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Compactness of solutions to some geometric

fourth-order equations
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abstract. We prove compactness of solutions to some fourth order equations with exponential nonlin-
earities on four manifolds. The proof is based on a refined bubbling analysis, for which the main estimates
are given in integral form. Our result is used in a subsequent paper to find critical points (via minimax
arguments) of some geometric functional, which give rise to conformal metrics of constant Q-curvature.
As a byproduct of our method, we also obtain compactness of such metrics.
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1 Introduction

Consider a compact four-dimensional manifold (M, g) with Ricci tensor Ricg and scalar curvature Rg.
The Q-curvature and the Paneitz operator, introduced in [7], [41] and [42], are defined respectively by

(1) Qg = − 1

12

(
∆gRg −R2

g + 3|Ricg|2
)
;

(2) Pg(ϕ) = ∆2
gϕ+ div

(
2

3
Rgg − 2Ricg

)

dϕ,

where ϕ is any smooth function on M , see also the survey [19].
The Q-curvature and the Paneitz operator arise in several contexts in the study of four-manifolds

and of particular interest is their role, and their mutual relation, in conformal geometry. In fact, given a
metric g̃ = e2wg, the following equations hold

(3) Pg̃ = e−4wPg; Pgw + 2Qg = 2Qg̃e
4w.

A first connection to the topology of a manifold is a Gauss-Bonnet type formula. If Wg denotes the
Weyl’s tensor of M , then one has

∫

M

(

Qg +
|Wg|2
8

)

dVg = 4π2χ(M),

where dVg stands for the volume element in (M, g) and χ(M) is the Euler characteristic of M . In
particular, since |Wg|2 is a pointwise conformal invariant, it follows that

∫

M
QgdVg is a global conformal

invariant.
1E-mail address: malchiod@sissa.it
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To mention some geometric applications we recall three results proven by Gursky, [31], and by Chang,
Gursky and Yang, [13], [14] (see also [30]). If a manifold of positive Yamabe class satisfies

∫

M
QgdVg > 0,

then its first Betti number vanishes. Moreover there exists a conformal metric with positive Ricci tensor,
and hence M has finite fundamental group. Furthermore, under the additional quantitative assumption
∫

M
QgdVg > 1

8

∫

M
|Wg|2dVg , M bust be diffeomorphic to the four-sphere or to the projective space. In

particular the last result is a conformally invariant improvement of a theorem by Margerin, [39], which
assumed pointwise pinching conditions on the Ricci tensor in terms of Wg.

Finally, we also point out that the Paneitz operator and the Q-curvature (together with their higher-
dimensional analogues, see [5], [6], [27], [29]) appear in the study of Moser-Trudinger type inequalities,
log-determinant formulas and the compactification of locally conformally flat manifolds, see [4], [7], [8],
[15], [16], [17].

As for the uniformization theorem, one can ask whether every four-manifold (M, g) carries a conformal
metric g̃ for which the corresponding Q-curvature Qg̃ is a constant. Writing g̃ = e2wg, by (3) the problem
is equivalent to finding a solution of the equation

(4) Pgw + 2Qg = 2Qe4w,

where Q is a real constant. In view of the regularity results in [47], solutions of (4) can be found as
critical points of the following functional

(5) II(u) = 〈Pgu, u〉+ 4

∫

M

QgudVg − kP log

∫

M

e4udVg; u ∈ H2(M),

where we are using the notation

〈Pgu, v〉 =
∫

M

(

∆gu∆gv +
2

3
Rg∇gu · ∇gv − 2(Ricg∇gu,∇gv)

)

dVg; u, v ∈ H2(M),

and where

(6) kP =

∫

M

QgdVg .

Problem (4) has been solved in [17] for the case in which Pg is a positive operator and kP < 8π2 (8π2 is
the value of kP on the standard sphere). Under these assumptions by the Adams inequality, see (16), the
functional II is bounded from below and coercive, hence solutions can be found as global minima. The
result has also been extended in [9] to higher-dimensional manifolds (regarding higher-order operators
and curvatures) using a geometric flow. A first sufficient condition to ensure these hypotheses was given
by Gursky in [31]. He proved that if the Yamabe invariant is positive and if kP > 0, then Pg is positive
definite and moreover kP ≤ 8π2, with the equality holding if and only if M is conformally equivalent to
S4. Other more general sufficient conditions are given in [32]. The solvability of (4) also turns out to be
useful in the study of some interesting class of fully non-linear equations, as it has been shown in [14],
with the remarkable geometric consequences mentioned above.

We are interested here in the more general case when Pg has no kernel and kP 6= 8kπ2 for k = 1, 2, . . . .
These conditions are generic, and in particular include manifolds with negative curvature or negative
Yamabe class, for which kP can be bigger than 8π2.

In the case under investigation the functional II can be unbounded from below, and hence it is
necessary to find extrema which are possibly saddle points. As we shall explain below, in order to find
these critical points it is useful to study compactness of solutions to perturbations of (4).

Therefore we consider the following sequence of problems

(7) Pgul + 2Ql = 2kle
4ul in M,

where (kl)l are constants and where

(8) Ql → Q0 in C0(M).
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Without loss of generality, we can assume that the sequence (ul)l satisfies the volume normalization

(9)

∫

M

e4uldVg = 1 for all l,

which implies that we must choose kl =
∫

M
QldVg .

Our main result is the following.

Theorem 1.1 Suppose ker Pg = {constants} and that (ul)l is a sequence of solutions of (7), (9), with
(Ql)l satisfying (8). Assume also that

(10) k0 :=

∫

M

Q0dVg 6= 8kπ2 for k = 1, 2, . . . .

Then (ul)l is bounded in Cα(M) for any α ∈ (0, 1).

The main application of Theorem 1.1 concerns the case Q0 = Qg. Indeed, if a sequence of solutions to
(7)-(9) can be produced, its weak limit will be a critical point of the functional II and a solution of (4).
This is indeed verified in [26] under the assumptions of Theorem 1.1 (with Q0 = Qg). As a consequence
one finds conformal metrics with constant Q-curvature for a large class of four manifolds. We have indeed
the following result, announced in the preliminary note [25] with some sketch of the ideas.

Theorem 1.2 ([26]) Suppose ker Pg = {constants}, and assume that kP 6= 8kπ2 for k = 1, 2, . . . . Then
equation (4) has a solution.

The proof requires a minimax scheme which becomes more and more involved as k increases and when
Pg possesses negative eigenvalues. This scheme extends that in [24], which in our case would correspond
to Pg ≥ 0 and k0 ∈ (8π2, 16π2).

The way we use Theorem 1.1 in [26] is the following. First, for ρ in a neighborhood of 1, we introduce
the modified functional

IIρ(u) = 〈Pgu, u〉+ 4ρ

∫

M

QgudVg − kPρ log

∫

M

e4udVg; u ∈ H2(M),

and, using the minimax scheme, we prove existence of Palais-Smale sequences at some level cρ. It turns
out that the function ρ 7→ cρ is a.e. differentiable and, following an idea in [45] (used also in [24], [33],
[46]), we prove existence of critical points of IIρ for those values of ρ at which cρ is differentiable. Then
we are led to consider (7) for Ql = ρlQg, where (ρl)l is a suitable sequence.

Theorem 1.1 applies also to any sequence of smooth solutions of (4). Therefore, as another application,
we have the following result, which extends a compactness theorem in [17].

Corollary 1.3 Suppose ker Pg = {constants} and that kp 6= 8kπ2 for k = 1, 2, . . . . Suppose (ul)l is a
sequence of solutions of (4) satisfying (9). Then, for any m ∈ N, (ul)l is bounded in Cm(M).

Corollary 1.3 has a counterpart in [35] (see also [21]), where compactness of solutions is proved for a
mean field equation on compact surfaces.

The case when kP is an integer multiple of 8π2 is more delicate, and should require an asymptotic analysis
as in [3], [20], [21], [35] (see also the references therein). An interesting particular case of this situation
is the standard sphere. Being an homogeneous space, the Q-curvature is already constant and indeed
all the solutions of (4) on S4, which have been classified in [18], arise from conformal factors of Möbius
transformations. Henceforth, a natural problem to consider is to prescribe the Q-curvature as a given
function f on S4. Some results in this direction are given in [10], [38] and [48]. Typically, the methods
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are based on blow-up or asymptotic analysis combined with Morse theory, in order to deal with a possible
loss of compactness.

The Paneitz operator and the Q-curvature can be considered as natural extensions to four-manifolds of,
respectively, the Laplace Beltrami operator ∆g and the Gauss curvature Kg on two-dimensional surfaces.
In fact, similarly ro Pg and Qg, these transform according to the equations

(11) ∆g̃ = e−2w∆g; −∆gw +Kg = Kg̃e
2w,

where, again, g̃ = e2wg. Hence, in the case of a flat domain Ω ⊆ R
2, one is led to study equations of the

form

(12) −∆vl = Kl(x)e
2vl in Ω.

In [12] the authors proved, among other things, that if (Kl)l are non-negative, uniformly bounded
in L∞(Ω) and if

∫

Ω e2ul ≤ C, then either (vl)l stays bounded in L∞
loc(Ω), or vl → −∞ on the compact

subsets of Ω, or Kle
2vl concentrates at a finite number of points in Ω, namely Kle

2vl ⇀
∑j

i=1 αiδxi
(δxi

stands for the Dirac mass at xi). In the latter case, they also proved that each αi is greater or equal
than 4π. This result was specialized in [36] where, assuming that Kl → K0 in C0(Ω) and using the
sup+inf inequalities in [11], [44], the authors proved that each αi is indeed an integer multiple of 4π.
Chen showed then in [23] that the case of a multiple bigger than 1 may indeed occur. On the other
hand, if Ω is replaced by a compact surface (subtracting a constant term to the right-hand side, to get
solvability of the equation), then each αi is precisely 4π, see [35]. The same result is obtained in [40] for
approximate solutions in domains, but with an extra assumption on the L∞ norm of the error terms.

Our argument for the proof of Theorem 1.1, which we outline below, relies on proving a quantization
result for the volume of blowing-up solutions as in [36]. The main idea is to show that at every blow-up

point the volume is a multiple of 8π2

k0
. Then, proving also that there is no residual volume amount, we

reach a contradiction with (9) since we are assuming that k0 is not an integer multiple of 8π2. However,
instead of using pointwise estimates on the solutions, as in [12] or [36], our results are mainly given in
integral form, see Remark 1.4.

Except for the last subsection, we work under the assumption

(13) k0 ∈ (8kπ2, 8(k + 1)π2), k ∈ N,

since this case contains most of the difficulties.
The plan of the paper (and the strategy of the proof) is the following. In Section 2 we collect some

preliminary facts including a modified version of the Adams inequality, to deal with the presence of
negative eigenvalues, and some Lp estimates on the first, second and third derivatives of the solutions.

In Section 3 we derive a compactness criterion based on the amount of concentration of the nonlinear
term, see Proposition 3.1, and then we study the asymptotic profile of ul near the concentration points.

In particular we prove that the minimal volume accumulation is 8π2

k0
, see (39).

In Section 4, which is the core of our analysis, we introduce the notion of simple blow-up (adopting the
terminology used by R.Schoen) and we show in Proposition 4.2 that at such blow-ups the accumulation is

exactly 8π2

k0
. In order to prove this we use some integral form of the Harnack inequality, see in particular

Subsection 4.1, combined with a careful ODE analysis for the function r 7→ ur,l. Here ur,l denotes,
naively, the average of ul on an annulus Ar of radii r and 2r centered near a concentration point.

Finally, in Section 5 we show how a general blow-up situation can be essentially reduced to the case
of finitely-many simple blow-ups. In particular, we prove that at any general blow-up point the amount

of concentration is an integer multiple of 8π2

k0
. Recalling the normalization (9) and that k0 6= 8kπ2 for

any integer k, we reach then a contradiction to the fact that (ul)l is unbounded in some Cα norm. In
Subsection 5.2 we consider the case k0 < 8π2, which is easier and requires only the analysis of Section 3.

In our proof we exploit crucially the fact that we are working on a compact manifold, since we often
make use of the Green’s representation formula. We also point out that our assumptions on M are generic
and do not require the metric to be locally conformally flat or Einstein.
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Remark 1.4 It is an open problem to understand whether the functional II itself (see (5)) possesses
bounded Palais-Smale sequences, or equivalently if it is possible to find solutions of (4) without introducing
the perturbed functional IIρ.

The reason why we kept most of our estimates in integral form is that many of them could be applied
to functions of class H2 only (not necessarily smooth or bounded) and we hope that some could be useful
to understand the question. At the moment, in particular, the counterparts of Proposition 4.2 is missing
for Palais-Smale sequences and we need the full rigidity of equation (7). For related topics see [40].
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2 Notation and preliminaries

In this brief section we collect some useful preliminary facts, and in particular we state a version of the
Moser-Trudinger inequality involving the Panetiz operator. In the following Br(p) stands for the metric
ball of radius r and center p. We also denote by |x − y| the distance of two points x, y ∈ M . H2(M) is
the Sobolev space of functions on M which are in L2(M) together with their first and second derivatives.
Large positive constants are always denoted by C, and the value of C is allowed to very from formula to
formula and also within the same line.

As already mentioned, throughout most of the paper we will work under the assumption (13). When the
operator Pg is positive definite, by the Poincaré inequality the H2 norm is equivalent to the following one

(14) ‖u‖2 = 〈Pgu, u〉+
∫

M

u2dVg; u ∈ H2(M).

Being M four-dimensional, H2(M) →֒ Lp(M) for all p > 1. We have indeed the following limit-case
embedding, proved in [1] and [8] for the operator ∆2 and extended in [17] for the Paneitz operator.

Proposition 2.1 If Pg ≥ 0, there exists a positive constant C depending on M such that

(15)

∫

M

e
32π2(u−u)2

〈Pgu,u〉 dVg ≤ C; for every u ∈ H2(M),

where u = 1
V ol(M)

∫

M
udVg denotes the average of u on M . The last formula implies

(16) log

∫

M

e4(u−u)dVg ≤ C +
1

8π2
〈Pgu, u〉; for every u ∈ H2(M).

Here we are interested in the case in which Pg might possess some negative eigenvalues. We denote by
V ⊆ H2(M) the direct sum of the eigenspaces corresponding to negative eigenvalues of Pg. Of course the
dimension of V is finite, say k, and since Pg has no kernel and is self-adjoint we can find an orthonormal
basis of eigenfunctions v̂1, . . . , v̂k of V with the properties

(17) Pgv̂i = λiv̂i, i = 1, . . . , k; λ1 ≤ λ2 ≤ · · · ≤ λk < 0 < λk+1 ≤ . . . ,

where the λi’s are the eigenvalues of Pg. Having introduced the subspace V , we need a modified version
of the Adams inequality.
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Lemma 2.2 Suppose Pg possesses some negative eigenvalues, that kerPg = {constants}, and let V

denote the direct sum of the negative eigenspaces of Pg. Then there exists a constant C such that

(18)

∫

M

e
32π2(u−u)2

〈Pgu,u〉 dVg ≤ C; for every function u ∈ H2(M) with û = 0.

Here û denotes the component of u in V . As a consequence one has

(19) log

∫

M

e4(u−u)dVg ≤ C +
1

8π2
〈Pgu, u〉, ; for every function u ∈ H2(M) with û = 0.

Proof. The proof is a variant of the arguments of [8] and [17]. If v̂1, . . . , v̂k and λ1, . . . , λk are as in
(17), we introduce the following positive-definite pseudo-differential operator P+

g

P+
g u = Pgu− 2

k∑

i=1

λi

(∫

M

uv̂idVg

)

v̂i.

Basically, we are reversing the sign of the negative eigenvalues of Pg. The operator P+
g admits the

following Green’s function

G+(x, y) = G(x, y) − 2
k∑

i=1

λiv̂i(x)v̂i(y),

where G(x, y) corresponds to Pg. Then the arguments of [17] (see also [1], [8]), which are based on
representations for pseudo-differential operators, can be adapted to the case of P+

g , yielding

∫

M

e

32π2(u−u)2

〈P+
g u,u〉 dVg ≤ C for every u ∈ H2(M).

Applying the last formula to functions for which û = 0, we obtain (18). Finally, from the elementary
inequality 4ab ≤ 32π2a2 + 1

8π2 b
2, applied with a = (u− u) and b = 〈Pgu, u〉, we also obtain (19).

Theorem 1.1 is proved by contradiction. We claim that unboundedness in some Cα norm is equivalent
(under the assumption (13), which implies kl > 0 for l large) to the following condition

(20) ‖ul − ul‖ → +∞ as l → +∞.

In order to prove this we first notice that, by (9) and the Jensen inequality, ul is uniformly bounded from
above. Assuming that ‖ul − ul‖ is uniformly bounded (which implies, in the above notation, that also
‖ul − ul − ûl‖ is uniformly bounded), then by (19) the right-hand side of (7) is also uniformly bounded
in Lp(M) for every p > 1. By elliptic regularity, then (ul)l would be uniformly bounded in W 4,p(M),
and hence in Cα(M) for any α ∈ (0, 1) by the Sobolev embeddings.

Hence from now on we assume that there exists a sequence (ul)l satisfying (7)-(9) and (20).

We prove now a preliminary integrability result on the first, second and third derivatives of ul.

Lemma 2.3 Let (ul)l be a sequence of solutions of (7)-(9), with (Ql)l satisfying (8), and let p ≥ 1.
Then there is a constant C depending only on p, M and k0 such that, for r sufficiently small and for any
x ∈ M there holds

∫

Br(x)

|∇3ul|pdVg ≤ Cr4−3p;

∫

Br(x)

|∇2ul|pdVg ≤ Cr4−2p;

∫

Br(x)

|∇ul|pdVg ≤ Cr4−p,

where, respectively, p < 4
3 , p < 2 and p < 4.
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Proof. We write
Pgul = fl,

where

(21) fl = 2kle
4ul − 2Ql.

We have the following representation formula

(22) ul(x) = ul +

∫

M

G(x, y)fl(y)dVg(y), for a.e. x ∈ M,

where, by the results in [17], G : M ×M \ diag is symmetric and satisfies

(23)

∣
∣
∣
∣
G(x, y)− 1

8π2
log

1

|x− y|

∣
∣
∣
∣
≤ C, x, y ∈ M,x 6= y,

while for its derivatives there holds

(24) |∇G(x, y)| ≤ C
1

|x− y| ; |∇2G(x, y)| ≤ C
1

|x− y|2 ; |∇3G(x, y)| ≤ C
1

|x− y|3 .

The last two estimates in (24) are not shown in [17] but they can be derived with the same approach, by
an expansion of G at higher order using the parametrix, see also [2]. Similarly (this formula will be used
later in the paper), one also finds that

(25) ∇xG(x, y) =
1

8π2
∇x log

1

|x− y| +O(1).

Recalling the definition of fl in (21), we obtain

|∇3ul|(x) ≤ C

∫

M

1

|x− y|3 |fl(y)|dVg(y), for a.e. x ∈ M.

Then, from the Jensen’s inequality it follows that

|∇3ul|p(x) ≤ C

∫

M

(‖fl‖L1(M)

|x− y|3
)p |fl(y)|

‖fl‖L1(M)
dVg(y) for a.e. x ∈ M.

The Fubini’s Theorem implies
∫

Bx(x)

|∇3ul|p(x)dVg(x) ≤ C sup
y∈M

∫

Bx(x)

1

|x− y|3p dVg(x) ≤ C

∫

Bx(x)

1

|x− x|3p dVg(x).

The last integral is finite provided 3p < 4, as in our assumptions, and can be estimated using polar
coordinates, giving ∫

Bx(x)

|∇3ul|p(x)dVg(x) ≤ C(p,M)r4−3p.

This concludes the proof of the first inequality in the statement of the lemma. The remaining two follow
similarly.

3 The bubbling phenomenon

In this section we study the local behavior of unbounded sequences of solutions at a concentration
point. In subsection 3.1 we give compactness criteria when the amount of concentration is below a
certain threshold. Then, in Subsection 3.2, we reduce ourselves to the preceding situation using a scaling
argument. As a byproduct we describe the asymptotic profile of ul, proving that it has the form of a
standard bubble, and we show that the amount of volume concentration at any blow-up point is greater

or equal than 8π2

k0
.
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3.1 Concentration-compactness

In this subsection we give a concentration-compactness criterion for solutions of the equation Pgv = h on
M . In the case of the sphere a similar result has been shown in [9], and our proof basically goes along
the same line. However we prefer to write the details, since some of them will be needed in the following.

Proposition 3.1 Let (hl)l ⊆ L1(M) be a sequence of functions satisfying
∫

M
|hl|dVg ≤ C for every l.

Let vl be solutions of Pgvl = hl on M . Then, up to a subsequence, either for every l

∫

M

eα(vl−vl)dVg ≤ C for some C > 0 and some α > 4,

or there exists points x1, . . . , xL ∈ M such that, for any r > 0 and any i ∈ {1, . . . , L} there holds

(26) lim inf
l→+∞

∫

Br(xi)

|hl|dVg ≥ 8π2.

Proof. Assume the second alternative does not occur, namely

(27) for every x ∈ M there exists rx > 0 such that

∫

Brx (x)

|hl|dVg ≤ 8π2 − δx,

for some δx > 0 and for l sufficiently large. We cover M with j balls Bi := B rxi
2
(xi), i = 1, . . . , j. Using

(22) and setting Brxi
(xi) = B̃i, for a.e. x ∈ Bi we can write

(28) vl(x) − vl =

∫

B̃i

hl(y)G(x, y)dVg(y) +

∫

M\B̃i

hl(y)G(x, y)dVg(y).

Hence if α > 0, for a.e. x ∈ Bi we have

(29) exp [α(vl(x)− vl)] = exp

[∫

B̃i

αG(x, y)hl(y)dVg(y)

]

exp

[
∫

M\B̃i

αG(x, y)hl(y)dVg(y)

]

.

Since G is smooth outside the diagonal, and since
∫

M
|hl|dVg is uniformly bounded, there exists a positive

constant C (independent of l) such that

exp

[
∫

M\B̃i

αG(x, y)hl(y)dVg(y)

]

≤ C, for any x ∈ Bi.

Then by (29) we have

(30)

∫

Bi

exp [α(vl(x)− vl)] dVg(x) ≤ C

∫

Bi

exp

[∫

M

α|G(x, y)||hl(y)|χB̃i
dVg(y)

]

dVg(x).

Now, as in [12], we can use the Jensen’s inequality to get

exp

[∫

M

α|G(x, y)||hl(y)|χB̃i
dVg(y)

]

≤
∫

M

exp
[
α‖hlχB̃i

‖L1(M)|G(x, y)|
] |hlχB̃i

|(y)
‖hlχB̃i

‖L1(M)
dVg(y),

and hence, by the Fubini Theorem and (30)
∫

Bi

exp [α(vl(x) − vl)] dVg(x) ≤ C sup
y∈M

∫

M

exp
[
α‖hlχB̃i

‖L1(M)|G(x, y)|
]
dVg(x).

By (23), there holds

∫

M

exp
[
α‖hlχB̃i

‖L1(M)|G(x, y)|
]
dVg(x) ≤ C

∫

M

(
1

|x− y|

)
α‖hlχB̃i

‖
L1(M)

8π2

dVg(x).

8



The last integral is finite if

(31)
α‖hlχB̃i

‖L1(M)

8π2
< 4 ⇔ α

∫

B̃i

|hl|dVg < 32π2.

By (27), this is satisfied for some α > 4 provided we take l is sufficiently large. We have shown that
∫

Bi
eα(vl−vl)dVg < +∞ for every i = 1, . . . , L. Since M is covered finitely many Bi’s, the conclusion

follows.

Remark 3.2 Using the same proof, it is possible to extend Proposition 3.1 to the case in which also the
metric on M depends on l, and converges to some smooth g in Cm(M) for any integer m. We have to
use this variant in the next subsection.

3.2 Asymptotic profile

We consider now the alternative in Proposition 3.1 for which compactness does not hold, applied to the

case hl = 2kle
4ul − Ql. We assume that there exist ρ ∈

(

0, π
2

k0

)

, radii (rl)l, (r̂l)l and points (xl)l ⊆ M

with the following properties

(32) r̂l → 0;
rl

r̂l
→ 0;

∫

Brl
(xl)

e4uldVg = ρ;

∫

Brl
(y)

e4uldVg <
π2

k0
for every y ∈ Br̂l(xl).

Remark 3.3 If the second alternative in Proposition 3.1 holds, an example of the situation described in
(32) is the following. Choose rl, xl satisfying

(33)

∫

Brl
(xl)

e4uldVg = sup
x∈M

∫

Brl
(x)

e4uldVg = ρ.

Then rl → 0 as l → +∞, and we can take r̂l = r
1
2

l .

Given a small δ > 0, we consider the exponential maps

expl : B
R

4

δ → M ; expl(0) = xl,

where BR
4

δ =
{
x ∈ R

4 : |x| < δ
}
. We also define the metric g̃l on BR

4

δ by g̃l := (expl)
∗g, and the

functions ũl : B
R

4

δ → R by
ũl = ul ◦ expl .

Now in R
4 we consider the dilation Tl : x 7→ rlx, and we define another sequence

(34) ûl(x) = ũl(Tlx) + log rl, x ∈ BR
4

δ
rl

.

Using a change of variables, one easily verifies that the function ũl solves the equation

Pg̃l ũl(x) + 2Ql(x) = 2kle
4ũl(x); x ∈ BR

4

δ .

Hence, setting ĝl = r−2
l T ∗

l g̃l and using the conformal properties of the Paneitz operator we obtain that
ûl satisfies

(35) Pĝl ûl(x) + 2r4l Ql(Tlx) = 2kle
4ûl(x); x ∈ BR

4

δ
rl

.

Note that the metrics ĝl converge in Cm
loc(R

4) to the flat metric (dx)2 for any integer m. Also, since (Ql)l
are uniformly bounded functions on M , one also finds

r4l Qg̃l(Tl·) → 0 in C0
loc(R

4).
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By (32), using a change of variables we obtain

(36) ρ =

∫

Brl
(xl)

e4uldVg =

∫

1
rl

(expl)
−1Brl

(xl)

e4ûldVĝl ,

where ol(1) → 0 as l → +∞. Note also that the sets 1
rl
(expl)

−1Brl(xl) ⊆ R
4 approach the unit ball BR

4

1

as l → +∞. Moreover, by the last inequality in (32) and by our choice of ρ, it is easy to derive that

(37)

∫

BR4
1
2

(y)

e4ûldVĝl <
π2

k0
for every y ∈ BR

4

r̂l
2rl

.

Regarding the functions ûl, we have the following convergence result.

Proposition 3.4 Suppose ρ ∈
(

0, π
2

k0

)

, (rl)l, (r̃l)l, (xl)l and (ul)l satisfy (32), and let (ûl)l be defined by

(34). Then there exists λ > 0, x0 ∈ R
4 and α ∈ (0, 1) such that

ûl → û∞ in Cα
loc(R

4) and in H2
loc(R

4)

for some α ∈ (0, 1), where the function û∞ is given by

(38) û∞(x) = log
2λ

1 + λ2|x− x0|2
− 1

4
log

(
1

3
k0

)

; x ∈ R
4.

Moreover, if bl → +∞ sufficiently slowly, one has

(39)

∫

Bblrl
(xl)

e4uldVg → 8π2

k0
as l → +∞.

Proof. Given R > 0, we define a smooth cut-off function ΨR satisfying

{
ΨR(x) = 1, for |x| ≤ R

2 ;
ΨR(x) = 0, for |x| ≥ R.

We also set

al =
1

|BR4

R |

∫

BR4

R

ûldVĝl ; vl = ΨRûl + (1−ΨR)al = al +ΨR(ûl − al);

v̂l = vl − al.

We notice that the functions vl coincide with al outside BR
4

R and that v̂l is identically zero outside BR
4

R .
By Lemma 2.3 and some scaling argument one finds

(40)

∫

BR4
2R

(
|∇3ûl|p + |∇2ûl|p + |∇ûl|p

)
dVĝl ≤ CR; l ∈ N, p ∈

(

1,
4

3

)

,

and hence by the Poincaré inequality (recall that the v̂l’s have a uniform compact support) it follows that

(41)

∫

BR4
R

|v̂l|pdVĝl ≤ CR; l ∈ N, p ∈
(

1,
4

3

)

.

By (35) there holds

Pĝl v̂l = (∆ĝl)
2[ΨR(ûl − al)] + Ll[ΨR(ûl − al)] = ΨRPĝl ûl + L̃l(ûl − al)

= 2klΨRe
4ûl + f̂l,(42)
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where
f̂l = L̃l(ûl − al)− 2r4l Ql(Tl·).

Here (Ll)l are linear operators which contain derivatives of order 1 and 2 with uniformly bounded and
smooth coefficients. Also, (L̃l)l are linear operators which contain derivatives of order 0, 1, 2 and 3 with
uniformly bounded and smooth coefficients. As a consequence, by (40) and (41) one has

(43)

∫

BR4

2R

|f̂l|pdVĝl ≤ CR; l ∈ N, p ∈
(

1,
4

3

)

.

Hence using (37) and Remark 3.2 one finds

(44)

∫

BR4

R

e4qv̂ldVĝl ≤ C for some q > 1

and for some fixed constant C. Remark 3.2 applies indeed to the case of a compact manifold while in
the present situation we are working in R

4 (endowed with the metric ĝl). But since all the functions v̂l
vanish identically outside BR

4

R , we can embed a fixed neighborhood of (BR
4

2R, ĝl) into a compact manifold,

a torus for example, such that its metric (coinciding with ĝl on BR
4

2R) converges to the flat one.
On the other hand, from (37) we deduce

al =
1

|BR4

R |

∫

BR4

R

ûldVĝl ≤
1

4|BR4

R |

∫

BR4

R

e4ûldVĝl ≤ C,

and from (36), since vl = ûl in BR
4

R

C−1 ≤
∫

BR4
R

e4vldVĝl ≤ e4al

∫

BR4
R

e4v̂ldVĝl ≤ Ce4al .

This implies al ≥ −C, and hence we find
|al| ≤ C.

As a consequence of this estimate and (44) we get the following uniform improved integrability for ûl

(recall the definition of vl and v̂l)

∫

BR4
R

e4qûldVĝl ≤ C, for some q > 1.

This estimate, joint with (40), (42), (43) and standard elliptic regularity results, yields that ûl is bounded

in W 4,q(BR
4

R
2

). Hence, by the arbitrarity of R, (ûl)l converge strongly in Cα
loc(R

4) for some α ∈ (0, 1) and

strongly in H2
loc(R

4) to a function û∞ ∈ Cα
loc(R

4) ∪H2
loc(R

4).
Now we prove that û∞ has the form in (38). First of all, we test equation (35) on a smooth function

ϕ with compact support. Integrating by parts we obtain

〈Pĝl ûl, ϕ〉+ 2r4l

∫

R4

Ql(Tl·)ϕdVĝl = 2kl

∫

R4

e4ûlϕdVĝl .

As l tends to infinity we get

〈PR4 û∞, ϕ〉 = 2k0

∫

R4

e4û∞ϕdVR4 + ol(1).

Hence the limit function û∞ satisfies

(45) ∆2
R4 û∞ = 2k0e

4û∞ in R
4,
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and, by semicontinuity

(46)

∫

R4

e4û∞dVR4 ≤ 1,

since by (9) and some scaling there holds
∫

BR4

δ
rl

e4ûldVĝl ≤ 1.

The solutions of (45)-(46), with k0 > 0, have been classified in [37], and one of the following two
possibilities occur

(a) û∞ is of the form (38), or

(b) ∆R4 û∞ has the following asymptotic behavior

(47) −∆R4 û∞(x) → a > 0 for |x| → +∞.

Following [43], we show that the second alternative does not happen. In fact, assuming (b), for R large
we have

(48) lim
l→+∞

∫

BR4
R

(−∆ĝl ûl)dVĝl =

∫

BR4
R

(−∆R4 û∞)dVR4 ∼ ω3

4
aR4,

where ω3 = |S3| = 2π2. Scaling back to M (recall that the dilation factor is rl), we obtain

(49) lim
l→+∞

∫

BRrl
(xl)

(−∆ul)dVg ∼ CaR4r2l ,

for some C > 0. On the other hand, by Lemma 2.3 we get

(50)

∫

BRrl
(xl)

(−∆ul)dVg ≤ Ĉ0r
2
l R

2.

Taking R sufficiently large, from (49) and (50) we reach a contradiction.
Hence the alternative (a) holds and û∞ arises as a conformal factor of a stereographic projection of

S4 onto R
4, which must satisfy

(51)

∫

R4

e4û∞dVR4 =
8π2

k0
.

This concludes the proof.

4 Simple blow-ups

In this section we consider an unbounded sequence of solutions (ul)l and we examine a particular class of
blow-up points, which we call simple, in analogy with a definition introduced by R.Schoen. In Proposition
4.2 below we give some quantitative estimate on the concentration at simple blow-up points. Then in the
next section we show that every general blow-up phenomenon can be essentially reduced to the study of
finitely many simple blow-ups. In the following i(M) denotes the injectivity radius of M .

Definition 4.1 If (ul)l satisfies (7) and (9), we say that the three sequences (xl)l ⊆ M , rl → 0, (sl)l ⊆
R+, |sl| ≤ i(M) are a simple blow-up for (ul)l if the following properties hold

(52)
sl

rl
→ +∞; ∃Rl → +∞ s.t.

∥
∥
∥
∥
ûl → log

2

1 + | · |2 − 1

4
log

(
1

3
k0

)∥
∥
∥
∥
H4(BR4

Rl
)∩Cα(BR4

Rl
)

→ 0;

(53) ∀ρ > 0∃Cρ > 0 s.t. if

∫

Bs(y)

e4uldVg ≥ ρ with Bs(y) ⊆ Bsl(xl) \BRlrl(x), then s ≥ C−1
ρ |y − xl|,

where ûl is defined in (34).
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The main result of this section is the following proposition.

Proposition 4.2 Suppose (xl)l, (rl)l, (sl)l are a simple blow-up for (ul)l. Then there exists a fixed
C > 0 such that

(54)

∫

B
C−1sl

(xl)

e4uldVg =
8π2

k0
+ ol(1),

where ol(1) → 0 as l → +∞.

Remark 4.3 (a) We notice that, if ûl satisfies the assertion in Proposition 3.4, it is always possible to
modify (xl)l and (rl)l in order to get x0 = 0 and λ = 1.

(b) Proposition 4.2 is basically an improvement of formula (53) to a sequence of sets with larger size.

The proof of Proposition 4.2 is based on the analysis of the next two subsections. In the first we prove
some Harnack inequality in integral form while in the second, defining

(55) Ar,l = {x ∈ M : r < |x− xl| < 2r} ,

we study the average of ul on Ar,l as a function of r.

4.1 Integral Harnack-type inequalities

In this subsection we prove some integral Harnack-type inequalities for the functions (ul)l near simple
blow-ups. Although it is maybe possible to get pointwise estimates on the solutions, for our purposes
it is sufficient to get integral volume estimates. We need first a preliminary result involving the average

of the Green’s function G on annuli. Given ρ ∈
(

0, π2

k0

)

, let Cρ be the corresponding constant in (53)

(which we can suppose bigger than 1), and we define the following sets

(56) A′
r,l =

{

x ∈ M :
5

4
r < |x− xl| <

7

4
r

}

⊆ Ar,l; r ∈ (alrl, sl) ;

(57) Br(x) = B r
16Cρ

(x) ⊆ A′
r,l; B̃r(x) = B r

8Cρ
(x) ⊆ A′

r,l, x ∈ A′
r,l.

Lemma 4.4 Suppose (xl)l ⊆ M , (sl)l ⊆ R+, |sl| ≤ i(M), and let Ar,l, A
′
r,l, B̃r(x) be defined respectively

in (55), (56) and (57). Then there exists a positive constant C = C(Cρ), independent of r and l such
that, setting

fr,l(y) =
1

|Ar,l|

∫

Ar,l

G(z, y)dVg(z),

there holds

(58)

{ ∣
∣fr,l(y)− 1

8π2 log
1
r

∣
∣ ≤ C for every x ∈ A′

r,l, y ∈ B̃r(x),

|fr,l(y)−G(x, y)| ≤ C for every x ∈ A′
r,l, y ∈ M \ B̃r(x);

r ≤ i(M).

Proof. We first notice that the following inequality holds

(59)

∣
∣
∣
∣
fr(y)− log

1

r

∣
∣
∣
∣
≤ C; |y| ≤ 4r,
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where

Ar = {x ∈ R
4 : r < |x| < 2r}; f r(y) =

1

|Ar |R4

∫

Ar

log
1

|z − y|R4

dVR4 .

Here |Ar|R4 stands for the Lebesgue measure of Ar and |z − y|R4 denotes the Euclidean distance.

The inequality is indeed trivial for r = 1 since f1(y) is bounded on BR
4

4 , while for a general r it is
sufficient to use a scaling argument. We use (23), the exponential map and standard geometric estimates
on M (see (69) below for the volume element) to write

8π2fr,l(y) =
1

|Ar,l|

∫

Ar,l

log
1

|y − z|dVg(z) +O(1)

= (1 +O(r2))
1

|Ar|R4

∫

Ar

log
1

|y − z|R4

(1 +O(r2))dVR4 +O(1)

= (1 +O(r2))f r(y) +O(1); y ∈ B4r(xl).

Jointly with (59), this proves the first estimate in (58).
The second one is trivial for y ∈ B4r(xl) \ B̃r(x), by the preceding argument. For y ∈ M \ B4r(xl),

we notice that

C−1 ≤ |z − y|
|x− y| ≤ C for z ∈ Ar,l, x ∈ A′

r,l,

and we use again (23). This concludes the proof.

Next, we prove some inequality involving the integral of the function e4ul and the average of ul on small
annuli. Recall the definitions of Ar,l and A′

r,l in (55) and (56), and those of Br(x), B̃r(x) in (57).

Lemma 4.5 Suppose that (xl)l ⊆ M , rl → 0, (sl)l ⊆ R+, |sl| ≤ i(M) are a simple blow-up for (ul)l.
Suppose al → +∞, and define

ur,l =
1

|Ar,l|

∫

Ar,l

uldVg ; alrl < r < sl.

Then, if l is sufficiently large, there exists a positive constant C (independent of l and r) such that
∫

A′
r,l

e4uldVg ≤ C|Ar,l|e4ul,r ; alrl < r < sl.

Proof. Using (22) and recalling the definition of fl (see (21)) and that of fr,l (see Lemma 4.4), we have

ur,l = ul +

∫

M

fr,l(y)fl(y)dVg(y).

For x ∈ A′
r,l, we divide the last integral into B̃r(x) and its complement, to obtain

exp (4(ur,l − ul)) = exp

(

4

∫

B̃r(x)

fr,l(y)fl(y)dVg(y)

)

exp

(

4

∫

M\B̃r(x)

fr,l(y)fl(y)dVg(y)

)

.

Using Lemma 4.4 and the fact that (fl)l is bounded in L1(M), we then find

exp (4(ur,l − ul)) ≥ C−1 exp

(

1

2π2
log

1

r

∫

B̃r(x)

fl(y)dVg(y)

)

exp

(

4

∫

M\B̃r(x)

G(x, y)fl(y)dVg(y)

)

.

Hence, integrating on Ar,l we obtain

∫

Ar,l

e4(ur,l−ul)dVg ≥ C−1|Ar,l|
(
1

r

)
∫

B̃r(x)
fldVg

2π2

exp

(

4

∫

M\B̃r(x)

G(x, y)fl(y)dVg(y)

)

.(60)
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On the other hand, again by (22), for x ∈ A′
r,l and a.e. z ∈ Br(x) we have also

ul(z)− ul =

∫

M\B̃r(x)

G(z, y)fl(y)dVg(y) +

∫

B̃r(x)

G(z, y)fl(y)dVg(y).

Then, exponentiating and integrating on Br(x) we get

∫

Br(x)

e4(ul(z)−ul)dVg(z)(61)

=

∫

Br(x)

exp

(

4

∫

M\B̃r(x)

G(z, y)fl(y)dVg(y)

)

exp

(

4

∫

B̃r(x)

G(z, y)fl(y)dVg(y)

)

dVg(z)

≤ sup
z∈Br(x)

exp

(

4

∫

M\B̃r(x)

G(z, y)fl(y)dVg(y)

)

︸ ︷︷ ︸

J

∫

Br(x)

exp

(

4

∫

B̃r(x)

G(z, y)fl(y)dVg(y)

)

dVg(z)

︸ ︷︷ ︸

JJ

.

Now we write
∫

M\B̃r(x)

G(z, y)fl(y)dVg(y) =

∫

M\B̃r(x)

G(x, y)fl(y)dVg(y) +

∫

M\B̃r(x)

(G(z, y)−G(x, y)) fl(y)dVg(y).

Using (23), for z ∈ Br(x) and y ∈ M \ B̃r(x), we have

G(z, y)−G(x, y) = O(1) +
1

8π2
log

|z − y|
|x− y| = O(1).

As a consequence we deduce

(62) J ≤ C exp

(

4

∫

M\B̃r(x)

G(x, y)fl(y)dVg(y)

)

.

We now turn to JJ . Since z ∈ Br(x) and y ∈ B̃r(x), G(z, y) is positive (for r sufficiently small), and
hence ∫

B̃r(x)

G(z, y)fl(y)dVg(y) ≤
∫

B̃r(x)

G(z, y)|fl|(y)dVg(y).

Using the Jensen inequality, as in the proof of Proposition 3.1, we obtain

exp

(

4

∫

B̃r(x)

G(z, y)fl(y)dVg(y)

)

≤
∫

B̃r(x)

exp
(

4G(z, y)‖fl‖L1(B̃r(x))

) |fl(y)|
‖fl‖L1(B̃r(x))

dVg(y).

Again (23) implies

JJ ≤
∫

Br(x)

dVg(z)

∫

B̃r(x)

exp
(

4G(z, y)‖fl‖L1(B̃r(x))

) |fl(y)|
‖fl‖L1(B̃r(x))

dVg(y)

≤ C

∫

Br(x)

dVg(z)

∫

B̃r(x)

(
1

|z − y|

)
‖fl‖L1(B̃r (x))

2π2 |fl(y)|
‖fl‖L1(B̃r(x))

dVg(y).

Now, the Fubini theorem and some elementary computations yield

(63) JJ ≤ C sup
y∈M

∫

Br(x)

dVg(z)

(
1

|z − y|

)
‖fl‖L1(B̃r (x))

2π2

≤ Cr4−
‖fl‖L1(B̃r (x))

2π2 .
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In the last inequality we have used the fact that ‖fl‖L1(B̃r(x))
is uniformly small since we are dealing with

a simple blow-up, see (53), and since we have chosen B̃r(x) suitably. This implies that the last constant
C is independent of r and l. From (61), (62) and (63) it follows that

∫

Br(x)

e4(ul(z)−ul)dVg(z) ≤ Cr4−
‖fl‖L1(B̃r(x))

2π2 exp

(

4

∫

M\B̃r(x)

G(x, y)fl(y)dVg(y)

)

.

Now the assertion of the Lemma follows from the last formula, (60) and the observation that, since
fl = 2kle

4ul − 2Ql, it is ‖fl‖L1(B̃r(x))
=
∫

B̃r(x)
fldVg +O(r4), and hence

r4−
‖fl‖L1(B̃r(x))

2π2 ≤ C|Ar,l|
(
1

r

)

∫

B̃r(x)
fldVg

2π2

independently of r and l.

This concludes the proof.

Next we show some further estimates involving the Laplacian of ul. Recall that we have set fl =
2kle

4ul −Ql, see (21).

Lemma 4.6 Suppose that (xl)l ⊆ M , (Σl)l, (Sl)l ⊆ R+, i(M) ≥ Sl > Σl > 0, and that (ul)l satisfies (7)
and (9). Suppose also that

∫

BSl
(xl)\BΣl

(xl)

e4uldVg ≤ ε.

Then, for any R > 0 sufficiently large and any r ∈ [Σl +R,Sl −R], one has

∫

Ar,l

|x− xl|2(−∆ul(x))dVg(x) =

(

15

8

∫

B r
R
(xl)

fldVg + oR(1) +O(εR2) + or(1)

)

r4.

where oR(1) → 0 as R → +∞ and or(1) → 0 as r → 0.

Proof. We can write (7) in the following form

−∆(−∆ul) = fl + Fl(ul),

where Fl is a linear expression in ∇ul and ∇2ul with uniformly bounded coefficients. If Ĝ is the Green’s
function for the (negative) laplacian on M , then it is a standard fact that

(64) Ĝ(x, y) = (1 + o(1))
1

4π2|x− y|2 ; (x, y) ∈ M ×M \ diag,

where o(1) → 0 as |x − y| → 0, see for example [2]. Hence, using the representation formula, for a.e.
x ∈ Ar,l we obtain

(65) −∆ul(x) =

∫

M

Ĝ(x, y)fl(y)dVg(y) +

∫

M

Ĝ(x, y)Fl(ul)(y)dVg(y) := v1,l(x) + v2,l(x).

Given R > 0 large but fixed and for |x− xl| = r ∈ [Σl +R,Sl −R], we write

v1,l(x) =

∫

B r
R
(xl)

Ĝ(x, y)fl(y)dVg(y) +

∫

BRr(xl)\B r
R
(xl)

Ĝ(x, y)fl(y)dVg(y)

+

∫

M\BRr(xl)

Ĝ(x, y)fl(y)dVg(y).
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From the asymptotics in (64) and some scaling argument we obtain (for x ∈ Ar,l)
∫

B r
R
(xl)

Ĝ(x, y)fl(y)dVg(y) = (1 + or(1) + oR(1))
1

4π2r2

∫

B r
R

fldVg;

∣
∣
∣
∣
∣

∫

M\BRr(xl)

Ĝ(x, y)fl(y)dVg(y)

∣
∣
∣
∣
∣
≤ C

(Rr)2
,

where or(1) → 0 as r → 0 and oR(1) → 0 as R → +∞. Moreover, by our assumptions and (21), we have
∫

BRr(xl)\B r
R
(xl)

fl(y)dVg(y) ≤ Cε; fl(x) ≥ −C,

where C is independent of r, and l. Using the Fubini theorem and reasoning as in the proof of Lemma
2.3 it follows that ∣

∣
∣
∣
∣

∫

Ar,l

dVg(x)

∫

BRr(xl)\B r
R
(xl)

Ĝ(x, y)fl(y)dVg(y)

∣
∣
∣
∣
∣
≤ CεR2r2.

The last formulas imply

∫

Ar,l

|x− xl|2v1,l(x)dVg(x) =

(

1 + or(1) + oR(1)

4π2

∫

B r
R

fldVg +O(εR2) +O

(
1

R2

))

|Ar,l|

=

(

15

8

∫

B r
R
(xl)

fldVg + oR(1) + O(εR2) + or(1)

)

r4.(66)

To study the integral of v2,l, we use again the representation formula and we write

|v2,l(x)| ≤ C

∫

Br2 (xl)

1

|x− y|2
(
|∇2ul|(y) + |∇ul|(y)

)
dVg(y)

+ C

∫

M\B√
r(xl)

1

|x− y|2
(
|∇2ul|(y) + |∇ul|(y)

)
dVg(y)

+ C

∫

B√
r(xl)\Br2 (xl)

1

|x− y|2
(
|∇2ul|(y) + |∇ul|(y)

)
dVg(y)

︸ ︷︷ ︸

JJJ

.

To estimate the first and the second integral, we notice that |x − y| ≥ C−1r and |x − y| ≥ C−1
√
r for

respectively y ∈ Br2(xl) and y ∈ B√
r(xl) (recall that x ∈ Ar,l). Hence using Lemma 2.3 it follows that

∫

Br2 (xl)

1

|x− y|2
(
|∇2ul|(y) + |∇ul|(y)

)
dVg(y) ≤ Cr2;

∫

M\B√
r(xl)

1

|x− y|2
(
|∇2ul|(y) + |∇ul|(y)

)
dVg(y) ≤

C

r
.

To estimate the third integral we use the Hölder’s inequality to find, for 1
p
+ 1

p′ = 1

JJJ ≤ C

(
∫

B√
r(xl)\Br2 (xl)

1

|x− y|2p dVg(y)

) 1
p
(
∫

B√
r(xl)\Br2 (xl)

(
|∇2ul|(y) + |∇ul|(y)

)p′
dVg(y)

) 1
p′

.

Again by and Lemma 2.3 it follows that for p > 2 (and hence for p′ < 2) it is JJJ ≤ Cr
6
p
−4. If we choose

p ∈ (2, 3), then 6
p
− 4 > −2, which implies JJJ < or(1)r

2, and hence also

(67)

∫

Ar,l

v2,ldVg = or(1)r
2.
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Then, choosing first R sufficiently large and then l sufficiently large, (65), (66) and (67) conclude the
proof.

4.2 Radial behavior

The next step consists in studying the dependence on r of the function ur,l defined in Lemma 4.5. It is
well known that in geodesic coordinates the metric coefficients gij have the expression

(68) gij(x) = δij −
1

3
Rikjlx

kxl +O(|x|3),

where Rikjl are the components of the curvature tensor, see for example [34], and the volume element
satisfies

(69) dVg =
√

detg dVR4 = (1 +O(|x|2))dVR4 with ∇
√

detg = O(|x|) and ∇2
√

detg = O(1).

Using the exponential map at xl, we can use coordinates r, θ in a neighborhood of xl, where r = |x| > 0
and θ ∈ S3. In these coordinates the volume element dVg and the surface element dσg take the form

dVg = r3f̃(r, θ)drdθ; dσg = f̃(r, θ)dθ,

where f̃ is a smooth bounded function on {r > 0}. Using these coordinates, we consider a regular function
h. Then, letting Ar̃ = B2r̃(xl) \Br̃(xl), one has

∫

Ar̃

hdVg =

∫ 2r̃

r̃

r3dr

∫

S3

h(r, θ)f(r, θ)dθ;
∂h

∂ν
(r, θ) =

∂h

∂r
(r, θ),

where ν denotes the exterior unit normal to ∂Br̃(xl).
We also use the coordinates z, θ, where z = log r. In these new coordinates we obtain

dVg = e4zf(z, θ)dzdθ; dσg = e3zf(z, θ)dθ,

where f(z, θ) = f̃(ez, θ), and

∫

Ar̃

h dVg =

∫ s+β

s

dz

∫

S3

h(z, θ)f(z, θ)e4zdθ;
∂h

∂ν
(z, θ) = e−z ∂h

∂z
(z, θ).

Here we have set β = log 2 and s = log r̃. From (69) we also find

(70) f(z, θ) = 1 +O(e2z);
∂f

∂z
(z, θ) = O(e2z);

∂2f

∂z2
(z, θ) = O(e2z).

Now we can write

∂

∂s

∫

Ar̃

h dVg =

∫

S3

h(z, θ)e4zf(z, θ)dθ

∣
∣
∣
∣

s+β

z=s

=

∫ s+β

s

∫

S3

∂

∂z

(
h(z, θ)e4zf(z, θ)

)
dθdz

=

∫ s+β

s

∫

S3

∂h

∂z
e4zf(z, θ)dθdz +

∫ s+β

s

∫

S3

h(z, θ)

(

4f(z, θ)e4z + e4z
∂f

∂z
(z, θ)

)

dθdz.(71)

Taking a second derivative with respect to s, from the above formulas we obtain

∂2

∂s2

∫

Ar̃

h dVg =

∫

S3

∂h

∂z
(z, θ)e4zh(z, θ)dθ

∣
∣
∣
∣

s+β

z=s

+ 4
∂

∂s

∫

Ar̃

h dVg

+
∂

∂s

(
∫ s+β

s

∫

S3

h(z, θ)e4z
∂f

∂z
(z, θ)dθdz

)

=

∫

∂Ar̃

e2z
∂h

∂ν
dσg + 4

∂

∂s

∫

Ar̃

h dVg +
∂

∂s

(
∫ s+β

s

∫

S3

h(z, θ)e4z
∂f

∂z
(z, θ)dθdz

)

.
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Using the coordinates (r, θ) and integrating by parts we derive

∫

∂Ar̃

e2z
∂h

∂ν
dσg =

∫

∂Ar̃

r2
∂h

∂ν
dσ =

∫

Ar̃

r2∆h dVg −
∫

Ar̃

h∆r2dVg +

∫

∂Ar̃

h
∂r2

∂ν
dσg

=

∫

Ar̃

r2∆h dVg − 8

∫

Ar̃

h dVg + 2

∫

∂Ar̃

he4zdσg +

∫

Ar̃

(∆r2 − 8)h dVg .

By the last two formulas we finally get the following equation

∂2

∂s2

∫

Ar̃

h dVg = 6
∂

∂s

∫

Ar̃

h dVg − 8

∫

Ar̃

h dVg +

∫

Ar̃

r2∆h dVg(72)

+

∫

Ar̃

(∆r2 − 8)h dVg +
∂

∂s

(
∫ s+β

s

∫

S3

h(z, θ)e4z
∂f

∂z
(z, θ)dθdz

)

.

Next we want to apply (72) to the case of h = ul, and derive a differential equation involving the average
ur,l of ul on the annuli Ar,l.

Lemma 4.7 Suppose that (xl)l ⊆ M , (sl)l ⊆ R+, i(M) ≥ sl > 0, and that (ul)l satisfies (7) and (9).
Then, for every l and every r < sl we let

Wl(z) =
1

V ol(Ar,l)

∫

Ar,l

ul dVg; z = log r,

where Ar,l is defined in (55). Then the functions Wl(z) solve the following equation

(73) W ′′
l (z) + 2(1 +O(e2z))W ′

l (z) =

∫

Ar,l
r2∆guldVg

V ol(Ar,l)
+O(e2z), for z ∈ (log(alrl), log sl).

We notice that the function Wl(z) coincide with ur,l up to the change of variables r 7→ z = log r.

Proof. We first let

W̃l(z) =

∫

Ar,l

ul dVg; Yl(r) =

∫

Ar,l

dVg , z = log r.

We have clearly

W ′
l (z) =

(

W̃l(z)

Yl(z)

)′

=
W̃ ′

l (z)Yl(z)− Y ′
l (z)W̃l(z)

Y 2
l (z)

,

and

W ′′
l (z) =

Y 2
l (z)

[

W̃ ′′
l (z)Yl(z)− Y ′′

l (z)W̃l(z)
]

− 2Yl(z)Y
′
l (z)

[

W̃ ′
l (z)Yl(z)− Y ′

l (z)W̃l(z)
]

Y 4
l (z)

.

Using the last two formulas and (72) with Ar̃ = Ar,l and h = ul, after some calculation (which also uses

(71) with h replaced by h
f

∂f
∂z

) we obtain

W ′′
l (z) = 6W ′

l (z)− 2
Y ′
l (z)

Yl(z)
W ′

l (z) +

∫

Ar,l
r2∆guldVg

Yl(z)

+

[
∫

(∆gr
2 − 8)ul +

∫
∂

∂z

(

ul
∂f
∂z

f

)

e4zf +

∫

ul

∂f
∂z

f

(

4fe4z + e4z
∂f

∂z

)] ∫
e4zf

Yl(z)2

−
[
∫

(∆gr
2 − 8) +

∫
∂

∂z

(
∂f
∂z

f

)

e4zf +

∫ ∂f
∂z

f

(

4fe4z + e4z
∂f

∂z

)] ∫
ule

4zf

Yl(z)2
.
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We notice that, adding and subtracting the average of ur,l to ul, some cancellation occurs. Moreover,
from (70) and (71) we get

Y ′
l (z)

Yl(z)
=

∫ (

4e4zf + e4z ∂f
∂z

)

Yl(z)
= 4 +O(e2z).

Therefore, using these remarks we obtain

W ′′
l (z) = −2(1 +O(e2z))W ′

l (z) +

∫

Ar,l
r2∆guldVg

Yl(z)

+

[
∫

(∆gr
2 − 8)(ul − ur,l) +

∫
∂

∂z

(

(ul − ur,l)
∂f
∂z

f

)

e4zf

+

∫

(ul − ur,l)
∂f
∂z

f

(

4fe4z + e4z
∂f

∂z

)] ∫
e4zf

Yl(z)2

−
[
∫

(∆gr
2 − 8) +

∫
∂

∂z

(
∂f
∂z

f

)

e4zf +

∫ ∂f
∂z

f

(

4fe4z + e4z
∂f

∂z

)] ∫
(ul − ur,l)e

4zf

Yl(z)2
.

We next estimate the terms in the last three lines of this expression. We begin by noticing that (∆r2−8) =
O(r2), which can be deduced from elementary computations in local coordinates. This and the Poincaré
inequality imply

∣
∣
∣
∣

∫

(∆gr
2 − 8)(ul − ur,l)dVg

∣
∣
∣
∣
≤ Ce3z

∫

Ar,l

|∇ul|dVg, z = log r.

From Lemma 2.3 then one finds
∣
∣
∣
∣

∫

(∆gr
2 − 8)(ul − ur,l)dVg

∣
∣
∣
∣
≤ Ce6z .

Similarly, using (70) and also the fact that ∂ul

∂z
= ∂ul

∂r
∂r
∂z

= O(ez |∇ul|), we obtain
∣
∣
∣
∣
∣

∫
∂

∂z

(

(ul − ur,l)
∂f
∂z

f

)

e4zf

∣
∣
∣
∣
∣

≤
∫

Ar,l

O(e2z)|ul − ur,l|dVg +

∫

Ar,l

O(e3z)|∇ul|dVg

≤ Ce6z.

Reasoning in the same way for the remaining terms we finally deduce

W ′′
l (z) + 2(1 +O(e2z))W ′

l (z) =

∫

Ar,l
r2∆ghdVg

Yl(z)
+O(e2z).

Then the last four estimates imply the first equation in (73).

Remark 4.8 Using (71) with Ar̃ = Ar,l, and with h = ul (or with h = 1 to compute Y ′
l ), we obtain

W ′
l (z) =

[∫

Ar,l
ul

(

4fe4z + e4z ∂f
∂z

e4zf
)

+
∫

Ar,l

∂ul

∂z

] ∫

Ar,l
fe4z −

[∫

Ar,l
4e4zf + e4z ∂f

∂z

] ∫

Ar,l
ulfe

4z

(∫

Ar,l
fe4z

)2 .

If we denote again by ur,l the average of ul in the annulus Ar,l, adding and subtracting this average from
ul in the last formula we get some cancellations and we are left with

W ′
l (z) =

[∫

Ar,l
(ul − ur,l)

(

e4z ∂f
∂z

)

+
∫

Ar,l

∂ul

∂z
e4zf

] ∫

Ar,l
fe4z

(∫

Ar,l
fe4z

)2 −

[∫

Ar,l
e4z ∂f

∂z

] ∫

Ar,l
(ul − ur,l)fe

4z

(∫

Ar,l
fe4z

)2 .
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As a byproduct of this formula and the Poincaré inequality we deduce

|W ′
l (z)| ≤ C

∫

Ar,l
|ul − ur,l|dVg

Yl(z)
+ Cr

∫

Ar,l
|∇ul|dVg

Yl(z)
≤ Cr

∫

Ar,l
|∇ul|dVg

Yl(z)
.

Then, applying Lemma 2.3, we find

(74) |W ′
l (z)| ≤ C.

In the next lemma we study the solutions of (73) in the case of a simple blow-up. When x0 = 0 and
λ = 1, the function û∞, see (38), is of the form

û∞(x) = log

(
2

1 + |x|2
)

+
1

4
log

3

k0
.

From straightforward computations one finds
∫

Ar

û∞dVR4 = 2π2

[
15

4
r4 log 2 + 4r4 log

(
1

1 + 4r2

)

+
15

8
r4 − 3

4
r2 +

1

4
log(1 + 4r2)

− 1

4
r4 log

(
1

1 + r2

)

− 1

4
log(1 + r2)

]

.

Scaling back to ul, using (52) and some elementary estimates one deduces (for t > 0 large and fixed)

(75) Wl(log rl + t) = −2t+ C − log rl +O(e−2t) + ol(1); W ′
l (log rl + t) = −2 +O(e−2t) + ol(1),

where C is some explicit positive constant.
Now we prove some upper bounds for the function Wl. Notice from (75) that Wl at z = log rl + t (t

large and fixed) has slope close to −2. Given γ ∈ (1, 2), we consider an affine function h
γ
t,l which coincides

with Wl for z ∼ log rl and which has slope −γ > −2. The next lemma asserts that indeed Wl(z) < h
γ
t,l(z)

until z gets close to log sl. This is helpful to get integral estimates on e4ul , which is done at the end of
the section.

Lemma 4.9 Suppose (xl)l, (rl)l, (sl)l are a simple blow-up for (ul)l, and let (Wl)l be given by Lemma
4.7. Given γ ∈ (1, 2) and t > 0, consider the following functions

h
γ
t,l(z) = −γ(z − log rl − t) +Wl(log rl + t).

Then there exist tl → +∞ arbitrarily slowly and Cγ > 0 such that for l large

Wl(z) ≤ h
γ
tl,l

(z); z ∈ [log rl + tl, log sl − Cγ ] .

Proof. Recall that (Wl)l are solutions of (73) satisfying the initial conditions (75) for any large and
fixed t. If tl → +∞ sufficiently slowly, we can also replace t by tl in (75), namely we can also assume
that

(76) Wl(log rl + tl) = −2tl + C − log rl + ol(1); W ′
l (log rl + tl) = −2 + ol(1).

Suppose by contradiction that there exist sl ∈ [log rl, log sl], with log sl − sl → +∞ such that Wl

intersects hγ
tl,l

for the first time. We notice that, by the asymptotics in (75), it must also be sl−log rl−tl →
+∞ if tl → +∞ sufficiently slowly. Then we have

Wl(sl) = h
γ
tl,l

(sl); W ′
l (sl) ≥ −γ.

We now choose a sequence of real numbers (Hl)l by means of the following condition

Hl = sup
{

H ∈ R : h
γ+2
2

tl,l
+H < Wl in [log rl + tl, sl]

}

.
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By (75) it must be Hl → −∞ as l → +∞ (provided tl → +∞ sufficiently slowly), and there exist s̃l such
that

(77) Wl(s̃l) = h
γ+2
2

tl,l
(s̃l) +Hl; W ′

l (s̃l) = −γ + 2

2
; W ′′

l (s̃l) ≥ 0.

Moreover, by (74) and (75), s̃l satisfies

(78) |sl − s̃l| → +∞ as l → +∞; |s̃l − log rl − tl| → +∞ as l → +∞.

Next we claim that, for C > 0 sufficiently large, the following property holds

(79)

∫

B
esl
C

(xl)\Betl rl
(xl)

e4uldVg → 0 as l → +∞.

In order to prove this claim, let us recall that by our choice of sl, it is Wl(z) ≤ h
γ
tl,l

(z) for every
z ∈ [log rl + tl, sl]. Dividing the region B esl

C

(xl) \ Betlrl
(xl) into concentric annuli A′

r,l (see (56)) of

suitable radii, we get
∫

B
esl
C

(xl)\Betl rl
(xl)

e4uldVg ≤
jl∑

j=0

∫

A′
r̂l,j,l

e4uldVg,

where

r̂l,j =
4

5
etlrl

(
7

5

)j

;

(
7

5

)jl

∈
(
5

4

esl

Cetlrl
,
5

2

esl

Cetlrl

)

.

Given γ ∈ (1, 2), from Lemma 4.5 it follows that

∫

A′
r̂l,j ,l

e4uldVg ≤ C|Ar̂l,j ,l|e4ul,r̂l,j ≤ Cr̂4l,je
4Wl(log r̂l,j) ≤ Cr̂4l,je

4hγ
tl,l

(log r̂l,j); j = 1, . . . , jl.

From the expression of hγ
tl,l

and (76) we deduce

r̂4l,je
4hγ

tl,l
(log r̂l,j) ≤ Cr̂4l,j exp

[
4
(
−γ (log r̂l,j − log rl − tl)− 2tl + C − log rl + ol(1)

)]

= Cr̂4l,j exp
[
−4γ log r̂l,j + 4(γ − 1) log rl + 4(γ − 2)tl + C + ol(1)

]

≤ C

(
rl

r̂l,j

)4(γ−1)

e4(γ−2)tl = C

(
5

4etl

)4(γ−1)

e4(γ−2)tl

(
5

7

)4(γ−1)j

.

Hence it follows that

∫

B
esl
C

(xl)\Betl rl
(xl)

e4uldVg ≤ C

(
5

4etl

)4(γ−1)

e4(γ−2)tl

∞∑

j=0

(
5

7

)4(γ−1)j

→ 0,

since γ ∈ (1, 2) and since tl → +∞. This proves (79).

We can now apply Lemma 4.6 with Σl = etlrl, Sl =
esl

C
, and log r = s̃l. Also, by (78) and (79), we can

choose ε = εl → 0 and R = Rl → +∞ sufficiently slowly. Therefore, from Lemma 4.6 and Proposition
3.4 (see in particular (39)) we deduce that

∫

A
es̃l ,l

|x− xl|2(−∆ul(x))dVg(x) =





15

8

∫

B
es̃l
Rl

(xl)

fldVg + ol(1)




 e4s̃l ≥

(
30π2 + ol(1)

)
e4s̃l .
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On the other hand, from (73) and the last two conditions in (77) we find

∫

A
es̃l ,l

|x− xl|2(−∆ul(x))dVg(x) =
[
−W ′′

l (s̃l)− 2(1 +O(e2s̃l))W ′
l (s̃l) +O(e2s̃l)

]
Yl(s̃l)

≤ [γ + 2 + ol(1)]

(
15π2

2
+ ol(1)

)

e4s̃l .

Since γ < 2, from the last two inequalities we get a contradiction. This concludes the proof of the Lemma.

We are finally in position to prove Proposition 4.2.

Proof of Proposition 4.2. It is sufficient to apply Lemma 4.9 and to reason as for the proof of (79).
In fact, in this way we get

∫

B esl
C

(xl)\Betl rl
(xl)

e4uldVg → 0 as l → +∞.

Moreover, choosing bl = etl in (39) and tl → +∞ sufficiently slowly, we also get

∫

Bblrl
(xl)

e4uldVg → 8π2

k0
as l → +∞.

The last two formulas yield the conclusion.

5 Proof of Theorem 1.1

We prove first the theorem under the assumption (13), and we postpone the remaining cases to a second
subsection.

5.1 Proof under the assumption (13)

In this subsection we show how a general blow-up phenomenon can be essentially reduced to the case
of finitely-many simple blow-ups. We divide the proof into three steps, and we always assume that
(ul)l is a sequence satisfying (9) and (20). We recall that the integer k is defined by the condition
k0 ∈ (8kπ2, 8(k + 1)π2).

Step 1. There exist an integer j ≤ k, sequences (x1,l)l, . . . (xj,l)l ⊆ M and radii (r1,l)l, . . . , (rj,l)l,
(r̃1,l)l, . . . , (r̃j,l)l → 0 satisfying the properties (for some α ∈ (0, 1))

(80)
r̃i,l

ri,l
→ +∞ (slowly) as l → +∞; Br̃i,l ∩Br̃h,l

= ∅ for i 6= h;

(81) ∀R > 0 ûl,i → log
2

1 + |x|2 − 1

4
log

(
1

3
k0

)

in H4(BR
4

R ) ∩ Cα(BR
4

R ) as l → +∞.

(82) ∀ρ > 0∃Cρ > 0 s.t. if

∫

Bs(y)

e4uldVg ≥ ρ with Bs(y) ⊆ M \ ∪j
i=1Br̃i,l(xi,l), then s ≥ C−1

ρ dl(y),

where dl(y) = mini=1,...,j |y−xi,l|. Here ûl,j denotes the function obtained using the procedure in Section
3, but scaling around the point xi,l with a factor ri,l.
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In order to prove Step 1, we consider a small number ρ > 0, say ρ ∈
(

0, π
2

k0

)

, and we define sequences

(x1,l)l ⊆ M , (r1,l)l ⊆ R+ satisfying

∫

Br1,l
(x1,l)

e4uldVg = max
x∈M

∫

Br1,l
(x)

e4uldVg = ρ.

If (20) holds, it must be r1,l → 0 as l → +∞. In fact, if it were r1,l ≥ C−1, we could apply Proposition
3.1 to get uniform Lp bounds on e4(ul−ul) for some p > 1. This fact and the Jensen inequality would
yield

1 = e4ul

∫

M

e4(ul−ul)dVg ≤ Ce4ul ; ul ≤ C,

and hence uniform bounds on e4ul in Lp(M). This would imply, by elliptic regularity results, uniform
bounds in H2(M) on (ul)l, which is a contradiction to our assumptions.

Then, if
r̃1,l
r1,l

tends to infinity sufficiently slowly, (r1,l)l and (r̃1,l)l satisfy (32), so Proposition 3.4

applies yielding the existence of a bubble, giving (81) for i = 1 and

∫

Br̃1,l
(x1,l)

e4uldVg =
8π2

k0
+ ol(1).

If (82) holds for j = 1, Step 1 is proved.

If (82) does not hold, there exists ρ1 > 0, which can be assumed belonging to
(

0, π
2

k0

)

, and there exist

sequences (yl)l ⊆ M , rl ⊆ R+ such that

(83)

∫

Brl
(yl)

e4uldVg ≥ ρ1; Brl(yl) ⊆ M \Br̃1,l(x1,l);
rl

|yl − x1,l|
→ 0 as l → +∞.

Now we define r2,l and x2,l such that

∫

Br2,l
(x2,l)

e4uldVg = max
Br2,l

(y)⊆M\Br̃1,l
(x1,l)

∫

Br2,l
(y)

e4uldVg = ρ1.

By Proposition 3.4 it is easy to see that if
r̃1,l
r1,l

→ +∞ sufficiently slowly, then we have

(84)
r̃1,l

|x1,l − x2,l|
→ 0;

r2,l

|x1,l − x2,l|
→ 0 as l → +∞,

which in particular implies r2,l → 0 as l → +∞. Therefore, by the last formula we can find r̂2,l ⊆ R+

such that
∫

Br2,l
(y)

e4uldVg ≤ ρ1 for every y ∈ Br̂2,l(x2,l);
r̂2,l

|x1,l − x2,l|
→ 0 as l → +∞.

Then Proposition 3.4 applies yielding the existence of a second bubble.
Continuing in this way, we see immediately that j cannot exceed k, since every bubble contributes an

amount of 8π2

k0
to the volume and since we are assuming (9). This concludes the proof of Step 1.

Step 2. If in Step 1 it is j = 1, then there holds

(85)

∫

M

e4uldVg =
8π2

k0
+ ol(1).
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In this case, if we choose sl = 1
2 i(M) for every l, where i(M) is the injectivity radius of M , then by

(82) (x1,l)l, (r1,l)l, (sl)l are a simple blow-up for ul. Therefore Proposition 4.2 applies and, since (sl)l is
uniformly bounded from below, there exists C > 0 such that for l large

(86)

∫

B
C−1 (x1,l)

e4ul =
8π2

k0
+ ol(1).

We prove first the following property

(87) ul → −∞ as l → +∞.

In fact, using the Green’s representation formula, for a.e. x ∈ M we obtain

ul(x) = ul +

∫

M

G(x, y)
(
2kle

4ul(y)− 2Ql

)
dVg(y) ≥ ul − C +

∫

M

G(x, y)2kle
4ul(y)dVg(y).

By (81) and (51), given any small ε̃ > 0, there exists Rε̃ such that, for l sufficiently large
∫

BRε̃r1,l
(x1,l)

2kle
2ul ≥ 16π2 − 2π2ε̃.

Hence the last two formulas and (23) imply

e4ul(x) ≥ C−1e4ul
1

|x− x1,l|8−ε̃
; for |x− x1,l| ≥ 2Rε̃r1,l,

from which it follows that

(88)

∫

M

e4uldVg ≥
∫

Bi(M)(x1,l)\B2Rε̃r1,l
(x1,l)

e4uldVg ≥ C−1e4ul

∫ i(M)

2Rε̃r1,l

sε̃−5ds ≥ C−1e4ul(Rε̃r1,l)
ε̃−4.

If ε̃ is sufficiently small, the last factor tends to +∞ as l → +∞. Therefore (87) follows from (9).
Now, by (82), we can cover M \ BC−1(x1,l) with a finite number of balls Bri(yi), i = 1, . . . , ℓ such

that for every i there holds
∫

B2ri
(yi)

e4uldVg ≤ π2

k0
. Reasoning as in the proof of Proposition 3.1 one then

finds

∫

M\B
C−1 (x1,l)

e4ul ≤ Ce4ul sup
y∈M,i=1,...,ℓ

∫

M

(
1

|x− y|

)
4‖e4ul‖

L1(B2ri
(yi))

8π2

≤ Ce4ul → 0.

Then (86) and the last formula conclude the proof of Step 2.

Step 3. If j in Step 1 is arbitrary, there holds

(89)

∫

M

e4uldVg =
8π2

k0
j + ol(1).

If j > 1 we reason as in [36], and we analyze the clustering of accumulation points. By relabelling the
indices, we can assume that

(90) |x1,l − x2,l| = inf
i6=h

|xi,l − xh,l| → 0 as l → +∞.

Of course, if infi6=h |xi,l−xh,l| 6→ 0, then we could reason as in Step 2 a finite number of times. Assuming
(90), we consider the set X1,l ⊆ {x1,l, . . . , xh,l} of accumulation points for which the distance from x1,l

is comparable to |x1,l − x2,l|, namely for which there exists C > 0 (independent of l) such that

|xi,l − x1,l| ≤ C|x1,l − x2,l|; i = 2, . . . , h = card(X1,l).
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By our choices of the points x1,l, . . . , xh,l and by (90), one easily checks that the three sequences
(xi,l)l, (ri,l)l and C−1|x1,l − x2,l|, i = 1, . . . , h, are a simple blow-up if C is sufficiently large, and Propo-
sition 4.2 applies yielding

(91)

∫

B
C−1|x1,l−x2,l|

(xi,l)

e4uldVg =
8π2

k0
+ ol(1); i = 1, . . . , h.

Our next claim is that there is no further concentration in a neighborhood of X1,l of size comparable to
|x1,l − x2,l|. More precisely we have the following result.

Lemma 5.1 In the above notation, for any large and fixed C there holds

(92)

∫

BC|x1,l−x2,l|(x1,l)

e4uldVg =
8π2

k0
card(X1,l) + ol(1).

Proof. In order to prove this claim we use a variant of the argument in Step 2. First of all, for ρ small
and fixed, we can cover the set BC|x1,l−x2,l|(x1,l) \ ∪i=1,...,hBC−1|x1,l−x2,l|(xi,l) with ℓl balls Bρn,l

(yn,l),
n = 1, . . . , ℓl, with the following properties

(93) ℓl ≤ C; C−1|x1,l − x2,l| ≤ ρn,l ≤ C|x1,l − x2,l|,
∫

B2ρn,l
(yn,l)

e4uldVg ≤ ρ n = 1, . . . , ℓl.

Reasoning as in the proof of Proposition 3.1 one finds

∫

Bρn,l
(yn,l)

e4uldVg ≤ C

∫

Bρn,l
(yn,l)

dVg(x) exp

[

4

∫

M\B2ρn,l
(yn,l)

G(x, y)2kle
4ul(y)dVg(y)

]

×
∫

B2ρn,l
(yn,l)

(
1

|x− y|

) klρ

π2

e4uldVg(y).

From (23) and (91), after some computation we get

∫

Bρn,l
(yn,l)

e4uldVg ≤ C

∫

Bρn,l
(yn,l)




4

∫

M\
(

B2ρn,l
(yn,l)∪B

C−1|x1,l−x2,l|
2

(x1,l)

) G(x, y)2kle
4ul(y)dVg(y)






× |x1,l − x2,l|−8+ol(1)|x1,l − x2,l|4−
klρ

π2 e4uldVg(x)(94)

≤ C sup
x∈Bρn,l

(yn,l)




8

∫

M\
(

B2ρn,l
(yn,l)∪BC−1|x1,l−x2,l|

2

(x1,l)

) G(x, y)kle
4ul(y)dVg(y)






× |x1,l − x2,l|−
klρ

π2 +ol(1)e4ul .

since ρn,l is bounded from above by C|x1,l − x2,l|.
On the other hand, if ε̃ and Rε̃ are as in Step 2, we also have

ul(x) ≥ −C + ul +

∫

M\B
C−1|x1,l−x2,l|

2

(x1,l)

G(x, y)2kle
4ul(y)dVg(y)

+

∫

BRε̃r1,l
(x1,l)

G(x, y)2kle
4ul(y)dVg(y), a.e. x ∈ BC−1|x1,l−x2,l|

4

(x1,l) \B2Rε̃r1,l(x1,l).
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Reasoning as for (88), we then deduce that

1 ≥
∫

B
C−1|x1,l−x2,l|

4

(x1,l)\B2Rε̃r1,l
(x1,l)

e4uldVg ≥ C−1e4ul(Rε̃r1,l)
ε̃−4

× inf
z∈BC−1|x1,l−x2,l|

4

(x1,l)




8

∫

M\
(

B2ρn,l
(yn,l)∪B

C−1|x1,l−x2,l|
2

(x1,l)

) G(z, y)kle
4ul(y)dVg(y)




 .

Now we notice that by (93) and (23) one has

|G(z, y)−G(x, y)| ≤ C; x ∈ Bρn,l
(yn,l), y ∈ M \

(

B2ρn,l
(yn,l) ∪BC−1|x1,l−x2,l|

2

(x1,l)

)

,

and for z ∈ BC−1|x1,l−x2,l|
4

(x1,l).

From (94) and the last two formulas it follows that
∫

Bρn,l
(yn,l)

e4uldVg ≤ C|x1,l − x2,l|−
klρ

π2 +ol(1)(Rε̃r1,l)
ε̃−4 → 0, as l → +∞,

since
r1,l

|x1,l−x2,l| → 0 by (84). Then the conclusion follows from (91) and the fact that BC|x1,l−x2,l|(x1,l) \
∪i=1,...,hBC−1|x1,l−x2,l|(xi,l) is covered by a finite (and uniformly bounded) number of balls Bρn,l

(yn,l).

Now we let
d1,l = inf {|x1,l − xi,l| : xi,l 6∈ X1,l} .

Note that, by our definition of X1,l, we have
d1,l

|x1,l−x2,l| → +∞ as l → +∞. We prove next the following

result, which improves the estimate in formula (92) to a larger set.

Lemma 5.2 There exists C > 0 such that for l large

(95)

∫

B
C−1d1,l

(x1,l)

e4uldVg =
8π2

k0
card(X1,l) + ol(1).

Proof. The proof follow closely the arguments of Proposition 4.2, hence we will be sketchy. We use
the same notation as in Section 4 for the functions (Wl)l and the annuli Ar,l, except for the fact that
now we take x1,l as centers, hence replacing the points xl.

First of all we notice that, by the arbitrarity of C in Lemma 5.1, there exists Zl → +∞ such that

(96)

∫

B
e4Zl |x1,l−x2,l|

(x1,l)\BC|x1,l−x2,l|(x1,l)

e4uldVg → 0 as l → +∞.

Using the Jensen inequality in the annulus Be4Zl |x1,l−x2,l|(x1,l) \BeZl |x1,l−x2,l|(x1,l), it follows that

(97) sup
z∈[Zl+log |x1,l−x2,l|,4Zl+log |x1,l−x2,l|

(z +Wl(z)) → −∞ as l → +∞.

Our next goal is to prove that also

(98) W ′
l (z) = −2card(X1,l) + ol(1); for z ∈ [2Zl + log |x1,l − x2,l|, 3Zl + log |x1,l − x2,l|].

In order to show this, we notice that by the second formula in Remark 4.8 and by some manipulation
(reasoning as in the proof of Lemma 4.7), there holds

W ′
l (z) =

∫

Ar,l

∂ul

∂z
fe4z

∫

Ar,l
fe4z

+O(e2z); for z ∈ [Zl + log |x1,l − x2,l|, 4Zl + log |x1,l − x2,l|], r = ez.
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Using the Green’s representation formula we obtain

∂u

∂r
(x) =

∫

B
eZl |x1,l−x2,l|

(x1,l)

∂xG(x, y)

∂r
fl(y)dVg(y) +

∫

M\B
e4Zl |x1,l−x2,l|

(x1,l)

∂xG(x, y)

∂r
fl(y)dVg(y)

+

∫

B
e4Zl |x1,l−x2,l|

(x1,l)\BeZl |x1,l−x2,l|
(x1,l)

∂xG(x, y)

∂r
fl(y)dVg(y).

From (25), Lemma 5.1 and (96) it follows that, for Zl → +∞ sufficiently slowly

∫

B
eZl |x1,l−x2,l|

(x1,l)

∂xG(x, y)

∂r
fl(y)dVg(y) = −2card(X1,l)

|x− x1,l|
+ ol(1).

Also, reasoning as in the proof of Lemma 2.3 and using (96) one finds that

∣
∣
∣
∣
∣
∣

∫

Ar,l

dx

∫

B
e4Zl |x1,l−x2,l|

(x1,l)\BeZl |x1,l−x2,l|
(x1,l)

∂xG(x, y)

∂r
fl(y)dVg(y)

∣
∣
∣
∣
∣
∣

= o(1)|x − x1,l|3.

Finally, since Zl → +∞ one also finds that

∫

M\B
e4Zl |x1,l−x2,l|

(x1,l)

∂xG(x, y)

∂r
fl(y)dVg(y) = ol(1)

1

|x− x1,l|
.

Recalling that ∂ul

∂z
= r ∂ul

∂r
, with r = dist(x, x1,l), the last three formulas yield (98).

Now, for γ ∈ (1, 2) we consider the following sequence of functions

h
γ
l (z) = −γ(z − log |x1,l − x2,l| − 2Zl) +Wl(log |x1,l − x2,l|+ 2Zl).

Exactly as in the proof of Proposition 4.2 one can show that

Wl(z) ≤ h
γ
l (z); z ∈ [log |x1,l − x2,l|+ 2Zl, log d1,l − Cγ ] .

As above, we define

r̂l,j =
4

5
e2Zl |x1,l − x2,l|

(
7

5

)j

;

(
7

5

)jl

∈
(
5

4

d1,l

Ce2Zl |x1,l − x2,l|
,
5

2

d1,l

Ce2Zl |x1,l − x2,l|

)

.

and we obtain
∫

A′
r̂l,j ,l

e4uldVg ≤ C|Ar̂l,j ,l|e4ul,r̂l,j ≤ Cr̂4l,je
4Wl(log r̂l,j) ≤ Cr̂4l,je

4hγ
l
(log r̂l,j); j = 1, . . . , jl.

From the expression of hγ
l and (97) we deduce

r̂4l,je
4hγ

l
(log r̂l,j) ≤ Cr̂4l,j exp [4 (−γ (log r̂l,j − log |x1,l − x2,l| − 2Zl) +Wl(log |x1,l − x2,l|+ 2Zl))]

≤ ol(1)r̂
4
l,j exp [−4γ log r̂l,j + 4(γ − 1) log |x1,l − x2,l|+ 8(γ − 2)Zl]

≤ ol(1)

( |x1,l − x2,l|
r̂l,j

)4(γ−1)

= ol(1)

(
5

7

)4(γ−1)j

.

As before we then find

∫

B d1,l
C

(xl)\BC|x1,l−x2,l|(xl)

e4uldVg ≤ ol(1)

∞∑

j=0

(
5

7

)4(γ−1)j

→ 0,
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This formula, joint with (92), yields the conclusion of the Lemma.

The proof of Step 3 follows from the arguments of Lemmas 5.1, 5.2, repeating the procedure for all the
clusters of the points of {x1,l, . . . , xj,l} \X1,l.

The proof of the theorem is now an easy consequence of (9) and (85), since k0 is not an integer multiple
of 8π2.

5.2 The case k0 < 8π2

In this final subsection we consider the cases in which Pg possesses some negative eigenvalues and k0 <

8π2. We prove first the following result, which regards boundedness of the V -component of sequences of
solutions.

Lemma 5.3 Suppose Pg possesses some negative eigenvalues, and suppose that kerPg = {constants}.
Let (ul)l ⊆ H2(M) be a sequence satisfying (7)-(9). Let us write ul = ûl + ũl with ûl ∈ V and ũl ⊥ V ,
where V denotes the direct sum of the negative eigenspaces of Pg. Then there holds

‖ûl‖H2(M) ≤ C,

for some positive constant C independent of l.

Proof. Let v̂1, . . . , v̂k be as in (17). Then, by standard elliptic regularity theory, each v̂i is smooth on
M . Testing (7) on ûl we obtain

〈Pgûl, ûl〉+ 4

∫

M

QlûldVg + 4kl

∫

M

e4ul ûldVg = 0.

Using (9), the fact that on V the L∞-norm is equivalent to the H2-norm, and the Poincaré inequality,
from the last formula we deduce that

−〈Pgûl, ûl〉 = O(1)‖ûl‖H2(M).

Since Pg is negative-definite on V , the conclusion follows.

Next, we consider separately the following three possibilities, one of which will always occur for k0 < 8π2

and for l sufficiently large.

Case 1: kl < 0. First of all, using the Jensen inequality we find immediately that ul ≤ C, for some
constant C independent of l. Then, multiplying (7) by ul and integrating on M , using the Poincaré
inequality and Lemma 5.3, we find

〈Pgul, ul〉 = 2kl

∫

M

e4ululdVg − 2klul +O
(

〈Pgul, ul〉
1
2

)

+ C

≤ C + (−2kl)ul +O
(

〈Pgul, ul〉
1
2

)

≤ C +O
(

〈Pgul, ul〉
1
2

)

.

Again by Lemma 5.3, this implies uniform bounds on ‖ul − ul‖ and hence, by (19), uniform Lp bounds
on e4ul for any p > 1. Then the conclusion follows from standard elliptic regularity results.

Case 2: 0 ≤ kl2 ≤ π2. Since we are assuming (9), we easily see that the alternative (26) in Proposition
3.1 cannot occur. Therefore, reasoning as in the previous case, we obtain uniform Lp bounds on e4ul for
some p > 1.

Case 3: 2π2 ≤ kl <
1
2 (k0+8π2) < 8π2. In this case it is k0 > 0. Assuming (ul)l unbounded, Proposition

3.4 applies, and (39) gives a contradiction to (9), since k0 < 8π2.
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