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Introduction

Hyperbolic geometry has long been acknowledged as pivotal in unraveling the intricate

mysteries of the world of low-dimensional topology.

In the two-dimensional context, the Gauss-Bonnet Theorem shows that topology

and geometry are closely intertwined. In particular, all closed surfaces admit a metric

of constant curvature, and in all but a finite number of them this metric is hyperbolic.

Three-dimensional topology is much more complicated, and has been one of the most

active fields of research in the last century. The crucial step in advancing our knowledge

on this topic has been Perel’man confirmation of Thurston’s Geometrization Conjecture;

every 3-dimensional manifold decomposes into geometric pieces, each modelled on one

of eight geometries. Among these eight models, hyperbolic geometry stands out again

as the most interesting, the most common, and the most mysterious.

As the dimension increases, the impact of hyperbolic geometry seems to fade away.

Moreover, there is a significant lack of tools to even build and study concrete examples.

In our thesis, we construct some interesting examples of hyperbolic manifold in

dimensions 4, 5, 6, 7 and 8, building up on some of the few tools available. This answers

some long-standing open questions regarding hyperbolic groups.

One of the most fascinating phenomena in the topology of 3-manifolds is the existence

of hyperbolic manifolds that fiber over the circle S1. As pointed out by Thurston in

[59], such fibrations are quite paradoxical, as the fiber is as far as possible from being

geodesic. In fact, its preimage in H3 consists on the union of smooth disks that are at

bounded distance from each other, but their limit set in the boundary of H3 is the whole

sphere at infinity. In particular, the metric induced on the fiber is not hyperbolic.

The first example of a hyperbolic 3-manifold fibering over the circle was discovered by

Jørgensen [32] in 1977. Since then, many contributions were given to the topic; helping to

deepen our understanding of these manifolds. In particular, Thurston [58] characterized

which fiber bundles over the circle S1 admit a hyperbolic structure; and more recent

contributions by Agol and Wise [1, 62] confirmed the virtual fibering conjecture: each

closed hyperbolic 3-manifold admits a finite cover that is a fiber bundle over the circle.
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Although the situation in dimension 3 is well understood, in dimension n > 3 no

examples of fibering hyperbolic n-manifolds were known until [30]. Note that an even

dimensional hyperbolic manifold M cannot fiber over S1, due to an Euler characteristic

obstruction. In fact, the Euler characteristic χ(M) of a fiber bundle over S1 is always

0; but a generalization of the Gauss-Bonnet Theorem ensures that if M is hyperbolic,

then χ(M) is proportional to the volume of M , and therefore cannot vanish.

To find a fibering hyperbolic n-manifold with n > 3, the first dimension to look at

is therefore n = 5. The main theorem presented in this thesis is the following:

Theorem A: There is a complete, hyperbolic manifold M5 with finite volume which

fibers over the circle S1.

The manifold M5 is built using a construction of Vesnin [60], starting from a right-

angled polytope P 5 and a colouring of its facets. The main technique used to build

and study the fibration map f : M5 → S1 is Bestvina-Brady theory [9], enriched with a

combinatorial game by Jankiewicz, Norin and Wise [31]. With the use of these tools, we

manage to translate a description of f into a combinatorial language, which interacts

nicely with the starting construction. The exploitation of the extraordinary symmetries

of the polytope P 5 contributes to simplify the needed computations.

Using similar techniques, we construct a manifoldMn for each dimension n = 3, ..., 8,

and a map f : Mn → S1. These maps are algebraic fibrations, in the sense that the kernel

of the induced map f∗ : π1(M
n) → π1(S

1) = Z is finitely generated.

In dimensions 3 and 5, the maps will be fibrations. In the 4-dimensional case, the

map cannot be a fibration (since 4 is even), but it has the minimal possible number of

critical points. In particular, it is the perfect circle-valued Morse function constructed

in [6]. In dimension 7 and 8, we manage to promote the finitely generated kernel to be

finitely presented.

When a hyperbolic 3-manifold M fibers over S1, the fiber F is a finite type surface.

As we have already mentioned, even if F can in principle carry a hyperbolic metric, the

metric induced on F by the metric of M is not hyperbolic.

This incompatibility between the hyperbolic structure and the structure of a fiber

bundle carries on in higher dimension n ≥ 5, in an even more drastic way: the mon-

odromy of the fiber F has infinite order in Out(π1(F )), so in particular F cannot admit

any hyperbolic metric by Mostow Rigidity.

This leads us to turn our attention to hyperbolic groups. We say that a group is

of finite type if it has a finite classifying space. With some technical precautions, due

to the fact that the manifold M5 is cusped (and hence not closed), we are able to use

Theorem A to prove the following.
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Theorem B: There is a hyperbolic group G that contains a subgroup H < G of finite

type that is not hyperbolic.

This theorem answers a well-known open question, raised by Bestvina [8, Question

1.1], Brady [15, Question 7.2], Bridson [12, Question 4.1], and Jankiewicz, Norin and

Wise [31, Section 7]. A finitely generated subgroup of a hyperbolic group that is not

hyperbolic was first constructed by Rips in 1982 [53], while a finitely presented subgroup

was exhibited by Brady in [15]. It is worth noting that every finite type subgroup of

a hyperbolic group of cohomological dimension 2 is hyperbolic [25]. The cohomological

dimensions of the groups G and H that are built to prove Theorem B are 5 and 4.

As a corollary of Theorem B, we obtain the following.

Corollary C: There is a finite type group H that is not hyperbolic, and does not contain

any Baumslag-Solitar subgroup BS(m,n).

It is well-known that any hyperbolic group G is of finite type, and it does not contain

any Baumslag-Solitar subgroup BS(m,n). For some classes of groups, this finiteness

condition, together with the absence of Baumslag-Solitar subgroups, is actually sufficient

to imply hyperbolicity: some examples are the fundamental groups of 3-manifolds, free-

by cyclic groups [16], and more generally the ascending HNN extensions of free groups

[46]. However, Corollary C shows that this is not true in full generality, answering

another well-known open question, raised by Bestvina [8, Question 1.1], Bridson [12,

Question 2.22], Drutu and Kapovich [19, Problem 11.129].
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Structure of the thesis

This thesis is organized as follows.

In Chapter 1, we present a procedure to build a hyperbolic manifold, starting from a

right-angled hyperbolic polytope and a colouring of its facets. Next, we introduce a

very symmetric family of polytopes in dimensions 3 to 8, and we use them as building

blocks for the previously mentioned procedure. The resulting manifolds Mn are the

main characters of this thesis.

The first part of Chapter 2 is dedicated to the exposition of the two main tools used

in this thesis: Bestvina-Brady Morse theory, and a combinatorial game by Jankiewicz,

Norin and Wise. Following this, we use these tools to build several examples of maps

f :Mn → S1 and study their critical points. In the last part of the chapter we focus on

the case of the manifold M5, for which we build a fibration over the circle S1, proving

Theorem A.

In Chapter 3, after a short introduction to hyperbolic groups, we use the fibering man-

ifold M5 to build examples of ”exotic” hyperbolic groups, proving Theorem B and

Corollary C. These results answer some long-standing open questions in geometric group

theory.

Finally, in Chapter 4, we discuss some natural and perhaps interesting questions raised

by this work.



Chapter 1

Constructing Manifolds

In this chapter we describe a procedure to build a hyperbolic manifold starting from a

right-angled polytope and some combinatorial data. Subsequently, we will apply this

procedure to a particular sequence of polytopes to build the manifolds which will be

the main topic of interest of this thesis; closely following the paper [29]. To help with

computations, we have used a program in Sage, whose code can be found in [63].

We will refer to finite volume right-angled polytopes in an ambient space X, that
can be either Sn, Rn or Hn (in the last case, the polytope can have both real and ideal

vertices). Though we are mostly interested in the hyperbolic case, we will state our

theory in a more general context, since examples are often easier to visualize in the

spherical and Euclidean models. Moreover, the Euclidean case will be relevant to better

understand the cusps of the hyperbolic manifolds.

Throughout the course of this thesis, all hyperbolic manifolds are tacitly assumed to

be complete and of finite volume, unless otherwise specified.

1.1 From a colouring to a manifold

There is a general procedure to construct an X-manifold, starting from any right-angled

X-polytope and a colouring of its facets. This technique was first described by Vesnin

[60] in 1987, taking inspiration from Löbell’s construction of the first known compact

hyperbolic 3-manifold [39] in 1931.

Definition 1. Let c be a natural number. A c-colouring of a right-angled polytope

P ⊆ X is the assignment of one colour from a palette {1, ..., c} to each facet of P , with

the property that adjacent facets have different colours. We assume that each colour

is used to paint at least one facet, i.e., that the assignment map F(P ) → {1, ..., c} is

surjective.

11
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A right-angled polytope P ⊂ X can be interpreted as an orbifold tessellating the

space X. In particular, we get P = X/Γ, where Γ is the right-angled Coxeter group

generated by the reflections along the facets of P . A presentation for Γ is given by

⟨ rF | r2F , [rF , rF ′ ] ⟩, where F varies among the facets of P , and F , F ′ vary among the

pairs of adjacent facets.

Given a right-angled X-polytope P with a c-colouring of its facets, we consider the Z2-

vector space Zc
2, with the canonical basis e1, ..., ec, and define a homomorphism Γ → Zc

2

by sending each generator rF to ej, where j is the colour of the facet F . One can verify

that the kernel Γ′ of this map acts freely on X, so we get a manifold M = X/Γ′ . The

resulting manifold M is tessellated in 2c copies of the polytope P , and of course inherits

the elliptic/flat/hyperbolic metric of the model X. The tessellation yields an orbifold

cover M → P .

It is interesting to describe this construction from different points of view, that have

a more geometric flavour.

The first new description is as follows. We start with the object M0 = P , and then

we iteratively double along the facets of each colour. More precisely, we define Mi by

taking two copies of Mi−1 and gluing them along the facets of the colour i (using the

identity for the identification). The fact that the polytope has right angles plays a

crucial role, since this condition assures that each facet adjacent to the glued ones fuses

together with the other copy of itself to a single facet of Mi.

The second description has a more global identity. We start with 2c copies of P ,

indexed by vectors v ∈ Zc
2, and we explicitly list all the performed gluings. In particular,

each facet of colour i of the polytope Pv is glued (with the identity) to the corresponding

facet of the polytope Pv+ei .

This construction can be performed in a variety of contexts. Below, we provide some

meaningful examples.

Example 2. There is a right-angled spherical n-simplex, that can be coloured with

n+1 colours, one for each facet. The resulting manifold is Sn, tessellated in 2n+1 copies

of the simplex. The 2-dimensional example is shown in Figure 1.1.

Example 3. An Euclidean n-cube has right angles, and it can be coloured with n

colours, choosing a pair of opposite facets for each colour. The resulting manifold is a

flat n-torus T n, tessellated in 2n cubes. The 2-dimensional example is shown in Figure

1.2.

Example 4. In the 2-dimensional hyperbolic space, for every n ≥ 5 there is a compact

right-angled hyperbolic n-gon. If n is even, it can be coloured with two colours by
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Figure 1.1: A triangle with three right angles in the 2-sphere. By colouring each side

with a different colour, we obtain an octahedral tessellation of S2.

1 1

2

2

Pa b
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d

Pa b

g

h

Pe f

c

d

Pe f
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h

Pa b

c

d

P

PP

a

d

g

h

h

e f e

Figure 1.2: On the left, a 2-coloured square. The picture shows the second geometric

point of view for the construction: we take 22 = 4 copies of the square, and glue them

with the information encoded by the colouring. We obtain a flat torus, as explained in

Example 3.
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Double along 

red sides

Double along 

blue sides

Figure 1.3: On the left, a 2-coloured hyperbolic right-angled hexagon. The picture shows

the first geometric point of view for the construction: we iteratively double the picture

along each of the colours. We obtain a hyperbolic surface of genus 2, as explained in

Example 4.

alternating between the sides. The resulting manifold is a closed surface of genus n
2
− 1:

this can be shown by computing the Euler characteristic. The case of the right-angled

hexagon is shown in Figure 1.3.

Example 5. Every ideal hyperbolic polygon is actually right-angled (there are no ver-

tices, and thus there are also no angles). In particular, since the edges are pairwise

disjoint, it can be coloured with only one colour. The resulting manifold is simply the

double of the polygon, and it is a punctured sphere.

Example 6. The ideal regular octahedron in H3 is right-angled, and can be coloured

with two colours in a checkerboard pattern. The cusped 3-manifold produced by this

construction is the complement of the minimally twisted chain link with 6 components.

More details can be found in [37].

Example 7. There is a regular right-angled dodecahedron in H3, which is compact. It

is possible to colour it with 4 colours, dividing the 12 faces into triples, as shown in

Figure 1.4. The resulting manifold is a closed hyperbolic 3-manifold, tessellated into

24 = 16 copies of such dodecahedron.

Example 8. The ideal 24-cell in H4 has a unique 3-colouring, up to isomorphism. To

describe it, we give a colouring of the vertices of the dual of 24-cell, that is the 24-cell
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Figure 1.4: A bird’s eye view of a 4-colouring of a dodecahedron. The twelfth face is

hidden, and it is coloured with the pink (2) colour.

itself. One simple description arises from the quaternion space. The 24 vertices of

24-cell correspond to the quaternions ±1,±i,±j,±k and all the 16 choices of signs for
1
2
(±1 ± i ± j ± k). The edges correspond precisely to the pair of vertices whose scalar

product is 1
2
.

We colour them using three colours; the first one involves the 8 vertices±1,±i,±j,±k,
we use the second to paint the ones of type 1

2
(±1 ± i ± j ± k) with an even number

of minus signs, and the third to paint the ones of type 1
2
(±1 ± i ± j ± k) with an odd

number of minus signs. An alternative way to look at this subdivision is as the orbits

of the action of the group {±1,±i,±j,±k} over the 24 vertices.

This manifold has been studied in [37], and we refer to this paper for more details.

1.2 Cusps and their sections

If the polytope P ⊂ Hn has some ideal vertices, than the manifold resulting from the

previous construction will have some cusps. The number of cusps and their shape can

be obtained from the initial data by looking at the combinatorial structure of the links

of the ideal vertices.

Let v ∈ P be an ideal vertex. By definition, the link of v in P is the intersection

of P with a small horosphere centered at v. Let C = lk(v) be this link; we observe

that it is an Euclidean (n− 1)-polytope (since it is contained in the horosphere) and it

is right-angled (since P itself is right-angled). Thus it must be a rectangular cuboid.

The cuboid C inherits its own colouring from the colouring of P . Each (n − 2)-facet
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of C corresponds to one (n− 1)-facet of P (precisely, the one in which it is contained),

so we can assign corresponding colours of the facets of P to corresponding facets of C.

With this natural choice, the cuboid C is coloured with c′ ≤ c colours: if we apply the

construction to the coloured polytope C, we obtain a flat (closed) n − 1 manifold N ,

tessellated in 2c
′
copies of C. If we consider the preimage of C under the cover M → P ,

we get some copies of N by construction. Since we have in total 2c copies of C, and

each copy of N involves 2c
′
copies of C; the number of copies of N is 2c−c′ .

In summary, the number of cusps that correspond to an ideal vertex v is 2h, where h

is the number of colours that are not assigned to any facets incident to v. The section of

those cusps is obtained by restricting the colouring of P to the link C of v, and applying

the same construction to it. We next provide some examples.

• If P is a 1-coloured ideal n-gon in H2, then we saw before that the corresponding

manifold is a sphere with n punctures. The link of the ideal vertices is a segment,

and it is 1-coloured. As predictable, since every vertex touches all the colours,

there is just 20 = 1 cusp over each vertex, and the section is a circle obtained by

gluing two segments by their endpoints.

• If P is an ideal n-gon in H2 with all sides coloured with one colour except for one

side, we can check that the resulting manifold is a sphere with 2n− 2 punctures.

There are vertices of two types: vertices adjacent to sides of the same colour, and

the two vertices adjacent to the special side. In the first case, the link is a segment

with the endpoints of the same colour. As before, the section of a cusp is a circle

tessellated is two segments, but this time there is a colour that is not used and

so we get 21 = 2 cusps corresponding to such vertices. In the latter case, the link

is still a segment, but its endpoints are coloured with only one colour. This way,

we get only one cusp with circular section, but it is in some sense ”larger” then

before, since it is tessellated in four segments.

• If P is an ideal n-gon in H2 and we colour its sides with n different colours, then

all ideal vertices will have sections that are circles tessellated in four segments, and

each one of them will have 2n−2 cusps corresponding to it. The resulting manifold

is a surface with n · 2n−2 punctures. By computing its Euler characteristic, it is

possible to see that it has genus 1 + (n− 4) · 2n−3.

• If P is the ideal regular octahedron in H3 and we colour it with two colours in

a checkerboard pattern as in Example 6, the link of each of the 6 ideal vertices

is a square. For each of these vertices we have that h = 0, and the square is

coloured with two colours, giving raise to a torus. Then we have 6 cusps in total,
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which correspond to what was previously stated: the resulting manifold is the

complement of the minimally twisted chain link with 6 components.

• If P is the ideal 24-cell in H4, with the 3-colouring described in Example 8, there

are 24 ideal vertices whose link is a 3-cube. Since every cube needs to be coloured

with at least 3 colours, and we are using 3 colours in total, each link is a 3-coloured

3-cube. Hence, h = 0, and so the resulting manifold M has 24 toric cusps in total.

Cuboid gluings in cusp sections

As we have already discussed, the link of an ideal vertex of a hyperbolic polytope lives

in a horosphere, therefore it has a natural Euclidean metric. Since we are considering

only right-angled polytopes, the only possibility for it is to be a rectangular cuboid. In

this section, we study what can happen to such cuboids when we apply the colouring

construction.

We start by considering a general Euclidean n-dimensional cuboid

C = [0, ℓ1]× ...× [0, ℓn]

The cuboid C has 2n facets, and only the opposite facets do not touch. Therefore, the

smallest colouring uses n colours, one for each opposite pair. Any c-colouring of C has

n ≤ c ≤ 2n, and it is determined by the property that 2n − c opposite pairs share the

same colour, while the remaining 2(c− n) pairs have different colours. If we consider C

to be a cube (which is the case, if we limit ourselves to the combinatorial point of view),

the number of colours c completely determines the colouring, up to isometries of C. Let

N be the flat n-manifold resulting by applying the usual construction to the coloured

cuboid C.

Proposition 9. The resulting flat manifold N is an n-torus, and it is isometric to the

product of n circles of length a1ℓ1, ..., anℓn where ai = 2 if the i-th pair of opposite faces

share the same colour, and ai = 4 otherwise.

Proof. We use the algebraic definition of the construction. Therefore let us consider Γ

to be the reflection group of C and Γ′ ◁ Γ be the kernel of the map Γ → Zc
2 induced by

the colouring. By definition, we have that M = Rn/Γ′.

We now consider ri,1 and ri,2 to be the reflections along the opposite facets of C that

are orthogonal to the i-th axis, for i = 1, . . . , n. The composition ri,1ri,2 is a translation

along the axis of distance 2ℓi. If the facets share the same colour, we have ri,1ri,2 ∈ Γ′.

Otherwise, we have ri,1ri,2ri,1ri,2 ∈ Γ′. This shows that

a1ℓ1Z× · · · × anℓnZ < Γ′
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where ai is equals to either 2 or 4, depending on whether the i-th pair of opposite facets

shares the same colour.

To show that they are actually equal, we show that these two subgroups have the

same index in Γ. If we use c colours, we have noted before that 2n − c opposite pairs

share the same colour, while the remaining 2(c − n) pairs have different colours. We

deduce that the two indices of those groups in Γ are

22n−c · 4c−n = 2c.

Therefore Γ′ = a1ℓ1Z× · · · × anℓnZ and M is as stated.

Summing up our discussion on the cusps of the hyperbolic manifolds arising from

the colouring construction, we get the following:

Proposition 10. Let P ⊂ Hn a right-angled polytope with some ideal vertices, let us

consider a c-colouring of P , and let M be the hyperbolic n-manifold resulting from the

construction. Then:

(i) All the cusps of M are toric, i.e., they are diffeomorphic to a flat (n− 1)-torus;

(ii) For every ideal vertex v, the number of cusps above v is 2c−c′, where c′ is the

number of colours of facets incident to v.

1.3 Right-angled hyperbolic polytopes

After having described the procedure, we now turn our attention to its main ingredient:

right-angled polytopes. While in Euclidean geometry only cuboids have right angles,

hyperbolic geometry has a richer variety, at least when the dimension is low enough.

In H2, there are plenty of right-angled n-gons for each n > 4, and we can even choose

some of the vertices to be ideal. In dimensions 3 and 4 we have plenty of interesting

examples, both compact and non-compact, such as the previously mentioned regular

dodecahedron and the ideal regular octahedron in H3, or (the compact) regular 120-cell

and the ideal regular 24-cell in H4.

Compact right-angled hyperbolic polytopes cannot exist when the dimension is

higher then 4: this follows from Nikulin inequality [47] for the average number of h-

dimensional faces of a k-dimensional face of a simple polytope (see [48] for more details).

As a consequence, it is impossible to build closed hyperbolic manifolds in dimension

higher than 4 using the techniques described in this chapter.

It has been also proven by Dufour that right-angled hyperbolic polytopes cannot

exist when the dimension is higher than 12, (see [20]).
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Finally, examples are only known up to dimension 8, some of which will be present

in the next section.

1.4 The polytopes P n

We now present the sequence of polytopes that will be use as the main building blocks in

this thesis. It is a sequence of right-angled hyperbolic polytopes P 2, P 3, P 4, P 5, P 6, P 7,

P 8 with both ideal and real vertices, which have very nice symmetries. These polytopes

were first introduced in a paper of Agol, Long and Reid [2]. A complete description of

the combinatorial and geometric properties of these polytopes can be found in [48] and

[21], but we briefly summarize here the main properties and how they are constructed.

For each n = 2, ..., 8 the polytope P n ⊂ Hn is an n-dimensional finite-volume hyper-

bolic right-angled polytope with both ideal and real vertices. The real vertices all have

a (n−1)-simplex as a link, while all the links of the ideal vertices are a (n−1)-cube. All

the facets of the polytope P n are isometric to Pn−1. Moreover, the isometry group of

each P n acts transitively on the facets. A summary of the main combinatorial features

of such polytopes is illustrated in Table 1.1.

The polytope P 2 is a triangle with two ideal vertices and one real vertex that has a

right angle. We can describe P 2 as the result of a construction procedure that will be

useful to understand the higher dimensional polytopes. We start by taking two copies

of a hyperbolic triangle ∆2 with one ideal vertex and the remaining two angles of π
2
and

π
4
; we then glue those two triangles along the side with the two real vertices. Note that

both angles double; so we get a right angle in correspondence of the π
4
of ∆2. The two

right angles fuse together into an angle of π, so the two sides glue nicely into a single

side. A picture of this gluing can be found in Figure 1.5.

To build the polytope P n we start from a hyperbolic Coxeter n-simplex ∆n with one

facet F ∗ that has the following properties:

1. The angle between F ∗ and all the other facets is either π
2
or π

4
.

2. The vertex v∗ opposite to F ∗ is real.

Such a simplex exists up to dimension 8. Since ∆n is a hyperbolic Coxeter polytope,

it tessellates Hn. Inside this tessellation we can consider one vertex corresponding to

v∗, and define P n to be the star of this vertex (i.e., the union of all the simplices that

contain this vertex). Analogously to what we have seen before, the angles of π
4
will fuse

in pairs to form right angles, and the right angles will make an angle of π that fuses the

facets together, thus eliminating the angle. A picture of this process for P 3 is shown in

Figure 1.6.
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Figure 1.5: The polygon P 2 inside the hyperbolic plane H2. It is the union of two hyper-

bolic triangles with one ideal vertex and angles (0, π
4
, π
2
). Note that the two horizontal

sides near the right angles fuse together into a single side.

Facets Ideal Finite Isom(P n) #Isom(P n) Dual

P 3 6 3 2 A1 × A2 12 Triangular prism

P 4 10 5 5 A4 120 Gosset 021

P 5 16 10 16 D5 1920 Gosset 121

P 6 27 27 72 E6 51840 Gosset 221

P 7 56 126 576 E7 2903040 Gosset 321

P 8 240 2160 17280 E8 696729600 Gosset 421

Table 1.1: The number of facets, ideal vertices, and finite vertices of P n, the isometry

group Isom(P n) expressed as a Weyl group and its order |Isom(P n)|, and the dual

Euclidean polytope.
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Figure 1.6: On the left, the simplex ∆3. The bottom face is F ∗, and has angles of π
2
, π
2
, π
4

with the other faces. The other 3 faces make angles of π
2
, π
4
, π
6
with each other. On the

right, the subdivision of P 3 into 12 simplices given by its construction process. The

ideal vertices are marked with a blue dot.

The dual Gosset polytopes

For the constructions used in this thesis, we are especially interested in the combinatior-

ial dual of the polytopes we intend to use. The dual of the polytopes P n is a remarkable

sequence of polytopes that was discovered and studied by Gosset [26] in 1900. Ev-

ery Gosset polytope is a Euclidean polytope with regular facets, whose isometry group

(which is the same as Isom(P n)) acts transitively on the vertices. Its regular facets are

of two types: facets that are dual to the real vertices of P n are simplices, and facets

that are dual to the ideal vertices of P n are hyperoctahedra. This is of course expected,

as they are the dual of the links of such vertices in P n.

A colouring on P n corresponds to a colouring of the vertices of the dual Gosset

polytope such that vertices that are connected by an edge must have different colours.

To do that, we will consider the 1-skeleton of the Gosset polytopes, and try to find a

colouring that respects as much as possible the following two principles:

• It has a small number of colours;

• It has a high degree of symmetry, which means that a large number of isometries

preserve the colouring.
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3

1 2

1

2 3

Figure 1.7: The chosen colouring on the dual of P 3. Each of the three lateral squares

corresponds to an ideal vertex.

1.5 The manifold M 3

The polytope P 3 is a right-angled double pyramid with triangular base. It has three

ideal vertices (corresponding to the base triangle), and two real vertices. The dual

polytope is a triangular prism: its 1-skeleton can be coloured with three colours as

shown in Figure 1.7. This colouring is unique up to isomorphism, and uses the minimal

number of colours. We assign this colouring to P 3, and apply the previous construction

to it: this produces a hyperbolic 3-manifold M3, tessellated in 23 = 8 copies of P 3.

The polytope P 3 has three ideal vertices, each of them having a square C as link,

since they correspond to the square faces in the dual triangular prism. As we can see in

Figure 1.7, every square C is 3-coloured. By Proposition 10, we deduce that every ideal

vertex corresponds to a unique cusp, since 23−3 = 1. The manifold M3 has therefore 3

toric cusps.

Using Sage, and a formula from [18], we were able to compute the Betti numbers ofM3:

b0(M
3) = 1, b1(M

3) = 3, b2(M
3) = 2.

Finally, we are able to describe more explicitly the manifold M3:

Theorem 11. The manifold M3 is the complement of the Borromean rings in S3.

Proof. Let C = [0, 1]3 be a cube. Remove from C the three edges of equation

x = 1, y = 0; y = 1, z = 0; z = 1, x = 0.

A picture of the resulting cube can be found in Figure 1.8. If we think of those edges

as ideal vertices, C could be seen as a polyhedron which is combinatorially isomorphic
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Figure 1.8: A representation of P 3 as a cube with 3 edges removed.

to P 3; the two real vertices are (0, 0, 0) and (1, 1, 1), and the 6 faces of the cube become

triangular after having collapsed the three edges to (ideal) vertices.

We now describe M3 by using C instead of P 3. We colour C with 3 colours exactly

as we have done for P 3. After having performed the construction, we obtain a 3-torus

tessellated in 8 copies of a cube, with three lines removed (corresponding to the edges

removed in C), parallel to the vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1). The three lines

removed are exactly the cores of the solid tori glued in the representation of the 3-torus

as the (0, 0, 0)-Dehn filling of the complement of the Borromean rings in S3. Hence, the

Theorem follows.

1.6 The manifold M 4

The polytope P 4 has 10 facets (each of which is isometric to P 3), 5 real vertices and 5

ideal vertices. A detailed description can be found in [48] and [51]. As stated before,

the dual of P 4 is the Gosset polytope 021, which is the 4-dimensional rectified simplex.

To visualize 021, we can see it as the convex hull of the midpoints of the 10 edges

of a 4-dimensional simplex. More explicitly, the 10 vertices of 021 can be seen in R5

as the points which have two coordinates equal 1, and all the other coordinates equal

to 0. Two vertices are connected by an edge if they differ by exactly two coordinates.

Furthermore, there are 10 facets; 5 of them are regular tetrahedra, and the other 5 facets

are regular octahedra. The tetrahedral facets are created by the rectification process,

and correspond to the real vertices of P 4; while the octahedral facets are the remaining

part of the original facets after the rectification cut, and correspond to the ideal vertices

of P 4.

A projection of the 1-skeleton of 021 is shown in Figure 1.9. In Figure 1.10 we show
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00011

00101 10010 1000100110

01010 01001

10100

01100 11000

Figure 1.9: A projection of the 1-skeleton of the rectified simplex 021 on the plane, we

also show the string of 0 and 1 representing the coordinates of those points in R5. Some

caution is needed here and in the subsequent figures, since some edges are superposed,

so two vertices that are connected by an edge on the plane projection may not be so in

021. To clarify this ambiguity, we have chosen a blue vertex and painted in red the 6

vertices adjacent to it, in two cases (all the other cases are obtained by rotation). The

blue and black vertices are non-incident. In general, two vertices that belong to a line

that crosses the center of the figure are non -incident. There are 5 such lines, and they

partition the 10 vertices into 5 pairs.

a 5-colouring for 021, and hence P 4. By assigning this colouring to P 4, we obtain a

hyperbolic manifold P 4 tessellated in 25 = 32 copies of P 4.

We now look into the ideal vertices of P 4, i.e., the octahedral facets of 021. As we

have seen, there are 5 such facets in 021, and each of them is contained in one of the

five coordinate hyperplane xi = 0. In Figure 1.11 we highlight the facet corresponding

to x1 = 0, and see that it is 5-coloured; the same holds for the other four octahedra. By

duality, we have that the link of each ideal vertex of P 4 is a 5-coloured cube. Thus, by

Proposition 10, we deduce that every ideal vertex corresponds to a unique toric cusp,

since 25−5 = 1. The manifold M4 has therefore 5 cusps.

Using Sage, and a formula from [18], we were able to compute the Betti numbers ofM4:

b0(M
4) = 1, b1(M

4) = 5, b2(M
3) = 10, b3(M

4) = 4.

We get χ(M4) = 2.

1.7 The manifold M 5

The polytope P 5 has 16 facets (each of which is isometric to P 4), 16 real vertices and

10 ideal vertices. Each facet is opposed to a real vertex. A more detailed description
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Figure 1.10: A 5-colouring of the 1-skeleton of the Gosset polytope 021, corresponding

to our choice of colouring for P 4.
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Figure 1.11: The octahedral facet of P 4 corresponding to the hyperplane x1 = 0, and

the colouring it inherits. This is a subgraph of Figure 1.10.
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can be found in [48] and [52].

To describe P 5 we can use the Klein model for H5, seen as the unit ball embedded

in R5. In this way, we can see it both as an hyperbolic and an Euclidean polytope,

depending on the situation. The polytope P 5 is the intersection of the 16 half-spaces of

equation

±x1 ± x2 ± x3 ± x4 ± x5 ≤ 1

having an even number of minus signs. The 10 ideal vertices correspond to the points

(±1, 0, 0, 0, 0), (0,±1, 0, 0, 0), (0, 0,±1, 0, 0), (0, 0, 0,±1, 0), (0, 0, 0, 0,±1).

The 16 real vertices are the points

1

3
(±1,±1,±1,±1,±1).

having an odd number of minus signs. Each of this vertices is opposed to a facet of P 5

(precisely, the one with the equation that has the opposite choices of signs).

As stated before, the dual of P 5 is the Gosset polytope 121. We can represent 121 in

R5 by describing it as the convex hull of the vertices (±1,±1,±1,±1,±1) with an odd

number of minus signs. Two vertices are connected by an edge if they differ by exactly

two coordinates. Furthermore, there are 26 facets; 16 of them are regular 4-simplices

(corresponding to the real vertices of P 5), and the other 10 are regular 4-octahedra

(corresponding to the ideal vertices).

In Figure 1.12 we have shown a representation of the 1-skeleton of 121. It is based

on the fact that the first 4 coordinates determine the last one (since there is an odd

number of minus signs); so we can represent it as a hypercube. We have said before

that the edges correspond to a difference in two coordinates; if one of those coordinates

is the last one, they correspond to edges of the hypercube, otherwise they correspond

to a diagonal of a 2-face. Another representation of the 1-skeleton of 121, which is a

projection similar to the one drawn in the case of P 4, is shown in Figure 1.13. The

polytope 121 has 26 facets: 16 of them are regular 4-simplices and correspond to the

real vertices of P 5, while the other 10 are regular 4-octahedra dual to ideal vertices of

P 5. The 10 octahedra will play a slightly different role than before, since they will be

distinguished by the colouring into two types.

The hypercube representation shows that there are 8 pairs of vertices (the ones that

are opposite to each other) that are not adjacent to each other; we can use 8 colours to

colour them as shown in Figure 1.14.

Performing the usual construction with this colouring gives rise to a hyperbolic 5-

manifold tessellated in 28 = 256 copies of P 5.



1.8. THE MANIFOLD M6 27

Figure 1.12: A representation of the 1-skeleton of a hypercube. To obtain the 1-skeleton

of 121 it would be necessary to add all the diagonals of all the square faces, but we avoid

to draw them for better readability. Instead, one should consider two vertices to be

adjacent if and only if they are connected by a path of length ≤ 2.

We now look at the ideal vertices of P 5, which correspond to the octahedral facets of

121. Each of those facets is contained in one of the 10 hyperplanes of equation xi = ±1.

Since our colouring is not symmetric in the five coordinates, the two facets on the

hyperplanes x5 = ±1 will inherit a colouring that is different from the other 8 facets.

The two cases are shown in Figure 1.15 and Figure 1.16.

The picture on the left of Figure 1.15 shows the 8 ideal vertices whose link gets a

colouring with all 8 colours. In this case by Proposition 10, over the vertex there is only

one (toric) cusp, since 28−8 = 1. We will call those the large cusps. On the right of

Figure 1.15, we have a representation of one of the two other links: since they inherit

a colouring with only four colours, by Proposition 10 we get 28−4 = 16 cusps over each

vertex. The manifold M5 has therefore 8 · 1 + 2 · 16 = 40 cusps.

With the usual Sage program, we were able to compute the Betti numbers of M5:

b0 = 1, b1 = 24, b2 = 120, b3 = 136, b4 = 39.

We get χ(M5) = 0, as expected.

1.8 The manifold M 6

The polytope P 6 has 27 facets, each one isometric to P 5. It has 72 real vertices and 27

ideal vertices, each of which is opposed to a facet. As always, we refer the reader to [21]

and [48] for more details.
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Figure 1.13: A projection of the 1-skeleton of the Gosset polytope 121 on the plane. Some

caution is needed here and in the subsequent figures, since some edges are superposed,

so two vertices that are connected by an edge on the plane projection may not be so in

121. To clarify this ambiguity, we have chosen a blue vertex and painted in red the 6

vertices adjacent to it, in two cases (all the other cases are obtained by rotation). The

blue and black vertices are non-incident.
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Figure 1.14: A 8-colouring of the 1-skeleton of the Gosset polytope 121, corresponding

to our choice of colouring for P 5. We show the colouring in both models we presented

in the previous figures. Pairs of colours with labels (t, t + 4) have a similar shade,

foreshadowing the pairing that will be implemented in Section 2.8.
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Figure 1.15: The 4-octahedral facets of 121 may inherit one of two different kinds of

colouring. Eight of them inherit a colouring similar to the one of the picture on the left,

while the remaining two inherit a colouring such as the one on the right. Since these

are subgraphs of Figure 1.13, some edges are still superposed.
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Figure 1.16: The 4-octahedral facets of 121 in the hypercube picture of 121. We show

all the edges, even the diagonal ones hidden in Figure 1.12. Eight of them inherit a

colouring similar to the one of the picture on the left, and correspond to the vertices of

8 facets of the hypercube in the picture. The remaining two inherit a colouring such as

the one on the right.
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Figure 1.17: A projection of the 1-skeleton of 221 on the plane. As always, some caution

is needed, since some edges are superposed, and therefore two vertices that are connected

by an edge in the planar projection may not be so in 221.

The dual of P 6 is the Gosset polytope 221, which has of course 27 vertices and

99 = 27 + 72 facets. We can represent the polytope 221 in R7, contained in the affine

hyperspace of equation x1 + ... + x6 − 3x7 = −1, by choosing as vertices all the points

that can be obtained by permuting the first six coordinates of the following three points:

(−1, 0, 0, 0, 0, 0, 0), (1, 1, 0, 0, 0, 0, 1), (0, 1, 1, 1, 1, 1, 2)

Two vertices are connected by an edge if their Lorentzian product is 0. There are 99

facets in total, 72 of those are regular 5-simplices (corresponding to the real vertices),

and the remaining 27 are the 5-octahedra dual to the ideal vertices. Similarly to what

we have done in the previous case, we draw a planar projection of the 1-skeleton of 221

in Figure 1.17.

We now describe a colouring for P 6. We divide all the vertices of P 6 into the following

triplets of mutually disjoint vertices:
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(-1,0,0,0,0,0,0), (1,1,0,0,0,0,1), (1,0,1,1,1,1,2);

(0,-1,0,0,0,0,0), (0,1,1,0,0,0,1), (1,1,0,1,1,1,2);

(0,0,-1,0,0,0,0), (0,0,1,1,0,0,1), (1,1,1,0,1,1,2);

(0,0,0,-1,0,0,0), (0,0,0,1,1,0,1), (1,1,1,1,0,1,2);

(0,0,0,0,-1,0,0), (0,0,0,0,1,1,1), (1,1,1,1,1,0,2);

(0,0,0,0,0,-1,0), (1,0,0,0,0,1,1), (0,1,1,1,1,1,2);

(1,0,1,0,0,0,1), (0,1,0,0,1,0,1), (0,0,0,1,0,1,1);

(0,1,0,1,0,0,1), (0,0,1,0,0,1,1), (1,0,0,0,1,0,1);

(0,0,1,0,1,0,1), (1,0,0,1,0,0,1), (0,1,0,0,0,1,1).

The colouring produces a hyperbolic 6-manifold M6, that is tessellated into 29 = 512

copies of the polytope P 6.

The polytope P 6 has 27 ideal vertices. Using our program in Sage [63], it is possible

to verify that the link of each of these 27 ideal vertices is a 9-coloured 5-cube C. In

fact, each ideal vertex v is opposed to a facet F of P 6, and v is incident precisely to the

10 facets that are not adjacent to F . Therefore, by Proposition 10, the preimage of C

consists of a single toric cusp section (since 29−9 = 1). In particular, we deduce that the

hyperbolic manifold M6 has 27 cusps, one above each vertex of P 6.

The Betti numbers of M6, calculated by our program, are:

b0 = 1, b1 = 18, b2 = 183, b3 = 411, b4 = 207, b5 = 26.

We get χ(M6) = −64.

1.9 The manifold M 7

The hyperbolic polytope P 7 has 56 facets, each isometric to P 6. It has 576 real vertices,

and 126 ideal vertices.

The dual Gosset polytope 321 has 56 vertices. Our choice of colouring will be based

on the fact that P 7 is a facet of P 8, and therefore a colouring of P 8 induces a colouring

of P 7. This is simply done by choosing a facet F of P 8, that it is isometric to P 7, and

noticing that the facet of F are characterized as the intersection of F with one of the

other facets of P 8 that are adjacent to F . We use such correspondence to assign colours

to F , hence to P 7. We notice that we use at least one colour less then in the original

colouring, since the colour of F will not be present in its adjacent facets.

In particular, starting from a specific 15-colouring of P 8, that will be described in

Section 1.10, we will notice that it induces a 14-colouring on P 7. We equip P 7 with this

14-colouring. The usual construction produces a hyperbolic 7-manifold M7, tessellated

into 214 = 16384 copies of P 7.
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The polytope P 7 has 126 ideal vertices. To compute the number of cusps of M7 we

used Sage to identify how many colours appear in the links of the ideal vertices. We

discovered that 14 of these vertices are incident to 6 distinctly-coloured facets (so they

generate 214−6 = 28 cusps each), while the remaining 112 are incident to 12 (so they

correspond to 214−12 = 4 cusps. This fact is similar to what happens for P 5, in particular

6 and 12 are again the minimum and maximum number of colours in a colouring of a

6-cube. From Proposition 10 we deduce that M7 has 14 · 28 + 112 · 22 = 4032 cusps.

We used Sage to compute the Betti numbers of M7:

b0 = 1, b1 = 182, b2 = 6321, b3 = 41300, b4 = 55139, b5 = 24010, b6 = 4031.

We get χ(M7) = 0, as expected.

1.10 The manifold M 8

The hyperbolic polytope P 8 has 240 facets (each of which is isometric to P 6), 17280

real vertices, and 2160 ideal vertices. The dual polytope is the Gosset polytope 421,

which has 240 vertices. Despite its complicated combinatorics, it admits a very sym-

metric description by using octonions, very similar to the one done with the 24-cell in

Example 8.

Octonions

Octonions are a generalization of quaternions to dimension 8. Although they share with

quaternions many algebraic and combinatorial properties, one should be careful when

operating with them, since the product of octonions is not associative. We will briefly

introduce the main features, and we recommend [5] for a more extensive introduction.

We define the octonions O as the R-vector space of basis 1, e1, ..., e7. We equip it

with a multiplication, by imposing that e2i = −1 and that ei · ei+1 = ei+3 for each index

i (indices are intended modulo 7). From the previous data it is possible to deduce the

whole multiplication table for ei · ej, but there is a useful visual representation: the

product of two distinct elements ei and ej is described by the Fano plane shown in

Figure 1.18.

In particular, for every i ̸= j the elements ei and ej share one oriented line in the

diagram; if ek is the third element of that line, we have that ei · ej = ±ek, where the

sign depends on whether the cyclic orientation i, j, k is the same depicted in the oriented

line. For example, e1e2 = e4 and e3e1 = e7.

As it happens with quaternions, the product is not commutative. However, in this

case, more attention is required.
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Figure 1.18: The Fano plane, which is the projective plane over Z2. It contains 7 points

and 7 oriented lines (the circle should be interpreted as a line, and all lines should be

interpreted as cyclic).

Remark 12. The product in O is not associative, for example

(e1e2)e3 = e4e3 = −e6, e1(e2e3) = e1e5 = e6.

It is in general true that (eiej)ek = ±ei(ejek), where the sign is + if and only if ei, ej

and ek belong to the same line of the Fano diagram.

The colouring

The Gosset polytope 421 can be nicely represented in O: the vertices are the 240 non-

trivial elements of smallest norm in the E8 lattice (up to rescaling). In particular, the

vertices are the octonions

±1, ±e1, ±e2, ±e3, ±e4, ±e5, ±e6, ±e7,
1
2
(±1± en ± en+1 ± en+3),

1
2
(±en+2 ± en+4 ± en+5 ± en+6)

where the index n runs modulo 7. We get indeed 2 · 8 + 16 · 7 + 16 · 7 = 240 vertices in

total. Two such vertices are connected by an edge if and only if their scalar product (as

elements of the Euclidean space R8 is 1
2
). Each vertex is connected to 56 other vertices,

this is coherent with the fact that the link is (the dual of) P 7, which has 56 facets.

We subdivide the 240 vertices into 15 groups of 16 vertices each, and use this subdi-

vision as a colouring. The groups are:

1. C0 = {±1,±e1,±e2,±e3,±e4,±e5,±e6,±e7};
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2. For each of the 7 possible fixed values of n, we take the set C+
n the elements of

type 1
2
(±1 ± en ± en+1 ± en+3) and 1

2
(±en+2 ± en+4 ± en+5 ± en+6) that have an

even number of minus signs;

3. For each of the 7 possible fixed values of n, we take the set C−
n the elements of

type 1
2
(±1 ± en ± en+1 ± en+3) and 1

2
(±en+2 ± en+4 ± en+5 ± en+6) that have an

odd number of minus signs.

It is easy to check that the scalar product of two element of the same group is always an

integer, so it can never be 1
2
. From this we deduce that two vertices in the same group

are never adjacent; so this is a proper colouring.

Remark 13. There is a more algebraic way to view this colouring, since the 15 sets

are the orbit of the ”action” of the set C0 = {±1,±e1,±e2,±e3,±e4,±e5,±e6,±e7} by

left-multiplication on the 240 vertices. It is important to note that C0 is not a group,

since the product is not associative.

If we equip P 8 with this colouring and perform the usual construction, we get a

manifold M8 tessellated into 215 = 32768 copies of P 8. As it was the case for P 5 and

P 7, the ideal vertices have two types of behaviour. There are 2160 ideal vertices in

total, 1920 of them have a 14-coloured 7-cube as a link, while the remaining 240 have

a 7-coloured 7-cube. As it was the case before, 14 and 7 are respectively the maximum

and minimum number of colours for a 7-cube. As usual, we can use Proposition 10 to

compute the total number of cusps, which is 240 · 28 + 190 · 2 = 65280.

Using Sage we can compute the Betti numbers of M8:

b0 = 1, b1 = 365, b2 = 33670, b3 = 583290,

b4 = 1783226, b5 = 1346030, b6 = 456595, b7 = 65279.

We get χ(M8) = 278528.

1.11 Volumes

We conclude this chapter by showing the volumes of the hyperbolic manifoldsM3, . . . ,M8

in Table 1.2. To compute them, we differentiate between the even and odd dimensional

case. When the dimension n = 2m is even, we use the Chern-Gauss-Bonnet formula

Vol(P ) =
(−2π)m

(n− 1)!!
· χ(P ).

In odd dimension, we multiply the volume of the polytope P n for the number of poly-

topes tessellating the manifold. In our case

Vol(P 3) = L(2) ∼ 0.91, Vol(P 5) = 7ζ(3)/8 ∼ 1.05, Vol(P 7) = 8L(4) ∼ 7.92.
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Volume Approx. Value χ Cusps

M3 8 · L(2) 7.28 0 3

M4 8π2/3 26.3 2 5

M5 224 · ζ(3) 269 0 40

M6 512π3/15 1.06 · 103 −64 27

M7 131072 · L(4) 1.30 · 105 0 4032

M8 4456448π4/105 4.13 · 106 278528 65280

Table 1.2: The volume, the Euler characteristic, and the number of cusps of each hy-

perbolic n-manifold Mn.

The symbols ζ and L indicate the Riemann and Dirichlet functions, see [50] or [21].
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Chapter 2

Algebraic and Geometric Fibrations

In this chapter, we present results concerning topological and algebraic fibrations of the

manifolds constructed in Chapter 1. The same results are described in [6, 29, 30].

Definition 14. An n-manifold M fibers over S1 if it is a fiber bundle with base S1. In

particular, there are a (n− 1)-manifold F and a diffeomorphism φ : F → F such that

M =
F × [0, 1]

(x, 0) ∼ (φ(x), 1)
.

The manifold F is called the fiber, and the map φ is called the monodromy of the

fibration. The manifoldM constructed starting from F and φ is often called themapping

torus of the map φ.

We are particularly interested in hyperbolic manifolds that fiber over S1. The first

example of such manifold is due to Jørgersen [32] in 1977; since then, this phenomenon

has been on the forefront of the study of low-dimensional topology. Thurston classified

completely which surface diffeomorphisms generate mapping tori that are hyperbolic 3-

manifolds, showing that those are precisely the pseudo-Anosov ones [58]. A celebrated

theorem of Agol [1], together with previous results of Wise [62], shows that all closed

hyperbolic 3-manifolds virtually fiber (i.e., each hyperbolic 3-manifold has a finite cover

that fibers).

Note that, when the dimension n is even, it is impossible for a hyperbolic n-manifold

to fiber. This is due to an Euler characteristic constraint, as explained below.

Proposition 15. Let n = 2k be an even positive number, and Mn be a n-dimensional

hyperbolic manifold. Then, M cannot fiber over S1.

Proof. The Euler characteristic of any fiber bundle over S1 always vanishes. Therefore,

it is sufficient to show that χ(M) ̸= 0. However, it follows from the Chern-Gauss-Bonnet

37
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Theorem that χ(M) is always proportional to the hyperbolic volume:

χ(M) = (−1)k · cn · Vol(M)

where cn is a positive constant that depends only on the dimension n. We deduce that

χ(M) ̸= 0, and therefore M does not fiber.

In this case, any Morse function f : M → S1 must have at least |χ(M)| critical points,
since the alternating sum of the numbers of critical points of each index is χ(M). We are

still interested in the case of even dimension, so we generalize the concept of fibration

by giving the following definition.

Definition 16. A circle-valued Morse function f : M → S1 is perfect if it has exactly

|χ(M)| critical points.

When the dimension of the manifold is odd, χ(M) = 0. Thus in this case a perfect

Morse function is a fibration. Perfect circle-valued Morse functions for 4-dimensional

manifolds have been studied in [6].

The notion of fibration can be seen also from a more algebraic point of view, by

requesting a particular property that is satisfied by the fundamental group of a fibering

manifold, as explained in the definition below.

Definition 17. A group G fibers algebraically if there is a surjective homomorphism

G→ Z with a finitely generated kernel.

For a 3-dimensional manifold, a well-known theorem of Stallings shows that the

algebraic fibering of the fundamental group is equivalent to the fibering of the manifold.

Theorem 18 (Stallings [55]). If G = π1(M) is the fundamental group of a 3-manifold,

and G fibers algebraically with kernel H, than H is the fundamental group of a surface

S embedded in M , and the manifold M fibers over S1 with fiber S.

In higher dimension this statement is false in general, as there are recent examples

of algebraic fibrations of hyperbolic manifold of dimension 4 in [3, 31], and they cannot

fiber due to Proposition 15.

Despite the fact that fibrations of hyperbolic manifolds are now generally well-

understood in dimension 3, not much is known when the dimension is higher. The

first example of a fibering hyperbolic 5-manifold was constructed in [30], and will be

explained in detail in Section 2.8.

Theorem 19. The manifold M5 fibers over S1.
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All examples known so far are commensurable with M5, and are obtained by quo-

tienting M5 or one of its covers. In particular, the smallest example of hyperbolic

5-manifold that is known, constructed by Ratcliffe and Tschantz in [52], fibers over the

circle, and its fiber has χ = 1.

2.1 A combinatorial game

In this section we review the main results of a paper by Jankiewicz, Norin and Wise

[31], which is the main inspiration for our work. We wish to define some nice maps

from the manifolds constructed in Chapter 1 to S1, and we work in the piecewise linear

cathegory. The manifold we are interested in are tessellated into copies of a certain

right-angled polytope P , and those maps will be determined by the assignment of an

appropriate state to each copy of P in the tessellation.

We approach this construction like a game: the initial state is allowed to change via

some moves, and we win if we manage to force all the possible states to have some nice

properties, that will be specified in the following sections. The prize for winning is a

nice function f : M → S1.

2.1.1 States and system of moves

Let P ⊂ X be a right-angled polytope in some space X = Hn,Rn, or Sn, with a c-

colouring of its facets. A state for P is a partition of its facets into two subsets, denoted

by I (in) and O (out). Each facet of P thus inherits a status I or O. We next introduce

a notion to change a state for P in a controlled way.

Definition 20. A k-system of moves for a c-coloured polytope P is a partition of its

facets into k non-empty sets V1, ..., Vk such that facets of the same colour also belong to

the same set Vi. We will refer to the sets Vi as moves.

Given a number i ∈ {1, ..., k} and a state S on P , we can apply the move i to S: the

result will be a new state S ′ in which the I/O status of all facets in Vi is switched to the

opposite status, while the other facets maintain their original status. In other words,

the set Vi describes precisely which facets are inverted by the move i. We will mainly

think of a system of moves as a partition of the palette of colours {1, ..., c}, and refer to

m(i) as the move associated to the colour i.

Let M be the hyperbolic/flat/elliptic manifold that arises from the colouring con-

struction of Chapter 1 applied to the coloured polytope P . We now describe a procedure

to propagate a state from a particular copy of the polytope P in the tessellation ofM to
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all the other copies of P in the tessellation. We recall that we can describe the manifold

M as the simultaneous gluing of 2c copies Pv of P , indexed by v ∈ Zc
2.

The group Zc
2 acts on the set of all the possible states on P in the following way.

For each i ∈ {1, ..., c}, the element ei acts on a state S by applying the move m(i) to S;

we then extend the action to every element of Zc
2 by linearity. To have a state on each

polytope of the tessellation, it is therefore sufficient to chose an initial state S on P0,

and then propagate it to all the other copies by choosing the state v · S on Pv for each

v ∈ Zc
2.

In most cases, we will choose the partition in moves to coincide with the partition

in colours. We call this the standard system of moves associated to the colouring.

Remark 21. Note that in the tessellation each facet bounds two copies of P , and it

has opposite status if seen in the state of the two copies of P it bounds. This is a

consequence of the fact that the moves are chosen to simply be a aggregation of the

partition in colours, and it will be crucial in the following sections.

2.1.2 The dual cube complex

Let P ⊂ X be a right-angled polytope in some space X = Hn,Rn, or Sn, with a colouring

of its facets, and let M be the resulting hyperbolic/flat/elliptic manifold. The dual of

the tessellation of M into copies of P is a cube complex C. We think of C as piecewise

linearly embedded in M . If P has at least one real vertex, then dimC = n; otherwise,

if P only has ideal vertices, C is (n − 1)-dimensional. This fact suggests that in the

hyperbolic context we should be very careful, as C is homeomorphic to M only when

all vertices of P are real. When P has ideal vertices, the complement M \ C consists

of the open cusps over the ideal vertices. Therefore M retracts by deformation onto C,

and C is just a spine of the manifold M ; while being homotopically equivalent to M , C

is not necessarily homeomorphic to it.

Each copy Pv of the polytope P corresponds to a vertex of C, which we will simply

call v. Therefore, the 2n vertices of C are indexed by Zc
2. The edges of C correspond

to the facets of the tessellation. For each vertex v of C, and each facet F of P there is

an edge connecting the vertices v and v + ei, where i is the colour of the facet F . Note

that the number of edges connecting v and v + ei is precisely the number of facets of P

that are coloured with colour i.

Let S be a state for the polytope Pv, we notice that S induces an orientation on all

the edges touching the vertex v. Consider an edge e connecting v and v + ei: this edge

will be dual to a facet of P , coloured with the colour i. We look at the state S in Pv,

in particular at the status of the facet dual to e; if this status is I (in), we orient e as

pointing inwards (towards v), otherwise, if the status is O (out), we orient e as pointing
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Figure 2.1: The 1-skeleton of the dual cubulation C forM3, tessellated into 8 polyhedra

P 3
v . The polyhedron P 3 is 3-coloured, and each colour is painted on two faces. The

vertices of C are identified with Z3
2. There are two edges connecting v and v + ej

corresponding to the two faces in Pv with the same colour j, for each j = 1, 2, 3.

outwards (towards v + ej). Notice that an edge gets the same orientation from its two

vertices, thanks to Remark 21, so this definition is well-posed.

An example of the cube complex C for the manifold M3 is shown in Figure 2.1. The

orientation induced by a particular state is shown in Figure 2.4.

2.1.3 Diagonal maps

We have seen in the previous section that a state on the polytope P0 of the tessellation

can be propagated to all polytopes Pv with an appropriate system of moves. Further-

more, those states induce an orientation on all the edges of the dual cube complex C.

In this section, we limit ourselves to study the case in which the system of moves is the

standard one, i.e., the one that coincides with the partitions of the facets in colours.

As a consequence of this choice, by construction, the orientation of the edges in C

will be coherent, that is on every square of C (and hence on any k-cube) the orientations

of two opposite edges match as in Figure 2.2. This crucial fact allows us to define a

map f : C → S1 and directly apply Bestvina-Brady theory [9]. When the coherence

condition does not hold, it is sometimes still possible to successfully define a map; this

will be dealt with in Section 2.8.

The coherent orientation on the cube complex C allows us to identify every k-cube

of C with the standard k-cube [0, 1]k ⊂ Rk, so that the orientations on the edges of

C match the orientations of the axis in Rk. This can be done in a unique way, up to

isometries that permute the axis, but this choice will be irrelevant in the next steps. We
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Figure 2.2: A coherent square and a coherent 3-cube: on every square, each pair of

opposite edges is oriented in the same direction.

0

Figure 2.3: The circle S1, seen as a cube complex with only one vertex and one edge.
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can then define the diagonal map on the standard k-cube as

[0, 1]k −→ S1 = R/Z, x 7−→ x1 + · · ·+ xk.

The diagonal maps on the k-cubes of C match to give a well-defined continuous piecewise-

linear map C → S1. All the vertices of C map to the unique vertex in S1, see Figure

2.3.

By pre-composing it with the deformation retraction r : M → C, we finally get a

diagonal map

f : M → S1.

From the group-theoretic point of view, the diagonal map induces a homomorphism

f∗ : π1(M) → π1(S
1) = Z.

Remark 22. In the previous definition, we have assumed that the colouring and the

system of moves coincide. This definition still works in a slightly more general context:

one could chose a system of moves different from the colouring, but still with the property

that adjacent facets are never in the same move. We call such a system a sparse system

of moves. The coherence property for the orientation of the edges is still verified in this

case, so the diagonal map could be defined in the same way.

We now show that ”interesting” states actually induce ”interesting” maps f∗.

Proposition 23. Let P be a right-angled polytope, with a c-colouring that generates a

manifold M . Let f and f∗ be the maps induced by the choice of an initial state S on P0.

Then, one of the following holds:

1. In the initial state S the facets of P with the same colour also have the same

status. In this case f is homotopic to a constant.

2. In the initial state S there are at least two facets in P with equal colour and opposite

status. In this case the homomorphism f∗ : π1(M) → π1(S
1) = Z is non-trivial

with image 2Z.

Proof. If (1) holds, all the edges joining two given vertices of C are oriented in the same

way, and we may lift the map f : M → S1 to a map f̃ : M → R as follows: send every

vertex v ∈ Zc
2 of C to the maximum number of edges entering in v and pointing inward

from distinct vertices, then extend f̃ diagonally to all the cubes. Since f can be lifted,

it is homotopic to a constant.

If (2) holds, there are two edges joining the same pair of vertices with opposite

orientation, that form a loop that is sent to ±2 along f∗. Moreover 1 ̸∈ Im(f∗) because

the 1-skeleton of C is naturally bipartited into even and odd vertices, according to the

parity of v1 + · · ·+ vc. The image Im(f∗) is therefore 2Z.
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Figure 2.4: We assign a state to P 3 where faces with the same colours have opposite

status. We get the orientation of the 1-skeleton of C shown here.

Case (1) is not so interesting: all the examples that we construct here on the hy-

perbolic manifolds Mn will be of type (2). In (2), since Imf∗ = 2Z, one may decide to

replace f with a lift along a degree-2 covering of S1 to get a surjective f∗.

Corollary 24. If all the facets of P have distinct colours, the diagonal map f is always

homotopically trivial, for every choice of a state.

This inefficient colouring is therefore useless for our purposes.

Remark 25. The result in Proposition 23 assumes that the partition of the facets of P

in moves is the same as the partition in colours. In the case of the choice of a different

sparse system of moves, the correct assumption to have a non-trivial map is that there

are at least two facets in P with opposite status that belong to the same move. However,

Im(f∗) could be smaller than 2Z in this case. In this more general case, the result of

Corollary 24 holds only when all the facets of P belong to different moves.

The definition of the diagonal map f depends on an initial state S on P0. The

state S induces 2c different states on the polytopes Pv: all the states in this orbit are

equivalent, as they produce the same diagonal map, up to isometries of M .

Proposition 26. Two states S, S ′ that lie in the same orbit with respect to the Zc
2 action

produce two diagonal maps f, f ′ : M → S1 that are equivalent up to some isometry of

M , i.e., there is an isometry ψ : M →M with f = f ′ ◦ ψ.

Proof. If S ′ = w · S for some w ∈ Zc
2, we pick the isometry ψ : M →M that sends each

polytope Pv to Pv+w via the identity map. It is simple to verify that we get f = f ′◦ψ.



2.1. A COMBINATORIAL GAME 45

Example 27. For the 3-coloured P 3 we will choose the following state: for every pair

of faces with the same colour, assign I to one face and O to the other (the choice of

which face gets I and which face gets O will not affect much the result, as we will see).

The resulting 1-skeleton of C is then oriented as in Figure 2.4. By Proposition 23 the

homomorphism f∗ is not trivial.

2.1.4 Ascending and descending links

Let P be a right-angled polytope, equipped with both a colouring and an initial state

S. Let M be the manifold resulting from applying the colouring construction. As

explained before, this produces a diagonal map f : M → S1. From Proposition 26 we

have an intuition that the whole orbit of states under the system of moves plays an

important role in determining the map f . We would like to study the map f , and

possibly give an explicit description of it, in function of the state S.

Fortunately, a powerful machinery is already available for this task: it is Bestvina-

Brady Morse theory [9]. The function f behaves like a smooth Morse function: the

vertex in the cubical structure of S1 is the only critical value. Away from the vertices of

C the function glues nicely and we only have regular points. Pushing this analogy, we

are going to define the ascending and descending links at each vertex, in order to study

combinatorially those (possibly) critical points.

We first take a step back. Let Q be an Euclidean polytope dual to P . A state S on

P induces a dual state s on Q, i.e., the assignment of a status I or O to each vertex of Q.

We now remove the interiors of the (n−1)-octahedral facets from ∂Q (which correspond

to the ideal vertices of P , an therefore should not be there). We are left with a flag

simplicial complex Q̄. This holds because P is right-angled, and hence simple; as a

consequence, every face of Q is actually a simplex, except for the (n − 1)-octahedral

facets dual to the ideal vertices of P .

In the cube complex C dual to the tessellation of M in copies of P , the link of each

vertex v ∈ Zc
2 is precisely the simplicial complex Q̄. Since v corresponds to a particular

copy of Pv, its link link(v) = Q̄ inherits a dual status on its vertices. Following [9], we

highlight two subcomplexes that will be crucial in studying the behaviour of the map f

near v.

We define the ascending link (denoted by link↑(v)) as the subcomplex of Q̄ generated

by the vertices labelled with status O, and the descending link (denoted by link↓(v)) as

the subcomplex of Q̄ generated by the vertices labelled with status I. Those complexes

are completely determined by their 1-skeleton, thanks to the fact that Q̄ is actually a

flag complex.

We now consider the induced homomorphism f∗ : π1(M) → Z, and in particular its
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kernel H = ker f∗ < π1(M). A theorem from [9] relates finiteness properties of H to

homotopical properties of the ascending and descending links.

Theorem 28 (Bestvina-Brady [9], Theorem 4.1). Let C be an affine cell complex, with

a function f defined as above, and let H = ker f∗. Then:

(i) If link↑(v) and link↓(v) are connected for every vertex v in C, then H is finitely

generated, and therefore f : M → S1 is an algebraic fibration.

(ii) If link↑(v) and link↓(v) are simply-connected for every vertex v in C, then H is

finitely presented.

As we have anticipated, when all the links are collapsible, we get a much stronger

result:

Theorem 29. Let M be a compact manifold of dimension dimM ≤ 5, with a decom-

position as an affine cell complex C. Let f : M → R/Z = S1 be a PL Morse function,

in the sense of Bestvina-Brady theory. Suppose that for each vertex v ∈ C, the links

link↑(v) and link↓(v) are collapsible simplicial complexes. Then, f : M → S1 can be

smoothed to an actual fibration.

Proof. It suffices to show that the preimage of every closed interval with both endpoints

distinct from the image of a vertex is piecewise-linearly a product. In fact, if that

condition is verified, we can homotope f to be a piecewise-linear fibration. The fact

that the function f can be smoothed to a fibration in the smooth cathegory follows

from the fact that we are working in dimension n ≤ 5 [28, 45].

Let J = [a, b] ⊂ R/Z be such a closed interval, and let MJ = f−1(J). If no images of

a vertex are contained in J , then the manifoldMJ is simply a union of prisms. Therefore

MJ is PL homeomorphic to the product manifold Ma × J , where Mx : = f−1(x).

Let v be a vertex of C, and let t = f(v) ∈ R/Z be the image of v. Take J =

[t − 2ε, t + 2ε] to be a small interval such that t is the only value that is image of a

vertex. We first assume, for the sake of simplicity, that v is the only vertex that is

mapped to t. Then [9, Lemma 2.5] shows that the manifold M[t−2ε,t+ε] collapses onto

M[t−2ε,t−ε] ∪ Cv, where we have coned off the descending link link↓(v) with the cone

Cv. Since link↓(v) is collapsible, then the manifold M[t−2ε,t+ε] collapses onto M[t−2ε,t−ε],

and therefore M[t−ε,t+ε] is PL homeomorphic to the product M−ε × [−ε, ε]. If more

vertices are mapped to t, we can apply the same argument separately to all of them,

since everything is performed locally. This yields the theorem.

When the dimension is even we cannot have a fibration, as we have seen in Propo-

sition 15. It is still interesting to investigate whether the constructed function has the

minimal number of critical points. A different version of Theorem 29 still holds.
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Theorem 30 ([6], Theorem 15). Let P be a 4-dimensional polytope, and let M , C, and

f : M → R/Z = S1 as above. Suppose that at every vertex v both the links link↑(v) and

link↓(v) collapse to a connected polyhedron of dimension ≤ 1, and to a point if v is a

boundary vertex. Then f : M → S1 can be smoothed to a Morse function with only

critical points of index 2.

Theorem 29 and Theorem 30 require the manifold M to be compact. In particular,

they are not directly applicable to manifolds that are built using a hyperbolic polytope

P which has some ideal vertices. To do that, we need to use a truncated version of P ,

in which the cusps are cut along some horospheres. This is explained in detail for the

5-dimensional manifold M5 in Section 2.8.

In the simpler case of the manifolds of dimension 3 and 4, we avoid this truncation

procedure, and look only for the critical points in the cube complex generated by the

construction that uses P . Although this is not completely precise, hiding these techni-

calities allows us to keep the focus on the main conditions for the construction. A more

complete exposition in this regard can be found in [6] and [43].

Finally, the proof of Theorem 30 given in [6] can be adapted to work also to 6-

dimensional polytopes; obtaining only critical points of index 3. However, this general-

ization will not be used in this thesis.

2.1.5 Additional terminology

We introduce some terminology, mainly following [31] and [29].

Let P be a right-angled polytope, together with a c-colouring and an initial state.

After propagating such state with the standard system of moves, we end up with an

orbit of 2c different states, from which we can deduce the ascending and descending

links of the critical points of the function f : M → S1.

We say that a state S for P is legal if the ascending and descending links of that

states are both connected simplicial complexes. We say that the orbit is legal if all

states in that orbit are legal. The objective of the combinatorial game introduced in

[31] is precisely to find a legal orbit. If an initial state generates a legal orbit, Theorem

28 ensures that the function f is an algebraic fibration.

Following [29], we slightly generalize the previous concept, saying that a state S is

1-legal if the ascending and descending links of that states are both simply connected.

Analogously, an orbit is 1-legal if all states in that orbit are 1-legal. As a consequence

of Theorem 28, if an initial state generates a 1-legal orbit, than the kernel H of the

homomorphism f∗ : π1(M) → Z is finitely presented.

Finally, we give the following definition.
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Figure 2.5: The dual of P 3 is a triangular prism, with the lateral squares removed.

We exhibit a state by colouring the vertices in black and white, with black (white)

corresponding to the status I (O). There are only two states in the orbit of P 3 up to

isomorphism, and in both cases the ascending and descending links are contractible:

they are a triangle and two segments joined along an endpoint.

Suppose that the number of facets of a particular colour is always the same even

number 2m. We say that a state S on P is balanced if for every colour, the number of

facets labelled with the status I is the same as the number of facets labelled with the

status O. If we choose the standard system of moves associated to the colouring, and we

propagate a balanced state, it is easy to show that all the states in the orbit maintain

the property of being balanced. For this reason, balanced states are often a wonderful

choice, since they coordinate well with all the symmetries of our polytopes, drastically

reducing the number of isomorphism classes of links that come into play.

2.2 A fibration for the manifold M 3

We recall that the manifold M3 was constructed starting from the 3-colouring of the

polytope P 3 shown in Figure 1.7. We now assign an initial state to P 3 in the following

way: for every pair of facets that share a colour, we assign the status I to one of them,

and the status O to the other one. In this way we get a balanced state. With the

standard system of moves associated to the colouring, the orbit of states consists of

precisely all the 23 = 8 balanced states. Up to isomorphism, we find that those 8 states

reduce to only 2 classes, both shown in Figure 2.5. In both cases, the ascending and

descending links are all collapsible to a point. Moreover, the states that are inherited

by the sections of the cusps can be seen by looking at the three lateral squares of Figure
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Figure 2.6: The dual of P 4 is the Gosset polytope 021. We exhibit a state by colouring

the vertices in black and white, with black (white) corresponding to the status I (O).

There are only four states in the orbit of P 4 up to isomorphism. In the first case both

the ascending and descending links are circles, and they form an Hopf link. In all other

cases we always get a collapsible link; we only show the descending link, the ascending

links are of the same type.

2.5. In all cases, both ascending and descending links are collapsible. We deduce that

the diagonal function f : M → S1 satisfies the conditions of Theorem 28 and therefore

it can be smoothed to a fibration.

2.3 A perfect Morse function on M 4

We recall that the manifold M4 was constructed starting from the 5-colouring of the

polytope P 4 shown in Figure 1.10. As it was in the case of P 3, each colour involves a

pair of facets. We can assign an initial state to P 4 in the same way we had done for P 3:

we arbitrarily chose a balanced state. Propagating this state with the standard system

of moves associated to the colouring, we obtain as an orbit precisely the 25 = 32 states

that are balanced. Up to isomorphism, we find that those 32 states reduce to only 4

classes, shown in Figure 2.6. In 2 out of 32 states we get the picture on the left, where

both ascending and descending links are circles, and if we consider them embedded in

the boundary of the Gosset polytope 021, they form a Hopf link in S3. In all the other 30

states, both links are collapsible. Corresponding to the 5 ideal vertices of P 4, there are

5 cubes that tessellate the cusps of M4. By looking at Figure 1.11, one could see that

such cubes have a pair of facets with the same colour. Since our states are balanced,

those two facets will inherit opposite states. We deduce that both the ascending and

descending links will be cones on those two points, and therefore they are collapsible. In

particular, the restriction to the cusps of the function f is a fibration. The conditions in

Theorem 30 are hence verified, so the diagonal function f : M4 → S1 can be smoothed
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to a perfect circle-valued Morse function, having two index-2 critical points.

From the algebraic point of view, we have obtained that the kernel H of the ho-

momorphism f∗ : π1(M
4) → Z is finitely generated; since all ascending and descending

links are connected. The map f is therefore an algebraic fibration.

2.4 A perfect Morse function from the 24-cell

We recall that we had selected a colouring for the 24-cell in Example 8. We now describe

a legal state for it, following [6]. We use the quaternionic description of the vertices of

the 24-cell, keeping in mind that the polytope is self-dual. We had divided the vertices

into 3 octets: ±1,±i,±j,±k, the ones of type 1
2
(±1± i± j ± k) with an even number

of minus signs, and those with an odd number of minus signs. Such subdivision was

exactly the subdivision in orbits of the action of the group G = {±1,±i,±j,±k} by left

multiplication on the vertices.

We now consider the subgroup H = {±1,±i} < G, and its action by left multipli-

cation on the vertices. Each of the monochromatic octects is subdivided by the action

of H into orbits of 4 elements each. We chose an initial state S by assigning arbitrarily

the status I to one orbit, and the status O to the other one. As we have already noted

in the previous cases, the state is balanced; and this property is maintained with the

propagation. The orbit under the standard system of moves therefore consists of all the

states obtainable with the 8 different possible choices for S.

All the states in the orbit are actually isometric, and thus generate the same as-

cending and descending links. Such link are two annuli, and form together a (banded)

Hopf link in S3, if viewed inside the boundary of the 24-cell. Moreover, one could verify

in the same way that the links of ideal vertices inherit states that produce collapsible

ascending and descending links. The conditions in Theorem 30 are hence verified, so

the diagonal function f : M4 → S1 can be smoothed to a perfect circle-valued Morse

function, having eight index-2 critical points.

2.5 A legal orbit for M 6

In the 9-colouring for P 6 the 27 facets are partitioned into 9 triplets. As opposite to

the previous cases, it is not possible to chose a balanced state here. Furthermore, there

is no obvious choice that plays well with the symmetries off P 6. However, a brute force

computer search shows that there are many legal orbits for P 6. For instance, we may

take S as the state where the first vertex in each triple listed in Section 1.8 is O and

the remaining two are I. By using our Sage program we find that the orbit of this state
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is legal. By Theorem 28 the kernel H of f∗ : π1(M
6) → Z is finitely generated.

As we said, a computer search shows that many initial states S yield legal orbits.

However, no 1-legal orbits were found with this method.

With a more refined argument, using a non-standard system of moves (and a different

colouring of P 6), one could build a different manifold N6 with a map g : N6 → S1 that

is a perfect Morse function. This also yields a 1-legal orbit, and therefore the kernel H

of g∗ : π1(N
6) → Z is finitely presented. The manifold N6 is commensurable with M6,

since the manifold produced by the 27-colouring of P 6 finitely covers both of them. This

theorem is joint work with Migliorini, and is currently in preparation. Some details of

the proof can be found in [43].

2.6 A 1-legal orbit for M 8

The combinatorics of the polytope P 8 is much more complicated than all previous

examples. Having 240 facets, there are 2240 possible states that can be chosen. Moreover,

we are using a colouring that uses 15 colours. Assuming we use the standard system of

moves associated to the colouring, the orbit will consist of 215 = 32768 states, and we

need all of them to be legal.

To accomplish this task, we will once again let the construction for the 24-cell be

of inspiration; and hope that the beautiful symmetries of P 8 will substantially reduce

these numbers.

We recall that the dual polytope to P 8 is the Gosset polytope 421. As we had

already done to choose a colouring in Section 1.10, we see it embedded in the octo-

nion space O, and we recall that the colouring was a partition in 15 hextets, that

is {±1,±e1,±e2,±e3,±e4,±e5,±e6,±e7}, the elements 1
2
(±1 ± en ± en+1 ± en+3) and

1
2
(±en+2±en+4±en+5±en+6) with an even number of minus signs, and those with an odd

number of minus signs, with the integer n varying modulo 7. This colouring came from

the ”action” of O = {±1,±e1,±e2,±e3,±e4,±e5,±e6,±e7} on the vertices, in a similar

way to the colouring for the 24-cell, that came from the action of {±1,±i,±j,±k} on the

vertices. Even though the non-associativity of octonions makes this analogy somewhat

flawed, we can still push it a bit further to define a state.

The definition of a state on the 24-cell came from the restriction to the action

of the subgroup of the complex numbers H = {±1,±i} on the vertices; the natu-

ral analogous on the octonions would be to consider the subset of quaternions Q =

{±1,±e1,±e2,±e3,±e4} ⊂ O and its action on the vertices. Unfortunately, this is not

really a group action because octonions are not associative, and hence we may have that

e1(e2(x)) ̸= (e1e2)(x). Therefore some caution is needed. To circumvent this problem,
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we chose a privileged representative inside each hextet:

1 ∈ C0, 1 + en + en+1 + en+3 ∈ C+
n , −1 + en + en+1 + en+3 ∈ C−

n

where n runs modulo 7.

We are now ready to select the initial state S on 421. For each one of those 15

representatives, we consider the 8 vertices that can be obtained by left-multiplying the

representative for elements of Q, and assign to all of those the status O; we assign the

status I to all the remaining vertices. In this way, the state S is balanced, and thus its

orbit will consist of 215 balanced states.

We now need to determine the ascending link and descending link for each one of

the states in the orbit, and we end up with 2 ·215 = 65536 graphs to analyse (as we have

previously mentioned the 1-skeleton determines the whole link, since it is a flag complex).

To do this, we have used our Sage code, and discovered that those graphs reduce to only

185, up to isomorphism. Furthermore, our Sage program certifies that each one of the

generated simplicial complexes is connected and simply connected; therefore the orbit

is 1-legal.

We deduce from Theorem 28 that the map f : M8 → S1 is an algebraic fibration,

and furthermore that the kernel H of f∗ : π1(M
8) → Z is finitely presented.

Remark 31. The function f is not a perfect circle-valued Morse function. In fact, some

of the states generate some links that are wedges of more than one sphere.

2.7 A 1-legal orbit for M 7

In the 14-colouring for P 7 the 56 facets are partitioned into 14 quartets. The colouring

came from the colouring of P 8, so we are going to do the same thing for the states. We

see P 7 as the facet of P 8 dual to the vertex 1 in 421. The state S that we chose for P 8

in the previous section induces a state S ′ for P 7 in a natural way: every facet of P 7

inherits the status of the adjacent facet in P 8.

As in all previous cases, the state S ′ is balanced, and thus the whole orbit of states will

be balanced. The orbit of consists of 214 states, each contributing with their ascending

and descending link. Using Sage we are pleased to discover that the resulting 215 = 32768

graphs reduce to only 106 up to isomorphism. Once again, balanced states together with

the many symmetries of the considered polytope drastically reduce the number of graphs

involved.

Using Sage we also see that all the simplicial complexes generated by the 106 graphs

are connected and simply connected. Therefore the orbit is 1-legal. All the data can be

found in [63]. By Theorem 28 the map f is an algebraic fibration, and the kernel H of

f∗ : π1(M
7) → Z is finitely presented.
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Remark 32. In our examples in dimension n = 3, 4 the construction via the diagonal

map provided orbits that satisfy the conditions of Theorem 29 and Theorem 30. This

fact allowed us to smoothen f to be a fibration or a perfect circle-valued Morse function,

depending on the dimension. Our choice of state for P 7 looked pretty lucky, but one

may wonder whether it is possible to get even luckier and obtain a fibration forM7 with

another initial state. Unfortunately, the next proposition shows that this is not possible:

the restriction of the diagonal map to one of the cusps will always be an obstruction.

Proposition 33. For any possible choice of an initial state on P 7, there is some cusp

X ∼= T 6 × [0,+∞) ⊂ M7 where the restriction f |X is homotopic to a constant. In

particular, f is not homotopic to a fibration.

Proof. Let S be any initial state for P 7. In our discussion in Section 1.9 we noticed

that there is an ideal vertex v of P 7 whose link C is a 6-cube coloured with 12 distinct

colours. Let T ⊂ M7 be a torus section that lies above C. The restriction of f to T is

determined by the restriction of the state S of P 7 to T . By Corollary 24 the restriction

of f to T is homotopically trivial, and hence it is so on the cusp X = T × [0,+∞) that

it bounds. Since f is homotopic to a constant when restricted to a cusp, it cannot be a

fibration.

2.8 A fibration for M 5

The argument we presented in Proposition 33 holds also for the colouring chosen for

M5. We recall that M5 has 40 cusps in total, that we had classified in two types. The

one we called the small cusps are the one above 8 ideal vertices of P 5 whose link were

4-coloured 4-cubes, and are 32 in total. The remaining 8 cusps, that we called large

cusps, are above the remaining 2 ideal vertices, and their link was an 8-coloured 4-cube.

As it happened for M7, if we build a diagonal map f generated by the standard system

of moves associated to the colouring, the restriction to the large cusps will necessarily be

homotopic to a constant. More in general, it turns out that any choice of a colouring and

of a sparse system of moves has this property. Therefore, it is impossible to construct

a fibration with the techniques we have described up to this point. To get around this

problem, we need to generalize the theory in order to define and study a function f

even when the system of moves is not sparse. For the sake of simplicity, we are going

to describe our theory in the specific case of P 5 instead of the general case.
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2.8.1 The truncated polytope

The manifold M5 is diffeomorphic to the interior of a compact manifold M
5
. The 40

cusps of M5 correspond to 40 boundary components of M
5
, each homeomorphic to a

4-torus. We are going to describe the manifold M
5
by gluing copies of P

5
, a truncated

version of the polytope P 5.

Consider P 5 as an Euclidean polytope in R5, as described in Section 1.7. Let P
5
be

the truncated P 5, that is, the polytope obtained from P 5 by intersecting it with the 10

half-spaces of equation

xi ≤ 1− ε, xi ≥ −1 + ε;

for some fixed small ε > 0. In other terms, we have removed from P 5 some small

neighbourhoods of the ideal vertices.

The polytope P
5
has 26 facets; 16 of those are the truncation of the facets of P 5

and are truncated version of P 4, while the 10 new facets produced by the truncation of

the ideal vertices are some 4-cubes. From this, we see that P
5
has 176 = 16 + 16 · 10

vertices: in addition to the 16 original real vertices, we also have the vertices of the 10

new hypercubes.

The colouring chosen for P 5 in Section 1.7 can be applied also to P
5
; we simply

choose the same colouring, leaving the 10 hypercubes uncoloured. We can then perform

the usual gluing procedure, taking 28 copies of P
5
and gluing them as prescribed by

the colouring. The uncoloured hypercubes are left unglued, and their union forms the

boundary of the resulting manifold M
5
. It is easy to verify that the interior of the

manifold M
5
is actually homeomorphic to M5.

We now want to construct a cubulation C for the manifold that is the correspondent

to the cubulation C dual to the tessellation of the manifold M5. Analogously to the

original case, we start from the tessellation of M
5
into 28 copies of P

5
. We then fix a

baricentric subdivision for the polytope P
5
, and lift it to a baricentric subdivision of

the tessellation. We consider all the vertices that are in the original (not subdivided)

tessellation of M
5
, and notice that there are vertices of two types: those that are on the

boundary, and those who are in the interior. Given a vertex v, we are interested in its

star St(v), that is of two types, depending on the type of v:

• If v lies in the interior of M
5
(which means that v corresponds to one of the 16

vertices of P 5), then St(v) is the baricentric subdivision of a 5-cube having v as a

center. This is due to the fact that P 5 is right-angled.

• If v lies on the boundary of M
5
, then v corresponds to one of the additional 160

vertices of P
5
that came from the truncation. The star St(v) is one half of the

baricentric subdivision of a 5-cube, with v at the center of the cube.
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Figure 2.7: The four moves of the system, depicted with four different colours. Each

move is subdivided into two pairs of adjacent facets. The adjacencies are indicated here

as red edges. As usual, we show both models for P 5. In the picture on the left, two

vertices are adjacent if they are connected by a path of lenght ≤ 2. In the picture on

the right, some edges are superposed.

We now consider all the 5-cubes obtained in this way (considering that half of a 5-cube

is still a 5-cube), and notice that they intersect only along common facets, and that

those intersections are dual to the edges of the tessellation of M
5
. This decomposition

in cubes is therefore a cube complex C, which is PL-isomorphic to the manifold M
5
.

2.8.2 A system of moves

We have coloured P 5 with a palette of 8 colours {1, 2, 3, 4, 5, 6, 7, 8}. To define a system

of moves, we pair up this 8 colours into 4 pairs. Each move will therefore consist of 4

facets of P 5. Here is the subdivision:

S =
{
{1, 5}, {2, 6}, {3, 7}, {4, 8}

}
.

A picture of this subdivision is shown in Figure 2.7. This system of moves is not sparse,

since there are 8 pairs of adjacent facets that belong to the same move.

As initial state, we choose the one in Figure 2.8. It is a balanced state in the usual

sense: each colour (and thus each move) has the same amount of vertices with status I

and status O.

We can now propagate the initial state S using the system of moves S to all the 256

copies of P 5 that tessellate M5, and we get 24 = 16 different states. As prescribed by

our procedure, we now look at the cube complex C that is dual to the tessellation, and

use the states to orient all the edges of C. Here we clash with the consequences of having
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Figure 2.8: The chosen initial balanced state S for P 5. The black (white) dots indicate

the status I (O). We show both models for P 5. As usual, in the picture on the left, two

vertices are adjacent if they are connected by a path of lenght ≤ 2. In the picture on

the right, some edges are superposed.

Figure 2.9: Three types of squares with oriented edges. The first is oriented coherently.

Square of the second type arise in the cube complex C, in correspondence of the bad

ridges. The third type of square is not present in C.

chosen a system of moves that is not sparse: the orientation of C is not coherent. In

fact, there are squares oriented in a way such that both opposing pairs of sides have the

opposite orientation (see Figure 2.9). Following the terminology of [30], we call those

bad squares.

Our goal is now to define a map f from C to S1, in a similar way of what was done

when the orientation of C was coherent. To do this, we are going to subdivide the cube

complex C.

Before doing that, we briefly look into the states in the orbit we have chosen.

Proposition 34. For all states of the orbit, both the ascending and descending links are

collapsible.

Proof. All the 16 states in the orbit are actually isomorphic. To prove that the links
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are collapsible, it suffices to show that there is a vertex x that is connected to all other

vertices. In fact, since the links are flag simplicial complexes, x would be contained

in every maximal simplex; and the whole link would collapse to x. To show that such

a vertex x exists in every link, we look at the representation of the 1-skeleton of 121

as a 4-cube, as in Figure 2.8-(left). The vertices that have status I (or O) are always

arranged in a particular way: seven of them are the vertices of a 3-cube that is a facet

of the 4-cube, while the last one is the vertex that is opposite (in the 4-cube) to the

remaining spot of the 3-cube. In such an arrangement, the vertex that is opposite (in

the 3-cube) to the empty spot of the 3-cube is always adjacent to all the other ones. For

instance, if we look at all the black points in 2.8-(left), they occupy seven positions in

the outside 3-cube. The vertex coloured with the colour 8 is the one adjacent to all the

others.

As an effect of the truncation of P 5, the extended cube complex C has some more

vertices, laying on its boundary and corresponding to ideal vertices of P 5. The link of

an ideal vertex of P 5 is a 4-cube, and it inherits a state from P 5 in the same way it

inherits a colouring. As we have seen, the boundary of M consists of 40 copies of 4-tori,

tessellated in some copies of those 4-cubes. The inherited states on the cubes define a

function on ∂M , that will coincide with the restriction of f . To analyse it, we can look

at the ascending and descending links of the vertices of the cube complex representing

∂M . Such links are subcomplexes of a 4-octahedron dual to the 4-cube.

Proposition 35. For all states in the orbit, the ascending and descending links at every

ideal vertex of P 5 are collapsible.

Proof. We use again the representation of the 1-skeleton of 121 as a 4-cube as in the

left part of our pictures. We recall that there are 10 octahedral facets in total, dual to

the ideal vertices of P 5. Eight of those octahedral facets 121 correspond to the eight

3-cubes that are facets of the 4-cube; while the remaining two correspond to the vertices

coloured with colours 5, 6, 7 and 8, and to the vertices with colours 1, 2, 3, 4. As it

can be seen from Figure 2.7-(left), in each one of those 4-octahedra there is a pair of

opposite vertices that have opposite status. Such vertices are adjacent to all the other

vertices that have their same status, so the two links collapse on those vertices.

2.8.3 The subdivided cell complex

As we have seen, the induced orientation on the edges of the cubulation of M
5
will

contain some bad squares like in Figure 2.9-(center or right) and there is no way to

define on such a square an affine function that is coherent with the orientation of the
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Figure 2.10: A subdivision of a bad square into four triangles. On each triangle there

is a natural affine height function inducing the orientation of its edges. Some level set

of those functions are shown on the right: it looks like a piecewise linear saddle point.

edges. We circumvent this problem by subdividing the cube complex into smaller pieces:

we cut all the cubes that contain these bad squares into four prisms.

We first determine the bad squares. Recall that a ridge in P 5 is a 3-dimensional face.

We call a ridge bad if the colours of the adjacent facets belong to the same move. The 8

bad ridges of P 5 are thus dual to the 8 red edges shown in Figure 2.7. The bad squares

contained in the interior of M
5
are precisely those that are dual to some 3-stratum that

projects to a bad ridge of P 5. In our initial state, the statuses of the two facets incident

to a bad ridge coincide, so this is still true in all other states. Therefore, the bad square

is as in Figure 2.9-(center) and not as in Figure 2.9-(right). The other bad squares in

M
5
are those contained in the boundary that are parallel to some interior bad square

through a 3-cube. As expected, those are identical to their copy in the interior.

The only bad squares are thus as in Figure 2.9-(center). To define a function f on

these squares, we notice that they can be subdivided into four triangles as in Figure

2.10-(left). On each triangle T there is a natural affine height function T → R/Z that

induces the orientation of its edges and sends the three vertices to 0, 1
2
, and 1 = 0 (it is

just the coordinate in the direction of the corresponding side of the square). The four

affine functions match along the edges and the central vertex of the bad square is sent

to 1
2
(as a kind of piecewise-linear saddle point). The level sets of such functions are

shown in Figure 2.10-(right).

We now look into the bigger picture, analysing how bad squares sit into higher-

dimensional cubes. Luckily for us, bad ridges are sufficiently far from each other in

P 5 to avoid forming 4-cubes that are products of bad squares. Given two cubes C,C ′

with oriented edges, there is a natural way to orient all the edges of C ×C ′, since these

are either of the form e × {p′} for some edge e ⊂ C or of the form {p} × e′ for some
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edge e′ ⊂ C ′. A product of cubes with coherent orientations is a cube with coherent

orientation.

A k-cube of the cubulation of M
5
is called good if it is coherently oriented and bad

otherwise. We already know that M
5
contains only one type of bad squares. More

generally, we now prove there is only one type of bad k-cubes for every k ≥ 2.

Proposition 36. Every k-cube of the cubulation of M is oriented either coherently, or

as C × C ′ for some bad square C and a coherently oriented (k − 2)-cube C ′.

Proof. This holds because the bad ridges in P 5 are pairwise disjoint. This can be proved

by checking that all the cliques in Figure 2.7 contain at most one red edge.

We now subdivide the cube complex decomposition ofM by cutting each bad k-cube

C × C ′ into four prisms T × C ′, where T is one of the four triangles contained in the

bad square C as in Figure 2.10.

This results in a new affine cell decomposition of M , in which all the edges are

oriented. All the affine cells have a natural affine function that is compatible with the

edges orientations: we have already defined it on the triangles and the edges, and we

can extend it to a diagonal map on all the products. These affine functions all match

to a circle-valued Morse function f : M → R/Z.
The function f has two (possibly) critical values (0 and 1

2
). The value 0 corresponds

to original the vertices of the cubes, while the value 1
2
corresponds to the new vertices

introduced in our subdivision, that are now also (possibly) critical points. To prove that

f is a fibration, we now look into all these (possibly) critical points, and prove that all

ascending and descending links are collapsible.

Theorem 37. The ascending and descending links at all the vertices of the affine cell

decomposition are collapsible polyhedra. Therefore f is homotopic to a fibration.

Proof. There are 3 types of vertices w in the affine cell decomposition:

1. the barycenters of some polytope P
5

v,

2. the barycenters of some 4-cube facet of P
5

v, that lie in ∂M
5
,

3. the barycenters of the bad squares.

The vertices of type (1) and (2) are those of the original cubulation, while those of

type (3) were introduced in the subdivision into prisms. We analyse the three cases

separately. The collapsibility of the ascending and descending links of the vertices of

type (1) and (2) is deduced by the collapsibility of the links in the orbit of states of

P 5; however, we need to add some further comments to Proposition 34 and Proposition
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35 to address the subdivisions. For the vertices of type (3), the collapsibility follows

essentially from Figure 2.5. Here are the details.

We start with (1). Let w be the barycenter of P
5

v. Its link link(w) in the affine

cell decomposition is the boundary of the Gosset polytope 121, with a couple of further

subdivisions:

(i) the 4-octahedra dual to the ideal vertices of P 5 are each subdivided into 16 sim-

plexes by adding a central vertex (which indicates an edge pointing towards a

vertex of type (2));

(ii) one additional vertex is added at the barycenter of each edge dual to a bad ridge

of P 5
v , and all the adjacent simplexes are subdivided in two (the additional vertex

indicates an edge pointing towards a vertex of type (3)).

Recall from Proposition 34 that the ascending and descending links of the state Sv

are some collapsible subcomplexes of the complex K obtained from the boundary of

121 by removing its 4-octahedra. Note that link(w) is obtained from K by adding and

subdividing some simplexes (these are the modifications (i) and (ii) described above).

The ascending and descending links of w in link(w) are obtained from those of Sv by

the following corresponding modifications:

(i) the central vertex of each 4-octahedron has status O because the edges of the

cubulation that intersect the boundary in one endpoint are directed towards it by

construction; the central vertex is hence added to the ascending link, together with

all the simplexes containing it spanned by vertices with status O; by Proposition

35, the link of this new central vertex in the ascending link is collapsible, so this

operation is an expansion (the new ascending link collapses onto the old one);

(ii) some simplexes are subdivided, but this does not change the piecewise-linear ho-

momorphism type of the ascending and descending links.

The ascending and descending links of Sv are collapsible by Proposition 34, so the

resulting ascending and descending links at w also are collapsible, and this concludes

the proof for Case (1).

We turn to (2). Let w ∈ ∂M
5
be the barycenter of a boundary 4-cube facet of

some polytope P
5

v, which corresponds to an ideal vertex of P 5. The link link(w) of

w in the decomposition is a cone over a polytope that is a 4-octahedron with some

further subdivisions at the edges dual to the bad ridges. The parts of the ascending and

descending links contained in the subdivided 4-octahedron are collapsible by Proposition
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Figure 2.11: The 6 other facets incident to the top bad ridge adjacent to two facets

with colour 1 and 5. We show a picture for each of the models of 121, both pictures are

subgraphs of Figure 2.7.

35. The vertex of the cone has status I, so the descending link is further modified by

some expansion. Therefore the ascending and descending links at w are collapsible.

Finally, we examine the case (3). Let w be the barycenter of some bad square. This

can lie either in the interior or in the boundary of M
5
. If it lies in the interior, it is

dual to a 3-stratum that projects to a bad ridge of P 5. The link link(w) of w in the

decomposition is the join of a square (dual to the bad square) and a triangular prism

(dual to the ridge). The square has vertices with status I,O,I,O, as one can deduce from

Figure 2.9-(center). The triangular prism has the status inherited from the bad ridge.

By looking carefully at Figure 2.7 we deduce that a bad ridge that is the intersection

of two facets with colours t, t+ 4 is also incident (along its 6 triangular faces) to facets

of all the other 6 colours, whose statuses can be as in Figure 2.5. For instance, the 6

facets one obtains from the top-left bad ridge incident to the facets coloured with 1 and

5 are shown in Figure 2.11. Since the ascending and descending links in Figure 2.5 are

collapsible, they remain so after the join with two vertices with status I (or O).

If the bad square lies in ∂M
5
, the link of w is the cone over the join of the square

with vertices I,O,I,O and another square, which is one of the three square faces of the

prism shown in Figure 2.5. In all the cases shown in the figure the square face contains

contractible ascending and descending links and hence we conclude as above.

Theorem 19 is therefore proved.

2.8.4 The restriction to the boundary

The fibration f : M5 → S1 restricts to a fibration in each of the 40 boundary 4-tori. To

analyse these restrictions, we need to distinguish again between large and small cusps.
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We recall that the decomposition of M
5
into copies of P

5
induces a decomposition

of ∂M
5
into 4-cubes. The 32 small cusps correspond to 32 small boundary tori, that

decompose as 2×2×2×2 hypercubes. We identify each one of them with R4/2Z4. The

8 large cusps correspond to 8 large boundary 4-tori, and decompose as 4 × 4 × 4 × 4

hypercubes. We identify each one of them with R4/4Z4.

Proposition 38. The fibration, when restricted on the cusps of M5, can be of two types:

(i) If the cusp is one of the 32 small cusps; then the fibration is isotopic to a map of

type f(x1, x2, x3, x4) = x1 + x2 + x3 + x4.

(ii) If the cusp is one of the 8 large cusps; then the fibration is isotopic to a map of

type f(x1, x2, x3, x4) = x1.

In both cases, it is a geodesic fibration, i.e., the fibers are geodesic 3-tori inside the flat

4-torus.

Proof. We refer to [30] for the all the details of the proof, and give the main ideas in

this section. We first note that the cube complex dual to the decomposition of the 4-tori

into cubes is isomorphic to the original decomposition.

We start from (i). Each of the small cusps corresponds to a 4-torus T that is

constructed from the inherited colouring on a 4-cube. In this case, the inherited 4-

colouring is as in Figure 1.16-(right): each pair of opposite facets shares one colour.

The fibration on T is induced by the inherited state and set of moves that are the

restriction of the one of P 5. It is simple to note that, by construction, the system

of moves is the standard one, and the state is a balanced state. With this choice, the

fibration on the torus is simply the diagonal fibration f(x1, x2, x3, x4) = x1+x2+x3+x4.

The case (ii) is more complicated, since the large boundary tori are adjacent to the

bad squares. We therefore need to be more careful, since those are touched by our

subdivision into prisms. Let T be one of the large boundary tori, then T is produced

by the colouring of the 4-cube in which each facet has a different colour, as in Figure

1.16-(left). As in the previous case, the fibration on T is induced by the inherited state

and a set of moves that are the restrictions of those of P 5. The set of moves on the

4-cube consists of 4 pairs of facets like in the previous case, with one key difference: one

pair consists of opposite facets, while the other three pairs consist of adjacent facets.

The state has opposite statuses on the first pair, and coinciding statuses on each of the

other three pairs. The bad 2-squares that separate the pairs of adjacent facets are those

contained in the bad ridges of P 5.

As a consequence of this, in the orientation of the edges of the dual 4 × 4 × 4 × 4

cube complex, there is a direction in which all edges are coherent, and point to the same
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direction. This is the direction associated to the pair of opposite facets that belong to

the same move, and we will call it the preferred direction. Furthermore, the orientation

of all the other edges is invariant under translations along the preferred direction.

By looking at a 4×4×4 cube orthogonal to the preferred direction, after having sub-

divided all the bad cubes into prisms, one could construct a fiber for the fibration. The

fiber could be a complicated 3-dimensional object, and is union of many 3-dimensional

polyhedra. However, since there is the preferred direction where all arrows point the

same way, all those polyhedra will be transverse to this direction. The fibration is

therefore isotopic to the projection along the preferred direction, as desired.
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Chapter 3

Hyperbolic Groups

In this chapter we introduce the concept of hyperbolic groups, and prove two corollaries

of Theorem 19, answering two long-standing open questions in geometric group theory.

The concept of hyperbolic groups was introduced first by Gromov in his influential

paper [27], and has provoked a paradigm shift in the study of groups, bringing geometric

ideas to the forefront. For a short introduction to the topic, we suggest [7] and [54]; for

a more extensive description, we recommend [13] and [19].

3.1 Groups as metric spaces

Any finitely generated group G can be seen as a metric space, in a very natural way.

Let T be a finite set of generators, and take S = T ∪ T−1 in order to have a finite

symmetric set of generators. Starting from a group G and a symmetric set of generators

S, we can build a graph Γ = Cay(G,S) called the Cayley graph of the pair (G,S). The

vertices of Γ are the elements of G. There is an edge between two vertices g, h ∈ G if it

exists a generator s ∈ S such that g = hs. We put a metric on G by setting the length

of any edge of Γ to be equal to 1, and setting the distance between two vertices to be

the length of a shortest path connecting those two vertices. Some examples of Cayley

graphs are shown in Figures 3.1, 3.2 and 3.3.

Remark 39. Different sets of generators can produce Cayley graphs of the same group

that are not isometric. Two examples for the group Z are shown in Figure 3.1.

However, any two Cayley graphs of the same group are related by a less restrictive

equivalence. For this, we introduce the following definition.

Definition 40. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is said

to be a quasi-isometric embedding if there are numbers K,C > 0 such that

1

K
· dX(a, b)− C ≤ dY (f(a), f(b)) ≤ K · dX(a, b) + C

65
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-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

Figure 3.1: Two Cayley graphs for the group Z. In the top, we have chosen S = {±1},
while in the picture on the bottom S = {±2,±3}. While their topological properties

are very different, they look similar if seen from far away: ”they both keep going in two

opposite directions”.

for all a, b ∈ X. If, in addition, there is a number R > 0 such that for every point y ∈ Y

there is x ∈ X such that dY (y, f(x)) < R, the function is said to be a quasi-isometry.

Two spaces are said to be quasi-isometric if there is a quasi-isometry from one to the

other.

One can verify that the composition of two quasi-isometries is always a quasi-

isometry. Moreover, if f : X → Y is a quasi-isometry, then there exists a quasi-isometry

g : Y → X. In particular, quasi-isometries act as an equivalence relation in the class of

metric spaces.

If S and T are two different finite generating sets for G, by carefully bounding the

number of generators needed to represent an element of one system with element of the

other, one can prove the following proposition.

Proposition 41. Let G be a group, and let S and T be two finite generating sets for

G. Then the identity G→ G is a quasi isometry, if seen as a map between the vertices

of the Cayley graphs Cay(G,S) → Cay(G, T ).

For this reason, we will sometimes avoid to specify the set of generators, and simply

write Cay(G), meaning the class of quasi-isometry of any Cayley graph of G.

The following theorem, due to Schwarz [57] and Milnor [44] is often called the Fun-

damental Theorem of geometric group theory, as it relates groups to properties of the

spaces on which they act geometrically.
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(0, 0) (1, 0) (2, 0)(−1, 0)(−2, 0)

(0, 1)

(0,−1)

Figure 3.2: The Cayley graph of the group Z2 with respects to the set of generators

{(±1, 0), (0,±1)}. It is quasi-isometric to the Euclidean plane R2.

0

a

bb−1

b2

a2

ba

ba−1

ab

Figure 3.3: The Cayley graph of the free group with two generators F2 =< a, b >, with

respects to the set of generators {a, b} is a 4-valent tree.
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Theorem 42 (Schwarz-Milnor Lemma). Let X be a proper geodesic metric space X,

and suppose that a group G acts properly, cocompactly and by isometries on X. Then

there is a finite generating set S for G such that for all x ∈ X the orbit map

Cay(G,S) −→ X

g 7−→ g · x
is a quasi-isometry.

From now on, we are going to refer to a properly discontinous, cocompact action by

isometries of a group G on a metric space X as a geometric action.

3.2 Hyperbolic groups

We now introduce the notion of hyperbolic groups, which first appeared in Gromov’s

famous essay [27]. We start with the following example:

Example 43. If G and H are the fundamental groups of two compact hyperbolic

manifolds of the same dimension d, then by Theorem 42 they are both quasi-isometric

to the hyperbolic space Hd and hence to each other.

Inspired by this, we wish to define a concept of hyperbolicity for metric spaces, and

then for groups. We start from metric spaces. Here we associate hyperbolicity to having

”thin” triangles, such as in Figure 3.4.

Definition 44. Let δ ≥ 0 be a real number. A geodesic metric space is said to be

δ-hyperbolic if for every geodesic triangle xyz, each of the sides is contained in a δ-

neighbourhood of the other two sides. A geodesic metric space is said to be (Gromov)-

hyperbolic if it is δ-hyperbolic for some δ.

Example 45. The following spaces are examples of hyperbolic spaces:

1. Any bounded space with diameter D is D-hyperbolic;

2. A tree is a 0-hyperbolic space. In fact, any geodesic triangle in a tree is completely

contained in any two of its sides;

3. The hyperbolic space Hn is Gromov-hyperbolic.

Example 46. The Euclidean space Rn is not hyperbolic for each n ≥ 2. In fact, we

can dilate any triangle by a factor of λ, enlarging it to contradict the condition in

the definition for any fixed δ. For the same reason, any space that contains a quasi-

isometrically embedded copy of the Euclidean plane R2 cannot be hyperbolic.
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Figure 3.4: On the left, a hyperbolic (thin) triangle, and two neighbourhoods of its

sides. On the right, a Eucliden triangle.

A fundamental property of hyperbolic metric spaces is that they satisfy the Morse

Lemma [27]. From this crucial fact, it quickly follows that being hyperbolic is a quasi-

isometry invariant.

Lemma 47 (Morse Lemma). Let δ,K,C be fixed positive constants. There is a real

number D = D(δ,K,C) such that for any δ-hyperbolic space X, and any (K,C)-quasi-

isometric embedding f : [a, b] → X, the image of f is contained in the D-neighbourhood

of any geodesic from f(a) to f(b).

Corollary 48. If X and Y are quasi-isometric metric spaces, and X is hyperbolic, then

also Y is hyperbolic.

We are now ready to give the main definition.

Definition 49. A group G is said to be hyperbolic if it acts geometrically on a hyperbolic

metric space X. Equivalently, if G is hyperbolic if Cay(G) is hyperbolic.

Some examples of hyperbolic groups can be given by adapting Example 45.

Example 50. The following groups are hyperbolic:

1. Finite groups;

2. Free groups, as their Cayley graph is a tree;

3. The fundamental groups of closed hyperbolic n-manifolds, as they act geometri-

cally on Hn.
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Any infinite cyclic subgroup of a hyperbolic group G is contained in a maximal

virtually cyclic subgroup that contains its normalizer. From this, one could deduce

that a hyperbolic group G cannot contain Z2 as a subgroup. More in general G cannot

contain any Baumslag-Solitar subgroup B(m,n) = {a, b | bamb−1 = an} for m,n ̸= 0.

Remark 51. The fundamental group of a cusped complete hyperbolic n-manifolds acts

by isometries on Hn. However, the action is not cocompact.

3.3 Finiteness properties

A classifying space for a group G, also called K(G, 1), is an aspherical CW-complex

with G as a fundamental group.

Definition 52. A group G is said to be of type Fn if it has a classifying space X with

finite n-skeleton. If G is Fn for each n ∈ N, we say that G is of type F∞. Finally, G is

said to be of type F , or of finite type, if it has a finite classifying space.

The property F1 is equivalent to being finitely generated, while property F2 is equiv-

alent to be finitely presented. For each integer n ≥ 1 there is a group of type Fn but

not of type Fn+1 [11, 56].

Using the Vietoris–Rips complex it is possible to show that any hyperbolic group

is of type F∞ [27]. Moreover, one can deduce that a torsion-free hyperbolic group is

actually of finite type.

Question 53 (Brady [15]). Let n ≥ 3 be an integer. Does there exist a hyperbolic group

G which has a subgroup H < G that is of type Fn but not Fn+1?

The case n = 1 was solved by Rips in 1982 [53], giving the first example of a non-

coherent hyperbolic group, i.e., a hyperbolic group with a finitely generated subgroup

that is not finitely presented. The topic of coherence of hyperbolic groups has been

successively explored in numerous works, see, e.g., [14, 31, 33, 34, 35].

In [15] Brady constructed a hyperbolic group G with a finitely presented subgroup

that is not of type F3, solving the case n = 2. It consists on the fundamental group

of a ramified covering of a direct product of three graphs. Some other examples were

successively constructed by Lodha [42] and Kropholler [38].

By Dehn filling the manifoldM8 constructed in Section 1.10, Llosa Isenrich, Martelli

and Py [40] were able to show an example for the case n = 3. In particular, they show

that the kernel ker(f) constructed in this thesis is of type F3 but not F4. From our

construction it is already possible to deduce the kernel is of type F2 but not F7.
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Using methods from complex hyperbolic geometry, Llosa Isenrich and Py solved the

general case [41], showing for each n ≥ 1 the existence of hyperbolic groups containing

subgroups of type Fn but not Fn+1.

In next section we show an example of a subgroup of a hyperbolic group, which is not

hyperbolic but has a finite classifying space. This answers a well-known open question,

raised in particular by Bestvina [8, Question 1.1], Brady [15, Question 7.2], Bridson [12,

Question 4.1], and Jankiewicz, Norin and Wise [31, Section 7].

3.4 Main result

Theorem 54. There is a hyperbolic group G that contains a subgroup H < G of finite

type that is not hyperbolic.

The proof of this theorem relies on a construction involving the manifold M5 and

the fact it fibers over S1, as proved in Section 2.8. Let F 4 be the fiber of this fibration.

If the manifold M5 was closed, the groups H = π1(F
4) = ker(f∗) < π1(M

5) = G would

yield the theorem.

Unfortunately, our example has some cusps, so this argument does not work; this is

due to the fact that π1(M
5) is not a hyperbolic group. To prove Theorem 54 we are

going to perform a Dehn filling construction on M5, closing its cusps in a way that will

be somewhat compatible with the hyperbolic structure. Here is the procedure:

We pick 40 disjoint embedded sections for the 40 cusps of M5, and we truncate

M5 along them. We get a compact manifold M
5
such that M5 is diffeomorphic to the

interior of M
5
. The boundary ∂M

5
= X1 ∪ ...∪X40 consists of 40 Euclidean 4-tori. By

Proposition 38, the restriction to each boundary torus is a geodesic fibration. We can

then modify the function f : M
5 → S1 via isotopy, so that all restrictions to boundary

components are geodesic fibrations. We now define F
4
to be the fiber of f : M

5 → S1:

it is a compact 4-manifold whose interior is diffeomorphic to F 4, and whose boundary

consists of 3-tori ∂F
4
= T1 ∪ ... ∪ T136. This is due to the fact that the fiber has 4

boundary components in each of the 4-tori corresponding to the 32 small cusps, and

one component in the large cusps; as proved in Proposition 38. The total number of

boundary components of F is therefore 32·4+8·1 = 136. We select one special boundary

component of the fiber Ti ⊂ Xi for each cusp section Xi, for i = 1, ..., 40.

We next fill all boundary tori, in the way that is prescribed by [23, Definition 2.5].

In particular, we cone off the tori Ti by gluing some partial cones C(Xi, Ti) to M
n
. In

this way, we obtain a new space M̂n, in which each leaf of the fibration parallel to Ti is

collapsed to a point, and each whole boundary component is replaced by a circle.
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More formally, we define

C(Xi, Ti) =
Xi × [0, 1]

∼

where (t, 1) ∼ (t′, 1) if and only if f̃(t) = f̃(t′), and the function f̃ is defined differently

in the two cases of small and large cusps. When the cusp is large we define f̃ = f . In

small cusps, since the fibration wraps 4 times around the cusps, we replace the map f

as described in Proposition 38 with the map f̃(x1, x2, x3, x4) =
1
4
(x1 + x2 + x3 + x4).

To build the manifold M̂5, we glue each of the C(Xi, Ti) to the corresponding bound-

ary component Xi ⊂M
5
along its boundary Xi × {0} = ∂C(Xi, Ti).

Remark 55. The space M̂5 is not a manifold, but just a pseudo-manifold. There is a

singular set S ⊂ M̂5, consisting of circles, such that M5 = M̂5 \ S.

The aim of this construction is to be able to use the following theorem:

Theorem 56 ([23], Theorem 2.7). If all geodesics in the tori Ti are longer than 2π, then

there is a complete path metric on M̂5 induced by the hyperbolic metric of M
5
. This

metric is locally CAT (−k) for some k > 0.

The only condition we are left to verify is that all geodesics in the tori Ti must be

longer than 2π. To ensure that our tori are big enough, we can perform the previously

described construction to a finite cover of M5 instead of the original manifold M5.

In particular, thanks to the residual finiteness of π1(M
5) we can find a finite index

subgroup of π ◁π1(M
5) such that in the regular finite cover associated to π all boundary

components are 4-tori with systole larger than 2π. The fibration f lifts to this finite

cover. For simplicity of notation, we continue to call this new cover M5. We then close

the cusps of this new manifoldM as prescribed, obtaining a new space that we continue

to call M̂5. We set G = π1(M̂
5).

Proposition 57. The space M̂5 is aspherical. The group G is hyperbolic and torsion-

free.

Proof. To apply Theorem 56, we just need to check that all geodesics in the 3-tori Ti are

longer than 2π. This is true, due to the fact that all closed geodesics in the boundary

4-tori Xi are longer than 2π. Then, we deduce that M̂5 has a locally CAT (−k) complete

path metric for some k > 0. In particular M̂5 is aspherical and G = π1(M̂
5) is hyperbolic

and torsion-free.

We turn our attention to the fibration f : M
5 → S1; when we close the cusps, it

quotients to a topological fibration f̂ : M̂5 → S1. The fiber in this case is homeomorphic
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to the space F̂ 4 that is obtained by coning off each of the 3-torus boundary components

of the original fiber F
4
. Looking at the level of fundamental groups, we get a map

f̂∗ : G = π1(M̂
5) → π1(S

1) = Z.

We define the subgroup H < G as the fundamental group of the fiber:

H = π1(F̂
4) = ker f̂∗.

Proposition 58. The group H is of finite type.

Proof. Since H = π1(F̂
4), it is sufficient to show that F̂ 4 is aspherical. This is true

because M̂5 is aspherical, and it is covered by F̂ 4 × R. We deduce that F̂ 4 × R is

aspherical, and therefore also F̂ 4 must be aspherical.

It remains to be proven that H is not hyperbolic. To do that, we first need to show

some preliminary facts.

Proposition 59. The top cohomology group for both M̂5 and F̂ 4 is Z. In short:

• H5(G) = H5(M̂5) = Z;

• H4(H) = H4(F̂ 4) = Z.

Proof. As in Remark 55, M5 = M̂5 \ S where S is the singular set and consists of some

circles. Let νS be a closed regular neighbourhood of S. The exact sequence of the pair

(M̂5, S) is:

0 = H4(S) → H5(M̂5, S) → H5(M̂5) → H5(S) = 0.

We get that H5(M̂5, S) = H5(M̂5). We now excise the interior of νS, obtaining

H5(M̂5) = H5(M̂5, S) = H5(M̂5, νS) = H5(M
5
, ∂M

5
) = Z.

The proof for F̂ 4 is almost identical. In fact, F 4 = F̂ 4 \T where T is the singular set

and consists of some points. The exact sequence of the pair (F̂ 4, T ) gives the equality

H4(F̂ 4, T ) = H4(F̂ 4), and excising some small open balls B around the points of T we

get the chain of equalities

H4(F̂ 4) = H4(F̂ 4, T ) = H4(F̂ 4, B̄) = H4(F
4
, ∂F

4
) = Z.

The proof is therefore complete.

Proposition 60. The group Out(H) of the outer automorphisms of H is infinite.
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Proof. Let α ∈ π1(M̂
5) be an element such that its image f∗(α) generates π1(S

1) = Z.
We look at the automorphism ϕα ∈ Out(H) that is given by the conjugation by α:

ϕα(h) = αhα−1. We will show that ϕα is not trivial in Out(H), and moreover any of its

powers ϕk
α are non-trivial for each k ̸= 0. In this way, the element ϕα has infinite order,

and therefore the group Out(H) is infinite.

Suppose by contradiction that there is a k ̸= 0 such that ϕk
α is trivial: this means

there is an element β ∈ H such that for all elements h ∈ H the equality αkhα−k = βhβ−1

holds. In particular, we get that (β−1αk)h = h(β−1αk)−1 for each h ∈ H. This means

that the element γ := β−1αk ̸= e commutes with every element of H.

Since G is hyperbolic, and γ has infinite order, then < γ > has finite index in the

centralizer C(γ) [13, Corollary III.Γ.3.10]. We deduce that C(γ) must be cyclic, due

to the fact that it is virtually cyclic and torsion-free. Since H < C(γ), as γ commutes

with any element of H, we deduce that also H is infinite cyclic; but this contradicts

Proposition 59, as H4(H) = Z.

We are finally ready to conclude the proof of Theorem 54.

Proposition 61. The group H is not hyperbolic.

Proof. Suppose by contradiction that H is hyperbolic. Since Out(H) is infinite (as

shown in Proposition 60), by Rips’ theory [10, Corollary 1.3], the group H splits over a

cyclic subgroup. As in [10, Definition 3.1], the following three possibilities arise:

(1) H = A ∗Z B. In this case we get the exact sequence

0 = H3(Z) → H4(H) → H4(A)⊕H4(B) → H4(Z) = 0.

We deduce that H4(A) ⊕ H4(B) = H4(H) = Z. However, both A and B are

infinite-index subgroups of H, and therefore they are the fundamental group of

an infinite cover of F̂ 4. Since such 4-dimensional space is aspherical, and it is not

compact, we get that H4(A) = H4(B) = 0, which is a contradiction.

(2) H = A∗B. We get again H4(A)⊕H4(B) = H4(H) = Z and the same conclusions

of the previous case.

(3) H = AZ is a HNN extension. In this case we get the exact sequence

0 = H3(Z) → H4(H) → H4(A) → H4(Z) = 0.

Similarly to the previous cases we get H4(A) = H4(H) = Z, and we can conclude

in the same way, as H4(A) = 0 is a contradiction.

The proof is complete.
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Putting together Proposition 57, Proposition 58 and Proposition 61, yields the proof

of Theorem 54.

In this thesis we have presented two necessary conditions for a group G to be hy-

perbolic: it must be of type F∞, and it cannot contain any Baumslag-Solitar subgroup

BS(m,n). For some classes of groups, these conditions are actually sufficient: some ex-

amples are the fundamental groups of 3-manifolds, free-by cyclic groups [16], and more

generally the ascending HNN extensions of free groups [46]. However, as a corollary of

Theorem 54, we show that is is not true in full generality, answering a well-known open

question, raised in particular by Bestvina [8, Question 1.1], Bridson [12, Question 2.22],

Drutu and Kapovich [19, Problem 11.129].

Corollary 62. There is a finite type group H that is not hyperbolic, and does not contain

any Baumslag-Solitar subgroup BS(m,n).

Proof. ConsiderG,H such as in Theorem 54. The groupH cannot contain any Baumslag-

Solitar subgroup, as it is contained in the hyperbolic group G.
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Chapter 4

Conclusions

In this chapter, we explore some possible directions for new research related to the

topics presented in this thesis. The main inspiration still comes from the questions that

motivated Theorem 19, Theorem 54 and Corollary 62.

The first natural question is whether it is possible to understand better the fibration

we have built, from a topological point of view. When a hyperbolic 3-manifold fibers

over the circle, the fiber is a finite-type surface, and the monodromy is pseudo-Anosov.

It would be interesting to understand what happens in dimension 5, at least in some

examples.

Problem 63. Give a description of the fiber for the fibration of M5. Determine the

monodromy map and study its dynamics.

The manifold M5 is tessellated into 256 copies of the polytope P 5, and the combi-

natorics is too complicated for this investigation. In [30], a smaller fibering manifold

is built, which is tessellated into just 2 copies of P 5. It arises from the abelian cover

associated to the fibration f , quotiented by some isometries. This new manifold is more

manageable in computational terms, and we can describe the fiber explicitly and study

it using Regina [17]. In particular, we are able to construct a triangulation for its fiber

that uses 144 simplices (of maximal dimension). It is possible to simplify such triangu-

lation obtaining some description that use 40 or 36 simplices (however, this way we lose

all information on how the fiber is embedded into the 5-dimensional manifold). Despite

this, we were not able to determine the monodromy map.

Another very natural direction of research is to find more examples:

Question 64. Are there closed examples of hyperbolic 5-manifolds that fiber over the

circle?
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The machinery presented here only applies to right-angled polytopes. Unfortunately

we only know 5-dimensional hyperbolic polytopes that are in the same commensurability

class as P5. Furthermore, as it was already mentioned, there are no compact right-angled

hyperbolic polytopes in dimension higher than 4. One interesting option is to try to

generalize this theory to Coxeter polytopes, admitting angles of type π
n
for all n ∈ N.

However all these approaches are still theoretically dimension-limited, since compact

hyperbolic Coxeter polytopes cannot exist in dimension higher than 29 [61], and finite

volume hyperbolic Coxeter polytopes cannot not exist in dimension higher than 995

[49].

In a similar fashion, we can explore higher dimensions in pursuit of new examples:

Question 65. Does the manifold M7 fiber over S1?

Question 66. Does the manifold M8 admit a perfect Morse function f :M8 → S1?

Proposition 33 in Chapter 2 ensures that the standard system of moves cannot

generate a fibration f : M7 → S1. A similar argument holds also for M8 since its

cusps are of similar nature. However, in principle, techniques analogous to the ones

described in Section 2.8 could be implemented also in these cases. Unfortunately, here

the combinatorics is much more complicated, and no substantial progress has been made.

As already mentioned, a celebrated theorem of Agol and Wise states that all closed

hyperbolic 3-manifolds have a finite cover that fibers over the circle [1, 62]. It is a

natural question whether this happens also in higher dimensions:

Question 67. Does every complete, finite volume, odd-dimensional hyperbolic n-manifold

virtually fiber over S1?

As usual, we can generalize this question to include the even-dimensional case:

Question 68. Is every complete, finite volume hyperbolic n-manifold finitely covered by

one that admits a perfect circle-valued Morse function?

This question was also asked in [6], and no counterexamples seem to be known at

the present time. Similarly to what was observed in Chapter 3, a hypothetical closed

fibration would have to have a closed, aspherical manifold F as the fiber, and Out(π1(F ))

must be infinite. As observed in [4], this is rare among fundamental groups of higher

dimensional aspherical manifolds: all known examples above dimension 2 contain Z2

and thus do not embed in hyperbolic groups.
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A promising tool to approach this topic involves a more algebraic direction: Kielak

[36] and Fisher [22] established a close connection between homology growth in finite

covers and virtual fibering.

Using fast Fp-homology growth in finite covers to obstruct virtual fibering, Avramidi,

Okun and Schreve [4] were able to construct the following example.

Theorem 69. There exists a closed, odd-dimensional, aspherical manifold M with hy-

perbolic fundamental group that does not virtually fiber over a circle.

This theorem does not provide a negative answer to Question 67, since the manifold

M is not hyperbolic in the usual sense, but only Gromov-hyperbolic.

We finally focus on the examples provided by Theorem 54 and Corollary 62 in Chap-

ter 3. Every finite type subgroup of a hyperbolic group of cohomological dimension 2

is hyperbolic [25]. The cohomological dimensions of the groups H and G in Theorem

54 are 4 and 5. A natural reformulation of the original question could therefore be the

following.

Question 70. Let G be a hyperbolic group of cohomological dimension n ≤ 4, and let

H < G be a finite type subgroup. Is H hyperbolic?

Topics related to the absence of Baumslag–Solitar subgroups, and other algebraic

versions of hyperbolicity, are studied in [24]. Following this paper, we call a group

BS-free if it contains no Baumslag–Solitar subgroups BS(m,n). As already mentioned,

torsion-free hyperbolic groups are BS-free and have finite classifying spaces. A natural

reformulation of the question answered by Corollary 62, as formulated in [24], is the

following:

Question 71. Let G be a group with a finite classifying space of dimension n ≤ 3. If

G is BS-free, is it hyperbolic?
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