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Diabetes has no well-established cure; thus, its management is critical for

avoiding severe health complications involving multiple organs. This requires

frequent glycaemia monitoring, and the gold standards for this are fingerstick

tests. During the last decades, several blood-withdrawal-free platforms have

been being studied to replace this test and to improve significantly the quality of

life of people with diabetes (PWD). Devices estimating glycaemia level targeting

blood or biofluids such as tears, saliva, breath and sweat, are gaining attention;

however, most are not reliable, user-friendly and/or cheap. Given the

complexity of the topic and the rise of diabetes, a careful analysis is

essential to track scientific and industrial progresses in developing diabetes

management systems. Here, we summarize the emerging blood glucose level

(BGL) measurement methods and report some examples of devices which have

been under development in the last decades, discussing the reasons for them

not reaching the market or not being really non-invasive and continuous. After

discussing more in depth the history of Raman spectroscopy-based researches

and devices for BGL measurements, we will examine if this technique could

have the potential for the development of a user-friendly, miniaturized, non-

invasive and continuous blood glucose-monitoring device, which can operate

reliably, without inter-patient variability, over sustained periods.
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1 Background

Diabetes is a lifelong disease that affects more than 400 millions of people worldwide

(WHO. Diabetes, 2022). Emerging reports from the International Diabetes Federation

state that diabetes is set to rise very fast, estimating 700 millions of cases in the next

25 years (IDFDiabetes Atlas, 2019). Among the various types of diabetes, all characterized
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by high blood glucose levels, the main two types are type

1 diabetes, an autoimmune condition where the pancreas

produces little or no insulin, and type 2 diabetes, a metabolic

disorder that results in hyperglycaemia due to insulin resistance.

Diabetes, and related risk factors such as microvascular

(retinopathy, nephropathy, and neuropathy) and

macrovascular metabolic disorders, is so widespread that it

has been defined “the epidemic of the century” (Kharroubi,

2015). According to the European parameters (Blood Sugar

Level Ranges, 2019), the plasma blood glucose level (BGL) of

a healthy person under fasting conditions fluctuates during the

day between approximately 99.0 and 124.2 mg/dl (5.5–6.9 mmol/

L) with maximum levels of up to 140.4 mg/dl (7.8 mmol/L) 2 h

post-prandial. Conversely, the plasma BGL of a diabetic person

under fasting conditions fluctuates during the day between

approximately 124.2 and 198.2 mg/dl (6.9–11.0 mmol/L) with

maximum levels up to 250.0 mg/dl (13.7 mmol/L) 2 h post-

prandial. In this contest, an adequate therapeutic treatment

has a pivotal role to avoid life-threatening health

complications, such as risks of heart disease, kidney failure,

blindness, up to hypoglycaemic or hyperglycaemic coma.

While subcutaneous injection of insulin or oral/nasal

administration of sugar-lowering drugs have been proved as

the crucial drug delivery systems over the last years, recent

pharmacotherapeutic approaches, exploiting

i.e., nanotechnologies, provide nowadays important

alternatives into resolving some of the most several limitations

of conventional anti-diabetes medications (Veiseh et al., 2015;

Todaro et al., 2022).

However, despite these technological improvements, it

remains difficult to maintain long-lasting ideal blood glucose

levels, and people with diabetes (PWD) must monitor the BGL

several times per day.

In this regards, great progresses have been made during the

past 60 years regarding BGL sensors. Weller and co-workers

pioneered the first continuous in vivo BGL sensing in 1960

(Weller et al., 1960). Starting from that year, several finger-

stick device have been developed, from the traditional Accu-

Chek (Roche Diagnostics GmbH, Germany), OneTouch

(LifeScan Inc., United States), Freestyle Optium Neo (Abbott

Diabetes Care Inc., United States), Contour Next, and Contour

Next One (Ascensia Diabetes Care Inc., Canada) to the most

novel technologies, such as a device based on a wireless smart pen

that can automatically calculate required insulin (Huang et al.,

2022). The conception of the traditional finger-stick for blood

testing method has further represented a cornerstone of the

research efforts, even if nowadays this tool is considered

obsolete because painful and time consuming, sometimes

resulting in poor compliance and bearing the risk of

infections. In the quest for painless alternatives, researchers

are attempting with extensive efforts to develop a fully Non-

Invasive Continuous Blood Glucose Level (NICBGL) sensing

device since the Eighties. (John L. Smith, 2021). Several

technologies (Heineman and Jensen, 2006) have been and are

being developed globally towards this end; until now, however, a

completely user-friendly, cheap, small and reliable NICBGL

device is lacking.

This review is organized as follows. Section 2 provides an

overview of current optical/wave-based/remote measurement

methods for BGL estimation; the main advantages and

drawbacks of the technologies are discussed. Section 3

presents a summary of the Raman spectroscopy advances over

the years. The main Raman features, advantages, disadvantages

as well as the emerging results in Raman biosensors are

examined. In Section 4 we discuss more deeply the

requirements for the ideal BGL measurement device and how

the various techniques can approach this result, provide an

intuitive explanation for the data analysis methods, highlight

the aspects that are important in particular for avoiding (too

frequent) recalibrations, and discuss the advantages of Raman

over the other possible techniques, presenting therefore also the

perspectives of this work. The manuscript ends with a short

conclusions section.

2 Blood glucose monitoring devices

2.1 Overview

The history of blood glucose monitoring (BGM) devices

began in the mid-twentieth-century when Leland C. Clark Jr.,

considered the “father of biosensors,” designed the first-

generation enzymatic glucose biosensor made to monitor

glucose during cardiac surgery. Due to its higher specificity,

accuracy and reliability in comparison to the previous

chemical/enzymatic tests (i.e., Trommer’s test, 1841; Fehling’s

test, 1848; or Benedict’s test, 1908), this device was one of the

major breakthroughs in glucose measurement (Dziergowska

et al., 2019). Thereafter, many other (invasive and non-

continuous) enzyme-based biosensors as well as other

continuous glucose monitoring (CGM) devices have been or

are being developed exploiting several techniques for measuring

various glucose physical parameters (Harman-Boehm et al.,

2009; Oliver et al., 2009; Clarke and Foster, 2012; Villena

Gonzales et al., 2019; Bolla and Priefer, 2020).

Measuring the concentration of an analyte requires detecting

a signal which is related to its amount, and knowing or

determining the functional relationship. The signal is usually

generated through the interaction of a field or of other molecules

(the “source”) with some physical-chemical characteristic of the

analyte. The source may interact with the analyte in the body

because:

1) a quantity of the analyte proportional to its concentration is

extracted (Figure 1A),

2) something is inserted inside the tissue of interest (Figure 1B),
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3) source and signal can pass through the tissues (Figure 1C).

The different possible sources and signals, linked with the

measured physico-chemical characteristic of the analyte,

characterize the different possible methods and techniques.

In the case of the BGM devices reviewed here, extraction of

fluids (case 1) is exploited in finger-pricking methods, in

Reverse Iontophoresis (RI, Section 2.7) and Sonophoresis

Technology (ST, 2.8) with subsequent enzymatic or surface

enhanced Raman scattering (SERS) quantification of glucose

(2.6 or 2.3.1, respectively); insertion of a minimally invasive

device (case 2) can be used in Enzymatic Detection

Technology (EDT, 2.6), in Fluorescence Technology (FT,

2.9), or again with SERS (2.3.1).

Case 3) is maybe the most promising for completely non-

invasive CGM devices, and sources and signals are usually

pressure/movement waves (“sound”) and/or electromagnetic

fields (“light”). The various techniques based on

electromagnetic fields differ for the frequency at which these

vary, and for how the signal is detected. At the lowest frequencies,

we will discuss Bioimpedance Spectroscopy (BS, Section 2.11)

and ElectroMagnetic Sensing (EMS, 2.14).

Increasing the frequency, there are the different optical

spectroscopy techniques, based on absorption by, emission

from, or scattering by the analyte. These three different

measures would require different geometries, but the

possibly relatively low penetration of the used

electromagnetic radiation in tissues, and the requirement

for a CGM device to be small and wearable, most often

constrain the geometry to be (almost) in back-scattering,

i.e. with the signal detected very close to the source. In

particular, absorption is usually measured as “diffuse

reflectance” (or remission), i.e., exploiting the random

scattering of penetrating radiation from tissues. Absorption

can be observed also by considering the effect of the energy

absorbed by the molecules, i.e. the local heating which can be

measured directly (sometimes called photothermal

spectroscopy) or by the generated pressure wave

(photoacoustic spectroscopy, see Section 2.5). Depending on

the measured regions of the glucose absorption spectrum, the

related devices are based on Near, Mid, and Far Infrared

Spectroscopy (NIRS, MIRS, and FIRS, see Section 2.2), or

Millimetre and Microwave Sensing (MMS, 2.4). Regarding

light scattering: coherent diffused radiation is measured in

Optical Coherence Tomography (OCT, Section 2.12), where

glucose concentration can be determined because of its

influence on the refractive index of biofluids; on the other

hand, a vibrational spectrum of glucose can be measured by

looking at the inelastic light scattering in Raman Spectroscopy

(RS, Sections 2.3, 3). Finally, there are devices that exploit

more than one technique and/or measure also quantities

different from glycaemia (e.g., to correct its obtained

values); these are MultiTechnologies (MT) devices (Section

2.13), among which the ones measuring Metabolic Heat

Conformation (MHC), based on various spectroscopies and

possibly on gravitometry (for detecting movements, e.g.,

caused by heart pulse).

In the following, we will provide examples of BGM

devices that are available on the market or are or

have recently been under development, and we will explain

the main complications of each technique. A more

comprehensive research on BGM devices on the market or

currently under development is presented in (Shang et al.,

2022).
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FIGURE 1
Evolution of BGLmonitoring devices from invasive glucometer (A), tominimally invasive continuous glucosemonitoring patch (B), and finally to
non-invasive wristwatch (C). Created with BioRender.com.
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2.2 Infrared spectroscopy

In general, absorption of infrared radiation usually causes a

variation in molecular vibrational states. The vibrational

spectrum of a molecule is usually composed by relatively

sharp peaks, with energies precisely depending on the

structure of the molecule (spectral fingerprint region);

therefore, studying infrared absorption spectra allows drawing

information on distinctive features of the molecules. Infrared

spectroscopy can be used as a quantitative analytical method,

since the absorption is proportional to the intensity of the

incident light and to the concentration of the considered

molecule. This, together with the high selectivity of the

method, allows the quantitative determination of an analyte in

a complex mixture with limited or no prior separation.

A basic configuration for an IR measurement is shown in

Figure 2. A Fourier transform infrared interferometer (FTIR) is

often used as the dispersive element especially in the mid and far

infrared, because it is more efficient than gratings (and prisms,

where there could also be high absorption), especially in

producing a higher signal to noise ratio (SNR) (Tozzini and

Luin, 2012). However, measurements with this instrument are

usually slower, measures on only some subsets of wavelengths are

not feasible, and the moving part makes them difficult to

implement in a wearable device.

2.2.1 Near infrared spectroscopy
NIR absorption spectroscopy is an analysis technique based

on the interactions between matter and electromagnetic

radiation with wavelengths between ~700 and ~2,500 nm,

corresponding to energies between ~14,000 and ~4,000 cm−1.

In this region there is the so-called NIR optical window, i.e. a

range of wavelengths (~650–1,350 nm) at which light penetrates

tissues the most, thanks to the low absorption of water and

haemoglobin.

In the NIR region, the active modes are actually overtone or

combination bands, with somehow broader spectra. Moreover,

there are some peaks in the absorption spectrum of water, also

within the optical window; increasing the concentration of an

analyte will decrease the absorption of water in these regions,

causing negative peaks in the differential absorption between the

studied solution and water (water volume-displacement effects).

Moreover, other changes in the absorption spectra could arise

because of differences in water hydrogen bonds, due to

interactions with the solute.

Often, NIR is combined with photoplethysmography (PPG).

PPG is a non-invasive optical technique introduced for the first

time in 1937 by Hertzman, who was the first suggesting that a

pulse oximeter pleth (Plethysmograph), an instrument for

measuring blood or air fluctuations, may be used to detect

blood volume changes in the skin’s vessels. A typical PPG

device is composed by a LED, which emits infrared light on

the skin, and by a photodetector, which captures and measures

the diffused-reflected light. The resultant PPG tracks were

intensely studied for several decades until 2015, when for the

first time the PPG signals were analysed by means of hard

spectral data processing methods for the first BGL estimation.

(Monte-Moreno, 2011; Ramasahayam et al., 2015).

Advantages of the NIR technique are that it is suitable in the

presence of interfering substances such as plastic, glass and water,

needs relatively low-cost materials and the required

photoconductive detectors are highly sensitive. Only three

NIR-based devices are currently available on the market, i.e.

the Combo Glucometer (Cnoga Medical, Israel), where NIR is

combined PPG, one from the Tech4Life entreprise

(United States) and the HELO Extense (World Global

Network, United States); these are little devices providing a

non-invasive glucose detection through the finger.

Unfortunately, they need frequent and personalized

calibration, thus monitoring the glucose in a non-continuous

manner, and often do not measure directly glucose spectral

characteristics. (Pfützner et al., 2018; Segman, 2018; Vahlsing

et al., 2018; Villena Gonzales et al., 2019).

WizmiTM (Wear2b Ltd., Israel), LifeLeaf® (LifePlus,

United States) and two devices from the Polytechnic

University of Catalunya (Spain) and the Karunya University

(India) are under development (Monte-Moreno, 2011; Hadar

et al., 2019; Villena Gonzales et al., 2019; Shang et al., 2022;

MEET LIFELEAF, 2022®). The first one could offer a non-

invasive and continuous glucose monitoring when applied to

the arm wrist and the other three could harness the PPG

technique when applied on the wrist, finger and forearm,

respectively.

Other devices, such as NBM-200G (OrSense Ltd., Israel) and

Diasensor 1,000 (Biocontrol Technology, United States), or
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FIGURE 2
Example of experimental setup for infrared spectroscopy. A
continuous IR source generates light over a wide range of infrared
wavelengths, which irradiates the sample. The light is collected in
transmission or diffuse reflectance mode, and the spectrum
is measured thanks to a diffraction grating, in this example.
Alternative configurations use a Fourier transform interferometer
(FTIR) instead of the dispersive element, or use a monochromator
or other methods for selecting the wavelength bands between IR
source and sample. Created with BioRender.com.
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GluControl® GC300 (Samsung Fine Chemicals Co., Ltd. & Arith.

Med Gmb. H, United States) and one from TouchTrack Pro,

were withdrawn or never released, respectively, because of their

weak sensitivity and stability, mostly caused by the high

scattering of tissues. Indeed, almost all NIR devices suffer

from the need to perform frequent recalibrations and from

poor selectivity (Oliver et al., 2009; Villena Gonzales et al.,

2019; Bolla and Priefer, 2020). Even if there are spectra peaks

whose intensity is directly proportional to the concentration of

the analyte (glucose), its concentration is very low and there can

be many reasons for changes in NIR spectra (e.g., the effects on

water discussed above). Accordingly, complex machine learning

model and multivariate calibration models, such as partial least

squares (PLS) regression, support vector regression or Monte-

Carlo simulation, are required for extracting a quantification of

glucose in the presence of other physiological substances and

tissue components (water, haemoglobin, proteins, fat, etc.) (Kino

et al., 2016; Althobaiti and Al-Naib, 2021). For better

understanding the state of the art of the non-invasively

measured NIR signals from tissue, see studies from the Heise

group, who reviewed the progress in emerging glucose

monitoring techniques exploiting photoplethysmography

within the visible and near-infrared range (Delbeck et al.,

2019; Heise et al., 2021).

2.2.2 Mid infrared spectroscopy
Mid Infrared Spectroscopy (MIRS) allows collecting spectra

where the contribution of different moieties (including blood

glucose) are clearer if compared to NIRS, and therefore it can be

more specific (Oliver et al., 2009). MIRS is a vibrational

spectroscopy technique that exploits radiation in the mid-

infrared region (2.5–25 μm, corresponding to 4,000–400 cm−1),

where there is lower scattering from the tissues, and high

absorption in the so-called fingerprint region of organic

molecules. Conversely, the main problem of this technology is

related to the fact that the light has limited penetration in tissues

(100 μm approximately) for the strong water absorption, thus

making necessary the use of expensive complementary

technologies. No devices are currently available, but some

products are under development. The start-up DiaMonTech

AG (Germany) is developing D-Band, D-Pocket and D-Base,

three analogous devices exploiting “photothermal detection” of

MIR absorption spectra upon excitation with a tuneable mid-

infrared quantum cascade laser (QCL) (Shang et al., 2022;

DiaMonTech, 2022; DiaMonTech: Non-Invasive Blood

Glucose Monitoring.); these products are based on the

researches of Mäntele group, who stated that photoacoustic

and photothermal detection seem to provide high accuracy in

following glucose absorbance signal, overcoming cross-

sensitivities and interpersonal variation of skin glucose level

measurements (Lubinski et al., 2021). Indeed, also a device

under development by the Swiss Federal Institute of

Technology (Switzerland) exploits powerful but expensive

QCL MIR sources and photoacoustic detection. (Kottmann

et al., 2016; Villena Gonzales et al., 2019). Another device

(under development in Tohoku University, Japan) is a

minimally invasive device applicable on the inner lips,

harnessing an attenuated total internal multireflection

geometry (Kino et al., 2016; Villena Gonzales et al., 2019).

However, the use of attenuated total reflection for this kind of

measures has been criticized due to penetration depth limitations

(Delbeck and Heise, 2021).

2.2.3 Far infrared spectroscopy
At still higher wavelengths there is far infrared radiation

(FIR), having wavelengths of ~25–1,000 μm (sub-millimetre

waves), corresponding to energies of ~400–10 cm−1 or to

frequencies between ~12 and 0.3 THz, and therefore it is also

known as terahertz radiation. FIR spectroscopy (FIRS), for

instance, is less sensitive towards scattering compared to NIR

andMIR and does not require frequent calibration. However, the

scattered radiation intensity depends on skin temperature and

skin thickness, and strong water absorption makes extremely

difficult to identify other analytes, such as glucose, in the sample.

Therefore, no instrument based on this technology is known to

exist or be under development.

Terahertz Time-Domain Spectroscopy (THz-TDS), and

Time of Flight (TOF), are nevertheless promising emerging

technologies. Despite the long measurement time and the low

spatial and depth resolution, these technologies seems more

suitable than the IR spectroscopy for the identification of

glucose, whatever in solid-state or in aqueous solutions. (Song

et al., 2018). Furthermore, the possibility to study broad

frequency ranges with a single ultrashort pulse and to make

complex permittivity measurement with a single scan are two

added values of this approach, which could be exploited in the

near future in BGL assessment (Villena Gonzales et al., 2019).
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Experimental setup for a Raman spectrometer. A laser diode
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2.3 Raman spectroscopy

Raman spectroscopy allows exploring the vibrational

transitions addressed also by MIRS and down to part of the

FIRS range; like those, it is a non-destructive optical technique

useful for obtaining analytical information on the (bio)chemical

composition of a sample (Pandey et al., 2017). This is irradiated

by a monochromatic light source usually in the visible or NIR

range (typically a laser beam), and the photons scattered by the

sample are recorded (Figure 3) (Oliver et al., 2009; Dziergowska

et al., 2019). There are two types of scattered light, namely

Rayleigh (elastic scattering, at the same frequency of the

incident light), and the weaker Raman scattering (anelastic

scattering, with different frequencies than the incident light)

(Wróbel, 2016; Villena Gonzales et al., 2019). The energy

difference between the two scattering modes is the Raman

shift, which corresponds to the energy of an excitation of the

considered system. As already stated, these excitations are usually

vibrational modes, and their spectrum form a unique

“fingerprint” of the specific chemical substance (Pandey et al.,

2017). Usually, the Stokes Raman peaks (at lower energies than

the one of the source photons) are measured, since the Anti-

Stokes signal (at higher energies) is much weaker at room and

physiological temperatures. Atkins and co-workers (2017)

reviewed the literature in the field, listing the published

Raman spectroscopy studies of haemoglobin and red blood

cells, white blood cells, platelets, plasma and serum, and

whole blood (Atkins et al., 2017). RS is so far one of the most

promising technologies due to its numerous advantages. The

main one is the fact that, by choosing the source in the red region

of the spectrum or in the NIR, both source and signal can be

within the optical window for tissue transparency, and this allows

a good penetration depth (up to millimetres) into human tissue.

In this configuration, also an FTIR can be used for obtaining the

spectra with the same advantages and disadvantages discussed in

Section 2.2; it has been used with 1,064 nm laser excitation also

for minimizing the disturbance of fluorescence background

(Wang Q. et al., 2021). Other advantages are its unequivocal

detection capability (and subsequently high specificity to

glucose) without issues of photostability, minimal interference

by temperature changes and water presence, and the high

amount of developed methods for quantitative data analysis.

As a result, Raman spectroscopy has significant potentials to

provide precious data in several clinical assessment processes,

such as diagnosing cancer, infections or neurodegenerative

diseases, as well as for non-invasive BGM (Parlatan et al., 2019).

A more complete review of the research on RS for measuring

BGL is reported in Section 3, and the information reported here

are for better comparison with the other techniques. Considering

devices, apart C8 Medisensors (C8 Medisensors inc.,

United States), which was never released nominally due to the

absence of capital to finalize the design, GlucoBeam (RSP System

A/S, Denmark) seems to be the only BGM Raman device under

development (Lundsgaard-Nielsen et al., 2018; Villena Gonzales

et al., 2019). The authors claim that clinical tests on

600 participants have been already performed and some

intrinsic limiting factors typical of Raman, such as the usually

low SNR as well as the interference of signals caused by the high

complexity of biological tissues and by a strong fluorescence

background, have been resolved. However, unstable laser

wavelength and intensity, long collection time and accuracy

issues need to be solved before future clinical applications (Li

et al., 2019; Kang et al., 2020; Pleus et al., 2021; Wróbel et al.,

2021).

2.3.1 Surface enhanced Raman spectroscopy
Another strategy to overcome the weakness of Raman signals

exploits the high enhancement of the signal when molecules are

adsorbed, or at least very close, to metallic surfaces with

nanometric features (Tozzini and Luin, 2012). This is

exploited in surface enhanced Raman scattering (SERS), where

there is both an enhancement of the electromagnetic field for its

“storage” in nanoplasmonic modes, and a “chemical”

enhancement, due to the interactions of the molecular orbitals

with the electronic states in the metal. This technique provides

both excellent detection sensitivity (down to single-molecule

detection) and the high selectivity of RS (SERS fingerprint

spectrum). Reports proved that SERS-active plasmonic devices

could represent a useful platform for molecular recognition/

sensing inside the body. For instance, Park et al. developed a

plasmonic microneedle array coated with gold nanorods and

with the pH-sensitive molecule 4-mercaptobenzoic acid as a

platform for pH sensing in ex vivo human skin (Park et al.,

2019). A wearable sensing platform, formed by a flexible SERS-

active plasmonic silver superlattice metasurface as key sensing

component and by a flexible electronic system for iontophoresis

(see Section 2.7), was able to automatically extract sweat and

analytes from the body and to reveal trace-amounts of drugs and

glucose inside the body (Wang Y. et al., 2021). Over the last years,

SERS strategies have opened novel horizons also in diabetes

management, as the development of 1) silver-coated

intracutaneous microneedle to detect glucose concentrations

ranging from 5 to 150 mM (Yuen and Liu, 2014), 2) gold

nanorods SERS probe embedded in two-component self-

assembled monolayers consisting of 3-mercaptophenylboronic

acid and 1-decanethiol, to measure the glucose concentration in

the range 2–16 mM (Torul et al., 2014), 3) a subcutaneous

glucose sensor by tracking the SERS emission of

mercaptophenylboronic acid (MPBA), (Li et al., 2015), 4)

composite of gold nanoparticles (AuNPs) onto two-

dimensional (2D) nanosheet metalloporphyrinic

metal−organic framework (MOF), used for the detection of

glucose in saliva (Hu et al., 2020), 5) a glucose sensor based

on a poly(methyl methacrylate) (PMMA) microneedle array

coated with silver nanoparticles (Ag NPs) to achieve mice

intradermal measurements (Ju et al., 2020). Although SERS
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has been extensively studied for glycaemia management and the

usage of such sensors will probably expand more in the coming

years, no device is on the market yet. Because of the requirement

for the SERS-active surface to touch the analyte, SERS can be

used in external or extracted fluids or, in the last reported

examples, is not a completely noninvasive technology. Indeed,

subcutaneous injection of metal materials can produce toxicity,

appropriate microneedles are costly and can easily cause

permanent skin damages, and in any case in-vivo efficacy has

been not completely demonstrated. (Asharani et al., 2008; Ma

et al., 2011; Moore et al., 2018; Wang et al., 2022).

2.4 Millimetre and microwave sensing

Millimetre and Microwave sensing (MMS) can be based on

reflection, transmission, resonance perturbation and/or radar

techniques using electromagnetic fields oscillating at

~30–300 GHz and ~3–30 GHz respectively; in any case, the

glucose concentration could be inferred by the dependence of

the permittivity of blood and tissues on the glucose

concentration, which causes different interactions with the

electromagnetic waves (Saha et al., 2017; Shaker et al., 2018).

This radiation can penetrate deeper in tissues than more

energetic ones, allowing to reach areas with more circulating

blood and more glucose, and enhancing therefore the sensitivity

for this molecule; always for the deep penetration of these waves,

it is possible to perform glucose measurements on different areas

of body (hand, abdomen, ear lobe and other portions of skin).

Several universities and companies from Europe and

United States (MediWise, University of Waterloo and Google,

University of Cardiff, Caltech University and University of

Erlangen-Nuremberg) are currently developing devices for a

non-invasive glycemia tracking exploiting the previously

mentioned advantages (Choi et al., 2017; Shaker et al., 2018;

Villena Gonzales et al., 2019; Omer et al., 2020). However, it is

worth noting that these devices are not suitable for continuous

glucose monitoring (i.e. Glucowise™ or Google Soli, both

equipped with 60 GHz mm-wave radar, could be not user-

friendly after a long exposure) and the penetration of signal

can be affected from physiological parameters such as sweating,

breathing and cardiac activity; thus, the glucose concentration

measurement could be inaccurate.

2.5 PhotoAcoustic spectroscopy

This technology allows developing a relatively simple and

compact sensor, employing a nanosecond-pulsed QCL or a

modulated laser, with wavelength from the ultraviolet to the

MIR ranges, and exploiting the fact that absorption of radiation

by an analyte produces microscopically localized heating. This

causes a fast and adiabatic thermal expansion of the sample and

the generation of detectable acoustic waves as a consequence

(Villena Gonzales et al., 2019). Therefore, absorbance spectra in

any of the regions discussed above can be measured by detection

with ultrasound detectors, and the variations of blood glucose

level can be calculated similarly to the all-optical methods, with

the advantage that the tissues mostly transmit sound waves

(Figure 4). However, the signal may not be intense enough

(low SNR) and it may be susceptible to temperature, motion,

pulsation and surrounding acoustics; moreover, the integration

time could be long (several minutes) (Oliver et al., 2009). Some

examples of PAS-based devices under development have been

reported above, especially in Section 2.2.2. Other possible

examples are Aprise (Glucon, United States) and another

device from the Electronics and Telecomm. Research Inst. of

Korea (Republic of Korea), but they are almost unknown and not

on the market (Kottmann et al., 2016; Sim et al., 2018;

Dziergowska et al., 2019; Villena Gonzales et al., 2019).

2.6 Enzymatic detection technology

Enzymatic detection represents the first developed method to

reveal glucose level. Through technologies exploiting enzymatic

reactions, it is possible to provide a direct and efficient

measurement not only from blood, but also from other

biological fluids (e.g., tears and interstitial fluid) (Park et al.,

2018). The commercially available CGM sensors based on

enzymatic detection, without the typical long-term stability

issue of enzyme, are: 1) Guardian Sensor 3 (Medtronic Plc.,

United States) (Cappon et al., 2017; Christiansen et al., 2017; Lee

et al., 2021; Shang et al., 2022), 2) Dexcom G6 (DexCom, Inc.,

United States) (Cappon et al., 2017; Boscari et al., 2021, 2022; Lee

et al., 2021; Shang et al., 2022), and 3) Free Style Libre (Abbott

Ltd., United States) (Cappon et al., 2017; Blum, 2018; Galindo
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FIGURE 4
Photoacoustic spectroscopy experimental setup. A thermal
expansion of the sample (inside or in contact with the acoustic
resonator) is generated by a pulsed laser source (e.g., a quantum
cascade -QC- laser). The generated acoustic waves
propagate through the acoustic resonator and, after amplification
and possibly ADC (analogic-digital converter), is analyzed by a
computer. Created with BioRender.com.
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et al., 2020; Jafri et al., 2020; Lee et al., 2021; Shang et al., 2022).

All three electrochemical sensors works by means of an

enzymatic sensor, equipped with sterile and fluffy

microneedles, which are subcutaneously inserted (on abdomen

or upper arm), and the following automatic data sharing on

smartphone. However, every 7, 10 and 14 days, respectively for

Medtronic, Dexcom and Abbott, the sensors need to be replaced.

In the last years, research institutes have been moving towards

the development of similar but longer-life CGM devices. It is this

case for: 1) K’Watch, a skin patch under development by

PKvitality (France); 2) the devices under development by

KTH Royal Inst. of Technology (Sweden), to be applied on

the forearm; 3) mouthguard glucose sensor, from Tokyo

Medical and Dental University (Japan) and 4) the biosensor

platform from the iQ Group Global Ltd. (formerly iQnovate,

Australia), exploiting the Organic Thin Film Transistor

technology, both developed to monitor salivary glucose that is

reported to be correlated with the BGL; 5) the device from Ulsan

National Inst. of Science and Technology (South Korea) and 6)

NovioSense from Novio Tech Campus (Netherlands), both

exploiting eye glucose monitoring technology (Dastoor and

Belcher, 2017; Kownacka et al., 2018; Park et al., 2018; Ribet

et al., 2018; Villena Gonzales et al., 2019; Arakawa et al., 2020;

Shang et al., 2022). Data on most of these devices are not in the

public domain. However, it should be mentioned that, although

all of them are able to check the glycaemia level with a painless

scan instead of fingersticks, they are all considered minimally

invasive devices (Ventrelli et al., 2015).

Reverse iontophoresis

Reverse Iontophoresis (RI) is a minimally invasive technique,

based on an electrochemical apparatus applicable on the skin that

can extract glucose from the interstitial fluid (ISF). Upon

application of electrodes and then of an electric field, the flux

of the target compound is possible thanks to passive diffusion

and electroosmosis, which is a net movement of water across the

skin from anode to cathode and results when the electric field is

applied across the negatively-charged skin (the isoelectric point

of human skin is around 4–4.5); glucose is then revealed through

enzymatic methods (Dziergowska et al., 2019). The first two

example of RI continue glucose monitoring devices were

developed in the United Kingdom. SugarBEAT (Nemaura

Medical, United Kingdom), available on the market, is a daily

upper arm disposable sensor whilst another device from the

University of Bath (United Kingdom), under development,

seems to use a graphene-based transdermal platform. (Lipani

et al., 2018; Villena Gonzales et al., 2019; Shang et al., 2022). The

main advantages of devices employing a RI technology are that

electrodes are not difficult to manufacture and they are easily

applied to skin; in addition, there is a good correlation between

glucose level in the ISF and in the blood under stable conditions.

GluCall (K.M.H Co., Ltd., South Korea) is another RI device

currently present on the market but not widely used due to its

high degree of invasiveness. Common disadvantages of RI

devices are high susceptibility to sweating, slowness in

responding to rapid changes of glucose concentration, besides

provoking skin irritation due to the passage of current. For these

reasons, and for the low reliability, another RI continuous

monitoring glucose device, named GlucoWatch (Cygnus Inc.,

United States) was withdrawn (Oliver et al., 2009; Villena

Gonzales et al., 2019).

2.8 Sonophoresis technology

Sonophoresis is a well-known drug delivery method relying

on low-frequency pressure waves to move molecules into and

across the skin. Sonophoresis instruments induce a series of

compression and expansion movements and enhance the

permeability of the skin; by slight changes in the geometry,

they can be used to extract ISF with glucose, similarly to RI,

allowing a CGM by means of enzymatic methods (Oliver et al.,

2009; Dziergowska et al., 2019). On the other side, determining

the relationship between the extracted glucose quantity and the

BGL is usually difficult, and can be susceptible to temperature

and pressure variations, to environmental parameters, and to the

presence of other compounds. Based on sonophoresis approach,

the American company Echo Therapeutics is currently trying to

develop “Symphony”, a CGM device catalogued as a minimally

invasive technology, even if it seems to harness a user-friendly

approach as there is no side-effect to skin (Villena Gonzales et al.,

2019).

2.9 Fluorescence technology

Although an old patent based on an assumptive fluorescence

of glucose excited at 308 nm is reported, glucose actually has no

detectable fluorescence when excited in the visible or near-UV

range (Khalil, 2004; Pullano et al., 2022). Fluorescence

technologies make instead use of fluorophores that, once

bound to the analyte (e.g., glucose), are able to emit

fluorescent light with distinctive optical properties (mostly,

excitation and detection wavelengths). Thus, the analyte

concentration can be measured in terms of fluorescence

intensity and/or decay times. Fluorescence technology is

receiving much attention for its high sensitivity and specificity

also in scattering media such as blood, skin layers or tears;

however, it requires contact between the fluid to be analysed

and the fluorophores, likewise enzymatic detection (Dziergowska

et al., 2019). In this contest, Eversense® CGM under-skin

biosensor (Senseonics, United States) is today available on the

market. Furthermore, another under-skin patch (from Profusa,

inc., United States) and a contact lens, that can monitor the
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glucose concentration in tears, are currently under development

(Chen et al., 2017; Badugu et al., 2018; Villena Gonzales et al.,

2019; Jafri et al., 2020). The last one is based on an optical

fluorescent sensor that monitor the BGL chemically through a

boronic-acid derivative support containing the fluorophore; the

higher the glucose amount, the more boronic acid converts from

neutral to anionic form, and the bigger the spectral variations

retrieved by the detector (Badugu et al., 2004, 2018; Gamsey et al.,

2006). Despite their ability to reveal glucose at very low

concentration (lower than 25 μM for Eversense®), none of

these devices is currently widely used worldwide. As a matter

of fact, they are not exempt from invasiveness: they need an

“exogenous” fluorescence-based sensor/indicator in contact with

the analyte, the foreign body containing all this is inserted within

biological media, and this may lead to local tissue trauma and

potential toxicity issues. In addition, they suffer from the intrinsic

FT issues related to autofluorescence and its limitations

associated with photostability/photobleaching. Because of

these obstacles, the research has quickly moved towards less

invasive CGM devices (Oliver et al., 2009; Villena Gonzales et al.,

2019). Such is the case of DermalAbyss (Massachusetts Institute

of Technology, United States), relying on a colour-based

indicator for glucose concentration that can be used in a

pioneering tissue-integrating tattoo (Vega et al., 2017). This is

now under development and represents a promising biosensor

for continuous monitoring, despite issues related to the very high

sensitivity to local pH changes and/or oxygen levels.

2.10 Metabolic heat conformation

MHC technology consists in deducing glycaemia level from

measurements of physiological indicators related to metabolic

heat generation and local oxygen amount, such as pulse rate,

oxyhaemoglobin saturation, heat metabolic rate and the blood

flow volume, via well-knownmulti-wavelength (MIR/NIR range)

spectroscopy methods (Figure 5) (Dziergowska et al., 2019;

Villena Gonzales et al., 2019). GlucoGenius (ESER Health

Care Digital Technology Co. Ltd., Taiwan) is the only

available device on the market, while other non-invasive

devices, one from Health-Care Computer (Japan) and

G2 Mobile (Eser Digital, India), are under development.

Hitachi Ltd. (Japan) announced in 2004 the development of a

unique non-invasive blood sugar monitoring device for diabetics

but it was never released (Okura et al., 2018; Villena Gonzales

et al., 2019). The main issue of these tools is that they don’t

provide a direct glucose monitoring; besides, they suffer of high

sensitivity towards temperature and sweat; thus, MHC doesn’t

seems a suitable technology for continuous glucose monitoring

purpose (Bolla and Priefer, 2020).

2.11 Bioimpedance spectroscopy

Bioimpedance spectroscopy (BS) was a very popular

technology in the early 2000s. It is supposedly based on the

fact that the conductivity of the red blood cells membranes can be

correlated with variation of blood glycaemia level, since the

glucose concentration influences the sodium-potassium

currents in cells (Oliver et al., 2009; Dziergowska et al., 2019).

Pendra (Pendragon Medical Ltd., Switzerland) and Glucoband

(Calisto Medical, Inc., United States) were the first two developed

BS devices that allowed an easy CGMmeasurement on arm wrist

cheaply (Villena Gonzales et al., 2019). On the other side, the

conductivity was measured by means of the application of a

current on the skin for a long time, which could cause irritation.

Moreover, as MHC technology, BS is sensitive to variations of

temperature, to motion, to sweat and to water content. For these

reasons, Pendra and Glucoband were withdrawn few years after

their release and are considered obsolete (Huang et al., 2020).

2.12 Optical coherence tomography

Optical Coherence Tomography (OCT) is a medical imaging

technique, initially born as an ocular diagnostic test and evolved

later as tomographic imaging of different tissues also sensible to

various analytes, such as glucose. OCT is typically a non-invasive

method, characterized by a good SNR due to NIR light, deeply

penetrating in the skin. Although it can suffer from tissue

inhomogeneity, this technology does not seem susceptible to

blood pressure, haematocrit and cardiac activity (Dziergowska

et al., 2019; Villena Gonzales et al., 2019). There’s currently only

one device from the National Cheng Kung University (Taiwan),

considered however not suitable for continuous glucose

monitoring (Chen et al., 2018; Villena Gonzales et al., 2019).

Researchers are currently trying to overcome some OCT related

issues, such as the high sensitivity to temperature changes of the
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FIGURE 5
A schematics of a simplified MHC device, where the
detection system transforms information about temperature,
humidity, blood flow rate and degree of blood oxygen saturation
into estimation of glucose level. Created with
BioRender.com.

Frontiers in Chemistry frontiersin.org09

Todaro et al. 10.3389/fchem.2022.994272

Proo
f

http://BioRender.com
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.994272


skin and to motion, and the lack of chemical specificity for

glucose (Oliver et al., 2009; Wróbel, 2016).

2.13 MultiTechnologies

The technologies already described are analytical methods

used for the determination of glucose by using one or more of its

intrinsic molecular properties, or by assessing the effects of

glucose on the physical properties of blood and/or tissues.

However, glucose determination with different methods

presents different drawbacks and it is limited by the influence

of interfering factors (which could be, e.g., temperature,

humidity, motion of the sensor, or other physio-pathological

parameters of the PWD). Accordingly, the development of a tool

that combines several technologies may decrease the errors

derived from each method separately, or can be used to

determine the interfering factors in order to correct the

glucose measure. Starting from 2009, researchers from the

Integrity Applications (Israel) placed on the market

GlucoTrack, apparently a combination of ultrasound, thermal

and electromagnetic sensing device, a non-invasive glucose

monitoring device intended for people with type 2 diabetes

for use in home and home-alike environments. (Harman-

Boehm et al., 2009; Villena Gonzales et al., 2019; Shang et al.,

2022). For measuring BGL upon a personal calibration valid for

1 month, a personal ear clip, equipped with both sensors of hypo-

and hyperglycaemia and calibration electronics, is attached to the

earlobe. This latter is an interesting site since its accessibility and

the abundant supply of blood to it. The device is lightweight,

compact and safe and seems to achieve very high accuracy and

precision in clinical trials due to combination of multiple

technologies (Mohamad Yunos and Nordin, 2020). More

recently, other technologies have been developed. Evia

Medical Technologies Limited (Saudi Arabia), exploiting

similar technology than GlucoTrack, has developed

Egm1000™, an ear-lobe glucose monitoring device available

for type 2 diabetes (Mosli and Madani, 2021). To date,

GlucoTrack and Egm1000™ are not suitable for a CGM

because they are not really wearable.

In another kind of multitechnology approach, the

United States researchers Xu and Berry are currently trying to

exploit graphene’s Raman spectroscopy (GRS) as a tool for

reading the activity of a glucose oxidase (GOx) enzymatic-

based detector or the response to glucose in an affinity-based

detector; RS can indeed measure the changes in graphene dopant

level and/or Fermi energy caused by these kinds of detectors

without employing conventional electrical measurements

(Ahmadianyazdi et al., 2022). The reported measurements

have been done on fluids containing glucose; however, once

device sensitivity, measurement uncertainty, sample-to-sample

variation, and compatibility with biological fluids will be

overcome, this glucose sensor could represent a

complementary tool for the study of molecular interaction

phenomena at the interface with graphene and a promising

glycaemia continuous monitoring biosensor.

2.14 Other technologies

Besides the above described approaches, there are several

other technologies that could be employed in BGL estimation but

no BGM devices are currently on the market due to drawbacks

mainly related to reliability, size or cost. Optical Polarimetry

Technology (OPT) is an optical measurement method that relies

on rotation of light polarization due to the optical activity of an

analyte. The aqueous humour of the eye has been identified as the

fittest tissue for BGL measurements with this technique, because

of low protein and erythrocytes contents and therefore negligible

scattering. However, OPT is not a front-line technology for

glycaemia sensing purpose, firstly due to the intrinsic low

optical activity of glucose. Furthermore, several challenges

have yet to be addressed such as high sensitivity to

interferences (other optically active compounds), temperature,

pH changes and motion and the need of an external laser source

and proper alignment with eye (Oliver et al., 2009; Dziergowska

et al., 2019; Villena Gonzales et al., 2019; Bolla and Priefer, 2020).

Surface Plasmon Resonance Technology (SPRT) is a

refractive index-based detection technology not suitable for

BGL assessment since glucose and other low molecular weight

compounds have insufficient mass to affect a measurable change

in the refractive index. Moreover, this technique is very sensitive

to temperature, sweat and motion, and the instruments are

generally bulky and require a long calibration time (Villena

Gonzales et al., 2019).

Electromagnetic sensing (EMS) is a low-cost, easily

miniaturized and safe technology, which supposedly exploits

the dependence on glucose of the magnetic permittivity of

tissues. However, several challenges, such as the low glucose

selectivity as well as the high sensitivity to temperature, have to be

addressed before making EMS technology available for glycaemia

measurement (Villena Gonzales et al., 2019; Bolla and Priefer,

2020).

Ultrasound Technology (UT) is a well-established

technology, not harmful to cells, and highly sensitive for

qualitative/quantitative analysis due to the long penetration

through skin and other tissues of ultrasound waves. Its

sensitivity to glucose is linked to the dependence of sound

velocity on glucose concentration. However, UT is not a

suitable approach for BGL measurement, due to the limited

accuracy (pressure changes and temperature fluctuations can

cause interferences, and therefore it is often coupled with NIRS)

as well as the high cost (Villena Gonzales et al., 2019; Bolla and

Priefer, 2020).

Occlusion Spectroscopy (OS), based on red light or NIR

scattering often in the reflected-diffusion configuration, is
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suitable for the non-invasive measurement of arterial glucose.

However, due to the susceptibility to many endovascular

variables, such as pharmacological treatment, internal

erythrocyte aggregation, free fatty acid concentration and

chylomicrons (ULDLs), this technology cannot be used to

develop BGM devices without a complex algorithm, still

lacking, to extract glucose information (Shokrekhodaei and

Quinones, 2020).

RadioFrequency Sensor Technology (RFST) is another

approach to monitor the different levels of blood glucose

concentration (Moore, 2009; Yilmaz et al., 2019; Yunos et al.,

2021). Compared to sensors with different mechanisms, Alertgy®

(Alertgy Ltd., United States) and UBAND™ (Know Labs,

United States) RF devices are advantageous in terms of their

fast response (Shang et al., 2022; Meet Alertgy NICGM, 2022.

Blood Glucose Monitoring. In The Convenience of a Wristband.

For Diabetics. For Healthcare. Using Non-invasive Deep-Gluco®;
UBAND-Know Labs, 2021. Bio-RFID™. Transforming Non-

Invasive Medical Diagnostics). However, they are not highly

sensitive systems, and need to take into account a large

number of external factors (such as temperature variability,

the effect of pressure and the effect of sweat) to accurately

determine the effective permittivity of glucose.

Indigo Diabetes, 2021 (INDIGO DIABETES N.V.,

Belgium) is a subcutaneous implant which exploit

NanoPhotonics Technology (NPT). Indigo Diabetes may

work through an on-chip inert and miniature spectrometer

by measuring the absorption of light in the individual’s

interstitial fluid and by quantifying the concentration of

multiple metabolites simultaneously without the use of

enzymes or fluorophores (INDIGO Giving people with

diabetes the extra sense for health).

Regarding urine test strips, although results are quickly

displayed, they are not extremely accurate, since there is an

uncertain correlation between glucose in blood and urine;

moreover, this technique is not adapt to continuous fast

measurements (Oliver et al., 2009; Dziergowska et al., 2019).

Skin Suction Blister (SSB) is a technique based on the

accumulation and collection of analytes from interstitial fluid

(ISF) by applying vacuum to a skin area. The pressure splits the

dermis and epidermis, and the blister fluid from the nearby

tissues is next extracted by a syringe (Niedzwiecki et al., 2018).

Compared to other ISF sampling approaches, such as RI

technology, suction blister sampling is more user-friendly

since it is a painless procedure but needs to be optimized for

the high sensitivity to temperature and pressure variations and to

the interference of other compounds (Oliver et al., 2009;

Dziergowska et al., 2019).

Exhaled Breath Analysis (EBA) is an emergent methodology

for glycaemia estimation: the exhaled breath gases contains

several body metabolism biomarkers, such as acetone. Ketone

Breathalyzer (KB) could be a possible device to use in blood

glucose level (BGL) estimation, if the correlation between blood

glucose and breath acetone levels will be better understood and if

the sensitivity to variations of temperature could be decreased or

corrected. Previous tests demonstrated 1) the possibility to have

good correlation between blood glucose and breath acetone levels

and 2) the “Keto Diet” should not have significant impact in

terms of accuracy standpoint. Ketone Breathalyzer is cheap, fast

and user-friendly; however, to date, EBA remains unreliable and

challenging because of the huge mixture of volatile organic

compounds (more than 3,500) present in the breath (Bolla

and Priefer, 2020; Shokrekhodaei and Quinones, 2020; Dixit

et al., 2021). The main advantages and drawbacks of each

glucose test technology are listed in Supplementary Table S1,

while most of the BGL technologies and devices are summarized

in Supplementary Table S2 and in the recent review article by

David C. Klonoff group. (Shang et al., 2022).

3 Raman

It has been over 24 years since James Lambert, Michael

Storrie-Lombardi and Mark Borchert at the Jet Propulsion

laboratory, California institute of technology (Caltech),

United States, did the first measurement of physiological

glucose level using Raman Spectroscopy (RS) (Lambert et al.,

1998). They combined this technique with multivariate analysis

to measure glucose level in the aqueous humour of a rabbit

model. The foremost (most intense) Raman peaks at 911 cm−1

and 1,125 cm−1 are considered the Raman fingerprints of glucose.

The concept of RS would be elegantly developed later for the

analysis of other analytes, such as lactate, urea and ascorbate. In

2005, Lambert et al. settled key parameters (laser power, of the

order of mW, retinal power density, mW/cm2, and exposure

time, seconds) to achieve, by RS instruments, a reliable aqueous-

humour glucose-level estimation within an acceptable range of

safety and patient tolerability (see setup instrument Table 1 row

B) (Lambert et al., 2005).

The same year, the first non-invasive (‘‘transcutaneous’’)

Raman measurement was made (see setup instrument Table 1

row A). The raw Raman spectra from 17 subjects were dominated

by spectral components of the human skin, such as human callus

skin, collagen I and III, dermal and epidermal structural proteins,

and triolein, as well as of human haemoglobin, water, cholesterol,

elastin, phosphatidylcholine and actin, rather than glucose.

Consequently, a reliable multivariate calibration method, such

as partial least squares (PLS) regression analysis, was employed

for the first time in order to analyse the Raman spectra,

highlighting the glucose Raman peaks from the other signals

(treated as background). In particular, the background was

removed by least-squares fitting each spectrum to a fifth order

polynomial and subtracting this polynomial from the spectrum.

The authors of the study were the first to provide quantitative

information about glucose by examining blood samples (Enejder

et al., 2005).
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Starting from that year, advanced data processing and

analysis techniques, allowing the quantitative glucose detection

in the combined Raman spectrum, have always been essential.

Furthermore, several problems, such as transferring calibration

models between patients due to changes in skin compositions, to

turbidity-induced alterations in the Raman spectral intensities

and peak widths, to the physiological lag between glucose level in

blood and interstitial fluid (ISF) as well as to the millimolar

detection limit of spontaneous Raman scattering combined with

the low physiological concentration of glucose (4–10 mM), made

of utmost importance the development of an accurate and robust

chemometric (estimating the concentration) algorithm to be

used in multiple human subjects or in the same subject at

different times. The most commonly methods employed to

build a multivariate calibration model were multiple linear

regression (MLR), principal component regression (PCR) and

partial least squares (PLS); however, they provided reasonable

results on single subjects but they had poor predictivity across a

cohort of people. Consequently, Barman et al. (2010a) proposed

the first nonlinear calibration method for BGM. Construction of

nonlinear calibration models has formed a cornerstone of the

research efforts, enhancing the glucose prediction performance

by almost 30% when compared to PLS-derived results (Barman

et al., 2010b; 2010a).

In the same year, Chaiken and co-workers proposed the

incorporation into the measurement device of an active tissue

placement interface, useful also for modulating the relative

optical coupling of mobile tissue components (blood,

interstitial fluids) with respect to the one of static

components, by impacting on blood circulation (Chaiken

et al., 2010).

Dingari et al., in 2011, employed tissue phantom, animal

and human subject experimental cases to investigate the

impact of other analytes in the blood–tissue matrix,

possibly with concentration changing with time, on the

measures of BGL using RS (Dingari et al., 2011). Indeed,

time-dependent physiological processes make the relation

between glucose concentration and spectral data very

complex. Amongst other results, these studies reported that

Raman-spectra based calibration models were significantly

more robust than similar models constructed from NIR

absorption spectra when the concentration of the glucose

was intentionally kept constant and the concentrations of

other spectral interferents were varied randomly. In the

same year, the same group analysed algorithms for

determining optical properties of tissues using detection of

diffuse light scattering; these can be used to correct the impact

of a turbid medium, like skin, on Raman scattering signals
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TABLE 1 Example of Raman setups.

Raman
excitation
source

Beam
power
(mW)

Spot
dimension

Spectral
range

Measurement
time

Sensitivity,
selectivity,
accuracy

Spectral
data
processing

References

A 830 nm diode
laser

300 1 mm2 (area; on
human skin)

355–1,545 cm−1 2 s integration time
(90 times)

MAE: 5.0%, R2: 0.93 PLS analysis,
Savitsky – Golay
algorithm, EGA
Analysis

Enejder et al. (2005)

B 785 nm Ti:
sapphire laser

100 ~1.01 mm
(diameter; on
rabbit retina)

300–1,500 cm−1 3 s integration time
(50 times)

RMSECV: 24.0mg/
dl, R2: 0.99

PLS analysis, EGA
Analysis

Lambert et al. (2005)

C 785 nm diode
laser

15 ~0.002 mm
(diameter; on
mouse skin)

500–1800 cm−1 15 s integration time
(25 times)

MAE: 5.7%, R2: 0.91 PLS analysis Shao et al. (2012)

D 785 nm diode
laser

400 ~ 8 mm
(diameter; on
human skin)

541–1818 cm−1 10 s integration time
(10 times)

R2: 0.83 PLS analysis, EMSC,
EGA Analysis

Scholtes-Timmerman
et al. (2014)

E 830 nm
continuous-
wave diode laser

300 0.005 mm2

(area; on human
skin)

300–1800 cm−1 3 min integration
time (1 time)

ISUP: 1.9 MARD:
25.8%, R2: 0.69

ISUP parameter, 15-
point Savitsky-Golay
1st order algorithm,
EMSC

Lundsgaard-Nielsen
et al. (2018)

F 830 nm diode
laser (incidence
angle of 60°)

250 ~1.6 mm2 (area;
on swine ear
skin)

810–1,650 cm−1 4.75 min integration
time (1 time)

Intrasubject R2:
0.94 Intersubject
R2: 0.62

Savitzky-Golay
filtering, polynomial
baseline subtraction,
MLR analysis

Kang et al. (2020)

G 830 nm diode
laser

50 0.5 mm
(diameter; on
human skin)

400–1800 cm−1 0.1 s integration
time (6,000 times)

- Estimation of power
spectral density,
Savitzky-Golay
filtering

Wróbel et al. (2021)

PLS, partial least squares regression; EGA, clarke error grid; EMSC, extended multiplicative scatter correction; ISUP, Inter-subject unified performance; MAE, mean absolute error; MARD,

mean absolute relative difference; MLR, multiple linear regression; RMSECV, root-mean-squared-error of cross validation.
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collected simultaneously (Barman et al., 2011; Wróbel et al.,

2021).

In 2012, Shao et al. proposed focusing lasers directly on

dermal blood vessels (see Table 1 row C) in order to decrease the

background signal, and using Raman measurement sequence

within two physical state with and without occlusion of blood

circulation in the measured region (Shao et al., 2012). While in

the unpressed state, the laser irradiates the “free finger”, thus the

Raman signals come from both skin and blood, in the pressed

state the measured Raman spectrum included contributions

especially from skin constituents, since the pressure placed on

the finger triggers the expulsion of most of the blood from the

capillary bed. In this last condition, the measured Raman

spectrum tends to show lower peaks, including from glucose

signal. The most intense (best SNR) characteristic glucose Raman

peak appears at 1,125 cm−1 and it was used to determine the

glucose concentrations both in 1–400 mmol/dl glucose water

solution, in vitro, and in vivo (mouse ear blood vessel).

Although the authors state that they could not detect Raman

signals at glucose concentrations below 500 mmol/L in water

solution, even with very long exposure (10 min), they also state to

have observed a clear linear relationship between Raman

intensity and blood glucose concentration between ~50 and

~160 mmol/L in vitro and in vivo, after normalization of the

glucose peak at 1,125 cm−1 using the haemoglobin one at

1,549 cm−1 (used as internal standard).

Scholtes-Timmerman group devised in 2014 a new Raman

spectroscopic analysis system based on the subtraction of non-

glucose-induced variable components from the spectra collected

from a cohort of 111 hospitalized patients; the spectra were

collected through the forearm skin of the patients, and the

variable components where calculated starting from a

principal component decomposition on spectra collected from

patients grouped according to their glycaemia (see Table 1 row D

for some information on the used setup) (Scholtes-Timmerman

et al., 2014).

A radically different advancement was proposed in 2016 by

the PolishM.S.Wróbel group, which suggested several promising

improvement for a miniaturized Raman spectroscopy device: 1) a

set-up simplification, in which only the Raman signals at the

selected energies are detected by a set of photodetectors; 2) an

analysis with Principal Component Analysis (PCA) as

explorative analytical method, and a PLS-Regression or other

advanced techniques (PLS-DA, SVM-regression) as more precise

methods; 3) the detection of Raman signal from the dynamic

components in transcutaneous spectroscopy, i.e., the moving

blood (Wróbel, 2016). This can be done by exploiting the

heartbeat, which modulates the quantity of blood present in

the volume of observation. The detection of the dynamic

component of the Raman signal varying with the heartbeat

should eliminate the signals arising from the static

components, such as solid tissues (skin, muscle, vessel walls,

lipids, etc.). Steps toward the detection of the pulse frequency and

the filtering of the periodical signal with suitable algorithms has

further opened the door for the estimation of the pulse-correlated

Raman signal by a Raman spectrometer equipped with a

photopletysmographic detector (see Table 1 row G). There are

several factors that may interfere in the final Raman spectra, such

as turbidity-induced variations, changes in fluorescence of blood

and/or of bulk tissue, red blood cells aggregation-disaggregation

in capillaries, the differential nature of oxy- and deoxy-

hemoglobin spectra or the hemodynamic pressure that

induces expansion of the vessels; however, this approach has

two main advantages. First, the achieved Raman spectra are less

patient-specific, because optical parameters and chemical

composition of blood are much more consistent over the

human population of different races and ages than the ones of

the surrounding solid tissue; second, measurements can be

performed for a longer time utilizing natural blood pulse, with

respect to techniques exploiting external occlusion of the blood

flux, assuring better averaging and noise reduction.

An intriguing advance, proposed by Motz et al. (2004) and

next developed by Kong et al. (2011), Ghenuche et al. (2012) and

Pandey et al. (2017), concerns the development of tailored optical

fiber probes for delivery and collection of light to and from the

tissue interface. The ultimate achievement on optical fiber-probe

based Raman instrument lead to measure reliably the Raman

signal from a tissue spot in a lighted room (Motz et al., 2004;

Kong et al., 2011; Ghenuche et al., 2012; Pandey et al., 2017).

Lundsgaard-Nielsen et al. (2018) introduced a new RS study

of glucose sensing for non-invasive glucose detection in human

skin (Lundsgaard-Nielsen et al., 2018). They employed a new

table-top confocal Raman spectrometer on a cohort of

35 patients, obtaining highly correlated values between the

measured glucose concentrations against the reference ones

(see setup in Table 1 row E). The high reliability and accuracy

of their device essentially come from two smart developed

approaches. First, they presented the evidence that the optimal

glucose-containing layer of the skin is below the stratum

corneum: collecting the Raman signal from the interstitial

fluid compartment at 250–300 μm of depth, they were able to

note that the time lag (5 min) of changes in glucose concentration

between the capillary and interstitial compartments was clearly

lower than others reported in literature (almost 45 min).

Moreover, Lundsgaard-Nielsen’s group focused on the

development of new spectral data processing: after spectra

smoothing and corrections (15-point Savitsky-Golay 1st order

algorithm and extended multiplicative scatter correction), they

used PLS regression calibrated on 25 days for testing the setup in

the last 5 days of the trial. Owing to the different behaviour

amongst the PWDs concerning the quantification of BGL, they

created, and relied on, an Inter-Subject Unified Performance

(ISUP) parameter for comparing results amongst different

patients, especially for understanding the optimum detection

depth in human skin. The developed device is a small, user-

friendly, but non-continuous, Raman-based glucometer, called
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GlucoBeam, which can operate for ~10 days without

recalibration (Shang et al., 2022). Both calibration models and

performance of GlucoBeam system were checked and assessed as

comparable to the earlier scanning CGM FreeStyle Libre (Abbott

Diabetes Care) system by a very recent report, performing the

research on a cohort of 15 insulin-treated subjects with type

1 diabetes (Pleus et al., 2021). However, to date, this Danish

device is still under development, probably to solve the need of

continuous recalibration and/or for optimizing the reliability of

the device.

In 2019, Li et al. employed another approach based on the

Renishaw inVia confocal Raman spectrometer, enhanced by

Optical Coherence Tomography (OCT) (Li et al., 2019). The

measurement was performed by focusing the laser on the

microvessels in the superficial layer of the extremely thin

nailfold at 100–200 μm depths in the skin, reaching the

stratum corneum and epidermis in order to avoid the

background arising from the dermis and the physiological lag

between blood glucose and ISF glucose. This approach, together

with the use of sophisticated mathematical analyses based on

PCA combined with back propagation artificial neural network

(BP-ANN), enabled to establish high prediction accuracy for

BGL estimation.

A radically different advancement was established in 2020 by

Kang et al. by the construction of a high optical throughput

noncontact vertical Raman system, equipped with an oblique

angle (off-axis) laser, which overcome the result of a

conventional endoscope-type Raman probe contacted to skin

(Singh et al., 2018) and the limits of a conventional radiant angle

(on-axis) Raman laser (see setup instrument Table 1 row F)

(Kang et al., 2020). While this latter has a limited sampling

volume and presses the skin during long measurements, the new

oblique angle incidence device maximizes the effective sampling

volume since more volume contribute to Raman scattering under

the oblique angle illumination, decreases the collection of

background signals and allows a stable long-term

measurement without skin contact. Furthermore, this new

Raman technology, combined with a robust spectral data

processing method, allowed to achieve surprising results in

terms of linearity between intensities of the glucose Raman

peaks (911, 1,060, and 1,125 cm−1 glucose fingerprint peaks)

and the reference glucose concentrations, especially when an

additional Raman band at 1,450 cm−1, arising from skin proteins

and lipids, was considered for normalization.

4 Discussion

In this review, we elucidated the several available approaches

for BGL assessment. Choosing the best technique requires to

consider a number of factors crucial to its implementation,

including invasiveness, continuity, long-term stability,

reliability, and miniaturization. Indeed, the ideal glycaemia

biosensor should be: 1) quantitative and accurate, at least

within the glycaemia ranges discussed in the introduction; 2)

reliable, and in particular it should give the value of BGL without

delay; 3) cheap, small, and wearable, so that every diabetic patient

can have one with or on them all the time; 4) user-friendly: it

should be easy to be applied to patients; 5) non-invasive, i.e. it

should not need anything inserted in or extracted from the body

of the patients; 6) safe and not discomforting, e.g. not causing

skin irritation; 7) continuous, or at least able to perform a

measurement many times in an hour; 8) exempt from

recalibration; this last point, actually, is related to several of

the previous ones: (re)calibration is not user-friendly, needs

another possibly invasive method for determining BGL, if

needed it means that the sensor loses accuracy with time, and

measurements are stopped during recalibration.

Regarding (ii), biofluids different from blood or interstitial

fluid, like sweat, saliva, exhaled breath condensate, urine and

tears, have been considered, since they can be obtained easily

(Tang et al., 2020). However, 1) the biofluids glucose

concentration is lower than that in blood (see concentrations

in physiological fluids of healthy and diabetic patients in

(Mohamad Yunos and Nordin, 2020)), therefore more

sensitive techniques and a correlation calculation are required;

2) there is a delay in transmission of glucose levels from the blood

to the other fluids, and this can represent a problem especially

when BGL is rapidly changing, which is maybe the situation in

which knowing the BGL and its trajectory is most needed.; 3)

daily biofluids collection is sometimes inconvenient or not

feasible, especially for elderly patients: e.g., urine cannot be

used for continuous glucose-monitoring due to its

intermittent nature, or sweat quantities are changing with the

environmental situation or the activity of the PWD and there

could be the need to extract it with electrophoresis or

sonophoresis techniques; 4) the accuracy of the tests is

significantly affected by biological parameters, including pH,

temperature, mechanical/friction effects, and contamination.

More research needs to be address to have an accurate

relationship between glucose levels in blood and other fluids

before they can be used with therapeutic intervention. As an

example, glucose levels in sweat can be correlated, but not

perfectly, with blood glucose levels although it lags by about

8 min the levels in blood. (Mohamad Yunos and Nordin, 2020).

This did not stop researches for monitoring sweat glucose: we

report wearable skin pads based on colorimetric fluorescent

probes, a new user-friendly electrochemical sensor that

however needs personalized precalibration; a self-powered

smartwatch; and the already cited SERS-based wearable

sensors (Zhao et al., 2019; Cui et al., 2020; Wang Y. et al.,

2021, 2022; Sempionatto et al., 2021).

Minimally invasive devices (i.e. subcutaneous

electrochemical sensors) partially decrease the discomfort of

fingerstick testing, and are at the moment the most used ones

for a continuous glucose monitoring (e.g., the Free Style Libre of
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Abbott Ltd., United States). However, a shift toward fully non-

invasive prototypes would address several limitations of this

category.

As stated in the introduction, the best (and maybe only)

choice for truly non-invasive continuous blood glucose

monitoring devices should be based on measurement where

both excitation source and signal can pass through the

patients’ tissues, thus probably leaving only electromagnetic

techniques and measurements of movements and/or sound/

pressure. The developed medical devices should be based on

glucose intrinsic molecular properties, such as its near-infrared

or mid-infrared absorption coefficient, optical rotation, Raman

shifts and photoacoustic properties, and these would allow in

principle a direct BGL estimation. However, on humans it is

difficult to obtain the best geometry for exploiting quantitatively

many of these techniques, or (equivalently) to find a way for

normalizing the glucose signal(s); moreover, the signals arising

from other, possibly much more abundant, body components

may affect the results, and these often depend on characteristics

and physiological state of the subjects. Differently than for these

devices based on direct measurements on the glucose molecules,

indirect and nonspecific methods exploit the effect of glycaemia

on the biological/chemical/physical properties of blood and

tissues. Indeed, the effects of changing glycaemia on the

various signals (e.g., spectra) could arise not only from the

different impact of the ones arising from the glucose

molecules, but also from variations in the relative abundance

or from different chemical modifications of other moieties, e.g.

the ones involved in cell metabolism. Of course, both factors

(glucose fingerprints and indirect glycaemia-induced variations)

are usually present at the same time, and other factors can

similarly affect the signal, like changing device properties

(sensor–skin interface, source fluctuation in terms of power or

spectral characteristic, etc.) or differences due to people’s

intrinsic factors, both constant or slowly changing (age,

gender, ethnicity, lifestyle, comorbidities, etc.), or fluctuating

through the day (activity, hydration, blood supply and

pressure, metabolic rate, environmental impacts, etc.).

All these factors must be considered in analysing the data: the

spurious signals are often fully or at least partially eliminated

through a calibration process, sometimes exploiting the fact that

usually glycaemia is assumed to be more fluctuating than what is

causing them. Many data analyses exploited advanced analysis

techniques, often based on “artificial intelligence”/“machine

learning”, for separating the contributions in signals linked to

BGL from the spurious ones. In these cases, the system requires a

(possibly long) period of calibration in which the analysis

algorithm is “trained” by correlating the measured signal/

spectrum with the glycaemia measured by a standard method

(e.g. finger pricking). A thorough discussion on the details of all

the analysis algorithms is beyond the scope of this review;

however, in general, the acquired signals are usually “fitted” as

a (possibly linear) combination of components, and the “weight”

of at least one of them is a function (often linear, but not always)

of the BGL; the weight(s) of one or more of the other components

can be used for normalization (e.g., signals arising from water, or

from haemoglobin, etc.), and this can take into account at least

the impact of the above mentioned device factors. This process

can be carried out explicitly in data analysis, e.g. in methods

based on PCA or simply by considering the heights of peaks

specific to glucose and to blood or water, or can be hidden in the

used algorithm (e.g. in “deep learning” based methods). The

purpose of the calibration is to find the best “components” and

the relation of the “weights” of these components with BGL. The

calibration can be carried out in single individuals (personalized

calibration), or on a cohort of people. The first case produces

results that are more reliable, but can require long calibration

times and recalibration is needed relatively often; in the second

case, it is in principle possible to identify and then correct more

interfering factors, and this could bring to a “universal” device,

without, or with very short, personalized calibration. For this

aim, we envision the production and use of libraries of the

possible components of “signals,” perhaps stratified for some

characteristics like gender, ethnicity, age groups; these libraries

could be uploaded in the BGM devices to be used in the data

analysis without calibration, or at least as a starting point for the

calibration procedure. Despite the possible use of “blind” AI

algorithms for extracting BGL from various signals/spectra and

for creating these “libraries,” understanding the source of the

various components can help in guiding the analysis process or

for the pre-treatment of data.

We discussed above the advantages and the drawbacks of

most of the technologies considered for continuous non-invasive

quantitative glucose sensing. The most-used electromagnetic-

radiation-based quantitative setups in laboratories

(i.e., spectrophotometers) usually measure the extinction of

light in a transmission configuration, with controlled optical

path and a reference for the baseline. However, this is difficult to

implement in wearable devices, also for the low transmissivity of

the tissues in the spectral ranges of characteristic glucose

absorption. Therefore, absorption of the tissues is usually

measured in a back-scattering geometry, exploiting the

random scattering of radiation from tissues, and this make a

universal calibration more difficult.

Raman signals, instead, are per se collected at high angles

with respect to the direction of the exciting laser, or even in back-

scattering geometry. Raman spectra contains fingerprints of

glucose and of other substances including water, and this can

be used in principle to normalize the spectrum for calculating

directly the concentrations. Moreover, by properly choosing the

excitation light in the NIR region, both source and signal (Raman

Stokes peaks) fall in the tissues transparency window

(~650–1,350 nm), and this allow to reach deeper regions with

more abundance of blood or at least of interstitial fluid. One of

the most cited drawbacks for Raman spectroscopy is its low cross

section, and therefore a weak signal. Increasing laser power can
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increase the SNR, but can be harmful, and the maximum

permissible exposure (MPE) for skin laser irradiation must be

considered. As a rule of thumb, at 788 nm the MPE raises (with

the fourth root of time) from 3 × 10–2 J/cm2 for times less than or

equal to 10−7 s, up to 3 J/cm2 for 10 s, and above this time the

intensity must be below 0.3 W/cm2 (Maini, 2013). Since the

limits are on intensity or energy density, one possibility to

increase the SNR is to increase the illuminated and observed

area; however, some of the work discussed above considered

instead focusing the laser in a region below the first layers of skin,

in a region richer in ISF and/or in capillary blood.

In any case, also the Raman signal from the background is

weaker, and this helps in obtaining a sufficient SNR, especially by

choosing spectral regions where autofluorescence of tissues is low;

moreover, glucose spectrum has features in regions where the

background spectrum could be very small. Indeed, in some of

the studies reviewed in §2.3 and §3, the height of just one or

some of the glucose-fingerprint peaks are correlated to glycaemia

(Shao et al., 2012; Kang et al., 2020). For example, in the above cited

work by Shao et al. (Shao et al., 2012)., they correlated the height of

the peak at 1,125 cm−1 with the glycaemia, normalizing the data

using a characteristic peak of haemoglobin at 1,549 cm−1. It is

interesting to notice, however, that the height of the peak at

1,125 cm−1 did not tend to zero at very low BGLs (and this can

explain why the authors could correlate his intensity to values below

the minimum one at which they could discern, with the same setup,

Raman spectra of glucose dissolved in water). The remaining non-

negligible signal at very low glucose concentration in blood can have

two components: 1) close Raman signals from other substances, e.g.

the peak at 1,126 cm−1 due to a pyrrole half-ring stretching mode in

haemoglobin; 2) Raman signal from glucose inside the cells,

especially in non-circulating ones.

These two kinds of interference have to be considered in general.

The first one can be solved by considering whole spectra and whole

spectral components, as discussed above; this can also improve the

uncertainty in the final measurement. Indeed, most of the devices

being considered for commercialization use this method.

The second effect is subtler. Although the total glucose in the

observation volume (the one from which the signal is collected) is

correlated with the concentration of glucose in plasma, being able to

discern the signal arising only from mobile fluids would allow a

direct determination of the glycaemia, independent from or much

less dependent on calibrations and corrections. As discussed above,

one possibility is to consider the spectral differences in the same

tissue when there are different amounts of liquids. This has been

done, e.g., with occlusion spectroscopy, but maybe the most

promising approach for continuous wearable devices is to exploit

the differences in blood and interstitial fluid content caused by the

heart pulse. It could be possible to consider just the periodically

varying part in continuously-collected Raman signals, but extracting

the changing component could be helped by considering the

correlation between the cross correlation of the heartbeat,

measured e.g. by gravitometry, pressure sensors, or PPG signal,

with the Raman one. Data analysis should also consider that the

spectral changes do not arise simply by increasing blood content in

the tissue: the observation volume is approximately constant, so the

amount of observed blood anticorrelates with the observed quantity

of the remaining tissues, and these contain glucose, water, and other

biomolecules as well. The idea of having other sensors integrated in a

single device is interesting also because collecting other parameters

together with the heartbeat (like temperature, blood pressure, blood

oxygen level, etc.) can help analysing the spectra and correcting the

measured glycaemia: e.g., it could be possible to correlate some

“signal components” changes to some of these parameters, and

this will help in determining their weight in the total detected

spectra.

5 Conclusion and perspectives

A fully integrated and self-powered NIGM smartwatch or

similar device is highly desirable in daily diabetes management.

Several findings on the technical aspects of NIGM devices have

matured over the last decades. In particular, Raman technology,

together with sophisticated prediction algorithms, seems to have

solid basis for further improvements in this field. As an example,

the Raman-based GlucoBeam (RSP System A/S, Denmark)

seems one of the best user-friendly device to provide self-

monitoring glucose measurement, although it still suffers from

poor reliability, poor long-term stability and unsolved issues with

variations amongst patients (Lundsgaard-Nielsen et al., 2018;

Pleus et al., 2021).

In order to expand the use of RS methodology, future efforts

should aim at 1) maximizing the sensitivity in experiments 2)

reducing the integration time (or exploiting changes in time of

the signal) 3) miniaturizing the system and 4) improving the

understanding of the factors affecting the inter-individual

variations. Notably, we believe that a real-time and continuous

RS device exploiting blood pulse (combined with the suitable

detection algorithm) represents nowadays the best emergent

technology for our purpose, even if the reliability of such device

should be verified during both storing status and dynamic activities.
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BGL Blood Glucose Level

BGM Blood Glucose Monitoring

Bio-RFID Body RadioFrequency Identification

BP-ANN Back Propagation Artificial Neural Network

BS Bioimpedance Spectroscopy

CGM Continuous Glucose Monitoring

EBA Exhaled Breath Analysis

EDT Enzymatic Detection Technology

EGA Clarke Error Grid

EMS ElectroMagnetic Sensing

EMSC Extended Multiplicative Scatter Correction

FDA Food and Drug Administration

FIR Far Infrared Radiation

FIRS Far Infrared Radiation Spectroscopy

FRET Fluorescence Resonance Energy Transfer

FT Fluorescence Technology

KB Ketone Breathalyzer;

ISF InterStitial Fluid

ISUP Inter-Subject Unified Performance

MHC Metabolic Heat Conformation

MLR Multiple Linear Regression

MI Minimally invasive

MIRS Mid Infrared Spectroscopy

MMS Millimetre and Microwave Sensing

MPE Maximum Permissible Exposure

MT MultiTechnologies

N/A Not Available

NCGM Non Continuous Glucose Monitoring

NI Non-invasive

NICBGL Non-Invasive Continuous Blood Glucose Level

NIRS Near Infrared Spectroscopy

NPT NanoPhotonics Technology

OCT Optical Coherence Tomography

OPT Optical Polarimetry Technology

OS Occlusion Spectroscopy

PAS PhotoAcoustic Spectroscopy

PCA Principal Component Analysis

PEG Parkes Error Grid

PLS Partial Least Squares

PLS-DA Partial Least Squares-Discriminant Analysis

PPG PhotoPlethysmoGraphy

PWD People With Diabetes

QCL Quantum Cascade Laser;

RFST RadioFrequency Sensor Technology

RI Reverse Iontophoresis

RS Raman Spectroscopy

SNR Signal to Noise Ratio

SPRT Surface Plasmon Resonance Technology

SSB Skin Suction Blister

ST Sonophoresis Technology

SVM Support Vector Machine

TOF Time of Flight

THz-TDS Terahertz Time-Domain Spectroscopy

UT Ultrasound Technology
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