S ⊂ gl(n,C). Let �h : T ∗GL(n,C) → T ∗GL(n,C) be a symplectic B-series (or
P-series) method for the corresponding system:

Q̇ = Q B(Q†P)†

Ṗ = −P B(Q†P),
(14)

obtained by extension from S in accordance with Assumption 2.

(1) If �h is equivariant with respect to action (11), i.e.,

G ·�h(Q, P) = �h(G · (Q, P)).

then it descends to an isospectral integrator φh on gl(n,C).
(2) If, in addition, �h preserves the foliation

FG = {Q | G Q† ∈ N (S)}, G ∈ GL(n,C)

then φh restricts to an integrator on S.

Proof FromTheorem 3, we know that for B(W ) = ∇H(W )† whenwe solve (14) with
a symplectic integrator the discrete flow is isospectral for W := Q†P . Therefore, the
(truncated) modified equation is of the form

Q̇ = Q∇ H̃(Q†P)

Ṗ = −P∇ H̃(Q†P)†,
(15)

for some modified Hamiltonian H̃ . On the other hand, since �h is a symplectic B-
series method, the right hand side in (15) is a B-series whose coefficients satisfy the
relation b(u ◦ v) + b(v ◦ u) = 0 for each pair of trees u, v [9, Theorem IX.9.3]. In
particular b(u ◦u) = 0. From [9, Lem IX.9.6 and Thm IX.9.8], it follows that the only
elementary Hamiltonians that vanish for all the Hamiltonian functions H are those of
the type H(u ◦ u). Furthermore, it is clear from the form of (15) and the definition of
B-series in terms of elementary differentials that the right hand side in (15) is of the
form

(
Q

∑∞
n=1

∑∞
k=1 Ak

n(Q†P, H ′(Q†P), H ′′(Q†P), . . . , H (k)(Q†P))

−P
∑∞

n=1
∑∞

k=1 Bk
n (Q†P, H ′(Q†P), H ′′(Q†P), . . . , H (k)(Q†P))†,

)
(16)

for Ak
n, Bk

n homogeneous polynomials of degree n for each k.
We claim that to get the modified equation for a general B we just replace in (16)

(H (k))† with B(k−1) (which is possible since k ≥ 1). Indeed, this follows since the
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coefficients of a symplectic B-series are uniquely determined by Hamiltonian vector
fields [9, Thm IX.9.10]. Therefore, we conclude that a symplectic B-series integrator
applied to (14), for a general B, is isospectral for W = Q†P with a modified equation
of the form

Q̇ = Q B̃(Q†P)†

Ṗ = −P B̃(Q†P),
(17)

for some B̃(·) obtained by replacing in (16) the (H (k))† with B(k−1).
In the case when �h is a symplectic P-series, the proof is repeated similarly, using

instead [9, Thm IX.10.3, Lem IX.10.6, Thm IX.10.8]. ��

4 Isospectral Symplectic Runge–Kutta Methods

In this section, we specialize Theorem 3 to the symplectic Runge–Kutta and parti-
tioned Runge–Kutta methods. As a result, we obtain the novel numerical schemes for
isospectral (Lie–Poisson) systems presented in Sect. 2.

4.1 Symplectic Runge–Kutta Methods

Given a Butcher tableau

c1 a11 . . . a1s
...

...
. . .

...

cs as1 . . . ass

b1 . . . bs

the associated Runge–Kutta method for (1) is

K Q
i =

⎛
⎝Qn + h

s∑
j=1

ai j K Q
j

⎞
⎠ B

⎛
⎜⎝

⎛
⎝Qn + h

s∑
j=1

ai j K Q
j

⎞
⎠

†

⎛
⎝Pn + h

s∑
j=1

ai j K P
j

⎞
⎠

⎞
⎠

†

K P
i = −

⎛
⎝Pn + h

s∑
j=1

ai j K P
j

⎞
⎠ B

⎛
⎜⎝

⎛
⎝Qn + h

s∑
j=1

ai j K P
j

⎞
⎠

†

⎛
⎝Pn + h

s∑
j=1

ai j K P
j

⎞
⎠

⎞
⎠ (18)
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Qn+1 = Qn + h
s∑

i=1
bi K Q

i

Pn+1 = Pn + h
s∑

i=1
bi K P

i ,

for i, j = 1, . . . , s. Recall that the method is symplectic, i.e., the discrete flow is a
symplectic map, if bi ai j + b j a ji = bi b j for any i, j = 1, . . . , s.

Theorem 4 Given a Butcher tableau

c A

b�

of a symplectic s-stages Runge–Kutta method, let �h : T ∗GL(n,C) → T ∗GL(n,C)

denote the corresponding integrator map for system (12). Then:

(1) The symplectic integrator �h descends to a Lie–Poisson integrator φh on
gl(n,C)∗ 
 gl(n,C) for the isospectral Hamiltonian system (5). Furthermore,
the map φh is completely constructive as an implicit integration scheme (see
below for specific formulas).

(2) If S is an invariant subspace of (5) (as described above), then φh preserves S in
the cases S = sl(N ,C), S = g, and S = g⊥, for g a J-quadratic Lie subalgebra.

The schemes obtained in Theorem 4 are the following:
1. S = sl(n,C) or S = gl(n,C)

Xi = −h
(

Wn +∑s
j=1 ai j X j

)
B(W̃i )

Yi = h B(W̃i )
(

Wn +∑s
j=1 ai j Y j

)

Ki j = h B(W̃i )
(∑s

j ′=1(ai j ′ X j ′ + a j j ′Ki j ′)
)

W̃i = Wn +∑s
j=1 ai j (X j + Y j + Ki j )

Wn+1 = Wn + h
∑s

i=1 bi [B(W̃i ), W̃i ],

for i, j = 1, . . . , s, where the unknowns are Xi , Yi , Ki j for i, j = 1, . . . , s and the
last two lines are explicit.
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2. S = g ⊆ gl(n,C) J -Quadratic

Xi = −h
(

Wn +∑s
j=1 ai j X j

)
B(W̃i )

Ki j = h B(W̃i )
(∑s

j ′=1(ai j ′ X j ′ + a j j ′Ki j ′)
)

W̃i = Wn +∑s
j=1 ai j (X j − J−1X†

j J + Ki j )

Wn+1 = Wn + h
∑s

i=1 bi [B(W̃i ), W̃i ],

for i, j = 1, . . . , s, where the unknowns are Xi , Ki j for i, j = 1, . . . , s and the last
two lines are explicit. The last line is also equivalent to

Wn+1 = Wn +
s∑

i=1
bi (Xi − J−1X†

j J + Kii − J−1K †
i i J ).

3. S = g⊥, g ⊆ sl(n,C) J -Quadratic

Xi = −h
(

Wn +∑s
j=1 ai j X j

)
B(W̃i )

Ki j = h B(W̃i )
(∑s

j ′=1(ai j ′ X j ′ + a j j ′Ki j ′)
)

W̃i = Wn +∑s
j=1 ai j (X j + J−1X†

j J + Ki j )

Wn+1 = Wn + h
∑s

i=1 bi [B(W̃i ), W̃i ],

for i, j = 1, . . . , s, where the unknowns are Xi , Ki j for i, j = 1, . . . , s and the last
two lines are explicit. The last line is also equivalent to

Wn+1 = Wn +
s∑

i=1
bi (Xi + J−1X†

j J + Kii + J−1K †
i i J ).

Proof of Theorem 4 (1) For S := sl(n,C) we have that n(S) = gl(n,C) and N (S) =
GL(n,C). Therefore, the hypotheses of Theorem3 are trivially satisfied. To get the
explicit construction, we look at the argument of the gradient of the Hamiltonian
which suggests to define

Wn+1 := Q†
n+1Pn+1

Wn := Q†
n Pn

Xi := hQ†
n K P

i

Yi := h(K Q
i )†Pn
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Ki j := h2
s∑

j ′=1
ai j ′(K Q

j )†K P
j ′

W̃i := Wn +
s∑

j=1
ai j (X j + Y j + Ki j ),

for i, j = 1, . . . , s. The equations for Xi , Yi are straightforward (consider the
equations of the Runge–Kutta method (18) and take the transpose of the first equa-
tion and multiply by Pn , and multiply the second equation by Q†

n , respectively).
To get the equations for Ki j , we first transpose the first equation of (18); then, we
multiply it (indexed now by j ′) by h2ai j ′K P

j ′ and sum over j ′. We thereby get

Ki j = h B(W̃i )

⎛
⎝

s∑
j ′=1

(ai j ′ X j ′ + ai j ′ K̃ j j ′)

⎞
⎠ for i, j = 1, . . . , s,

where

K̃i j := h2
s∑

j ′=1
ai j ′(K Q

j ′ )
†K P

j .

Multiplying the second equation of (18) (indexed now by j ′) by h2ai j ′(K Q
j ′ )

† and
then summing over j ′, we obtain

K̃i j = −h

⎛
⎝

s∑
j ′=1

(ai j ′Y j ′ + ai j ′K j j ′)

⎞
⎠ B(W̃i ) for i, j = 1, . . . , s.

Using then

s∑
j ′=1

s∑
j ′′=1

ai j ′a j j ′′(K Q
j ′′)

†K P
j ′ =

s∑
j ′=1

s∑
j ′′=1

a j j ′ai j ′′(K Q
j ′ )

†K P
j ′′ ,

for i = 1, . . . , s, we get

s∑
j ′=1

ai j ′ K̃ j j ′ =
s∑

j ′=1
a j j ′Ki j ′ for i, j = 1, . . . , s.

Therefore, the K̃i j depend completely on the Ki j and so we can neglect them,
obtaining the desired equations for the Ki j . Finally, to get the equation for Wn+1,
we multiply the third one of (18) transposed with the fourth one of (18) and we
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get

Wn+1 = Wn +
s∑

i=1
bi (Xi + Yi )+ h2

s∑
i, j=1

bi b j (K Q
i )†K P

j .

Using the symplecticity of the method, the last term becomes

h2
s∑

i, j=1
(bi ai j + b j a ji )(K Q

i )†K P
j =

s∑
i=1

bi (Kii + K̃ii ).

Therefore,

Wn+1 = Wn +
s∑

i=1
bi (Xi + Yi + Kii + K̃ii ).

Now substituting the equations found for Xi , Yi , Kii , K̃ii , we get the desired equa-
tion for Wn+1.

(2) Symplectic Runge–Kutta methods preserve exactly the strong quadratic first inte-
grals of a dynamical system. In particular, when S is one of the spaces stated in
the theorem, they preserve N (S) = {Q ∈ GL(n,C)|Q† J Q = J }. Therefore, by
Theorem 3, they descend to an integrator on S.
It is also easy to check that, if we assume B to be in n(S), we get Yi = −J−1X†

i J .
Moreover, from the definition of Ki j and K̃i j and the equations:

Ki j = h B(W̃i )

⎛
⎝

s∑
j ′=1

(ai j ′ X j ′ + a j j ′Ki j ′)

⎞
⎠ for i, j = 1, . . . , s,

K̃i j = −h

⎛
⎝

s∑
j ′=1

(ai j ′Y j ′ + ai j ′K j j ′)

⎞
⎠ B(W̃i ) for i, j = 1, . . . , s,

we get also that

−J−1K †
i i J = K̃ii .

��
Remark 3 We stress that our methods are not intrinsically formulated on S. That is,
they depend on how S is embedded as a subspace in gl(n,C). Therefore, there is no
hope to present the schemes above only in terms of the matrix commutator.

Remark 4 The order of convergence of the descended methods is the same as the
underlying Runge–Kutta ones (see Fig. 1), since if Qn = Q(nh)+O(h p) and Pn =
P(nh)+O(h p), then Wn = Q†

n Pn = W (nh)+O(h p) = Q(nh)†P(nh)+O(h p).
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order schemes in Definition 1

Fig. 1 Maximum error in total time T = 1s, and time-step h, for h = 1, 0.52, . . . , 0.517, in log–log
scale, for 2nd, 4th, 6th order schemes in Definition 1, respectively, with dashed blue, purple and green
line, applied to the generalized rigid body of Sect. 5.1. The continuous lines are, respectively, red h �→ h3,
yellow h �→ h5, blue h �→ h7

4.2 Partitioned Symplectic Runge–Kutta Methods

Given two Butcher tableaux

ĉ1 â11 . . . â1s
...

...
. . .

...

ĉs âs1 . . . âss

b̂1 . . . b̂s

c1 a11 . . . a1s
...

...
. . .

...

cs as1 . . . ass

b1 . . . bs

the associated partitioned Runge–Kutta method for (12) is given by

K Q
i =

(
Qn + h

∑s

j=1 âi j K Q
j

)
B

((
Qn + h

∑s

j=1 âi j K Q
j

)†

(
Pn + h

∑s

j=1 ai j K P
j

))†

K P
i = −

(
Pn + h

∑s

j=1 ai j K P
j

)
B

((
Qn + h

∑s

j=1 âi j K Q
j

)†

(
Pn + h

∑s

j=1 ai j K P
j

))

Qn+1 = Qn + h
∑s

i=1 b̂i K Q
i
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Pn+1 = Pn + h
∑s

i=1 bi K P
i ,

for i, j = 1, . . . , s. The partitioned Runge–Kutta method is symplectic, i.e., the dis-
crete flow is a symplectic map, if bi âi j+ b̂ j a ji = bi b̂ j and b̂i = bi for i, j = 1, . . . , s.

Theorem 5 Given two Butcher tableaux

ĉ Â

b̂�
c A

b�

of a symplectic partitioned s-stage Runge–Kutta method, let �h : T ∗GL(n,C) →
T ∗GL(n,C) denote the corresponding integrator map for system (12). Then:

(1) The symplectic integrator �h descends to a Lie–Poisson integrator φh on
gl(n,C)∗ 
 gl(n,C) for the isospectral Hamiltonian system (5). Furthermore,
the map φh is completely constructive as an implicit integration scheme (see
below for a specific formula).

(2) The invariant subspace S = sl(N ,C) of (5) is preserved by φh.
(3) If S = g, and S = g⊥, for g a J-quadratic Lie subalgebra and bi �= 0, then φh

preserves S (for general Hamiltonians on S extended to gl(n,C)) if and only if
ai j = âi j , for i, j = 1, . . . , s.

The scheme obtained in Theorem 5 is the following:
S = sl(n,C) or S = gl(n,C)

Xi = −h
(

Wn +∑s
j=1 ai j X j

)
B

(
W̃i

)

Yi = h B
(
W̃i

) (
Wn +∑s

j=1 âi j Y j

)

Ki j = h B
(
W̃i

) (∑s
j ′=1

(
ai j ′ X j ′ + â j j ′Ki j ′

))

W̃i = Wn +∑s
j=1 ai j X j + âi j

(
Y j + Ki j

)

Wn+1 = Wn + h
∑s

i=1 bi [B
(
W̃i

)
, W̃i ],

for i, j = 1, . . . , s, where the unknowns are Xi , Yi , Ki j for i, j = 1, . . . , s and the
last two lines are explicit.

Proof of Theorem 5 (1) The proof is, mutatis mutandis, identical to the one of the
previous theorem. We have just to change accordingly the following definitions:

K̃i j := h2
s∑

j ′=1
âi j ′(K Q

j )†K P
j ′

Ki j := h2
s∑

j ′=1
ai j ′(K Q

j )†K P
j ′
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W̃i := Wn +
s∑

j=1
ai j X j + âi j (Y j + Ki j ),

and pointing out the following identity:

s∑
j ′=1

ai j ′ K̃ j j ′ =
s∑

j ′=1
â j j ′Ki j ′ for i, j = 1, . . . , s.

Finally, we just use the condition of symplecticity for partitioned Runge–Kutta
methods.

(2) Follows directly from the formula for Wk+1.
(3) Partitioned symplecticRunge–Kuttamethodspreserve exactly the strongquadratic

first integrals of a dynamical system if they are on the form a(Q, P), where a is a
bilinear form on the space of matrices. In particular, when S is one of the spaces in
statement (3) of the theorem, to preserve N (S) = {Q ∈ GL(n,C)|Q† J Q = J }
themethod associated to Q-part has to preserve already the quadratic first integrals.
This fact, together the condition of symplecticity of the partitioned Runge–Kutta
methods, implies that ai j = âi j , for i, j = 1, . . . , s whenever bi �= 0. ��

4.3 Linear Equivariance of the Schemes

In this paragraph, we prove that the isospectral symplectic Runge–Kutta methods
in Theorems 4 and 5 are linearly equivariant with respect to the invertible linear
transformations that leave Eqs. (1) and (5) of the same form. Notice that Eqs. (1)
and (5) are not affine equivariant; linear equivariance is the best we can expect. The
linear isomorphisms that leave Eqs. (1) and (5) invariant in form are, respectively, Lie
algebra isomorphisms and Lie–Poisson isomorphisms. Indeed, consider a Lie algebra
isomorphism A : gl(n,C) → gl(n,C). Applying A to Eq. (1) gives

d

dt
(AW ) = A[B(W ), W ] = [AB(W ),AW ] = [(A ◦ B ◦A−1)(AW ),AW ],

which shows the invariance in formofEq. (1) to Lie algebra isomorphism. In particular,
we have the identity

A[B(A−1W ),A−1W ] = [(A ◦ B ◦A−1)(W ), W ]. (19)

Via the identification gl(n,C)∗ 
 gl(n,C) as previously explained, it is easy to check
that the adjoint operator A∗ : gl(n,C)∗ → gl(n,C)∗ acts on the coadjoint represen-
tation like A∗[X†, Y ] = [X†(A∗)−1,A∗Y ], for X ∈ gl(n,C) and Y ∈ gl(n,C)∗. In
particular, A∗ is a Lie–Poisson map for Eq. (5):
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d

dt
(A∗W ) = A∗[∇H(W )†, W ] = [∇H(W )†(A∗)−1,A∗W ]

= [∇(H ◦ (A∗)−1)†(A∗W )†,A∗W ],

which leaves Eq. (5) invariant in form. We thus obtain the following identity:

A∗[∇H((A∗)−1W )†, (A∗)−1W ] = [∇(H ◦ (A∗)−1)(W )†, W ]. (20)

For any map B and Hamiltonian H , let φh(B) and φh(H), respectively, denote inte-
grators as in Theorem 4 or Theorem 5. Now, the numerical scheme φh(B) is Lie
equivariant, and, correspondingly, φh(H) is Lie–Poisson equivariant if

A ◦ φh(B) = φh(A ◦ B ◦A−1) ◦A (21)

A∗ ◦ φh(H) = φh(H ◦ (A∗)−1) ◦A∗. (22)

The identities (19) and (20) show that the right hand sides of Eqs. (21),(22) have the
same form. Therefore, it is enough to prove Eq. (21).

Theorem 6 Let φh(B) be an isospectral (partitioned) symplectic Runge–Kutta method
as in Theorem 4 (or Theorem 5). Then, φh(B) is Lie equivariant for any Lie morphism
A : gl(n,C) → gl(n,C).

Proof Let us consider Eq. (21) for the partitioned symplectic Runge–Kutta schemes.
The same conclusion for the symplectic Runge–Kutta method will follow straightfor-
wardly from this. We want to check Eq. (21) for any Wn ∈ gl(n,C) and A as above.
The right hand side is

Xi = −hA
(
A−1

(
AWn +∑s

j=1 ai j X j

))
B

(A−1W̃i
)

Yi = hAB
(A−1W̃i

) (
A−1

(
AWn +∑s

j=1 âi j Y j

))

Ki j = h AB
(A−1W̃i

) (∑s
j ′=1

(A−1 (
ai j ′ X j ′ + â j j ′Ki j ′

)))

W̃i = AWn +∑s
j=1 ai j X j + âi j

(
Y j + Ki j

)

Wn+1 = AWn + h
∑s

i=1 biA
[
B

(
A−1W̃i

)
,A−1W̃i

]
,
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for i, j = 1, . . . , s, which is equivalent to

A−1Xi = −h
(

Wn +∑s
j=1 ai jA−1X j

)
B

(A−1W̃i
)

A−1Yi = h B
(A−1W̃i

) (
Wn +∑s

j=1 âi jA−1Y j

)

A−1Ki j = h B
(A−1W̃i

) (∑s
j ′=1

(
ai j ′A−1X j ′ + â j j ′A−1Ki j ′

))

A−1W̃i = Wn +∑s
j=1 ai jA−1X j + âi j

(A−1Y j +A−1Ki j
)

Wn+1 = A (
Wn + h

∑s
i=1 bi

[
B

(A−1W̃i
)
,A−1W̃i

])
,

for i, j = 1, . . . , s. Relabeling Xi := A−1Xi , Yi = A−1Yi , Ki j := A−1Ki j , W̃i :=
A−1W̃i we get

Xi = −h
(

Wn +∑s
j=1 ai j X j

)
B

(
W̃i

)

Yi = h B
(
W̃i

) (
Wn +∑s

j=1 âi j Y j

)

Ki j = h B
(
W̃i

) (∑s
j ′=1

(
ai j ′ X j ′ + â j j ′Ki j ′

))

W̃i = Wn +∑s
j=1 ai j X j + âi j

(
Y j + Ki j

)

Wn+1 = A (
Wn + h

∑s
i=1 bi

[
B

(
W̃i

)
, W̃i

])
,

for i, j = 1, . . . , s which is exactly the left-hand side of (21). ��

5 Numerical Examples

In this section, we demonstrate the isospectral symplectic Runge–Kutta methods on
someHamiltonian isospectral flows often seen in the literature. As expected, we obtain
near conservation of the Hamiltonian (owing to the symplectic quality) and exact
conservation (up to round-off errors) of the Casimir functions (owing to the isospectral
quality).3

5.1 The Generalized Rigid Body

The core example among Hamiltonian isospectral systems is the generalized rigid
body. It is known that in any dimension n it forms a complete integrable system in

3 The numerical experiments in this section are implemented in an easy-to-use MATLAB code, available
at https://bitbucket.org/Milo_Viviani/iso-runge-kutta .
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Evolution of error in Hamiltonian

Evolution of error in Casimirs (eigenvalues)

Fig. 2 Evolution of errors for the generalized rigid body in so(10). The Casimir functions correspond to
the 10 eigenvalues (which occur in pairs). The Hamiltonian is given by (23). The data for the simulation are
given by: stepsize h=0.1; inertia tensor I = diag(1, . . . , 10); initial conditions (W0)i j = 1/10 if i < j ,
(W0)i j = −1/10 if i > j , (W0)i j = 0 if i = j

so(n), as proved by Manakov [16]. The Hamiltonian is given by

H(W ) = 1

2
Tr((I−1W )†W ), W ∈ so(n), (23)

where I : so(n) → so(n) is a symmetric positive definite inertia tensor. The equations
of motion are then

Ẇ = −[I−1W , W ]
W (0) = W0.

We discretize this system for n = 10 with the method in Theorem 4 and with the
Butcher tableau corresponding to the implicit midpoint method. Our implementation
uses Newton iterations for the nonlinear system. The inertia tensor is given by

(I−1W )i j = Wi j

i
, i, j = 1, . . . , 10

and we use the stepsize h = 0.1. The initial conditions are given by

(W0)i j = 1/10 for i < j and W †
0 = −W0

As shown in Fig. 2, the Hamiltonian is nearly conserved and the Casimir functions
are conserved up to the accuracy of the Newton iterations.

The Casimirs of the generalized rigid body only constitutes n first integrals, and
they are therefore not enough to obtain the integrability. The additional, non-Casimir
first integrals are not exactly preserved by ourmethods. However, from backward error
analysis combined with KAM theory (see, e.g., [9]), one obtains that the additional
integrals are nearly conserved (just as the Hamiltonian is nearly conserved).
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5.2 The (Periodic) Toda Lattice

Among Hamiltonian integrable systems, the Toda lattice is perhaps the best known
and most studied example. It represents a system of particles interacting pairwise with
exponential forces. The equations of motion are determined by the Hamiltonian

H(p, q) =
n∑

k=1

(
1

2
p2k + exp(qk − qk+1)

)
,

where (qi , pi ) are canonical coordinates of the n particles. Independently, Hénon
[10], Flaschka [8] and Manakov [16] proved that the Toda system is integrable when
qn = qn+1 (periodic boundary conditions). This is most easily seen by providing a
Lax pair formulation. Indeed, by the following change of variables

ak = −1

2
pk, bk = 1

2
exp

(
1

2
(qk − qk+1)

)
,

one obtains an equivalent isospectral flow

L̇ = [B(L), L], (24)

where

L =

⎡
⎢⎢⎢⎢⎢⎣

a1 b1 0 . . . bn

b1 a2 b2 . . . 0
0 b2 a3 . . . 0
...

...
...

. . .
...

bn 0 0 . . . an

⎤
⎥⎥⎥⎥⎥⎦

, B(L) =

⎡
⎢⎢⎢⎢⎢⎣

0 b1 0 . . . −bn

−b1 0 b2 . . . 0
0 −b2 0 . . . 0
...

...
...

. . .
...

bn 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

.

In these coordinates, the canonical Hamiltonian is simply H(L) = 2 Tr(L2).
So far, the mapping B(·) is defined only for matrices of the form L above. A natural

extension to any matrix W ∈ gl(n,C) is

B(W ) =

⎡
⎢⎢⎢⎢⎢⎣

0 W12 0 . . . −W1n

−W21 0 W23 . . . 0
0 −W32 0 . . . 0
...

...
...

. . .
...

Wn1 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

.

Next, in order to extend (24) to a Hamiltonian isospectral flow on gl(n,C) of the form
in (5), we notice that we can take as a new Hamiltonian the function

H̃(W ) = −1

2
Tr(W †B(W ))+ H(W ).
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1.2 10-14 Evolution of error in Casimirs (eigenvalues)

Fig. 3 Error is Casimir functions for the periodic Toda Lattice with n = 4. The data for the simulation are
given by: stepsize h = 0.1; initial conditions ai = bi = (−1)i for i = 1, . . . , 4

Flow (5) of this Hamiltonian then coincides with (24) for matrices of the form L .
Indeed, since B(W ) ∈ so(n) when W ∈ Sym(n,R), Tr(W †B(W )) = 0 for W ∈
Sym(n,R). Furthermore,∇ H̃(W )† = −B(W ), when extended to anymatrixW , since
the linearmapping B : gl(n,C) → gl(n,C) is symmetricwith respect to the Frobenius
inner product. Moreover, since the original Hamiltonian H(W ) is itself a Casimir
function its gradient does not affect the dynamics. We stress that the Hamiltonian
structure of the extended system is different from the original canonical Hamiltonian
structure in the q and p variables.

We discretize the system for n = 4 with the method in Theorem 4 and with the
Butcher tableau corresponding to the implicit midpoint method. We use stepsize h =
0.1 and initial conditions

ai = bi = (−1)i , i = 1, . . . , 4.

Since the H(L) is one of the Casimir functions of the flow, it is preserved up to the
iteration tolerance, as shown in Fig. 3.

We notice that in general our methods does not exactly preserve the zero entries of
L (although they are nearly preserved). This is because the normalizer of the subspace
of the symmetric matrices with the form of L is not J -quadratic for n > 3.

5.3 The Euler Equations on a Sphere

Let us briefly mention a beautiful approach for spatial discretization of the incom-
pressible Euler equations on a sphere, which leads to a finite dimensional Hamiltonian
isospectral flow. For a full account, we refer to the publication [24].4

On the 2-sphere S
2 the hydrodynamical Euler equations for an incompressible,

inviscid, and homogeneous fluid can be formulated in terms of vorticity of the velocity
vector. The formulation is

4 The Euler example is, in fact, the original motivation leading to the paper at hand.
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ω̇ = {�−1ω,ω}
ω(0) = ω0, (25)

where the vorticity function ω is a smooth function on S2 with zero mean, �−1 is the
inverse of the Laplace–Beltrami operator on the sphere (which is invertible because
the kernel consists only of the constant functions), and {·, ·} is the Poisson bracket
between functions. This system is an infinite dimensional Lie–Poisson system on the
dual of the algebra of divergence free vector field on S

2. The Casimir functions are
given by

C(ω) =
∫

S2
f (ω(x)) dx

where f : R→ R is any smooth function. Thus, there are infinitely many independent
first integrals. (Although not enough integrals for the system to be integrable.)

In geometric quantization theory (cf. [1]), the space of smooth functions is replaced
by a Hilbert space of linear operators, and the Poisson bracket {·, ·} is replaced by
the commutator [·, ·]. The aim is to obtain a construction such that, in some sense,
[·, ·] approximates {·, ·}. In his PhD thesis, Hoppe [11] gave an explicit quantization
of (C∞(S2), {·, ·}) in terms of the finite dimensional Lie algebras su(n,C), such
that [·, ·] → {·, ·} as n → ∞. This naturally leads to a spatial discretization of the
vorticity equation (25) by simply replacing {·, ·} by [·, ·] and thenworking out what the
corresponding discrete Laplacian�n should be. An explicit formula for�n was given
by Hoppe and Yau [12]. The resulting spatially discretized equations thus become

Ẇ = [�−1
n W , W ]

W (0) = W0, (26)

where W ∈ su(n). This is an isospectral Hamiltonian system with respect to the
Hamiltonian H(W ) = 1

2 Tr((�
−1
n W )†W ).

In our paper [24], we develop and further explore a fully discrete version of (26)
based on the isospectral methods in this paper. We thus obtain a discrete flow that
preserves all the underlying structure of the Euler equations: conservation of Casimirs
and the Lie–Poisson structure. In particular, conservation of Casimirs is essential for
numerical studies of the long-time behavior of (25) and of the mechanisms behind the
inverse energy cascade exclusive to 2D turbulence.

5.4 Point Vortices on a Sphere and the Heisenberg Spin Chain

As stated above, the symplectic isospectral Runge–Kuttamethods are readily extended
to product spaces. For example, we can deal with (su(2)∗)n , where n is the number
of vortices or spin particles in the point-vortices equation [25] or, respectively, the
Heisenberg spin chain [20].
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The Hamiltonian for point-vortex dynamics is

H(W1, W2, . . . , Wn) = − 1

4π

n∑
i, j=1
i< j


i
 j log

(
1− Tr(W †

i W j )

‖Wi‖2‖W j‖2
)

,

where W1, . . . , Wn thought of a vectors inR3 are the positions of the point vortices and

1, . . . , 
n the respective strengths. For the Heisenberg spin chain, the Hamiltonian
is

H(W1, W2, . . . , Wn) =
n∑

i=1
Tr(W †

i Wi+1),

where W1, . . . , Wn are the spins of the particles and Wn+1 = W1, see for example
[20].

For these systems, a new first integral arises, due to the SU (2) symmetry of the
Hamiltonians

H(GW1G−1, GW2G−1, . . . , GWnG−1) = H(W1, W2, . . . , Wn),

for any G ∈ SU (2). The corresponding first integrals are given by the (weighted) sum
of the vortices/spins

M(W1, W2, . . . , Wn) =
n∑

i=1

i Wi .

We use the midpoint-based numerical scheme of Theorem 4 for the point-vortex
Hamiltonian with n = 4 and stepsize h = 0.1. The initial vortex positions are

x1 = [1 0 0], x2 = [−1 0 0], x3 = [0 1 0], x4 = [0 − 1 0].

As before, the Casimirs are conserved and the Hamiltonian is nearly conserved. In
addition, the extra integral M is conserved up to machine precision, as can be seen in
Fig. 4.

5.5 The Bloch–Iserles Flow

Given N ∈ so(n), the Bloch–Iserles flow [2] on Sym(n,R) is

Ẇ = [W 2, N ].

It can be cast as an isospectral flow (1) on Sym(n,R) with B(W ) = N W + W N . Its
interest lies in its integrable structure, which is fundamentally different from that of
the Toda lattice and the generalized rigid body.
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Momentum variation

Fig. 4 Evolution of errors for four point vortices on a sphere. Upper: three components of the momentum
M . Lower: Hamiltonian. The data for the simulation are given by: stepsize h = 0.1; initial conditions
x1 = [1 0 0], x2 = [−1 0 0], x3 = [0 1 0], x4 = [0 − 1 0]

The Bloch–Iserles flow can be extended to a Hamiltonian isospectral flow on
gl(n,R)∗ 
 gl(n,R) such that Sym(n,R) is an invariant subspace, just as the Toda
flow in Sect. 5.2 above. The Hamiltonian for this is

H(W ) = Tr(W 2N ).

We give a numerical example with n = 3 and, again, the second-order midpoint-
based scheme of Theorem 1 with stepsize h = 0.1. The matrix N and the initial
conditions are

N = 1√
2

⎡
⎣

0 1 0
−1 0 1
0 −1 0

⎤
⎦ and W0 =

⎡
⎣
0.0163 0.3928 0.2415
0.3928 0.1501 0.3443
0.2415 0.3443 0.6603

⎤
⎦ .

The evolution of energy and the Casimirs (eigenvalues) are given in Fig. 5. The inte-
grable structure of the flow is revealed as quasi-periodicity in projections of the phase
diagram, as seen in Fig. 6.

5.6 The Toeplitz Inverse Eigenvalue Problem

In this section, we demonstrate that the methods introduced can be applied also to non-
Hamiltonian systems. To this end, consider Chu’s flow on symmetric real matrices,
which is of form (1) with

B(W ) =

⎡
⎢⎢⎢⎢⎢⎣

0 W1,1 − W2,2 W1,2 − W2,3 . . . W1,n−1 − W2,n
W2,2 − W1,1 0 W2,2 − W3,3 . . . W2,n−1 − W3,n
W3,2 − W2,1 W3,3 − W2,2 0 . . . W3,n−1 − W4,n

...
...

...
...

...

Wn,2 − Wn−1,1 Wn,3 − Wn−1,2 Wn,4 − Wn−1,3 . . . 0

⎤
⎥⎥⎥⎥⎥⎦
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10-17 Evolution of error in Hamiltonian

Evolution of error in Casimirs (eigenvalues)

Fig. 5 Casimir and Hamiltonian variation in time T = 100, for the Bloch–Iserles flow in Sym(3) and
time-step h = 0.1

Phase space portrait projected to the (W12,W13)-plane

Fig. 6 Projected phase space portrait for the Bloch–Iserles system. The resulting diagram reveals quasi-
periodic motion on embedded tori as expected for integrable systems

Notice that if W ∈ Sym(n,R) then B(W ) ∈ so(n).
The Toeplitz inverse eigenvalue problem reads as follows. Given a certain set of

eigenvalues, find a symmetric Toeplitz matrix with that prescribed spectra (recall that
a Toeplitz matrix is a matrix with constant elements on the diagonals). In [15], H.J.
Landau established that, for any given spectra, there exists a symmetric Toeplitzmatrix
with those eigenvalues. Toward a practical algorithm, Chu [5] instead proved that fixed
points of the isospectral flow with B(W ) as above are symmetric Toeplitz matrices,
provided the eigenvalues are distinct.

Chu’s flow is particularly interesting from a numerical point of view because there
exist periodic orbits. Thus, the flowdoes not always converge to a fixed point. However,
the periodic orbits are unstable and because of the floating point drift in numerical
methods Chu’s flow in practice always converge to a symmetric Toeplitz matrix when
the starting point has distinct eigenvalues [32].

A qualitatively better simulation of Chu’s flow, which preserves the periodic orbits,
can be obtained by restriction to centrosymmetric matrices. A matrix is said to be
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Evolution of components

Evolution of error in Casimirs (eigenvalues)

Fig. 7 Numerical simulation of Chu’s flow without forcing centrosymmetry of B(W )

centrosymmetric if it is invariant with respect to a rotation of the components of π

grade. In other words, a matrix A is centrosymmetric if

AE − E A = 0,

where

E =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦

.

The set of centrosymmetric matrices of dimension n is a Lie algebra which we
denote by Centro(n). In particular, we have that the symmetric Toeplitz matrices
are centrosymmetric and B(W ) is centrosymmetric when W is symmetric and cen-
trosymmetric [32]. Therefore, for the Toeplitz problem, Chu’s flow can be restricted to
the symmetric-centrosymmetric matrices. With this restriction, the periodic orbits are
numerically preserved, and therefore, the simulation of the flow is more realistic. In
fact, in order to avoid the drifting out from the periodic orbits, it is necessary to respect
the centrosymmetric symmetry of the original flow in the discrete approximation.

If S denotes the linear subspace of symmetric-centrosymmetric matrices, then by
Theorem 3 the isospectral symplectic Runge–Kutta methods descend to an isospectral
integrator on the symmetric-centrosymmetric matrices, provided that B(W ) is in the
normalizer of S, which is so(n) ∩ Centro(n).
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Evolution of components

Evolution of error in Casimirs (eigenvalues)

Fig. 8 Numerical simulation of Chu’s flow forcing centrosymmetry of B(W )
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Fig. 9 Eigenvalues (above) and components (below) for the Brockett flow (27) solved with the midpoint
IsoSyRK method, with time-step h = 0.1. The initial condition W0 is a randomly generated self-adjoint
matrix of dimension 3× 3 and N = diag(1, 2, 3)

We use the midpoint-based numerical scheme of Theorem 4 for Chu’s flow with
n = 4 and stepsize h = 0.1. The initial conditions, proposed in [32], are

W0 =

⎡
⎢⎢⎣
0.1336 0 0 0.5669

0 −0.1336 0.378 0
0 0.378 −0.1336 0

0.5669 0 0 0.1336

⎤
⎥⎥⎦

Figures 7 and 8 show the difference of the behavior of the flow with and without the
restriction to the centrosymmetricmatrices, confirming the same predictions presented
in [32].
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5.7 The Brockett Flow

Another example of a non-Hamiltonian isospectral flow is the Brockett flow, or double
bracket flow

Ẇ = [[N , W ], W ], (27)

where N andW aren×n self-adjoint complexmatrices. In [4],Brockett shows that for a
diagonal N with distinct entries and W0 a self-adjoint matrix with distinct eigenvalues,
W (t) converges exponentially fast to a diagonal matrix with the eigenvalues sorted
accordingly to the order of the entries of N . There are interesting connections between
the Brockett flow and information theory. Indeed, the Brockett flow can be viewed
as a gradient flow, with respect to the Fisher–Rao information metric, of a relative
entropy functional on the statistical manifold of multivariate Gaussian distributions
[23, Sec. 3.4.3].

We apply the isospectral midpoint method with h = 0.1. In Fig. 9, we plot the
eigenvalues and the components variation for a randomly generated self-adjoint initial
matrix W0 of dimension 3×3 and N = diag(1, 2, 3). Figure 9 displays the exponential
convergence to a similar diagonal matrix.
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