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Abstract

In this paper we prove the existence of isoperimetric regions of any volume in Riemannian manifolds
with Ricci bounded below assuming Gromov–Hausdorff asymptoticity to the suitable simply connected
model of constant sectional curvature.

The previous result is a consequence of a general structure theorem for perimeter-minimizing
sequences of sets of fixed volume on noncollapsed Riemannian manifolds with a lower bound on
the Ricci curvature. We show that, without assuming any further hypotheses on the asymptotic
geometry, all the mass and the perimeter lost at infinity, if any, are recovered by at most countably
many isoperimetric regions sitting in some (possibly nonsmooth) Gromov–Hausdorff limits at infinity.

The Gromov–Hausdorff asymptotic analysis allows us to recover and extend different previous
existence theorems.

While studying the isoperimetric problem in the smooth setting, the nonsmooth geometry naturally
emerges, and thus our treatment combines techniques from both the theories.
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1 Introduction

The classical isoperimetric problem can be formulated on every ambient space possessing notions of
volume and perimeter on (some subclass of) its subsets. Among sets having assigned positive volume,
the problem deals with finding those having least perimeter. Among the most basic questions in the
context of the isoperimetric problem, one would naturally ask whether perimeter-minimizing sets exists,
but also what goes wrong in the minimization process if such minimizers do not exist. We are interested
here in the isoperimetric problem set on smooth Riemannian manifolds and in giving a good description
of the minimization process.

We denote by (Mn, g) a Riemannian manifold of dimension n and metric tensor g. We will always
assume, unless specified differently, that n ≥ 2. The symbols d, vol, P denote the geodesic distance, the
volume measure, and the perimeter functional induced by g. In such a framework, the isoperimetric
problem consists in the minimization problem

min {P (E) : vol(E) = V } ,

for fixed V ∈ (0, vol(Mn)), where the competitors E ⊂ Mn are finite perimeter sets on (Mn, g). The
infimum of the perimeter P (E) among such competitors of given volume V is called isoperimetric profile
of Mn at V and it is commonly denoted by I(Mn,g)(V ). If vol(E) = V and P (E) = I(Mn,g)(V ), hence if
E solves the isoperimetric problem for its own volume, we will say that E is an isoperimetric region (or
an isoperimetric set).

Unless otherwise stated we will also always assume that

(Mn, g) is complete, noncompact, and has infinite volume. (1.1)

In fact, in case (Mn, g) is compact an easy application of direct methods in Calculus of Variations
provides the existence of isoperimetric regions for any volume in (0, vol(Mn)); also, when (Mn, g) is
complete noncompact but with finite volume, the existence of isoperimetric regions for any volume is
ensured by the application of [72, Theorem 2.1 and Remark 2.3].

A classical way for studying the isoperimetric problem at a given volume V > 0 is to argue by
means of direct methods in Calculus of Variations. So, for a given Riemannian manifold (Mn, g) and
a volume V > 0, one considers a sequence of finite perimeter sets Ωi ⊂ Mn with vol(Ωi) = V and
P (Ωi)→ I(Mn,g)(V ). It is well-known by the theory of finite perimeter sets that, up to subsequence, Ωi

converges in L1
loc to a set Ω, the perimeter is lower semicontinuous, but the volume of Ω might be strictly

less than V . It is then common to try to understand the consequences of having lost part of the mass
of the minimizing sequence at infinity. Indeed, under suitable assumptions on the geometry of (Mn, g),
one can try to infer that the potential leak of mass would be inconvenient, thus getting existence results.
By the same approach, one can also grasp new information about the isoperimetric profile I(Mn,g).

Since the possible leak of mass of a minimizing sequence is due to the fact that the ambient Mn is
not compact, it has been spontaneous in the literature to assume a priori asymptotic assumptions on
the manifold (Mn, g). In [64], Nardulli assumed that (Mn, g) is noncollapsed, that its Ricci curvature is
bounded from below, and that for any sequence of points pi ∈ Mn there exists a pointed Riemannian
manifold (Mn

∞, d∞, p∞) such that that (Mn, d, pi) → (Mn
∞, d∞, p∞) in a suitable pointed C1,α-sense.

We recall that a Riemannian manifold (Mn, g) is said to be noncollapsed if there is v0 > 0 such that
vol(B1(p)) ≥ v0 for all p ∈ Mn. Here with Br(p) we denote the open ball of radius r of center p ∈ Mn

according to the distance d. What he proved in [64, Theorem 2] is that, under the latter asymptotic
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condition, a description of the mass lost at infinity in the previous minimization process can be given,
more precisely showing that it is recovered by finitely many isoperimetric regions, each of them contained
in one of the limit manifolds (Mn

∞, d∞, p∞).
On the other hand it turns out, see Remark 2.10, that the class of pointed uniformly noncollapsed

manifolds of a given dimension having a uniform lower bound on the Ricci tensor is precompact with
respect to pointed measure Gromov–Hausdorff (pmGH for short) convergence, see Definition 2.7 for such
a notion. Actually, the precompactness property holds at the level of RCD spaces, which are metric
measure spaces with a synthetic lower bound on the Ricci tensor (see Section 2.1), with a uniform
bound from below on the measure of unit balls. This means that given any sequence of points pi on a
noncollapsed manifold (Mn, g) with Ricci bounded below, the sequence of pointed metric measure spaces
(Mn, d, vol, pi) converges in the pmGH sense to a pointed RCD space, up to a subsequence. Let us point
out that, as a consequence of the celebrated volume convergence theorem in [29, 33], the measure on such
a limit is the Hausdorff measure of dimension n with respect to the corresponding distance. Eventually
one may hope for a description analogous to the one mentioned above, coming from [64], without further
assumptions on (Mn, g) but the noncollapsedness and a lower bound on the Ricci tensor, exploiting the
pmGH precompactness in order to give a description of the lost mass.

In fact, the first of our main results is the following theorem which precisely states that minimizing
sequences Ωi of a given volume V split into a “converging” part Ωc

i and into at most countably many
“diverging” parts Ωd

i,j that converge in a suitable sense to isoperimetric regions in pmGH limit RCD

spaces. Moreover, the limits of Ωc
i and of each Ωd

i,j recover the assigned volume V and the isoperimetric
profile of (Mn, g) at V (in the sense of (1.2) below). All in all, the forthcoming result gives a description of
the asymptotic behavior of the diverging mass of minimizing sequences. We stress that the identification
of the “converging” part Ωc

i of a minimizing sequence, which is the starting point of our arguments, is a
classical result due to Ritoré–Rosales [72, Theorem 2.1].

Theorem 1.1 (Asymptotic mass decomposition). Let (Mn, g) be a noncollapsed manifold as in (1.1),
such that Ric ≥ k for some k ∈ (−∞, 0], and let V > 0. For every minimizing (for the perimeter)
sequence Ωi ⊂ Mn of volume V , with Ωi bounded for any i, up to passing to a subsequence, there exist
an increasing sequence {Ni}i∈N ⊆ N, disjoint finite perimeter sets Ωc

i ,Ω
d
i,j ⊂ Ωi, and points pi,j, with

1 ≤ j ≤ Ni for any i, such that

• limi d(pi,j , pi,`) = limi d(pi,j , o) = +∞, for any j 6= ` < N + 1 and any o ∈ Mn, where N :=
limiNi ∈ N ∪ {+∞};

• Ωc
i converges to Ω ⊂ Mn in the sense of finite perimeter sets (Definition 2.1), and we have

vol(Ωc
i )→i vol(Ω), and P (Ωc

i )→i P (Ω). Moreover Ω is a bounded isoperimetric region;

• for every j < N + 1, (Mn, d, vol, pi,j) converges in the pmGH sense to a pointed RCD(k, n) space
(Xj , dj ,Hn, pj), where Hn on Xj is the n-dimensional Hausdorff measure defined by the distance
dj. Moreover there are isoperimetric regions Zj ⊂ Xj such that Ωd

i,j →i Zj in L1-strong (Defini-

tion 2.15) and P (Ωd
i,j)→i PXj (Zj);

• it holds that

I(Mn,g)(V ) = P (Ω) +
N∑
j=1

PXj (Zj), V = vol(Ω) +
N∑
j=1

mj(Zj). (1.2)

Some comments about the above statement are in order. First of all, the fact that the sets of the
minimizing sequence are assumed to be bounded does not undermine the generality because sets in the
minimizing sequences for the isoperimetric problem can always be taken bounded by the approximation
result recalled in Remark 2.3. Also, in the above statement, the perimeter PXj is the distributional
perimeter on (X, dj ,Hn), see Definition 2.11. Moreover, the convergence in the L1-strong sense in
particular implies the convergence of the volumes of the sets, i.e., vol(Ωd

i,j)→i Hn(Zj).
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The above theorem is actually a simplification of a more detailed result, whose technical statement can
be found in Theorem 4.6. The main advantage of that complete formulation is the detailed construction
of Ωd

i,j from Ωd
i := Ω \ Ωc

i , that is the diverging part of the minimizing sequence.
The Theorem 1.1 also implies that on noncollapsed manifolds with Ricci bounded below, the isoperi-

metric profile is strictly positive (see Remark 4.7).
Both the hypotheses of noncollapsedness and Ricci bounded below in Theorem 1.1 are necessary in

order to guarantee some concentration of mass that eventually yields the nonempty limit sets Zj . This
is discussed in Section 4.3, where we provide examples both of a collapsed manifold with sectional cur-
vature bounded below and of a noncollapsed manifold with Ricci unbounded below in which minimizing
sequences, in fact, avoid any concentration of mass, making impossible to formulate a result as the one
in Theorem 1.1.

The above Theorem 1.1 is most likely to hold also in the nonsmooth metric ambient of an RCD space
with reference measure Hn, and with a uniform lower bound on the volume of unit balls, in place of a
smooth noncollapsed Riemannian manifold with Ricci curvature bounded from below. However, one of
our motivations was to show how the nonsmooth theory becomes natural in studying the behavior of
the runaway portions of the minimizing sequences already on classical smooth Riemannian manifolds.
Another class of spaces where a similar asymptotic decomposition of the minimizing sequences has been
performed is that of the unbounded convex bodies in Euclidean spaces, treated in [47]. A decomposition
result like Theorem 1.1 holds also without the assumption of having a minimizing sequence; more pre-
cisely, one can prove that an arbitrary sequence of sets with uniformly bounded volume and perimeter
splits, up to subsequence, into subsets converging in L1

loc to limit sets sitting either in M or in some
GH-limits at infinity. This yields a result of generalized compactness analogous to [62]. We also mention
that the fact that N in Theorem 1.1 is finite shall be investigated in a forthcoming paper, exploiting the
new results on topological regularity of isoperimetric regions proved in [12].

In view of Theorem 1.1, one notices that the more is known about the GH-asymptotic structure
of the manifold, the more information one gets about the minimizing sequence, and in turn about the
isoperimetric problem. In the paper [11], where we focus on the nonnegative Ricci curved case, we apply
indeed the above asymptotic decomposition in relation with the geometry of the asymptotic cones at
infinity. This is an analysis that clearly cannot overlook the generality reached in Theorem 1.1.

Here, we limit ourselves to deduce some existence theorems for isoperimetric regions when some pre-
cise structure at infinity is prescribed. To this end, we propose the following notion of GH-asymptoticity.

Definition 1.2 (GH-asymptoticity). Let (Mn, g) be a noncompact Riemannian manifold with distance d
and volume measure vol. We say that (Mn, g) is Gromov–Hausdorff asymptotic, GH-asymptotic for short,
to a metric space (X, dX) if for any diverging sequence of points qi ∈Mn, i.e., such that d(q, qi)→ +∞
for any q ∈Mn, there is x0 ∈ X such that

(Mn, d, qi) −−−−→
i→+∞

(X, dX , x0),

in the pGH-sense (see Definition 2.7).
We say that (Mn, g) is measure Gromov–Hausdorff asymptotic, mGH-asymptotic for short, to a

metric measure space (X, dX ,mX) if for any diverging sequence of points qi ∈Mn, there is x0 ∈ X such
that

(Mn, d, vol, qi) −−−−→
i→+∞

(X, dX ,mX , x0),

in the pmGH-sense (see Definition 2.7).

In the above definition, if (X, dX ,mX) is such that for every x1, x2 ∈ X there is an isometry ϕ : X → X
such that ϕ(x1) = ϕ(x2) and ϕ]mX = mX , then (Mn, g) is mGH-asymptotic to (X, dX ,mX) if for any
diverging sequence of points qi ∈ Mn, it occurs that (Mn, d, vol, qi) → (X, dX ,mX , x) for any x ∈ X.
Loosely speaking, in such a case it does not matter the point at which the limit space is pointed.

We remark that the simply connected Riemannian manifolds of constant sectional curvature satisfy
the property above.
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The following Theorem 1.3 enables us to provide a full generalization of the existence result by
Mondino–Nardulli [55, Theorem 1.2], where the C0-asymptoticity assumption therein is weakened with
a GH-asymptoticity hypothesis here. For the next statement see Theorem 4.9.

Theorem 1.3. Let k ∈ (−∞, 0] and let (Mn, g) be as in (1.1) such that Ric ≥ (n− 1)k on M \ C, where
C is compact.

Suppose that (Mn, g) is GH-asymptotic to the simply connected model of constant sectional curvature
k and dimension n. Then for any V > 0 there exists an isoperimetric region of volume V on (Mn, g).

As an example, if (Mn, g) has nonnegative Ricci curvature and its asymptotic volume ratio, defined
by

AVR(Mn, g) := lim
r→+∞

vol(Br(p))

ωnrn
,

is strictly positive, then it is GH-asymptotic to flat Rn each time any of its asymptotic cones at infinity
has a smooth cross-section. This is proved in details in [11, Theorem 4.3].

Let us now quickly describe some other examples that satisfy the hypotheses of Theorem 1.3.
We will notice in Proposition 5.6 that, as a consequence of standard comparison theorems, a complete

Riemannian manifold (Mn, g) for which the injectivity radius diverges to +∞ and the sectional curvature
converges to k ∈ R at infinity, is GH-asymptotic (actually even C0-asymptotic, see Remark 5.3) to the
simply connected model of constant sectional curvature k and dimension n. Hence, if on a manifold
satisfying the latter assumption we have a lower bound Ric ≥ (n−1)k outside a compact set, Theorem 1.3
applies and we get the existence of isoperimetric regions for any volume. This is the case, for example,
of ALE gravitational instantons (see [52] and references therein for an account) and of the class of
warped products described in Remark 5.11, which contains, for example, the Bryant type solitons (see
[28, Chapter 4, Section 6] and references therein) and many other explicit solitons as those produced
in [19]. Moreover, the combination with a fundamental estimate on the injectivity radius [25] enables
us to show that nonnegatively Ricci curved manifolds with asymptotically vanishing sectional curvature
(Definition 5.4) and Euclidean volume growth, that is, vol(Br(p)) ≥ Crn for some positive constant C
uniform in p, possess isoperimetric regions for any volume (see Corollary 5.9). Such class of manifolds
is quite rich, as it contains, for example, Perelman’s examples of manifolds with non-unique asymptotic
cones at infinity, see [66] and [22, Section 8]. Also, this class of manifolds naturally encompasses the
case of manifolds with nonnegative Ricci curvature that are C2,α-asymptotically conical, for which the
existence and the description of isoperimetric regions for large volumes were investigated in [27], see
Remark 5.10. Since, by Theorem 1.3, the Ricci curvature suffices to be nonnegatively defined just
outside of a compact set, compact perturbations of the above described metrics still enjoy existence of
isoperimetric sets for any volume.

In analogy with [55], the main tool we are going to employ in addition to Theorem 1.1 to prove
the above existence result in Theorem 1.3 is a comparison argument, introduced in [59], following from
the classical Bishop–Gromov monotonicity theorem recalled in Theorem A.1. The coupling of a suitable
asymptotic study of a minimizing sequence with a monotonicity formula, aiming at excluding the drifting
at infinity, seems to be a powerful and general strategy to infer the existence of isoperimetric sets on
Riemannian manifolds. Indeed, a similar idea is employed in the proof of the recent existence result
for isoperimetric sets on asymptotically flat Riemannian manifolds with nonnegative scalar curvature,
content of [17, Proposition K.1]. In fact, such result mostly builds on a way easier asymptotic mass
decomposition originated in [34, Proposition 4.2] together with an isoperimetric inequality of Shi [74]
proved through the celebrated Hawking mass monotonicity along the Inverse Mean Curvature Flow [44].

Apart from the already mentioned contributions, there are many other important results in literature
about the existence and description of isoperimetric sets in Riemannian manifolds. Limiting ourselves
to the contributions that inspired in some way our investigations, we recall [61, 72] in which the authors
studied the isoperimetric problem in abstract cones and in Euclidean cones respectively, [65], where
the isoperimetric problem is solved on cylinders, the isoperimetric existence theorem on Riemannian
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manifolds (Mn, g) with compact quotient M/Iso(Mn), that has been pointed out by Morgan [57, Chapter
3], building also on [2], and the existence result for nonnegatively curved 2-dimensional surfaces [71]. For
the existence and description of isoperimetric sets for large volumes, we mention the papers [34, 35], [26],
[27] and [13] where an isoperimetric (for large volumes) foliation has been discovered on asymptotically
Schwarzschildian, hyperbolic, conical, and cuspidal manifolds respectively. The isoperimetric problem
has been and it is currently studied also in the sub-Riemannian setting: for example, the existence of
isoperimetric sets of any volume has been established in Carnot groups [46], and in sub-Riemannian
manifolds whose quotient by the group of contact transformations preserving the sub-Riemannian metric
is compact [37]. A different framework where this problem has been investigated is also that of Rn with
densities, see [60, 32].

We conclude this introduction by pointing out some other results and applications, part of which are
technical and needed for proving Theorem 1.1 and Theorem 1.3. Carrying out the asymtptotic analysis
on Riemannian manifolds in the context of the Gromov–Hausdorff convergence allows us to derive useful
comparison results between the isoperimetric profile of the manifold and the one of any pmGH limit
along sequences of diverging points on the manifold. This leads to Proposition 3.2, that essentially
estimates from above the isoperimetric profile of a manifold (Mn, g) with the one of any pmGH limit
along sequences of points on Mn. Proposition 3.2 implies some interesting consequences on Cartan–
Hadamard manifolds. We will prove that the isoperimetric profile of Cartan–Hadamard manifolds with
Ricci bounded below and GH-asymptotic to Rn for 2 ≤ n ≤ 4 equals the one of the Euclidean space
(Corollary 3.4). Also, if in addition the sectional curvatures are strictly negative, the rigidity statement
of Corollary 3.4 implies the nonexistence of isoperimetric regions, see Example 3.5. In particular, this
shows that a noncollaped manifold with a lower bound on the Ricci curvature may in general fail to
enjoy existence of isoperimetric sets, even if the curvature is uniformly bounded.

Plan of the paper. In Section 2 we recall definitions, results and we prove a preliminary lemma (see
Lemma 2.17) we will need. In Section 3 we investigate the above mentioned relations between pmGH
limits of manifolds and the isoperimetric profile of the manifold and the one of such pmGH limits.
Section 4 is devoted to the analysis of the asymptotic behavior of the mass of minimizing sequences;
here we prove Theorem 1.1 in its more detailed version, that is Theorem 4.6, and apply it to deduce
Theorem 1.3. In Section 5 we discuss the applications and the examples anticipated above.

For the convenience of the reader, in Appendix A we recall two useful well-known comparison results
in Riemannian geometry, and in Appendix B we give a self-contained proof of the fact that suitable
assumptions on a manifold (Mn, g) imply that isoperimetric regions are bounded.

Acknowledgments. The authors would like to thank Lorenzo Mazzieri for a useful conversation
about Example 3.5 and Andrea Mondino for discussions related to Section 5. They are also grateful to
Elia Bruè, Tobias Colding, Nicola Gigli, Gian Paolo Leonardi, Stefano Nardulli, Vincenzo Scattaglia,
and Daniele Semola for inspiring conversations about the subject.

G.A. was also partially supported by the European Research Council (ERC Starting Grant 713998
GeoMeG ‘Geometry of Metric Groups’).

2 Definitions and preliminary results

For the notions of BV and Sobolev spaces on Riemannian manifolds we refer the reader to [54, Section 1].
For every finite perimeter set E in Ω we denote with P (E,Ω) the perimeter of E inside Ω. When Ω = Mn

we simply write P (E). We denote withHn−1 the (n−1)-dimensional Hausdorff measure on Mn relative to
the distance induced by g. We recall that for every finite perimeter set E one has P (E) = Hn−1(∂∗E) and
the characteristic function χE belongs to BVloc(M

n, vol) with generalized gradient DχE = νHn−1 ∂∗E
for a function ν : M → TMn with |ν| = 1 at |DχE |-a.e. point, where ∂∗E is the essential boundary of
E.

We recall the following terminology.
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Definition 2.1 (Convergence of finite perimeter sets). Let (Mn, g) be a Riemannian manifold. We
say that a sequence of measurable (with respect to the volume measure) sets Ei locally converges to a
measurable set E if the characteristic functions χEi converge to χE in L1

loc(M
n, g). In such a case we

simply write that Ei → E locally on Mn.
If the sets Ei have also locally finite perimeter, that is, P (Ei,Ω) < +∞ for any k and any bounded

open set Ω, we say that Ei → E in the sense of finite perimeter sets if Ei → E locally on Mn and the
sequence of measures DχEi locally weakly* converges as measures, that is, with respect to the duality
with compactly supported continuous functions. In such a case, E has locally finite perimeter and the
weak* limit of DχEi is DχE .

Definition 2.2 (Isoperimetric profile). Let (Mn, g) be a Riemannian manifold. We define the isoperi-
metric profile function I : [0, vol(Mn))→ [0,+∞) as follows

I(Mn,g)(V ) := inf{P (Ω) : Ω is a finite perimeter set in Mn such that vol(Ω) = V }.

We also occasionally write I(V ) when the ambient manifold Mn is understood.

Remark 2.3 (Approximation of finite perimeter sets with smooth sets). It can be proved, see [63, Lemma
2.3], that when Mn is a complete Riemannian manifold every finite perimeter set Ω with 0 < vol(Ω) <
+∞ and vol(Ωc) > 0 is approximated by relatively compact sets Ωi in Mn with smooth boundary such
that vol(Ωi) = vol(Ω) for every i ∈ N, vol(Ωi∆Ω)→ 0 when i→ +∞, and P (Ωi)→ P (Ω) when i→ +∞.
Thus, by approximation, one can deduce that

I(V ) = inf{Hn−1(∂Ω) : Ω bMn has smooth boundary, vol(Ω) = V },

see [63, Theorem 1.1].

Definition 2.4 (Isoperimetric region). Given a Riemannian manifold (Mn, g) the set E is an isoperimet-
ric region in Mn if 0 < vol(E) < +∞ and for every finite perimeter set Ω ⊂Mn such that vol(Ω) = vol(E)
one has P (E) ≤ P (Ω).

The above definition of isoperimetry can of course be rephrased in terms of the isoperimetric profile
I by saying that a subset E ⊂ Mn of finite perimeter is isoperimetric for the volume V if vol(E) = V
and I(V ) = P (E) = Hn−1(∂∗E).

We also need to recall the definition of the simply connected radial models with constant sectional
curvature.

Definition 2.5 (Models of constant sectional curvature, cf. [67, Example 1.4.6]). Let us define

snk(r) :=


(−k)−

1
2 sinh((−k)

1
2 r) k < 0,

r k = 0,

k−
1
2 sin(k

1
2 r) k > 0.

If k > 0, then ((0, π/
√
k] × Sn−1, dr2 + sn2

k(r)g1), where g1 is the canonical metric on Sn−1, is the
radial model of dimension n and constant sectional curvature k. The metric can be smoothly extended
at r = 0, and thus we shall write that the the metric is defined on the ball Bn

π/
√
k
⊂ Rn. The Riemannian

manifold (Bn
π/
√
k
, gk := dr2 + sn2

k(r)g1) is the unique (up to isometry) simply connected Riemannian

manifold of dimension n and constant sectional curvature k > 0.
If instead k ≤ 0, then ((0,+∞)×Sn−1,dr2+sn2

k(r)g1) is the radial model of dimension n and constant
sectional curvature k. Extending the metric at r = 0 analogously yields the unique (up to isometry)
simply connected Riemannian manifold of dimension n and constant sectional curvature k ≤ 0, in this
case denoted by (Rn, gk).

We denote by v(n, k, r) the volume of the ball of radius r in the (unique) simply connected Riemannian
manifold of sectional curvature k of dimension n, and by s(n, k, r) the volume of the boundary of such a
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ball. In particular s(n, k, r) = nωnsnn−1
k (r) and v(n, k, r) =

´ r
0 nωnsnn−1

k (t) dt, where ωn is the Euclidean
volume of the Euclidean unit ball in Rn.

Moreover, for given n, we denote by dk, volk, Pk the geodesic distance, the volume measure, and
the perimeter functional on the simply connected Riemannian manifold of sectional curvature k (and
dimension n), respectively.

Let us also recall a classical definition for the convenience of the reader.

Definition 2.6 (AVR and Euclidean volume growth). Let (Mn, g) be a complete noncompact Rieman-
nian manifold with Ric ≥ 0. Thus, from Bishop–Gromov comparison in Theorem A.1 we know that the
function [0,+∞) 3 r → vol(Br(p))

ωnrn
is nonincreasing and goes to 1 as r → 0+. For any p ∈Mn, we define

AVR(Mn, g) := lim
r→+∞

vol(Br(p))

ωnrn
,

the asymptotic volume ratio of (Mn, g). The previous definition is independent of the choice of p ∈
Mn. Notice that, by Bishop–Gromov comparison, we have 0 ≤ AVR(Mn, g) ≤ 1, and vol(Br(p)) ≥
AVR(Mn, g)ωnr

n for every r > 0, and every p ∈ Mn. If AVR(Mn, g) > 0 we say that (Mn, g) has
Euclidean volume growth.

Let us now briefly recall the main concepts we will need from the theory of metric measure spaces.
We recall that a metric measure space, m.m.s. for short, (X, dX ,mX) is a triple where (X, dX) is a locally
compact separable metric space and mX is a Borel measure bounded on bounded sets. A pointed metric
measure space is a quadruple (X, dX ,mX , x) where (X, dX ,mX) is a metric measure space and x ∈ X is
a point.

For simplicity, and since it will always be our case, we will always assume that given (X, dX ,mX) a
m.m.s. the support sptmX of the measure mX is the whole X.

We assume the reader to be familiar with the notion of pointed measured Gromov–Hausdorff convergence,
referring to [77, Chapter 27] and to [16, Chapter 7 and 8] for an overview on the subject. In the
following treatment we introduce the pmGH-convergence already in a proper realization even if this is
not the general definition. Nevertheless, the (simplified) definition of Gromov–Hausdorff convergence via
a realization is equivalent to the standard definition of pmGH convergence in our setting, because in the
applications we will always deal with locally uniformly doubling measures, see [41, Theorem 3.15 and
Section 3.5]. The following definition is actually taken from the introductory exposition of [5].

Definition 2.7 (pGH and pmGH convergence). A sequence {(Xi, di, xi)}i∈N of pointed metric spaces
is said to converge in the pointed Gromov–Hausdorff topology, in the pGH sense for short, to a pointed
metric space (Y, dY , y) if there exist a complete separable metric space (Z, dZ) and isometric embeddings

Ψi : (Xi, di)→ (Z, dZ), ∀ i ∈ N,
Ψ : (Y, dY )→ (Z, dZ),

such that for any ε,R > 0 there is i0(ε,R) ∈ N such that

Ψi(B
Xi
R (xi)) ⊂

[
Ψ(BY

R (y))
]
ε
, Ψ(BY

R (y)) ⊂
[
Ψi(B

Xi
R (xi))

]
ε
,

for any i ≥ i0, where [A]ε := {z ∈ Z : dZ(z,A) ≤ ε} for any A ⊂ Z.
Let mi and µ be given in such a way (Xi, di,mi, xi) and (Y, dY , µ, y) are m.m.s. If in addition to the

previous requirements we also have (Ψi)]mi ⇀ Ψ]µ with respect to duality with continuous bounded
functions on Z with bounded support, then the convergence is said to hold in the pointed measure
Gromov–Hausdorff topology, or in the pmGH sense for short.
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2.1 RCD spaces

Let us briefly introduce the so-called RCD condition for m.m.s. Since we will use part of the RCD theory
just as an instrument for our purposes and since we will never use in the paper the specific definition of
RCD space, we just outline the main references on the subject and we refer the interested reader to the
survey of Ambrosio [3] and the references therein.

After the introduction, in the independent works [75, 76] and [49], of the curvature dimension con-
dition CD(k, n) encoding in a synthetic way the notion of Ricci curvature bounded from below by k
and dimension bounded above by n, the definition of RCD(k, n) m.m.s. was first proposed in [39] and
then studied in [40, 36, 10], see also [20] for the equivalence between the RCD∗(k, n) and the RCD(k, n)
condition. The infinite dimensional counterpart of this notion had been previously investigated in [8],
see also [7] for the case of σ-finite reference measures.

Remark 2.8 (pmGH limit of RCD spaces). We recall that, whenever it exists, a pmGH limit of a
sequence {(Xi, di,mi, xi)}i∈N of (pointed) RCD(k, n) spaces is still an RCD(k, n) metric measure space.

In particular, due to the compatibility of the RCD condition with the smooth case of Riemannian
manifolds with Ricci curvature bounded from below and to its stability with respect to pointed measured
Gromov–Hausdorff convergence, limits of smooth Riemannian manifolds with Ricci curvature uniformly
bounded from below by k and dimension uniformly bounded from above by n are RCD(k, n) spaces. Then
the class of RCD spaces includes the class of Ricci limit spaces, i.e., limits of sequences of Riemannian
manifolds with the same dimension and with Ricci curvature uniformly bounded from below. The study
of Ricci limits was initiated by Cheeger and Colding in the nineties in the series of papers [21, 22, 23, 24]
and has seen remarkable developments in more recent years. Since the above mentioned pioneering works,
it was known that the regularity theory for Ricci limits improves adding to the lower curvature bound a
uniform lower bound for the volume of unit balls along the converging sequence of Riemannian manifolds:
this gives raise to the so-called notion of noncollapsed Ricci limits. In particular, as a consequence of the
volume convergence theorem proved in [29], it is known that in the noncollapsed case the limit measure
of the volume measures is the Hausdorff measure on the limit metric space, while this might not be the
case for a general Ricci limit space.

Now we are ready to state the volume convergence theorems obtained by Gigli and De Philippis in
[33, Theorem 1.2 and Theorem 1.3], which are the synthetic version of the celebrated volume convergence
of Colding [29]. Whenever we write a metric measure space as a triple (X, d,Hn), it is understood that
the measure Hn is the n-dimensional Hausdorff measure corresponding to the distance d on X.

Theorem 2.9. Let {(Xi, di,Hn, xi)}i∈N be a sequence of pointed RCD(k, n) m.m.s. with k ∈ R and
n ∈ [1,+∞). Assume that (Xi, di, xi) converges in the pGH topology to (X, d, x). Then precisely one of
the following happens

(a) lim supi→∞Hn (B1(xi)) > 0. Then the lim sup is a limit and (Xi, di,Hn, xi) converges in the pmGH
topology to (X, d,Hn, x). Hence (X, d,Hn) is an RCD(k, n) m.m.s.;

(b) limi→∞Hn(B1(xi)) = 0. In this case we have dimH(X, d) ≤ n − 1, where dimH(X, d) is the
Hausdorff dimension of (X, d).

Moreover, for k ∈ R and n ∈ [1,+∞), let Bk,n,R be the collection of all equivalence classes up to isometry
of closed balls of radius R in RCD(k, n) spaces, equipped with the Gromov-Hausdorff distance. Then the
map Bk,n,R 3 Z → Hn(Z) is real-valued and continuous.

Remark 2.10 (Gromov precompactness theorem for RCD spaces). Here we recall the synthetic variant
of Gromov’s precompactness theorem for RCD spaces, see [33, Equation (2.1)]. Let {(Xi, di,mi, xi)}i∈N be
a sequence of RCD(ki, n) spaces with n ∈ [1,+∞), spt(mi) = Xi for every i ∈ N, mi(B1(xi)) ∈ [v, v−1] for
some v ∈ (0, 1) and for every i ∈ N, and ki → k ∈ R. Then there exists a subsequence pmGH-converging
to some RCD(k, n) space (X, d,m, x) with spt(m) = X.

9



We conclude this part by recalling a few basic definitions and results concerning the perimeter func-
tional in the setting of metric measure spaces (see [4, 53, 6]).

Definition 2.11 (BV functions and perimeter on m.m.s.). Let (X, d,m) be a metric measure space.
A function f ∈ L1(X,m) is said to belong to the space of bounded variation functions BV (X, d,m)
if there is a sequence fi ∈ Liploc(X) such that fi → f in L1(X,m) and lim supi

´
X lip fi dm < +∞,

where lipu(x) := lim supy→x
|u(y)−u(x)|

d(x,y) is the slope of u at x, for any accumulation point x ∈ X, and

lipu(x) := 0 if x ∈ X is isolated. In such a case we define

|Df |(A) := inf

{
lim inf

i

ˆ
A

lip fi dm : fi ∈ Liploc(A), fi → f in L1(A,m)

}
,

for any open set A ⊂ X.
If E ⊂ X is a Borel set and A ⊂ X is open, we define the perimeter P (E,A) of E in A by

P (E,A) := inf

{
lim inf

i

ˆ
A

lipui dm : ui ∈ Liploc(A), ui → χE in L1
loc(A,m)

}
,

We say that E has finite perimeter if P (E,X) < +∞, and we denote by P (E) := P (E,X). Let us
remark that the set functions |Df |, P (E, ·) above are restrictions to open sets of Borel measures that we
denote by |Df |, |DχE | respectively, see [6], and [53].

The isoperimetric profile of (X, d,m) is then

IX(V ) := {P (E) : E ⊂ X Borel, m(E) = V } ,

for any V ∈ [0,m(X)). If E ⊂ X is Borel with m(E) = V and P (E) = IX(V ), then we say that E is an
isoperimetric region.

It follows from classical approximation results (cf. Remark 2.3) that the above definition yields the
usual notion of perimeter on any Riemannian manifold (Mn, g) recalled at the beginning of this section.

Remark 2.12 (Coarea formula on metric measure spaces). Let (X, d,m) be a metric measure space. Let
us observe that from the definitions given above, a Borel set E with finite measure has finite perimeter
if and only if the characteristic function χE belongs to BV (X, d,m).

If f ∈ BV (X, d,m), then {f > α} has finite perimeter for a.e. α ∈ R and the coarea formula holds

ˆ
X
ud|Df | =

ˆ +∞

−∞

(ˆ
X
ud|Dχ{f>α}|

)
dα,

for any Borel function u : X → [0,+∞], see [53, Proposition 4.2]. If f is also continuous and nonnegative,
then |Df |({f = α}) = 0 for every α ∈ [0,+∞) and the localized coarea formula holds

ˆ
{a<f<b}

ud|Df | =
ˆ b

a

(ˆ
X
ud|Dχ{f>α}|

)
dα,

for every Borel function u : X → [0,+∞] and every 0 ≤ a < b < +∞, see [5, Corollary 1.9].
Applying the above coarea formulas to the distance function r(y) = d(y, x) from a fixed point y ∈ X,

one deduces that balls Br(y) have finite perimeter for almost every radius r > 0, the function r 7→
m(Br(y)) is continuous, m(∂Br(y)) = 0 for every r > 0, and d

drm(Br(y)) = P (Br(y)) for a.e. r > 0.

Remark 2.13 (Bishop–Gromov comparison theorem on m.m.s.). Let us recall that for an arbitrary
CD((n − 1)k, n) space (X, d,m) the classical Bishop–Gromov volume comparison (cf. Theorem A.1)
still holds. More precisely, for a fixed x ∈ X, the function m(Br(x))/v(n, k, r) is nonincreasing in
r and the function P (Br(x))/s(n, k, r) is essentially nonincreasing in r, i.e., P (BR(x))/s(n, k,R) ≤
P (Br(x))/s(n, k, r) for almost every radii R ≥ r, see [77, Theorem 18.8, Equation (18.8), Proof of
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Theorem 30.11]. Moreover, it holds that P (Br(x))/s(n, k, r) ≤ vol(Br(x))/v(n, k, r) for any r > 0,
indeed the last inequality follows from the monotonicity of the volume and perimeter ratios together
with the coarea formula on balls.

Moreover, if (X, d,Hn) is an RCD((n − 1)k, n) space, one can conclude that Hn-almost every point
has a unique measure Gromov–Hausdorff tangent isometric to Rn ([33, Theorem 1.12]), and thus, from
the volume convergence in Theorem 2.9, we get

lim
r→0

Hn(Br(x))

v(n, k, r)
= lim

r→0

Hn(Br(x))

ωnrn
= 1, for Hn-almost every x, (2.1)

where ωn is the volume of the unit ball in Rn. Moreover, since the density function x 7→ limr→0
Hn(Br(x))
ωnrn

is lower semicontinuous ([33, Lemma 2.2]), the latter (2.1) implies that the density is bounded above by
the constant 1. Hence, from the monotonicity at the beginning of the remark we deduce that, if (X, d,Hn)
is an RCD((n − 1)k, n) space, then for every x ∈ X we have Hn(Br(x)) ≤ v(n, k, r) for every r > 0. In
particular, if (X, d,Hn) is an RCD((n−1)k, n) space, then for every x ∈ X we have P (Br(x)) ≤ s(n, k, r)
for every r > 0.

Remark 2.14 (Representation of the perimeter on RCD spaces). Let us fix (X, d,m) an RCD((n−1)k, n)
space. Hence, from Bishop–Gromov comparison in Remark 2.13, for any fixed x ∈ X,

lim sup
r→0

m(B2r(x))/m(Br(x)) ≤ lim sup
r→0

v(n, k, 2r)/v(n, k, r) < +∞,

i.e., m is asymptotically doubling, and therefore the Lebesgue Differentiation Theorem holds true, see [43,
Theorem 3.4.3] and [43, Lebesgue Differentiation Theorem, p. 77]. So it makes sense to identify any
Borel set E with the set E1 of points of density 1, where, in general,

Et :=

{
x ∈ X : lim

r↘0

m(E ∩Br(x))

m(Br(x))
= t

}
,

for any t ∈ [0, 1]. The essential boundary of E is then classically defined by ∂∗E := X \ (E0 ∪ E1).
As in the case of Riemannian manifolds, if (X, d,Hn) is an RCD((n− 1)k, n) space endowed with the

n-dimensional Hausdorff measure, the perimeter measure can be represented by

|DχE | = Hn−1 ∂∗E, (2.2)

for any finite perimeter set E. In fact, this follows by putting together the representation given in [4,
Theorem 5.3] and the recent one contained in [15, Corollary 4.2].

It easily follows from such a representation formula that if E ⊂ X has finite perimeter and x ∈ X,
then for a.e. radius r > 0 the intersection Br(x) ∩ E has finite perimeter and

|DχBr(x)∩E | = Hn−1 (∂∗E ∩Br(x)) +Hn−1 (E ∩ ∂∗Br(x)). (2.3)

Indeed for a.e. r > 0 the ball Br(x) has finite perimeter and |DχE |(∂Br(x)) = 0; so (2.3) follows from
(2.2) by noticing that for such an r it holds that ∂∗(Br(x) ∩E) = (∂∗E ∩Br(x)) ∪ (E ∩ ∂∗Br(x)) up to
Hn−1-negligible sets.

We mention that finer regularity properties of sets of finite perimeter have been recently proved in
[14].

2.2 Sets of finite perimeter and GH-convergence

We need to recall a generalized L1-notion of convergence for sets defined on a sequence of metric measure
spaces converging in the pmGH sense. Such a definition is given in [5, Definition 3.1], and it is investigated
in [5] capitalizing on the results in [9].
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Definition 2.15 (L1-strong and L1
loc convergence). Let {(Xi, di,mi, xi)}i∈N be a sequence of pointed

metric measure spaces converging in the pmGH sense to a pointed metric measure space (Y, dY , µ, y) and
let (Z, dZ) be a realization as in Definition 2.7.

We say that a sequence of Borel sets Ei ⊂ Xi such that mi(Ei) < +∞ for any i ∈ N converges in
the L1-strong sense to a Borel set F ⊂ Y with µ(F ) < +∞ if mi(Ei) → µ(F ) and χEimi ⇀ χFµ with
respect to the duality with continuous bounded functions with bounded support on Z.

We say that a sequence of Borel sets Ei ⊂ Xi converges in the L1
loc-sense to a Borel set F ⊂ Y if

Ei ∩BR(xi) converges to F ∩BR(y) in L1-strong for every R > 0.

Observe that in the above definition it makes sense to speak about the convergence χEimi ⇀ χFµ with
respect to the duality with continuous bounded functions with bounded support on Z as (Xi, di), (Y, dY )
can be assumed to be topological subspaces of (Z, dZ) by means of the isometries Ψi,Ψ of Definition 2.7,
and the measures mi, µ can be then identified with the push-forwards (Ψi)]mi,Ψ]µ respectively.

The following result is taken from [5] and will be of crucial importance in the proof of Theorem 4.6.

Proposition 2.16 ([5, Proposition 3.3, Corollary 3.4, Proposition 3.6, Proposition 3.8]). Let k ∈ R,
n ≥ 1, and {(Xi, di,mi, xi)}i∈N be a sequence of RCD(k, n) m.m.s. converging in the pmGH sense to
(Y, dY , µ, y). Then,

(a) For any r > 0 and for any sequence of finite perimeter sets Ei ⊂ Br(xi) satisfying

sup
i∈N
|DχEi |(Xi) < +∞,

there exists a subsequence ik and a finite perimeter set F ⊂ Br(y) such that Eik → F in L1-strong
as k → +∞. Moreover

|DχF |(Y ) ≤ lim inf
k→+∞

|DχEik |(Xik).

(b) For any sequence of Borel sets Ei ⊂ Xi with

sup
i∈N
|DχEi |(BR(xi)) < +∞, ∀R > 0,

there exists a subsequence ik and a Borel set F ⊂ Y such that Eik → F in L1
loc.

(c) Let F ⊂ Y be a bounded set of finite perimeter. Then there exist a subsequence ik, and uniformly
bounded finite perimeter sets Eik ⊂ Xik such that Eik → F in L1-strong and |DχEik |(Xik) →
|DχF |(Y ) as k → +∞.

With the help of the previous result we can now prove the following lemma which will be used in the
forthcoming section.

Lemma 2.17. Let (X, d,Hn) be an RCD((n − 1)k, n) space with Hn(X) = +∞. If, for some v0 > 0,
Hn(B1(x)) ≥ v0 for any x ∈ X, then the isoperimetric profile IX of X can be rewritten as

IX(V ) = inf {P (E) : E ⊂ X Borel, Hn(E) = V , E bounded} ∀V ∈ (0,+∞). (2.4)

Proof. Let us observe first that if E ⊂ X is a finite perimeter set with finite measure Hn(E) < +∞,
then for any point o ∈ X there exists a sequence of radii Ri → +∞ such that

• Hn(E ∩BRi(o)) ≥ Hn(E)− 1/i for any i;

• P (E ∩BRi(o)) = P (E,BRi(o)) +Hn−1(E ∩ ∂∗BRi(o)) for any i;

• Hn−1(E ∩ ∂∗BRi(o)) ≤ 1/i for any i.
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Indeed, by the results in Remark 2.12, and Remark 2.14, we know that

Hn(E ∩Br(o)) =

ˆ r

0
Hn−1(E ∩ ∂∗Bt(o)) dt −−−−→

r→+∞
Hn(E) < +∞.

Recalling also (2.3) in order to justify the second item above, the sought claim follows.
Now let V ∈ (0,+∞) and consider Ej ⊂ X with Hn(Ej) = V such that PX(Ej) ≤ IX(V ) + 1/j.

Fix o ∈ X and let Rji be given by the first part of the proof applied to Ej . For any i, j let Bρi,j (pi,j) b
X \B

Rji
(o) be such that

Hn(Bρi,j (pi,j)) = V −Hn(Ej ∩BRji (o)) ≤
1

i
,

and moreover pi,j is chosen such that the comparison inequalities discussed in Remark 2.13 hold. Such
balls exist sinceHn(X) = +∞. Since balls of radius 1 have volume ≥ v0, we can also assume that ρi,j < 1.
Then the volume comparison (see Remark 2.13) implies Hn(Bρi,j (pi,j)) ≥ v(n, k, ρi,j)v0/v(n, k, 1). Hence
limi ρi,j = 0 for any j. We then get that, by using the perimeter comparison (see Remark 2.13)

lim
i
P (Bρi,j (pi,j)) ≤ lim

i
s(n, k, ρi,j) = 0,

for any j. Hence

P ([Ej ∩BRji (o)] ∪Bρi,j (pi,j)) ≤ P (Ej) +
1

i
+ s(n, k, ρi,j) ≤ IX(V ) +

1

j
+

1

i
+ s(n, k, ρi,j).

Taking ij ≥ j sufficiently large for any fixed j so that s(n, k, ρij ,j) ≤ 1/j yields that

PX([Ej ∩BRjij
(o)] ∪Bρij ,j (pij ,j)) ≤ IX(V ) +

3

j
.

Hence [Ej∩BRjij
(o)]∪Bρij ,j (pij ,j) is a minimizing (for the perimeter) sequence of bounded sets of volume

V . So this implies (2.4).

3 Asymptotic geometry and isoperimetric profile

In this section we prove some inequalities regarding the isoperimetric profile in some special classes
of Riemannian manifold. We first need the following useful result, which is proved without uniform
assumptions on the volume of unit balls.

Lemma 3.1. Let (X, d,Hn) be an RCD((n−1)k, n) space. Then its isoperimetric profile IX : (0,Hn(X))→
[0,+∞) is upper semicontinuous.

Proof. Fix V ∈ (0,Hn(X)) and let η > 0. Then take E ⊂ X Borel such that Hn(E) = V and
PX(E) ≤ IX(V ) +η. Since the measure Hn is asymptotically doubling, see Remark 2.14, we can identify
E with the set of density one points E1, and we denote E0 the set of density zero points of E. Let us
fix x ∈ E1 = E and y ∈ E0 such that the comparison inequalities discussed in Remark 2.13 hold. There
is ρ such that

Hn(E ∩Bρ(x)) >
3

4
Hn(Bρ(x)) ∀ ρ ∈ (0, ρ),

Hn(E ∩Bρ(y)) <
1

4
Hn(Bρ(y)) ∀ ρ ∈ (0, ρ),

and d(x, y) > 3ρ. We claim that there is δ ∈ (0, V/2) and ω : (V − δ, V + δ) → R such that for any
v ∈ (V − δ, V + δ) there is ρx = ρx(v), ρy = ρy(v) ∈ [0, ρ) such that

Hn((E ∪Bρy(y)) \Bρx(x)) = v,

PX((E ∪Bρy(y)) \Bρx(x)) ≤ PX(E) + ω(v),

lim
v→V

ω(v) = 0.

(3.1)
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We observe that such a claim implies the statement of the Lemma. Indeed if vj → V is any sequence,
then the claim yields a sequence of sets Ej := (E∪Bρy,j (y))\Bρx,j (x) with Hn(Ej) = vj , and that satisfy

IX(vj) ≤ PX(Ej) ≤ PX(E) + ω(vj) ≤ IX(V ) + η + ω(vj).

Passing to the lim sup as j → +∞ in the above inequality, since vj → V and V are arbitrary, and then
letting η → 0, readily implies that IX is upper semicontinuous.

So we are left to prove the claim. Take

0 < δ < min {Hn(Bρ(y) \ E),Hn(Bρ(x) ∩ E), V/2} .

Observe that the function

[0, ρ)2 3 (ρ1, ρ2) 7→Hn((E ∪Bρ2(y)) \Bρ1(x))

= Hn(E ∪Bρ2(y))−Hn(E ∩Bρ1(x))

= Hn(E)−Hn(E ∩Bρ2(y)) +Hn(Bρ2(y))−Hn(E ∩Bρ1(x)),

(3.2)

is continuous; indeed by the coarea formula (Remark 2.12) we know that

Hn(E ∩Bρ(z)) =

ˆ ρ

0

ˆ
X
χE d|DχBt(z)|dt,

for any ρ > 0 and z ∈ X.
We are ready to prove (3.1). Let v ∈ (V − δ, V + δ); we need to define ω(v), ρx(v), and ρy(v). If

v = V , then ω(V ) = ρx(V ) = ρy(V ) = 0 works. So we assume v > V , the case v < V being completely
analogous. By the choice of δ there is ρv ∈ (0, ρ) such that

Hn(E ∪Bρv(y)) = v, Hn(E ∪Bρ(y)) > v ∀ ρ ∈ (ρv, ρ).

By continuity of the map in (3.2) there is ρ̃v ∈ (ρv, ρ) such that

∀ ρ ∈ (ρv, ρ̃v) ∃σ ∈ (0, ρ) : Hn((E ∪Bρ(y)) \Bσ(x)) = v.

Hence there exist ρx ∈ (ρv, ρ̃v) and ρy ∈ (0, ρ) such that

Hn((E ∪Bρy(y)) \Bρx(x)) = v, (3.3)

and in addition PX(Bρy(y)) ≤ s(n, k, ρy), PX(Bρx(x)) ≤ s(n, k, ρx) (see the comparison of the perimeter
in Remark 2.13). Therefore

PX((E ∪Bρy(y)) \Bρx(x)) ≤ PX(E) + PX(Bρy(y)) + PX(Bρx(x))

≤ PX(E) + s(n, k, ρy) + s(n, k, ρx).
(3.4)

Moreover, we can clearly choose ρx, ρy → 0 if v → V +. Hence defining ω(v) := s(n, k, ρy) + s(n, k, ρx),
(3.3) and (3.4) imply the claimed (3.1).

We now prove a proposition that roughly says that the isoperimetric profile of a manifold is less or
equal than the isoperimetric profile of every pmGH limit at infinity. The following proposition has to be
read as a generalization of [64, Lemma 2.7].

Proposition 3.2. Let (Mn, g) be a complete noncompact noncollapsed Riemannian manifold such that
Ric ≥ (n− 1)k for some k ∈ (−∞, 0]. Let pi ∈ Mn be a diverging sequence of points on Mn. Then, up
to subsequence, there exists (X∞, d∞,Hn, p∞) a pointed Ricci limit space, and thus an RCD(k, n) space,
such that

(Mn, d, vol, pi)
pmGH−−−−→
i→+∞

(X∞, d∞,Hn, p∞). (3.5)
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Moreover, whenever a diverging sequence of points pi ∈Mn and a pointed Ricci limit space (X∞, d∞,Hn, p∞)
satisfy (3.5), then

I(Mn,g)(V ) ≤ I(Mn,g)(V1) + IX∞(V2) ∀V = V1 + V2, (3.6)

with V, V1, V2 ≥ 0.
In particular

I(Mn,g)(V ) ≤ IX∞(V ) ∀V > 0, (3.7)

and if, for any j ≥ 1, {pi,j | i ∈ N} is a diverging sequence of points on Mn such that (Mn, d, vol, pi,j)→
(Xj , dj ,mj , pj) in the pmGH sense as i→ +∞, then

I(Mn,g)(V ) ≤ I(Mn,g)(V0) +

+∞∑
j=1

IXj (Vj), (3.8)

whenever V =
∑+∞

j=0 Vj with V, Vj ≥ 0 for any j.

Proof. First, we observe that since Mn is noncompact and noncollapsed, it has infinite volume; indeed,
there exist countably many disjoint balls of radius 1 contained in Mn. The convergence in (3.5) is just
a consequence of Gromov Precompactness Theorem. So we are left to prove (3.6).

Without loss of generality let V > 0 be fixed, and let V1, V2 ≥ 0 with V1 +V2 = V . So we can assume
V2 > 0 without loss of generality. Consider V j := V2 − 1/j > 0 for j large enough. Let Ω ⊂ Mn be a
bounded set such that vol(Ω) = V1 and P (Ω) ≤ I(Mn,g)(V1) + η for a fixed η > 0.

By the fact that Mn is noncollapsed and by Theorem 2.9 we know that for some v0 > 0 we have
Hn(B1(x)) ≥ v0 for any x ∈ X∞: indeed, for every x ∈ X∞ there exists a sequence p̃i such that
(Mn, d, p̃i) → (X∞, d∞, x) in the pGH sense, and then we can apply the second part of Theorem 2.9,
together with the fact that Mn is noncollapsed to deduce the sought bound. As X∞ is noncompact, it
also follows that Hn(X∞) = +∞.

Then by (2.4) there exist bounded sets Ej ⊂ X∞ with Hn(Ej) = V j and PX∞(Ej) ≤ IX∞(V j) + 1/j.
By item (c) in Proposition 2.16, up to subsequences in i, for any j there are Rj > 0 and a sequence

F ji ⊂ BRj (pi) ⊂Mn such that F ji → Ej in L1-strong as i→ +∞ and limi P (F ji ) = PX∞(Ej).
Therefore, if o ∈ Mn is fixed, there is a ball BS(o) such that Ω b BS(o), and, since pi diverges at

infinity, there are balls Bρi,j (o
′) ⊂Mn for some o′ ∈Mn such that

Bρi,j (o
′) bMn \ (BRj (pi) ∪BS(o)), vol(Bρi,j (o

′)) = V2 − vol(F ji ),

for any i, j, up to subsequences. For any j there is ij such that F jij bM \BS(o), P (F jij ) ≤ PX∞(Ej)+1/j,

and vol(F jij ) ≥ V2 − 2/j. Moreover, since limj vol(Bρij ,j (o
′)) = 0, then limj P (Bρij ,j (o

′)) = 0. Hence,

since F jij , Bρij ,j (o
′) and Ω are mutually disjoint, we have, also by exploiting the previous inequalities,

I(Mn,g)(V ) ≤ P (F jij ∪Bρij ,j (o
′) ∪ Ω) = P (F jij ) + P (Bρij ,j (o

′)) + P (Ω)

≤ PX∞(Ej) +
1

j
+ P (Bρij ,j (o

′)) + I(Mn,g)(V1) + η

≤ IX∞
(
V2 −

1

j

)
+

2

j
+ P (Bρij ,j (o

′)) + I(Mn,g)(V1) + η.

Passing to the lim sup in the previous estimate and using that IX∞ is upper semicontinuous by Lemma 3.1
jointly with the fact that η is arbitrary, finally implies (3.6).

Now (3.7) clearly follows from (3.6) with V1 = 0. Finally, in the notation and assumptions of (3.8),
we can iteratively apply (3.6) to get

I(Mn,g)(V ) ≤ IX1(V1) + I(Mn,g)

V0 +

+∞∑
j=2

Vj

 ≤ I(Mn,g)

V0 +

+∞∑
j=k

Vj

+

k−1∑
j=1

IXj (Vj),
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for any k ≥ 2. Letting k → +∞, since
(
V0 +

∑+∞
j=k Vj

)
→ V0, passing to the limsup in the above estimate

and using Lemma 3.1 imply (3.8).

Remark 3.3 (On the hypotheses in Proposition 3.2). We remark that with the same proof of Propo-
sition 3.2 we can prove a more general statement substituting Mn with an arbitrary RCD(k, n) space
(X, d,Hn) that satisfies Hn(B1(x)) > v0 for every x ∈ X and for some v0 > 0.

We recall that a manifold (Mn, g) is Cartan–Hadamard if it is complete, Sect ≤ 0 and Mn is simply
connected. Recall that if (Mn, g) is Cartan–Hadamard, then Mn is diffeomorphic to Rn.

Corollary 3.4. Let (Mn, g) be a Cartan–Hadamard manifold of dimension 2 ≤ n ≤ 4 such that there
exists k ∈ (−∞, 0) for which Ric ≥ (n − 1)k on Mn, and such that there exists a diverging sequence
pj ∈Mn for which (Mn, d, pj)→ (Rn, deu, 0) in the pGH sense as j → +∞. Then

I(Mn,g)(V ) = I(Rn,geu)(V ),

for any V ≥ 0. Moreover, if there exists an isoperimetric region Ω, then (Ω, g) is isometric to a Euclidean
ball of the same volume.

Proof. We recall the following result, which is due to Croke, see [31, Proposition 14]. Let (Mn, g) be a
complete Riemannian manifold. Then there exists C = C(n) > 0 such that

vol(Br(p)) ≥ Crn, for all p ∈Mn, and for all 0 < r < inj(p)/2.

Since Mn is Cartan–Hadamard, for every p ∈ Mn we have inj(p) = +∞. Hence we deduce that Mn

is noncollapsed. Thus, as a consequence of the volume convergence in Theorem 2.9, we get that the
pGH limit in the statement is actually a pmGH limit. Hence, from Proposition 3.2 we directly get that
I(Mn,g) ≤ I(Rn,geu). In case 2 ≤ n ≤ 4 a sharp isoperimetric inequality, i.e., with the Euclidean constant,
is available for Cartan–Hadamard manifold, see [78, p. 1] for the case n = 2, [45] for the case n = 3, and
[30] for n = 4. In particular in all the latter cases, denoting with ωn the volume of the unit ball in Rn, one

has that P (Ω) ≥ nω1/n
n (vol Ω)(n−1)/n for every finite perimeter set Ω ⊂Mn, and thus I(Mn,g) ≥ I(Rn,geu)

when 2 ≤ n ≤ 4. As a result I(Mn,g) = I(Rn,geu) when 2 ≤ n ≤ 4.
If Ω is an isoperimetric region, since 2 ≤ n ≤ 4, we conclude that Ω is smooth (see [72, Proposition

2.4], or [58]). Thus, the rigidity for the isoperimetric inequalities proved in [78, p. 1], [45], and [30],
implies that every isoperimetric region Ω is isometric to a Euclidean ball of the same volume, thus
completing the proof of the theorem.

The argument that follows, providing examples of nonexistence of isoperimetric sets, is inspired by
the parallel situation described in [56, Example 5.6 and Example 5.7] constituted by the isoperimetric-
isodiametric problem.

Example 3.5 (Nonexistence of isoperimetric sets). An example of 2-dimensional manifold satisfying the
hypotheses of Corollary 3.4 is the helicoid. Indeed, the helicoid is simply connected, Sect ≤ 0, being a
minimal surface, and it can be readily checked that its sectional curvature tends to zero as the distance
from the rotation axis increases. Taking into account the periodicity of the helicoid along its rotation
axis, then Ric ≥ k. An easy application of Lemma A.2 shows that a sequence of points pj whose distance
from the rotation axis diverges satisfies the hypotheses of Corollary 3.4. Since also Sect 6= 0 at every
point, no isoperimetric regions exist on the helicoid.

Moreover, if (Σ, g) is a Cartan–Hadamard surface with induced distance d and with asymptotically
vanishing sectional curvature (see Definition 5.4 below for the precise definition) then Corollary 3.4 allows
us to conclude that I(Σ,g) = I(R2,geu). Indeed since the sectional curvature is asymptotically vanishing,
then (Σ, g) clearly satisfies a uniform lower bound on the Ricci tensor; moreover, since the sectional
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curvature is asymptotically vanishing and inj(p) = +∞ for every p ∈ Mn, the result in Proposition 5.6
below allows to conclude that for every diverging sequence pj ∈ Σ we have

(Σ, d, pj)
j→+∞−−−−→ (Rn, deu, 0),

in the pGH topology. Thus all the hypotheses of Corollary 3.4 are satisfied and we get the sought
equality. Moreover, if in addition Sect = 0 at most at isolated points of Σ, we conclude from the rigidity
part of Corollary 3.4 that no isoperimetric regions of any volume can exist on Σ. An example satisfying
the previous conditions is the saddle, i.e., the surface of equation z = x2 − y2 in R3.

In order to construct examples that satisfy the hypotheses of Corollary 3.4 in dimension n > 2, one
can take (Σ, g) an arbitrary Cartan–Hadamard surface with Ricci uniformly bounded below satisfying the
pGH-limit hypothesis in Corollary 3.4 (e.g., the previously discussed helicoid and saddle), and consider
Σ×R, and Σ×R2. Moreover, if one chooses Σ such that Sect = 0 at most at isolated points of Σ, then
Σ×R and Σ×R2 cannot have isoperimetric regions of any volume, since rigidity in Corollary 3.4 holds.

We mention another related class of Riemannian manifolds such that no isoperimetric regions exist,
in addition to the Cartan–Hadamard manifolds above. These are studied in [70] and consist of particular
radial metrics of the form dt2 + f(t)2dθ2, where dθ2 is the metric of the unit circle on R2. In such a case
Sect is a function of t, and if t 7→ Sect(t) is increasing and sup Sect is never achieved on the surface, then
no isoperimetric regions exist [70, Theorem 2.16].

4 Asymptotic mass decomposition of minimizing sequences

This section is devoted to the proof of the main result of the work, that yield an asymptotic description
of the behavior of minimizing sequences (for the perimeter) that possibly lose part of the mass at infinity,
culminating in Theorem 4.6, that constitutes a more detailed version of Theorem 1.1.

The starting point is a classical result due to Ritoré–Rosales that can be found in [72, Theorem 2.1],
and which is meaningful for noncompact Riemannian manifolds of infinite volume.

Theorem 4.1. Let (Mn, g) be a complete noncompact Riemannian manifold, and fix V > 0 and o ∈Mn.
Let {Ωi}i∈N be a minimizing (for the perimeter) sequence of finite perimeter sets of volume V . Then
there exists a diverging sequence {ri}i∈N such that

(i) Ωc
i := Ωi ∩Bri(o) and Ωd

i := Ωi \Bri(o) are sets of finite perimeter with

lim
i→+∞

(
P (Ωd

i ) + P (Ωc
i )
)

= I(V ).

(ii) There exists a finite perimeter set Ω with vol(Ω) ≤ V such that

lim
i→+∞

vol(Ωc
i ) = vol(Ω), lim

i→+∞
P (Ωc

i ) = P (Ω).

Moreover Ωc
i → Ω in L1

loc(M
n, g).

(iii) Ω is an isoperimetric region for its own volume.

We will need another classical and fundamental property of isoperimetric regions. In Theorem B.1
we prove that the validity of an isoperimetric inequality for small volumes implies that isoperimetric
regions are bounded. Interestingly, noncollapsed manifolds with Ricci curvature bounded from below
satisfy such an isoperimetric inequality. This follows from [42, Lemma 3.2]. Thus, such manifolds have
bounded isoperimetric regions and we can state the following result.

Corollary 4.2. Let (Mn, g) be a complete noncollapsed Riemannian manifold with Ric ≥ (n − 1)k for
some k ∈ (−∞, 0]. Then the isoperimetric regions of (Mn, g) are bounded.
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4.1 Concentration lemmas

The following lemma contains a so-called concentration-compactness result that will play a key role in the
study of the decomposition of the diverging mass of minimizing sequences. The result is rather classical
and could be stated at the level of measure theory, however we include here a brief proof specializing the
concentration-compactness principle to a sequence of sets under the form we will apply it. The following
result is inspired by [48, Lemma I.1].

Lemma 4.3 (Concentration-compactness). Let (Mn, g) be a complete noncompact Riemannian manifold
and let Ei be a sequence of bounded measurable sets such that limi vol(Ei) = W ∈ (0,+∞). Then, up to
passing to a subsequence, exactly one of the following alternatives occur.

1. For any R > 0 it holds
lim
i

sup
p∈M

vol(Ei ∩BR(p)) = 0.

2. There exists a sequence of points pi ∈Mn such that for any ε ∈ (0,W/2) there exist R ≥ 1, iε ∈ N
such that vol(Ei ∩ BR(pi)) ≥ W − ε for any i ≥ iε. Moreover, there is I ∈ N, r ≥ 1 such that
vol(Ei ∩Br(pi)) ≥ vol(Ei ∩Br(q)) for any q ∈Mn and vol(Ei ∩Br(pi)) > W/2 for any i ≥ I.

3. There exists w ∈ (0,W ) such that for any ε ∈ (0, w/2) there exist R ≥ 1, iε ∈ N, a sequence of
points pi ∈Mn, and a sequence of open sets Ui such that

Ui = Mn \BRi(pi) for some Ri → +∞, and then d(pi, Ui)
i→+∞−−−−→ +∞,

and moreover

| vol(Ei ∩BR(pi))− w| < ε,

| vol(Ei ∩ Ui)− (W − w)| < ε,

vol(Ei ∩BR(pi)) ≥ vol(Ei ∩BR(q)) ∀ q ∈M,

for every i ≥ iε.

Proof. Define Qi(ρ) := supp∈M vol(Ei ∩Bρ(p)). The functions Qi : (0,+∞)→ R are nondecreasing and
uniformly bounded, since vol(Ei) → W . Hence the sequence Qi is uniformly bounded in BVloc(0,+∞)
and then, up to subsequence, there exists a nondecreasing function Q ∈ BVloc(0,+∞) such that Qi → Q
in BVloc and pointwise almost everywhere. Also, let us pointwise define Q(ρ) := limη→0+ ess inf(ρ−η,ρ)Q,
so that Q is defined at every ρ ∈ (0,+∞). Moreover, observe that Q(ρ) ≤ W for any ρ > 0. Now three
disjoint cases can occur, distinguishing the cases enumerated in the statement.

1. We have that limρ→+∞Q(ρ) = 0, and hence Q ≡ 0 since it is nondecreasing. Then item 1 of the
statement clearly holds.

2. We have that limρ→+∞Q(ρ) = W . Then there is r ≥ 1 such that ∃ limi supp vol(Ei ∩ Br(p)) =

Q(r) ≥ 3
4W . Since Ei is bounded for any i, let pi ∈ Mn such that supp vol(Ei ∩ Br(p)) =

vol(Ei ∩Br(pi)) for any i. We claim that the sequence pi satisfies the property in item 2. Indeed,
let ε ∈ (0,W/2) be given. Arguing as above, since limρ→+∞Q(ρ) = W , there is a radius r′ > 0 and
a sequence p′i ∈Mn such that vol(Ei ∩Br′(p′i)) ≥W − ε for any i ≥ iε. Then d(pi, p

′
i) < r+ r′, for

otherwise
W ←− vol(Ei) ≥ vol(Ei ∩Br(pi)) + vol(Ei ∩Br′(p′i)),

and the right hand side is > W for i large enough. Hence taking R = r + 2r′ we conclude that
vol(Ei ∩BR(pi)) ≥W − ε for i ≥ iε as claimed.
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3. We have that limρ→+∞Q(ρ) = w ∈ (0,W ). Then for given ε ∈ (0, w/2) there is R ≥ 1 such that

w − ε

8
≤ Q(R) = lim

i
sup
p

vol(Ei ∩BR(p)) = lim
i

vol(Ei ∩BR(pi)),

for some pi ∈Mn, where in the last equality we used that

sup
p

vol(Ei ∩BR(p)) = vol(Ei ∩BR(pi)),

for some pi since Ei is bounded. This implies that vol(Ei ∩ BR(pi)) ≥ vol(Ei ∩ BR(q)) for any i
and any q ∈Mn, and there is iε such that | vol(Ei ∩BR(pi))− w| < ε/4 for i ≥ iε.
For i ≥ iε, there is an increasing sequence ρj → +∞ such that Q(ρj) = limiQi(ρj) and we have

w = lim
j→+∞

Q(ρj) = lim
j

lim
i

sup
p

vol(Ei ∩Bρj (p)) ≥ lim sup
j

lim sup
i

vol(Ei ∩Bρj (pi))

= lim sup
j

lim sup
i

(
vol(Ei ∩BR(pi)) + vol(Ei ∩Bρj (pi) \BR(pi))

)
≥ w − ε

4
+ lim sup

j
lim sup

i
vol(Ei ∩Bρj (pi) \BR(pi)).

Then there is j0 such that for any j ≥ j0 we have that ρj > R and there is ij , with ij increasing to
+∞ as j → +∞, that satisfies

vol(Ei ∩Bρj (pi) \BR(pi)) <
ε

2
∀ i ≥ max{iε, ij}. (4.1)

Hence define
Ri := ρmax{j : i≥ij}.

In this way vol(Ei ∩ BRi(pi) \ BR(pi)) < ε/2 for any i ≥ max{iε, ij0} by (4.1). Defining Ui :=
Mn \BRi(pi) we finally get that d(pi, Ui) = Ri → +∞ and

W ←− vol(Ei) = vol(Ei ∩BR(pi)) + vol(Ei ∩BRi(pi) \BR(pi)) + vol(Ei ∩ Ui)

≤ w +
3

4
ε+ vol(Ei ∩ Ui),

for i ≥ max{iε, ij0}. By the first line in the above identity, recalling that | vol(Ei ∩BR(pi))−w| <
ε/4, we also see that lim supi vol(Ei ∩ Ui) ≤W − w + ε/4. Hence the proof of item 3 is completed
renaming max{iε, ij0} into iε and by eventually taking a slightly bigger i in order to ensure the
validity of the second inequality of item 3.

We briefly recall here a useful covering lemma for complete Riemannian manifolds with Ricci curvature
bounded from below, cf. [42, Lemma 1.1].

Lemma 4.4. Let k ∈ R and let (Mn, g) be a complete Riemannian manifold such that Ric ≥ (n− 1)k.
Let 0 < ρ < Tk, where Tk := π/

√
k if k > 0, or Tk := +∞ otherwise. Then, there exists a countable

family {Bρ(xi)}i∈N of open balls such that

(i) ∪i∈NBρ(xi) = Mn,

(ii) Bρ/2(xi) ∩Bρ/2(xj) = ∅ for every i, j ∈ N,

(iii) for every y ∈Mn it holds

]{i : y ∈ Bρ(xi)} ≤ ]{i : y ∈ B2ρ(xi)} ≤
v(n, k, 6ρ)

v(n, k, ρ/2)
.
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Proof. Let F be the collection of the countable families of pairwise disjoint balls {Bρ/2(xi) : xi ∈M}i∈N
ordered with the relation ⊂. By Zorn Lemma it is immediate to deduce the existence of a maximal, with
respect to ⊂, family G := {Bρ/2(xi) : xi ∈M}i∈N in F . We want to show that G verifies the claims.

Item (ii) for the family G is verified by definition. Suppose by contradiction item (i) is false. Thus
there exists x ∈ M such that for every i ∈ N we have d(x, xi) ≥ ρ. Then, by the triangle inequality,
we get that Bρ/2(x) ∩ Bρ/2(xi) = ∅ for all i ∈ N. Thus G ∪ {Bρ/2(x)} is an element of F that strictly
contains G , giving a contradiction with the fact that G is maximal with respect to ⊂.

In order to prove item (iii) for the family G let us first prove that the number n of disjoint balls
Bρ/2(x̃1), . . . , Bρ/2(x̃n) that are contained in B3ρ(x), where x, x̃1, . . . , x̃n ∈ Mn, is bounded above by
v(n, k, 6ρ)/v(n, k, ρ/2). Indeed, calling Bρ/2(x̃i0) one of the balls with the minimum volume among
Bρ/2(x̃1), . . . , Bρ/2(x̃n), we can estimate

n ≤ vol(B3ρ(x))

vol(Bρ/2(x̃i0))
≤ vol(B6ρ(x̃i0))

vol(Bρ/2(x̃i0))
≤ v(n, k, 6ρ)

v(n, k, ρ/2)
,

where in the first inequality we are using that Bρ/2(x̃1), . . . , Bρ/2(x̃n) are disjoint and contained in B3ρ(x),
and Bρ/2(x̃i0) is one of the balls with the minimum volume among them; in the second inequality we
are using B3ρ(x) ⊂ B6ρ(x̃i0) by the triangle inequality; and in the third inequality we are using Bishop–
Gromov volume comparison (see Theorem A.1).

Thus the claim is proved. In order to conclude the proof of item (iii), let y ∈ Mn be an element
of n balls B2ρ(x1), . . . , B2ρ(xn) of the family G constructed above. Then, by the triangle inequality,
Bρ/2(xi) ⊂ B3ρ(y) for every 1 ≤ i ≤ n. Since Bρ/2(x1), . . . , Bρ/2(xn) are disjoint and contained in B3ρ(y)
and since y, x1, . . . , xn ∈ Mn, the previous discussion implies that n ≤ v(n, k, 6ρ)/v(n, k, ρ/2). As also
{i : y ∈ Bρ(xi)} ⊂ {i : y ∈ B2ρ(xi)}, the proof of item (iii) is concluded.

We can now deduce a lower bound on the concentration of the mass of a finite perimeter set. The
following result is a simpler version of [64, Lemma 2.5].

Lemma 4.5 (Local mass lower bound). Let k ∈ R and let (Mn, g) be a complete Riemannian manifold
such that Ric ≥ (n−1)k. Assume that (Mn, g) is noncollapsed with vol(B1(q)) ≥ v0 > 0 for any q ∈Mn.
Then there exists a constant Cn,k,v0 > 0 such that for any nonempty bounded finite perimeter set E there
exists p0 ∈Mn such that

vol(E ∩B1(p0)) ≥ min

{
Cn,k,v0

vol(E)n

P (E)n
,
v0

2

}
.

Proof. Without loss of generality we can assume that k ≤ 0. We distinguish two possible cases. If there
is p0 ∈ Mn such that vol(E ∩ B1(p0)) ≥ 1

2 vol(B1(p0)), then clearly vol(E ∩ B1(p0)) ≥ v0/2 and we
already have a lower bound. So suppose instead that

vol(E ∩B1(p)) <
1

2
vol(B1(p)) ∀ p ∈M. (4.2)

We apply Lemma 4.4 with ρ = 1, which yields a covering {B1(xi)}i∈N. Since E is bounded, there is i0
such that

L := sup
i∈N

vol(E ∩B1(xi))
1
n = vol(E ∩B1(xi0))

1
n .

By (4.2) we can apply the relative isoperimetric inequality in balls contained in [51, Corollaire 1.2]. This
immediately gives that

vol(E ∩B1(p))
n−1
n ≤ cHn−1(∂∗E ∩B1(p)) ∀ p ∈M, (4.3)
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where c = c(n, k, v0). Therefore, using (4.3) and item (iii) in Lemma 4.4 we can estimate

vol(E) ≤
∑
i

vol(E ∩B1(xi)) =
∑
i

vol(E ∩B1(xi))
1
n vol(E ∩B1(xi))

n−1
n

≤ L
∑
i

cHn−1(∂∗E ∩B1(xi)) ≤ Lc
v(n, k, 6)

v(n, k, 1/2)
P (E),

that is

vol(E ∩B1(xi0)) = Ln ≥ Cn,k,v0
vol(E)n

P (E)n
,

where Cn,k,v0 := (v(n, k, 1/2)/(c v(n, k, 6)))n.

4.2 Asymptotic mass decomposition

We are now ready to prove the following key result that has to be read as a generalization of [64, Theorem
2]. Indeed, roughly speaking, we are going to prove that whenever a complete noncompact noncollapsed
Riemannian manifold with a lower bound on Ric is given, then the diverging part Ωd

i of any perimeter-
minimizing sequence, see Theorem 4.1, can be splitted in different sets that convergence, in volume and
perimeter, to isoperimetric regions in some pmGH limits at infinity.

We thus recover, in the weaker setting of Gromov–Hausdorff convergence, the statement of [64,
Theorem 2], except from the precise bound on the number of regions that go to infinity contained in [64,
item (X) of Theorem 2], without asking anything a priori on the geometry at infinity of the manifold.
For the proof we are inspired by the strategies of [64], even though our reasoning is somewhat different
as it heavily exploits the results from the nonsmooth theory discussed in Section 2.2.

Theorem 4.6 (Asymptotic mass decomposition). Let k ∈ R and let (Mn, g) be a complete noncompact
Riemannian manifold such that Ric ≥ (n− 1)k. Assume that (Mn, g) is noncollapsed with vol(B1(q)) ≥
v0 > 0 for any q ∈Mn.

Let {Ωi}i∈N be a minimizing (for the perimeter) sequence of finite perimeter sets of volume V > 0,
assume that Ωi is bounded for any i, and let Ωc

i ,Ω
d
i be as in Theorem 4.1.

If limi vol(Ωd
i ) = W > 0, then, up to subsequence, there exist an increasing sequence of natural

numbers Ni ≥ 1, a sequence of points pi,j ∈ Mn for j = 1, . . . , Ni, a sequence of radii Ti,j ≥ 1 for
j = 1, . . . , Ni verifying the following properties.

(i) Letting N := limiNi ∈ N ∪ {+∞}, we have

lim
i
d(pi,j , q) = +∞ ∀ q ∈M, ∀ j < N + 1,

lim
i
d(pi,j , pi,k) = +∞ ∀ j 6= k < N + 1,

BTi,j (pi,j) ∩BTi,k(pi,k) = ∅ ∀ i ∈ N,∀ j 6= k ≤ Ni,

j 6= N, k 6= N,

lim
i
Ti,j = Tj < +∞ ∀ j < N,

if also N < +∞, then lim
i
Ti,N = +∞ and

∂BTi,N (pi,N ) ∩ ∂BTi,j (pi,j) = ∅ ∀ i : Ni = N,∀ j < N.

(4.4)

(ii) Denoting Gi := BTi,N (pi,N ) ∩Ωd
i \
⋃N−1
j=1 BTi,j (pi,j) if N < +∞ and i is such that Ni = N , it holds

that

lim
i
P (Ωd

i ) =

{
limi P (Gi) +

∑N−1
j=1 P (Ωd

i ∩BTi,j (pi,j)) if N < +∞,
limi

∑Ni
j=1 P (Ωd

i ∩BTi,j (pi,j)) if N = +∞,
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(iii) For any j < N + 1 there exists an RCD((n− 1)k, n) space, points pj ∈ Xj and Borel sets Zj ⊂ Xj

such that

(Mn, d, vol, pi,j) −→
i

(Xj , dj ,mj , pj) in the pmGH sense for any j,

Ωd
i ∩BTi,j (pi,j) −→

i
Zj ⊂ Xj in the L1-strong sense for any j < N,

vol(Ωd
i ∩BTi,j (pi,j)) −→

i
mj(Zj) ∀ j < N

lim
i
P (Ωd

i ∩BTi,j (pi,j)) = PXj (Zj) ∀ j < N,

(4.5)

and if N < +∞ then

Gi −→
i
ZN ⊂ XN in the L1-strong sense,

vol(Gi) −→
i
mN (ZN ),

lim
i
P (Gi) = PXN (ZN ),

(4.6)

where PXj is the perimeter functional on (Xj , dj ,mj), and Zj is an isoperimetric region in Xj

for any j < N + 1. Moreover, the measures mj’s are the Hausdorff measures with respect to the
distance on the corresponding spaces for any j < N + 1.

(iv) It holds that

I(V ) = P (Ω) +
N∑
j=1

PXj (Zj), V = vol(Ω) +
N∑
j=1

mj(Zj), (4.7)

where Ω = limi Ωc
i is as in Theorem 4.1. In particular

lim
i
P (Ωd

i ) =

N∑
j=1

PXj (Zj), W =

N∑
j=1

mj(Zj). (4.8)

Let us mention the following useful consequence.

Remark 4.7. From Theorem 4.6 we deduce that if (Mn, g) is noncollapsed with Ric ≥ (n − 1)k, then
I(V ) > 0 for any V > 0.

Indeed, fix V > 0 and consider a perimeter-minimizing sequence of bounded sets Ωi of volume V ,
so that we can apply Theorem 4.6. Both on M and on any pmGH-limit Xj that may appear in (iii) in
Theorem 4.6 there holds a weak local Poincaré inequality on balls, with constant depending only on the
radius of the chosen ball and on the lower bound k assumed on the Ricci curvature, see [69, Theorem 1].
As such inequality implies by approximation a relative isoperimetric inequality, we deduce that any set
of finite perimeter with finite positive measure must have strictly positive perimeter. Therefore the first
identity in (4.7) implies that I(V ) > 0.

We now prove the asymptotic mass decomposition theorem.

Proof of Theorem 4.6. We divide the proof in several steps.

Step 1. Up to passing to a subsequence in i, we claim that for any i there exist an increasing sequence of
natural numbers Ni ≥ 1 with limit N := limiNi ∈ N∪{+∞}, points pi,1, . . . , pi,Ni ∈Mn for any i,
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radii Rj ≥ 1 and numbers ηj ∈ (0, 1] defined for j < N , and, if N < +∞, also a sequence of radii
Ri,N ≥ 1, such that

lim
i
d(pi,j , q) = +∞ ∀ q ∈M, ∀ j < N + 1,

lim
i
d(pi,j , pi,k) = +∞ ∀ j 6= k < N + 1,

d(pi,j , pi,k) ≥ Rj +Rk + 2 ∀ i ∈ N, ∀ j 6= k ≤ Ni,

j 6= N, k 6= N,

∃ lim
i

vol(Ωd
i ∩BRj (pi,j)) = w′j > 0 ∀ j < N,

Hn−1(∂∗Ωd
i ∩ ∂BRj (pi,j)) = 0 ∀ i,∀ j ≤ Ni, j 6= N,

Hn−1(Ωd
i ∩ ∂BRj (pi,j)) ≤

ηj
2j

∀ i,∀ j ≤ Ni, j 6= N,

if also N = +∞, then W ≥ lim
i

Ni∑
j=1

vol(Ωd
i ∩BRj (pi,j)) ∀ i,

if instead N < +∞, then lim
i
Ri,N = +∞,

Hn−1(∂∗Ωd
i ∩ ∂BRi,N (pi,N )) = 0 ∀ i : Ni = N,

Hn−1(Ωd
i ∩ ∂BRi,N (pi,N )) ≤ 1

2N
∀ i : Ni = N,

d
(
∂BRi,N (pi,N ), ∂BRj (pi,j)

)
> 2 ∀ i : Ni = N,∀ j 6= N,

W = lim
i

vol

BRi,N (pi,N ) ∩

Ωd
i \

N−1⋃
j=1

BRj (pi,j)

+
N−1∑
j=1

vol(Ωd
i ∩BRj (pi,j)).

(4.9)

We first briefly explain how the proof of this step proceeds. We are going to produce the claimed
points and radii by induction, with respect to j, applying Lemma 4.3. We will prove that each
time we apply Lemma 4.3 on some set during the proof of this step, we will never end up in Item 1.
As a first step, we shall apply Lemma 4.3 on Ei = Ωd

i . If Item 2 occurs, then we will show that
N = 1 = Ni for any i; indeed, Item 2 yields a sequence of points pi,1 and a diverging sequence
of radii Ri,1 such that all the mass W eventually concentrates in the sequence of balls BRi,1(pi,1).

Moreover pi,1 diverges at infinity (as Ωd
i does), we do not construct other sequences of points, and

all the identities in (4.9) can be realized by appropriately choosing Ri,1. If instead Item 3 occurs,
then Item 3 yields the first sequence of points pi,1 and a radius R1 such that a certain amount
w′1 > 0 of mass eventually concentrates in the balls BR1(pi,1). Moreover points pi,1 diverge at
infinity. Now, in this case, we will iterate the construction by applying Lemma 4.3 to the sequence
Ωd
i \ BR1(pi,1). As anticipated, we will see that Item 1 does not occur. If Item 2 occurs, then for

large i we find a second sequence of points pi,2 and diverging radii Ri,2 such that all the remaining
mass eventually concentrates in the sequence of balls BRi,2(pi,2). In this case N = 2 = Ni for
those i such that pi,2 are defined. Moreover, the accurate choice of the radii eventually realizes
the relations in (4.9). If instead Item 3 occurs again, then Item 3 yields a second sequence of
points pi,2 defined for large i and a radius R2 such that a new amount w′2 > 0 of mass eventually
concentrates in the balls BR2(pi,2). Also the radius R2 can be chosen so that, in relation to the
already constructed balls BR1(pi,1), the identities in (4.9) will be eventually satisfied. In this latter
case we iterate the construction again by applying Lemma 4.3 on Ωd

i \ ∪2
j=1BRj (pi,j) and so on.

Each time we apply Lemma 4.3, we make sure that the newly constructed sequences of points and
radii satisfy the relations prescribed in (4.9) in relation to the already defined sequences of balls. As
described above, if Item 2 occurs at some iteration, then the construction stops and N equals the
number of times the iterations occurred. If instead each application of Lemma 4.3 leads to Item 3,
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then N = +∞, the construction is iterated infinitely many times, and we end up with countably
many sequences of points pi,j and radii Rj . These sequences will eventually satisfy (4.9) because
at any iteration the new sequences of points and the new radii are “coherent” with the previously
constructed, i.e., they satisfy the relations in (4.9) in relation to the already constructed balls.

Observe that, for given j ∈ N, the first index i such that pi,j is defined (if it exists) depends
on choosing a large index given by Lemma 4.3 depending on a chosen threshold ε; therefore the
sequence Ni is inductively constructed together with the appearance of the sequences pi,j , Rj .

Now, we can move to the proof. As the first step (j = 1), we apply Lemma 4.3 on Ei = Ωd
i . Since

W > 0 and, from item (i) of Theorem 4.1 there exists a constant C1 > 0 such that P (Ωd
i ) ≤ C1,

Lemma 4.5 implies that Item 1 in Lemma 4.3 does not occur. Indeed by Lemma 4.5 we find a
sequence qi ∈Mn such that

vol(Ωd
i ∩B1(qi)) ≥ min

{
Cn,k,v0
Cn1

(
W

2

)n
,
v0

2

}
,

for any large i such that vol(Ωd
i ) ≥ W/2. Such an estimate would contradict the occurrence of

Item 1.

So suppose that Item 3 in Lemma 4.3 occurs. Then denote by w1 := w ∈ (0,W ) the number given
by Item 3. Then take

α1 := min

{
Cn,k,v0
C
n

(
W − w1

2

)n
,
v0

2

}
, ε1 <

1

3

η1

22
:=

1

3

1

22
min

{
1, α1,

w1

2

}
,

where Cn,k,v0 is as in Lemma 4.5 and C := C1 + 2 ≥ P (Ωd
i ) + 2 for any i. Hence let pi,1, R

∗
1 ≥ 1

be given by Item 3 applied with ε = ε1. Take R1 ≥ R∗1 such that ∂BR1(pi,1) is Lipschitz and
Hn−1(∂∗Ωd

i ∩ ∂BR1(pi,1)) = 0 for any i. Moreover, up to subsequence, we have that there exists
limi vol(Ωd

i ∩ BR1(pi,1)) =: w′1 ∈ (0,W ). Also, since Ωd
i ∩ C = ∅ definitely for any compact set C,

then d(pi,1, q)→ +∞ for any fixed q ∈Mn.
Finally, by Item 3 and since Ωd

i is bounded, there is a sequence of open sets V 1
i such that

d(BR1(pi,1), V 1
i )→ +∞ and

vol(Ωd
i )− vol(Ωd

i ∩BR1(pi,1))− vol(Ωd
i ∩ V 1

i ) < 3ε1 < η1/2
2, (4.10)

for i sufficiently large. So, for large i, by the coarea formula we can estimate

η1

22
>

ˆ d(pi,1,V
1
i )

R1

Hn−1(Ωd
i ∩ ∂Bt(pi,1)) dt >

ˆ R1+1

R1

Hn−1(Ωd
i ∩ ∂Bt(pi,1)) dt.

Therefore, up to taking a new radius in (R1, R1 + 1), still denoted by R1, we can further ensure
that

Hn−1(Ωd
i ∩ ∂BR1(pi,1)) ≤ η1

2
.

If instead Item 2 in Lemma 4.3 occurs, then we take N = 1 = Ni for any i as Item 2 yields
sequences pi,1, Ri,1 such that vol(Ωd

i ∩BRi,1(pi,1)) ≥ W − 1/i, up to subsequence. Indeed, arguing
as above, also in this case we can ensure all the remaining properties in (4.9) and we can also take
Ri,1 → +∞ as i→ +∞.

So we have seen that in case for j = 1 the alternative in Item 3 occurs, the construction must be
iterated. We now show the inductive construction only for the step j = 2, the passage j ⇒ j + 1
being completely analogous. For j = 2 we now apply Lemma 4.3 on Ei = Ωd

i \ BR1(pi,1). Again,
since vol(Ωd

i \BR1(pi,1))→W−w′1 > 0, Item 1 in Lemma 4.3 does not occur because of Lemma 4.5.
Indeed, just like we did for j = 1, a positive lower bound on the volume and the finite upper bound
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on the perimeter given by P (Ωd
i \BR1(pi,1)) ≤ P (Ωd

i )+Hn−1(Ωd
i ∩∂BR1(pi,1)) ≤ P (Ωd

i )+η1/2 ≤ C
imply that Item 1 would contradict Lemma 4.5.

So if Item 3 in Lemma 4.3 occurs, then denote by w2 := w ∈ (0,W − w′1) the number given by
Item 3. In this case we take

α2 := min

{
Cn,k,v0
C
n

(
W − w′1 − w2

2

)n
,
v0

2

}
, ε2 <

1

3

η2

23
:=

1

3

1

23
min

{
1, α2,

w2

2

}
,

Hence Item 3 gives sequences pi,2, R
∗
2 ≥ 1. As before, let R2 ≥ R∗2 such that, up to passing to a

subsequence, we have that ∂BR2(pi,2) is Lipschitz, Hn−1(∂∗Ωd
i ∩ ∂BR2(pi,2)) = 0 for any i, there

exists limi vol(
(
Ωd
i \BR1(pi,1)

)
∩ BR2(pi,2)) = w′2 > 0, and we have that d(pi,2, q) → +∞ for any

q ∈Mn. Moreover, the use of the coarea formula as done above now yields

Hn−1(
(

Ωd
i \BR1(pi,1)

)
∩ ∂BR2(pi,2)) ≤ η2

22
.

We now show that d(pi,1, pi,2) → +∞, and then, up to subsequence, we can also assume that
d(pi,1, pi,2) ≥ R1 + R2 + 2 for any i such that pi,2 is defined. Indeed, if lim supi d(pi,1, pi,2) is
bounded, then

vol(
(

Ωd
i \BR1(pi,1)

)
∩BR2(pi,2)) ≤ vol(Ωd

i \
(
BR1(pi,1) ∪ V 1

i

)
) ≤ η1

22
,

for large i.

On the other hand we know that, for large i, vol(Ωd
i \BR1(pi,1)) ≥ W − w′1 + o(1) ≥ (W − w1)/2,

and P (Ωd
i \BR1(pi,1)) ≤ C, for large i. Therefore, using the characterization of pi,2 in Item 3 and

applying Lemma 4.5 on Ωd
i \BR1(pi,1), we get for some qi ∈Mn that

η1

22
≥ vol(

(
Ωd
i \BR1(pi,1)

)
∩BR2(pi,2)) ≥ vol(

(
Ωd
i \BR1(pi,1)

)
∩BR∗2(pi,2))

≥ vol(
(

Ωd
i \BR1(pi,1)

)
∩BR∗2(qi)) ≥ vol(

(
Ωd
i \BR1(pi,1)

)
∩B1(qi))

≥ min

{
Cn,k,v0

vol(Ωd
i \BR1(pi,1))n

P (Ωd
i \BR1(pi,1))n

,
v0

2

}
≥ α1,

for large i. But since η1 ≤ α1, the above inequality yields a contradiction.
Now since d(pi,1, pi,2)→i +∞, the above identities simplify into

w′2 = lim
i

vol(Ωi ∩BR2(pi,2)), Hn−1(Ωd
i ∩ ∂BR2(pi,2)) ≤ η2

22
,

up to passing to a subsequence; also, by Item 3, analogously as in (4.10) we obtain

vol(Ωd
i )− vol(Ωd

i ∩BR1(pi,1))− vol(Ωd
i ∩BR2(pi,2))− vol(

(
Ωd
i \BR1(pi,1)

)
∩ V 2

i )

= vol(Ωd
i \BR1(pi,1))− vol((Ωd

i \BR1(pi,1)) ∩BR2(pi,2))− vol(
(

Ωd
i \BR1(pi,1)

)
∩ V 2

i )

≤ 3ε2 =
η2

23
,

for any large i such that pi,2 is defined, for a sequence of bounded open sets V 2
i such that

d(pi,2, V
2
i ) → +∞. At this point, the new sequence pi,2 and the radii R2 satisfy the conditions

prescribed in (4.9) in relation to the already constructed sequence of balls BR1(pi,1).

Finally, if instead Item 2 in Lemma 4.3 occurs for j = 2, then Item 2 yields sequences pi,2, Ri,2 ≥ 1
such that vol(BRi,2(pi,2) ∩

(
Ωd
i \BR1(pi,1)

)
) ≥ W − w′1 − 1/i, up to subsequence for large i. Since

Item 2 also gives r ≥ 1 such that vol(Br(pi,2) ∩
(
Ωd
i \BR1(pi,1)

)
) ≥ vol(Br(q) ∩

(
Ωd
i \BR1(pi,1)

)
)
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for any q ∈ Mn, arguing as above one easily gets that d(pi,1, pi,2) → +∞. Hence N = 2 = Ni

for large i. Moreover, arguing as in the above step j = 1, also in this case we can ensure all
the remaining properties in (4.9), we can also take Ri,2 → +∞ as i → +∞, and assume that
d(∂BRi,2(pi,2), ∂BR1(pi,1)) > 2 for large i.

Now if for j = 2 Item 3 occurs, one needs to continue the construction for j = 3. Now one applies
Lemma 4.3 on Ei = Ωd

i \ (BR1(pi,1) ∪ BR2(pi,2)). Once again Item 1 cannot occur, because of
Lemma 4.5 and since vol(Ωd

i \ (BR1(pi,1)∪BR2(pi,2)))→W −w′1−w′2 > 0. Then it can be checked
that the construction inductively proceeds depending on whether Item 2 or Item 3 occurs for j = 3
as discussed above for j = 2. Eventually one gets the desired sequences Ni, pi,j , Rj , ηj as claimed
in (4.9).

Step 2. We claim that if N = +∞ then

W = lim
i

Ni∑
j=1

vol(Ωd
i ∩BRj (pi,j)). (4.11)

Moreover, we claim that, up to passing to a subsequence in i, there exist sequences of radii {Ti,j}i∈N
such that Ti,j ∈ (Rj , Rj + 1) for any j < N , and Ti,N ∈ (Ri,N , Ri,N + 1) if N < +∞, such that
(4.4) holds and

lim
i

Ni∑
j=1

Hn−1(Ωd
i ∩ ∂BTi,j (pi,j)) = 0. (4.12)

Assume first that N = +∞. We observe that, up to passing to a subsequence in i, we have

W ≥ lim
i

Ni∑
j=1

vol(Ωd
i ∩BRj (pi,j)) ≥

M∑
j=1

w′j ,

for any M ∈ N, and then W ≥
∑+∞

j=1 w
′
j . Suppose by contradiction that W > limi

∑Ni
j=1 vol(Ωd

i ∩
BRj (pi,j)), and define

Ω̃v
i := Ωd

i \
Ni⋃
j=1

BRj (pi,j).

By the absurd hypothesis, up to passing to a subsequence, we have that limi vol(Ω̃v
i ) = ω > 0 and,

by (4.9), we estimate

P (Ω̃v
i ) ≤ P (Ωd

i ) +

Ni∑
j=1

Hn−1(Ωd
i ∩ ∂BRj (pi,j)) ≤ C.

On the other hand, applying Lemma 4.5 on Ω̃v
i yields

vol(Ω̃v
i ∩B1(qi)) ≥ min

{
Cn,k,v0

vol(Ω̃v
i )
n

P (Ω̃v
i )
n
,
v0

2

}
≥ min

{
Cn,k,v0

(ω/2)n

C
n ,

v0

2

}
=: Cω,
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for some qi ∈Mn, for large i. Hence for large i and for any fixed j0 ≤ Ni we then have

Cω ≤ vol(Ω̃v
i ∩B1(qi)) ≤ vol

B1(qi) ∩ Ωd
i \

j0−1⋃
j=1

BRj (pi,j)


≤ vol

BR∗j0 (qi) ∩ Ωd
i \

j0−1⋃
j=1

BRj (pi,j)


≤ vol

BR∗j0 (pi,j0) ∩ Ωd
i \

j0−1⋃
j=1

BRj (pi,j)


≤ vol(Ωd

i ∩BRj0 (pi,j0)),

where R∗j0 ≤ Rj0 was determined by the application of Item 3 in the Step 1. Since Ni → +∞, then

from the estimate above we would get +∞ =
∑+∞

j=1 w
′
j ≤ W , that gives a contradiction. Hence

(4.11) is proved.

Now we prove (4.12). Assume first that N = +∞. Then in the above notation, using (4.9), in
particular the fact that d(pi,j , pi,k) ≥ Rj +Rk + 2, and the coarea formula, we estimate

vol(Ω̃v
i ) ≥

Ni∑
j=1

ˆ Rj+1

Rj

Hn−1(Ωd
i ∩ ∂Bt(pi,j)) dt ≥ 1

2

Ni∑
j=1

Hn−1(Ωd
i ∩ ∂BTi,j (pi,j)), (4.13)

for some Ti,j ∈ (Rj , Rj + 1) for any j. Up to subsequence (in i) we have that Ti,j → Tj for any j,

and since vol(Ω̃v
i ) → 0 by (4.11), then (4.12) follows together with the properties stated in (4.4).

If instead N < +∞, since

d
(
∂BRi,N (pi,N ), ∂BRj (pi,j)

)
> 2 ∀ i : Ni = N,∀ j < N,

by (4.9), letting now Ω̂v
i := Ωd

i \
(⋃N−1

j=1 BRj (pi,j) ∪BRi,N (pi,N )
)

, as vol(Ω̂v
i ) → 0 by the last line

in (4.9), we can perform an analogous estimate as in (4.13), therefore getting the desired Ti,j for
any j ≤ N satisfying (4.12). Hence (4.4) holds also in this case.

Step 3. We claim that letting Ωv
i := Ωd

i \
⋃Ni
j=1

(
Ωd
i ∩BTi,j (pi,j)

)
, then

lim
i

vol(Ωv
i ) = 0, (4.14)

and that, if N = +∞, then

W = lim
i

Ni∑
j=1

vol(Ωd
i ∩BTi,j (pi,j)) =

+∞∑
j=1

lim
i

vol(Ωd
i ∩BTi,j (pi,j)). (4.15)

Since Ti,j ≥ Rj for any j < N , we have that, if N = +∞, then Ωv
i ⊂ Ω̃v

i , while if N < +∞, then

analogously Ωv
i ⊂ Ω̂v

i . Hence in any case (4.14) follows from (4.11), if N = +∞, or from the last
line in (4.9), if N < +∞.

Now suppose that N = +∞. Since Ti,j ≥ Rj for any j, by (4.11) we see that

W = lim
i

Ni∑
j=1

vol(Ωd
i ∩BRj (pi,j)) ≤ lim

i

Ni∑
j=1

vol(Ωd
i ∩BTi,j (pi,j)) ≤W.
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Up to subsequence, denote ωj := limi vol(Ωd
i ∩BTi,j (pi,j)) for any j. By the above identity, we see

that W ≥
∑+∞

j=1 ωj , and then limj ωj = 0. In order to prove the second part of (4.15), suppose by

contradiction that
∑+∞

j=1 ωj = Y < W . We argue as before considering

C∗ := min

{
Cn,k,v0
C
n

(
W − Y

2

)n
,
v0

2

}
.

Let j∗ be such that ωj < C∗ for any j ≥ j∗. From now on consider j > j∗. We clearly have

vol

(
Ωd
i \

j−1⋃
k=1

BRk(pi,k)

)
≥ W − Y

2
,

for any large i. Moreover

P

(
Ωd
i \

j−1⋃
k=1

BRk(pi,k)

)
≤ P (Ωd

i ) +

j−1∑
k=1

Hn−1(Ωd
i ∩ ∂BRk(pi,k)) ≤ C,

by (4.9). On the other hand, applying Lemma 4.5 on Ωd
i \
⋃j−1
k=1BRk(pi,k) yields the existence of

qi ∈Mn such that

vol

(
B1(qi) ∩ Ωd

i \
j−1⋃
k=1

BRk(pi,k)

)
≥ C∗,

for any large i. As pi,j is obtained by applying Item 3 on Ωd
i \
⋃j−1
k=1BRk(pi,k) and all the produced

balls are disjoint, this implies that

vol(Ωd
i ∩BRj (pi,j)) ≥ C∗,

for any j > j∗ and any i large. Hence ωj ≥ C∗ for any j > j∗, and
∑+∞

j=1 ωj = +∞, yielding a
contradiction.

Step 4. We claim that
lim
i
P (Ωv

i ) = 0, (4.16)

and, denoting Gi := BTi,N (pi,N ) ∩ Ωd
i \
⋃N−1
j=1 BTi,j (pi,j) if N < +∞, that

lim
i
P (Ωd

i ) =

{
limi

(
P (Gi) +

∑N−1
j=1 P (Ωd

i ∩BTi,j (pi,j))
)

N < +∞,
limi

∑Ni
j=1 P (Ωd

i ∩BTi,j (pi,j)) N = +∞,
(4.17)

We also claim that item (iii) of the statement holds.

In order to prove (4.16), we assume without loss of generality that vol(Ωv
i ) > 0. We assume first

that N = +∞. By (4.12) we have that

lim
i
P (Ωd

i ) = lim
i

P (Ωv
i ) +

Ni∑
j=1

P (Ωd
i ∩BTi,j (pi,j))

 . (4.18)

If, by contradiction, limi P (Ωv
i ) > 0, then we consider the new sequence

Fi = Ωc
i ∪Bρi(qi) ∪

Ni⋃
j=1

Ωd
i ∩BTi,j (pi,j),
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where Bρi(qi) is a ball such that vol(Bρi(qi)) = vol(Ωv
i ) and Bρi(qi) ∩ Ωi = ∅. Observe that such

a ball exists since Ωi is bounded and vol(Ωv
i ) → 0 by (4.14), hence ρi < 1 for large i. Actually

ρi → 0, indeed Theorem A.1 implies that

vol(Br(q)) ≥ v(n, k, r)
vol(B1(q))

v(n, k, 1)
≥ v0

v(n, k, 1)
v(n, k, r),

for any r ∈ (0, 1). Hence v(n, k, ρi) → 0 and hence ρi → 0. Moreover by Theorem A.1 (together
with Remark 2.13) we have

P (Bρi(qi)) ≤ s(n, k, ρi) −→
i

0. (4.19)

Now observe that by Theorem 4.1 we have that

lim
i
P (Ωi) = lim

i

(
P (Ωc

i ) + P (Ωd
i )
)

= lim
i
P (Ωi) + 2Hn−1(∂Bri(o) ∩ Ωi),

and thus limiHn−1(∂Bri(o) ∩ Ωi) = 0. Hence by definition of Fi we can write

P (Fi) = Hn−1(Σi) + P (Ωc
i ) + P (Bρi(qi)) +

Ni∑
j=1

P (Ωd
i ∩BTi,j (pi,j)),

where Σi ⊂ ∂Bri(o) ∩ Ωi, and thus limiHn−1(Σi) = 0. Therefore, by (4.18), (4.19), and since
vol(Fi) = V , the absurd hypothesis implies

I(V ) = lim
i

(
P (Ωc

i ) + P (Ωd
i )
)
> lim

i
P (Fi) ≥ I(V ),

that is a contradiction. Employing the same argument, it is immediate to check that a similar
reasoning implies that (4.16) holds even in case N < +∞. Indeed (4.18) still holds, Ωd

i is bounded
by assumption, and then the suitable new definition of Fi leads to the same conclusion.

So if N < +∞, we see that (4.16) and (4.12) imply the first line in (4.17). If instead N = +∞,
then (4.16) and (4.18) imply the second line in (4.17).

It remains to prove the claims in item (iii). By Remark 2.10, up to passing to a subsequence in
i and by a diagonal argument, we immediately have that for any j < N + 1 there exist a Ricci
limit space (Xj , dj ,mj), where mj is the n-dimensional Hausdorff measure in Xj , which is thus an
RCD((n− 1)k, n) space, and points pj ∈ Xj such that

(Mn, d, vol, pi,j) −→
i

(Xj , dj ,mj , pj) in the pmGH sense for any j < N + 1.

Let us deal with the case N = +∞ first.

Recalling for example from (4.17) that P (Ωd
i ∩ BTi,j (pi,j)) is uniformly bounded with respect to

i for any j < N , we can directly apply item (a) of Proposition 2.16 to get the convergence of
Ωd
i ∩BTi,j (pi,j) to some Zj ⊂ Xj in the L1-strong sense for any j < N . Moreover, again from item

(a) of Proposition 2.16, we get that lim infi P (Ωd
i ∩BTi,j (pi,j)) ≥ PXj (Zj) for every j < N .

We now check that Zj is isoperimetric for its own volume mj(Zj) in Xj for every j < N , and that

lim
i
P (Ωd

i ∩BTi,j (pi,j)) = PXj (Zj), (4.20)

for every j < N .

Since Mn is noncollapsed, by Theorem 2.9 one has that, for some v0 > 0, mj(B1(x)) ≥ v0 > 0
for any j and x ∈ Xj (see the argument at the beginning of the proof of Proposition 3.2). So,
by Lemma 2.17, we have that if by contradiction for some j < N it occurs that either Zj is not
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isoperimetric or lim supi P (Ωd
i ∩BTi,j (pi,j)) > PXj (Zj), there exists a bounded finite perimeter set

Wj ⊂ Xj such that mj(Wj) = mj(Zj) and, possibly passing to subsequences in i,

lim
i
P (Ωd

i ∩BTi,j (pi,j)) ≥ PXj (Wj) + η, (4.21)

for some η > 0.

By [63, Theorem 2] it is known that I is continuous, and thus there is ε0 > 0 such that

|I(V )− I(V − ε)| < η

2
, (4.22)

whenever |ε| < ε0.

Now by item (c) in Proposition 2.16, up to subsequence, there exists a sequence of sets Ei,j contained
in BL(pi,j) for some L > 0 such that Ei,j converges in L1-strong to Wj and limi P (Ei,j) = PXj (Wj).

Moreover by Theorem 4.1 we know that Ωc
i → Ω with P (Ωc

i ) → P (Ω), and Ω is an isoperimetric
region on (Mn, g). Hence Ω is bounded by Corollary 4.2. So for large i there is S > 0 such that
Ω b BS(o) b Bri(o), where ri is the sequence in Theorem 4.1, and defining Ω̃c

i := Ωc
i ∩ BS(o) we

have
vol(Ω̃c

i )→ vol(Ω), P (Ω̃c
i )→ P (Ω).

Therefore we can define a new sequence

Hi := Ω̃c
i ∪ Ei,j ∪

K⋃
`=1
`6=j

Ωd
i ∩BTi,`(pi,`),

where K > j is such that, by taking into account (4.15) and the fact that Ei,j converge in L1-strong
to Wj that satisfies mj(Wj) = mj(Zj) = limi vol(Ωd

i ∩BTi,j (pi,j)), we have that

lim
i

vol(Ω̃c
i ) + vol(Ei,j) +

K∑
`=1
`6=j

vol(Ωd
i ∩BTi,`(pi,`))

 = V − ε,

for some ε ∈ [0, ε0). Now since K is finite, the sets whose union defines Hi have diverging mutual
distance, and thus limi vol(Hi) = V − ε and

lim
i
P (Hi) = P (Ω) + PXj (Wj) + lim

i

K∑
`=1
` 6=j

P (Ωd
i ∩BTi,`(pi,`))

≤ P (Ω) + PXj (Wj) + lim
i

Ni∑
`=1
` 6=j

P (Ωd
i ∩BTi,`(pi,`))

= P (Ω) + PXj (Wj) + lim
i

(
P (Ωd

i )− P (Ωd
i ∩BTi,j (pi,j))

)
≤ I(V )− η,

where in the last two lines we used (4.17), Theorem 4.1, and (4.21). On the other hand limi P (Hi) ≥
lim infi I(V − εi) for some sequence εi → ε ∈ [0, ε0). Hence

I(V )− η ≥ lim inf
i

I(V − εi) = I(V − ε) ≥ I(V )− η

2
,
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by continuity of I and the choice of ε0 in (4.22), that yields a contradiction. Hence if N = +∞,
we completed the proof of item (iii).

Finally in case N < +∞, and for indices j < N the proof of (4.5) can be performed in the very
analogous way, exploiting the continuity of I. More precisely, also in this case the absurd hypothesis
consists in (4.21) and we can define Wj , Ei,j , and Ω̃c

i as before. Moreover, as the N -th generation
of points pi,N are determined in the Step 1 by the application of Item 2 in Lemma 4.3, for any
ε̄ > 0 we find L′ > 0 such that the newly defined sequence

Ĥi := Ω̃c
i ∪ Ei,j ∪ [Ωd

i ∩BL′(pi,N )] ∪
N−1⋃
`=1
`6=j

Ωd
i ∩BTi,`(pi,`)

satisfies vol(Ĥi) → V − ε̄. Up to choosing a larger finite L′, the previous calculations can be still
carried out, leading to the desired contradiction.

It only remains to prove (4.6) and that the resulting ZN is an isoperimetric region. Similarly as
above, since for example from (4.17) we know that P (Gi) is uniformly bounded, by item (b) of
Proposition 2.16, we have that, up to subsequence, Gi converges to a finite perimeter set ZN ⊂ XN

in L1
loc, that means that for every r > 0 it occurs that Gi∩Br(pi,N )→ ZN ∩Br(pN ) in L1-strong as

i→ +∞. Now since Ti,N ≥ Ri,N and pi,N , Ri,N are produced by Item 2 in Lemma 4.3, then for any
δ > 0 there is r > 0 such that vol(Gi \Br(pi,N )) < δ for any i. Hence it is immediate to deduce that

vol(Gi)→ mN (ZN ), and thus Gi → ZN in L1-strong. So now one can argue exactly as we did above
for j < N , and one shows that ZN is an isoperimetric region in XN and limi P (Gi) = PXN (ZN ).

Step 5. We claim that item (iv) holds.

Indeed we already know from (4.15) (and the last condition in (4.9) when N < +∞), and Theo-
rem 4.1 that

W =

N∑
j=1

mj(Zj), V = vol(Ω) +W.

Moreover from Theorem 4.1, (4.17), and item (iii) we also deduce

I(V ) = lim
i

(
P (Ωc

i ) + P (Ωd
i )
)
≥ P (Ω) +

N∑
j=1

PXj (Zj) = I(vol(Ω)) +

N∑
j=1

IXj (m(Zj)).

On the other hand, we are exactly in the hypotheses for applying (3.8), that yields

I(V ) ≤ I(vol(Ω)) +
N∑
j=1

IXj (m(Zj)).

Hence equality holds, and this completes the proof of (4.7).

4.3 Counterexamples and optimality of the assumptions

In this part we construct examples of a submanifolds (M2, g) of R3 that are either collapsed with sectional
curvature bounded below, or noncollapsed with Ricci unbounded below. Moreover, in such manifolds for
any v > 0 there exist perimeter-minimizing sequences Ei of volume vol(Ei) = v for any i such that

lim
i

sup
p∈M

vol(Ei ∩BR(p)) = 0 (4.23)
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for any R > 0. The occurrence of (4.23) exactly means that Item 1 in Lemma 4.3 happens. It follows
that the strategy of the proof of Theorem 4.6, which is based on the iteration of Item 3 or Item 2 in
Lemma 4.3, together with the explicit estimate in Lemma 4.5 and Corollary 4.2, is no longer applicable
as long as one of the two hypotheses of Theorem 4.6 does not hold, namely noncollapsedness or Ricci
bounded below. The occurrence of (4.23), in fact, implies that no subset of Ei can converge in L1

loc to a
nonempty limit set contained in some asymptotic GH-limit of the manifold.

First, we construct a submanifold (M2, g) of R3 that is collapsed, has sectional curvature bounded
below, and such that (4.23) occurs for a perimeter-minimizing sequence of volume 1. The remaining
desired examples are then constructed following the same lines and are described at the end of the
section.

Denoting by (x, y, z) the standard coordinates in R3, we consider the plane Π := {x = 0}. Define by
induction numbers zij for any i ≥ 1 and j = 1, . . . , i by setting

z1
1 = 0,

zi1 = zi−1
i−1 + i ∀ i ≥ 2,

zij+1 = zij + i ∀ i ≥ 2, j = 1, . . . , i− 1.

(4.24)

Let h : [2,+∞)→ R be the function h(x) := 1/x2, and let Σ be the surface of revolution defined by h by
the rotation about the x-axis. For any i ≥ 1 and j = 1, . . . , i, it is possible to glue to Π a translated copy
of Σ so that the rotation axis of the surface coincide with {y = 0, z = zij} and the resulting surface has

sectional curvature ≥ k for some k ∈ (−∞, 0]. For any such i, j, we denote by Σi
j the translated copy of

Σ. We are going to modify the profile function of each Σi
j on some set {x ≥ xij}, yielding new surfaces

of revolution denoted by E ij , without lowering too much the sectional curvature. This will complete the

construction of the desired surface M . In the end, we want the surfaces E ij to satisfy

i) vol(E ij ∩ {x ≥ xij}) = 1/i for any i ≥ 1 and any j = 1, . . . , i;

ii) P (E ij ∩ {x ≥ xij}) ≤ 1/2i for any i ≥ 1 and any j = 1, . . . , i.

So let i, j ≤ i be fixed. Take xij very large so that P (Σi
j ∩ {x ≥ xij}) ≤ 1/2i and vol(Σi

j ∩ {x ≥
xij}) < 1/4i. First modify the profile function h of Σi

j into hij as depicted in Fig. 1. More precisely, the

new function hij is smooth and such that: (hij)
(`)(xij + 1) = 0 for any `, |(hij)′′| ≤ 4|h′(xij)| = 8/(xij)

3 on

[xij , x
i
j + 1], |(hij)′′| ≤ 4|h′(xij + 2)| on [xij + 1, xij + 2], and hij = Cij/x

2 for x ≥ xij + 2. Since the sectional

curvature of a revolution surface with profile function H(x) is given by −H ′′/[H(1 + (H ′)2)2], using that
hij ≥ h(xij + 1) on [xij , x

i
j + 1] and that hij ≥ Cij/(xij + 2)2 on [xij + 1, xij + 2], it is immediate to conclude

that the sectional curvature of the revolution surface given by hij is bounded below by some k ∈ (−∞, 0]

independent of i, j. Moreover, up to choosing a bigger xij , we can further ensure that the volume of the

revolution surface defined by hij is ≤ 1/2i. At this point it suffices to introduce a piece of round cylinder

to recover the missing volume, that is, we define the final profile function f ij for E ij by

f ij(x) =


hij(x) x ∈ [xij , x

i
j + 1],

hij(x
i
j + 1) x ∈ (xij + 1, xij + 1 + L],

hij(x− L) x ∈ (xij + 1 + L,+∞),

taking L > 0 so that vol(E ij ∩ {x ≥ xij}) = 1/i (see Fig. 1).
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hij

·
xij

·
xij + 1

·
xij + 2

f ij

·
xij + 1 + L

Figure 1: Qualitative picture of the functions hij and f ij .

We can now show the existence of the claimed minimizing sequence. Let Ei := ∪ij=1E ij ∩ {x > xij}.
By i) we have that vol(Ei) = 1 for any i, while ii) implies

P (Ei) ≤
i

2i
−−−−→
i→+∞

0.

Hence Ei is perimeter-minimizing for the volume 1, and I(M,g)(1) = 0. Finally the choices of zij imply
that, for any fixed R > 0, any ball BR(p) intersects at most one connected component of Ei for i large.
Hence we estimate

lim sup
i

sup
p∈M

vol(Ei ∩BR(p)) ≤ lim sup
i

max
j

vol(E ij ∩ {x > xij}) = lim
i

1

i
= 0,

and (4.23) follows.
In order to generalize the example to a manifold such that (4.23) occurs for some minimizing sequence

of any assigned volume one can perform the following additional construction. Denote by {v`}`∈N an
enumeration of Q ∩ (0,+∞). For any ` we can glue to the above constructed manifold a new sequence
of cuspidal ends adapted to the volume v`, just like done for the case of volume 1, but along some lines
{y = y`, x = 0} ⊂ Π with y`+1 > y`. This yields a final surface with sectional curvature bounded below
such that for any ` there is a perimeter-minimizing sequence {E`i }i∈N of volume v` such that (4.23)
occurs. Then for a given v > 0, a perimeter-minimizing sequence of volume v satisfying (4.23) is given
by E`ii ∪ Bri(o) for some v`i → v− and ri → 0 such that vol(E`ii ∪ Bri(o)) = v. Observe that on such a
manifold the isoperimetric profile identically vanishes (compare with Remark 4.7).

In order to get a noncollapsed surface such that for any v > 0 there exist perimeter-minimizing
sequences Ei of v such that (4.23) occurs, one can just replace the countably many sequences of cuspidal
ends of the previous example with bubbles connected to Π by means of shrinking catenoidal necks (clearly,
the sectional curvature tends to −∞ on such necks). In this way there occurs the same splitting of the
volume of a minimizing sequence in a sequence of bubbles instead of a sequence of cuspidal ends. Once
again, on such a manifold the isoperimetric profile identically vanishes (compare with Remark 4.7).

4.4 The existence theorem

The aim of this section is to exploit the previous result about the asymptotic mass decomposition to
obtain existence of isoperimetric regions for Riemannian manifolds with some GH-prescriptions at infinity,
completing the proof of Theorem 1.3.

When combined with a suitable asymptotic mass decomposition, the following result, due to Morgan–
Johnson [59, Theorem 3.5], constitutes the key for the existence, since it asserts that a geodesic ball lying
on a manifold with Ric ≥ (n − 1)k is isoperimetrically more convenient then the ball in the model of
curvature k (having the same volume). The centrality of this comparison in such context was already
pointed out in [55].
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Theorem 4.8. Let (Mn, g) be a complete Riemannian manifold such that Ric ≥ (n− 1)k on some open
set Ω ⊂Mn, for k ∈ R. Then

P (B) ≤ Pk(Bk(vol(B))), for every geodesic ball B ⊂ Ω,

where Bk(vol(B)) is a geodesic ball on the simply connected model of sectional curvature k and dimension
n having volume equal to vol(B).

Moreover, equality holds if and only if (B, g) is isometric to (Bk(vol(B)), gk), where gk is the metric
on the simply connected model of sectional curvature k and dimension n.

We can now state and prove our main existence result.

Theorem 4.9. Let k ∈ (−∞, 0] and let (Mn, g) be a complete noncompact Riemannian manifold such
that Ric ≥ (n− 1)k on M \ C, where C is compact.

Suppose that (Mn, g) is GH-asymptotic to the simply connected model of constant sectional curvature
k and dimension n.

Then for any V > 0 there exists an isoperimetric region of volume V on (Mn, g).

Proof. Since (Mn, g) is GH-asymptotic to the simply connected model of constant sectional curvature
k and dimension n, then (Mn, g) is noncollapsed. Indeed, if there is a sequence of balls B1(yi) with
limi vol(B1(yi)) = 0, then yi must diverge to infinity, hence by assumption (Mn, d, yi) converges in the
pGH-sense to the simply connected model of constant sectional curvature k and dimension n, which
we denote here by Mn

k , with its own geodesic distance and volume measure, and pointed at some fixed
o ∈Mn

k . Hence item (b) in Theorem 2.9 occurs, and thus n = dimH Mn
k ≤ n− 1, which is impossible.

By Remark 2.3, let Ωi ⊂Mn be a minimizing sequence (for the perimeter) of volume V > 0 such that
Ωi is bounded and smooth for any i. Let Ωc

i ,Ω
d
i be as in Theorem 4.1. If vol(Ωd

i ) → 0, then the set Ω
given by Theorem 4.1 is an isoperimetric region of the volume V and the proof ends. So suppose instead
that limi vol(Ωd

i ) = W > 0. Then we can apply Theorem 4.6. We employ the notation of Theorem 4.6.
By assumption and from Theorem 2.9, for any j < N + 1 the pmGH limit space (Xj , dj ,mj , pj) is Mn

k

with its own geodesic distance and volume measure, and pointed at some fixed o ∈Mn
k . Moreover, since

in Mn
k balls are isoperimetric regions for their own volume, we have that, for any j < N + 1,

Pk(Zj) ≥ Pk(Bk(volk(Zj))), (4.25)

where Bk(volk(Zj)) is a geodesic ball in Mn
k having volume equal to volk(Zj), while Pk is the perimeter

functional on Mn
k .

Now observe that for any compact set K ⊂Mn, we have that

sup {vol(Br(p)) : r > 0 and Br(p) bM \ K} = +∞. (4.26)

Indeed, suppose by contradiction the above supremum is bounded by a constant S < +∞. Take R > 0

such that volk(B
Mn
k

R (o)) > 10S, where B
Mn
k

R (o) is a ball of radius R and center o in Mn
k . Consider a

sequence of balls BR(xi) ⊂Mn of radius R with d(xi,K)→ +∞. Then, up to passing to a subsequence,
Theorem 2.9 and the absurd hypothesis imply that

S ≥ lim
i

vol(BR(xi)) > 10S,

that is impossible.
Hence (4.26), together with the continuity of the volume with respect to the radius of balls, imply

that, for any compact set K ⊂ Mn and any assigned finite volume v, we can find a ball of volume v
compactly contained in the end M \K. So let vj := volk(Zj) for j < N +1. Since Ω = limi Ωc

i is bounded
by Corollary 4.2, there is a first compact set K1 such that Ω ∪ C ⊂ K1. Then by (4.26) there is a ball
Br1(q1) b Mn \ K1 such that vol(Br1(q1)) = v1. Inductively, for any 2 ≤ j < N + 1 we find a compact
set Kj such that

Kj c Brj−1(qj−1) ∪ Kj−1,
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and balls Brj (qj) b Mn \ Kj having volume vol(Brj (qj)) = vj . Hence the balls {Brj (qj) : j < N + 1}
are pairwise located at positive distance and we can define the set

Ω̃ := Ω ∪
N⋃
j=1

Brj (qj).

By (4.7) we have that

vol(Ω̃) = vol(Ω) +

N∑
j=1

vol(Brj (qj)) = vol(Ω) +

N∑
j=1

vj = vol(Ω) +W = V.

Moreover, combining (4.7), (4.25), and Theorem 4.8, since all the constructed balls Brj (qj) are contained
in an open set of Mn on which Ric ≥ (n− 1)k, we obtain

I(V ) = P (Ω) +

N∑
j=1

Pk(Zj) ≥ P (Ω) +

N∑
j=1

Pk(Bk(volk(Zj)))

≥ P (Ω) +

N∑
j=1

P (Brj (qj)) = P (Ω̃).

(4.27)

Therefore Ω̃ is an isoperimetric region for the volume V .

Remark 4.10. We observe that a posterioriN is a finite natural number in N in the proof of Theorem 4.9.
Indeed, if N = +∞, then the countably many constructed balls Brj (qj) can be easily taken so that the

resulting Ω̃ is unbounded. But as Ω̃ turns out to be an isoperimetric region, it must be bounded by
Corollary 4.2.

5 Applications and examples

In this section we give effective conditions that imply the hypotheses of Theorem 4.9. We start by
recalling some definitions about convergence of manifolds. The following definition is taken from [67,
Section 11.3.2].

Definition 5.1 (C0-convergence of manifolds). Given (Mn, g, p) a pointed Riemannian manifold, and
{(Mn

i , gi, pi)}i∈N a sequence of pointed Riemannian manifolds, we say that (Mn
i , gi, pi) converge to

(Mn, g, p) in the C0-sense if for every R > 0 there exists a domain Ω ⊂ Mn containing BR(p) and,
for large i, embeddings Fi : Ω → Mn

i such that Fi(p) = pi, Fi(Ω) contains BR(pi), and the pull-back
metrics F ∗i gi converge to F in the C0-sense on Ω, i.e., all the components of the metric tensors converge
in the C0 norm in a finite covering of coordinate patches on Ω.

By using the previous notion of convergence, we can define what means for a Riemannian manifold
to be C0-asymptotic to the simply connected model Mn

k of dimension n ∈ N and constant sectional
curvature k ∈ R. The forthcoming notion has been investigated in [55], see in particular [55, Theorem
1.2].

Definition 5.2 (C0-local asymptoticity). We say that a Riemannian manifold (Mn, g) is C0-locally
asymptotic to the simply connected model Mn

k of dimension n ∈ N and constant sectional curvature
k ∈ R if for every diverging sequence of points pi in Mn we have that (Mn, g, pi) converge to (Mn

k , gk, o)
in the C0-sense, where gk is the Riemannian metric on Mn

k and o is a fixed origin.
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Remark 5.3 (GH-asymptoticity and C0-local asymptoticity). We remark that our Theorem 4.9 implies
one of the main theorems in [55], namely [55, Theorem 1.2]. Indeed, the notion of being C0-locally
asymptotic to the simply connected model Mn

k of constant sectional curvature k ∈ R and dimension
n ∈ N, see [55, Definition 2.2, Definition 2.4], is readily stronger than being GH-asymptotic to Mn

k , cf.
[67, Section 11.3.2].

As a consequence, all the examples in [55, Remark 1.1], namely the ALE gravitational instantons,
the asymptotically hyperbolic Einstein manifolds, and the Bryant type solitons satisfy the hypotheses of
Theorem 4.9.

As an easy consequence of Lemma A.2 we get a criterion to check that a Riemannian manifold is
C0-locally asymptotic, and hence GH-asymptotic (see Remark 5.3), to the simply connected model of
constant sectional curvature k ∈ R and dimension n ∈ N. We introduce our notions of sectional curvature
asymptotically equal to k and of asymptotically diverging injectivity radius.

Definition 5.4 (Sectional curvature asymptotically equal to k). Given k ∈ (−∞, 0], we say that a
noncompact Riemannian manifold (Mn, g) has sectional curvature asymptotically equal to k if there
exists o ∈Mn such that for every 0 < ε < 1 there exists Rε > 0 for which

|Sectx(π)− k| ≤ ε for allx ∈M \BRε(o), for all 2-planes π in TxM
n. (5.1)

If k = 0 we say that (Mn, g) has asymptotically vanishing sectional curvature.

We stress that, from now on, when we write |Sect| ≤ c everywhere on some set Ω, we mean that
|Sectx(π)| ≤ c for every x ∈ Ω and every 2-plane π ∈ TxMn.

Definition 5.5 (Asymptotically diverging injectivity radius). We say that a noncompact Riemannian
manifold (Mn, g) has asymptotically diverging injectivity radius if there exists o ∈Mn such that for every
S > 1 there exists RS > 0 for which

inj(x) ≥ S for all x ∈M \BRS (o). (5.2)

In the following statement we record how the coupling of the two conditions above suffices to infer
the GH-asymptoticity to space forms. The following statement is a consequence of Lemma A.2.

Proposition 5.6. Let (Mn, g) be a complete noncompact Riemannian manifold with sectional curvature
asymptotically equal to k, for some k ∈ (−∞, 0], and with asymptotically diverging injectivity radius.
Then, (Mn, g) is C0-locally asymptotic, and hence GH-asymptotic, to the simply connected model Mn

k of
dimension n ∈ N and constant sectional curvature k ∈ (−∞, 0].

By means of a classical compactness theorem, we can actually prove more than the C0-local conver-
gence above, as explained in the following Remark.

We are now committed to link the two above defined notions of asymptotically constant sectional
curvature and asymptotically diverging injectivity radius, in order to discuss some effective and basic
conditions that on a complete noncompact Riemannian manifold ultimately imply the existence of isoperi-
metric regions of any volume. The following is essentially a consequence of a fundamental injectivity
radius estimate in [25].

Lemma 5.7. Let (Mn, g) be a complete Riemannian manifold with asymptotically vanishing sectional
curvature. Let us assume there exists a compact set C ⊂Mn, a real number α < 1, and a constant C > 0
such that

vol(Br(p)) ≥ Crn−α, (5.3)

for any ball Br(p) ⊂Mn \ C with r > 1. Then (Mn, g) has asymptotically diverging injectivity radius.
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Proof. Let 0 < ε < 1/100, and fix o ∈Mn. By the asymptotic vanishing of the sectional curvature, there
exists a radius Rε such that |Sect| < ε on Mn \BRε(o) and C ⊂ BRε(o). Let then p ∈Mn \BRε+π/

√
ε(o),

and observe that Bπ/
√
ε(p) b (Mn \BRε(o)).

Assume that inj(p) < π/
√
ε. Then, there exists q ∈ Cut(p) such that d(p, q) = inj(p), and that in

particular still belongs to Mn \BRε(o). Then, by [18, Proposition 2.12, Chapter 13], either there exists a
geodesic γ joining p and q such that q is conjugate to p along γ, or there exists a geodesic loop σ based at
p passing through q with length equal to 2 inj(p), so that in particular σ is still contained in Mn \BRε(o).
In the first case, a straightforward application of Rauch’s Comparison Theorem [18, Proposition 2.4,
Chapter 10] implies that d(p, q) ≥ π/

√
ε, a contradiction with the assumption above.

In the second case, we have 2 inj(p) = ` := length (σ), and we can thus estimate inj(p) in terms of
volumes of balls by means of [25, Theorem 4.3], that yields

inj(p) ≥ π

8
√
ε

1 +
v(n,−ε, 7π

16
√
ε
)

vol

(
B 3π

16
√
ε

(p)

)

−1

≥ π

8
√
ε

1 +
v(n,−ε, π/

√
ε)

vol

(
B 3π

16
√
ε

(p)

)

−1

, (5.4)

where we applied [25, Theorem 4.3] with r = π/
√
ε, r0 = r/4, and s = 3

16r in the notation therein.
We have, for a dimensional constant C(n), the following equality

v(n,−ε, π/
√
ε) =

π/
√
εˆ

0

(
sinh(s

√
ε)n−1

√
ε

)n−1

ds =
1

(
√
ε)n

π̂

0

sinh(t)n−1 dt = C(n)
1

(
√
ε)n

. (5.5)

Plugging (5.3) and (5.5) into (5.4) then yields

inj(p) ≥ π

8
√
ε

(
1 + Cε−

α
2

)−1
,

where C = C(C(n), C). All in all, we proved

inj(p) ≥ min

{
π√
ε
,
π

8
√
ε

(
1 + Cε−

α
2

)−1
}
.

Since α < 1, the right-hand-side of the previous inequality diverges at infinity when ε → 0, implying
that (Mn, g) has asymptotically diverging injectivity radius.

As a consequence of Proposition 5.6, Lemma 5.7, and Theorem 4.9 we get the following isoperimetric
existence result under curvature and volume conditions.

Corollary 5.8. Let (Mn, g) be a complete Riemannian manifold with asymptotically vanishing sectional
curvature. Moreover, assume that there exists a compact set C such that that Ric ≥ 0 on M \ C, and
moreover there exist α < 1 and C > 0 such that vol(Br(p)) ≥ Crn−α for any ball Br(p) b M \ C with
r > 1. Then, for every V > 0 there exists an isoperimetric region of volume V .

The volume condition in the statement of Corollary 5.8 is automatically satisfied on manifolds (Mn, g)
with nonnegative Ricci curvature, asymptotically vanishing sectional curvature, and Euclidean volume
growth, that is, AVR(Mn, g) > 0.

Indeed, in such a case, by Bishop-Gromov we have AVR(Mn, g)ωnr
n ≤ vol(Br(p)) ≤ ωnr

n for any
p ∈Mn and any r > 0. We observe also that, since such a condition on the volume of balls is needed to
hold just outside some compact set, we actually get the existence of isoperimetric regions of any volume
on any compact perturbation of a complete Riemannian manifold with asymptotically vanishing sectional
curvature, Ric ≥ 0, and Euclidean volume growth.
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Corollary 5.9. Let (Mn, g̃) be a complete Riemannian manifold with nonnegative Ricci curvature,
asymptotically vanishing sectional curvature, and Euclidean volume growth. Let (Mn, g) be a compact
perturbation of (Mn, g̃), that is, there exists a compact set C such that g̃ = g on Mn \ C. Then, for every
V > 0 there exists an isoperimetric region of volume V .

It is interesting to observe that Corollary 5.9 applies to Perelman’s example constructed in [66] (see
also [22, Section 8]), that is a complete Riemannian manifold (Mn, g) with nonnegative Ricci curvature,
Euclidean volume growth, asymptotically vanishing sectional curvature (it satisfies a quadratic decay),
and admitting non-isometric asymptotic cones. We recall that an asymptotic cone to a manifold (Mn, g)
at some x ∈ Mn is the pGH limit of the sequence of metric spaces (Mn, r−1

i d, x) for some diverging
sequence ri → +∞. In particular, we deduce that the non-uniqueness of asymptotic cones is not an
obstruction to the existence of isoperimetric regions, even in the case of Ric ≥ 0 and Euclidean volume
growth.

Remark 5.10 (Asymptotically Euclidean and conical manifolds). A direct application of Corollary 5.9
implies that every compact perturbation of an ALE manifold with Ric ≥ 0, see e.g. [1, Definition 4.13],
has isoperimetric regions for any volume. Indeed, it is immediately checked that an ALE manifold with
Ric ≥ 0 has Euclidean volume growth and asymptotically vanishing sectional curvature.

An application of Corollary 5.9 implies also that every compact perturbation of a C2-asymptotically
conical manifold (in the sense of [27]) with Ric ≥ 0 has isoperimetric regions for every volume. Indeed,
every C2-asymptotically conical manifold has asymptotically vanishing sectional curvature and Euclidean
volume growth. We remark that in [27, Theorem 3] the authors prove that a C1,α-asymptotically conical
manifold (without further bounds on Ric) has isoperimetric regions for large volumes, and they describe
the structure of isoperimetric regions with large volumes for C2,α-asymptotically conical manifolds.

Our results allow to generalize the applications on asymptotically conical manifolds considered in
Remark 5.10 to manifolds which are suitably asymptotic to warped products with Ric ≥ 0 and asymp-
totically vanishing sectional curvature. We discuss this observation in the next remark.

Remark 5.11 (Warped products with Ric ≥ 0 and asymptotically vanishing sectional curvature). Let
(W, g̃) be an arbitrary warped product defined by

W := (0,+∞)× L, g̃ := dr2 + f(r)2gL,

where (L, gL) is a compact Riemannian manifold and f : (0,+∞)→ (0,+∞) is a smooth function. Let
(Mn, g) be a complete Riemannian manifold such that there exists a compact set K ⊂ Mn such that
(Mn \ K, g) is isometric to ((a,+∞)× L, g̃) for some a ≥ 0.

We want to show here that if

lim
r→+∞

f(r) = +∞, and W has asymptotically vanishing sectional curvature, (5.6)

then (Mn, g) has asymptotically diverging injectivity radius. Observe that, by a direct computation of
the Riemann tensor, the asymptotic vanishing of the sectional curvature is ensured every time f ′ = o(f)
and f ′′ = o(f) as r → +∞.

We now prove the latter claim after (5.6). Indeed, since the sectional curvature is asymptotically
vanishing, arguing as in the proof of Lemma 5.7, for a given ε ∈ (0, 1) it suffices to estimate from below
the length ` of a geodesic loop based at p ∈ M \ Kε by ` ≥ C/ε for a constant C independent of ε, and
for some compact set Kε ⊃ K. We identify M \ K with ((a,+∞) × L, g̃). Take K̃ε such that |Sect| < ε
on M \ K̃ε. As in Lemma 5.7, we can consider Kε ⊃ K̃ε such that for every p ∈ M \ Kε we have
d(p, K̃ε) > π/

√
ε. Also, without loss of generality, up to eventually enlarging Kε, we can just estimate

a geodesic loop γ based at p such that γ : [0, 1] → ((aε,+∞) × L, g̃) and aε is such that f(r) ≥ 1/ε for
r ≥ aε. We have γ = (γ1, γ2), and γ′2(0) 6= 0, for otherwise γ would be tangent to (aε,+∞) and γ would
not be closed. Then γ2 is a nonconstant continuous curve in L. For S ⊂ L, it can be shown by the direct
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computation of the second fundamental form of the isometric embedding (a′,+∞)×S ↪→ ((a′,+∞)×L, g̃)
that S is a totally geodesic submanifold of (L, gL) if and only if so is (a′,+∞)× S in ((a′,+∞)× L, g̃),
for any a′. This implies that γ2 is a geodesic loop in (L, gL), up to reparametrization. Hence the length
of γ is estimated from below by

` =

ˆ 1

0

(
|γ′1(t)|2 + f2(γ1(t))gL(γ′2(t), γ′2(t))

)1/2
dt

≥
√

2

2

(ˆ 1

0
|γ′1(t)|dt+ L(γ2) min

[0,1]
f(γ1(t))

)
≥
√

2

2

(ˆ 1

0
|γ′1(t)|dt+ syst(L) min

[0,1]
f(γ1(t))

)
,

where syst(L) > 0 denotes the systole of (L, gL), that is the length of the shortest geodesic loop in
(L, gL). By construction, the above estimate implies that

` ≥
√

2

2
syst(L)

1

ε
.

Hence we conclude that the injectivity radius is asymptotically diverging.

Therefore, if in addition to (5.6), we have that Ric ≥ 0 outside a compact set of Mn, then Proposi-
tion 5.6 applies, (Mn, g) is GH-asymptotic to the Euclidean space Rn, and by Theorem 4.9 there exist
isoperimetric regions of any volume.

It is clear that the very same conclusion holds true if we assumed that (Mn, g) satisfies Ric ≥ 0
outside a compact set and that Mn is just C2-asymptotic to (W, g̃).

We observe that, for examples, the Bryant type solitons mentioned in Remark 5.3 fit in this setting
of warped products.

A Comparison results in Riemannian Geometry

We write down a complete statement of a rather classical comparison result in Geometric Analysis,
i.e., the Bishop–Gromov–Günther volume and area comparison under Ricci curvature lower bounds and
sectional curvature upper bounds. The conclusions (A.1), (A.2), (A.4), (A.5), and the rigidity part of
Theorem A.1 are consequences, e.g., of [38, Theorem 3.101], [73, Theorem 1.2 and Theorem 1.3], and
the arguments within their proofs. We stress that in the case of a Ricci lower bound, the balls are not
required to stay within the cut-locus as first realized by Gromov, see, e.g., [28, Theorem 1.132]. Finally,
the conclusion (A.3) follows from [68, Corollary 2.22, item (i)] and the coarea formula, while (A.6) follows
verbatim from the proof of [68, Corollary 2.22, item (i)] by using (A.4) and concluding again with the
coarea formula.

We also stress that in the forthcoming Theorem A.1 we do not actually assume the curvature bounds
on all Mn, but just on an open subset Ω ⊂ Mn. Consequently the conclusions hold for balls contained
inside Ω: indeed, the proofs of the classical geometric comparison theorems leading to Theorem A.1 can
be localized, see, e.g., [68, Remark 2.6]. For a comparison result assuming more general Ricci lower
bounds, we also refer the reader to [68, Theorem 2.14].

Theorem A.1 (Volume and perimeter comparison). Let (Mn, g) be a complete Riemannian manifold,
and let Ω ⊂ Mn be a on open subset such that Ric ≥ (n− 1)k on Ω in the sense of quadratic forms for
some k ∈ R. Let us set Tk := +∞ if k ≤ 0, and Tk := π/

√
k if k > 0. Then, for every p ∈ Ω and for
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r ≤ Tk such that Br(p) b Ω the following hold

vol(Br(p))

v(n, k, r)
→ 1 as r → 0 and it is nonincreasing, (A.1)

P (Br(p))

s(n, k, r)
→ 1 as r → 0 and it is almost everywhere nonincreasing, (A.2)

P (Br(p))

s(n, k, r)
≤ vol(Br(p))

v(n, k, r)
almost everywhere. (A.3)

Moreover, if one has vol(Br(p)) = v(n, k, r) for some r ≤ Tk such that Br(p) b Ω, then Br(p) is isometric
to the ball of radius r in the simply connected model of constant sectional curvature k and dimension n.

Conversely, let (Mn, g) be a complete Riemannian manifold, and let Ω ⊂Mn be an open subset such
that Sect ≤ k on Ω, for some k ∈ R. Then, for every p ∈ Ω and for r ≤ min{Tk, inj(p)} such that
Br(p) b Ω the following hold

vol(Br(p))

v(n, k, r)
→ 1 as r → 0 and it is nondecreasing, (A.4)

P (Br(p))

s(n, k, r)
→ 1 as r → 0 and it is nondecreasing, (A.5)

P (Br(p))

s(n, k, r)
≥ vol(Br(p))

v(n, k, r)
. (A.6)

Moreover, if one has vol(Br(p)) = v(n, k, r) for some r ≤ min{Tk, inj(p)} such that Br(p) b Ω, then
Br(p) is isometric to the ball of radius r in the simply connected model of constant sectional curvature k
and dimension n.

In the case of sectional curvature bounds, it can be proved that the above result strengthens and
yields a comparison between metric tensors.

Lemma A.2 (Comparison of metrics). Let (Mn, g) be a complete Riemannian manifold and fix p ∈Mn.
For every k ∈ R, let Tk be as in Theorem A.1. Denote by r the distance from p, let R = inj(p), and
let {xi}ni=1 be geodesic normal coordinates at the point p. Through the latter coordinates, let us identify
BR(p) with the Euclidean ball BnR, and let us denote by g1 the canonical metric on Sn−1. Then the
following statements hold true

(i) if Sect(∇r∧X) ≤ k for any X ⊥ ∇r with g(X,X) = 1, then the inequality g ≥ gk := dr2+snk(r)
2g1

holds in the sense of quadratic forms on Bnρ , where ρ := min{R, Tk},

(ii) if Sect(∇r∧X) ≥ k for any X ⊥ ∇r with g(X,X) = 1, then the inequality g ≤ gk := dr2+snk(r)
2g1

holds in the sense of quadratic forms on Bnρ , where ρ := min{R, Tk}.

B Boundedness of isoperimetric regions

In this part we prove that having at disposal a Euclidean-like isoperimetric inequality for merely small
volumes suffices to imply that isoperimetric regions on a complete Riemannian manifold are bounded.
This is a technical fact that we will employ several times. The proof is based on a rather classical
argument already appearing in [72, Proposition 3.7] and in [57, Lemma 13.6] in the Euclidean setting,
and in [64, Theorem 3] on Riemannian manifolds. However, we present here a rather self-contained proof
for the convenience of the reader, pointing out that the weak assumption of a Euclidean-like isoperimetric
inequality for small volumes is sufficient for the assertion.

Theorem B.1. Let (Mn, g) be a complete Riemannian manifold. Assume that there is v0 > 0 such that
the isoperimetric inequality

c0 vol(Ω)(n−1)/n ≤ P (Ω),
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holds true with some c0 > 0 for any finite perimeter set Ω ⊂Mn with vol(Ω) < v0. Then the isoperimetric
regions of (Mn, g) are bounded.

Proof. Let E be an isoperimetric region and fix a point p0 ∈Mn. Let, for every r > 0,

V (r) := vol(E \Br(p0)), A(r) := P (E,M \Br(p0)).

By hypothesis there exists r0 > 0 such that for any r ≥ r0 the volume V (r) is sufficiently small to apply
the isoperimetric inequality. In particular, for almost every r ≥ r0 we can write

|V ′(r)|+A(r) = Hn−1(∂Br(p0) ∩ E) + P (E,M \Br(p0)) = P (E \Br(p0)) ≥ c0V (r)
n−1
n .

We want to prove that
A(r) ≤ |V ′(r)|+ CV (r), (B.1)

for some constant C, and for almost every r sufficiently big. Combining with the previous inequality, in
this way we would get

c0V (r)
n−1
n ≤ CV (r) + 2|V ′(r)| ≤ c0

2
V (r)

n−1
n − 2V ′(r),

because |V ′(r)| = −V ′(r) and CV (r) ≤ c0
2 V (r)

n−1
n for almost every sufficiently big radius. Hence ODE

comparison implies that V (r) vanishes at some r = r < +∞, i.e., E is bounded as a set of finite perimeter.
So we are left to prove (B.1). Let R > 0 be fixed such that P (E,BR(p0)) > 0. There exists

ε0 = ε0(R,E) > 0 and C = C(R,E) > 0 such that for any ε ∈ (−ε0, ε0) there is a finite perimeter set F
with

F∆E b BR(p0), vol(F ) = vol(E) + ε, P (F,BR(p0)) ≤ P (E,BR(p0)) + C|ε|. (B.2)

Indeed, this follows by the fact that, since the gradient of the characteristic function χE is repre-
sented by a measure ν|DχE | where ν : M → TMn with |ν| = 1 at |DχE |-a.e. point, and P (E,Ω) =
sup

{´
〈X, ν〉d|DχE | : X ∈ X(Ω), sptX b Ω, |X| ≤ 1

}
for any open set Ω, we can take a field X with

|X| ≤ 1 and compact support in BR(p0) such that
´
〈X, ν〉 d|DχE | ≥ 1

2P (E,BR(p0)) > 0. Then, for
small t, there is a smooth family of diffeomorphisms φt such that φ0 = id and ∂tφt|0 = X. So the sets
Ft := φt(E) verify the expansions

vol(Ft) = vol(E) + t

ˆ
〈X, ν〉d|DχE |+O(t2),

P (Ft, BR(p0)) = P (E,BR(p0)) + t

ˆ
(divX − 〈∇νX, ν〉) d|DχE |+O(t2).

The above formulas for the variations of volume and perimeter are easily checked to hold on Mn by the
same computations carried out in the Euclidean space in [50, Theorem 17.5 & Proposition 17.8]. Since´
〈X, ν〉d|DχE | > 0 and

∣∣´ (divX − 〈∇νX, ν〉) d|DχE |
∣∣ ≤ C(R,E), (B.2) follows by taking ε0(R,E)

sufficiently small and then F = Ftε for the suitable tε.
Now consider r > R such that V (r) < ε0, and set ε = V (r). Then there is F satisfying (B.2). Define

also F̃ = F ∩Br(p0), so that

vol(F̃ ) = vol(F )− vol(F \Br(p0)) = vol(F )− vol(E \Br(p0)) = vol(E) + ε− ε = vol(E).

Moreover, for almost every such r we can additionally require that P (F, ∂Br(p0)) :=
´
∂Br(p0) d|DχF | = 0,

as |DχF | is a finite Radon measure, see [50, Proposition 2.16]. In this way (see [50, Theorem 16.3]) we
have

P (F̃ ) = P (F,Br(p0)) +Hn−1(∂Br(p0) ∩ F )

= P (F )− P (F,M \Br(p0)) +Hn−1(∂Br(p0) ∩ F ).
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Since E is an isoperimetric set we estimate

P (E) ≤ P (F̃ ) = P (F )− P (E,M \Br(p0)) +Hn−1(∂Br(p0) ∩ E)

≤ P (E) + Cε−A(r) + |V ′(r)|,

that is A(r) ≤ |V ′(r)|+CV (r). Hence we see that (B.1) holds for almost every r > R such that V (r) < ε0,
and the proof is completed.

References

[1] V. Agostiniani, M. Fogagnolo, and L. Mazzieri. “Sharp geometric inequalities for closed hypersur-
faces in manifolds with nonnegative Ricci curvature”. In: Invent. Math. 222.3 (2020), pp. 1033–
1101.

[2] F. J. Almgren Jr. “Existence and regularity almost everywhere of solutions to elliptic variational
problems with constraints”. In: Mem. Amer. Math. Soc. 4.165 (1976), pp. viii+199.

[3] L. Ambrosio. “Calculus, heat flow and curvature-dimension bounds in metric measure spaces”.
In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I.
Plenary lectures, pp. 301–340.

[4] L. Ambrosio. “Fine properties of sets of finite perimeter in doubling metric measure spaces”. In:
vol. 10. 2-3. Calculus of variations, nonsmooth analysis and related topics. 2002, pp. 111–128.
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