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Abstract

In this paper we study the proof theory of C.I. Lewis’ logics of strict conditional S1-
S5 and we propose the first modular and uniform presentation of C.I. Lewis’ systems.
In particular, for each logic Sn we present a labelled sequent calculus G3Sn and we
discuss its structural properties: every rule is height-preserving invertible and the
structural rules of weakening, contraction and cut are admissible. Completeness of
G3Sn is established both indirectly via the embedding in the axiomatic system Sn
and directly via the extraction of a countermodel out of a failed proof search. Finally,
the sequent calculus G3S1 is employed to obtain a syntactic proof of decidability of
S1.

Keywords: Strict implication, non-normal modalities, S1, sequent calculi cut
elimination.

1 Introduction
Clarence Irving Lewis proposed the first axiomatic systems of propositional
modal logic. In particular, due to his dissatisfaction towards the material
conception of classical implication, he devised a new logical operator, namely
strict implication. He introduced five systems from S1 to S5. S4 and S5
have been intensively studied, whereas S1, S2 and S3 did not receive much
attention.

It can be argue that this depended on the fact that the latter are non-normal
modal logics, because the rule of necessitation does not hold unrestrictedly. The
semantics of the systems S2 and S3 was obtained via a slight modification of
the standard Kripke semantics, by considering models with non-normal (or
queer) worlds.
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On the contrary, Chellas proposed a semantics for S1 which combines fea-
tures of neighborhood and relational models. Due to the rather complex for-
mulation of the semantics S1 was long considered as an uninteresting system.
In our opinion, this position is not justified, insofar as the system exhibits some
interesting metalogical properties such as decidability.

In the present work we shall focus on the proof theory of these systems.
In a previous paper by one of the two authors labelled sequent calculi were
introduced for the logics S2, S3 and some related systems. However, a modular
treatment is still lacking, due to the impossibility to encompass the system S1.

We propose the first modular and analytic approach to the proof theory
of the original systems by C. I. Lewis. The sequent calculi are obtained by
converting the truth conditions for the logical operators in corresponding rules.
The calculi satisfy good structural properties, namely admissibility of the rules
of weakening, contraction and cut.

Completeness is first established by showing the embedding of the axiomatic
calculus into the corresponding labelled sequent calculus. The admissibility of
the rule of substitution of strict equivalents requires to prove a non trivial
lemma. We then establish strong completeness via the extraction of a counter-
model out of a failed proof search.

Our proof-theoretic approach enables us to investigate the system S1 by
purely syntactic means which are uniform with respect to the ones traditionally
employed for S2 − S5. In particular, we exploit the calculus G3S1 to obtain
the first purely syntactic proof of decidability of the logic S1 via terminating
proof search. Also, the peculiar formulation of the rules of the calculus can be
used to show completeness with respect to a bineighborhood semantics for S1.

2 Logics of strict implication
Language
The language of strict implications is defined by the following grammar:

A ::= p | ⊥ | A ∧A | A ∨A | A ⊃ A | A J A (LJ)

where p ∈ P for a denumerable set of sentential variables P.
Parentheses are used as customary (J binds lighter than other operators).

Capital roman letters will be used for arbitrary formulas and lower-case ones
for sentential variables. The symbol ⊤ is a short for ⊥ ⊃ ⊥ and ¬A is short
for A ⊃ ⊥. The unary modalities 2 and 3 can be defined as:

2A ≡ ⊤ J A and 3A ≡ ¬(⊤ J ¬A) (Def2)

We use L2 to denote the standard modal language—i.e., LJ with 2 and 3 in
place of J. The formula A J B can be defined in L2 either as 2(A ⊃ B) or
as ¬3(A∧ ¬B). Observe that languages LJ and language L2 are not minimal
since we have the usual classical and modal interdefinabilities—e.g., Lewis [?]
considered a language with only ¬, ∧ and 3 as primitives.
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We will use A[B/p] for the formula obtained from A by replacing each
occurrence of p with an occurrence of B and A[B//C] for the formula obtained
from A by replacing some occurrences of C with occurrences of B.
Axiomatic systems
We present here Lewis [?] axiomatisation of the logics S1 and S5. As already
anticipated Lewis considered a language with only ¬, ∧ and 3 as primitives.
For simplicity in the following we assume to have the definition of the other sym-
bols as implicit axioms. We simplify Lewis’ axiomatisation of S1 by dropping
the redundant axiom A J ¬¬A—see [?]—and by considering axiom schemes
instead of having as primitive a rule of uniform substitution of material equiv-
alents.

Definition 2.1 [Lewis’ axiomatisation of S1]
• Axioms:
(i) (A ∧B) J (B ∧A)
(ii) (A ∧B) J A
(iii) A J (B ∧ C)
(iv) ((A ∧B) ∧ C) J (A ∧ (B ∧ C))
(v) ((A J B) ∧ (B J C)) J (A J C)
(vi) (A ∧ (A J B)) J B

• Rules:

(i)
A (B J C) ∧ (C J B)

A[B//C] SSE

(ii)
A B
A ∧B

Adj

(iii)
A J B A

B
MPJ

Definition 2.2 [Axiomatisation of S2–S5] S2 = S1 ⊕ 3(A ∧B) J 3A; S3 =
S2 ⊕ (A J B) J (2A J 2B); S4 = S1 ⊕ 2A J 22A; S5 = S4 ⊕A J 23A.

add
Lem-
mon’s
axiom.?

Semantics
As it is well-known, standard relational semantics can be used for the normal
conditional logics S4 and S5. A modification thereof has been used by Kripke
[?] to give a semantics for the non-normal conditional logics S2 and S3: we
must add so-called queer (or non-normal) worlds where 3A is always true and
2A is always false. Finally, a semantics for S1 has been introduced by Cress-
well in [?] and generalised to logics weaker than S1 in [?]. This semantics
is interesting is that it needs both an accessibility relation and a neighbour-
hood functions to define strict implication (as well- as modalities): in normal
worlds we must use the accessibility relation and in queer ones we must use the
neighbourhood one. 3

Formally an S1-frame is quadruple F = ⟨W,N ,R, I⟩ where: (i) W is a non-
empty set of worlds; (ii) N is a subset of W, of so-called normal worlds (worlds
in W/N will be called queer worlds); (iii) R ⊆ W ×W is a reflexive accessibility
relation on W; (iv) I : W −→ P(P(W)) is a neighbourhood functions mapping
worlds to sets of sets of worlds with the side conditions that if α ∈ I(w) then
w ∈ α—i.e., I is reflexive— and that if X,Y ∈ I(w) then X ∪ Y ̸= W.

3 A semantics for S1 based on Rantala models has been given in [?], and a relational se-
mantics has been given in [?].
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By adding conditions on N ,R, and I we can define a class of frames for
the other Lewis’ systems. In particular: (i) an S2-frame is an S1-frame where
I is such that it maps each world to ∅; (ii) an S3-frame is a transitive S2-or {∅}?

frame—i.e., if wRv and vRu then wRu; (iii) an S4-frame is an S3-frame
where N = W; (iv) an S5-frame is a symmetric S4-frame—i.e., if wRv then
vRw. Some observations are in order. S2-frames can be equivalently defined
by simply dropping I from S1 fames, thus obtaining Kripke semantics for non-
normal logics [?]. S4 can be defined by dropping N and I from S1-frames,
thus obtaining standard relational semantics for normal modalities.

A model M is a frame augmented with a valuation function V : W −→
P(W) mapping each sentential variables to the set of worlds where it holds/is
true. We say that M is an Sn-model if its underlying frame is an Sn-frame.

We are now ready to define truth of a formula A at a world w of a model M,
|=M

w A or simply |=w A when M is clear from the context. The definition is
standard for sentential variables and for the extensional operators—e.g., |=w p
iff w ∈ V(p) and |=w A ∧ B iff |=w A and |=w B. The only interesting case is
that of strict implication where we have:

|=w A J B iff
{

∀v ∈ W, wRv and |=v A imply |=w B, if w ∈ N
JA ⊃ BKM ∈ I(w), else

where JAKM is the truth set of A in M: JAKM = {w : |=M
w A}. Equivalently,

we have that |=w A for w ∈ W/N iff ∃α ∈ I(w) such that, for all v ∈ W,
( ̸|=v A or |=w B) if and only if v ∈ α.

Observe that for S2- and S3-models the clause for queer worlds says that
A J B cannot be true therein, and for S4- and S5-models it can be dropped.

A formula A is said to be: (i) True in a model M, |=M A, if it true in
every normal point of that model; (ii) Sn-valid, Sn |= A, if it is true in all
Sn-models; (iii) An Sn-consequence of a set of formulas X, X |=Sn A, if A is
true in all normal world of each Sn-model where all formulas in X are true.

Theorem 2.3 (Characterisation, [?]) The axiomatic calculus Sn is sound
and compete for validity w.r.t. the class of all Sn-frames.

3 Labelled sequent calculi
We are now going to introduce labelled sequent calculi for the logics of strict im-
plication S1-S5. Labelled calculi for normal modal logics have been introduced
in [?] and for the non-normal ones in [?]. Labelled calculi for the non-normal
logics S2 and S3, as well as for some of their extensions, have been studied in
[?]. The main novelties w.r.t. [?] is that here we consider also S1 and we have
a language with J instead of 2 as primitive.

In order to define the language of sequent calculi we consider two denu-
merable and disjoint sets of labels: a set W of world labels, for which we use
the metavariables w, v, u, . . . , and a set I of neighbours label, to be denoted by
α, β, γ, . . . . Moreover, we add the following atomic predicates R,N,Q,∈, and
̸∈ that are syntactic counterparts of the elements of S1-frames. he formulas
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of the labelled language Lll are the following (where w, v ∈ W, α ∈ I and
A ∈ LJ): (i) relational atoms wRv; (ii) normality atoms Nw; (iii) queer atoms
Qw; (iv) neighbour atoms α ∈ Iw; (v) inclusion atoms w ∈ α; (vi) exclusion
atoms w ̸∈ α; (vii) labelled formulas w : A; (viii) forcing formulas α ⊩ A; and
(ix) covering formulas α ◁ A.
Definition 3.1 The label of a formula E in Lll of form u : A (resp. α ⊩∀

A or α ◁ A) is u (resp. α) and is denoted by l(E). The pure part of a
labelled formula E is obtained removing from E the label and the forcing
and is denoted by p(E). The notion of weight is defined for labels and pure
parts of formulas. For every u and for every a, w(u) = 0 and w(α) = 1.
The weight of a pure formula A, w(A) is defined as follows: w(p) = w(⊥) =
1, w(A ◦ B) = max({w(A), w(B)}) + 1, where ◦ ∈ {∧,∨,⊃}, w(A J B) =
max({w(A), w(B)}) + 2. The degree of a labelled formula E is an ordered pair
deg(E) = (w(p(E)), w(l(E))). For relational formulas we stipulate deg(u ∈ α) =
deg(α ∈ I(u)) = deg(N(u)) = (0, 1). Degrees of labelled formulas are ordered
lexicographically.

A sequent is an expression Γ ⇒ ∆ where Γ is a finite multiset of Lll-formulas
and ∆ is a finite multiset of labelled, forcing, and covering formulas only. Sub-
stitutions of labels in an Lll-formula E, E[v/u] and E[α/β], are defined as
expected and it is extended to multisets by applying it componentwise.

The rules of the calculi G3S1–G3S5 are given in Table 1: G3S1 con-
tains all initial sequent and all propositional, conditional, and relational rules.
G3S2 = G3S1 plus rule S2. G3S3 = G3S2 plus rule Trans. G3S4 = G3S3
plus rule Norm. G3S5 = G3S4 plus rule Sym. Observe that the calculus
G3S2 (G3S4) is equivalent to the simpler calculus obtained by dropping rules
L/R JQ (and removing normality atoms from rule L/R JN ) and all relational
rules but RefR from the calculus G3S1 (G3S3).

A G3Sn-derivation of a sequent Γ ⇒ ∆ is a tree of sequents, whose leaves
are initial sequents, whose root is Γ ⇒ ∆, and which grows according to the
rules of G3Sn. The height of a G3Sn-derivation is the number of nodes of its
longest branch. We say that Γ ⇒ ∆ is G3Sn-derivable (with height n), and
we write G3Sn ⊢(n) Γ ⇒ ∆, if there is a G3Sn-derivation (of height at most
n) of Γ ⇒ ∆. A rule is said to be (height-preserving) admissible in G3Sn, if,
whenever its premisses are G3Sn-derivable (with height at most n), also its
conclusion is G3Sn-derivable (with height at most n). In each rule depicted in
Table 1, Γ and ∆ are called contexts, the formulas occurring in the conclusion
are called principal, and those occurring in the premisses only are called active.
Lemma 3.2 The following generalised initial sequents are G3Sn-derivable:

E,Γ ⇒ ∆, E

Proof By induction on the degree of the formula E: the rules are applied
root-first since in each branch we reach a sequent with a formula occurring
both in the antecedent and in the succedent and having lesser degree than E.2
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Table 1
Rules of the calculi G3S1–G3S5

Initial Sequents Ax
w : p,Γ ⇒ ∆, w : p

L⊥
w : ⊥,Γ ⇒ ∆

AxN

Nw,Qw,Γ ⇒ ∆
Ax∈

w ∈ α,w /∈ α,Γ ⇒ ∆

Propositional Rules

w : A,w : B,Γ ⇒ ∆
L∧

w : A ∧B,Γ ⇒ ∆
Γ ⇒ ∆, w : A Γ ⇒ ∆, w : B

R∧
Γ ⇒ ∆, w : A ∧B

w : A,Γ ⇒ ∆ w : B,Γ ⇒ ∆
L∨

w : A ∨B,Γ ⇒ ∆

Γ ⇒ ∆, w : A,w : B
R∨

Γ ⇒ ∆, w : A ∨B

Γ ⇒ ∆, w : A w : B,Γ ⇒ ∆
L ⊃

w : A ⊃ B,Γ ⇒ ∆
w : A,Γ ⇒ ∆, w : B

R ⊃
Γ ⇒ ∆, w : A ⊃ B

Conditional Rules Nw,wRv,w : A J B,Γ ⇒ ∆, v : A v : B,Nw,wRv,w : A J B,Γ ⇒ ∆
L JN

Nw,wRv,w : A J B,Γ ⇒ ∆

u : A,wRu,Nw,Γ ⇒ ∆, u : B
R JN , u fresh

Nw,Γ ⇒ ∆, w : A J B
α ∈ Iw, α ⊩ A ⊃ B,α ◁ A ⊃ B,Qw,Γ ⇒ ∆

L JQ, α fresh
Qw,w : A J B,Γ ⇒ ∆

Qw,α ∈ Iw,Γ ⇒ ∆, w : A J B,α ⊩ A ⊃ B Qw,α ∈ Iw,Γ ⇒ ∆, w : A J B,α ◁ A ⊃ B
R JQ

Qw,α ∈ Iw,Γ ⇒ ∆, w : A J B

Relational rules v : A, v ∈ α, α ⊩ A,Γ ⇒ ∆
L ⊩

v ∈ α, α ⊩ A,Γ ⇒ ∆
u ∈ α,Γ ⇒ ∆, u : A

R ⊩, u fresh
Γ ⇒ ∆, α ⊩ A

v /∈ α, α ◁ A,Γ ⇒ ∆, v : A
L ◁

v /∈ α, α ◁ A,Γ ⇒ ∆
u /∈ α, u : A,Γ ⇒ ∆

R ◁, u fresh
Γ ⇒ ∆, α ◁ A

wRw,Γ ⇒ ∆
RefRΓ ⇒ ∆

u /∈ α, u /∈ β, α ∈ Iw, β ∈ Iw,Γ ⇒ ∆
S1, u fresh

a ∈ Iw, b ∈ Iw,Γ ⇒ ∆
w ∈ a, a ∈ Iw,Γ ⇒ ∆

RefI

a ∈ Iw,Γ ⇒ ∆

Nw,Γ ⇒ ∆ Qw,Γ ⇒ ∆
Norm

Γ ⇒ ∆

Additional rules S2
α ∈ Iw,Γ ⇒ ∆

wRu,wRv, vRuΓ ⇒ ∆
T rans

wRv, vRuΓ ⇒ ∆

Nw,Γ ⇒ ∆
Norm

Γ ⇒ ∆
uRw,wRu,Γ ⇒ ∆

Sym
wRu,Γ ⇒ ∆

4 Structural properties
Lemma 4.1 (Substitution) G3Sn ⊢n Γ ⇒ ∆ implies G3Sn ⊢n Γ[v/u] ⇒
∆[v/u] and G3Sn ⊢n Γ[α/β] ⇒ ∆[α/β].
Proof A standard induction on the height of the derivation D of the sequent
Γ ⇒ ∆. We apply to D the inductive hypothesis either twice or once—
depending on whether the last rule instance Rule in D has a variable condition
that clashes with the substitution or not— and then we conclude by applying
an instance of Rule. 2

Theorem 4.2 (Weakening) Let Σ contains only labelled, forcing and cover-
ing formulas. G3Sn ⊢n Γ ⇒ ∆ implies G3Sn ⊢n Π,Γ ⇒ ∆,Σ.
Proof By induction on the height of the derivation D of Γ ⇒ ∆, possibly
applying an (hp-admissible) instance of substitution if the last rule instance in
D has a variable condition. 2

Corollary 4.3 If A is an axiom of the axiomatic system Sn then the sequent
Nw ⇒ w : A is G3Sn-derivable.



Orlandelli and Tesi 7

Proof The proof is straightforward by a root-first application of the rules of
the calculi, possibly using the admissiblity of weakening. We limit ourselves to
considering axiom (iv).

Nw,Nu,wRu, u : A J B, u : B J C ⇒ u : A J C

[...], v : B, v : A ⇒ v : B, v : C, [...]
L◁

[...], v : A ⇒ v : B, v : B ⊃ C, [...]
R⊃

[...] ⇒ v : A ⊃ B, v : B ⊃ C, [...]
L◁

[...], v /∈ α, v /∈ β, α ◁ A ⊃ B, β ◁ B ⊃ C ⇒ u : A J C, v : A ⊃ B
L◁

[...], v /∈ α, v /∈ β, α ∈ Iu, α ◁ A ⊃ B, β ∈ Iu, β ◁ B ⊃ C ⇒ u : A J C
S1

[...], α ∈ Iu, α ◁ A ⊃ B, β ∈ Iu, β ⊩ B ⊃ C, β ◁ B ⊃ C ⇒ u : A J C
LJQ

[...], Qu, α ∈ Iw, α ⊩ A ⊃ B,α ◁ A ⊃ B, u : B J C ⇒ u : A J C
LJQ

Qu, u : A J B, u : B J C ⇒ u : A J C
Norm

Nw,wRu, u : A J B, u : B J C ⇒ u : A J C
L∧

Nw,wRu, u : (A J B) ∧ (B J C) ⇒ u : A J C
RJN

Nw ⇒ w : ((A J B) ∧ (B J C)) J (A J C)

The leftmost top-sequent is provable via applications of rules RJN and LJN .2
Lemma 4.4 Each rule of G3Sn is height-preserving invertible.
Proof For the rules with repetition of the principal formulas in the premiss hp-
invertibility follows from Theorem 4.2. For the other rules, if we are inverting
w.r.t. the principal formula of the last rule instance in D there is nothing to
prove. Else we reason by induction on D, possibly applying Lemma 4.1. To
illustrate, assume we are inverting ruleR JN and the last rule instance in D is
the following instance of R ⊩:

u ∈ α,Γ ⇒ ∆′, w : B J C, u : A
R ⊩, u fresh

Γ ⇒ ∆′, α ⊩ A,w : B J C
We transform D into the following derivation having at most the same height:

u ∈ α,Γ ⇒ ∆′, w : B J C, u : A
[u′/u]

u′ ∈ α,Γ ⇒ ∆′, w : B J C, u′ : A
IH

w′ : B,wRw′, u′ ∈ α,Γ ⇒ ∆′, u′ : A,w′ : C
w′ : B,wRw′,Γ ⇒ ∆′, α ⊩ A,w′ : C

where the substitutions are needed if w′ ≡ u. 2

Theorem 4.5 (Contraction) G3Sn ⊢n Π,Π,Γ ⇒ ∆,Σ,Σ implies
G3Sn ⊢n Π,Γ ⇒ ∆,Σ.
Proof By induction on the height of the derivation D of Π,Π,Γ ⇒ ∆,Σ,Σ,
where one of Π and Σ is a singleton and the other is empty. The theorem
follows by induction on the number of formulas in Π,Σ. We consider only the
cases where we are contracting an occurrence of w : A J B on the left.

Let’s assume the conclusion of D is w : A J B,w : A J B,Γ′ ⇒ ∆. if no
instance of w : A J B is principal in the last rule Rule applied in D then we
apply the inductive hypothesis to its premiss and an instance of Rule. Else,
we have two cases depending on whether Rule is an instance of L JN or of
L J Q. In the former case we can proceed as when no instance of w : A J B
is principal since L JN is a rule with repetition of the principal formulas. In
the latter case we transform

α ∈ Iw, α ⊩ A ⊃ B,α ◁ A ⊃ B,Qw,w : A J B,Γ′′ ⇒ ∆
L JQ, α fresh

Qw,w : A J B,w : A J B,Γ′′ ⇒ ∆
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into the following derivation of at most the same height:
α ∈ Iw, α ⊩ A ⊃ B,α ◁ A ⊃ B,Qw,w : A J B,Γ′′ ⇒ ∆

Lem.4.4
β ∈ Iw, β ⊩ A ⊃ B, β ◁ A ⊃ B,α ∈ Iw, α ⊩ A ⊃ B,α ◁ A ⊃ B,Qw,Γ′′ ⇒ ∆

Lem.4.1
α ∈ Iw, α ⊩ A ⊃ B,α ◁ A ⊃ B,α ∈ Iw, α ⊩ A ⊃ B,α ◁ A ⊃ B,Qw,Γ′′ ⇒ ∆

IH
α ∈ Iw, α ⊩ A ⊃ B,α ◁ A ⊃ B,Qw,Γ′′ ⇒ ∆

L JQ

Qw,w : A J B,Γ′′ ⇒ ∆

where both α and β do not occur in the conclusion. 2

Theorem 4.6 (Cut) Let E be a relational, forcing, or covering formula. The
following rule of cut is admissible in G3Sn:

Γ ⇒ ∆, E E,Π ⇒ Σ
Cut

Π,Γ ⇒ ∆,Σ
Proof We consider an uppermost instance of Cut and we proceed by induction
on the degree of the cut-formula with a sub-induction on the cut-height of D—
i.e., the sum of the heights of the derivations D1 and D2 of the two premisses.
The theorem then follows by induction on the number of cuts in the derivation.

As usual it is convenient to divide the proof in three exhaustive cases: in
case (i) one premiss has a derivation of height 1; in case (ii) the cut-formula is
not principal in the last step of at least one of the two premisses; in case (iii)
the cut-formula is principal in the last step of both premisses.

The proof of cases (i) and (ii) as well as the sub-cases of case (iii) where
the principal operator of the cut-formula is in ∧,∨,→, are standard and can
thus be omitted. The proof of the sub-cases of (iii) when the cut-formula has
shape α ⊢ A or α ◁ A can be found in [?]. Hence, we have to consider only
the sub-cases of (iii) where the cut-formula has shape w : B J C and either
the multiset Nw,wRv or Qw,α ∈ Iw occurs in Γ.

In the first case suppose D is a follows (for u not in the conclusion):
...D11

u : B,wRu,Nw,Γ′ ⇒ ∆, u : C
R JN

Nw,Γ′ ⇒ ∆, w : B J C

...D21

Nw,wRv,w : B J C,Π′ ⇒ Σ, v : B

...D22

v : C,Nw,wRv,w : B J C,Π′ ⇒ Σ
L JN

w : B J C,Nw,wRv,Π′ ⇒ Σ
Cut

Nw,Nw,wRv,Π′,Γ′ ⇒ ∆′,Σ

We transform it into the following derivation ([Γ]n stands for n copies of Γ,
and, for the sake of space, we omit the premisses of dotted inferences):

...D1
...D21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cutj

[Nw]2, wRv,Π′,Γ′ ⇒ ∆,Σ, v : B

...D11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lem.4.1
v : B,wRv,Nw,Γ′ ⇒ ∆, v : C

Cuti

[Nw]3, [wRv]2,Π′, [Γ′]2 ⇒ [∆]2,Σ, v : C

...D1
...D22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cutj

v : C, [Nw]2, wRv,Π′,Γ′ ⇒ ∆,Σ
Cuti

[Nw]5, [wRv]3, [Π′]2, [Γ′]3 ⇒ [∆]3, [Σ]2
Lem.4.5

Nw,wRv,Π,Γ ⇒ ∆,Σ

where instances of Cut with subscript i (j) are admissible by the (sub-)induction
hypothesis.

Finally, if D is a follows (for β not in the conclusion):
...D11

Qw, β ∈ Iw,Γ′ ⇒ ∆, w : B J C, β ⊩ B ⊃ C

...D12

Qw, β ∈ Iw,Γ′ ⇒ ∆, w : B J C, β ◁ B ⊃ C
R JQ

Qw, β ∈ Iw,Γ′ ⇒ ∆, w : B J C

...D21

α ∈ Iw, α ⊩ B ⊃ C,α ◁ B ⊃ C,Qw,Π′ ⇒ Σ
L JQ

Qw,w : B J C,Π′ ⇒ Σ
Cut

Qw,α ∈ Iw,Π′,Γ′ ⇒ ∆,Σ
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we transform it into the following derivation (D1i[⋆] stands for the derivation
D1i with α in place of β by an instance of Lemma 4.1, and D stands for B ⊃ C):

...D12[⋆]
...D2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cutj

[Qw]2, α ∈ Iw,Π′,Γ′ ⇒ ∆,Σ, α ◁ D

...D11[⋆]
...D2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cutj

[Qw]2, α ∈ Iw,Π′,Γ′ ⇒ ∆,Σ, α ⊩ D

...D21

α ⊩ D,α ◁ D,α ∈ Iw,Qw,Π′ ⇒ Σ
Cuti

α ◁ D, [Qw]3, [α ∈ Iw]2, [Π′]2,Γ′ ⇒ ∆, [Σ]2
Cuti

[Qw]5, [α ∈ Iw]3, [Π′]3, [Γ′]2 ⇒ [∆]2, [Σ]3
T hm.4.5

Nw,α ∈ Iw,Π,Γ ⇒ ∆,Σ

2

Corollary 4.7 The rule MPJ is G3Sn-admissible:

Nw ⇒ w : A J B Nw ⇒ w : A
Det.

Nw ⇒ w : B
Proof By applying Lemma 4.4 to Nw ⇒ w : A J B we obtain the derivability
of u : A,wRu,Nw ⇒ u : B for some fresh label u. By an instance of Lemma
4.1 this becomes w : A,wRw,Nw ⇒ w : B and, by a Cut with Nw ⇒ w : A,
we obtain wRw,Nw,Nw ⇒ w : B. Finally, we apply an instance of Rule RefR
and one of Theorem 4.5 to conclude that Nw ⇒ w : B is derivable. 2

Corollary 4.8 G3Sn-derivations are analytic—i.e., every label occurring in
a derivation either occurs in its conclusion or it is an eigenvariable. needed?

Proof See [?, Lemma 3.17]. 2

Lemma 4.9 For every formula A, B and C, if the sequents w : A ⇒ w : B
and w : B ⇒ w : A are derivable in G3Sn, then the sequents:

w : C ⇒ w : C[A//B] and w : C[A//B] ⇒ w : C
are provable in G3Sn.
Proof The proof runs by induction on the weight of the formula C. We assume
that C ̸= A, otherwise the proof is trivial. If C is a sentential variable p, the
claim is trivial. If C is a conjunction, a disjunction or a formula of the shape
D ⊃ E, then the proof easily follows by applying the induction hypothesis.
We discuss the case in which C is of the form D J E. Since C ̸= A, we have
(D J E)[A//B] ≡ D[A//B] J E[A//B].

We first show that Nw,w : D J E ⇒ w : D[A//B] J E[A//B] is derivable.

[...], w : D J E, u : D[A//B] ⇒ u : E[A//B], u : D [...], w : D J E, u : D[A//B], u : E ⇒ u : E[A//B]
LJN

Nw,wRu,w : D J E, u : D[A//B] ⇒ u : E[A//B]
RJN

Nw,w : D J E ⇒ w : D[A//B] J E[A//B]

The derivability of the topmost sequents follows from the induction hypothesis
and weakening. The sequent Qw,w : D J E ⇒ w : D[A//B] J E[A//B] is
derivable too.

[...], o ∈ α, o : D ⊃ E ⇒ o : D[A//B] ⊃ E[A//B]
L⊩

[...], o ∈ α, α ⊩ D ⊃ E ⇒ o : D[A//B] ⊃ E[A//B]
R⊩

[...], α ⊩ D ⊃ E ⇒ α ⊩ D[A//B] ⊃ E[A//B]

[...], u : D[A//B] ⊃ E[A//B], α ◁ D ⊃ E ⇒ u : D ⊃ E
L◁

[...], u /∈ α, u : D[A//B] ⊃ E[A//B], α ◁ D ⊃ E ⇒
R◁

[...], α ◁ D ⊃ E ⇒ α ◁ D[A//B] ⊃ E[A//B]
RJQ

Qw,α ∈ Iw, α ◁ D ⊃ E,α ⊩ D ⊃ E ⇒ w : D[A//B] J E[A//B]
LJQ

Qw,w : D J E ⇒ w : D[A//B] J E[A//B]
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The derivability of the topmost sequents follows from application of the rules
L⊃, R⊃, the induction hypothesis and weakening. The desired conclusion
follows from an application of Norm.

We now discuss the other part of the claim, i.e. w : D[A//B] J E[A//B] ⇒
w : D J E. We first show that Nw,w : D[A//B] J E[A//B] ⇒ w : D J E:

[...], u : D ⇒ u : D[A//B], u : E [...], , u : E[A//B], u : D ⇒ u : E
LJN[...], w : D[A//B] J E[A//B], u : D ⇒ u : E

RJN

Nw,w : D[A//B] J E[A//B] ⇒ w : D J E

Again, the derivability of the topmost sequents follows from the induction hy-
pothesis and weakening. For the other direction we proceed as follows (we omit
to display redundant repetition of formulas):

[...], o : D[A//B] ⊃ E[A//B] ⇒ o : D ⊃ E, [...]
L⊩

[...], o ∈ α, α ⊩ D[A//B] ⊃ E[A//B] ⇒ α ⊩ D ⊃ E, [...]

[...], u : D ⊃ E ⇒ u : D[A//B] ⊃ E[A//B], [...]
L◁

[...], u /∈ α, u : D ⊃ E,α ◁ D[A//B] ⊃ E[A//B] ⇒ [...]
R◁

[...], α ◁ D[A//B] ⊃ E[A//B] ⇒ α ◁ D ⊃ E, [...]
RJQ

Qw,α ∈ Iw, α ⊩ D[A//B] ⊃ E[A//B], α ◁ D[A//B] ⊃ E[A//B] ⇒ w : D J E
LJQ

Qw,w : D[A//B] J E[A//B] ⇒ w : D J E

The topmost sequents are derivable via applications of the rules R⊃, L⊃, the
induction hypothesis and admissibility of weakening.

2

We shall now prove the admissibility of the rule of substitution of strict
equivalents.

Corollary 4.10 The rule of substitution of strict equivalents is G3Sn-
admissible:

Nw ⇒ w : A Nw ⇒ w : B J C Nw ⇒ w : C J B
SSE

Nw ⇒ w : A[B//C]

Proof We assume that we have a proof of the sequents Nw ⇒ w : A and
Nw ⇒ w : (B J C) ∧ (C J B). By invertibility of the rule R∧ we get the
derivations of Nw ⇒ w : B J C and Nw ⇒ w : C J B.

We apply again the invertibility of the rule RJ we get Nw,wRu, u : B ⇒
u : C and Nw,wRu, u : C ⇒ u : B. We observe that the normality atoms and
the relational atoms are never active in a derivation, so we can remove them.

So the sequents u : C ⇒ u : B and u : B ⇒ u : C are derivable and we can
apply Lemma 4.9 which yields w : A ⇒ w : A[B//C]. Finally, a cut gives the
desired result. 2

We are now in the position to state and prove the embedding of the ax-
iomatic calculi Sn into G3Sn.

Theorem 4.11 If Sn ⊢ A, then G3Sn ⊢ Nw ⇒ w : A.

Proof The proof runs by induction on the height of the derivation in the
axiomatic calculi Sn. The axioms are derivable by Lemma ??. The rule Adj
is admissible by rule R∧. The admissibility of MPJ is a consequence of the
Corollary 4.7, and that of SSE follows from Theorem 4.10. 2
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5 Characterisation
We will now propose an alternative and more direct form of completeness which
is obtained by extracting a countermodel out of a failed proof search. We start
by defining the notion of validity of labelled sequents [?].

Definition 5.1 Given a set S of world labels w and a set L of neighborhood
labels a, and an Sn model M = ⟨W,N ,R, I, v⟩, an SN realisation (ρ, σ) is
a pair of functions mapping each w ∈ S into ρ(x) ∈ W and mapping each
a ∈ NL into σ(a) ∈ Nw for some w ∈ W . We introduce the notion M satisfies
a formula E under an SN -realisation (σ, ρ) and denote it by M ⊨ρ,σ E, where
we assume that the labels in E occur in S,NL. The definition extends by cases
on the form of E, we give some examples:
• M ⊨ρ,σ w ∈ α if ρ(w) ∈ σ(α).
• M ⊨ρ,σ w : A if ⊨ρ(w) A

• M ⊨ρ,σ α ◁ A if for all u s. t. M ⊨ρ,σ u : A, ρ(u) ∈ σ(α).
• M ⊨ρ,σ w : A J B if either ρ(w) ∈ N and for every u ∈ W such that

M ⊨ρ,σ wRu, then M ⊨ρ,σ w : A ⊃ B, or ρ(w) /∈ N and for some α,
σ(α) ∈ I(ρ(w)), M ⊨ρ,σ α ◁ A ⊃ B and M ⊨ρ,σ α ⊩ A ⊃ B.

Given a sequent Γ ⇒ ∆, let S,NL be the sets of worlds and neighborhood labels
occurring in Γ∪∆, and let (ρ, σ) be an SN -realisation; we define M ⊨ρ,σ Γ ⇒ ∆
to hold if whenever M ⊨ρ,σ E for all formulas E ∈ Γ then M ⊨ρ,σ ψ for some
formula ψ ∈ ∆. We further define M-validity by:

M ⊨ Γ ⇒ ∆ iff M ⊨ρ,σ Γ ⇒ ∆ for every SN -realisation (ρ, σ).
We finally say that a sequent Γ ⇒ ∆ is valid in a Sn frame if M ⊨ Γ ⇒ ∆ for
every model based on it.

Theorem 5.2 (Soundness) If G3Sn ⊢ Γ ⇒ ∆, then Γ ⇒ ∆ is Sn-valid.

Proof By induction on the height of the derivations in the calculus G3Sn.2

We introduce the notion of saturated sequent in a derivation. For every branch
in a derivation we write ↓ Γ (↓ ∆) to denote the union of the antecedents
(succedents) in the branch from the endsequent up to the sequent Γ ⇒ ∆.

Definition 5.3 A branch in a proof search in the system G3S1 from the
endsequent up to the sequent Γ ⇒ ∆ is saturated if, for every rule R, if the
principal formulas of R occur in the branch, the formulas introduced by one
of the premises of R also occur in the branch. In detail, a saturated branch
up to Γ ⇒ ∆ has to satisfy the following conditions (we omit some of them):
(Ax) There is no sentential variable p such that w : p ∈ Γ ∩ ∆. (AxC) There
are no α,w such that w ∈ α,w ∈ α,∈ Γ. (AxN ) There is no w such that
Nw,Qw,∈ Γ. (L⊥) It is not the case that w : ⊥ ∈ Γ for every w. (LJQ) If
Qw and w : A J B ∈↓ Γ, then for some α α ∈ Iw, α ◁ A ⊃ B and α ⊩ A ⊃ B
are in ↓ Γ. (RJQ) If Qw, α ∈ Iw are in ↓ Γ and w : A J B ∈↓ ∆, then
α ◁ A ⊃ B ∈↓ ∆ or α ⊩ A ⊃ B ∈↓ ∆. The notion of saturated sequent is
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extended to the systems G3Sn by adding conditions relative to the additional
rules.

Given a sequent Γ ⇒ ∆ we build a proof search tree by applying all possible
rules of the calculus. To avoid repetitions, we fix a counter. At stage 1 we apply
rule L∧, at stage 2 the rule R∧ and so forth. There are 20 + m different stages
(where m is the number of relational rules depending on the system). At stage
20 + m + 1 we start again. If the construction ends we obtain a derivation
or a finite tree in which a branch is saturated, otherwise we obtain an infinite
tree. By König’s Lemma there is an infinite branch which is saturated from
which we can extract a countermodel.
Theorem 5.4 Given a saturated branch B in a proof search tree for the se-
quent Γ ⇒ ∆ built according to the rules of system G3Sn, we can extract a
countermodel M to Γ ⇒ ∆ based on a Sn-frame.
Proof Given a saturated branch B in a proof search tree we define the following
countermodel: ⟨W,R, I,V⟩ such that:
• W is the set of all world labels occurring in Γ.
• wRu if and only if wRu occurs in Γ.
• I(w) is the set of all the neighbours α such that α ∈ Iw occurs in Γ and

every α consists of all the worlds w such that w ∈ α occur in Γ.
• V(p) is the set of all worlds w such that w : p occurs in Γ.
Notice that V is well defined by condition Init. For every system G3Sn,
the frame ⟨W,R, I⟩ satisfies the properties of Sn-frames by the saturation
conditions regarding relational and additional rules. We define the realization
(ρ, σ) such that ρ(w) ≡ w and σ(α) ≡ α. We claim that:
(i) If w : A is in Γ, then M ⊨ρ,σ w : A.
(ii) If w : A is in ∆, then M ⊭ρ,σ w : A.
The proof is by simultaneous induction on the degree of A. We focus on the
case of strict implication.

(a) If w : A J B is in Γ, then by the saturation condition there is either Qw
or Nw in Γ. In the first case, again by the saturation condition, there are
α ∈ Iw, α ◁ A ⊃ B and α ⊩ A ⊃ B in Γ. By definition of M and induction
hypothesis we have α ∈ I(w), M ⊨ρ,σ α ◁ A ⊃ B and M ⊨ρ,σ α ⊩ A ⊃ B,
therefore M ⊨ρ,σ w : A J B. In the second case, we distinguish two subcases.
If there is no label u such that wRu occurs in Γ, then the claim trivially
follows. Otherwise for every u sucht that wRu occurs in Γ, by the saturation
condition either u : A is in ∆ or u : B is in Γ. By induction hypothesis we
get M ⊭ρ,σ u : A or M ⊨ρ,σ u : B. Therefore we get M ⊨ρ,σ w : A J B.

(b) If w : A J B is in ∆, then by the saturation condition there is either Qw or
Nw in Γ. In the first case, by the saturation condition, for every α ∈ I(w),
there is α ◁ A ⊃ B or α ⊩ A ⊃ B in ∆. In both cases by induction
hypothesis it follows M ⊭ρ,σ w : A J B. In the second case, by saturation
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there are wRu, u : A ∈ Γ and u : B in ∆. By induction hypothesis we get
M ⊨ρ,σ u : A and M ⊭ρ,σ u : B, which yields M ⊨ρ,σ w : A J B.

2

Corollary 5.5 (Completeness) For every formula A:
Sn ⊨ A if and only if G3Sn ⊢ Nw ⇒ w : A

Proof The direction from right to left is the content of the soundness theorem.
For the other direction we prove the contrapositive. Suppose that G3Sn ⊬
Nw ⇒ w : A, hence there is a saturated branch and we can extract a Sn-
countermodel for Nw ⇒ w : A, which gives Sn ⊭ A. 2

6 Decidability
Per il momento questa sezione è soltanto abbozzata, ma intanto ho buttato
giù qualche idea. Given an endsequent Nw ⇒ w : A, we build a branch by
backward applications of the rules. The branch is a sequence Nw ⇒ w : A ≡
Γ0 ⇒ ∆0,Γ1 ⇒ ∆1, ... where Γi+1 ⇒ ∆i+1 is obtained from Γi ⇒ ∆i with an
application of a rule R.

To establish decidability we need to show that the search for a derivation can
be interrupted at a certain point and that we can extract a finite countermodel.

First we prove some preliminary lemmata which are easily proved via height-
preserving admissibility of the rule of contraction.

Lemma 6.1 The rules RefR, RefI , S1, Norm, L⊩, L◁, LJN and RJQ need
not be instantiated more than once on the same label in every branch in a proof
search.

The dynamic rules are R⊩, S1, R◁, LJQ or RJN . We now introduce
some definitions which allow us to check the relations between world labels and
neighbourhood labels.

Definition 6.2 In a branch B of a proof search tree of the sequentNw ⇒ w : A
we define the relation →B of immediate successor (for w, v ∈ W and α ∈ I):
(i) w →B α if α ∈ Iw occurs in B; (ii) α →B w if in B there is either w ∈ α
or w /∈ α, and there is not α ∈ Iw; (iii) w →B u if some α is such that
w →B α →B u or wRu is in B.

Fact. The transitive closure of →B defines a tree which, as it is easy to check,
does not contain cycles (except for the reflexive relations).
Fact. The immediate successors of a world label in an open brach of a proof eliminable?

search tree are either all neighbourhood labels or world labels, but not both.
This depends on the fact that every world label w such that is either Nw or
Qw occurs in a branch B.

Theorem 6.3 Each label in an branch B of a proof search tree of an endsequent
Nw ⇒ w : A has only a finite number of immediate successors.

Proof We observe that immediate successors of a label can be introduced
only by applications of the dynamic rules R⊩, S1, R◁, LJQ or RJN . The
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subformulas of the formula A are finite, therefore if there were infinite imme-
diate successors there would be more than one application of one of the aboveis

Cor.4.8
useful? mentioned rules to the same principal labelled formulas.

We show that every derivation can be transformed in a proof search in
which every branch contains at most one application of such rules to the same
principal labelled formulas. We detail the case of LJQ as an example.

Nu, β ∈ Iu, β ⊩ A ⊃ B, β ◁ A ⊃ B,α ∈ Iu, α ⊩ A ⊃ B,α ◁ A ⊃ B,Γ ⇒ ∆
LJQ

Nu, u : A J B,α ∈ Iu, α ⊩ A ⊃ B,α ◁ A ⊃ B,Γ ⇒ ∆
... D

Nu,α ∈ Iu, α ⊩ A ⊃ B,α ◁ A ⊃ B,Γ ⇒ ∆
LJQ

Nu, u : A J B,Γ ⇒ ∆
We transform the derivation as follows:

Nu, β ∈ Iu, β ⊩ A ⊃ B, β ◁ A ⊃ B,α ∈ Iu, α ⊩ A ⊃ B,α ◁ A ⊃ B,Γ ⇒ ∆
Lem.4.1

Nu,α ∈ Iu, α ⊩ A ⊃ B,α ◁ A ⊃ B,α ∈ Iu, α ⊩ A ⊃ B,α ◁ A ⊃ B,Γ ⇒ ∆
Thm.4.5

Nu,α ∈ Iu, α ⊩ A ⊃ B,α ◁ A ⊃ B,Γ ⇒ ∆
Thm.4.2

Nu,α ∈ Iu, α ⊩ A ⊃ B,α ◁ A ⊃ B, u : A J B,Γ ⇒ ∆
... D

Nu,α ∈ Iu, α ⊩ A ⊃ B,α ◁ A ⊃ B,Γ ⇒ ∆
LJQ

Nu, u : A J B,Γ ⇒ ∆
The application of the hp-admissible rules of substitution, contraction and
weakening does not introduce new applications of LJ (this can be easily
checked). 2

As a consequence, the tree defined by →B is finitely branching. The second
part of the proof of termination consists in showing that in every branch the
length of a chain of labels is finite. The proof for S1 and S2 is relatively
simple. The key point is that the relation defined by →B is not transitive. In
particular, this means that a label sees only its immediate successors and itself
(by reflexivity).

Theorem 6.4 Every chain of labels in a branch in a proof search for the se-
quent Nw ⇒ w : A is finite.

Proof Given a chain of labels and a label w in the chain, every successor of w
in the chain labels a formula whose weight is strictly lower than those labelled
by w. Since the degree of each formula is finite, the chain is clearly finite. 2

Theorem 6.5 The proof search for a sequent Nw ⇒ w : A in the system
G3S1 terminates.

Proof The proof is immediate because in every branch the number of labels
generated is finite. 2

By Theorem 5.4 we can extract a countermodel out of a saturated branch,was
5.8,typo? therefore we obtain the finite model property and the decidability of the system.
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Corollary 6.6 If X is either G3S1 or G3S2, the relation X ⊢ Nw ⇒ w : A
is decidable.

This is the first purely syntactic proof of the decidability of the system S1.

7 Conclusion
Appendix
Here starts the appendix. If you don’t wish an appendix, please remove the
\Appendix command from the LATEX file.
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