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Preface

In this preliminary chapter, we go over the document’s structure and illustrate themain contributions
obtained during the Ph.D. studies, some of which are not a part of this thesis.

Thesis overview and main contributions

In Chapter 1, we give a brief overview of shape optimization theory, discussing some notions and
results that play an essential role in this thesis. It is organized as follows:

I In Subsection 1.1.2, we recall the spectral decomposition theorem and apply it to elliptic
operators to obtain a sequence of eigenvalues (Theorem 1.3)

0 < �1(!,Ω) ≤ �2(!,Ω) < . . . and �=(!,Ω) ↘ +∞.

In particular, we focus on the connection between the domain’s topological properties and the
first eigenvalue’s multiplicity (Theorem 1.4).

I In Subsection 1.1.4, we show that eigenvalues can be characterized as solutions to specific
min-max problems and, in particular, the first eigenvalue of the Laplacian is given by

�1(Ω) = min
E∈�1

0 (Ω)\{0}

∫
Ω
|∇E |2 3G∫
Ω
E2 3G

.

I In Section 1.2, we introduce the Schwarz rearrangement and the Steiner symmetrization, focusing
on their role in shape optimization theory (Theorem 1.11).

I In Section 1.3, we examine the notion of Γ-convergence for functionals and study some
properties, for example, the convergence of the corresponding minima (Theorem 1.12).

I In Section 1.4, we discuss the relaxation of functionals, which is a crucial notion to deal with
optimization problems of the form

min {�(D) : D ∈X} ,

when � is not lower semicontinuous onX. In particular, we present a method to determine
whether or not a functional is the relaxation of another (Proposition 1.4).
This notion is extremely helpful in the direct methods for optimization problems that lack
compactness. Indeed, roughly speaking, we can find minimizers of a relaxed functional
(usually more manageable) and, through regularity theory, prove that they are also solutions
to the initial problem. This is done, for example, in Chapter 2, Chapter 3 and Chapter 4.

I In Section 1.5, we introduce functions of bounded variation, and we focus, in Subsection 1.5.1,
on compactness and lower semicontinuity theorems (mainly due to Ambrosio [6, 7]) since
they will play a crucial role in proving existence of a minimizer in Chapter 3.



I Finally, in Section 1.6, we give a brief overview of the problem of minimizing the perimeter for
a fixed volume < > 0. For this, we first show that

Per� = H3−1(%∗�)

is a good definition of perimeter for irregular sets (since it coincides with the intuitive one if � is
regular enoguh), where %∗� denotes the reduced boundary (Definition 1.17). Next, we prove
the Faber-Krahn isoperimetric inequality (Theorem 1.16).

In Chapter 2, we discuss the results obtained in [35], in which we study a shape optimization
problem arising from the reinforcement of a membraneΩwith one-dimensional stiffeners, namely

max
(

�1((),

where ( ranges into two classes of admissible choices, one of one-dimensional rectifiable sets with
prescribed length and another where the constraint of being connected is added, and

�1(() := inf
D∈�2 (Ω)\{0}

∫
Ω
|∇D |2 3G + <

∫
(
|∇�D |2 3H1∫

Ω
|D |2 3G

.

The maximization in the first class has already been considered in [40] in the framework of reducing
traffic congestion; therefore, they consider the energy in place of the eigenvalue

max
'∈A<

{
−1

2

∫
�

5 D' 3G

}
,

where 5 is given and D' is the weak solution to{
−div(1 + ')∇D' = 5 in �,

D' ∈ �1
0 (�).

Our main result (Theorem 2.1) shows that the existence and the regularity properties obtained in
[40] hold if we consider the principal eigenvalue in place of the energy.
The maximization of �1(()with the additional constraint connected, on the other hand, was studied
in [2] for the energy problem. Our main result (Theorem 2.2) is relatively weak compared to the
one obtained in the other class; nonetheless, in Section 2.6 we discuss some possible improvements,
based on the remarkable paper [53], which are unfortunately quite difficult to implement.

In Chapter 3, we consider shape optimization problems for general integral functionals of the
calculus of variations that may contain a boundary term, namely

inf
{
J(Ω) : Ω ⊂ � andΩ Lipschitz

}
,

where the shape functional J is defined by setting

J(Ω) := min
D∈,1,? (Ω)

{∫
Ω

9(G, D,∇D) 3G +
∫
%Ω
6(G, D) 3H3−1

}
.



In particular, we discuss the main results obtained in [36]. The prototype for our class of integral
functionals is obtained by solving the energy PDE with Robin boundary conditions (3.1). A similar
shape optimization problem, with 5 = 0 and Dirichlet boundary condition

D = D0 on some �0 ⊂ �,

was studied by Bucur-Giacomini [24]. The main difference is that we have 5 ≠ 0, so there is a linear
term (− 5 (G)D in the model) that raises several technical problems. Nevertheless, we prove that a
solution to the problem exists (Theorem 3.3) by studying the relaxation to SBV and, using regularity
theory, deducing that optimal shapes are Lipschitz.

In Chapter 4, we consider a shape optimization problem in control form. More precisely, if � ⊂ ℝ3

is bounded, for everyΩ ⊂ �, we denote by DΩ the solution of{
−Δ?D = 5 inΩ,
D = 0 on � \Ω,

where ? > 1 is given, 5 ∈,−1,?′(�). We consider minimization problems of the form

min
{
�(DΩ) : Ω open, Ω ⊂ �

}
,

for cost functionals of the form

�(DΩ) = −
∫
�

6(G)DΩ(G) 3G + � |{DΩ > 0}| ,

where 6 is given and satisfies certain assumptions. In [38], we prove that, if � > 0, 6 ∈ !A(�) for
some A > 1 is a non-negative measurable function, 5 is non-negative and

5 ∈ !@(�) with @ >
3

?
and @ ≥ 1,

then, if there is a constant � > 0 such that

5 (G) ≤ �6(G) for every G ∈ �,

the problem (4.2) admits a solution (Theorem 4.1). We distinguish the case ? > 3 (Section 4.2), in
which we can exploit the continuity of the embedding

,1,?(�) ↩→ �0(�),

from the case ? ≤ 3, which requires a completely different approach. Indeed, we consider the
relaxation of the problem to the class of ?-capacitary measures (Subsection 4.3.2), deduce the
existence of a ?-quasi-open set (Subsection 4.3.3) and, finally, conclude that it is open if more
assumptions are satisfied (Subsection 4.3.4).

In Chapter 5, we discuss the results obtained in [124]. More precisely, we give a short and self-
contained proof of the boundary Harnack principle (Definition 5.1) for a class of domains satisfying
some geometric conditions given in terms of a state function that behaves as the distance function



to the boundary, is subharmonic inside the domain and satisfies some suitable estimates on the
measure of its level sets. This summarizes the statement of our main result, Theorem 5.1, which will
be deduced as an easy consequence of a boundary Harnack inequality (Theorem 5.2).

In Chapter 6, we consider a free boundary system arising in the study of a class of shape optimization
problems; more precisely, we let D, E ∈ �0(�1) be solutions to

−ΔD = 5 and − ΔE = 6 inΩ = {D > 0} = {E > 0}, %D

%=

%E

%=
= 1 on %Ω ∩ �1.

The boundary condition is intended in a weak sense (see, for example, Definition 6.1) because Ω
may be an irregular domain. The main result of [123] is an epsilon-regularity theorem for viscosity
solutions of this free boundary system (Theorem 6.1), which is obtained as follows:

I We prove that a viscosity result (Lemma 6.1) as a consequence of the fact that the auxiliary
functions √

DE and (D + E)/2

are, respectively, a subsolution and a supersolution of the one-phase problem.
I We study the improvement of flatness of the auxiliary functions above in order to trap the

boundary %Ω between nearby translations of a half-space (Lemma 6.2).
I We deduce a partial Harnack inequality (Theorem 6.4) for solutions to (6.13).
I We obtain an improvement-of-flatness result (Theorem 6.5), which allows to conclude that

flatness (Definition 6.2) implies the �1,-regularity.

In Chapter 7, we give a brief overview of [37], which aims to obtain some regularity properties of
the problem studied in Chapter 4 for ? = 2.

Theorem A. Let 3 ≥ 2 andΩ ⊂ ℝ3 be a solution to (7.2). Suppose that the following conditions hold:

(a) 5 , 6 ∈ �2
2 (�1);

(b) 5 ≥ 0 in �1, and DΩ > 0 inΩ;
(c) there are constants �1 , �2 > 0 such that

�16 ≤ 5 ≤ �26 in �1.

Then there is a closed set ( ⊆ %Ω ∩ �1 such that:

(i) %Ω ∩ �1 \ ( ∈ �1, for some  ∈ (0, 1];
(ii) ( is empty if 3 ≤ 4 and dimH(() ≤ 3 − 5, if 3 ≥ 5.

The work is still ongoing (although almost complete), so we omit the most technical proofs and
divide the chapter as follows:

I In Section 7.2, we discuss the existence of minimizers for the problem (7.2) and, more precisely,
we give two optimality conditions (for optimal shapes) that are crucial in studying local
properties of the optimal domain in Section 7.3.

I In Subsection 7.2.2, we prove stationary and stability condition under inner variations.



I In Section 7.4, we study the compactness of blow-up sequences and the main properties of
blow-up limits.

I In Subsection 7.4.2, we prove that we can construct blow-up sequences such that the cor-
responding blow-up limits are one-homogeneous and proportional. This is achieved as a
consequence of the boundary Harnack principle obtained in Chapter 5.

I In Section 7.5,weprove (i) of TheoremA. Indeed,we show that the state variables corresponding
to an optimal shapeΩ are viscosity solutions and &-flat, so we can apply the theory developed
in Chapter 6 (in particular, Theorem 6.1) to obtain the �1,-regularity.

I Finally, in Section 7.6, we use a well-known dimension-reduction argument and exploit the
fact that blow-up limits are one-homogeneous and proportional to prove Theorem A (ii).

Other contributions

To conclude this preface, we will now briefly go over some other contributions obtained during the
Ph.D. studies that are not a part of this thesis.

Characterization of :-rectifiability in Carnot groups [101]

The notion of rectifiability is crucial in geometric measure theory and many other mathematics
areas, as we will see in this thesis. First, we recall the definition [84, Section 3.2.14]:

Definition A. Let (-, 3) be a metric space. We say that � ⊂ - is H:-rectifiable if it can be covered, up to a
set of H:-measure zero, by countably many Lipschitz images of subsets of the Euclidean space ℝ: .

There is a rich literature on the characterization and basic properties of :-rectifiable sets in metric
spaces; see, for example, [9, 64, 83, 127] and the references therein.However, this notion of rectifiability
does not always work in all metric spaces; for instance, in [9] it was proved that the three-dimensional
Heisenberg group is purely :-unrectifiable for : = 2, . . . , 4. Therefore, a natural notion of intrinsic
rectifiability in codimension one was proposed in [88], where a De Giorgi rectifiability theorem for
finite perimeter sets in all Heisenberg groups was established. Moreover, in [86], the following
alternative definition of rectifiability was proposed:

Definition B. Let G be a stratified group. We say that � ⊂ G is G-rectifiable if it is, up to a negligible set, a
countable union of level sets of functions with non-vanishing continuous horizontal gradient.

In the remarkable work [133], Merlo showed that in Heisenberg groups, G-rectifiability could be
characterized in terms of densities and intrinsically flat tangents, obtaining an analogous of Preiss’
theorem. That said,G-rectifiable sets can be very different from :-rectifiable ones [113], but onemight
still ask whether they can be covered by countable unions of Lipschitz images of homogeneous
groups instead of ℝ: . We refer to [135] and [10] for a negative answer; that said, their equivalence in
Heisenberg groups is still an interesting open question.
In [15, 87], the authors proposed another notion of rectifiability, consisting in countable unions of
intrinsic Lipschitz graphs. It was proved that this corresponds to the G-rectifiability as soon as one
has a De Giorgi rectifiability theorem (see [85, 87]). In Heisenberg groups, this question has been
settled by Vittone [146], using the theory of currents, leading to a Rademacher-type theorem.



Contribution. In collaboration with Idu and Magnani, in [101], we studied the classical notion of
:-rectifiability in homogeneous groups. Indeed, motivated by the results obtained in [128], where
the authors characterize :-rectifiable sets in Heisenberg groups ℍ= , : ≤ =, with the a.e.-existence of
approximate tangent groups in suitable Grassmannians, we decided to investigate whether this result
could be extended to a more general framework.

Remark A. The notion of approximate tangent groupwas introduced in [128], where the projections
defining intrinsic cones are given by the semidirect factorization of the Heisenberg group as

ℍ= = V o V⊥.

The reason is that, as noticed in [135], using Euclidean projections to define cones constitutes an
obstacle in reaching a characterization of rectifiability through approximate tangent cones, so a
stronger notion is required.

Our goal in [101] is to extend the characterization [128] to homogeneous groups. Before we describe
our main result, we give some necessary definitions to entirely understand the notations appearing
in the statement. Indeed, let

G = �1 ⊕ · · · ⊕ � �

be a connected and simply connected graded nilpotent Lie group, and recall that it is homogeneous if
it is equipped with a one-parameter family of intrinsic dilations

�A : G→ G,

which are linear mappings such that �A(?) = A 8? for each ? ∈ � 8 , A > 0 and 8 = 1, . . . , �.

Definition C. A linear subspace ( ⊂ G that satisfies �A(() ⊂ ( for all A > 0 and is a Lie subgroup of G, is
called homogeneous subgroup. Moreover, if we let

( = (1 ⊕ · · · ⊕ (�

be the decomposition induced by the graded structure of G, we say that

I ( is horizontal if ( = (1;
I ( is vertical if (8 = � 8 for every 8 = 2, . . . , �.

DefinitionD. LetV be a :-homogeneous subgroup ofG.We say thatV belongs to the horizontal Grassmannian
of :-dimensional subspaces G(G, :) if it is a :-dimensional horizontal subgroup.

Definition E. To every homogeneous group G, we can associate a positive integer  ≤ dim(G), which is the
maximal linear dimension among all horizontal subgroups of G.

Definition F. Let � be a Radon measure on G and let ? ∈ �. A Radon measure � satisfying �(G) > 0 is
a tangent measure of � at ? (and we say that it belongs to Tan(�, ?)), if there are sequences of positive
numbers 28 and A8 → 0 such that the following weak convergence of measures holds:

28()?,A8 )#� ⇀ �,



where )?,A is the magnification map defined by )?,A(@) := �1/A(?−1@).

Definition G. Let � ⊂ G be an H:-measurable set. A homogeneous subgroup T? of dimension : is a
(:,G)-approximate tangent group to � at ? if the following properties hold:

I Θ∗:(�, ?) > 0;

I for all B ∈ (0, 1) we have

lim
A→0

1
A:

H:x�(�(?, A) \ -(?, T? , B)) = 0,

where - denotes the intrinsic cone of vertex ?, axis T and opening B, given by

-(?, T , B) =
{
@ ∈ G : 3(?−1@, T) < B3(?, @)

}
.

We denote by apTanG
:
(�, ?) the set of all (:,G)-approximate tangent groups to � at ? (and T? if unique).

Theorem B. ([101]) Let G be a homogeneous group and fix : ∈ [1,  ]. If � ⊂ G is a Borel set and H:x� is
locally finite, then the following conditions are all equivalent:

(i) The set � is k-rectifiable.

(ii) For H:-a.e. ? ∈ �, there exists T? ∈ G(G, :) such that

1
A:
()?,A)#H:x� ⇀ H:xT? as A → 0+.

(iii) For H:-a.e. ? ∈ �, there exists T? ∈ G(G, :) such that

Tan(H:x�, ?) = {� H:xT? : 0 < � < ∞}.

(iv) For H:-a.e. ? ∈ �, there exists T? ∈ G(G, :) such that

apTan:
G
(�, ?) = T? .

The first implication is an immediate consequence of the a.e.-differentiability of Lipschitz mappings
taking values in homogeneous groups [122, Theorem 1.1] and the associated area formula [122,
Theorem 1.2]. On the other hand, the implications from (ii) to (iii) and from (iii) to (iv) are easily
deduced from the definitions above. However, the most noteworthy implication is from (iv) to (i),
namely the existence a.e. of the (:,G)-approximate tangent group implies :-rectifiability. In [128],
this is established by proving a lower density theorem; nevertheless, in [101] we followed a different
strategy, which is based on the following result:

Theorem C. Let � ⊂ G be purely :-unrectifiable set, + ∈ H(G, :), 0 < B < 23
G
, � > 0 and � > 0, where

2G is a constant that depends only on G. If for all ? ∈ � and 0 < A ≤ � we have

H:x� (
-(?, +⊥ , B) ∩ �(?, A)

)
≤ �A: B: ,



then, for all F ∈ G, the following density upper bound holds:

Θ∗:(H:x�, F) ≤ 2� (84/22
G): .

This result is well-known in the Euclidean setting (see, for instance, [84, Lemma 3.3.6], and [127,
Theorem 15.19]), but, surprisingly, it is possible to prove it in non-commutative homogeneous groups
following the same strategy. Several technical difficulties arise; however, we can get around them
thanks to the estimates obtained in [101, Theorem 2.13].

�1,
-rectifiability in low codimension in Heisenberg groups [102]

As mentioned, interest in rectifiable sets arises mainly for their geometric, measure-theoretic, and
analytic properties. For example, a notion of approximate tangent spaces defined almost everywhere,
a version of the area and coarea formulas [9, 112], and a framework for studying the boundedness of
a class of singular integral operators [54, 60, 61].
We already pointed out that many definitions of rectifiability diverge along several, not necessarily
equivalent, directions. However, a missing piece in the study of rectifiability in metric spaces is the
natural notion of higher-order rectifiability, which can be defined as composing a set with countably
many objects of higher-order regularity. So, motivated by the seminal work [11] in the Euclidean
setting, our goal in [102] is to initiate progress along this line in Heisenberg groups.

Contribution. We introduce a notion of �1,-rectifiability, for  ∈ (0, 1], which consists of
composing a set with countably many (,ℍ)-regular surfaces. Our main result, which surprisingly
is the analogous geometric criterion of approximate tangent paraboloids as in the Euclidean setting [76,
141], applies to low-codimensional sets of the Heisenberg groups ℍ= . However, before we can state
it, we give a few necessary definitions and notations.

Remark B. The notion of (,ℍ)-regular surface is entirely equivalent to that of ℍ-regular surface
introduced in [128, Section 2.3], with the horizontal gradient in �0, instead of �0.

Definition H. Let  ∈ (0, 1] and � > 0. The -paraboloid, centered at G ∈ ℍ= with base ( ∈ G(ℍ= , :) and
parameter �, is defined by setting

&(G, (,�) =
{
H ∈ ℍ= : 3(G−1H, () ≤ �3(G, H)1+

}
.

Definition I. A measurable set � ⊂ ℍ= is �1,-rectifiable if there are :-dimensional (,ℍ)-regular surfaces
(8 , with 8 ∈ ℕ, such that

H:<

(
� \

⋃
8∈ℕ

(8

)
= 0,

where :< is the metric dimension (i.e., : if : ≤ =, and : + 1 otherwise).

The main result of [102] is the following:



Theorem D. Fix  ∈ (0, 1] and = < : ≤ 2=. Let � ⊂ ℍ= be a H:< -measurable set with H:< (�) < ∞ and
assume that, for H:< -almost every ? ∈ �, there are V? ∈ G(ℍ= , :) and � > 0 such that

lim
A→0+

1
A:<

H:<
(
� ∩ �(?, A) \&(?, +? ,�)

)
= 0.

If Θ:<
∗ (�, ?) > 0 for H:< -almost every ? ∈ �, then � is �1,-rectifiable.

To conclude the preface, we make a few comments on the proof of this result and suggest some
possible improvements to extend it, for example, to Carnot groups:

I To recover the -Hölder regularity of the distribution of vertical subgroups, we prove an
analogous of [76, Lemma 3.5] in the Heisenberg setting. However, the positive lower density
condition is essential and, unlike the Euclidean case [76], it is unclear whether this assumption
can be derived from the approximate tangent paraboloid condition.

I The structure of ℍ= plays a role in the Hölder-continuity mentioned above, but the other
technical results hold in any Carnot group. Therefore, we show that our main result can be
extended to any Carnot group in codimension one, and we briefly discuss what is missing in
the case ≥ 2.
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1.1 Eigenvalues of elliptic operators

In this section, we recall the preliminary results of the elliptic partial differential equations theory. The
prototype of elliptic operators is the Laplacian, given by

ΔD := %2
G1D + · · · + %

2
G3
D,

but the results presented below are valid for general linear elliptic operators.

We will mainly follow [98, Chapter 1], but the reader interested in partial differential equations and
operator theory can refer to the books [17], [57] and [77].

1.1.1 Partial differential equations

Let 08 9(G) be bounded function defined onΩ ⊂ ℝ3 for 8 , 9 = 1, . . . , 3 and suppose that they satisfy the
ellipticity assumption, namely there exists  > 0 such that

3∑
8 , 9=1

08 9(G)�8G8 9 ≥  |�|2 for all G ∈ Ω and � ∈ ℝ3 , (1.1)

where | · | denotes the standard Euclidean norm. For simplicity, we will also require the coefficients 08 9
to be symmetric, which means that

08 9(G) = 0 98(G) for all G ∈ Ω and 8 , 9 = 1, . . . , 3.

Let 00(G) be a bounded function on Ω. We introduce the linear elliptic operator !, defined on the
Sobolev space �1(Ω), by setting

(!D)(G) := −
3∑

8 , 9=1

%

%G8

(
08 9(G)

%

%G 9
D(G)

)
+ 00(G)D. (1.2)

If D is not regular enough, the partial derivatives are intended in the sense of distributions; more
precisely, for a test function ! ∈ �∞2 (ℝ3)we define

〈%GD, !〉 := −〈D, %G!〉.

The prototype operator, the Laplacian, is obtained by setting 08 9 = �8 9 , which is equal to one if 8 = 9 and
zero otherwise, in (1.2) and we denote it as follows:

−ΔD := −
3∑
8=1

%2
G8
D.

Definition 1.1 (Dirichlet) Let 5 ∈ !2(Ω). We say that D is a weak solution of the Dirichlet problem{
!D = 5 inΩ,
D = 0 on %Ω,

(1.3)
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if D ∈ �1
0 (Ω) is the unique solution of the variational problem

3∑
8 , 9=1

∫
Ω

08 9(G)(%G8D)(%G 9E) 3G +
∫
Ω

00(G)DE 3G =
∫
Ω

5 (G)E 3G for all E ∈ �1
0 (Ω).

The existence and uniqueness of a solution for this problem follows from the ellipticity assumption
(1.1), the classical Poincaré inequality (4.12) and the Lax-Milgram theorem, which we now recall.

Theorem 1.1 (Lax-Milgram) Let � be a Hilbert space, denote by ‖ · ‖� the corresponding norm and let
0 : � × � → ℝ be a function satisfying the following properties:

I the map E ↦→ 0(·, E) is linear and 0(0, E) = 0 for all E ∈ �;
I for any D1 , D2 ∈ � and E ∈ �, it turns out that

|0(D1 , E) − 0(D2 , E)| ≤ "‖D1 − D2‖� ‖E‖� ;

I there exists � > 0 such that

0(D1 , D1 − D2) − 0(D2 , D1 − D2) ≥ �‖D1 − D2‖2�

holds for all D1 , D2 ∈ �.

Then, for any � : � → ℝ linear functional, there exists a unique D� ∈ � such that

0(D� , E) = �(E) for all E ∈ �.

1.1.2 Eigenvalues of elliptic operators

The existence of a sequence of eigenvalues (and the corresponding eigenfunctions) for general elliptic
operators follows from a well-known result in spectral theory.

Definition 1.2 Let � be a Hilbert space endowed with a scalar product 〈·, ·〉� and let ) : � → � be an
operator (namely, a linear and continuous map). We say that

I ) is positive if 〈)G, G〉 ≥ 0 for all G ∈ �;
I ) is self-adjoint if ()G, H) = (G, )H) for all G, H ∈ �;
I ) is compact if the image of any bounded set is relatively compact.

Theorem 1.2 (Spectral decomposition) Let � be a separable∗ Hilbert space and ) a positive, self-adjoint and
compact operator. Then there exist a sequence of real numbers (�)=∈ℕ such that

� > 0 and �↘ 0,

and a sequence of eigenvectors (G=)=∈ℕ ⊂ �, defining a Hilbert base of �, satisfying

)G= = �G= for all = ∈ ℕ.

If we denote by )Ω
!

the operator defined on !2(Ω) given by

)Ω! ( 5 ) := D 5 ,

∗ We say that � is separable if it contains a countable and dense subset with respect to the topology induced by ‖ · ‖� .
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where D 5 is the unique solution of (1.3), then it is easy to verify that )Ω
!

is positive, self-adjoint and
compact. Thus, there are (D=)=∈ℕ Hilbert basis of !2(Ω) and �= ≥ 0 converging to zero such that

)Ω! (D=) = �=D= for every = ∈ ℕ.

If we plug this result back into (1.3), we get

!D= =
1
�=
D= ,

which means that, setting �= = 1
�=
, we have proved the following theorem:

Theorem 1.3 LetΩ ⊂ ℝ3 be a bounded open set. Then there are a sequence of positive eigenvalues

0 < �1(!,Ω) ≤ �2(!,Ω) ≤ . . .

with �=(!,Ω) ↗ +∞, and a sequence of corresponding eigenfunctions DΩ= , defining a Hilbert basis of !2(Ω),
that satisfy the following PDE: {

!DΩ= = �=(!,Ω)DΩ= inΩ,
DΩ= = 0 on %Ω.

When ! = −Δ is the Laplacian, we will simply denote the eigenvalues by �=(Ω) and the corresponding
eigenfunctions by D= . Since they are defined up to a constant, we put the additional constraint∫

Ω

D=(G)2 3G = 1.

Notice that if the domain is symmetric, some eigenvalues may be multiple. In this case, we count them
with their multiplicity.

Remark 1.1When Ω is not connected, for example if it has two connected components Ω1 and Ω2,
then the eigenvalues are obtained by reordering the ones of each component:

�1(Ω) = min{�1(Ω1), �1(Ω2)},
�2(Ω) = min {max{�1(Ω1),�1(Ω2)},�2(Ω1),�2(Ω, 2)} ,

and so on. As a consequence, we can choose every eigenfunction to vanish on all but one of the
connected components ofΩ to have some kind of uniqueness.

The principal eigenvalue (i.e., the first) may have multiplicity > 1 (for example, ifΩ1 = Ω2 in the remark
above), but this is not the case if the domainΩ is connected.

Theorem 1.4 LetΩ be a connected open set with LIpschitz boundary. Then �1 is simple (i.e., it has multiplicity
equal to one) and D1 has a constant sign onΩ.

This result plays a fundamental role in the problem discussed in Chapter 2; indeed, in Theorem 2.1 we
assumeΩ connected to have a unique eigenfunction D1 with a constant (positive) sign onΩ.

1.1.3 Properties and regularity of the eigenfunctions

The Laplace operator is invariant for translation and rotations, so we have

�=(�G(Ω)) = �=(Ω),
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for every translation �G(H) := H − G, and

�= ('(Ω)) = �=(Ω)

for every isometry '. That said, one of the most crucial properties for our purposes is the behavior of
the eigenvalues under rescaling. More precisely, for : > 0 let

�:(G) := :G

and, given a function E onΩ, let �:E be defined on �:(Ω) by setting

�:E(G) := E(G/:).

Since �: ◦ Δ = :2 Δ ◦ �: , we immediately deduce that

�=(�:(Ω)) =
�=(Ω)
:2 .

As a simple application, notice that ifΩ = �' is the ball of radius ' and �1 the unit ball, then

�1(�') =
1
'2�1(�1),

which means that the function

(0,+∞) 3 ' ↦−→ �1(�') ∈ (0,+∞)

is strictly decreasing and goes to zero as '→ +∞. This scaling property will be discussed in more
details and applied in the proof of Lemma 3.4.

To conclude this section,we recall somewell-known results concerning the interior boundary regularity
of the corresponding eigenfunctions.

Theorem 1.5 LetΩ ⊂ ℝ3 be an open set. Then the eigenfunctions of the Laplacian are analytic inΩ.

This result is proved, for example, in [59] and [57] and it is a consequence of the hypo-ellipticity of the
Laplacian. For more general elliptic operators ! it depends on the regularity of the coefficients and we
refer the reader to [89] for a detailed discussion.

The regularity up to the boundary, on the other hand, requires some assumptions on the domain. The
following (standard) results can be found, for example, in [89] and [94]:

Theorem 1.6 LetΩ be either �1,1 or convex and assume that 08 9 ∈ �0 and 00 ∈ !∞. Then the eigenfunctions
of ! belong to �2(Ω).

Theorem 1.7 LetΩ ∈ �2, and assume 08 9 ∈ �1, and 00 ∈ �0, . Then the eigenfunctions belong to �2,(Ω̄).

1.1.4 Min-max principles

The eigenvalues can also be characterized via a variational problem. More precisely, define the Rayleigh
quotient of the elliptic operator ! by setting

'![E] :=

∑3
8, 9=1

∫
Ω
08 9(G)%G8E%G 9E 3G +

∫
Ω
00(G)E2(G) 3G∫

Ω
E2(G) 3G

.

Then we have
�=(!,Ω) = min

�:⊂�1
0 (Ω)

max
E∈�:\{0}

'![E],
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where �: ⊂ �1
0 (Ω) ranges among all subspaces of dimension :. For example, the =-th eigenvalue of

the Laplace operator is given by the variation problem

�=(Ω) = min
�:⊂�1

0 (Ω)

{
max

E∈�:\{0}

∫
Ω
|∇E |2 3G∫
Ω
E2 3G

}
,

and, in particular, the principal eigenvalue is given by

�1(Ω) = min
E∈�1

0 (Ω)\{0}

∫
Ω
|∇E |2 3G∫
Ω
E2 3G

.

For an account of recent results in critical point theory by min-max methods see [134], [137], [138] and
the references therein.

1.2 Rearrangements in shape optimization theory

This section aims to introduce rearrangements and discuss the properties that play an essential role in
shape optimization. We follow [98] closely for most of this section.

1.2.1 Schwarz rearrangement

The Schwarz rearrangement is an important tool in shape optimization theory and was used by Faber
and Krahn to prove the isoperimetric inequality (see Theorem 1.16). The reader interested in a more
detailed discussion of rearrangements (with applications to other branches of mathematics) may start,
for example, from the books [14], [96], [106] and [136].

Definition 1.3 LetΩ ⊂ ℝ3 be a measurable set. We denote byΩ∗ the ball of same volume, namely

Ω∗ =

{
G ∈ ℝ3 : |G | ≤

[
|Ω|Γ(3/2 + 1)

�3/2

] 1
3

}
.

If D : Ω→ ℝ is a measurable non-negative function vanishing on the boundary, we denote the level sets by

Ω(C) := {G ∈ Ω : D(G) ≥ C} for all C > 0.

The Schwarz rearrangement of D, denoted by D∗, is the function defined onΩ∗ as follows:

D∗(G) := sup {C > 0 : G ∈ Ω(C)∗} .

The general idea is that, starting from D, the function D∗ is obtained by rearranging the level setsΩ(C)
in balls of the same volume.

Remark 1.2 The following properties hold by construction:

• the function D∗ is radially symmetric and non-increasing;
• the level sets of D and D∗ have the same measure;
• supΩ D = supΩ∗ D

∗.

Theorem 1.8 LetΩ be a measurable set and D be as above. If # : [0,+∞) → ℝ is measurable, then∫
Ω

# (D(G)) 3G =
∫
Ω∗
# (D∗(G)) 3G.
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We now state an important result, which is known as Pòlya inequality, which gives a connection between
the integrals of ∇D and ∇D∗.

Theorem 1.9 (Pòlya inequality) LetΩ be an open set and let D ∈ �1
0 (Ω) be a non-negative function. Then

D∗ ∈ �1
0 (Ω∗) and

∫
Ω

|∇D |2 3G ≥
∫
Ω∗
|∇D∗ |2 3G.

A proof of this result based on the classical isoperimetric inequality can be found in [106]. We also
refer the reader to [55] for a discussion on the cases in which equality holds.

To conclude this section, we recall an inequality due to Hardy and Littlewood (see [119, Chapter 3]):

Theorem 1.10 Let D and E be two functions as above defined onΩ. Then∫
Ω

D(G)E(G) 3G ≤
∫
Ω∗
D∗(G)E∗(G) 3G.

1.2.2 Steiner symmetrization

We now introduce another rearrangement, the Steiner symmetrization, which is used in Section 2.4 to
prove that radial data lead to a radially symmetric solution for a problem of the form

max
(

�1((),

where�1(() denotes the principal eigenvaluewhenwe add a stiffener ( (modeled as a one-dimensional
rectifiable set) to a membraneΩ - see Chapter 2 for more details -.

Let 3 ≥ 2 and fix the hyperplane � := {G3 = 0}. For any measurable setΩ ⊂ ℝ3 we denote byΩ′ the
projection onto �, namely

Ω′ :=
{
G′ ∈ ℝ3−1 : (G′, G3) ∈ Ω for some G3 ∈ ℝ

}
.

Moreover, for G′ ∈ ℝ3−1 we denote byΩ(G′) the intersection betweenΩ and all the lines through G′,
which is given by

Ω(G′) = Ω ∩ ({G′} ×ℝ) = {G3 ∈ ℝ : (G′, G3) ∈ Ω} .

Definition 1.4 LetΩ ⊂ ℝ3 be a measurable set. We say that

Ω★ :=
{
G = (G′, G3) : G′ ∈ Ω′, −1

2
|Ω(G′)| < G3 <

1
2
|Ω(G′)|

}
is the Steiner symmetrization ofΩ with respect to the hyperplane {G3 = 0}.

Consequently, the set Ω★ is symmetric with respect to {G3 = 0} and concave in the corresponding
direction 43. Moreover, it is easy to verify that

Ω open =⇒ Ω★ open.

Similarly to the Schwarz rearrangement, it is possible to define the Steiner symmetrization of a
non-negative measurable function D that vanishes at the boundary.

Definition 1.5 Let D as above and denote byΩ(C) the corresponding level sets. The Steiner symmetrization
of D is the function D★ defined onΩ★ as follows:

D★(G) := sup{C > 0 : G ∈ Ω(C)★}.
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The following result summarizes all the fundamental properties of the Steiner symmetrization of a
function. The proof can be found, for example, in the book [78].

Theorem 1.11 LetΩ ⊂ ℝ3 be a measurable set and D a non-negative measurable function. Then

(i) the volume ofΩ coincides with the volume ofΩ★;
(ii) if # : ℝ+ → ℝ is a measurable function, then∫

Ω

#(D(G)) 3G =
∫
Ω★

#(D★(G)) 3G ;

(iii) ifΩ is open and D ∈,1,?
0 (Ω), 1 ≤ ? < ∞, then D★ ∈,1,?

0 (Ω★) and∫
Ω

|∇D |? 3G ≥
∫
Ω★
|∇D★|? 3G ;

(iv) ifΩ is open and D, E ∈ !2(Ω), then ∫
Ω

DE 3G ≤
∫
Ω★
D★E★ 3G.

As an immediate consequence of (ii) we get the following result:

Corollary 1.1 For all 1 ≤ ? < ∞ we have

‖D‖!? (ℝ3) = ‖D∗‖!? (ℝ3).

1.3 Γ-convergence of functionals

The goal of this section is to briefly introduce Γ-convergence and discuss some of the main properties,
particularly those that concern the convergence of minima - see Subsection 2.2.3 for a concrete
application to a shape optimization problem -. The reader may refer to [126] and [12] for a more
thorough introduction, while the original papers on the subject by De Giorgi et all are collected in
[62].

1.3.1 The definition of Γ-convergence

Roughly speaking, Gamma-convergence is a notion of convergence for functionals that is designed to
have, under some conditions, the convergence of minimizers. Indeed, if (X, 3) is a metric space and

�= : X→ [0,∞]

a sequence of lower semicontinuous functionals, then �=
Γ−→ � should imply that a sequence G= of

minimizers for �= converges to a minimum point G of �.

Definition 1.6 (Γ-convergence) Let (X, 3) be a metric space. We say that �= : X→ [0,∞] Γ-converges to
some � : X→ [0,∞] if the following properties hold:

(Γ-i) For every G ∈X and every sequence (G=)=∈ℕ ⊂X such that G= → G, it turns out that

lim inf
=→∞

�=(G=) ≥ �(G). (1.4)
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(Γ-ii) For every G ∈X there is a sequence (G=)=∈ℕ ⊂X such that G= → G and

lim sup
=→∞

�=(G=) ≤ �(G). (1.5)

The sequence (G=)=∈ℕ is usually referred to in the literature as recovery sequence.

Remark 1.3 The condition (1.4) is often called Γ− lim inf inequality, while (1.5) is known as Γ− lim sup
inequality.

1.3.2 Convergence of minima

Proposition 1.1 Let Ḡ= be a minimizer for �= and suppose that � is the Γ-limit of �= . If Ḡ= → Ḡ ∈X, then Ḡ
is a minimizer for �.

Proof. It suffices to prove that, given any G ∈X, we have

�(G) ≥ �(Ḡ).

Let G= be a recovery sequence for G and notice that by minimality �=(Ḡ=) ≤ �=(G=), so we have

lim inf
=→∞

�=(Ḡ=) ≤ lim
=→∞

�=(G=) = �(G),

by (1.5). On the other hand, the inequality

lim inf
=→∞

�=(Ḡ=) ≥ �(Ḡ),

follows immediately from (1.4), and this concludes the proof.

Example 1.1 LetX = ℝ and �=(G) = G2 + sin(=G). We claim that

Γ − lim
=→∞

�=(G) = G2 − 1.

The Γ − lim inf inequality is easy to check because −1 is the minimum of sin(=G). Similarly, given
G ∈ ℝ the recovery sequence is G= ∈ ℝ such that

sin(=G=) = −1 for all = ∈ ℕ.

An immediate consequence is that, if Ḡ= is a minimizer for �=(G), then Ḡ= → 0 as the function G2 + 1
has a unique minimum point which is Ḡ = 0.

Note that Proposition 1.1 requires Ḡ= to converge to some Ḡ ∈X as an assumption. Thus, it makes
sense to introduce the notion of coercivity for sequences:

Definition 1.7 A sequence of functionals �= : X→ [0,∞] is said to be equicoercive if {G=}=∈ℕ is relatively
compact inX whenever

�=(G=) ≤ � < ∞

for some uniform constant � that does not depend on =.

This notion is extremely useful in optimization problems even if we are not using Γ-convergence; for
example, in Subsection 3.2.2, we use equicoercivity to obtain the existence of a minimizer.

Theorem 1.12 Let Ḡ= be a minimizer for �= and suppose that � is the Γ-limit of the sequence �= . If �= is
equicoercive, then {Ḡ=}=∈ℕ is relatively compact inX and each accumulation point is a minimizer for �.
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Remark 1.4 In the applications, we need to choose the “right” topology for the spaceX. In fact, we
need to find a balance between the following two points:

• If the topology is too weak, then the Γ − lim inf inequality has to be tested on more sequences
and thus it may fail.

• If the topology is too strong, then (1.4) is easier but the equicoerciveness (strictly related to
compactness) may fail.

Remark 1.5 The drawback of Theorem 1.12 is that it concerns the convergence of global minima, but it
does not give any information on local minima.

Remark 1.6 From a numerical point of view, Γ-convergence is rather useless because it gives no
information about the rate of convergence of minimizers (so, given Ḡ= , we do not know where to stop
to find a good approximation of Ḡ).

The result of Theorem 1.12 is also used to extrapolate information on the minimizing sequence, but
sometimes it is not possible to do so, as the following example shows:

Example 1.2 LetX = ℝ and �=(G) = G2/= + sin(=G). Then we have

�=
Γ−→ � ≡ −1,

but any G ∈ ℝ minimizes � so the Γ-convergence gives no information on Ḡ= . However, if we consider
the sequence of functionals

�=(G) := =(�=(G) + 1) = G2 + =(sin(=G) + 1),

then it is easy to verify that argmin(�=) = argmin(�=) and

Γ − lim
=→∞

�= = G
2 ,

which admits a unique minimum point; therefore, any minimizing sequence Ḡ= has to be infinitesimal.

1.4 Relaxation of functionals

This section aims to discuss the relaxation of functionals, which is a crucial notion to deal with
optimization problems of the form

min
D∈X

�(D),

where � : X→ [−∞,∞] is a functional that is not lower semicontinuous onX. We will only give a
brief overview, so the reader interested in further applications can read [13, Chapter 11 and 13].

Definition 1.8 The relaxation of � onX, denoted by �̄, is the lower semicontinuous envelope of �, namely

�̄(D) := lim inf
E→D

�(E) = inf
{
lim inf
=→∞

�(E=) : E= → D
}

Remark 1.7 By construction (taking the constant sequence E= ≡ D), the relaxation �̄ is the larger lower
semicontinuous functional onX which satisfies �̄ ≤ �.

Proposition 1.2 Let � be a coercive functional onX. Then �̄ is also coercive.
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Proof. Notice that for every" ∈ ℝ we have{
D ∈X : �̄(D) ≤ "

}
⊂ {D ∈X : �(D) ≤ "},

so the level sets of �̄ are relatively compact inX, which means that �̄ is coercive.

Remark 1.8 The relaxation �̄ is lower semicontinuous by definition so, if � is coercive, then �̄ always
admits a minimizer onX even if � does not. More precisely,

I minimizers of �̄ give information on the behavior of minimizing sequences for �;
I the functional � has a minimizer if and only if there is D̄ ∈X that minimizes �̄ and satisfies

�̄(D̄) = �(D̄).

At this point, one might wonder how to determine whether or not a functional � is the relaxation of �.
The following proposition answers this question.

Proposition 1.3 A functional � is the relaxation of � if the following properties hold:

(1) � is lower semicontinuous onX and �(D) ≤ �(D) for all D ∈X;
(2) for all D ∈X there exists a sequence (D=)=∈ℕ ⊂X such that

D= → D and �(D) = lim
=→∞

�(D=).

The condition (ii) can be replaced by a weaker one which is often easier to verify. For this, we introduce
the notion of dense in energy:

Definition 1.9 Let � : X→ [−∞,∞] be a functional. A set D ⊂X is �-dense (or dense in energy for �) if
for all D ∈X there exists a sequence (D=)=∈ℕ ⊂ D such that

D= → D and �(D) lim
=→∞

�(D=).

As a consequence, the proposition above can be restated as follows:

Proposition 1.4 A functional � is the relaxation of � if the following properties hold:

(1) � is lower semicontinuous onX and �(D) ≤ �(D) for all D ∈X;
(2) for all D ∈ D, where D is �-dense, there exists a sequence (D=)=∈ℕ ⊂X such that

D= → D and �(D) = lim
=→∞

�(D=).

We now have all the ingredients to describe the strategy known as direct method in the most general
case, focusing on the importance of relaxation for the problems studied in this thesis.

Let � be a functional defined on some spaceX′ of "regular" (depending on the problem) functions
and suppose thatX′ has no good compactness properties.

I Step 1. Find a larger space X ⊃ X′ and an extension of �, denoted by �ext, such that �ext is
coercive and lower semicontinuous onX.

I Step 2. Prove the existence of a function D̄ ∈X that solves minD∈X �ext(D).
I Step 3. Use regularity theory to conclude that D̄ ∈X′ so that �(D̄) = minD∈X′ �(D).

Remark 1.9 This strategy looks simple, but there are a couple of issues regarding the last step that we
need to consider. Indeed, regularity theory is usually challenging, and (as we will see in Chapter 3) it
can happen† that the minimizer D̄ of �ext is not an element ofX′.
† In which case, putting additional assumptions on the functional may help overcome the issue.
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The relaxation plays a fundamental role in the direct method described here because we proved that
if we start with a coercive functional �, then �̄ is coercive and lower semicontinuous. Therefore, to
conclude this section, we give a definition of relaxation which is more suitable for our goals:

Definition 1.10 Let � : X′ ⊂ X → [−∞,∞] be a functional. The relaxation of � to X is defined as the
relaxation possibly extended to∞. More precisely, we have

�̄(D) =
{

inf {lim inf=→∞ �(D=) : (D=)=∈ℕ ⊂X′ and D= → D} if D ∈X′

+∞ otherwise.

This strategy based on finding minimizers of a relaxed functional and, through regularity theory,
proving that they are solutions to the initial problem, will be employed in Chapter 2, Chapter 3 and
Chapter 4 to deal with some shape optimization problems.

1.5 Compactness in BV-spaces

In this section, we develop the theory of (special) bounded variation spaces since it is the natural
framework of the work [36], which is the main topic of Chapter 3.

We will mainly discuss the properties needed in our shape optimization problem, so we refer the
reader to [6] and the references therein for a complete overview of BV-spaces.

Definition 1.11 Let � ⊂ ℝ3 be an open set. The total variation of D ∈ !1(�) is defined as∫
�

|�D | := sup
{∫

�

D div()) 3G : ) ∈ �1
2 (�,ℝ3), ‖)‖∞ ≤ 1

}
.

The space BV(�) consists of all functions with bounded total variation in �, namely

BV(�) :=
{
D ∈ !1(�) :

∫
�

|�D | < +∞
}
.

In other words, a function D ∈ !1(�) belongs to BV(�) if and only if its distributional derivative �D belongs to
the space of finite vector-valued Radon measures.

Given a function D : ℝ3 → ℝ the precise representative of D, which belongs to the same equivalence
class in !1(ℝ3), is defined by setting

u(G) := lim
A→0
−
∫
�A (G)

D(H) 3H. (1.6)

We now introduce the notion ?-capacity as it will be used multiple times throughout this thesis.

Definition 1.12 Let  be a compact subset of ℝ3, 3 ≥ 2, and let ? ∈ [1, 3). The ?-capacity of  is

cap?( ) := inf
{∫

ℝ3

|∇ 5 |? 3G : 5 ∈ �∞2 (ℝ3), 5 (G) ≥ 1 for all G ∈  
}
.

In Section 4.3 we expand this definition by introducing ?-capacitary measures and the notion of
�?-convergence to prove existence for a shape optimization problem.

Remark 1.10 If D ∈,1,?(ℝ3), 1 < ? < ∞, the limit (1.6) exists up to a set of ?-capacity zero.
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Definition 1.13 Let D ∈ BV(�). The asymptotic values (or traces) of D near a point of discontinuity G ∈ � are
defined, respectively, as follows:

D−(G) = sup
{
C ∈ ℝ : lim

A→0

|�A(G) ∩ {D < C}|
|�A(G)|

= 0
}
,

D+(G) = inf
{
C ∈ ℝ : lim

A→0

|�A(G) ∩ {D > C}|
|�A(G)|

= 0
}
.

Moreover, we denote by �D the set of all jump points, which are all points of discontinuity G ∈ � for which the
traces are well-defined and D+(G) ≠ D−(G).

We now have all the ingredients needed to define the class of special functions of bounded variation,
which De Giorgi and Ambrosio first introduced in [63].

Definition 1.14 Let � ⊆ ℝ3 be an open set. The class SBV(�) of special functions with bounded variation on
� consists of all D ∈ BV(�) such that the singular part �DB of the measure �D is concentrated on the set{

G ∈ � : D(G) ≠ D(G+) + D(G−)
2

}
.

In other words, the singular part of the measure �D is concentrated on the set of points where the precise
representative of D is not defined.

1.5.1 Lower semicontinuity and compactness in SBV(ℝ3)

As mentioned above, the space SBV(ℝ3) is the natural framework to solve the optimization problem
presented in Chapter 3, but the free discontinuity functional

F(D) =
∫
ℝ3∩{D≠0}

9(G, D,∇D) 3G +
∫
�D

[
6(G, D+) + 6(G, D−)

]
3H3−1

is not coercive because pathological behaviors are, in principle, possible. Thus, following [23] and
considering that we do not have a natural constraint on the !∞-norm of D, we introduce

X� :=
{
D : D ∨ &, D ∧ (−&) ∈ GSBV(ℝ3) for all & > 0, D = 0 on ℝ3 \ �

}
.

The reason is that we want to avoid functions that either oscillate a lot when sufficiently close to zero
or are unbounded. Indeed, the space GSBV is defined as follows:

Definition 1.15 Let � ⊆ ℝ3 be open. We say that D ∈ GSBV(�) if for every" > 0 we have

D ∧" and D ∨ (−") are in SBV(�).

In other words, a function belongs to GSBV(�) if and only if any truncation that makes the !∞-norm finite is
an element of SBV(�).

Going back to our framework, we consider GSBV(ℝ3) equipped with the weak topology, so the
following characterization in SBV(ℝ3) ∩ !∞(ℝ3) can be useful:

Remark 1.11 Let� ⊆ ℝ3 be an open set. A sequence {D=}=∈ℕ converges to Dweakly in SBV(�)∩!∞(�)
if the following properties are satisfied:

(1) D=(G) → D(G) at a.e. G ∈ �;
(2) ∇D= ⇀ ∇D weakly in !1(�);
(3) both ‖D= ‖∞ and H3−1(�D= ) are uniformly bounded.
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This also explains why in [36] we cannot work directly in SBV(ℝ3). Indeed, if we have a positive
constant such that F(D=) ≤ �, then the jump set satisfy

H3−1(�D= ) ≤ 2= ,

where 2= is a constant that may depend on = and thus (3) is not verified (see Remark 3.4).

The lower semicontinuity of functionals defined in SBV(�)was first studied by Ambrosio in [7] and
will play a crucial role in Chapter 3.

Theorem 1.13 Let !(G, B, ?) be a Carathéodory function on ℝ3 ×ℝ ×ℝ3 and let #(G, 0, 1) be a continuous
function on ℝ3 ×ℝ ×ℝ. Suppose that

(i) the function !(G, B, ·) is convex;
(ii) there is A > 1 such that the estimate

!(G, B, ?) ≥ |? |A

holds for all ? ∈ ℝ3, all B ∈ ℝ and a.e. G ∈ ℝ3;
(iii) the function # is non-negative and satisfies the triangular inequality

#(G, 0, 1) ≤ #(G, 0, 2) + #(G, 2, 1).

Then, for every open set � ⊂ ℝ3, the functional

�(D) =
∫
�

!(G, D,∇D) 3G +
∫
�D

#(G, D+ , D−) 3H3−1

is lower semicontinuous in SBV(�) with respect to the !1
loc(�) topology.

Remark 1.12 In [7] this result is proved under milder assumptions. However, in Chapter 3 we have

�1
[
6(D+) + 6(D−)

]
≤ #(G, D+ , D−) ≤ �2

[
6(D+) + 6(D−)

]
,

with �1 , �2 > 0 and 6 a non-negative function; hence, the triangular inequality is automatically
satisfied in view of the assumptions in Subsection 3.1.2.

Remark 1.13 Notice that, if !(G, ·, ·) is lower semicontinuous then, using an approximation argument
and Beppo-Levi’s lemma, we easily deduce that

(B, ?) ↦−→ !(G, B, ?) is continuous for a.e. G ∈ ℝ3 .

As a consequence, the assumption of Theorem 1.13 can be weakened in such a way that this result can
be applied in the framework of Chapter 3.

Remark 1.14Note that this result also applies to sequences D= in GSBV(�). Indeed, using the same
notations, we can write the functional as

�(D) =
∫
�∩{D<"}

!(G, D,∇D) 3G +
∫
�D∩{D<"}

#(G, D+ , D−) 3H3−1 + >(1) =: �1(D) + >(1)

for " → ∞, which means that �1 is lower semicontinuous in SBV(�) with respect to the !1
loc(�)

topology by Theorem 1.13. In particular, we have

lim inf
=

�1(D=) ≥ �1(D)

so, taking the limit as" →∞, proves that the same is true with � in place of �1.
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To conclude this section, we present a result proved by Ambrosio in [6] that gives the existence of a
converging subsequence under certain conditions.

Theorem 1.14 Let � be an open bounded set in ℝ3, let ) : [0,∞) → [0,∞] be a convex non-decreasing
function satisfying the condition

lim
C→∞

)(C)
C

= ∞,

and let Θ : [0,∞] → [0,∞] be a concave non-decreasing function such that

lim
C→0+

Θ(C)
C

= ∞.

Let (D=)=∈ℕ ⊂ SBV(�) ∩ !∞(�) be a sequence such that ‖D= ‖!∞ ≤ � for a suitable constant, and

sup
=∈ℕ

{∫
�

)(|∇D= |) 3G +
∫
�D=

Θ(|D+= − D−= |) 3H3−1
}
< ∞. (1.7)

Then there exists a subsequence converging in measure to a function D ∈ SBV(�) ∩ !∞(�) such that

∇D=: ⇀ ∇D weakly in !1(�).

Remark 1.15 If we take the concave non-decreasing function

Θ(C) :=

{
0 if C = 0,
1 if C > 0,

and the convex non-decreasing function

)(C) = |C |@ ,

then condition (1.7) can be rewritten as

sup
=∈ℕ

{∫
�

|∇D= |@ 3G +H3−1(�D= )
}
< ∞. (1.8)

The functional appearing in (1.8) is usually known as Mumford-Shah functional and it will play a
fundamental role in Section 3.4 to prove that any optimal shape is open.

Lemma 1.1 Let (D=)=∈ℕ ⊂ GSBV(�) be a sequence and assume that the following properties hold:

(1) There are 21 , 22 > 0 and @ > 1 such that ‖D= ‖!@ (�) ≤ 21 and ‖∇D= ‖!@ (�) ≤ 22.
(2) There is 23 > 0 such that

∫
�D=
|D= |@ 3G ≤ 23.

(3) There is 24 > 0 such that H3−1(�D= ) ≤ 24.

Then D= converges, up to subsequences, strongly in !@(�) to a function D ∈ GSBV(�) that satisfies the
properties (1)–(3) with the same constants.

Proof. Using (1) we deduce that D= converges (up to subsequences) to some D weakly in !@(�) and

‖D‖!@ (�) ≤ lim inf
=→∞

‖D= ‖!@ (�) ≤ 21 ,

so, to prove that D= converges strongly to D in !@(�), it is enough to show that∫
�

|D= |@ 3G
=→∞−−−−→

∫
�

|D |@ 3G.
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Now notice that the weak derivative of D= can be written as the sum of the absolutely continuous part
and the singular one; more precisely, we have

�D= = ∇D= 3G + D= H3−1x�D= .

If we let F= := D@= , then a simple computation shows that its weak derivative is given by

�F= = D
@−1
= ∇D= 3G + D

@
= H3−1x�D= ,

so that its total variation as a measure is given by∫
�

|�F= | =
∫
�

D
@−1
= ∇D= 3G +

∫
�D=

|D= |@ 3H3−1

≤
∫
�

(|D= |@ + |∇D= |@) 3G +
∫
�D=

|D= |@ 3H3−1

≤ 2@1 + 2
@

2 + 2
@

3 =: �.

Consequently, the sequence F= converges to some F in BV(�) and, in particular, this convergence is
strong with respect to the !1(�) topology. Finally, we notice that∫

�

|�D= | =
∫
�

∇D= 3G +
∫
�D=

D= 3H
3−1

≤
∫
�

(1 + |∇D= |@) 3G +
∫
�D=

(1 + |D= |@) 3H3−1

≤ |�| +H3−1(�D= ) +
∫
�

|∇D= |@ 3G +
∫
�D=

|D= |@ 3H3−1

≤ |�| + 2@4 + 2
@

2 + 2
@

3 =: �̃ ,

which means that D= converges strongly to D in !1(�) and weakly in !@(�). Therefore, since∫
�

|D= |@ 3G =
∫
�

|F= | 3G
=→∞−−−−→

∫
�

|F | 3G,

we easily deduce that D = F and conclude the proof.

1.6 Perimeter and isoperimetrical inequality

The problem of minimizing the perimeter for a fixed volume < > 0 is extremely important in the
theory of shape optimization and can be written as

�(<) := inf
|� |=<

Per�,

where � ranges among all subsets of ℝ3. A priori, there is no reason a solution should exist in such a
large class of admissible sets, but, as we will see, any ball of volume < is a minimizer.

That said, we first need to establish what perimeter of a set exactly means. If � is regular enough (e.g.,
with Lipschitz boundary), then it makes sense to define

Per� := H3−1(%�),

where %� is the topological boundary of �. However, this definition is not good enough if � is an
irregular set as the next example shows:
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Example 1.3 Let � be the unit disk. If we remove the diameter, we obtain a new set �̃ ⊂ ℝ# such that

H3−1(%�) < H3−1(%�̃)

since the crack inside contributes to the H3−1-measure. However, as far as the perimeter is concerned,
a different definition is required since we still would like to have

Per� = Per �̃.

Definition 1.16 (Finite perimeter) A set � ⊂ ℝ3 has finite perimeter if 1� ∈ BV(ℝ3), where

1�(G) :=

{
1 if G ∈ �,
0 otherwise.

Moreover, the perimeter of � is given by the total variation of the distributional derivative:

Per� := |�1� | (1.9)

Remark 1.16 If � has finite perimeter and Lipschitz boundary, then we have

�1� = −�� H3−1(%�)

in sense of distributions. As a consequence, the total variation is given by

|�1� | = H3−1(%�),

which means that (1.9) coincides with the intuitive notion of perimeter given above for regular sets.

A simple consequence of the definition (1.9) is that the topological boundary is not reasonable in our
framework, and therefore, we introduce the notion of reduced boundary:

Definition 1.17 (Reduced boundary) Let � be a set of finite perimeter. We say that G belongs to the reduced
boundary of �, and we write G ∈ %∗�, if there exists � ∈ S3−1 such that

lim
&→0+

|(�+(G, &) ∩ �)|
|�+(G, &)| = 0 and lim

&→0+
|(�−(G, &) ∩ �)|
|�−(G, &)| = 1,

where �+ and �− are respectively defined as

�+(G, &) = {H ∈ �(G, &) : (H − G) · � > 0},
�−(G, &) = {H ∈ �(G, &) : (H − G) · � < 0}.

In this case, the unit vector � is unique and referred to in the literature as outer normal to %∗� at G.

Theorem 1.15 Let � be a set of finite perimeter. Then

Per� = H3−1(%∗�).

For the proof of this result and a complete discussion of finite perimeter sets we encourage the reader
to consult the book [92] and the references therein.

Definition 1.18 The 3-dimensional density of � at G is defined by

Θ3(�, G) := lim
A→0+

|� ∩ �(G, A)|
|�(G, A)|
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wherever this limit exists. We denote by �: the set {? ∈ � : Θ3(�, ?) = :}.

Remark 1.17 If � has finite perimeter, then the function 1� belongs to !1(ℝ3) and

? ∈ �0 or ? ∈ �1 for H3 − a.e. ? ∈ �.

In particular, if ? ∈ %∗�, then ? ∈ �1/2. Moreover, we have the inclusions

%∗� ⊆ �1/2 ⊆ ℝ3 \
(
�0 ∪ �1) .

1.6.1 Isoperimetrical inequality

We can now take a step back to look at the minimization problem

�(<) := inf
|� |=<

Per�.

Notice that for every G ∈ ℝ3 and � > 0 we have

|� + G | = |� | and |�� + G | = �3 |� |,

so the perimeter is translation-invariant and scales with a factor; namely, we have

Per(�� + G) = �3−1 Per�.

Therefore, it is enough to solve the isoperimetric problem for a fixed volume (say < = 1) and deduce
the value of the minimum for every < > 0 using the formula

�(<) = < 3−1
3 �(1).

The goal of this section is to prove that the set with minimal perimeter for a fixed volume is the ball,
but first we need a technical result:

Lemma 1.2 Let � be a minimizer for � which is symmetric with respect to the origin. Then � is a ball.

Theorem 1.16 (Faber-Krahn) Let � be an isoperimetrical set. Then � is a ball. In particular, for any ( ⊂ ℝ3

we have the isoperimetric inequality

Per ( ≥ 3 |( |(3−1)/3 |�1 |1/3 , (1.10)

where �1 is a unit sphere in ℝ3 and equality holds if and only if ( is a ball.

This result was first a conjecture by Rayleigh and was later proven (independently) by Faber [81] and
Krahn [114].

Proof. Up to translations we can always assume that��� ∩ {G1 > 0, . . . , G 9 > 0}
�� = 2−9 |� | for any 1 ≤ 9 ≤ 3.

Now �1 is isoperimetric because {G1 = 0} bisects �, where �1 is the Steiner symmetrization of the
right part, that is,

�1 =
{
G ∈ ℝ3 : (|G1 |, G2 , . . . , G3) ∈ �

}
.

Similarly, the hyperplane {G2 = 0} bisects �1 (although it may not bisect �), and hence

�2 =
{
G ∈ ℝ3 : (|G1 |, |G2 |, G3 , . . . , G3) ∈ �

}
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is also isoperimetric. We can iterate the argument to find that

�3 =
{
G ∈ ℝ3 : (|G1 |, . . . , |G3 |) ∈ �

}
is isoperimetric. Furthermore, by construction it is symmetric with respect to the origin, so we can use
Lemma 1.2 to infer that �3 is a ball. Then the set

� ∩ {G1 > 0, . . . , G3 > 0}

is also a ball and, since we can do the same for all possible quadrants of the spaceℝ3 , we immediately
conclude that � must be a ball and (1.10) holds.
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Optimal one-dimensional structures for the

principal eigenvalue 2

As mentioned in the previous chapter, the problem of finding the vibration modes of an elastic
membraneΩ ⊂ ℝ2 fixed at its boundary %Ω is equivalent to solving the problem{

−ΔD = �D inΩ,
D = 0 on %Ω.

Moreover, we mentioned that the principal eigenvalue �1(Ω) can be characterized as the solution of a
variational problem; more precisely, we have

�1(Ω) = min

{∫
Ω
|∇D |2 3G∫
Ω
|D |2 3G

: D ∈ �1
0 (Ω), D ≠ 0

}
.

This chapter aims to present the results obtained in [35], which investigates how �1(Ω) is modified if
we attach to the membrane a one-dimensional stiffener ( (modeled as a one-dimensional rectifiable
set ( ⊂ Ω). In this case, the principal eigenvalue depends on ( and is given by

�1(() := inf

{∫
Ω
|∇D |2 3G + <

∫
(
|∇�D |2 3H1∫

Ω
|D |2 3G

: D ∈ �∞0 (Ω), D ≠ 0

}
, (2.1)

where the parameter < is the stiffness coefficient of ( (and depends on the material), ∇� the tangential
derivative along ( and H1 the one-dimensional Hausdorff measure.

The following example shows how this problem naturally arises in applications andwhy it is important
to study the regularity properties of optimal stiffeners.

Example 2.1 LetΩ be a two-dimensional heat conductor with an initial temperature D0 (zero at the
boundary). We are interested in cooling it as fast as possible, so if we add one-dimensional conducting
wires (, the corresponding heat problem reads as follows:

%CD(C , G) +A(D(C , G) = 0 if (C , G) ∈ (0, )) ×Ω,
D = 0 on (0, )) × %Ω,
D(0, G) = D0(G) if G ∈ Ω,

where A( is a second-order operator that depends on ( and is given in weak form by

〈A(D, )〉 :=
∫
Ω

∇D∇) 3G + <
∫
(

(∇�D)(∇�)) 3H1 , for D, ) ∈ �1
0 (Ω) ∩ �1(().

Using Fourier analysis we can write the solution as

D(C , G) =
∑
=≥1

2=D=(G)e−C�= (() , with 2= =
∫
Ω

D0D= 3G,

where �=(() are the eigenvalues of the operator A( and D= the corresponding (normalized) eigenfunc-
tions. Since by Theorem 1.3 we have

0 < �1(() ≤ �2(() ≤ . . . and �=(() ↗ +∞,

then the problem of coolingΩ as fast as possible reduces to finding the structure (, in a suitable class
of admissible sets, that maximizes the principal eigenvalue �1(().
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2.1 Formulation of the problem and main results

In [35] we consider the shape optimization problem corresponding to the functional (2.1) the following
two classes of admissible choices for the stiffener:

A! := {( ⊂ Ω : ( rectifiable and L(() ≤ !} ,
A2
! := {( ⊂ Ω : ( rectifiable, connected and L(() ≤ !} ,

where ! > 0 is fixed and L(() is the length of (. This constraint is natural since, in applications, there
are costs associated with the material and other factors (e.g., weight) to consider.

The class A2
!
can be easily generalized to admit an upper bound on the number of connected

components, so we also consider

A
2,#
!

:=
{
( ⊂ Ω : ( rectifiable, ≤ # connected components and L(() ≤ !

}
.

No essential differences exist between # > 1 and # = 1 concerning the proof of existence and
regularity of optimal structures. Nonetheless, in Section 2.6 we discuss the problem of finding the
optimal number of connected components when # > 1.

2.1.1 Setting of the problem for rectifiable sets

LetΩ ⊂ ℝ2 be a bounded set with Lipschitz boundary. In the first part of this chapter, we discuss the
maximization problem associated to the first class, namely

max {�1(() : ( ∈ A!} , (2.2)

where �1(() is given by (2.1). Due to the lack of compactness in A! we cannot solve the problem
directly, so the first step is to find a suitable relaxation (see Section 1.4 for more details).

Let ((=)=∈ℕ ⊂ A! be a maximizing sequence and consider the auxiliary measures given by

�= := H1x(= .

By definition, the total variation of �= is uniformly bounded by the constant !, so we can find a
subsequence �=: weakly-★ converging to a suitable measure �. If we now set

�1(�) := inf

{∫
Ω
|∇D |2 3G + <

∫
|∇D |2 3�∫

Ω
|D |2 3G

: D ∈ �∞2 (Ω), D ≠ 0

}
,

it is easy to verify that, in general, the minimum is not attained in �∞2 and minimizing sequences
converge strongly in !2 and weakly in �1

� to solutions of the relaxed problem

min

{∫
Ω
|∇D |2 3G + <

∫
|∇�D |2 3�∫

Ω
|D |2 3G

: D ∈ �1
0 (Ω) ∩ �1

� , D ≠ 0

}
.

Here ∇� is a kind of tangential gradient that was defined in [16] for every measure �. Moreover, the
Sobolev space �1

� is defined as the space of all functions D such that∫
|∇�D |2 3� < ∞.

Remark 2.1 If � = H1x(, then ∇� coincides with the tangential gradient on (, which means that

� = H1x( =⇒ �1(�) = �1(().
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In particular, the functional �1(�) extends (2.1) to any measure � defined onΩ. Thus, the relaxation of
the optimization problem (2.2) is given by

max
{
�1(�) : � ∈ A!

}
, (2.3)

where A! is the class of all non-negative measures onΩwith total variation bounded by !, i.e.,

A! =
{
� : �measure onΩ, |�| ≤ !

}
.

Proposition 2.1 The optimization problem (2.3) admits a solution �̄ ∈ A! that satisfies |�̄| = !.

Proof. For every D ∈ �∞2 (Ω), the functional

A! 3 � ↦−→
∫
Ω
|∇D |2 3G + <

∫
|∇D |2 3�∫

Ω
|D |2 3G

∈ ℝ

is weakly-★ continuous, so �1(�) is weakly-★ upper semicontinuous as it is given by the infimum of
such functionals. The existence now follows from the fact that

|�| ≤ ! for all � ∈ A! =⇒ A! is weakly-★ compact.

Finally, the saturation of the constraint (|�̄| = !) follows from the fact that the functional above is
monotone increasing with respect to �.

Remark 2.2 The equivalent expression for the principal eigenvalue

�1(�) = min

{∫
Ω
|∇D |2 3G + <

∫
|∇�D |2 3�∫

Ω
|D |2 3G

: D ∈ �1
0 (Ω) ∩ �1

� , D ≠ 0

}
requires more refined tools (such as the tangential gradient ∇� and the Sobolev space �1

�), and for
the precise definitions, we refer to [16]. However, we will see that in our case, any optimal measure �̄
obtained in Proposition 2.1 can be written as

�̄ = '̄ 3G for some '̄ ∈ !?(Ω),

which, in turn, implies that there is no need to employ such refined notions since

∇�̄D = ∇�D and �1
0 (Ω) ∩ �1

�̄ = �
1
0 (Ω).

Before stating our main result for (2.2), we introduce a technical assumption necessary to have a
bound on the !∞-norm of the gradient on the boundary %Ω.

Definition 2.1 (External Ball Condition) A setΩ ⊂ ℝ3 satisfies the external ball condition at G0 ∈ %Ω with
radius � > 0 if there exists H0 ∈ ℝ3 such that

�(H0 , �) ⊂ ℝ3 \Ω and G0 ∈ %�(H0 , �).

Moreover, we say thatΩ satisfies the uniform external ball condition if there is � > 0 such that the external
ball condition holds at all G0 ∈ %Ω with the same radius �.

Theorem 2.1 LetΩ be a connected∗ subset of ℝ2 with Lipschitz boundary satisfying the uniform external ball

∗ This assumption is not necessary, but it is used to make the presentation more clear since we can work with a unique
eigenfunction (of fixed !2 norm) which is positive on allΩ.
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condition. Then the relaxed problem (2.3) admits a solution of the form

�̄ = '̄ 3G,

where '̄ belongs !?(Ω) for all ? < ∞, is equal to zero almost everywhere on the set

{G ∈ Ω : |∇D̄' |(G) < ‖∇D̄'‖∞}

and the auxiliary function D̄' is obtained as a solution of the following problem:

�1(�̄) = max
�∈A!

�1(�) = min
D∈�1

0 (Ω), D≠0

∫
Ω
|∇D |2 3G + <!‖∇D‖2∞∫

Ω
|D |2 3G

=

∫
Ω
|∇D̄' |2 3G + <!‖∇D̄'‖2∞∫

Ω
|D̄' |2 3G

.

Moreover, the following additional regularity properties hold:

(1) ifΩ is convex, then '̄ belongs to !∞(Ω);
(2) if %Ω ∈ �2,, then there exists � ∈ (0, 1) that depends on , such that '̄ ∈ �1,�(Ω̄).

We prove this result in Section 2.2 except for the convex case, discussed in Section 2.3. It requires an
entirely different strategy due to some technical limitations (see Remark 2.7).

Moreover, Section 2.4 discusses the case in which the initial data are radially symmetric. We show that
it is possible to find an explicit formula for the optimal density '̄.

2.1.2 Setting of the problem for rectifiable and #-connected sets

In the second part of this chapter we consider the connected case, namely

max
{
�1(() : ( ∈ A2

!

}
. (2.4)

As above, it is necessary to find a suitable relaxation so let ((=)=∈ℕ ⊂ A2
!
be a maximizing sequence

and consider the corresponding auxiliary measures

�= := H1x(= .

The total variation is uniformly bounded by ! so there exists a subsequence �=: that converges in the
weak-BC0A topology to a measure � that satisfies the following property

spt� = (,

where ( is a closed connected set as it is obtained as the limit of the sequence (= , which is compact
with respect to the Hausdorff convergence. Moreover, by Gołąb’s theorem [93] we have

� ≥ H1x(,

which implies L(() ≤ �(() ≤ !, and therefore ( ∈ A2
!
is an admissible competitor. Consequently, the

relaxation of (2.4) is given by the optimization problem

max{�1(�) : � ∈ A2!}, (2.5)

where A2
!
is the class of measures defined as follows:

A2! :=
{
� : �measure onΩ, spt� = ( closed, connected and � ≥ H1x(} .

Proposition 2.2 The optimization problem (2.5) admits a solution �̄ ∈ A2
!
.
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Proof. The same argument used in Proposition 2.1 works since the weak-★ compactness of A2
!
follows

from the discussion above.

We are now ready to state the main result in A2
!
, which is a weaker version of Theorem 2.1 due to the

additional constraint "connected". Nonetheless, in Section 2.6 we discuss possible improvements of
this theorem by looking at what is known for the energy problem.

Theorem 2.2 The optimization problem (2.5) admits a solution of the form

�̄ = '̄ H1x(,

where ( ⊂ Ω̄ is closed and connected, L(() ≤ !, '̄ ∈ !1(() and '̄ ≥ 1 on (.

If we allow # connected components, # > 1, then the relaxation of (2.4) is given by

max
{
�1(�) : � ∈ A2,#

!

}
, (2.6)

where A2,#
!

is the class of measures defined as follows:

A
2,#
!

:=
{
� : �measure onΩ, spt� = ( closed and #-connected and � ≥ H1x(} .

The same proof given for Theorem 2.2works, withminimal changes, for every# > 1; as a consequence,
we get for free the following result:

Theorem 2.3 The optimization problem (2.6) admits a solution of the form

�̄# =
ℓ∑
9=1

'̄ 9H
1x( 9 , with ℓ ≤ #,

where each ( 9 ⊂ Ω̄ is closed and connected, the total length is ≤ !, '̄ 9 ∈ !1(( 9) and '̄ 9 ≥ 1 on ( 9 .

Remark 2.3 This theorem does not give the optimal number of connected components; we will discuss
this issue in more detail in Section 2.6.

2.2 Proof of Theorem 2.1 for non-convex domains

In this section, we prove that ifΩ satisfies the uniform external ball condition, any optimal measure �̄
given by Proposition 2.1 can be written as '̄ 3G, where '̄ solves the optimization problem

max{�1(') : ' ∈ A!} (2.7)

and �1(') is defined by

�1(') := min
D∈�1

0 (Ω)\{0}

∫
Ω
(1 + <')|∇D |2 3G∫

Ω
|D |2 3G

.

Furthermore, we will see that the optimal densities solving (2.7) satisfy some higher-integrability
properties such as '̄ ∈ !?(Ω) for all ? < ∞.
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2.2.1 Outline of the section

Let �̄ be any optimal measure given by Proposition 2.1. The strategy used to prove its existence does
not give any information on its regularity, and thus, to show that

�̄ = '̄ 3G with '̄ ∈ !?(Ω),

we first study the optimization problem (2.3) under an additional constraint. Namely, for every ? > 1
we consider max� �1(�) among all � ∈ A! satisfying the following properties:

' = � 3G and
[∫
Ω

'?(G) 3G
]1/?
≤ !.

In Subsection 2.2.2, we prove that each max-min problem (indexed by ? > 1) yields an optimal density
'? , which can be written explicitly in terms of an auxiliary function D? . If we introduce

�?(D) :=

∫
Ω
|∇D |2 3G + <!‖|∇D |2‖!?′ (Ω)∫

Ω
|D |2 3G

,

then D? can be characterized as the unique positive solution with norm in !2(Ω) equal to one of the
associated minimization problem:

min
D∈�1

0 (Ω)\{0}
�?(D).

In Subsection 2.2.3 we show that a suitable extension of the sequence (�?)?>1 Γ-converges to a
functional �1 and, as a consequence, we obtain the same for the corresponding minimizers:

D?
?→1+
−−−−→ D1

with respect to a suitable topology (see Proposition 2.3). Next, in Subsection 2.2.4 we prove that there
is a constant 2 := 2(3, diamΩ, �) > 0 such that

1 + �? ‖∇D? ‖2(?
′−1)

!∞(%Ω)
‖D? ‖!∞(Ω)

≤ 2

for all ? > 1 (see Lemma 2.5 and Lemma 2.6), where � > 0 is the radius for which Ω satisfies the
uniform external ball condition and �? is a constant given by (2.12). Once this almost-uniform estimate
of ∇D? is established, we show that the !A-norm, A > 1, of '? is bounded by

‖'? ‖!A (Ω) ≤ 21(A) for all ? ∈ (1, 1 + �)

for some � > 0. This is achieved in Subsection 2.2.5 by extending De Pascale-Evans-Pratelli a priori
estimate to the eigenvalue problem (Lemma 2.7) and exploiting it to prove Proposition 2.4.

Finally, in Subsection 2.2.6, we put everything together to prove Theorem 2.1, except for of the
!∞-regularity for convex domains since an entirely different strategy involving Monge-Kantorovich
regularity in optimal transport is required; see Section 2.3 for more details.

2.2.2 Optimization in a compact class

We consider the optimization problem (2.7) with an additional constraint, namely

max
{
�1(') : ' ∈ A!,?

}
(2.8)
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where A!,? is the class of measures defined follows:

A!,? =

{
� = ' 3G : ' ≥ 0,

∫
Ω

'? 3G ≤ !?
}
.

In this case, the principal eigenvalue can be rewritten as

�1(') = min
D∈�1

0 (Ω)\{0}

∫
Ω
(1 + <')|∇D |2 3G∫

Ω
|D |2 3G

,

which means that if we can somehow exchange max and min, then we can also find an explicit
expression for the optimal density, as the following result shows:

Lemma 2.1 For every ? > 1 the optimization problem (2.8) admits a unique solution '? given by

'?(G) = !
|∇D? |2/(?−1)(G)
‖ |∇D? |2/(?−1)‖!? (Ω)

, (2.9)

where D? is the unique positive solution with ‖D? ‖!2(Ω) = 1 of the auxiliary problem†

min
D∈�1

0 (Ω)\{0}

∫
Ω
|∇D |2 3G + <!‖|∇D |2‖!?′ (Ω)∫

Ω
|D |2 3G

.

Moreover, the function D? belongs to !∞(Ω)∩,1,2?′
0 (Ω) and, if %Ω ∈ �2, , then there exists � := �() ∈ (0, 1)

such that D? ∈ �2,�(Ω̄), which means that

'? ∈ �1,�(Ω̄).

Proof. To simplify the notations, let

�(', D) =
∫
Ω
(1 + <')|∇D |2 3G∫

Ω
|D |2 3G

,

so that the optimization problem (2.8) can be rewritten as

max

{
min

D∈�1
0 (Ω)\{0}

�(', D) : ' ∈ A!,?

}
.

At this point, we would like to exchange the position of max and min, but the functional is not concave
with respect to u so we only have the trivial inequality

max
'∈A!,?

{
min

D∈�1
0 (Ω)\{0}

�(', D)
}
≤ min

D∈�1
0 (Ω)\{0}

{
max
'∈A!,?

�(', D)
}
. (2.10)

To obtain the opposite inequality, we solve the maximization problem on the right-hand side; indeed,
for any D ∈ �1

0 (Ω) fixed, the maximum is achieved at

'D(G) = !
|∇D |2/(?−1)(G)
‖ |∇D |2/(?−1)‖!? (Ω)

.

† Throughout this thesis, we denote by ?′ the conjugate of ?, i.e. the unique positive real number such that 1/? + 1/?′ = 1.
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Therefore, the right-hand side reduces to the simple minimization problem

min
D∈�1

0 (Ω)\{0}

∫
Ω
|∇D |2 3G + <!‖|∇D |2‖!?′ (Ω)∫

Ω
|D |2 3G

,

which admits a unique positive solution D? with ‖D? ‖!2(Ω) = 1 as a consequence of the direct methods‡
in the calculus of variations. If we now set

'?(G) := !
|∇D? |2/(?−1)(G)
‖ |∇D? |2/(?−1)‖!? (Ω)

,

and we plug it into (2.10), then we get

min
D∈�1

0 (Ω)\{0}
�('? , D) ≤ max

'∈A!,?

{
min

D∈�1
0 (Ω)\{0}

�(', D)
}
≤ E(D?),

where

E(D) :=

∫
Ω
|∇D |2 3G + <!‖|∇D |2‖!?′ (Ω)∫

Ω
|D |2 3G

.

The minimum problem on the left-hand side has D? as a solution (it suffices to compute the Euler-
Lagrange equation), and substituting, we quickly verify that

�('? , D?) = E(D?),

which, in turn, implies that
�('?) = max

'∈A!,?
�1(').

To prove the regularity, we notice D? can be characterized as the unique positive solution of

−div
(
(1 + <'?)∇D?

)
= �1('?)D?

satisfying ‖D? ‖!2(Ω) = 1, so D? ∈ !∞(Ω) follows from a standard argument (see Remark 2.4).

Finally, if %Ω ∈ �2,, then [120] shows that there exists � ∈ (0, 1), depending on  only, such that

D? ∈ �1,�(Ω̄).

A straightforward application of [98, Theorem 1.2.12] gives D? ∈ �2,�(Ω̄) since the coefficient 1 + <'?
of the equation above is �-Hölder continuous as we have

D? ∈ �1,�(Ω̄) + (2.9) =⇒ '? ∈ �0,�(Ω̄).

To conclude this section, we show that �1('?) can be bounded from above uniformly with respect to ?
so that it does not lead to any issue when we take the limit for ? → 1+.

Lemma 2.2 There exists a positive constant 2̃ such that

�1('?) ≤ 2̃ for all ? ≥ 1.

Proof. SinceΩ has finite measure, we can estimate the !?′-norm of |∇D |2 using Hölder’s inequality;

‡ Choosing the topology induced on �1
0 (Ω) by the standard norm for the lower semicontinuity is sufficient.
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more precisely, we have

‖|∇D |2‖!?′ (Ω) ≤ |Ω|1/?
′ ‖|∇D |2‖!∞(Ω) ≤ max{1, |Ω|}‖∇D‖2

!∞(Ω)

for all D ∈,1,2?′(Ω) ∩,1,∞(Ω). It follows that

�1('?) = min
D∈�1

0 (Ω)\{0}

∫
Ω
|∇D |2 3G + <!‖|∇D |2‖!?′ (Ω)∫

Ω
|D |2 3G

≤ min
D∈�1

0 (Ω)\{0}

∫
Ω
|∇D |2 3G +max{1, |Ω|}‖∇D‖2

!∞(Ω)∫
Ω
|D |2 3G

,

and the right-hand side does not depend on ?; moreover, a straightforward application of the direct
method shows that the minimum is achieved at some D̃ ∈ �1

0 (Ω), so

�1('?) ≤

∫
Ω
|∇D̃ |2 3G +max{1, |Ω|}‖∇D̃‖2

!∞(Ω)∫
Ω
|D̃ |2 3G

:= 2̃ , for all ? ≥ 1,

and this concludes the proof.

2.2.3 Γ-convergence as ? → 1+

Let ? > 1 and consider the family of functionals

�?(D) :=


∫
Ω
|∇D |2 3G+<!‖|∇D |2‖

!?
′ (Ω)∫

Ω
|D |2 3G if D ∈,1,2?′

0 (Ω),

+∞ if D ∈ !2(Ω) \,1,2?′
0 (Ω).

In Lemma 2.1 we proved that each �? has a unique minimizer D? with ‖D? ‖!2(Ω) = 1. Our goal is to
prove that this sequence Γ-converges to the functional

�1(D) :=


∫
Ω
|∇D |2 3G+<!‖|∇D |2‖!∞(Ω)∫

Ω
|D |2 3G if D ∈,1,∞

0 (Ω),

+∞ if D ∈ !2(Ω) \,1,∞
0 (Ω),

and deduce that the same is true for (D?)?>1 in a suitable topology. For more details on the definition
and properties of the Γ-convergence we refer the reader to Section 1.3.

Proposition 2.3 IfΩ ⊂ ℝ2 is a bounded set with finite measure, then

�?
Γ−→ �1 in !2(Ω).

Moreover, the sequence of minima (D?)?>1 converges strongly in �1(Ω) to D1 and

lim
?→1+

‖∇D? ‖!2?′ (Ω) = ‖∇D1‖!∞(Ω).

Proof. The same proof given in [40, Proposition 3.3] works with 5 := �1('?)D? . Indeed, the !2-norm
of this term is bounded above since

‖�1('?)D? ‖!2(Ω) = �1('?) ‖D? ‖!2(Ω)︸     ︷︷     ︸
=1

≤ 2̃ ,
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where 2̃ is the constant given in Lemma 2.2. Moreover, we know that D? is the unique positive function
with unitary !2-norm such that

�1('?) =
∫
Ω

|∇D? |2 3G + <!‖|∇D? |2‖!?′ (Ω) ,

so we can also estimate the norm of the gradient by∫
Ω

|∇D? |2 3G = �1('?) − <!‖|∇D? |2‖!?′ (Ω) ≤ 2̃ ,

and this concludes the proof.

2.2.4 Almost-uniform estimate of ‖∇D? ‖∞ on %Ω

In this section, we follow the strategy developed in [40] for the energy to obtain an almost-uniform
estimate on the !∞-norm of ∇D? on %Ω. Notice that it is not uniform because we have

−div
(
�′(|∇D? |2)∇D?

)
= �1('?)D? , where �(C) := C +

�?

?′
C?
′

and �? is given by (2.12), so the quantity ‖D? ‖!∞(Ω) plays a crucial role in the equation.

Lemma 2.3 IfΩ is a bounded Lipschitz subset of ℝ2 and ? ≥ 1, then

D? ∈,2,A(Ω) for all A > 2.

Moreover, ifΩ is �1,1-regular, then D? ∈ �1 (
Ω̄

)
.

This is a well-known fact, and it follows, for example, from [91, Theorem 9.15] and a standard bootstrap
argument to achieve higher regularity.

Remark 2.4 The Sobolev embedding theorem (see, for example, [80]) gives us another proof of the
fact that for all ? > 1 we have D? ∈ !∞(Ω) and

%Ω ∈ �2, =⇒ D? ∈ �1,�(Ω̄) for some �() := � ∈ (0, 1).

Notice that D? ∈ !∞(Ω) does not means that there is a uniform estimate with respect to ?, which is
why in Lemma 2.5 and Lemma 2.6 we only obtain an almost-uniform estimate.

The main ingredient of this almost-uniform estimate is a weak maximum (or comparison) principle
which we state below in the general form (see, for example, [80, Chapter 6]).

Lemma 2.4 (Weak maximum principle) LetΩ ⊂ ℝ2 be a bounded connected open set and let � : [0,∞) →
[0,∞) be a convex function such that �′(0) > 0.

(i) If DΩ is the unique positive solution with ‖DΩ‖!2(Ω) = 1 of{
−div(�′(|∇D |2)∇D) = �1(Ω, �)D inΩ,
D = 0 on %Ω,

then for any $ ⊂ Ω bounded open subset, we have DΩ ≥ D$.
(ii) Let DΩ be as above and denote by D̄ the unique positive solution with ‖D̄‖!2(Ω) = 1 of{

−div(�′(|∇D |2)∇D) = �1(Ω, �)‖DΩ‖!∞(Ω) onΩ,
D = 0 on %Ω.
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Then D̄ ≥ DΩ ≥ D$ for every $ ⊆ Ω.

Remark 2.5 The symbol �1(Ω, �) denotes the principal eigenvalue inΩ of the elliptic operator on the
left-hand side, which depends on the function �.

We are now ready to construct a barrier for ∇D? , starting with the following pointwise estimate:

Lemma 2.5 LetΩ ⊂ ℝ2 be a bounded open set with %Ω ∈ �1,
loc and suppose that it satisfies the external ball

condition at some G0 ∈ %Ω with radius � > 0. Then there is a positive constant 2(|Ω|, !) := 2 such that

1 + �? |∇D? |2(?
′−1)(G0)

‖D? ‖!∞(Ω)
≤ 2

(
1 + diamΩ

�

)3−1

diamΩ, (2.11)

where �? is the constant given by

�? := <!
(∫
Ω

|∇D? |2?
′
3G

)−1/?
. (2.12)

Proof. The auxiliary function

�(C) := C +
�?

?′
C?
′

is convex and, taking into account that ?′ > 1, we have

�′(C) = 1 + �?C?
′−1 =⇒ �′(0) = 1 > 0,

so it can be used to apply Lemma 2.4. Moreover, we can assume without loss of generality that the
center of the external ball is the origin so that we have

Ω ⊂ �'+� \ �� := �',� , where ' = diamΩ.

If we denote by D� the unique positive solution of

−div(�′(|∇D |2)∇D) = �1('?)‖D? ‖!∞(Ω) inΩ

with ‖D�‖!2(Ω) = 1, then by Lemma 2.4 we have D� ≥ D? . In a similar fashion, let* denote the unique
positive solution of

−div(�′(|∇D |2)∇D) = �1(�',� , '?)‖D? ‖!∞(Ω) inΩ

with ‖* ‖!2(Ω) = 1, so by Lemma 2.4 we have * ≥ D� ≥ D? . Moreover, the function * is radially
symmetric and, therefore, in polar coordinates we have{

−A1−3%A(A3−1�(|*′ |2)*′) = �1(�',� , '?)‖D? ‖!∞(Ω) for A ∈ (�, � + '),
*(�) = *(� + ') = 0.

If �1 denotes the radius for which* achieves its maximum value, then we can integrate the equation
and deduce the following estimate:

�3−1
(
1 + �? |*′ |2(?

′−1)
)
*′(�) ≤ �1(�',� , '?)‖D? ‖!∞(Ω)

'(' + �)3
3

.

The left-hand side can be estimated from below using the fact that %A* is positive, while for the
right-hand side, we use the inclusion property of eigenvalues to infer that

Ω ⊂ �',� =⇒ �1(�',� , '?) ≤ �1(Ω, '?) = �1('?).
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Finally, we use Lemma 2.2 to conclude that the estimate (2.11) holds.

IfΩ satisfies the external ball condition uniformly, then we can apply this result at every boundary
point and deduce the following almost uniform estimate.

Lemma 2.6 LetΩ ⊂ ℝ2 be a bounded open set with a �1,
loc boundary. Then the following holds:

(a) IfΩ is convex, then
1 + �? ‖∇D? ‖2(?

′−1)
!∞(%Ω)

‖D? ‖!∞(Ω)
≤ 2̃ diamΩ,

where 2̃ is the constant given in Lemma 2.2.
(b) IfΩ satisfies the uniform external ball condition with radius � > 0, then

1 + �? ‖∇D? ‖2(?
′−1)

!∞(%Ω)
‖D? ‖!∞(Ω)

≤ 2̃
(
1 + diamΩ

�

)3−1

diamΩ.

Notice that the estimate is more precise whenΩ is convex but, as we discuss in Remark 2.7, it is not
enough to prove that the optimal density belongs to !∞(Ω).

2.2.5 Uniform estimate of '? in !A(Ω)

In this section, we prove that the norm in !A(Ω) of '? can be estimated uniformly with respect to ?, at
least for values close to ? = 1.

Remark 2.6 Let A ∈ [1,∞). Then by Hölder’s inequality we have

‖D? ‖!A (Ω) ≤ |Ω|1/A ‖D? ‖!∞(Ω) ≤ max{|Ω|, 1}‖D? ‖!∞(Ω) ,

which means that it is enough to find a uniform estimate on the norm of '? in !A0(Ω) with A0 < ∞, to
deduce that it also holds in !A(Ω) for all A ∈ [1,∞).

The first step is to prove a modification of De Pascale-Evans-Pratelli’s a priori estimate for smooth
domains, stated in [65] for the energy problem.

Lemma 2.7 (A priori estimate) LetΩ ⊂ ℝ3 be a smooth bounded open set with finite volume, fix A ≥ 2 and
let � : [0,+∞) → [0,+∞) be a convex function satisfying �′(0) > 0. If

D ∈ �1 (
Ω̄

)
∩ �2

loc(Ω)

is the unique positive solution with fixed !2-norm of the boundary value problem{
div(�′(|∇D |2)∇D) = �1D inΩ,
D = 0 on %Ω,

(2.13)

then for every & ∈ (0, 1) the following estimate holds:∫
Ω

���′(|∇D |2)��A |∇D |2 3G ≤ 3&
�′(|∇D |2)A

!A (Ω) + |Ω|
(
(A − 1)A
&A−1 + &1−2A

)
�A1‖D‖2A!∞(Ω)

· · · −
(A − 1)2‖D‖2

!∞(Ω)
&

∫
%Ω
��′(|∇D |2)A |∇D |2 3H3−1 ,

where � denotes the mean curvature of %Ω with respect to the outer normal.
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Proof. First, notice that D ∈ �∞(Ω̄) becauseΩ is smooth. If we introduce the auxiliary function

� := �′
(
|∇D |2

)
,

then we can use ! := �A−1D ∈ �1
0 (Ω) as a test function for the equation (2.13). Indeed, a simple

application of integration by parts leads to the identity∫
Ω

�A |∇D |2 3G + (A − 1)
∫
Ω

D�A−1(∇D · ∇�) 3G = �1

∫
Ω

�A−1 |D |2 3G, (2.14)

and, using the Hölder inequality together with Remark 2.6, we can estimate the right-hand side as

�1

∫
Ω

�A−1 |D |2 3G ≤ �1 |Ω|1/A ‖D‖2!∞(Ω)‖�‖
A−1
!A (Ω).

However, it is not possible to do the same for the left-hand side since the integral∫
Ω

D�A−1(∇D · ∇�) 3G

cannot be estimated directly. That said, we can test the equation (2.13) against a different function, for
example # := div(�A−1∇D); it turns out that∫

Ω

div(�∇D)# 3G = −�1

∫
Ω

div(�A−2�∇D)D 3G

= −�1

∫
Ω

(
�A−2 div(�∇D)D + (A − 2)�A−2(∇D · ∇�)D

)
3G

≤ �1

∫
Ω

(
�1�

A−2 |D |2 + (A − 2)�A−2 |∇D · ∇� | |D |
)
3G.

The left-hand side integral can be rewritten more explicitly if we integrate by parts twice (to get rid of
the divergence operator), obtaining∫

Ω

div(�∇D)# 3G = −
∫
Ω

�∇D · ∇# 3G +
∫
%Ω

�#D� 3H
3−1

=

∫
Ω

(�D8)9(�A−1D9)8 3G +
∫
%Ω

�A(D�ΔD − D8D8 9�9) 3H3−1

=

∫
Ω

(�D8)9(�A−1D9)8 3G +
∫
%Ω

�A(D�ΔD − D��)D� 3H3−1

=

∫
Ω

(�D8)9(�A−1D9)8 3G +
∫
%Ω

�AD�(D�ΔD − D��) 3H3−1 ,

where we use the notation

D� := ∇D · � and D�� := Hess(D)� · �

for the first-order and second-order derivatives in the direction of the exterior normal � to %Ω
respectively. It follows that∫

Ω

div(�∇D)# 3G =
∫
Ω

�A ‖Hess(D)‖22 3G + (A − 1)
∫
Ω

�A−2 |∇D · ∇� | 3G

· · · + A
∫
Ω

�A−1�9D8D8 9 3G +
∫
%Ω

�AD�(ΔD − D��) 3H3−1 ,
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where the 2-norm associated to the Hessian matrix is given by

‖Hess(D)‖22 :=
3∑

8 , 9=1
D2
8 9 .

Since D is smooth up to the boundary ofΩ, we can decompose the Laplace operator as the sum of the
normal and tangential part, namely

ΔD = D�� + �D�(G) for all G ∈ %Ω,

where � denotes the mean curvature of %Ω. This implies the estimate

(A − 1)
∫
Ω

�A−2 |∇D · ∇� |2 3G +
∫
%Ω
��A |∇D |2 3H3−1 ≤

∫
Ω

div(�∇D)# 3G (2.15)

since, as one can easily check, we have

A

∫
Ω

�A−1�9D8D8 9 3G +
∫
Ω

�A ‖Hess(D)‖22 3G ≥ 0

being the sum of two non-negative numbers (recall that �9D8D8 9 ≥ 0 follows from the assumptions on
the convex function �). If we plug (2.15) into (2.14) and use Hölder inequality with

? =
A

2
and ?′ =

A

A − 2

we get the following estimate:∫
Ω

�A−2 |∇D · ∇� |2 3G ≤ �2
1

∫
Ω

|D |2�A−2 3G −
∫
%Ω
��A |∇D |2 3H3−1

≤ �2
1‖D‖2!A (Ω)‖�‖

A−2
!A (Ω) −

∫
%Ω
��A |∇D |2 3H3−1.

The conclusion now follows by combining the inequalities obtained so far with the identity (2.14) and
repeatedly applying Young’s inequality

��� ≤ &� + &/���,

which is valid for all & ∈ (0, 1) and  + � = 1 with  ≥ 0 and � > 0. In particular, it turns out that∫
Ω

�A |∇D |2 3G ≤ ‖D‖!∞(Ω)
∫
Ω

�A−1 |∇D · ∇� | 3G + �1‖D‖2!∞(Ω) |Ω|
1/A ‖�‖A−1

!A (Ω)

≤ &‖�‖A
!A (Ω) +

(A − 1)2‖D‖2
!∞(Ω)

&

∫
Ω

�A−2 |∇D · ∇� | 3G

· · · + �1‖D‖2!∞(Ω) |Ω|
1/A ‖�‖A−1

!A (Ω)

≤ &‖�‖A
!A (Ω) + �

2
1

(A − 1)2‖D‖2
!∞(Ω)

&
‖D‖2

!A (Ω)‖�‖
A−2
!A (Ω)

· · · + �1‖D‖2!∞(Ω) |Ω|
1/A ‖�‖A−1

!A (Ω) −
(A − 1)2‖D‖2

!∞(Ω)
&

∫
%Ω
��A |∇D |2 3H3−1

≤ 3&‖�‖A
!A (Ω) + |Ω|

(
(A − 1)A
&A−1 + &1−2A

)
�A1‖D‖2A!∞(Ω)

· · · −
(A − 1)2‖D‖2

!∞(Ω)
&

∫
%Ω
��A |∇D |2 3H3−1 ,
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and this concludes the proof.

This a priori estimate applies to smooth domains only. Therefore, our next step is to prove that smooth
domains can approximate anyΩ satisfying Theorem 2.1’s assumptions so that the inequality of Lemma
2.7 also passes to the limit.

Lemma 2.8 LetΩ be a bounded open set satisfying the uniform external ball condition and letΩ= be a sequence
of smooth open sets with finite volume such that

Ω= ⊇ Ω and |Ω= \Ω|
=→+∞−−−−−→ 0.

Fix ? ∈ [1,∞) and let D? be the minimizer of �? on Ω and D=? the minimizers of �? on Ω= , all positive and
with norm in !2(Ω) equal to one. Then

D=?
=→+∞−−−−−→ D? strongly in �1(ℝ3) and,1,2?′(ℝ3).

The proof of this result is standard and requires minimal changes with respect to the energy case,
which is dealt with in [40, Lemma 3.9].

Proposition 2.4 LetΩ ⊂ ℝ2 be a set with finite perimeter and satisfying the uniform external ball condition
with radius ' > 0. For every A ≥ 2, there are constants

�(Ω) := � and �(A, PerΩ,�1 , diamΩ, ', ‖D1‖!∞(Ω)) := �,

such that the following holds:

‖'? ‖!A (Ω) ≤ � for all ? ∈ (1, 1 + �). (2.16)

Proof. Suppose thatΩ is smooth, let �? be the family of functions defined as

�?(C) := C +
�?

?′
C?
′
,

and notice that D? can be characterized as the unique positive minimizer with ‖D? ‖!2(Ω) = 1 of the
corresponding integral functional

�1
0 (Ω) 3 D ↦−→

∫
Ω

�?(|∇D |2) 3G ∈ ℝ.

A simple computation shows that
�′?(|∇D? |2) − 1 = '? ,

and, since the mean curvature � of a smooth domain satisfies � ≥ −', we can use De Pascale-Evans-
Pratelli’s a priori estimate (Lemma 2.7) to infer that∫

Ω

�A? |∇D? |2 3G ≤ 3&‖�? ‖A!A (Ω) + |Ω|
(
(A − 1)A
&A−1 + &1−2A

)
�1(�?)A ‖D? ‖2A!∞(Ω)

· · · −
(A − 1)2‖D? ‖2!∞(Ω)

&'

∫
%Ω

�A? |∇D? |2 3H3−1.

Moreover, from the definition of �? it follows that �1(�?) = �1('?), which is uniformly bounded by a
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constant 2̃ (see Lemma 2.2). Now consider the decomposition ofΩ given by

( :=
{
G ∈ Ω̄ : |∇D?(G)| ≤ ‖∇D? ‖!2?′ (Ω)

}
,

� :=
{
G ∈ Ω̄ : |∇D?(G)| > ‖∇D? ‖!2?′ (Ω)

}
,

and notice that
�? := �?(|∇D? |2) ≤ 1 + <! on (.

The idea is to use this decomposition to estimate the three terms above. For the first one we have

‖�? ‖A!A (Ω) = ‖�? ‖
A
!A (() + ‖�? ‖

A
!A (�)

≤ (1 + <!)A |Ω| + ‖∇D? ‖−2
!2?′ (Ω)

∫
�

�A? |∇D? |2 3G,

while for the third one we can use the almost-uniform estimate (b) of Lemma 2.6 and obtain∫
%Ω

�A? |∇D? |2 3H3−1 =

∫
(∩%Ω

�A? |∇D? |2 3H3−1 +
∫
�∩%Ω

�A? |∇D? |2 3H3−1

≤ (1 + <!)A−2
∫
(∩%Ω

�2
? |∇D? |2 3H3−1 + ‖D? ‖2−A!2?′ (Ω)

∫
�∩%Ω

�A? |∇D? |A 3H3−1

≤ (1 + <!)A−2 PerΩ

[
2̃

(
1 + diamΩ

�

)3−1

‖D? ‖!∞(Ω) diamΩ

]2

· · · + ‖∇D? ‖2−A!2?′ (Ω) PerΩ

[
2̃

(
1 + diamΩ

�

)3−1

‖D? ‖!∞(Ω) diamΩ

] A
.

Now let & := 1/6‖∇D? ‖2
!2?′ (Ω) in the initial inequality and rearrange the terms in such a way that the

following holds:

1
2

∫
Ω

�A? |∇D? |2 3G ≤
1
2
‖∇D? ‖2!2?′ (Ω)(1 + <!)

A |Ω|

· · · + 62A−1 |Ω|
(
(A − 1)A
‖∇D? ‖2A−2

!2?′ (Ω)
+ 1
‖∇D? ‖4A−2

!2?′ (Ω)

)
2̃A ‖D? ‖2A!∞(Ω)

· · · +
6(A − 1)2‖D? ‖2!∞(Ω)
‖∇D? ‖2

!2?′ (Ω)'
(1 + <!)A−2�2(Ω)‖D‖2!∞(Ω)

· · · +
6(A − 1)2‖D? ‖2!∞(Ω)
‖∇D? ‖2

!2?′ (Ω)'
�A(Ω)‖∇D? ‖2−A!2?′ (Ω)‖D? ‖

A
!∞(Ω) ,

where, for B ≥ 1, we defined

�B(Ω) := PerΩ

[
2̃

(
1 + diamΩ

'

)3−1

diamΩ

] B
.

This inequality holds for smooth domains, so we can approximate anyΩ satisfying the assumptions
using Lemma 2.8 and pass to the limit. We obtain the same estimate up to a constant since

PerΩ= ≤ 2 PerΩ and diamΩ= ≤ 2 diamΩ.
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Moreover, since D? converges to D1, we can always find a small � > 0 such that

1
2
‖D1‖!∞(Ω) ≤ ‖D? ‖!∞(Ω) ≤

3
2
‖D1‖!∞(Ω) for all ? ∈ (1, 1 + �),

from which it follows that

‖�? ‖!A (Ω) ≤ � for all ? ∈ (1, 1 + �),

and this is enough to prove (2.16). Indeed, starting from the inequality∫
Ω

'A? 3G ≤
∫
Ω

�A? 3G,

we can exploit once again the decompositionΩ = ( ∪ � obtaining∫
Ω

�A? 3G ≤ (1 + <!)A |Ω| + ‖∇D? ‖−2
!2?′ (Ω)

∫
�

�A? |∇D? |2 3G,

and the conclusion follows immediately.

Remark 2.7 The estimate (2.16) is not uniform with respect to A since the constant � depends on it
and, more precisely, we have

lim
A→+∞

�(A) = +∞.

This means that (2.16) does not pass to the limit, and the reason is that there is a term that is
asymptotically linear with respect to A, namely

�(A) '
[
62A−1 |Ω| 2̃

A(A − 1)A
‖∇D? ‖2A−2

!2?′ (Ω)
‖D? ‖2A!∞(Ω)

]1/A

' 2̃A as A → +∞.

Therefore, even if we assume thatΩ is convex and use Lemma 2.6 (a), we still cannot get rid of this
term as it has nothing to do with the boundary part of the integral.

2.2.6 Proof of Theorem 2.1 for non-convex domains

In this section, we combine all the ingredients to prove our main result for non-convex domains.

Proof of Theorem 2.1. Let D? ∈ ,1,2?′
0 (Ω) be the unique positive minimizer of �? with ‖D? ‖!2(Ω) = 1

and let '? be the corresponding optimal density (Lemma 2.1) given by

'?(G) = !|∇D? |2(?
′−1)(G)

(∫
Ω

|∇D? |2?
′
3G

)−1/?
.

Now recall that in Proposition 2.4 we proved that for � > 0 small enough and any A ∈ [2,∞) there
exists a constant � := �(A) such that

<‖'? ‖!? (Ω) = <! and ‖'? ‖!A (Ω) ≤ � for all ? ∈ (1, 1 + �).

Consequently, the sequence ('?)?∈(1,1+�) is uniformly bounded in !2(Ω), and hence it converges weakly
to a non-negative function '̄ ∈ !2(Ω) that satisfies∫

Ω

'̄ 3G = lim
?→1+

∫
Ω

'? 3G ≤ lim inf
?→1+

‖'? ‖!? (Ω) |Ω|1/?
′
= !,
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so '̄ is admissible, in the sense that �̄ := '̄ 3G belongs to A!. Now Proposition 2.3 asserts that D?
converges strongly in �1

0 (Ω) to D1, so∫
Ω

(1 + <'?)∇D? · ∇! 3G
?→1+
−−−−→

∫
Ω

(1 + <'̄)∇D1 · ∇! 3G for every ! ∈ �∞2 (Ω).

Moreover, it is easy to check that

�1('?)
∫
Ω

D?! 3G
?→1+
−−−−→ �1('̄)

∫
Ω

D1! 3G,

so D1 can equivalently be characterized as the unique positive solution with norm in !2(Ω) equal to
one of the boundary-value problem{

−div((1 + '̄)∇D1) = �1('̄)D1 inΩ,
D1 = 0 on %Ω,

so integrating the equation by parts yields∫
Ω

(1 + '̄)|∇D1 |2 3G = �1('̄)
∫
Ω

|D1 |2 3G︸       ︷︷       ︸
=1

= �1('̄).

Denote for simplicity the left-hand side by �('̄, D1) and notice that, since D? converges to D1 strongly
in !2 and �? Γ-converges to �1, we have the identity

�('̄, D1) = lim
?→1+

�1('?) = lim
?→1+

�('? , D?) = lim
?→1+

�?(D?) = �1(D1)

which, in turn, implies that
�('̄, D1) = min

D∈�1
0 (Ω)\{0}

�1(D).

Finally, we show (as in Lemma 2.1) that max and min can swap positions and we deduce that

sup
'∈A!

�1(') = sup
'∈A!

min
D∈�1

0 (Ω)\{0}
�(', D)

≤ min
D∈�1

0 (Ω)\{0}
sup
'∈A!

�(', D) = min
D∈�1

0 (Ω)\{0}
�1(D) = �('̄, D1),

which means that '̄ is a solution of the maximization problem (2.3) since we proved above that it is an
admissible competitor.

The higher integrability of '̄ follows from the fact that '? belongs to !A(Ω) for all A ∈ [2,∞) and

‖'? ‖!A (Ω) ≤ �

is uniform with respect to ? ∈ (1, 1 + �). Moreover, taking D̄ := D1, it is trivial to see that '̄ is zero
almost everywhere on the set {

G ∈ Ω : |∇D̄(G) < ‖∇D̄‖!∞(Ω)
}
.

Finally, the fact that '̄ ∈ �1,�(Ω̄)when %Ω ∈ �2, follows immediately from Lemma 2.1.
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2.3 Proof of Theorem 2.1 for convex domains

LetΩ ⊂ ℝ2 be a bounded convex set with finite volume and consider the following max-min problem

max
{

inf
D∈�1

2 (Ω)\{0}
�(D, �) : � ∈ A!

}
, (2.17)

where

�(D, �) :=

∫
Ω
|∇D |2 3G + <

∫
Ω
|∇D |2 3�∫

Ω
|D |2 3G

.

To simplify the notations, we also introduce the functional

J(�) := inf
D∈�1

2 (Ω)\{0}
�(D, �). (2.18)

Now let � ∈ A!. The integral
∫
Ω
|∇D |2 3� is non-negative so we have

�(D, �) ≥
∫
Ω
|∇D |2 3G∫
Ω
|D |2 3G

≥ �1(Ω) > 0

for all D ∈ �1
2 (Ω) \ {0}; hence, if we take the inf over �1

2 (Ω), we get

J(�) > 0.

This is an important difference with the energy problem because it implies that there are no admissible
measures � ∈ A! such that J(�) = −∞.

Proposition 2.5 LetΩ be as above. Then the problem (2.17) admits a solution �̄ ∈ A! satisfying

spt �̄ ⊂
{
G ∈ Ω : |∇D̄(G)| = ‖∇D̄‖!∞(Ω)

}
,

where D̄ is the unique positive solution with ‖D̄‖!2(Ω) = 1 achieving the inf in (2.18). Furthermore, we have

J(�̄) = min
D∈,1,∞

0 (Ω̄)\{0}

∫
Ω
|∇D |2 3G + <!‖∇D‖2

!∞(Ω)∫
Ω
|D |2 3G

. (2.19)

Proof. The map � ↦→ �(D, �) is weakly-★ continuous so the functional

A! 3 � ↦−→ J(�) ∈ ℝ

is weakly-★ upper semicontinuous. Moreover, the class A! is weakly-★ compact so (2.17) admits a
solution �̄ ∈ A!. By definition of max and min we have the inequality

max
�∈A!

{
inf

D∈�1
2 (Ω)\{0}

�(D, �)
}
≤ inf

D∈�1
2 (Ω)\{0}

{
sup
�∈A!

�(D, �)
}
, (2.20)

but the opposite inequality does not need to hold since the functional � is not concave. That said, we
can solve the maximization problem on the right-hand side easily since

max
�∈A!

�(D, �) =

∫
Ω
|∇D |2 3G + <!‖∇D‖2

!∞(Ω)∫
Ω
|D |2 3G

,
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and this is achieved by choosing any admissible measure �̄with total variation ! and satisfying

spt �̄ ⊂
{
G ∈ Ω : |∇D̄(G)| = ‖∇D̄‖!∞(Ω)

}
.

A simple computation now shows that

max
�∈A!

{
inf

D∈�1
2 (Ω)\{0}

�(D, �)
}
≥ inf

D∈�1
2 (Ω)

�(D, �̄)

= inf
D∈�1

2 (Ω)\{0}

∫
Ω
|∇D |2 3G + <!‖∇D‖2

!∞(Ω)∫
Ω
|D |2 3G

= inf
D∈�1

2 (Ω)\{0}

{
sup
�∈A!

�(D, �)
}
,

and this proves that (2.20) is actually an identity which, in turn, implies (2.19).

Now that we know the existence of an optimal measure �̄, we can investigate the minimization
problem associated with the functional

�1(D) =
∫
Ω

|∇D |2 3G + <!‖∇D‖2
!∞(Ω)

where D ∈ �1
0 (Ω) satisfies the additional constraint ‖D‖!2(Ω) = 1 since, thanks to (2.19), this is

completely equivalent to solving our initial problem.

Theorem 2.4 The minimization problem

min
{
�1(D) : D ∈ �1

0 (Ω), ‖D‖!2(Ω) = 1
}

admits a unique solution D̄ ∈,2,?(Ω) for all ? ∈ (2,∞). Moreover, ifΩ is convex, then D̄ ∈,2,∞(Ω).

This is a well-known result and a proof can be found, for example, in the paper [79]. We are now ready
to finish the proof of our main result for convex domains:

Proof of Theorem 2.1. Let �̄ be as above. A standard result in elliptic regularity theory (see [18]) tells us
that ifΩ is either convex or �2,-regular, then there is �() := � ∈ (0, 1) such that

D̄ ∈ arg min �1 =⇒ D̄ ∈ �2,�(Ω̄).

By Theorem 2.4, we have that ΔD̄ ∈ !?(Ω) for all ? > 2 and, in particular, ΔD̄ ∈ !∞(Ω). Moreover, we
can characterize D̄ and �̄ as solutions of the system

−div(�̄∇D̄) = ΔD̄ + �1D̄ if G ∈ Ω,
D̄ = 0 on %Ω,

|∇D̄(G)| = ‖∇D̄‖!∞(Ω) if G ∈ spt �̄.

The right-hand side of the equation belongs to !∞(Ω), so by standard regularity results for the
Monge-Kantorovich problem [65, 66, 140] we deduce that

�̄ ∈ !?(Ω) for all ? ∈ (2,+∞],

and this concludes the proof.
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2.4 Existence and regularity with radial symmetry

This section shows that the optimization problem (2.3) has radially symmetric solutions when the
domain is radial. Moreover, we give an explicit expression for '̄ whenΩ = �1.

Lemma 2.9 IfΩ is radially symmetric, then '̄ and D̄ are radially symmetric functions.

Proof. Let D? be the function given in Proposition 2.3 and recall that it is the unique positive solution
with unitary !2-norm of the minimization problem

min
D∈�1

0 (Ω)\{0}

∫
Ω
|∇D |2 3G + <!‖∇D‖2

!2?′ (Ω)∫
Ω
|D |2 3G

. (2.21)

Denote by D★ the Steiner symmetrization of a function D ∈ �1
0 (Ω), and recall (Theorem 1.11) that, for

every 1 ≤ ? < ∞, the Polya-Szegö’s inequality yields∫
Ω★
|∇D★|? 3G ≤

∫
Ω

|∇D |? 3G.

The setΩ★ coincides withΩ because it is already radially symmetric, so by Corollary 1.1 we have∫
Ω

|D |2 3G =
∫
Ω

|D★|2 3G for every D ∈ �1
0 (Ω).

In particular, if D ∈ �1
0 (Ω) is admissible for the minimization problem (2.21), then D★ is an even better

competitor since we have proved that∫
Ω
|∇D★|2 3G + <!‖∇D★‖2

!2?′ (Ω)∫
Ω
|D★|2 3G

≤

∫
Ω
|∇D |2 3G + <!‖∇D‖2

!2?′ (Ω)∫
Ω
|D |2 3G

.

By minimality and uniqueness, we deduce that each D? is radially symmetric. Moreover, we know that

D?
?→1+
−−−−→ D̄ strongly in !2(Ω),

so, up to subsequences, we can assume that D? converges almost everywhere to D̄; therefore,

D̄(G) = lim
?→1+

D?(G) =⇒ D̄ radially symmetric at a.e. G ∈ Ω.

Now, since ‖D̄‖!2(Ω) = 1, we can characterize the corresponding optimal density '̄ as the unique
maximizer of the functional

' ↦−→
∫
Ω

(1 + ')∇D̄ 3G.

Since D̄ is radially symmetric, we can apply Theorem 1.11 and get∫
Ω

(1 + ')∇D̄ 3G ≤
∫
Ω

(1 + ')∗∇D̄ 3G,

which allows us to conclude that '̄ is also radially symmetric.

At this point, we want to show that it is possible to find an explicit expression for the optimal density
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whenΩ is the unit disk in ℝ2. Indeed, we know that D̄ and '̄ satisfy the problem{
−div

(
(1 + '̄)∇D̄

)
= �1D̄ in �1

D̄ = 0 on %�1 ,
(2.22)

and, since all functions are radially symmetric by Lemma 2.9, we can use polar coordinates to rewrite
the equation as follows:

−1
A

%

%A

(
A(1 + '̄)D̄′

)
= �1D̄ in �1. (2.23)

Moreover, in Theorem 2.1 we proved that '̄ is supported on the set on which ∇D̄ achieves its maximum
value, so there must be 0̄ ∈ (0, 1) such that

D̄′(A) = −‖∇D̄‖!∞(�1) for all A ∈ [0̄ , 1].

This means that, up to a multiplicative constant§, we have

D̄(A) = 1 − A for all A ∈ [0̄ , 1].

If we now plug this expression back into (2.23), we obtain an equation for '̄ (on the set on which it
does not vanish) that can be solved easily; more precisely, we have

1
A

%

%A

(
A(1 + '̄)

)
= �1(1 − A) for all A ∈ [0̄ , 1].

It follows that the optimal density is given by

'̄(A) =


0 if A ∈ [0, 0̄),

−�1
3 A

2 + �1
2 A − 1 + 0̄

A

(
1 + �1

3 0̄
2 − �1

2 0̄
)

if A ∈ [0̄ , 1].

Now suppose that the value of �1 is known. We can find 0̄ by exploiting the integral condition on the
density; more precisely, we have∫ 1

0
A'̄(A) 3A = !

2�
=⇒ �1(0̄) = 12

(
!/(2�) + (1/2)(0̄ − 1)2

1 − 60̄2 + 80̄3 − 30̄4

)
,

which leads to
0̄ = 5 −1(�1(0̄)).

This equation admits a unique solution in the interval (0, 1), provided that �1 is bigger than or equal
to the minimum of 5 , which is true for the eigenvalue given by (2.22).

Remark 2.8 In the energy problem, one can prove (see [40, Example 5.1]) that the optimal value 0̄ is
the unique solution of the polynomial equation

03+1 − (3 + 1)
(
1 + <!

$3

)
0 + 3 = 0.

Notice that for ! = 0 the unique solution is 0̄ = 1, and this is compatible with the fact that there is no
reinforcement at all. The same is true in our framework since∫ 1

0
A'̄(A) 3A = !

2�
= 0 ⇐⇒ '̄(A) = 0 for every A ∈ [0, 1],

which is equivalent to saying that 0̄ = 1.

§ This is possible because our optimization problem admits a unique solution only if we fix the norm; otherwise, any scalar
multiple of the same function works.
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We can now recover the expression for D̄ using the boundary condition naturally arising from the
decomposition [0, 0̄) ∪ [0̄ , 1] and the Neumann condition at the origin. Indeed, we have

D̄(A) = 21�0

(√
�1A

)
+ 22.0

(√
�1A

)
for all A ∈ [0, 0̄),

where �0 and .0 are the first Bessel functions of first and second kind respectively. To find the two
constants, we use the continuity of D̄ at A = 0̄ obtaining

21�0

(
0̄
√
�1

)
+ 22.0

(
0̄
√
�1

)
= 1 − 0̄.

Similarly, the Neumann boundary condition gives the equation

lim
A→0+

[
21�1(
√
�1A) + 22.1(

√
�1A)

]
= 0,

but, since limA→0+ .1(A) = −∞ and limA→0+ �1(A) = 0, this is satisfied if and only if 22 = 0. If we now
go back to the first condition, we find that

21 =
1 − 0̄

�0(0̄
√
�1)

,

which means that the optimal profile D̄ is given by

D̄(A) =


1−0̄
�0(0̄
√
�1)
�0(
√
�1A) if A ∈ [0, 0̄),

1 − A if A ∈ [0̄ , 1].

To conclude, in Figure 2.1 we show some examples of '̄ for different values of the parameters obtained
via numerical simulations. More precisely, we fix any �1 such that

�1 ≥ 920,0 ,

and we find the value of 0̄ as the unique solution in (0, 1) of the following minimization problem:

min
0∈(0,1)

[√
�1

1−0̄
�1(0̄
√
�1)

]2 ∫ 0

0 A
[
�0(
√
�1A)

]2
3A + 1

2 (1 − 02) + <!
2�[

1−0̄
�0(0̄
√
�1)

]2 ∫ 0

0 A
[
�0(
√
�1A)

]2
3A +

∫ 1
0
A(1 − A)2 3A

.

Finally, since �1 and 0̄ are known, the length ! can be recovered from the identity

�1 = 12
(
!/(2�) + (1/2)(0̄ − 1)2

1 − 60̄2 + 80̄3 − 30̄4

)
.

Notice that numerical simulations validate the regularity of '̄ obtained Theorem 2.1 because 0̄ ∈ (0, 1)
turns out to be the unique one for which w ehave

−(1 − 0̄)
√
�

�0(0̄
√
�1)

�1(
√
�1A) = lim

A→0̄−
D̄′(A) = lim

A→0̄+
D̄′(A) = −1.

Remark 2.9 In the energy problem (see [40, Example 5.1]), the optimal density in the radially symmetric
case is linear with respect to A, namely it is given by

'̄ 5 (A) =
(
A

0̄
− 1

)+
for all A ∈ [0, 1].

However, in our framework '̄ is not linear (it depends also on A2 and A−1) and it is not even monotone
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increasing since we can prove that there exists Ā ∈ (0̄ , 1) such that

'
��
(0̄ ,Ā) is increasing and '

��
(Ā ,1) is decreasing.

�������

0.019
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0.418
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Figure 2.1: Level sets of the optimal density '̄ on the unit diskΩ = �(0, 1). Parameters from left to right:

(�1 , <) = (10, 5), (�1 , <) = (10000, 10) and (�1 , <) = (7, 1).

It is interesting to notice that, depending on the value of �1, both the region on which '̄ is equal to zero and the rate of decrease
close to the boundary change significantly.

2.5 Proof of Theorem 2.2: the connected case

In this section, we consider the maximization problem (2.5) in which � ranges among all measures
with support ( := spt� closed, connected, and satisfying

� ≥ H1x(.

We closely follow the strategy proposed in [2], which deals with optimizing the energy when an
external force acts onΩ, and adapt it to the eigenvalue problem.

We already proved in Proposition 2.2 that there exists a solution �̄ in the class A2
!
to (2.5), so we only

need to show that we can find a function '̄ ∈ !1(Ω) such that

�̄ = '̄ H1x(, with ( := spt �̄.

To achieve this, we start with some technical results and use them in Proposition 2.6 to deduce that, if
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we denote by �0 the absolutely continuous part of �, then we have

�1(�) = �1(�0).

Lemma 2.10 Let  be a compact set in ℝ2 with H1( ) = 0. For all & > 0 there exists a function )& ∈ �∞
satisfying the following properties:

(1) |)&(G) − G | ≤ & for all G ∈ ℝ2;

(2) ∇)& = 0 on a neighborhood of  ;

(3) |∇)&(G)| ≤ 1 for all G ∈ ℝ2.

If, in addition, we fix A > 0, then we can require that ∇)&(G) is the 2 × 2 identity matrix for every G ∉ �&,
where �& is an open set satisfying

|�& ∩ (−A, A)2 | ≤ &.

This is a standard result and a proof can be found, for example, in [2, Lemma 3.5].

Lemma 2.11 Let �, �′ ∈ A2
!
be two admissible competitors and assume that

� = �′ + �,

where � is a positive measure supported on a Borel set � with H1(�) = 0. Then, for every D ∈ �∞2 (Ω) and
every � > 0, there exists E ∈ �∞2 (Ω) such that

‖E − D‖∞ ≤ � and
∫
Ω

|∇E |2 3� ≤
∫
Ω

|∇D |2 3�′ + �.

Proof. The same argument used in the energy problem [2, Lemma 3.6] works; we will go over the
main points here for completeness. Let & > 0 be a fixed parameter that we will choose later and let
 ⊂ � be a compact set such that

�(Ω̄ \  ) ≤ &.

Let ) ∈ �∞(ℝ2) be the function given by Lemma 2.10 and define

E(G) := D ◦ )(G).

This is a smooth function with compact support contained in Ω if & is small enough, and, as a
consequence of Lemma 2.10 (1), we have the inequality

|E(G) − D(G)| = |D()(G)) − D(G)| ≤ !D |)(G) − G | ≤ !D&,

where !D is the Lipschitz constant of D. Taking the sup over G yields

‖E − D‖∞ ≤ �,

provided that we choose & small enough, for example 0 < & ≤ �/!D . We can also estimate the absolute
value of the gradient of E with the one of D using the chain rule

|∇E(G)| = |∇D()(G))| |∇)(G)|︸  ︷︷  ︸
≤1

≤ |∇D(G)| + |∇D()(G)) − ∇D(G)| ≤ |∇D(G)| + !∇D&,

where !∇D is the Lipschitz constant of ∇D and |∇)(G)| ≤ 1 by Lemma 2.10 (3). Finally, since ∇E = 0 on
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the set  , we can estimate the integral as follows:∫
Ω

|∇E |2 3� ≤
∫
Ω\ 
|∇D |2 3� + !D&

≤
∫
Ω

|∇D |2 3�′ +
∫
Ω\ 
|∇D |2 3� + �&

≤
∫
Ω

|∇D |2 3�′ + �′&.

This concludes the proof since we can choose 0 < & ≤ �/�, if it is not small enough already.

Lemma 2.12 Let � and �′ be as in Lemma 2.11. Then, for every D ∈ �∞2 (Ω) and every � > 0, there exists a
function E ∈ �∞2 (Ω) such that

‖E − D‖∞ ≤ � and �(�, E) ≤ �(�′, D) + �,

where

�(�, F) =
∫
Ω
|∇F |2 3G + <

∫
Ω
|∇F |2 3�∫

Ω
|F |2 3G

.

Proof. To ease the notations, we introduce the auxiliary measures

�̃ := 3G + <� and �̃′ := 3G + <�′

so that we can write the numerators of � as follows:∫
Ω

|∇E |2 3G + <
∫
Ω

|∇E |2 3� =
∫
Ω

|∇E |2 3�̃,∫
Ω

|∇D |2 3G + <
∫
Ω

|∇D |2 3�′ =
∫
Ω

|∇D |2 3�̃′.

Fix �̄ ≤ � to be chosen later. Let E be the function given by Lemma 2.11 with �̃, �̃′ and �̄; to prove that
�(�, E) ≤ �(�′, D) + �, we notice that the estimate ‖D − E‖∞ ≤ �̄ implies∫

Ω

|D |2 3G ≤
∫
Ω

|E |2 3G +
∫
Ω

|D − E |2 3G ≤
∫
Ω

|E |2 + |Ω|�̄2 ,

which takes care of the denominators. Similarly, we can use the integral estimate of Lemma 2.11 to
deduce an inequality for the numerators, i.e.,∫

Ω

|∇E |2 3�̃ ≤
∫
Ω

|∇D |2 3�̃′ + �̄.

If we put everything together, we get

�(�, E) =
∫
Ω
|∇E |2 3�̃∫
Ω
|E |2 3G

≤
∫
Ω
|∇D |2 3�̃′∫

Ω
|D |2 3G − |Ω|�̄2

, (2.24)

so, if we consider the Taylor expansion of the right-hand side at �̄ = 0, we deduce that∫
Ω
|∇D |2 3�̃′∫

Ω
|D |2 3G − |Ω|�̄2

≤
∫
Ω
|∇D |2 3�̃′∫
Ω
|D |2 3G

+ � |Ω|�̄2 + O(�̄4) = �(�′, D) + � |Ω|�̄2 + O(�̄4),

and this, together with (2.24), concludes the proof if we take �̄ small enough.
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We now have all the ingredients necessary for the proof of Theorem 2.2, which is an immediate
consequence of the following result:

Proposition 2.6 Let �, �′ ∈ A2
!
be as in Lemma 2.11. Then

�1(�) = �1(�′).

In particular, the optimal measure solving (2.5) is absolutely continuous with respect to H1x(.

Proof. The inequality �1(�′) ≥ �1(�) is a consequence of the fact that �1(·) is increasing, while the
opposite one is given by Lemma 2.12.

2.5.1 Analysis of boundary points

Let �̄ = '̄ H1x( be the optimal measure obtained in Theorem 2.2 and let D̄ be a solution of the
associated minimization problem

�1(() = min
D∈�1

0 (Ω)\{0}

∫
Ω
|∇D |2 3G + <

∫
(
'̄|∇�D |2 3H1∫

Ω
|D |2 3G

. (2.25)

The first variation of the functional is equal to zero at D̄, which means that

3

3&

�����
&=0

∫
Ω
|∇(D + &E)|2 3G + <

∫
(
'̄|∇�(D + &E)|2 3H1∫

Ω
|D + &E |2 3G

= 0 for all E ∈ �1
0 (Ω),

and a straightforward computation leads to the following equality:∫
Ω

D̄2 3G

[∫
Ω

∇D̄ · ∇E 3G + <
∫
(

'̄(∇�D̄ · ∇�E) 3H1
]

· · · −
∫
Ω

D̄E 3G

[∫
Ω

|∇D̄ |2 3G + <
∫
(

'̄|∇�D̄ |2 3H1
]
= 0.

If we let D̄ be the minimizer of (2.25) with !2-norm equal to one, we can plug the identity

�1(() =
∫
Ω

|∇D̄ |2 3G + <
∫
(

'̄|∇�D̄ |2 3H1

into the first variation above to obtain∫
Ω

∇D̄ · ∇E 3G + <
∫
(

'̄(∇�D̄ · ∇�E) 3H1 − �1(()
∫
Ω

D̄E 3G = 0 for all E ∈ �1
0 (Ω). (2.26)

To find the Euler-Lagrange equations, we need E to replace ∇E in all the integrals above; therefore,
integrating by parts the first term, we get∫

Ω

∇D̄ · ∇E 3G = −
∫
Ω

ΔD̄E 3G +
∫
(

[
%D̄

%�

]
E 3H1 ,

where we used the notation [
%D̄

%�

]
:= %+D̄ + %−D̄.

This term does not depend on the choice of an orientation for ( since %±D are, respectively, the positive
and negative derivative of D̄ on (. Now notice that

∇�D̄ · ∇�E = (∇D̄ · �)� · (∇E · �)� = (∇D̄ · �) · (∇E · �),
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so we can integrate by parts the boundary term of (2.26) and obtain

<

∫
(

'̄(∇�D̄ · ∇�E) 3H1 = −<
∫
(

div�('̄∇�D̄)E 3H1 + <
[
E'̄∇�D̄

]
(# ,

where−div�(−∇�) is the Laplace-Beltrami operator on ( and (# is the set of terminal-type and branching-
type points of (.

Proposition 2.7 If D̄ ∈ �1
0 (Ω) ∩ �2(Ω̄) is a minimum point of (2.25), then (up to a multiplicative constant)

it is the unique solution of the following boundary-value problem:
−ΔD̄ = �1(()D inΩ \ (,
[%D̄/%�] − < div�('̄∇�D̄) = 0 in (,
D̄ = 0 on %Ω,
'̄(G)∇�D̄(G) = 0 if G ∈ (#.

It is worth remarking that the points in (# can be of three different kinds and, in general, we should
expect all of them to occur:

I Dirichlet. If G ∈ (# ∩ %Ω, then D(G) = 0.
I Neumann. If G ∈ (# is a terminal point of (, then ∇�D(G) = 0.
I Kirchhoff. If G ∈ (# is a branching point of (, then∑

8

∇�8D 8(G) = 0,

where D 8 is the trace of D over the 8-th branch of ( ending at G and �8 the tangent vector.

As a consequence, using Proposition 2.7 and Theorem 2.2, it is easy to verify that [2, Proposition 4.1],
obtained in the energy problem, also holds in the eigenvalue framework.

Proposition 2.8 Let �̄ be a solution of the maximization problem (2.6) and let D̄ be the unique positive solution
of (2.25) with ‖D̄‖!2(Ω) = 1. Then there exists a constant 2 > 0 such that{

|∇�D̄ | = 2 for H1-a.e. G ∈ {'̄(G) > 1},
|∇�D̄ | ≤ 2 for H1-a.e. G ∈ {'̄(G) = 1}.

2.6 Open problems

In conclusion, we discuss some open questions related to the problems considered in [35] and suggest
possible ways to approach them, referring to the energy case.

Problem 2.1 In Theorem 2.1 we proved that, whenΩ is regular enough (for example, with boundary
of class �1,), the optimization problem

max
�∈A!

�1(�)

admits a solution of the form �̄ = '̄ 3G, with '̄ ∈ �1,�(Ω̄) for some � ∈ (0, 1) depending on .

It would be interesting to know if additional regularity properties hold in general. Indeed, in the
radially symmetric case we showed that

'̄(A) =
{

0 if A ∈ [0, 0̄),
−�1

3 A
2 + �1

2 A − 1 + 0̄
A

(
1 + �1

3 0̄
2 − �1

2 0̄
)

if A ∈ [0̄ , 1],
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which is smooth everywhere except at A = 0̄ where, taking into account that the value of 0̄ is difficult
to find explicitly, we can only verify up to the �1,�-regularity.

Problem 2.2 In Theorem 2.2 we proved that (2.3) admits a solution of the form

�̄ = '̄ H1x( for some ( ⊂ Ω closed and connected,

where '̄ ∈ !1((), with L(() ≤ ! and '̄ ≥ 1 on (.

We expect both ( and '̄ to be more regular (even without additional assumptions), but this seems
quite challenging to prove following the strategy proposed here. In particular, it would be interesting
to prove or disprove the regularity of ( up to a finite number of branching points (see Proposition 2.7
for more details) for which the Kirchhoff rule holds:

ℓ∑
8=1
∇�8D = 0.

Problem 2.3 For the optimal set given by Theorem 2.2, several optimality conditions are worth
investigating, for example, the following ones, as they appear in other problems (e.g., the energy
problem) studied in optimal transport and structural mechanics [39, 42, 53].

(a) Does ( contain closed loops (subsets homeomorphic to the circle S1)?

(b) Do the branching points of ( only have three branches as in the energy case, or is a higher
number possible?

(c) Does ( intersect the boundary %Ω?

(d) Is it possible, in some cases, that there is a nontrivial subset  ⊂ ( on which we have '̄ > 1
strictly?

In the energy problem, any optimal set ( does not contain any closed loop, has at most three branches
at branching points, and intersects the boundary (possibly multiple times). A proof of these facts is
not trivial and requires an entirely different approach, for example, by adapting the techniques of [53]
to the eigenvalue problem (although there are some technical issues to overcome).

That said, it should be possible to prove or disprove (d) by direct computation. Indeed, if ( is the
optimal set with L(() = !, then we can remove a portion of the set to obtain a competitor

(& := ( \ �A& (G0),

where A& > 0 is chosen in such a way that L((&) = ! − & < !. Accordingly, we consider a perturbation
of the optimal density given by

'̄& :=

{
'̄(G) if G ∈ (& \  & ,

'̄(G) + & if G ∈  & ,

where  & is a portion of (& chosen in such a way that the constraint is saturated, i.e.,∫
(&

'̄&(G) 3H1 = !.

The idea is to choose (& and  & carefully and prove that the measure

�̃ := '̄& H
1x(&
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is a better competitor than �̄ = '̄ H1x(, which, in turn, would imply that the optimal density is > 1
on a nontrivial set. The downside of this strategy is that

�1(�̃) ≥ �1(�̄)

is a very difficult inequality to prove: the choice of (& is delicate since it is not clear, a priori, which
portion of ( is convenient (in terms of the maximization of the eigenvalue) to remove.

Problem 2.4 We proved that the maximization problem in which we allow sets of at most # connected
components has a solution of the form

�̄ =
ℓ∑
8=1

'̄8H
1x(8 ,

with ℓ ≤ # , but we did not establish whether or not ℓ = # .

A possible way to approach this problem is the following. Let # = 2, suppose that ( is connected (i.e.,
ℓ = 1), and consider the perturbation

(& := ( \ �&(G0),

where G0 ∈ ( and & > 0 is small enough. By construction (& has two connected components and, as
above, we can modify '̄ in such a way that∫

(&

'̄& 3H
1 = !.

This is achieved by redistributing the mass lost when a portion of ( is removed, but this leads to
difficult estimates since it is unclear how to do it in general.

Problem 2.5 The numerical treatment of both optimization problems presents several difficulties
since many local maxima are possible, and global optimization algorithms are too slow to compute
the "reinforced" first eigenvalue. That said, in the case of energy optimization (see [2] and [40]), it is
possible to implement efficient algorithms that allow a certain degree of numerical analysis.



Shape optimization problems for functionals

with a boundary integral 3

This chapter discusses the results obtained in [36], which focuses on a shape optimization problem
for functionals with a boundary integral term. The prototype for our class of integral functionals is
obtained by solving the energy PDE with Robin boundary conditions, i.e.,{

−ΔD = 5 inΩ
�D + %�D = 0 on %Ω

(3.1)

and minimizing the corresponding energy

�(Ω) :=
1
2

∫
Ω

|∇D |2 3G −
∫
Ω

5 D 3G +
�

2

∫
%Ω
D2 3H3−1.

The domainΩ ranges in a class of admissible sets with "good" compactness properties to guarantee
the existence of a solution; more precisely, our goal is to solve the following:

Problem. Let � ⊂ ℝ3 be a bounded open set with Lipschitz boundary. Find a domainΩ that
solves the minimization problem

inf
{
J(Ω) : Ω ⊂ � andΩ Lipschitz

}
, (3.2)

where the shape functional J is defined by setting

J(Ω) := min
D∈,1,? (Ω)

{∫
Ω

9(G, D,∇D) 3G +
∫
%Ω
6(G, D) 3H3−1

}
.

Here ? > 1, H3−1 is the (3 − 1)-dimensional Hausdorff measure, and the integrands 9 and 6
satisfy certain properties - see Subsection 3.1.2 for more details -.

The prototype problem discussed above can also be written in the form (3.2), which corresponds to
the following integrands:

9(G, B, I) = 1
2
|I |2 − 5 (G)B + 2 and 6(G, B) =

�

2
B2.

Note that the scalar 2 is the Lagrange multiplier associated with the natural measure constraint onΩ,
which in our case is |Ω| ≤ |� | sinceΩ ⊂ �.

Remark 3.1 The shape optimization problem in which the Dirichlet boundary condition

D = 0 on %Ω

replaces the Robin boundary condition and 6(G, 0) = 0 has been considered in [41]. However, the
strategy proposed there is different since the boundary integral disappears.

3.1 Formulation of the problem and main results

A shape optimization problem similar to (3.2) was studied by Bucur-Giacomini in [24]. They considered
a prototype problem (3.1) with 5 = 0 and Dirichlet boundary condition of the form

D = D0 on some �0 ⊂ �,
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and proved the existence of a minimizer as well as some regularity properties. The main difference is
that in our framework, there is a linear term (with respect to D) in the first integrand, namely

9(G, D,∇D) = 1
2
|∇D |2 − 5 (G)D + 2.

This raises several technical problems (mainly with some estimates), which will require additional
assumptions or different strategies.

The key idea, introduced in [24], is to consider a relaxation (see Section 1.4) of the initial problem
which is obtained by extending all functions D ∈,1,?(Ω) to zero outsideΩ, namely

D̃(G) :=

{
D(G) if G ∈ Ω,
0 otherwise.

These functions are not obtained through the extension operator, so we cannot expect them to be
elements of,1,?(ℝ3) as the following example shows:

Example 3.1 IfΩ is a regular domain, then the functions in �1(Ω) that can be extended to zero and
still belong to �1(ℝ3) are precisely the functions in �1

0 (Ω). Consequently, any

D ∈ �1(Ω) \ �1
0 (Ω)

is a counterexample to the assertion above. Indeed, if we considerΩ = (0, 1) ⊂ ℝ and

D(G) = 1 for all G ∈ Ω,

then D ∈ �1(Ω), but the extension D̃ is not continuous and therefore it does not belongs to �1(ℝ)
since by Theorem 4.7 the embedding �1(ℝ) ↩→ �0(ℝ) is continuous.

That said, the extended function D̃ belongs to SBV(ℝ3) (see Section 1.5 for more details); therefore, the
boundary integral is not well-defined and must be replaced by∫

%Ω
6(G, D) 3H3−1 →

∫
�D

[
6(G, D+) + 6(G, D−)

]
3H3−1 ,

where D± and �D are, respectively, the traces of D and the jump set (see Definition 1.13).

The main result of [36] is the existence of an optimal shape Ω̄ ⊂ � which is open, has finite perimeter
and Lipschitz boundary. We first consider the relaxation of (3.2) to the class

A(�) :=
{
Ω ⊂ � : Ω open, %Ω is H3−1-rectifiable and H3−1(%Ω) < ∞

}
,

on which the integral functional takes the form

J(Ω, D) :=
∫
Ω

9(G, D,∇D) 3G +
∫
%Ω

[
6(G, D+) + 6(G, D−)

]
3H3−1

and, for any admissible competitorΩ ∈ A(�), we set

J(Ω) := inf
D∈,1,? (Ω)

J(Ω, D). (3.3)
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3.1.1 Outline of the chapter

The first step is to show that the shape optimization problem minΩ∈A(�)J(Ω) can be reformulated in
terms of the free discontinuity functional

F(D) :=
∫
ℝ3∩{D≠0}

9(G, D,∇D) 3G +
∫
�D

[
6(G, D+) + 6(G, D−)

]
3H3−1 , (3.4)

which is defined on the functional space

F� :=
{
D ∈ SBV(ℝ3) : D = 0 on ℝ3 \ �

}
.

More precisely, we prove in Lemma 3.1 that any solution D̄ of the optimization problem

min {F(D) : D ∈ F�} (3.5)

leads to a minimizer of (3.3) simply by setting

Ω̄ := {D̄ ≠ 0} .

We cannot solve the minimization problem (3.5) directly because the free discontinuity functional F
is not coercive on F� . Therefore, we introduce the larger functional space

X� :=
{
D : D ∨ &, D ∧ (−&) ∈ GSBV(ℝ3) for all & > 0 and D = 0 on ℝ3 \ �

}
,

where GSBV(ℝ3) is given by Definition 1.15, and in Subsection 3.2.2 we show that the corresponding
minimization problem

min {F(D) : D ∈X�}

admits a solution D̄ ∈X� which, a priori, does not belong to F� . Moreover, if we also assume (3.9) -
which corresponds to 5 decreasing - we can prove that D̄ is non-negative.

The next step is to show that, under additional assumptions, the function D̄ belongs to !∞(ℝ3) (see
Lemma 3.4) and there exists  > 0 such that

D̄ ≥  on {D̄ > 0},

which follows from Theorem 3.4. This means that D̄ ∈ F� and, consequently, we have

Ω̄ = {D̄ > 0} =⇒ Per Ω̄ < ∞,

so, to prove that Ω̄ is a minimizer of (3.3) in A(�), we only need to show that Ω̄ is open.

Finally, in Section 3.4, we follow the strategy of [24] strictly and use a standard argument concerning
almost quasi-solutions of aMumford-Shah-type functional

"((D) :=
∫
ℝ3

5 (G,∇D) 3G +H3−1(�D),

to prove that Ω̄ is open, and thus belongs to A(�). In addition, we find a careful approximation of Ω̄,
which consists of Lipschitz domains with polyhedral jump sets, and we show that

J(Ω̄) = inf
Ω∈A(�)
Ω Lipschitz

J(Ω),

which means that Ω̄ is not only a minimizer of (3.3) but also a solution to the initial problem (3.2).
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3.1.2 Assumptions on 9 and 6

Throughout this chapter, we indicate by | · | the 3-dimensional Lebesgue measure and by 1� the
characteristic function of a set � ⊂ ℝ3, which is given by

1�(G) =
{

1 if G ∈ �,
0 if G ∉ �.

We now describe the assumptions on 9 and 6 that are sufficient (but some may not be necessary) to
obtain our main results. These are modeled on the integrands

9(G, D,∇D) = |∇D |? − 5 (G)D + 1,

where 5 is a function that belongs to a Lebesgue space, and

6(G, D) = � |D |@

for some � > 0 and ? ≥ @ > 1. Notice that for ? = @ = 2 we obtain the prototype problem (3.1).

Remark 3.2We divide the assumptions so that we can state each result with as few as possible, but
the main idea is that for the existence of a solution to (3.2), all of them are used.

Therefore, we assume that the function 9 satisfies some (or all) of the following properties:

(j1) We have that

• G ↦→ 9(G, B, �) is measurable for all (B, �) ∈ ℝ ×ℝ3;

• (B, �) ↦→ 9(G, B, �) is lower semicontinuous for almost every G ∈ ℝ3;

• � ↦→ 9(G, B, �) is convex for all B ∈ ℝ and almost every G ∈ ℝ3.

(j2) The function G ↦→ 9(G, 0, 0) is non-negative a.e. and belongs to !1(ℝ3).
(j3) There are ? > 1 and ! > 0 such that

9(G, B, �) − 9(G, B, 0) ≥ !|�|? , (3.6)

and functions 5 ∈ !∞(ℝ3) and 0 ∈ !1(ℝ3) for which

9(G, B, 0) ≥ − 5 (G)|B |@ − 0(G) for almost every G ∈ ℝ3 . (3.7)

Moreover, the uniform norm of 5 is bounded above by

‖ 5 ‖!∞(ℝ3) ≤
!

2@
� �1

! ,@
(��), (3.8)

where @ and �1 are given in (g3), �� is any ball of volume |� |, and the principal Robin eigenvalue
is defined as

�1,(��) := min
D∈,1,(�)\{0}

∫
��
|∇D | 3G + 1

∫
%��
|D | 3H3−1∫

��
|D | 3G

,

where 1 > 0 and  > 1 are fixed parameters.

(j4) There exists &0 > 0 such that for almost every G ∈ ℝ3 we have

9(G, B, 0) − 9(G, C, 0) ≥ 0 for all B < C < &0. (3.9)
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Furthermore, if @ is the exponent given in (g3), then it satisfies @ ≤ ? and

@ > max

1,
?

2? − 1

? +
? − 1
(3 − 1)?′

2

1 +
√

1 + 4
?′(3−1)


 , (3.10)

where ?′ is the conjugate exponent of ?.
(j5) The lower bound (3.6) is an equality, namely we have

9(G, B, �) − 9(G, B, 0) = !|�|? .

Moreover, there are costants"0 , � 9 > 0 such that

9(G, B, 0) − 9(G, C, 0) ≥ −� 9 |B |@ for all B ≥ C > "0. (3.11)

Similarly, we require that 6 satisfies some (or all) of the following properties:

(g1) We have

• G ↦→ 6(G, B) is measurable for all B ∈ ℝ;
• B ↦→ 6(G, B) is lower semicontinuous for a.e. G ∈ ℝ3.

(g2) For every G ∈ ℝ3, it turns out that 6(G, 0) ≤ 0 and 6(G, 0) ∈ !1(ℝ3).
(g3) There exists a continuous positive function

�1 : ℝ3 → (0,∞) with �1 := min
G∈ℝ3

�1(G) > 0

such that for almost every G ∈ ℝ3 and every B ∈ ℝ we have

6(G, B) ≥ �1(G)|B |@ . (3.12)

(g4) There exists a continuous positive function

�2 : ℝ3 → (0,∞) with �2 := max
G∈ℝ3

�2(G) > �1

such that for almost every G ∈ ℝ3 and every B ∈ ℝ we have

�2(G)|B |@ ≥ 6(G, B) ≥ �1(G)|B |@ .

3.1.3 Main results

As mentioned above, the first step is to find a solution to

min {F(D) : D ∈X�} .

Notice that, since F is coercive inX� by construction, the existence of a minimizer is achieved under
very mild assumptions on both 9 and 6

Theorem 3.1 Under the assumptions (j1)–(j3) and (g1)–(g3), the minimization problem

min {F(D) : D ∈X�} (3.13)

admits a solution D̄ ∈X� . Moreover, if we set

Ω̄ := {D̄ ≠ 0},
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then the relaxed shape optimization problem associated to (3.3) is solved by Ω̄ on the class of admissible sets

{Ω ⊆ � : Ω measurable} ⊃ A(�).

The proof of the second assertion follows immediately from Lemma 3.1, once we show that a solution
to (3.13) actually exists. Notice that

J(Ω̄) = min
Ω⊂�

Ωmeasurable

J(Ω)

does not mean that Ω̄ is also a solution in A(�) since, a priori, it may not belong to A(�). However, if
we can prove that Ω̄ ∈ A(�), it follows immediately that

{Ω ⊆ � : Ωmeasurable} ⊃ A(�) =⇒ J(Ω̄) = min
Ω∈A(�)

J(Ω).

Therefore, the next step is to prove that D̄ belongs to F� (and Ω̄ has a finite perimeter), but this is not
obvious and requires additional assumptions on 9 and 6.

Theorem 3.2 Let D̄ be given by Theorem 3.1. Under the assumptions (j1)–(j4) and (g1)–(g4), the function D̄ is
non-negative and solves the minimization problem (3.5); consequently,

Ω̄ = {D̄ > 0} =⇒ Per Ω̄ < ∞.

In particular, the set Ω̄ minimizes the shape functional Jon the class of admissible sets{
Ω ⊂ � : Ω measurable, %Ω is H3−1-rectifiable with H3−1(%Ω) < ∞

}
⊃ A(�).

Finally, following the strategy proposed in [24], we show that Ω̄ is open (hence, solving the relaxation
on A(�)) and, with some additional effort, that it is also a solution to the initial problem (3.2).

Theorem 3.3 Let D̄ be given by Theorem 3.1. Under the assumptions (j1)–(j5) and (g1)–(g4), the set Ω̄ is open
and, in addition, we have

inf
Ω∈A(�)
Ω Lipschitz

J(Ω) = J(Ω̄).

3.2 Proof of Theorem 3.1: existence of an optimal profile inX�

This section aims to prove Theorem 3.1 following the strategy proposed in [41] for the Dirichlet
boundary conditions, which consists in reducing the shape optimization problem

min {J(Ω) : Ω ∈ A(�)}

to an auxiliary problem that does not depend onΩ, which is given by

min {F(D) : D ∈ F�} ,

where F(D) is the free discontinuity functional (3.4). Recall that the initial problem (3.2) requires us to
minimize the shape functional

J(Ω) = min
{∫

Ω

9(G, D,∇D) 3G +
∫
%Ω
6(G, D) 3H3−1 : D ∈,1,?(Ω)

}
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among all Lipschitz domains Ω contained in �; however, the lack of compactness for minimizing
sequences makes it impossible to proceed directly. Thus we consider the functional

J(Ω) = inf
D∈,1,? (Ω)

{∫
Ω

9(G, D,∇D) 3G +
∫
�D

[
6(G, D+) + 6(G, D−)

]
3H3−1

}
,

and the corresponding minimization problem withΩ contained in � and measurable. Notice that,
since we are allowing irregular sets to be competitors, the boundary term∫

%Ω
6(G, D) 3H3−1

is not well-defined, and hence we generalize it using the traces D± and the jump set (which is contained
in %Ω by construction). Moreover, we use the notation

D(G) :=

{
D(G) if G ∈ Ω,
0 if G ∉ Ω,

since the relaxation of our initial problem is obtained, as explained in Section 3.1, by extending to zero
outside ofΩ the functions in,1,?(Ω).

3.2.1 Reduction to the auxiliary problem

The goal of this section is to prove that any solution to the relaxed minimization problem introduced
above can be characterized as

Ω̄ = {D̄ ≠ 0},

where D̄ minimizes the free discontinuity functional F. The main advantage of getting rid of the shape
as a variable is that the "new" class of admissible competitors is

F� =
{
D ∈ SBV(ℝ3) : D = 0 on ℝ3 \ �

}
,

which means that we can apply the compactness theory for SBV(ℝ3) developed in Section 1.5 to prove
the existence of a solution via the direct method in the calculus of variations.

Lemma 3.1 Suppose that (j2) and (g2) hold and let D̄ be a solution of

min {F(D) : D ∈ F�} .

Then the set Ω̄ := {D̄ ≠ 0} is a solution to the minimization problem minΩ∈A(�)J(Ω).

Remark 3.3 Notice that the same conclusion holds if D̄ minimizes F(D) inX� , but the corresponding
optimal shape Ω̄ is a solution in a larger class of admissible sets, i.e.,

J(Ω̄) = min
Ω⊂�

Ωmeasurable

J(Ω).

We will use both characterizations since we first show that there exists a solution D̄ ∈ X� , which
corresponds to Ω̄measurable, and then prove the properties

D̄ ∈ !∞ + D̄ ≥  > 0

to deduce that D̄ ∈ F� and, consequently, that Ω̄ ∈ A(�).
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Proof. Let D ∈,1,?(Ω) and extend it to zero outside ofΩ. It is easy to verify that∫
Ω

9(G, D,∇D) 3G =
∫
ℝ3

9(G, D,∇D) 3G −
∫
ℝ3\Ω

9(G, 0, 0) 3G

=

∫
ℝ3

9(G, D,∇D) 3G +
∫
Ω

9(G, 0, 0) 3G −
∫
ℝ3

9(G, 0, 0) 3G

=

∫
{D≠0}

9(G, D,∇D) 3G +
∫
Ω

9(G, 0, 0) 3G

≥
∫
{D≠0}

9(G, D,∇D) 3G

since 9(G, 0, 0) ≥ 0 by assumption (j2). Similarly, by (g2) we get∫
%Ω
6(G, D) 3H3−1 =

∫
�D

[
6(G, D+) + 6(G, 0)

]
3H3−1 −

∫
%Ω
6(G, 0) 3H3−1

≥
∫
�D

[
6(G, D+) + 6(G, 0)

]
3H3−1.

Notice that, since D does not belong to,1,?(ℝ3), the left trace D− might not be equal to zero on �D and
therefore, it is necessary to replace the last integral with∫

�D

[
6(G, D+) + 6(G, D−)

]
3H3−1.

Now let D̄ ∈ F� be a minimizer of F. For any Ω ∈ A(�), there is DΩ that achieves the inf in J(Ω),
allowing us to write the functional as follows:

J(Ω) =
∫
Ω

9(G, DΩ ,∇DΩ) 3G +
∫
%Ω

[
6(G, D+

Ω
) + 6(G, D−

Ω
)
]
3H3−1.

Using the minimality of D̄ and the estimates obtained above we get

J(Ω) ≥ F(DΩ) ≥ F(D̄) ≥ J(Ω̄) for allΩ ∈ A(�),

which is enough to conclude the proof since it implies that

min
Ω∈A(�)

J(Ω) = J(Ω̄).

The last ingredient that plays a crucial role in proving the existence of a minimizer in X� is the
following Poincaré-type inequality, which was established in [23] for ? = 2 and  ∈ [1, 2], though it can
be extended with minimal changes to any ? > 1 by working in the space

SBV1/?(ℝ3) :=
{
D ∈ !?(ℝ3) : D ≥ 0 a.e. in ℝ3 and D? ∈ SBV(ℝ3)

}
.

Lemma 3.2 Let ? > 1,  ∈ [1, ?] and 1, < > 0. For any D ∈ SBV(ℝ3) that satisfies |{D ≠ 0}| ≤ <, we have∫
ℝ3 |∇D |? 3G + 1

∫
�D
[|D+ |? + |D− |?] 3H3−1

‖D‖?
!(ℝ3)

≥ �1,(�<), (3.14)

where �< is a ball of measure < and �1,(�) the principal Robin eigenvalue. Moreover, the equality holds if and
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only if D is the first eigenfunction, i.e. the solution (up to a multiplicative constant) of

�1,(�<) = min
E∈,1,? (�< )\{0}

∫
�<
|∇E |? 3G + 1

∫
%�<
|E |? 3H3−1(∫

�<
|E | 3G

)?/ .

3.2.2 Proof of Theorem 3.1

The goal of this section is to put together all the technical results presented so far to show that the free
discontinuity functional Fhas a minimizer D̄ in the classX� ; we achieve this by proving that if we
consider the notion of convergence

D=
X�−−→ D ⇐⇒


D= ∨ &

GSBV(ℝ3)
−−−−−−−→ D ∨ &

D= ∧ (−&)
GSBV(ℝ3)
−−−−−−−→ D ∧ (−&)

for all & > 0,

then the functional F is lower semicontinuous and coercive inX� .

Proof of Theorem 3.1. We divide the proof into two steps: coercivity and lower semicontinuity.

Step 1. Coercivity of the functional F

Let (D=)=∈ℕ ⊂X� be a sequence on which Fis uniformly bounded, i.e., there exists a positive constant
� that does not depend on = such that we have

F(D=) ≤ �.

To prove that F is coercive, we need to show that the sequence D= is uniformly bounded with respect
to theX� norm or, equivalently, that

‖D= ∨ &‖GSBV(ℝ3) + ‖D= ∧ (−&)‖GSBV(ℝ3) ≤ �̃ for all & > 0,

where �̃ may depend on &, but not on =. Fix & > 0 and consider the sequence of truncated functions

E=,& := (D= − &) ∨ 0 + (D= + &) ∧ 0.

It is easy to verify that E=,& ∈ GSBV(ℝ3), but before we can go any further we need to show that there
exists a positive constant �1, that may depend on &, such that

F(D=) ≤ � =⇒ F(E=,&) ≤ �1.

This is easy to prove, but it is more convenient to obtain a more accurate estimate for E=,&. Indeed, if
we combine the assumptions (3.6) and (3.12) with the fact that F(D=) ≤ �, we get

!

∫
ℝ3

|∇D= |? 3G + �1

∫
�D=

[|D+= |@ + |D−= |@] 3H3−1 ≤ �′ −
∫
{D=≠0}

9(G, D= , 0) 3G, (3.15)

where �1 := minG∈ℝ3 �1(G) > 0, so our goal is to prove that a similar estimate holds for the
corresponding truncated function E=,&. For this, we use (3.7) to obtain

�′ −
∫
{D=≠0}

9(G, D= , 0) 3G ≤ �2 +
∫
ℝ3

5 (G)|D= |@ 3G, with �2 := �′ +
∫
ℝ3

0(G) 3G,
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so the estimate (3.15) can be rewritten as follows:

!

∫
ℝ3

|∇D= |? 3G + �1

∫
�D=

[|D+= |@ + |D−= |@] 3H3−1 ≤ �2 +
∫
ℝ3

5 (G)|D= |@ 3G. (3.16)

By truncation,- ∇E=,& coincides with ∇D= on the set {|D= | ≥ &} and is equal to zero outside; thus, the
following inequality is trivially satisfied:∫

ℝ3

|∇D= |? 3G ≥
∫
ℝ3

|∇E=,& |? 3G.

The jump set of E=,& is a subset of �D= since truncating does not create more jump points (but, instead,
removes the ones close to the origin); moreover, we have that

|E=,& | > |D= | ⇐⇒ |D= | ∈ [0, &),

but, as we mentioned above, there are no jump points there since �E=,& ∩ [0, &) = ∅. Finally, putting
everything together leads to the following estimate for the jump integral:∫

�D=

[|D+= |@ + |D−= |@] 3H3−1 ≥
∫
�E=,&

[
|E+=,& |@ + |E−=,& |@

]
3H3−1.

The right-hand side of (3.16), on the other hand, is harder to estimate because an inequality such as∫
ℝ3

5 (G)|D= |@ 3G ≤
∫
ℝ3

5 (G)|E=,& ± & |@ 3G

is not valid for any datum 5 that takes negative values in a non-negligible set contained in the support
of D= (which can occur in our framework). Nonetheless, by assumption (3.8) we have∫

ℝ3

5 (G)|D= |@ 3G ≤ ‖ 5 ‖!∞(ℝ3)

∫
ℝ3

|D= |@ 3G,

and we can estimate |D= |@ using the definition of E=,&, i.e.,

|D= | ≤ |E=,& + & | on {D= > 0},
|D= | ≤ |E=,& − & | on {D= < 0}.

It turns out that∫
ℝ3

5 (G)|D= |@ 3G ≤ ‖ 5 ‖!∞(ℝ3)

[∫
{D=≥0}

|E=,& + & |@ 3G +
∫
{D=≤0}

|E=,& − & |@ 3G
]

≤ @‖ 5 ‖!∞(ℝ3)

[∫
ℝ3

|E=,& |@ 3G + &@ |� |
]

since the support of D= is a subset of � by definition ofX� . If we now put all the estimates obtained
so far together, we finally obtain an estimate similar to (3.16) for E=,&, namely

!

∫
ℝ3

|∇E=,& |? 3G + �1

∫
�E=,&

[
|E+=,& |@ + |E−=,& |@

]
3H3−1

≤ �2 + @‖ 5 ‖!∞(ℝ3)

[∫
ℝ3

|E=,& |@ 3G + &@ |� |
]
.

(3.17)

The next step is to estimate the left-hand side from below using the Poincaré-type inequality (3.14),
but it requires gradient and traces to have the same power, so we exploit the fact that

0? ≥ 0@ − 1 for every non-negative 0 ∈ ℝ and every ? ≥ @,
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to estimate the first integral of (3.17) as follows:∫
ℝ3

|∇E=,& |? ≥
∫
'3
|∇E=,& |@ − |� |.

Notice that the assumption spt D= ⊂ � is crucial here since, otherwise, the integral of −1 would be
infinite, making the estimate useless. If we let �3 := �2 + !|� |, we can rewrite (3.17) as∫

ℝ3

|∇E=,& |@ 3G +
�1

!

∫
�E=,&

[
|E+=,& |@ + |E−=,& |@

]
3H3−1

≤ �3
!
+
@‖ 5 ‖!∞(ℝ3)

!

[∫
ℝ3

|E=,& |@ 3G + &@ |� |
]
,

which is what we wanted because now gradient and traces have the same power @. Since E=,& belongs
to SBV(ℝ3), we can apply (3.14) and obtain the inequality

‖E=,&‖@!@ (ℝ3)

[
� �1

! ,@
(�) −

@‖ 5 ‖!∞(ℝ3)
!

]
≤ �′′! +

@‖ 5 ‖!∞(ℝ3)
!

&@ |� |,

which, taking into account that 2@‖ 5 ‖!∞(ℝ3) ≤ !� �1
! ,@
(�) by assumption (3.8), leads to the following

(linear with respect to &) bound from above:

‖E=,&‖!@ (ℝ3) ≤ �̃& := �̃1 + �̃2&.

The constants do not depend on =, so E=,& is uniformly bounded in !@(ℝ3). To apply Theorem 1.14, we
also need an estimate on the measure of the jump set; for this, we start from∫

�D=

[|D+= |@ + |D−= |@] 3H3−1 ≤ �̃1 + �̃2&
�1

,

which is obtained by plugging the uniform !@-bound in (3.16). Indeed, if we denote by �≥&D= the set of
all jumps of D= which are bigger than or equal to &, we immediately deduce that

&@H3−1 (
�≥&D=

)
≤ �̃1 + �̃2&

2�1

since |D+= |@ + |D−= |@ ≥ 2&@ by definition of �≥&D= . Therefore, for & small enough we have

H3−1 (
�≥&D=

)
≤ �̃1

2�1
&−@ + O(&−@+1),

and, using the set identity �E=,& = �
≥&
D= , we get a uniform bound for the measure of the jump set:

H3−1 (�E= ,&) ≤
�̃1
2�1

&−@ + O(&−@−1).

We have now verified all the assumptions necessary to apply Theorem 1.14, which gives (for & > 0
fixed) the existence of a subsequence E=: ,& such that

E=: ,&
:→∞−−−−→ D& ∈ GSBV(ℝ3)

with respect to the topology of !1(ℝ3). A standard diagonal argument shows that there exists D̄ ∈X�

such that for every & > 0 we have
D& = D̄ ∨ &,
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which means that the limit of each subsequence is the &-truncation of the same function D̄ that belongs
to the classX� as required. Finally, the coercivity of Ffollows immediately since

‖D= ‖X�
= lim

&→0+
‖E=,&‖GSBV(ℝ3) ≤ lim

&→0+
‖D&‖GSBV(ℝ3) = ‖D̄‖X�

< ∞.

Step 2. Lower semicontinuity of the functional F

Let (D=)=∈ℕ ⊂X� be a sequence converging to some D and let E=,& be defined as above. For simplicity,
consider the decomposition of the free discontinuity functional

F(D) = F1(D) +F2(D),

where
F2(D) :=

∫
ℝ3

9(G, D, 0) 3G and F1(D) := F(D) −F2(D).

The functional F1 satisfies the assumptions of Theorem 1.13, so F1 is lower semicontinuous and

lim inf
=→∞

F1(E=,&) ≥ F1(E&),

where E& is the limit of E=,& in GSBV(ℝ3) for & > 0 fixed. It remains to prove that F2 is also lower
semicontinuous or, equivalently, that∫

ℝ3

9(G, E& , 0) 3G ≤ lim inf
=→∞

∫
ℝ3

9(G, E=,& , 0) 3G.

By Fatou’s Lemma and the assumption (3.7), we have∫
ℝ3

9(G, E& , 0) 3G +
∫
ℝ3

− 5 (G)|E& |@ 3G ≤ lim inf
=→∞

[∫
ℝ3

9(G, E=,& , 0) 3G +
∫
ℝ3

− 5 (G)|E=,& |@
]
,

so it is sufficient to show that E=,& converges to E& strongly in !@(ℝ3). For this, notice that we can
assume without loss of generality that there exists # ∈ ℕ such that

F(D=) ≤ 0 for all = ≥ #

since D= is a minimizing sequence and F(0) = 0. This means that we can repeat the argument used in
the previous step to deduce that

‖E=,& − E&‖!@ (ℝ3) → 0

for all & > 0 small enough, as a consequence of Lemma 1.1.

Remark 3.4 The function D̄ obtained in the first step may not belong to GSBV(ℝ3) since the estimate
on the measure of the jump set tells us that

H3−1(�D& ) . &−@ ,

and this does not give any helpful information if we take the limit as &→ 0+ because the right-hand
side blows up to +∞.

Remark 3.5 The assumption ? ≥ @ is merely technical, and therefore we expect that (with some effort)
it can be removed. The reason is that if ? < @, then we have the estimate

1 + |E=,& |@ ≥ 2?,@ |E=,& |? ,
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but the integral of −1 now yields −H3−1(�E=,& ). This is a big issue because, even though we can find a
constant 2=,& > 0 such that

H3−1(�E=,& ) ≤ 2=,& ,

we have no information on the behavior of 2=,& as = → +∞. Consequently, arguing as we did in the
proof above, we would end up with the estimate

‖E=,&‖!? (ℝ3) ≤ 2′=,& ,

which may not be uniform, and thus cannot be used for the compactness result. Nonetheless, if one
can prove that the sequence 2=,& does not blow up as = → +∞, for example

lim
=→+∞

2=,& = �& < ∞ for every & > 0 small enough,

then the same argument above would automatically apply to the case 1 < ? < @.

To conclude this section, we show that it is possible to ensure that D̄ is a non-negative function at the
cost of an additional assumption on 9.

Lemma 3.3 Suppose that the assumptions of Theorem 3.1 hold. If 9 also satisfies (j4), then the optimal profile D̄
is a non-negative function. In particular, we have

Ω̄ = {D̄ ≠ 0} = {D̄ > 0}.

Proof. Let � := {D̄ < 0} ⊂ Ω̄, consider the competitor defined by

D̄�(G) :=

{
D̄(G) if G ∈ ℝ3 \ �,
0 if G ∈ �,

and notice that, taking ! = 1 for simplicity, we have

F(D̄) −F(D̄�) ≥
∫
�

[
9(G, D̄,∇D̄) − 9(G, 0, 0)

]
3G

≥
∫
�

[
|∇D̄ |? + 9(G, D̄, 0) − 9(G, 0, 0)

]
3G.

The term 9(G, D̄, 0) − 9(G, 0, 0) is non-negative because B ↦→ 9(G, B, 0) is non-increasing by (3.9), so we
have the inequality

F(D̄) −F(D̄�) ≥
∫
�

|∇D̄ |? 3G ≥ 0,

and this is enough to conclude the proof by the minimality of D̄ for F.

3.3 Proof of Theorem 3.2: the optimal shape Ω̄ has finite perimeter

The goal of this section is to prove that under additional assumptions on 9 and 6, the optimal profile D̄
obtained above belongs to F� , which, in turn, implies that

Ω̄ = {D̄ ≠ 0},

has finite perimeter. To achieve this, it is sufficient to show that

D̄ ∈ !∞(ℝ3) and D̄ ≥  > 0.
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3.3.1 Bound on the uniform norm of D̄

To show that D̄ ∈ !∞(ℝ3), we adapt the strategy proposed in the proof of [28, Theorem 12] using the
Poincaré-type inequality (3.14). Indeed, by minimality we have

F(D̄) ≤ F(D̄ ∧"),

which, with some effort, leads to the inequality∫
ℝ3

|D̄ −" |@ 3G ≥ |Ω|−@/@′
[∫
Ω"

(D̄ −") 3G
] @
,

whereΩ" := Ω̄ ∩ {D̄ > "}. At this point, the idea of [28] is to consider the rescaling ofΩ" given by

A(") :=
|� |1/3
|Ω" |1/3

and Ω#
" := A(") ·Ω" , (3.18)

plug it into the inequality above to make it more accurate and conclude that D̄ ∈ !∞(ℝ3).

Lemma 3.4 Under the assumptions (j1)–(j4) and (g1)–(g3), there exists a positive constant" such that

‖D̄‖∞ ≤ ".

Proof. We proved that D̄ minimizes F(D) onX� , so we have

F(D̄) ≤ F(D̄ ∧") for all" > 0,

which, using the notation forΩ" introduced above, can be rewritten as follows:∫
Ω"

(
9(G, D̄,∇D̄) − 9(G, ", 0)

)
3G +

∫
�D̄∩{D̄−>"}

[
6(G, D̄+) + 6(G, D̄−)

]
3H3−1

· · · +
∫
�D̄∩{D̄−<"<D̄+}

[
6(G, D̄+)

]
3H3−1 ≤ 0.

By Lemma 3.3 the function D̄ is non-negative, so∫
�D̄∩{D̄−<"<D̄+}

[
6(G, D̄+)

]
3H3−1 ≥ 0

and the inequality above can simply be rewritten as∫
Ω"

(
9(G, D̄,∇D̄) − 9(G, ", 0)

)
3G +

∫
�D̄∩{D̄−>"}

[
6(G, D̄+) + 6(G, D̄−)

]
3H3−1 ≤ 0.

Notice that this is possible because the loss of information due to this simplification does not hinder
our strategy. In any case, we can now apply (3.12) to estimate the jump term as∫

�D̄∩Ω"

[
6(G, D̄+) + 6(G, D̄−)

]
3H3−1 ≥ �1

∫
�D̄∩Ω"

[|D̄+ |@ + |D̄− |@] 3H3−1 ,

while for the integral onΩ" we can add and subtract 9(G, D̄, 0) obtaining∫
Ω"

(
9(G, D̄,∇D̄) ± 9(G, D̄, 0) − 9(G, ", 0)

)
3G,



3.3 Proof of Theorem 3.2: the optimal shape Ω̄ has finite perimeter 67

and then apply the assumption (3.6) to infer∫
Ω"

(
9(G, D̄,∇D̄) − 9(G, D̄, 0)

)
3G ≥ !

∫
Ω"

|∇D̄ |? 3G ≥ !
∫
Ω"

|∇D̄ |@ 3G − !|Ω" |.

Putting everything together yields

!

∫
Ω"

|∇D̄ |@ 3G + �1

∫
�D̄∩Ω"

[|D̄+ |@ + |D̄− |@] 3H3−1 ≤ !|Ω" | +
∫
Ω"

(
9(G, ", 0) − 9(G, D̄, 0)

)
3G,

which, as a consequence of (3.11), can be rewritten as follows:∫
Ω"

|∇D̄ |@ 3G +
�1

!

∫
�D̄∩Ω"

[|D̄+ |@ + |D̄− |@] 3H3−1 ≤
(
1 +

� 9

!
"@

)
|Ω" |.

Let E := max{D̄ −", 0}. The gradients of E and D̄ coincide at every G ∈ ℝ3, so we have∫
Ω"

|∇D̄ |@ 3G =
∫
ℝ3

|∇E |@ 3G.

Similarly, notice that the jump sets coincide (�E = �D̄ ∩Ω"), while the size of the jumps is necessarily
equal or smaller (due to the definition of E), and thus∫

�D̄∩Ω"

[|D̄+ |@ + |D̄− |@] 3H3−1 ≥
∫
�E

[|E+ |@ + |E− |@] 3H3−1.

The idea is to replace D̄ with E because the latter belongs to !∞(ℝ3), and thus we can apply the
Poincaré-type inequality (3.14) to E, obtaining∫

Ω"

|∇D̄ |@ 3G +
�1

!

∫
�D̄∩Ω"

[|D̄+ |@ + |D̄− |@] 3H3−1 ≥ � �1
! ,@
(Ω")

∫
ℝ3

|E |@ 3G.

Since E coincides with D̄ −" onΩ" and is identically zero onℝ3 \Ω" , we can rewrite the right-hand
side in terms of D̄ as follows: ∫

ℝ3

|E |@ 3G =
∫
Ω"

|D̄ −" |@ 3G.

We can estimate this integral from below using Hölder’s inequality∫
Ω"

(D̄ −") 3G ≤ |Ω|1/@′
[∫
Ω"

|D̄ −" |@ 3G
]1/@

,

which, in turn, implies that∫
ℝ3

|D̄ −" |@ 3G ≥ |Ω|−@/@′
[∫
Ω"

(D̄ −") 3G
] @
.

Now let 5 (") :=
∫
Ω"
(D̄ −") 3G. Then the inequality obtained above can be rewritten as

� �1
! ,@
(Ω") 5 (")@ ≤

(
1 +

� 9

!
"@

)
|Ω" |@ ,

but this is not accurate enough because 5 (") and |Ω" | have the same exponent; therefore, as we
mentioned before, we introduce the rescalingΩ#

"
and obtain

� �1
!A(")@−1 , @

(
Ω#
"

)
5 (")@ ≤

(
1 +

� 9

!
"@

)
|Ω#

" |
@ ,
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which, using the definition of A(") given in (3.18), is equivalent to

� �1
!A(")@−1 ,@

(Ω#
") 5 (")

@A(")@−1 |� | 13 ≤
(
1 +

� 9

!
"@

)
|Ω" |@+

1
3 .

Now notice that the derivative of 5 (") is given by

5 ′(") = −
∫
Ω"

3G = −|Ω" |,

so we can rewrite the inequality above as

−
5 ′(")

5 (")
@3

@3+1

≥
[(

1 +
� 9

!
"@

)−1

� �1
!A(")@−1 ,@

(Ω#
")A(")

@−1

] 3
@3+1

|� |
1

@3+1

≥
[(

1 +
� 9

!
"@

)−1

� �1
!A(")@−1 ,@

(��)A(")@−1

] 3
@3+1

|� |
1

@3+1 ,

where �� is any ball of volume equal to |� |. Indeed, the principal eigenvalue �1,@(·) is minimized (at
fixed volume) by the ball, so

�1,@(Ω") ≥ �1,@(�) for every ball � such that |�| = |Ω" |.

Moreover, for every C > 0 we have
�1,@(C�) = C−2�1,@(�),

which means that A ↦→ �1,@(�A) is a monotone decreasing function. In particular, sinceΩ" is a subset
of �, we can use the estimate

� �1
!A(")@−1 ,@

(Ω#
") ≥ � �1

!A(")@−1 ,@
(��),

where �� is any ball of volume |� |, to prove the claim. If we now integrate between 0 and ) < ‖D̄‖∞,
taking into account that 5 is a non-negative function, we obtain

5 (0)1/(@3+1) ≥ 2 |� |,@
∫ )

0

[(
1 +

� 9

!
"@

)−1

� �1
!A(")@−1 ,@

(�)A(")@−1

] 3/(@3+1)

3".

The left-hand side is bounded from above because 5 (0) ≤ ‖D̄‖!1(ℝ3) by definition; on the other hand,
for the right-hand side we can apply [28, Lemma 13] to infer that

lim
"→‖D̄‖∞

(
1 +

� 9

!
"@

)−1

� �1
!A(")@−1 ,@

(�)A(")@−1 =

(
1 +

� 9

!
‖D̄‖@∞

)−1 �1

!
3.

This concludes the proof of ‖D̄‖∞ < ∞ since

("−@)3/(@3+1) = "−@3/(@3+1) and −
@3

@3 + 1
∈ (−1, 0).
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3.3.2 Bound from below on the optimal function D̄

We proved that D̄ ∈ !∞(ℝ3), so to deduce that it belongs to SBV(ℝ3) it is sufficient to show that there
exists  > 0 such that

D̄ ≥  for almost every G ∈ {D̄ > 0}.

We follow the strategy proposed in [24, Theorem 3.5], but our framework has two different exponents
(? and @), so additional terms will appear in the estimates.

Definition 3.1 (Supersolution)We say that F ∈ F� ∩ {D ≥ 0} is a supersolution for the functional

L(D) =
∫
ℝ3

[
9(G, D,∇D) − 9(G, 0, 0)

]
3G +

∫
�D

[
6(G, D+) + 6(G, D−)

]
3H3−1

if, for every E ∈ F� ∩ {D ≥ 0} with 0 ≤ F ≤ E, we have

L(F) ≤ L(E).

The functional L is similar to F, but the Lagrange multiplier does not appear because there is no
constraint on the volume of admissible sets. The first step is to prove that

D̄≥0 := D̄ ∨ 0 and − D̄≤0 := −(D̄ ∧ 0)

are both supersolutions for the functional L. This is crucial because, under the assumptions of
Theorem 3.2, we have that Lemma 3.3 applies, and hence

D̄ = D̄≥0.

This means that D̄ is also a supersolution for L, and therefore the bound from below, which we obtain
in Theorem 3.4, holds for D̄.

Lemma 3.5 Under the assumptions (j1)–(j3) and (g1)–(g3), the functions D̄≥0 and −D̄≤0 are supersolutions for
the functional L in the sense of Definition 3.1.

Proof. We argue by contradiction. Suppose that D̄≥0 is not a supersolution for L and let E ∈ F� be an
admissible function (i.e., 0 ≤ D̄≥0 ≤ E) such that

L(E) < L(D̄≥0). (3.19)

To find a contradiction it is sufficient to show that we can define a function Ē satisfying F(Ē) < F(D̄),
which is impossible because D̄ minimizes F. For this, we let

Ē(G) :=

{
D̄(G) if D̄(G) ≤ 0
E(G) if D̄(G) > 0

and we estimate the difference F(D̄) −F(Ē) as follows:

F(D̄) −F(Ē) ≥
∫
{D̄>0}

[
9(G, D̄,∇D̄) − 9(G, E,∇E)

]
3G

· · · +
∫
{D̄>0}∩�D̄

[
6(G, D̄+) + 6(G, D̄−)

]
3H3−1 −

∫
{D̄>0}∩�E

[
6(G, E+) + 6(G, E−)

]
3H3−1.

The right-hand side is equal to L(D̄≥0) −L(E), so we can use (3.19) to deduce that

F(D̄) −F(Ē) ≥ L(D̄≥0) −L(E) > 0,
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which is the desired contradiction.

Theorem 3.4 Suppose that (j1)–(j4) and (g1)–(g3) hold and let D be a supersolution for L in the sense of
Definition 3.1. Then there exists a positive constant  such that

D ≥  almost everywhere on {D > 0}. (3.20)

Proof. Fix & > 0 and let D& := D ∨ &. Then D& ∈ F� is a competitor as a supersolution for L, which
means that, by the minimality of D, we have

L(D) ≤ L(D&).

This inequality can be rewritten as∫
ℝ3

[
9(G, D,∇D) − 9(G, 0, 0)

]
3G +

∫
�D

[
6(G, D+) + 6(G, D−)

]
3H3−1

· · · ≤
∫
ℝ3

[
9(G, D& ,∇D&) − 9(G, 0, 0)

]
3G +

∫
�D&

[
6(G, D+& ) + 6(G, D−& )

]
3H3−1 ,

so, using the assumptions (j2), (g2) and (g4), we get

�2&
?H3−1 (%4{D > &} \ �D) ≥

∫
{D≤&}

[
|∇D |? + 9(G, D, 0) − 9(G, &, 0)

]
3G

· · · + �1

∫
�D∩{D−<D+≤&}

[|D+ |@ + |D− |@] 3H3−1 ,

where %4 denotes the external boundary (see [107]). The reason is that the jump term on �D ∩ {D− ≥ &}
is the same on both sides, while the integral∫

�D∩{D−≤&<D+}

[
6(G, D+) + 6(G, D−)

]
3H3−1

is non-negative and does not give any helpful information; thus, it can be replaced by zero. Moreover,
the assumption (j4) tells us that 9(G, ·, 0) is decreasing, so∫

{D≤&}

[
9(G, D, 0) − 9(G, &, 0)

]
3G ≥ 0,

which means that this term can also be replaced by zero in the estimate above. It follows that

�2&
@H3−1 (%4{D > &} \ �D) ≥ !

∫
{D≤&}

|∇D |? 3G + �1

∫
{D−<D+≤&}∩�D

[|D+ |@ + |D− |@] 3H3−1 ,

and therefore, for almost every � with 0 < � < &, we have

!

∫
{D<&}

|∇D |? 3G + �1�
@H3−1 (%4{� < D < &} ∩ �D) ≤ �2&

@H3−1 (%4{D > &} \ �D) .

We will refer to this inequality multiple times throughout this proof, so to ease the notations, we
introduce the auxiliary functions

�(&) :=
∫
{D≤&}

|∇D |? 3G, �(�, &) := H3−1 (%4{� < D < &} ∩ �D) ,

ℎ(&) := H3−1 (%4{D > &} \ �D) .
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The inequality above can be rewritten as follows:

�(&) +
�1

!
�@�(�, &) ≤

�2

!
&@ℎ(&). (3.21)

Our goal is to adapt the proof of [24, Theorem 3.5], but we need to be careful because there are two
different exponents (? and @); indeed, notice that

�(&) ≤
�2

!
&@ℎ(&) =⇒

[∫
{D<&}

|∇D |? 3G
]1/?
≤

(
�2

!

)1/?
&@/?ℎ(&)1/? ,

so the ratio @/? plays a fundamental role in the following, explaining why we need the technical
assumption (3.10), at least with the strategy proposed here.

Step 0. Setting of the problem

For � > 0, we define the sequences

&8 :=
5
6
� + 2−8

6
� and �8 =

2
3
� − 2−8

6
�,

and denote the respective limits as follows:

&∞ := lim
8→+∞

&8 =
5
6
� and �∞ := lim

8→+∞
�8 =

2
3
�.

Moreover, for any 0 < � < &, we introduce the setΩ(�, &) := {� < D < &}. We claim that it is enough
to show that there exists �0 > 0 such that

|Ω (�∞ , &∞)|
∫ &∞

�∞

ℎ(B) 3B = 0 for all � < �0. (3.22)

Indeed, the isoperimetric inequality (1.10) applied toΩ(�, &) gives

|Ω(�, &)|(3−1)/3 ≤ �3 (ℎ(&) + ℎ(�) + �(�, &)) , (3.23)

which means that, if we use (3.21) with �/2 < � < & < �, we get

|Ω(�, &)|(3−1)/3 ≤
�2

�1
�3 (1 + 2@) [ℎ(&) + ℎ(�)] .

This, together with (3.22), allows us to deduce that

|Ω(�∞ , &∞)| = 0,

which means that D must be larger than or equal to (5/6)�0 almost everywhere on its support,
concluding the proof of (3.20) by taking  := (5/6)�0.

Step 1. The main inequalities

For every 8 ∈ ℕ, let

08 :=
∫ &8

�8

ℎ(B) 3B and 18 := |Ω(�8 , &8)|.

We claim that there are positive constants 21 and 22 such that

08 ≤ 21

[
28

�1−@/?

]
08−1(18−1)1/(3?

′) and 18 ≤ 22

(
28

�

)3/(3−1)
(08−1)3/(3−1). (3.24)
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The estimate on 18 is obtained as in [24, Theorem 3.5], so we only focus on the first one and point out
the main differences. Indeed, using the coarea formula (see, e.g., [8]), Hölder’s inequality, and the
isoperimetric inequality (3.23), we get the following chain of inequalities:∫ &

�
ℎ(B) 3B =

∫
Ω(�,&)

|∇D | 3G ≤ |Ω(�, &)|1/?′ ‖∇D‖!? (Ω(�,&))

≤ |Ω(�, &)|1/?′
(
�2

!

)1/?
&@/?ℎ(&)1/?

= |Ω(�, &)|1/(3?′)+(3−1)/(3?′)
(
�2

!

)1/?
&@/?ℎ(&)1/?

≤ |Ω(�, &)|1/(3?′)
[
�3,�(1 + 2@)

]1/?′
(
�2

!

)1/?
[ℎ(&) + ℎ(�)]1/?

′
&@/?ℎ(&)1/?

≤ |Ω(�, &)|1/(3?′)
[
�3,�(1 + 2@)

]1/?′
(
�2

!

)1/?
&@/? [ℎ(&) + ℎ(�)] .

Remark 3.6 For the last step, we used the obvious inequality

ℎ(&)1/? ≤ [ℎ(&) + ℎ(�)]1/?

with the identity 1/? + 1/?′ = 1; however, it is likely possible to find a more refined inequality and, in
turn, to significantly improve the first estimate in (3.24).

If we integrate with respect to & on [&8 , &8−1] and � on [�8−1 , �], we get �2 on the left-hand side and

&
@

? � ≤ �
@

? +1

on the right-hand side; this is enough to conclude the proof of the claim.

Step 2. Combining the main inequalities.

We claim that there exists � > 0 such that, for every = ∈ ℕ,*= := 0�=1= satisfies the inequality

*= ≤
2̃

�3/(3−1)+�(1−@/?)�
=*'

=−1 ,

where 2, � are positive constants and ' > 1. We can prove this as in [24, Theorem 3.5], i.e., by taking �
and ' solutions of the system {

� + 3/(3 − 1) = '�,

�/(3?′) = '.

If we substitute the second equation into the first one and solve for �, we get a unique admissible
(� > 0) solution, which is given by

� = 3?′


1 +

√
1 + 4

(3−1)?′

2

 . (3.25)

At this point, we can plug this value into the second equation and find an explicit expression for ', i.e.,

' =
�
3?′

=

1 +
√

1 + 4
(3−1)?′

2
> 1.
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Step 3. Decay estimate for the energy �(&)

We claim that there are positive constants &0 and 20 such that

�(&) ≤ 20&
?(@−1)
?−1 for all & ≤ &0. (3.26)

There is a crucial difference with [24] because the exponent has an additional factor (@ − 1)/(? − 1),
which is controlled∗ by (3.10). To prove the claim, we use (3.21) to deduce that

�(&) ≤
�2

!
&@ℎ(&),

applying the coarea formula and Hölder’s inequality as above to obtain

&�(&) ≤
∫ 2&

&
�(B) 3B ≤

�2

!
(2&)@

∫ 2&

&
ℎ(B) 3B

=
�2

!
(2&)@

∫
Ω(&,2&)

|∇D | 3G

≤
�2

!
(2&)@ |Ω(&, 2&)|1/?′�(2&)1/? .

If we now take &0 so small that (�2/!)2@ |Ω(0, 2&0)|1/?
′ ≤ 1, then we get

�(&) ≤ &@−1�(2&)
1
? for all & ≤ &0.

Finally, a standard iterative argument (see, e.g., [24, Lemma 3.6]), proves (3.26).

Step 4. Conclusion

We claim that we can find � > 0 such that

*0 ≤ �−1/('−1)�−1/('−1)2�(@−1)/(?−1)�, (3.27)

where � is given by (3.25). Indeed, by Hölder’s inequality and the coarea formula we have

*0 =

���Ω (�
2
, �

)��� [∫ �

�/2
ℎ(B) 3B

] �
=

���Ω (�
2
, �

)��� [∫
Ω( �2 ,�)

|∇D | 3G
] �

≤
���Ω (�

2
, �

)��� [�(�) 1
?

���Ω (�
2
, �

)��� 1
?′
] �

=

���Ω (�
2
, �

)���1+�/?′ �(�)�/? ,
so, if we apply the decay estimate (3.26), we conclude that

*0 ≤ 2′0
���Ω (�

2
, �

)���1+�/?′ � @−1
?−1 � .

Consequently, the claim (3.27) follows if we choose � > 0 small enough to have

2′0

���Ω (�
2
, �

)���1+�/?′ ≤ �−1/('−1)�−1/('−1)2 .

∗ This step of the proof requires the technical assumption (3.10) to work, but it is unlikely to be necessary; indeed, we expect
that it can be removed entirely (or, at least, significantly weakened) with a different strategy.
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Now, to conclude the proof of (3.22), it is sufficient to show that

lim
=→∞

*= = 0.

Putting together the iterative formula given in Step 2 and (3.27), we get the following inequality:

*= ≤ �
'=−1
'−1 �

− '=−1
'−1

[
3
3−1+�

(
1− @?

)]
�

'('=−1)−='+=
('−1)2 (*0)'

=

≤ �−
1

'−1�
'=
'−1 �

[
�
@−1
?−1− 3

3−1−�
(
1− @?

)]
'=

≤ �1

[
�

1
'−1 �

�
(
@−1
?−1+

@

? −1
)
− 3
3−1

]'=
.

Therefore, we have*= → 0 as = → +∞ if we prove that the quantity inside is strictly less than one up
to replacing � with a smaller value or, equivalently, that

�

(
@ − 1
? − 1

+
@

?
− 1

)
− 3

3 − 1
> 0.

This can easily be verified to be equivalent to the technical assumption (3.10) using the explicit
expression for � given by (3.25), concluding the proof.

Remark 3.7 The assumption (3.10) seems somewhat restrictive, but numerical simulations show that

�

(
@ − 1
? − 1

+
@

?
− 1

)
− 3

3 − 1
> 0

is verified in a significant portion of the plane (see Figure 3.1).

Figure 3.1: The range of admissible values @ > 1 satisfying the technical assumption (3.10) for 3 = 3 is represented by the area
between the two lines.

We are now ready to prove that the optimal function D̄ belongs to SBV(ℝ3) and, as a consequence,
that the corresponding optimal set Ω̄ = {D̄ > 0} has finite perimeter.

Proof of Theorem 3.2. The function D̄ is a supersolution for L, so by Theorem 3.4 there exists a positive
constant  such that we can write

D̄ = D̄ ∨ .
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Moreover, we know that D̄ ∈X� means that D̄ ∨ & ∈ SBV(ℝ3) for every & > 0, so this immediately
implies that D̄ ∈ SBV(ℝ3). Now notice that the perimeter of Ω̄ can be estimated by

Per Ω̄ = sup
{∫

ℝ3

div())1Ω̄(G) 3G : ) ∈ �1
2 (ℝ3) and ‖)‖∞ ≤ 1

}
≤ −1‖D̄‖BV(ℝ3) ,

where 1Ω̄ is the characteristic function of Ω̄. The right-hand side is finite because D̄ ∈ SBV(ℝ3) and
 > 0, so we finally proved that

D̄ ∈ SBV(ℝ3) =⇒ Per Ω̄ < ∞.

3.4 Proof of Theorem 3.3: the optimal shape Ω̄ is open

To prove that the optimal set Ω̄ is open, we first need to investigate the topological properties of the
corresponding jump set �D̄ . Recall that the prototype case is the integrand

9(G, D,∇D) = |∇D |? − 5 (G)D + 1,

so we cannot apply the results obtained in [24, Section 4] directly since the linear term leads to several
issues that need to be addressed. From now on, we will assume (j5), which asserts that

9(G, B, �) − 9(G, B, 0) = !|�|? for all B, � ∈ ℝ

but, as we will see later, this assumption could be replaced by a weaker one. Moreover, we consider
the Mumford-Shah functional obtained by removing the linear term and taking 6 = 1, i.e.,

"((D) := !
∫
ℝ3

|∇D |? 3G +H3−1(�D).

The function D̄ is not a minimizer of this functional, so we now introduce a weaker notion of the
minimum that is satisfied by a suitable rescaling of D̄.

Definition 3.2 Let D ∈ SBV?

loc(ℝ3) be a function such that

D = 0 on ℝ3 \ �.

We say that D is an almost-quasi minimizer for the functional "((·) with Dirichlet boundary conditions if
there are Λ ≥ 1, ' > 0 and 2' > 0 such that∫

��(G0)
!|∇D |? 3G +H3−1 (

�D ∩ �̄�(G0)
)
≤

∫
��(G0)

!|∇E |? 3G +ΛH3−1 (
�E ∩ �̄�(G0)

)
+ 2'�3−1+'

for all ��(G0) b � and for every E ∈ SBV?

loc(ℝ3), E = 0 in ℝ3 \ � satisfying the condition

{E ≠ D} ⊆ ��(G0).

Theorem 3.5 Let D ∈ SBV?

loc(�) be an almost-quasi minimizer of "((·) with Dirichlet boundary conditions
in the sense of the definition above. Then

H3−1 (
(�̄D \ �D) ∩ �

)
= 0,

which means that the jump set of D is essentially closed in �.
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This result was proved in [24, Theorem 2.3] under more general assumptions (which is the reason
why (j5) is not optimal) that are satisfied by the function

ℎ(G,∇D) =: 9(G, D,∇D) − 9(G, D, 0) = !|∇D |? .

Proposition 3.1 Under the assumptions (j1)–(j5) and (g1)–(g4), if D̄ ∈ SBV ∩ !∞(ℝ3) is the minimizer of F
given by Theorem 3.1 and  > 0 the constant in Theorem 3.2 such that

D̄ ≥  almost everywhere on {D̄ > 0},

then the rescaling D̃ := (2�1)1/@D̄ is an almost-quasi minimizer of the Mumford-Shah functional with Dirichlet
boundary conditions on � in the sense of Definition 3.2.

Proof. Let ��(G0) ⊂ � and take any E ∈ SBVloc(ℝ3)with E = 0 on ℝ3 \ � satisfying

{E ≠ D̄} ⊆ ��(G0).

Without loss of generality we can replace E with F := (E ∧ ") ∨ 0, where " ≥ ‖D̄‖∞ is given by
Lemma 3.4. As a consequence, the function F is a competitor for Fand, by minimality,

F(D̄) ≤ F(F),

which immediately translates to∫
ℝ3

!|∇D̄ |? 3G +
∫
ℝ3

9(G, D̄, 0) 3G +
∫
�D̄

[
6(G, D̄+) + 6(G, D̄−)

]
3H3−1

≤
∫
ℝ3

!|∇F |? 3G +
∫
ℝ3

9(G, F, 0) 3G +
∫
�F

[
6(G, F+) + 6(G, F−)

]
3H3−1.

Moreover, the functions D̄ and E coincide everywhere outside of ��(G0) andF is obtained by truncation
outside of the image of D, which means that

{F ≠ D̄} ⊂ {E ≠ D̄} ⊆ ��(G0).

Using this property and (g4) leads to the following estimate:∫
��(G0)

!|∇D̄ |? 3G +
∫
��(G0)

[
9(G, D̄, 0) − 9(G, F, 0)

]
3G + 2�1

@H3−1 (
�D̄ ∩ �̄�(G0)

)
≤

∫
��(G0)

!|∇F |? 3G + 2�2"
@H3−1 (

�F ∩ �̄�(G0)
)
+ �$3�

3 .

We apply (3.11) to estimate the second integral as∫
��(G0)

[
9(G, D̄, 0) − 9(G, F, 0)

]
3G ≥ −� 9 |��(G0)|‖F‖@!@ (ℝ3) ≥ −�

′
9�
3 ,

and this is enough to conclude since∫
��(G0)

!|∇D̄ |? 3G + 2�1
@H3−1 (

�D̄ ∩ �̄�(G0)
)

≤
∫
��(G0)

!|∇F |? 3G + 2�2"
@H3−1 (

�F ∩ �̄�(G0)
)
+ �′′9 ,3�

3 ,

where we define �′′
9 ,3

:= �$3 + �′9 .
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We now have all the ingredients to prove Theorem 3.3, which asserts that Ω̄ = {D̄ ≠ 0} is open (and
thus belongs to A(�)) and, moreover, that it solves the initial shape optimization problem

inf
Ω∈A(�)
Ω Lipschitz

J(Ω) = J(Ω̄). (3.28)

Proof of Theorem 3.3. First, we notice that the jump set is invariant under rescaling, i.e.,

�D̄ = ��D̄ for all � > 0,

so combining Theorem 3.5 and Proposition 3.1 yields

H3−1
((
�D̄ \ �D̄

)
∩ �

)
= 0. (3.29)

This means that �D̄ is essentially closed in � and, as a consequence of (3.20), we also have

H3−1 (�D̄) < ∞.

Now notice that the optimal shape Ω̄ corresponds to the unique (by minimality) connected component
of � \ �D̄ on which D̄ does not vanish. It follows that

%Ω̄ ⊆
(
�D̄ ∩ �

)
∪ %� =⇒ %Ω̄ ∩ Ω̄ = ∅,

which proves that Ω̄ is an open set. In addition, by (3.29) we have

H3−1 (
(%Ω̄ \ �D̄) ∩ �

)
= 0,

so, using the assumption (g4), we obtain the following identity:∫
%Ω̄\�D̄

[
6(G, D̄+) + 6(G, D̄−)

]
3H3−1 = 0.

Moreover, the traces D̄+ and D̄− are equal to zero almost everywhere on %Ω̄ ∩ %� since � is Lipschitz
and D̄ = 0 outside of Ω̄ by construction.

To conclude the proof of this theorem, we only need to verify that Ω̄ is also a solution to the initial
shape optimization problem (3.2), which is achieved by showing that

inf
Ω∈A(�)
Ω Lipschitz

J(Ω) = J(Ω̄).

For & > 0 fixed, we apply Proposition 3.2 to find an admissible competitor F ∈ F� for the free
discontinuity functional F, with jump set satisfying �F ⊂ �, such that

F(F) < F(D̄) + &.

By [56, Theorem 3.1], we can find a sequence F: ∈ F� ∩,1,?(� \ �F: ), with jump sets �F: essentially
closed and polyhedral (i.e., given by the union of the intersection with � of a finite number of
(3 − 1)-simplexes), such that the following holds:

F:
:→∞−−−−→ F and ∇F:

:→∞−−−−→ ∇F strongly in !?(ℝ3),

F(F:)
:→∞−−−−→ F(F).

We can also assume without loss of generality that the measures of the supports converge; if not, it
is sufficient to replace F: with (F: − C:)+ for a suitable sequence C: ∈ ℝ with C: → 0. The idea is
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to widen the jump set by making small holes �: with polyhedral boundary in such a way that the
resulting set belongs to the class of admissible sets, i.e.,

Ω: = � \ �̄: ∈ A(�).

Therefore, the set Ω: is a competitor for the minimization problem (3.28) since it has Lipschitz
boundary. In addition, the restriction of F: toΩ: is admissible for minimizing F, so we have

F

(
F:

��
Ω:

)
≥ F(D̄).

If we now consider the holes small enough and : so large that we have

J(Ω:) ≤
∫
Ω:

9(G, F: ,∇F:) 3G +
∫
%Ω:

6(G, F:) 3H3−1

≤ F

(
F:

��
Ω:

)
+ & ≤ F(F) + 2&

< F(D̄) + 3& = J(Ω̄) + 3&,

then the result follows by taking a sequence &= → 0 and selecting the corresponding := = :.

Proposition 3.2 Let E ∈ F� ∩ !∞(ℝ3) with H3−1(�E) < ∞. For every & > 0 there is F ∈ F� ∩ !∞(ℝ3)
such that �F ⊂ �, H3−1(�F) < ∞ and

F(F) < F(E) + &.

The proof follows the same argument used in [24, Proposition 3.12] with � = ∅, but there is a
significant difference which is the way auxiliary functions are defined; more precisely, we let

E�
8
(H) :=

{
E8(H′, H3 + �) if H3 < 58(H′) − �,
‖E‖∞#8(H′, 58(H′)) if H3 ≥ 58(H′) − �,

where #8 is the partition of unity introduced in the referenced paper. This does not change the next
step of the proof because the integral term∫

ℝ3

[
9(G, E�

8
, 0) − 9(G, E8 , 0)

]
3G

can be easily estimated with a constant when � > 0 is sufficiently small, since the support of E�
8
can be

chosen as close as we need to spt E8 .

3.5 Open problems and additional remarks

In this final section, we want to discuss some open questions and remarks that naturally arise from
the shape optimization problem (3.2).

Problem 3.1 Under relatively mild assumptions, we obtained the existence of an optimal domain Ω̄ in
the class of measurable subsets of �. In addition, we proved properties such as

Per Ω̄ < ∞ and Ω̄ open,

under stronger assumptions. Thus, it would be interesting to examine the properties of optimal
domains further and, more precisely, answer the following questions:

(a) Is it possible to have higher regularity, for example %Ω̄ ∈ �1,?
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(b) Does Ω̄ have internal fractures (modeled as one-dimensional sets) or cuspids at the boundary?

It is worth remarking that question (b) can be answered partially. Indeed, according to the results
obtained in [25], we have the following properties:

• if 3 = 2, cuspidal domains are (in principle) possible only if they can be parameterized around
the cuspid as G2 = |G1 | with  < 2;

• the optimal set Ω̄ does not contain uncountably many fractures (otherwise, one can remove
some of them and obtain a better solution).

As for the first question, if we consider the prototype problem given by

9(G, B, I) = |I |? − 5 (G)B + 1 and 6(G, B) = |B |? , (3.30)

for some ? > 1, it is worth investigating if one can achieve �1,-regularity of the free boundary
assuming, for example, 5 non-negative and bounded, or if more assumptions are needed.

Problem 3.2 In the prototype problem (3.30), a fundamental assumption to prove that Ω̄ is open and
has a finite perimeter is the non-negativity and boundedness of the datum 5 . It would be interesting
to see if our results still hold with weaker assumptions on 5 , for example

� = � t � with 5 ≥ 0 on � and 5 ≤ 0 on � and 5 ∈ !1(�).

As a suggestion, in the following example, modeled on a similar question for Dirichlet boundary
conditions (see [41]), we show that this is the case.

Example 3.2 FixΩ0 ⊂ � and recall that the functional with ? = @ = 2 is given by

J(Ω) = inf
{∫

Ω

(
1
2
|∇D |2 − 5 (G)D + 1

)
3G +

�

2

∫
%Ω
|D |2 3G : D ∈,1,2(Ω)

}
.

Now let F be the torsion function associated to the selected domainΩ0, namely the solution to the
boundary-value problem {

−ΔF = 1 inΩ0 ,

F = 0 on %Ω0.

Since we have not assumedΩ0 to be regular (indeed, it can be as irregular as we want), the solution F
is intended in the weak sense. In other words, it is the unique minimizer of∫

Ω0

(
1
2
|∇D |2 − D

)
3G +

�

2

∫
�D

[
|D+ |2 + |D− |2

]
3G

in the space GSBV(Ω0). Let 5 := −Δ(F2). A formal computation shows that

5 = −
[
FΔF + |∇F |2

]
=

[
F − |∇F |2

]
,

where the second equality follows using the fact that ΔF = −1. In any case, it is easy to see that the
following properties hold:

• The function 5 does not belong to !∞, but it is always (at least) a distribution depending on the
regularity of the torsion function F (and thus ofΩ0).

• The function 5 belongs to !1(�) if the chosen domainΩ0 satisfies low-regularity assumptions.

• The sign of 5 depends on the quantity F − |∇F |2 which, in general, is not positive almost
everywhere.
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Now let D̄ := F2. A priori D̄ may not belong to GSBV(Ω0), but using the chain rule for the weak
derivative we obtain the identity

�D̄ = F∇F · 3G + F2 · 3H3−1x�F ,

so it is easy to verify that D̄ minimizes onX� the functional∫
Ω0

(
1
2
|∇D |2 − 5 (G)D + 1

)
3G + �

∫
�D

[
|D+ |2 + |D− |2

]
3G

and, as a consequence of the reduction result (see Lemma 3.1), we have

Ω0 = {F ≠ 0} = {D̄ > 0}.
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Let � ⊂ ℝ3 be a bounded open set with Lipschitz boundary and, for everyΩ ⊂ �, which will be our
control variable, denote by DΩ the corresponding state variable, solution of the following PDE:{

−Δ?D = 5 inΩ,
D = 0 on � \Ω,

(4.1)

where ? > 1 is given, 5 ∈,−1,?′(�) and −Δ? is the ?-Laplacian defined by

−Δ?D := −div
(
|∇D |?−2∇D

)
.

The function DΩ can also be characterized as the solution to a variation problem. More precisely,
multiplying the equation by D and integrating by parts yields∫

�

5 D 3G = −
∫
�

DΔ?D 3G =

∫
�

1
?
|∇D |? 3G,

which means that DΩ is the unique (up to a multiplicative constant) solution of

min
{∫

�

(
1
?
|∇D |? − 5 (G)D

)
3G : D ∈,1,?

0 (�), D = 0 on � \Ω
}
.

This chapter aims to discuss the results obtained in [38], in which we study the existence and properties
of solutions to shape optimization problems of the form

min
{
�(DΩ) : Ω open, Ω ⊂ �

}
, (4.2)

for cost functionals independent of ∇D, i.e.,

�(D) =
∫
�

9 (G, D) 3G, (4.3)

where 9 : � × ℝ → ℝ is a given function with B ↦→ 9(G, B) lower semicontinuous. The prototype
problem is the one associated with the cost

9(G, B) = −6(G)B + � 1(0,+∞)(B),

where � is a non-negative constant (the Lagrange multiplier) and 6 : � → ℝ a given function that
satisfy some regularity properties. If we plug this into (4.3), we get

�(DΩ) = −
∫
�

6(G)DΩ(G) 3G + � |{DΩ > 0}| , (4.4)

which is our model cost functional. We now state the main theorem of [38] for the prototype problem,
but the same result is valid in a much more general setting (see Section 4.1).

Theorem 4.1 Let � > 0, 6 ∈ !A(�) for some A > 1 be a non-negative measurable function and � the model
functional (4.4). Suppose that 5 is non-negative and

5 ∈ !@(�) with @ >
3

?
and @ ≥ 1.

Then the following assertions hold true:
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(i) If there is a constant � > 0 such that

5 (G) ≤ �6(G) for every G ∈ �,

then there is an open setΩopt ⊂ � solution to the problem (4.2).
(ii) IfΩopt is a solution to (4.2), then it has a finite perimeter:

Per
(
Ωopt

)
< ∞.

Remark 4.1When 5 = 6, our problem reduces to a free boundary problem (see Section 4.6), which
means that the optimal state function can also be characterized as the solution of

min
{

1
?

∫
�

|∇D |? 3G −
∫
�

5 (G)D 3G +
? − 1
?

�|{D ≠ 0}| : D ∈,1,?
0 (�)

}
.

This allows one to study the properties of the optimal set Ωopt using well-known free boundary
regularity techniques. The main novelty of [38] is that the problem (4.2) cannot be written as a
variational problem in,1,?

0 (�) since we have 5 ≠ 6.

In particular, this means that the state function corresponding to an optimal shape is, a priori, only
optimal among all functions that satisfy (4.1) on other admissible domains. This is the main difficulty
in studying this functional, which was first introduced in [45], where the minimizer’s existence and
some regularity properties were obtained in the case ? = 2.

Regularity of the free boundary for ? = 2

We expect that the regularity of the free boundary obtained in Theorem 4.1 can be improved, but this
is very challenging for a generic value of ? > 1. However, for ? = 2, the Laplace operator

ΔD = div(∇D)

is linear, and we can take advantage of plenty of results for subharmonic functions. This will be
discussed in more details in Chapter 7 since we first need (in Chapter 5 and Chapter 6) to develop a
general regularity theory for viscosity solutions.

In the remainder of this section, we introduce the notions that are necessary to at least state the main
result for ? = 2 so that we can compare it with Theorem 4.1. For this, consider the functional

�(D) =
∫
ℝ3

(
−6(G)D + 1{D>0}(G)

)
3G,

which is obtained from (4.4) by setting � = 1 and replacing � with ℝ3. The reason is that we use a
local definition of the minimizer, so there is no need to work inside �.

Definition 4.1 (Local minimizer) A setΩ ⊂ ℝ3 of finite measure is optimal in a ball � ⊂ ℝ3, if

�(DΩ) ≤ �(D$) for every $ such thatΩΔ$ b �.

The main result of [37] is the following. However, weaker assumptions on the regularity of 5 and 6
are necessary if we only want to prove the first assertion (for example, the same of Theorem 4.1).

Theorem 4.2 Let 3 ≥ 2 and letΩ ⊂ ℝ3 be optimal in a ball � ⊂ ℝ3 in the sense of Definition 4.1. Suppose
that the following conditions hold:

(a) 5 , 6 ∈ �2
1
(�);
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(b) 5 ≥ 0 inΩ ∪ �, and D̄ > 0 inΩ;
(c) there are constants �1 , �2 > 0 such that

�16(G) ≤ 5 (G) ≤ �26(G) for every G ∈ Ω ∪ �.

Then there is a closed set ( ⊂ %Ω ∩ � such that

(i) (%Ω ∩ �) \ ( ∈ �1, for some  ∈ (0, 1];
(ii) ( is empty if 3 ≤ 4, and dimH(() ≤ 3 − 5 if 3 ≥ 5.

We will prove (i) in Section 7.5 and (ii) in Subsection 7.6.3, while the remainder of this chapter is
dedicated to the problem in the case ? > 1.

4.1 Formulation of the problem and main results

This section aims to present the main results obtained in [38] in the most general framework possible
and show that the model functional (4.4) is well within the assumptions of each one.

4.1.1 Existence of optimal open shapes for ? > 3

In Section 4.2, we prove the existence of an optimal set Ωopt for ? > 3, which requires very mild
assumptions on the integrand 9. Indeed, in this case, any state function DΩ satisfying{

−Δ?DΩ = 5 inΩ,
DΩ = 0 on � \Ω,

is continuous by Sobolev embedding theorem (Theorem 4.7) since we know that

,1,?(�) ↩→ �0(�)

is a (compact) continuous inclusion for these values of ? and 3. Moreover, we will see that the optimal
shape solving (4.2) can be written as

Ωopt = {D̄ ≠ 0} ,

where D̄ satisfies (4.1) withΩ = Ωopt. It is interesting to notice that in the case ? > 3 we can consider a
more general shape optimization problem, namely

min
{
�(DΩ) : Ω open, Ω ⊂ �, |Ω| ≤ <

}
, (4.5)

where | · | denotes the Lebesgue measure inℝ3 , < ∈ (0, |� |] is given, DΩ is the state variable and � is a
functional of the form (4.3). Our main result is the following:

Theorem 4.3 Let � ⊂ ℝ3 be a bounded open set and 0 < < ≤ |� |. Let ? > 3 and suppose that for every
" > 0 there exists a function 0" ∈ !1(�) such that

−0"(G) ≤ 9(G, B) for almost every G ∈ ℝ3 and every |B | ≤ ". (4.6)

Then the minimization problem (4.5) admits a solutionΩopt = {D̄ ≠ 0}.

Remark 4.2 This result applies to the model functional (4.4) if we assume, for example, that 6 ∈ !1(�)
and � ∈ ℝ. Indeed, in this case, we can take

0"(G) = " |6(G)| + |�|,
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and this is well within the assumptions of Theorem 4.1.

4.1.2 Existence of optimal quasi-open sets for ? ≤ 3

In Subsection 4.3.3, we study the shape optimization problem (4.2) for ? ≤ 3. Notice that the Sobolev
embedding theorem no longer applies in this case; thus, the state variable

−Δ?DΩ = 5

may not be continuous. Indeed, the existence of optimal shapes in the class

A(�) :=
{
Ω ⊂ � : Ω open

}
(4.7)

is not guaranteed with the assumptions of Theorem 4.3, so we consider the relaxation to ?-capacitary
measures (Subsection 4.3.2) and prove the existence of an optimal measure

�̄ = ∞�\Ωopt

This suggests that it is necessary to first consider a larger set of admissible sets, namely

A?,<(�) :=
{
Ω ⊂ � : Ω is ?-quasi-open, |Ω| ≤ <

}
,

which is defined in more details in Section 4.3. Therefore, we consider the minimization problem

min
Ω∈A?,< (�)

�(Ω), (4.8)

where < ∈ (0, |� |] is given, and we obtain the following result:

Theorem 4.4 Let � be a bounded open set in ℝ3, ? ≤ 3 and 5 ≥ 0. Suppose, in addition, that the cost
integrand 9 satisfies the following properties:

(i) There are 0 ∈ !1(�) and 2 ∈ ℝ such that

0(G) − 2 |B |A ≤ 9(G, B) , where

{
0 < A <

3?

3−? for ? < 3 ,

0 < A < +∞ for ? = 3 .

(ii) The function 9 can be written as

9(G, B) = 90(G, B) + � 1(0,+∞)(B),

where � is non-negative and 90(G, ·) is non-increasing for a.e. G ∈ ℝ3.

Then, for any < ∈ (0, |� |], there exists a solutionΩopt to (4.8). Moreover, if � = 0, then

|Ωopt | = <.

Remark 4.3 The model functional (4.3) satisfies the conditions of Theorem 4.4 if we assume, for
example, that for some ℓ > 1 we have

� ≥ 0 and 6 ≥ 0 and 6 ∈ !ℓ (�).

Indeed, in this case, the function
90(G, B) = −6(G)B
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is non-increasing and the property (i) is satisfied with 0(G) = −|6(G)|ℓ , 2 = 1 and

A =
ℓ

ℓ − 1
.

Indeed, by Young’s inequality we get

9(G, B) = −6(G)B + � 1(0,+∞)(B) ≥ −6(G)B ≥ −|6(G)|ℓ − |B |A = 0(G) − BA ,

and this is enough to conclude that Theorem 4.4 applies to (4.4).

4.1.3 Existence of optimal open sets for ? ≤ 3

In Subsection 4.3.4 we show that, under additional assumptions on 9, if we remove∗ the measure
constraint, then the optimal ?-quasi-open setΩopt given in Theorem 4.4 is open, and hence

�(Ωopt) = min
Ω∈A(�)

�(Ω),

where A(�) is the class of admissible sets defined in (4.7). More precisely, we require that 9 has a
growth condition which, for the model functional, is given by

6(G) ≥ 2 5 (G) for every G ∈ �.

Moreover, we require 5 ∈ !@(�) for some @ that depends on 3 and ? since we will deduce that the
optimal shapeΩopt = {D̄ > 0} is open by proving that D̄ is -Hölder continuous.

Remark 4.4 The class of open sets is dense in the space of ?-quasi-open sets, so putting Theorem 4.4
and Theorem 4.5 together proves the existence for the shape optimization problem (4.2) in A(�).

Theorem 4.5 Let � be a bounded open set inℝ3 , ? ≤ 3, < = |� | and 5 ∈ !@(�) for some @ > 3/?. Suppose
that the cost integrand 9 can be written as

9(G, B) = 90(G, B) + � 1(0,+∞)(B),

where � > 0 and 90 satisfies the following properties:

(a) 90(G, 0) = 0 for almost every G ∈ �;
(b) there are constants 2 > 0 and & > 0 such that

90(G, C) − 90(G, B)
C − B ≤ −2 5 (G) (4.9)

for almost every G ∈ � and all B, C ∈ ℝ satisfying 0 < C − B < &.

Then every solution of (4.8) is an open set, and hence (4.2) has a solution in the class A(�).

Example 4.1 If we do not require 5 to be regular enough, thenΩopt given in Theorem 4.4 is not open
in general. See [41, Example 4.3] for a counterexample.

Remark 4.5 The model functional (4.3) satisfies the conditions of Theorem 4.4 if we assume, as
mentioned above, that � > 0 and

6(G) ≥ 2 5 (G) for almost every G ∈ �.

∗ The measure constraint has to be removed (by setting, for example, < = |� |) because it leads to some issues when we prove
that D̄ belongs to �0, . However, it is possible that with a different strategy, getting rid of it is unnecessary.
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4.1.4 Finite perimeter of optimal sets for ? > 1

Since the existence of an optimal setΩopt has been established for all ? > 1, in Section 4.5 we show
that under very mild assumptions we have

Per
(
Ωopt

)
< ∞.

The strategy used to prove this result was first introduced by Bucur in [20] and [29] for the optimization
of the :-th eigenvalue of the Laplace operator.

Theorem 4.6 Let � be a bounded open set in ℝ3. Assume that 9 can be written as

9(G, B) = 90(G, B) + � 1(0,+∞)(B),

with � > 0 and 9(G, 0) = 0 for almost every G ∈ �. For any ? > 1, letΩopt be a solution to the minimization
problem without measure constraint, namely

�(Ωopt) = min
Ω∈A(�)

�(Ω),

and suppose that either one of the following two sets of assumptions is satisfied:

(1) We have 5 ∈,−1,?′(�), 5 ≥ 0 and there are 0 ∈ !1(�) and &0 , 2 > 0 such that

| 90(G, B + &) − 90(G, B)|
&

≤ 0(G) + 2 |B |?∗ (4.10)

for all B ∈ ℝ, for almost every G ∈ � and for all & ≤ &0.
(2) We have 5 ∈ !@(�) for some @ > 3/?, 5 ≥ 0 and there are 0(·, B) ∈ !1(�), non-decreasing and

continuous in B, and &0 > 0 such that

| 90(G, B + &) − 90(G, B)|
&

≤ 0(G, B) (4.11)

for all B ∈ ℝ, almost every G ∈ � and all & ≤ &0.

Then the setΩopt has finite perimeter.

The assumption 9(G, 0) = 0 is not necessary, but it helps simplify the expressions occurring in the
proof. To see that this is not a restrictive hypothesis, it is sufficient to notice that

�̃(D) := �(D) −
∫
�

9(G, 0) 3G

satisfies 9̃(G, 0) = 0 and has the same minimizers of � since they only differ for a constant term.

Remark 4.6 The model functional (4.3) satisfies the conditions of Theorem 4.6. More precisely, we can
easily verify that both sets of assumptions are fulfilled:

(1) For the condition (4.10) we simply notice that

| − 6(G)(B + &) + 6(G)B |
&

= |6(G)|,

so it is sufficient to take 0(G) := 6(G) and assume 6 ∈ !1(�).
(2) For the condition (4.11) we can take

0(G, B) := |6(G)|,

which does not depend on B, so it is trivially non-decreasing and continuous in B.
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4.1.5 Minimum problem on �-compact classes

In Section 4.4, we consider the same minimization problem

min �(Ω),

butΩ ranges in some classes (compact with respect to a particular notion convergence) that encode
different kinds of geometrical restrictions, for example

A2>=E4G := {Ω ⊂ � : Ω convex} .

More precisely, we show that the �?-convergence is equivalent to the Hausdorff complementary
convergence and exploit the compactness properties of the latter to infer that

min
Ω∈A2>=E4G

�(Ω),

admits a solutionΩopt ∈ A2>=E4G , and that the same is valid in other geometrical classes. Moreover, we
consider a class which is only of topological type, i.e.,

O: :=
{
Ω ⊂ � : Ω open and has at most : connected components

}
,

and prove that, for ? > 3−1, the minimization problem minΩ∈O: �(Ω) has a solution for every : ∈ ℕ.

4.2 Proof of Theorem 4.3: existence of an optimal set for ? > 3

Consider the shape minimization problem (4.2) with the class of admissible sets given by

A<(�) =
{
Ω ⊂ � : Ω open and |Ω| ≤ <

}
,

where | · | denotes the Lebesgue measure in ℝ3 and 0 < < ≤ |� | is given.

As we mentioned above, the assumption ? > 3 plays a crucial role since it allows us to exploit the
Sobolev embedding theorem, which we now recall for completeness (see [80] for a proof).

Theorem 4.7 Let � ⊂ ℝ3 be a bounded open set with Lipschitz boundary and let : ≥ 1 and 1 ≤ ? ≤ ∞. Then
the following inclusions are continuous:

• If :? < 3, then � :,?(�) ↩→ !@(�) for all 1 ≤ @ ≤ 3?/(3 − :?).
• If :? = 3, then � :,?(�) ↩→ !@(�) for all 1 ≤ @ < ∞.
• If :? > 3, then � :,?(�) ↩→ �0,(�̄), where

 =


: − 3

? if : − 3/? < 1,
0 ∈ [0, 1) if : − 3/? = 1 and ? > 1,
1 if : − 3/? > 1.

Furthermore, the following inclusions are also compact:

• If :? < 3, then � :,?(�) ↩→ !@(�) for all 1 ≤ @ < 3?/(3 − :?).
• If :? = 3, then � :,?(�) ↩→ !@(�) for all @ ∈ [1,∞).
• If :? > 3, then � :,?(�) ↩→ �0(�̄).

The last technical result we need to prove the existence is the classical Poincaré inequality, which we
also recall below for completeness.
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Theorem 4.8 (Poincaré) Let 1 ≤ ? < ∞ and let � be a bounded† subset of ℝ3. Then there exists a constant
� > 0, depending only on � and ?, such that for every D ∈,1,?

0 (�) we have

‖D‖!? (�) ≤ �‖∇D‖!? (�). (4.12)

For a proof of this result we refer to [80], while a discussion on the optimal constant can be found in
[118, Chapter 12.2]. We are now ready to prove the main theorem of this section:

Proof of Theorem 4.3. LetΩ= be a minimizing sequence in A<(�) and let D= be the corresponding state
variables given by (4.1). Multiplying the equation by D= yields

(−Δ?D=)D= = 5 D= ,

so we can integrate by parts and obtain the following identity:∫
�

|∇D= |? 3G = 〈 5 , D=〉 ≤ ‖ 5 ‖,−1,?′ (�)‖D= ‖,1,? (�).

Notice that 5 belongs to,−1,?′(�), so the inequality above follows from the fact that the right-hand
side is a dual pairing. On the other hand, by Poincaré inequality (4.12), we get∫

�

|D= |? 3G ≤ �
∫
�

|∇D= |? 3G.

If we now combine these two inequalities together, we obtain

‖D= ‖?,1,? (�) ≤ (1 + �)
∫
�

|∇D= |? 3G ≤ (1 + �)‖ 5 ‖,−1,?′ (�)‖D= ‖,1,? (�) ,

which, since ? > 1 strictly, immediately implies

‖D= ‖?−1
,1,? (�) ≤ (1 + �)‖ 5 ‖,−1,?′ (�).

Therefore, the sequence D= is uniformly bounded in,1,?(�) and, by Theorem 4.7, compact in �0,(�)
for some  > 0; consequently, up to subsequences, we have

‖D= − D̄‖∞
=→∞−−−−→ 0 for some D̄ ∈ �0,(�).

It is now easy to verify that the set
Ωopt := {D̄ ≠ 0}

is open and belongs to A<(�); moreover, the function D̄ verifies (4.1) withΩ = Ωopt. To conclude the
proof, notice that by (4.6), we have

�(D̄) ≤ lim inf
:→∞

�(D=: ),

which means thatΩopt is a minimizer for �(Ω) in the class A<(�), proving the claim.

Problem 4.1 Can we expect symmetric solutions if all the data are symmetric?

The answer to this question is negative and, in general, we cannot expect any symmetry property, as
the following example shows (see Section 4.6 for the definition of the supremal problem):

† It is enough to assume � bounded in at least one direction in ℝ3 .
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Example 4.2 Let 3 = 2, � = �1, ? = ∞ and consider the
supremal optimization problem with 9(G, D) = −D and
mixed Dirichlet-Neumann boundary conditions. Then
DΩ = 3(G, � \Ω), and the minimization problem can be
written as follows:

min {‖3(G, � \Ω)‖∞ : |Ω| ≤ <} .

The optimal solutionΩopt is unique up to rotations and
is represented on the side by the shaded region. It is
given by the intersection

Ωopt = �1 ∩ �A< (Ḡ),

where Ḡ ∈ %� and A< is the unique radius such that the
area of the intersection is equal to <.

Out[]=
-2 -1 1 2 3

-2

-1

1

2

Figure 1. The colored region represents an
optimalΩopt with Ḡ = (1, 0) and < ≈ 2

(A< ≈ 1.351).

4.3 Existence of a solution in the case ? ≤ 3

The case ? ≤ 3 is much more delicate because minimizing sequencesΩ= have a significantly different
behavior due to the lack of compactness. More precisely, we have

#(Ω=)
=→+∞−−−−−→ ∞,

where #(·) denotes the number of connected components. This means thatΩ= converges in a suitable
sense to a relaxed solution which is, in general, not a domain but a capacitary measure.

In particular, a solution to the shape optimization problem in A(�)may not exist for ? ≤ 3 without
additional assumptions; indeed, several counterexamples are known in the literature (see, for example,
[22, Section 4.2]). The reader interested in having a complete view of relaxed shape optimization
problems with Dirichlet conditions on the free boundary and capacitary measure may see, for example,
the book [22] and the articles [31, 33].

4.3.1 Preliminaries

This section aims to present some notions and basic properties from the theory of ?-capacitary
measures and �?-convergence, which play a crucial role in the proof of Theorem 4.4.

Definition 4.2 A setΩ ⊂ � is said ?-quasi-open if there exists a function D ∈,1,?(�) such that

Ω = {D > 0}.

Similarly, a set  ⊂ � is said ?-quasi-closed if there exists a function D ∈,1,?(�) such that

 = {D = 0}.

We are now ready to introduce the notion of ?-capacitary measure (see Definition 1.12 for the definition
of ?-capacity, which is necessary for the following).

Definition 4.3 Anon-negative regular Borel measure� onℝ3 (possibly taking the value+∞) is a ?-capacitary
measure if, for every Borel set � ⊂ ℝ3, we have

cap?(�) = 0 =⇒ �(�) = 0 and �(�) = inf
{
�(Ω) : Ω ⊃ �, Ω ?-quasi open

}
.
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We denote by M? the class of all ?-capacitary measures on ℝ3. This includes a large variety of
measures, for example:

I all measures of the form 0(G) 3G with 0 ∈ !1
loc(ℝ3);

I all measures of the form 1(G)H:x(, where ( is a smooth :-dimensional surface, H: is the
:-dimensional Hausdorff measure, : > 3 − ?, and 1 is locally integrable on (;

I all measures of the form

∞ (�) =
{

0 if cap?(� ∩  ) = 0
+∞ otherwise

where  is a ?-quasi-closed set in ℝ3.

The following results summarize essential properties of the class M? that will be useful to prove the
existence of a ?-quasi-open optimal set. A proof can be found in [22].

Lemma 4.1 Let � ∈M? . Then the subspace of function D ∈,1,?(ℝ3) such that

‖D‖
,

1,?
�

:=
(∫
|∇D |? 3G +

∫
|D |? 3�

)1/?
< ∞

is a well-defined Sobolev space, which is usually denoted by,1,?
� (ℝ3).

Lemma 4.2 Let � ∈M?(�) and let 5 be in the dual space of,1,?
� (�). Then the PDE

−Δ?D + �|D |?−2D = 5 inΩ (4.13)

is well-defined in the weak sense, namely D ∈,1,?
� (�), and∫

�

|∇D |?−2∇D∇E 3G +
∫
|D |?−2DE 3� = 〈 5 , E〉 for all E ∈,1,?

� (�).

Moreover, the equation above admits a unique solution D�, 5 , which can equivalently be characterized as the
unique minimum point of the functional

�(D) :=
∫
�

1
?
|∇D |? 3G +

∫
�

1
?
|D |? 3� − 〈 5 , D〉.

Remark 4.7 LetΩ be a ?-quasi-open set. If we consider the ?-capacitary measure

� := ∞�\Ω ,

then (4.13) becomes the state equation (4.1) with Dirichlet boundary conditions on � \Ω, i.e.,
−Δ?D = 5 inΩ,
D = 0 on � \Ω,
%�D = 0 on %� \ (� \Ω).

If we denote by D�, 5 the unique solution of (4.13) given by Lemma 4.2 for � ∈M? and 5 fixed, then
the following monotonicity properties hold:

Lemma 4.3 The map � ↦→ D�, 5 is decreasing for any 5 ≥ 0, while the map 5 ↦→ D�, 5 is increasing for every
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� ∈M?(�). More precisely, we have{
�1 ≥ �2 =⇒ D�1 , 5 ≤ D�2 , 5 if 5 ≥ 0,
51 ≤ 52 =⇒ D�, 51 ≤ D�, 52 for every � ∈M? .

Proof. Let 5 ≥ 0 and set D8 := D�8 , 5 . The monotonicity with respect to � can be rewritten as

�1 ≥ �2 =⇒ D1 ≤ D2 ,

so to show this implication, we exploit the variational characterization of the solutions D8 as the unique
minima of the corresponding functionals

�8(D) =
∫
�

1
?
|∇D |? 3G +

∫
�

1
?
|D |? 3�8 − 〈 5 , D〉.

More precisely, it is sufficient to prove that

�1(D1 ∧ D2) ≤ �1(D1) (4.14)

since, taking into account that D1 is the unique minimum point of �1, we have

D1 ∧ D2 = D1 =⇒ D1 ≤ D2.

To prove the claim (4.14), we first notice that

�1(D ∧ E) + �1(D ∨ E) = �1(D) + �1(E),

so it is completely equivalent to show that

�1(D2) ≤ �1(D1 ∨ D2).

The left-hand side can be rewritten as

�1(D2) = �2(D2) +
∫
�

1
?
|D2 |? 3(�1 − �2),

while the right-hand side as

�1(D1 ∨ D2) = �2(D1 ∨ D2) +
∫
�

1
?
|D1 ∨ D2 |? 3(�1 − �2),

which means that

�1(D2) ≤ �1(D1 ∨ D2) ⇐⇒ �2(D2) ≤ �2(D1 ∨ D2) +
∫
�

1
?
(|D1 ∨ D2 |? − |D2 |?) 3(�1 − �2).

Since 5 ≥ 0, the maximum principle implies that D8 ≥ 0 for 8 = 1, 2, and this is enough to conclude
the proof of the claim (4.14) because

|D1 ∨ D2 | ≥ |D2 | + D2 minimum of �2 =⇒ �2(D2) ≤ �2(D1 ∨ D2).

In a similar way we can prove the monotonicity with respect to 5 . Let � ∈ M? , set D8 := D�, 58 and
consider the corresponding functionals

�8(D) =
∫
�

1
?
|∇D |? 3G +

∫
�

1
?
|D |? 3� − 〈 58 , D〉.
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We need to prove that
�1(D1 ∧ D2) ≤ �1(D1),

but, arguing as above, it is completely equivalent to

�1(D2) ≤ �1(D1 ∨ D2). (4.15)

The left-hand side can be rewritten as

�1(D2) = �2(D2) + 〈 52 − 51 , D2〉,

while the right-hand side is given by

�1(D1 ∨ D2) = �2(D1 ∨ D2) + 〈 52 − 51 , D1 ∨ D2〉,

which means that (4.15) is also equivalent to

�2(D2) ≤ �2(D1 ∨ D2) + 〈 52 − 51 , D1 ∨ D2 − D2〉.

Finally, this inequality is an obvious consequence of (D1 ∨ D2) − D2 ≥ 0 and the fact that D2 is the
unique minimizer of �2.

We consider the subclass M?(�) of ?-capacitary measures supported on �̄ and notice that it can be
endowed with a very natural notion convergence, the �?-convergence.

Definition 4.4 A sequence (�=)=∈ℕ ∈M?(�) �?-converges to some � ∈M?(�) if and only if

‖D�= ,1 − D�,1‖!? (�)
=→+∞−−−−−→ 0.

It is easy to verify that the �?-convergence implies a slightly weaker notion of convergence for a general
energy; namely we have

‖D�= ,1 − D�,1‖!? (�) → 0 =⇒ ‖D�= , 5 − D�, 5 ‖!? (�) → 0

for every 5 ∈,−1,?′(�).

Remark 4.8 If we endow M?(�)with the distance

3�? (�, �) := ‖D�,1 − D�,1‖!? (�) ,

then we get a compactmetric space which notion of convergence is given by Definition 4.4.

To conclude, it is essential to remark that the following subclasses are dense (with respect to the
�?-convergence) in M?(�):

• the class of measures 0(G) 3G with 0 smooth function;

• the class of measures∞ with  smooth closed set.

In addition, if �= �?-converges to �, the Dirichlet regions {�= = ∞} fulfill the following semicontinuity
property:

lim sup
=→+∞

|{�= = ∞}| ≤ |{� = ∞}|. (4.16)

See [22, Proposition 5.3.6] for a more detailed discussion and a proof of this fact.
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4.3.2 Existence of an optimal measure in M?(�)

In this section, we consider the relaxation of the minimization problem (4.2) to ?-capacitary measures
and prove the existence of a solution. More precisely, we focus on

min
{
�(D�, 5 ) : D�, 5 solves (4.13) and � ∈ A?,<

}
, (4.17)

where the admissible class of measures is defined as follows:

A?,< :=
{
� ∈M?(�) : |{� < ∞}| ≤ <

}
.

The following result shows that, under very mild assumptions, a minimizer �opt exists for the relaxed
problem (4.17). However, a priori, we do not know if it takes the form

�opt = ∞ (4.18)

for some ?-quasi-closed set  ; indeed, further assumptions will be necessary to ensure that the optimal
measure takes the form (4.18).

It is worth remarking that this strategy is not new, and a similar argument was used in [34] in the
context of optimal potentials for Schrödinger operators.

Theorem 4.9 Let ? ≤ 3 and let 5 ∈ ,−1,?′(�). Assume that there exists 0 ∈ !1(�) such that the cost
integrand 9 satisfies the assumption

0(G) − 2 |B |A ≤ 9(G, B) with A <

{
3?/(3 − ?) if ? < 3,

+∞ if ? = 3.
(4.19)

Then the relaxed minimization problem (4.17) admits a solution �opt ∈M?(�).

Proof. Let (�=)=∈ℕ ∈ A?,< be a minimizing sequence. Since M?(�) is compact with respect to the
�?-convergence, we may assume up to subsequences that there is �opt ∈M?(�) such that

�=
�?
−→ �opt.

The limit measure �opt, a priori, may not belong to the class A?,< ; however, the upper semicontinuity
property (4.16) gives

lim sup
=→+∞

|{�= = ∞}| ≤ |{�opt = ∞}| =⇒ |{�opt < ∞}| ≤ <,

which means that �opt ∈ A?,< . Moreover, the �?-convergence implies

D�= , 5
=→+∞−−−−−→ D�opt , 5 weakly in,1,A(�),

so, using the assumption (4.19), we deduce that

‖D�= , 5 − D�opt , 5 ‖!A (�)
=→+∞−−−−−→ 0.

Finally, by Fatou’s lemma we have

�(D�opt , 5 ) ≤ lim inf
=→+∞

�(D�= , 5 ),

and this is enough to infer that �opt is a solution to the minimization problem (4.17).
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4.3.3 Existence of a ?-quasi-open optimal set

We are now ready to prove Theorem 4.4, which asserts that, under the additional assumption

9(G, B) = 90(G, B) + � 1(0,+∞)(B),

where � ≥ 0 and B ↦→ 90(G, B) non-increasing for a.e. G, the optimal measure �opt obtained above takes
the desired form, namely

�opt = ∞�\Ωopt ,

whereΩopt is a ?-quasi-open set which solves the minimization problem (4.5) for any < ∈ (0, |� |].

Proof of Theorem 4.4. Let �opt ∈M?(�) be the optimal measure given by Theorem 4.9 and D̄ := D�opt , 5

the corresponding state function, i.e., the solution of (4.13). Then, the set

Ωopt := {D̄ > 0}

is ?-quasi-open since D̄ ∈,1,?(�) and, by the maximum principle, we have

5 ≥ 0 =⇒ D̄ ≥ 0.

Moreover, the upper semicontinuity property (4.16) yields

|Ωopt | ≤ < =⇒ �̃ := ∞�\Ωopt ∈ A?,< .

By Lemma 4.3, we have D�̃, 5 ≥ D̄ since, by construction, �̃ ≤ �opt. Therefore, we can exploit the
monotonicity assumption (ii) to deduce the inequality

90(G, D�̃, 5 ) ≤ 90(G, D̄),

which, in turn, implies that
�(D�̃, 5 ) ≤ �(D̄).

This proves that �̃ = ∞�\Ωopt is a minimizer, so we only need to verify that it also saturates the volume
constraint. We argue by contradiction. Assume |Ωopt | < < and let Ω̂ be any set satisfying

Ω̂ ⊃ Ωopt and |Ω̂| = <.

By construction∞
�\Ω̂ ≤ ∞�\Ωopt , so Lemma 4.3 gives D∞

�\Ω̂ , 5
≥ D∞

�\Ω̃ , 5
, hence the optimality of Ω̂

using again the monotonicity property (ii).

Remark 4.9 The assumption B ↦→ 9(G, B) non-increasing is necessary. Indeed, the paper [22, Section
4.2] considers the case

5 = 1 and 9(G, B) = |B − 2 |2 ,

and shows that the optimal measure in M?(�) does not take the form � = ∞�\Ω for 2 > 0 small.

Remark 4.10 In some cases, the proof of the fact that the optimal measure takes the form ∞�\$<
becomes trivial; for example, if we assume that

9(G, B) ≥ 9(G, 0) for all (G, B) ∈ ℝ3 ×ℝ,

then the measure � = ∞�̄ , which corresponds toΩ = ∅, gives D�, 5 ≡ 0 and solves the problem.

Lemma 4.4 Let � ∈M?(�) be a non-negative measure. If 5 ∈ !@(�) for some @ > 3/?, then D�, 5 ∈ !∞(�).
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Proof. We can assume that 5 ≥ 0. By Lemma 4.3, we have that

� ≥ 0 =⇒ D�, 5 ≤ D0, 5 ,

where D0, 5 is the unique solution (in the weak sense) of the equation

−Δ?D0, 5 = 5 if G ∈ �.

By modifying the proof of [89, Theorem 8.17] to hold for any ? > 1, we find that

5 ∈ !@(�)with @ >
3

?
=⇒ D0, 5 ∈ !∞(�),

and this is enough to infer that D�, 5 ∈ !∞(�) since ‖D�, 5 ‖!∞(�) ≤ ‖D0, 5 ‖!∞(�) < ∞.

4.3.4 Existence of an open optimal set

LetΩopt be a solution to (4.8) given by Theorem 4.5 with < = |� | to remove the measure constraint,
and recall that we can write

Ωopt = {D̄ > 0},

where D̄ is obtained as the solution of the minimization problem

min
{∫

�

(
9(G, D) + � 1{D>0}(G)

)
3G : Δ?D + 5 ≥ 0, D ∈,1,?

0 (�)
}
. (4.20)

This section aims to prove the theorem following a strategy developed in [58, Section 3]. First, we
recall a well-known result in Morrey-Campanato spaces (see [125] for more details):

Theorem 4.10 (Morrey) Let D ∈,1,?(�) and  ∈ (0, 1]. Suppose that there exists" > 0 such that∫
�A

|∇D | 3G ≤ "A
3
? −1+ for every �A ⊂ �.

Then D ∈ �0,(�) and there exists a constant � := �(3, ) > 0 such that

osc�A [D] ≤ �"A for every �A ⊂ �,

where the oscillation of a function D on an open set* is given by

osc* [D] := sup
G∈*

D(G) − inf
G∈*

D(G). (4.21)

We are now ready to prove that Ωopt = {D̄ > 0} is open. We achieve this by showing that there is
 ∈ (0, 1] such that the optimal profile D̄ satisfies

‖∇D̄‖!? (��) ≤ ��3/?−(1−) for all � > 0,

so we can apply Theorem 4.10 and deduce that D̄ is -Hölder continuous.

Proof of Theorem 4.5. First, notice that the minimization problem we are considering (4.8) does not
have any constraint on the volume, so the cost functional takes the form

9(G, D) = 90(G, D) + � 1(0,+∞)(D)

with � strictly positive, and thus we can assume � = 1 without loss of generality.
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Let F ∈ ,1,?
0 (�) be a function satisfying F ≥ D̄, where D̄ is the optimal profile obtained as a weak

solution (in the sense of (4.20)) of the following problem:
−Δ? D̄ = 5 inΩopt ,

D̄ ∈,1,?
0 (Ωopt).

Notice that the function F is not a competitor for the auxiliary problem (4.20), but it is possible to
construct one starting from the set

ΩF := {F > 0} ⊃ Ωopt ,

which is ?-quasi-open by construction. Therefore, let DF be the solution of
−Δ?DF = 5 inΩF ,

DF ∈,1,?
0 (ΩF),

and notice that ΩF is a competitor for the functional �(Ω), which means that we can exploit the
minimality ofΩopt to deduce the following inequality:∫

Ωopt

9(G, D̄) 3G + |{D̄ > 0}| ≤
∫
ΩF

9(G, DF) 3G + |{DF > 0}|.

Since D̄ is zero outside ofΩopt andΩopt ⊂ ΩF , we can write both integrals onΩF ,∫
ΩF

(
9(G, D̄) − 9(G, DF)

)
3G ≤ |{DF > 0}| − |{D̄ > 0}|,

and use the assumption (4.9) to estimate the left-hand side, obtaining∫
ΩF

5 (DF − D̄) 3G ≤
1
2
[|{DF > 0}| − |{D̄ > 0}|] . (4.22)

Now, we multiply the state equations for D̄ and DF respectively to find the identities∫
ΩF

|∇DF |? 3G =
∫
ΩF

5 DF 3G and
∫
ΩF

|∇D̄ |? 3G =
∫
ΩF

5 D̄ 3G,

and we can apply (4.22) to estimate the difference as follows:∫
ΩF

1
?
|∇D̄ |? 3G −

∫
ΩF

1
?
|∇DF |? 3G ≤

1
2?
[|{DF > 0}| − |{D̄ > 0}|] .

If we put both inequalities together, we get∫
ΩF

(
1
?
|∇D̄ |? − 5 D̄

)
3G −

∫
ΩF

(
1
?
|∇DF |? − 5 DF

)
3G ≤

? − 1
?2
[|{DF > 0}| − |{D̄ > 0}|] . (4.23)

Now, recall that DF can also be characterized as the unique minimizer of the functional

,
1,?
0 (ΩF) 3 D ↦→

∫
ΩF

(
1
?
|∇D |? − 5 D

)
3G,

so we can use F as a competitor and deduce that∫
ΩF

(
1
?
|∇DF |? − 5 DF

)
3G ≤

∫
ΩF

(
1
?
|∇F |? − 5 F

)
3G.
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If we plug this inequality into (4.23), we get∫
ΩF

(
1
?
|∇D̄ |? − 5 D̄

)
3G −

∫
ΩF

(
1
?
|∇F |? − 5 F

)
3G ≤ 1

2
[|{F > 0}| − |{D̄ > 0}|] ,

but the function F only satisfies the property F ≥ D̄, so we need to make a more refined choice. More
precisely, for any ball �A ⊂ �, let F be the unique solution of{

−Δ?F = 5 in �A ,

F = D̄ on � \ %�A .
(4.24)

In this case, the functions D̄ and F coincide outside of �A , so the inequality above takes the form

1
?

∫
�A

(|∇D̄ |? − |∇F |?) 3G ≤
∫
�A

5 (D̄ − F) 3G + 1
2
|�A ∩ {D̄ = 0}|.

To estimate the first integral on the right-hand side, we apply Hölder inequality twice (since we want
to use the assumption 5 ∈ !@(�) and, simultaneously, find the best norm of D̄ − F) to get∫

�A

5 (D̄ − F) 3G ≤ ‖D̄ − F‖!?∗ (�A )
(∫

�A

5 3?/(3?+?−3)
)1+1/3−1/?

≤ �‖D̄ − F‖!?∗ (�)‖ 5 ‖!@ (�)A?,@ ,

where � is a constant that depends on ?, @, and 3 (more precisely, the volume of the unit ball �1 to a
specific power), and we define

?,@ :=
3? + ? − 3

3?
− 1
@
.

We now have to distinguish between the case 1 < ? ≤ 2 and ? > 2 because we obtain two slightly
different estimates (although the strategy is the same). More precisely, we have∫

�A

|∇(D̄ − F)|? 3G ≤ �
[
‖D̄ − F‖!?∗ (�)‖ 5 ‖!@ (�)A?,@ + |�A ∩ {D̄ = 0}|

]
(4.25)

for ? > 2, while for 1 < ? ≤ 2 we get∫
�A

|∇(D̄ − F)|? 3G ≤ �
[
‖D̄ − F‖!2∗ (�)‖ 5 ‖!@ (�)A2,@ + |�A ∩ {D̄ = 0}

] ?

2

[∫
�A

|∇D̄ |? 3G
]1− ?2

(4.26)

Now, following [58, Section 3], we let" := ‖D̄‖!∞(�1), � := �A(G0)with G0 ∈ �7/8, and 0 < A ≤ 1/16. If
we denote by F the solution of (4.24) in �A , then we can write

F = Fℎ + F= ,

where Fℎ is the ?-harmonic part of F, namely the solution of{
−Δ?Fℎ = 0 in �,

Fℎ = D̄ on � \ %�,

and F= is simply given by F −Fℎ . Since Fℎ is ?-harmonic and Fℎ − D̄ ∈,1,?
0 (�), a standard result in

the theory of harmonic functions yields

sup
1/2 �
|∇Fℎ | ≤

[
�

A3

∫
�

|∇Fℎ |?
]1/?
≤ �"

A
.
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To estimate the gradient of F= , we multiply −Δ?F= = 5 by F= and integrate by parts, obtaining∫
�

|∇F= |? 3G =
∫
�

5 F= 3G,

which, applying Hölder’s inequality to the right-hand side, yields∫
�

|∇F= |? 3G ≤
[∫

�

5 @ 3G

]1/@ [∫
�

F
@′

= 3G

]1/@′

≤ ‖ 5 ‖!@ (�)"A3/@
′
.

Let & > 0 be a small parameter such that A& ≤ 1/2. We can estimate the norm of ∇D̄ on �A1+& using the
triangular inequality as follows:

‖∇D̄‖!? (�A1+& ) ≤ ‖∇(D̄ − F)‖!? (�A1+& ) + ‖∇Fℎ ‖!? (�A1+& ) + ‖∇F= ‖!? (�A1+& ).

Now, if ? > 2, we can use (4.25) together with the estimates for ∇Fℎ and ∇F= obtained above and the
triangular inequality, to deduce that

‖∇D̄‖!? (�A1+& ) ≤ ‖∇(D̄ − F)‖!? (�A ) + �A
(1+&)3/?�"A−(1+&) + ‖ 5 ‖!@ (�)"A(1+&)3/@

′

≤ �′
[
A3/(??

∗)+?,@/? + A3/? + A(1+&)(3/?−1) + A(1+&)3/@′
]
,

where the term ‖∇(D̄ − F)‖!? (�A1+& ) was replaced by‖∇(D̄ − F)‖!? (�A ) in the first inequality because D̄
and F coincide outside of �A . Similarly, if 1 < ? ≤ 2, we can use (4.26) to deduce that

‖∇D̄‖!? (�A1+& ) ≤ �
′
[(
A3/2 + A2,@/2+3/2∗

)
A3(1−?/2)/(?@

′) + A(1+&)(3/?−1) + A(1+&)3/@′
]
.

It is now easy to check that for every 1 < ? ≤ 3 and every @ > 3/? we have

3

??∗
+
?,@

?
<
3

?
,

so, if we let � := A1+&, the inequalities above can be rewritten (with a different constant �) as

‖∇D̄‖!? (��) ≤ ��3/?−(1−) ,

where  > 0 if & > 0 is chosen small enough. The conclusion now follows from a straightforward
application of Theorem 4.10.

4.4 Minimum problem on �-compact classes

In general, without the assumptions we have seen in Section 4.2 and Section 4.3, the existence of an
optimal set may fail. However, if we put geometrical restrictions on the class of admissible competitors,
we can prove existence under very general assumptions with a different strategy.

There are several classes of admissible domains in the literature in which the existence of optimal
shapes is well-known. We now briefly recall some of the most commonly used (see [22]):

(i) The class A2>=E4G of convex setsΩ ⊂ �.
(ii) The class AD=8 5 2>=4 of domainsΩ ⊂ � satisfying a uniform exterior cone property, which means

that for every G0 ∈ %Ω there is a closed cone, with uniform height and opening, and with vertex
in G0, lying in the complement ofΩ.

(iii) The class AD=8 5 5 ;0C 2>=4 of domainsΩ ⊂ � satisfying a uniform flat cone condition, which is the
same as above but we also allow cones to be :-flat, i.e., of dimension : with : > 3 − ?.
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(iv) The class A20? 34=B8CH of domainsΩ ⊂ � satisfying a uniform capacitary density condition. More
precisely, there are 2, A > 0 (that do not depend onΩ) such that for every G ∈ %Ωwe have

cap?
(
��(G) \Ω, �2�(G)

)
cap?

(
��(G), �2�(G)

) ≥ 2 for every � ∈ (0, A).

(v) The class AD=8 5 ,84=4A of domains Ω ⊂ � satisfying a uniform Wiener condition, which means
that for every G ∈ %Ω and every 0 < A < ' < 1 we have∫ '

A

[
cap?

(
��(G) \Ω, �2�(G)

)
cap?

(
��(G), �2�(G)

) ]1/(?−1)
3�

�
≥ 6(A, ', G),

where 6 : (0, 1) × (0, 1) × � → ℝ+ is a fixed function (that does not depend on Ω) with the
property that for every ' ∈ (0, 1) it satisfies

lim
A→0+

6(A, ', G) = +∞ locally uniformly w.r.t. G.

It is easy to verify that these classes satisfy the following inclusions chain:

A2>=E4G ⊂ AD=8 5 2>=4 ⊂ AD=8 5 5 ;0C 2>=4 ⊂ A20? 34=B8CH ⊂ AD=8 5 ,84=4A ,

In addition, the �?-convergence for a sequence of domains Ω= (in each class) is equivalent to the
Hausdorff convergence of the complements

 = := � \Ω= ,

which is often referred to as Hausdorff complementary (�2) convergence.

Remark 4.11 This notion of convergence is induced by the distance

3�2 (Ω1 ,Ω2) := 3�(Ω2
1 ,Ω

2
2),

where 3� is the standard Hausdorff distance defined by setting

3�( 1 ,  2) := sup
G∈ 1

[
inf
H∈ 2
|G − H |

]
∨ sup
G∈ 2

[
inf
H∈ 1
|G − H |

]
.

In particular, the properties below, which are well-known (see for instance [99]) for the Hausdorff
convergence on the class

A(�) =
{
Ω ⊂ � : Ω open

}
,

also hold for the classes above endowed with the �?-convergence:

• (A, 3�2 ) is a compact metric space;

• ifΩ= → Ω in the �2-convergence, then for every compact set  ⊂ Ω, there exists = ∈ ℕ such
that  ⊂ Ω= for every = ≥ = ;

• the Lebesgue measure is lower semicontinuous for the �2-convergence;

• the map that associates to a setΩ the number of connected components of the set � \Ω is lower
semicontinuous with respect to the �2-convergence.
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4.4.1 A class with topological constraints only

Geometrical restrictions are not the only conditions that can help achieve existence under general
assumptions. Indeed, an interesting class was considered by Šverák in [143] and is given by

O: :=
{
Ω ⊂ � : Ω open, #

(
� \Ω

)
≤ :

}
,

where #(�) denotes the number of connected components of a set �. Notice that both conditions (being
open and having a bound on the number of connected components) are of topological type; thus, no
geometrical restriction is imposed on competitors.

Remark 4.12 In the case 3 = ? = 2 it is well-known that the Hausdorff complementary convergence
implies the �2-convergence in O: .

This result is generally false in higher dimension, and capacity properties are crucial. Indeed, if we
can prove that for ? > 3 we have

cap? ({G}) > 0 for every G ∈ �,

then Theorem 4.3 gives the existence of optimal shapes under very mild assumptions.

Proof. The idea is to argue as for Theorem 4.3 and exploit the fact that the embedding

,
1,?
0 (ℝ

3) ↩→ �0,�(ℝ3) with � = 1 − 3/?

is continuous for ? > 3 by Theorem 4.7, which means that, by composition, the embedding

,
1,?
0 (ℝ

3) ↩→ �0(ℝ3)

is also continuous. As a consequence, given D ∈ �∞2 (ℝ3), we have

‖D‖�0(ℝ3) = ‖D‖∞ ≤ "‖D‖,1,?
0 (ℝ3).

By the classical Poincaré inequality (4.12), the norm in,1,?
0 (ℝ3) is equivalent to the norm in !?(ℝ3)

of the gradient, which leads to

‖D‖�0(ℝ3) = ‖D‖∞ ≤ "′‖∇D‖!? (ℝ3).

Now recall that the ?-capacity is defined as

cap?( ) = inf
{∫

ℝ3

|∇D |? 3G : D ∈ �∞2 (ℝ3), D(G) ≥ 1 for all G ∈  
}
,

so it is easy to verify that, for any nonempty set  (thus even a singlet) and any D ∈ �∞2 (ℝ3) satisfying
the property D(G) ≥ 1 on  , we have

‖∇D‖!? (ℝ3) ≥
‖D‖∞
"′

≥ 1
"′

> 0.

Finally, if we take the infimum over D, we get a strictly positive number on the right-hand side, which
ultimately means that cap?( ) > 0.

When ? ≤ 3, the generalization of the Šverák result to higher dimensions was obtained in [27], where
the theorem below is proved.
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Theorem 4.11 Let 3 − 1 < ? ≤ 3. If a sequence (Ω=)=∈ℕ ∈ O: converges in the Hausdorff complementary
topology to someΩ, then

Ω=

�?
−→ Ω and Ω ∈ O: .

As a consequence of this theorem, a large class of shape optimization problems admits solutions in
the classes O: above under very mild assumptions:

Corollary 4.1 Let 3 − 1 < ? ≤ 3 and assume that there exist 0 ∈ !1(�) and 2 > 0 such that

−0(G) − 2 |B |@ ≤ 9(G, B) with @ <
3?

3 − ? (any @ < ∞ if ? = 3).

Then, for every integer :, the shape optimization problem

min
{∫

�

9(G, DΩ) 3G : Ω ∈ O:
}

admits a solutionΩopt, where DΩ denotes the solution of (4.1).

4.5 Finite perimeter of optimal sets

In this section, we prove that any optimal shapeΩopt has finite perimeter. Notice that the prototype

9(G, B) = −6(G)B + 1(0,+∞)(B) with 6(G) ≥ 0

is well within both sets of assumptions (i) and (ii) of Theorem 4.6.

Proof of Theorem 4.6. LetΩopt = {D̄ > 0} be an optimal shape and recall that D̄ can also be characterized
as the unique solution of the minimization problem

min
{∫

�

(
90(G, D) + 1{D>0}(G)

)
3G : Δ?D + 5 ≥ 0, D ∈,1,?

0 (�)
}
.

Let ! ∈,1,?
0 (�) be a non-negative test function. Then

〈Δ? D̄ + 5 , !〉 ≥ 0,

and a simple integration by parts gives the inequality〈
5 , !

〉
≥

〈
|∇D̄ |?−2∇D̄ ,∇!

〉
. (4.27)

Let & > 0 be small enough for (4.10) and (4.11) to hold and letΩ& := {0 < D̄ < &}. If we take as a test
function ! := D̄ ∧ &, then〈

|∇D̄ |?−2∇D̄ ,∇!
〉
=

∫
�

|∇D̄ |?−2∇D̄ · ∇(D̄ ∧ &) 3G =
∫
Ω&

|∇D̄ |? 3G,

and 〈
5 , !

〉
=

∫
�

5 (D̄ ∧ &) 3G ≤
∫
Ω&

5 D̄ 3G +
∫
�\Ω&

5 & 3G ≤ �&.

Therefore, if we plug these two back into (4.27), we get∫
Ω&

|∇D̄ |? 3G ≤ �&, (4.28)
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where we use � to denote a positive constant which may vary from line to line throughout the proof.

Let Ē := (D̄ − &)+ and notice that it satisfies Δ? Ē + 5 ≥ 0 in the weak sense, so Ē is a competitor for the
minimization problem above. Using the minimality of D̄, we get∫

�

(
90(G, D̄) + "{D̄>0}(G)

)
3G ≤

∫
�

(
90(G, Ē) + "{Ē>0}(G)

)
3G,

which, using the decompositionΩopt = Ω& ∪ (Ωopt \Ω&), can be rewritten as follows:∫
Ω&

(
90(G, D̄) + 1

)
3G +

∫
Ωopt\Ω&

90(G, D̄) 3G ≤
∫
Ωopt\Ω&

90(G, D̄ − &) 3G.

To use the assumptions (4.10) or (4.11) we first move everything on the right-hand side and then add
the integral of 90(G, 0) onΩ& on both sides to obtain∫

Ω&

1 3G ≤
∫
Ω&

(
1 + 90(G, 0)

)
3G

≤
∫
Ωopt\Ω&

[
90(G, D̄ − &) − 90(G, D̄)

]
3G +

∫
Ω&

[
90(G, 0) − 90(G, D̄)

]
3G,

where the first inequality follows from the fact that 90(G, 0) = 0. We now divide the proof since there
are minor differences in using the two sets of assumptions separately:

(i) In this case, we have ∫
Ω&

| 90(G, 0) − 90(G, D̄)| 3G ≤
∫
Ω&

0(G)D̄ 3G ≤ �&

since D̄ < & onΩ& by definition, and 0 ∈ !1(�). Similarly, we have∫
Ωopt\Ω&

��90(G, D̄ − &) − 90(G, D̄)�� 3G ≤ ∫
Ωopt\Ω&

&
[
0(G) + 2 |D̄ |?∗

]
3G ≤ �&

as a consequence of the Sobolev embedding theorem (Theorem 4.7) for D ∈,1,?
0 . On the other

hand, the left-hand side is given by ∫
Ω&

1 3G = |Ω& |,

so putting everything together leads to the following estimate:

|Ω& | ≤ �&. (4.29)

(ii) In this case, the function D̄ is bounded (it follows from Theorem 4.3 for ? > 3 and from Lemma
4.4 for ? ≤ 3) and we have∫

Ω&

| 90(G, 0) − 90(G, D̄)| 3G ≤
∫
Ω&

0(G, D̄)D̄ 3G ≤ &�‖D̄‖∞ ,

and ∫
Ωopt\Ω&

��90(G, D̄ − &) − 90(G, D̄)�� 3G ≤ ∫
Ωopt\Ω&

& [0(G, D̄)] 3G ≤ &�‖D̄‖∞.

In particular, the estimate (4.29) holds also in this case, but with a different constant.

Since both sets of assumptions lead to the same estimate (up to a constant), separating them is no
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longer necessary. If we now put (4.28) and (4.29) together and apply Hölder’s inequality, we get∫
Ω&

|∇D̄ | 3G ≤
[∫
Ω&

|∇D̄ |? 3G
]1/?
|Ω& |1/?

′ ≤ (�&)1/?(�&)1/?′ = �&,

so we finally deduce thatΩopt has a finite perimeter using the strategy proposed in [20]. More precisely,
the coarea formula (see, e.g., [8]) gives∫ &

0
H3−1(%∗{D̄ > &}) 3C =

∫
Ω&

|∇D̄ | 3G ≤ �&,

which means that there exists a sequence (�=)=∈ℕ that goes to zero such that

H3−1(%∗{D̄ > �=}) ≤ � for all = ∈ ℕ.

This is enough to conclude, since

PerΩopt = H3−1(%∗{D̄ > 0}) = lim
=→+∞

H3−1(%∗{D̄ > �=}) ≤ �,

as the constant � does not depend on =.

4.6 Remarks, open questions and related problems

The existence and regularity of optimal shapes in the case 5 = 6 was already studied for all ? > 1
since there is an underlying variational structure. Indeed, if we test (4.1) with DΩ, we get∫

�

|∇DΩ |? 3G =
∫
�

5 (G)DΩ 3G,

and thus we can characterize DΩ as the unique solution of

min
{

1
?

∫
�

|∇D |? 3G −
∫
�

5 (G)D 3G : D ∈,1,?
0 (�)

}
.

Therefore, the shape optimization problem (4.2) becomes "equivalent" to the free boundary problem

min
{

1
?

∫
�

|∇D |? 3G −
∫
�

5 (G)D 3G +
? − 1
?

�|{D ≠ 0}| : D ∈,1,?
0 (�)

}
(4.30)

in the following sense:

• ifΩopt solves (4.2), then D̄ := DΩopt is a solution to (4.30);
• if D̄ solves (4.30), then the set {D̄ ≠ 0} is optimal for (4.2).

This equivalence is crucial because problems of the form (4.30) have been widely studied (especially
in the case ? = 2). For example, the existence of solutions D̄ ∈,1,? is easy and implies that

Ω := {D̄ ≠ 0}

is a solution to (4.2) in the class of the ?-quasi-open sets; existence in the class of open sets, however,
requires more efforts because one has to study the regularity of the solutions of (4.30) - see [144] and
the references therein for more details -.

In the general case ? ≠ 2, the regularity of D̄ and of the corresponding free boundary %{D̄ > 0} were
first studied by Danielli and Petrosyan in [58] in the case 5 = 0, while for 5 ≥ 0 the problem was
discussed in [41].
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Supremal functionals

A class of shape optimization problems related to the one from Theorem 4.1 are the ones in which the
cost functional is given by

�(DΩ) := −ess sup
G∈�

9(G, DΩ).

The existence of a solution can be obtained by the same argument as in the proofs of Theorem 4.3, in
the case ? > 3, and of Theorem 4.4, in the case ? ≤ 3.

Mixed boundary conditions

The full Dirichlet boundary condition in (4.1) can be replaced by the mixed Dirichlet-Neumann
condition

D = 0 on � \Ω, %D

%�
= 0 on %� ∩ %Ω.

Since we would like to test very irregular domains Ω, this expression is only formal and has to be
intended in a weak sense. More precisely, the state function is the unique solution of

min
{

1
?

∫
Ω

|∇D |? 3G −
∫
Ω

D 5 3G : D ∈,1,?(�), D = 0 cap? -a.e. on � \Ω
}
.

In this case, the existence results Theorem 4.3 and Theorem 4.4 still hold for the function �(DΩ) if the
measure constraint is not saturated, i.e., if we assume < < |� |.

This problem, along to similar ones with mixed boundary conditions, have been considered in [44].

Remark 4.13 The case < = |� |, on the other hand, is not particularly interesting because if we assume,
for example, that 5 is a non-negative function, then

inf
{
�(DΩ) : Ω open, Ω ⊂ �

}
= −∞.

This can be verified for our model function (4.4) if we take 6 non-negative and � ≥ 0.

Problem 4.2 Shape optimization problems with the Neumann boundary condition on the free part
(i.e., the part that does not lie on %�) require a completely different approach. At the moment, very
little is known about them.

The limit problem as ? →∞

If we take the limit as ? →∞, the state function no longer satisfies a PDE but it can still be characterized
as the unique solution of the following variational problem:

min
{
−

∫
�

5 (G)D 3G : |∇D | ≤ 1, D = 0 on � \Ω
}
.

It is easy to verify that the solution is the distance function

DΩ(G) := 3(G, � \Ω).

In this way, the problems above, with ? = ∞, are related to some optimization problems in mass
transport theory; see, for instance, [39] and [43].
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Further open problems

Problem 4.3 In Theorem 4.11, we proved the existence of an optimal shape in the class O: under the
assumption 3 − 1 < ? ≤ 3. It would be interesting to see if this interval is optimal.





The boundary Harnack principle on optimal

domains 5

In this chapter, we give an overview of the results obtained in [124], which will play a fundamental role
in proving the assertion (ii) of Theorem 4.2 (see Lemma 7.8 and Proposition 7.7 for more details).

5.1 Introduction and main results

Our goal is to prove a boundary Harnack principle for domains that satisfy certain geometrical conditions
naturally occurring in some variational problems. It is a crucial tool in proving the �1,-regularity
of free boundaries arising in vectorial free boundary and shape optimization problems (for some
applications, see Section 5.5 and Subsection 7.4.2). That said, before we state our main result, we recall
what it means for a domainΩ ⊂ ℝ3 to satisfy the boundary Harnack principle.

Definition 5.1 (Boundary Harnack principle) LetΩ ⊂ �1. We say that the boundary Harnack principle
holds inΩ, if there is  > 0 such that, for every couple of functions

D : �1 → ℝ and E : �1 → ℝ

which are continuous on �1, positive and harmonic inΩ ∩ �1 and vanishing identically on �1 \Ω, the ratio

D

E
: Ω→ ℝ

can be extended to a �0,-regular function on �1/2 ∩ Ω̄.

We are now ready to state the main result of [124]. In the following, we will denote by |� | the Lebesgue
measure of a set � and by 3(·, �) the distance from �, which is given by

3(G, �) := inf
H∈�
|G − H |.

Theorem 5.1 LetΩ ⊂ �1 be an open set with 0 ∈ %Ω and ) : �1 → ℝ a continuous function such that:

(a) ) > 0 onΩ, ) ≡ 0 on �1 \Ω and ) is Lipschitz-continuous on �1 with constant !;
(b) there exists a constant � > 0 such that

)(G) ≥ � 3 (G, �1 \Ω) for every G ∈ �1/2;

(c) we have the inequality Δ) ≥ 0 in sense of distributions in �1;
(d) there is a constant � > 0 such that for every G0 ∈ %Ω ∩ �1, we have

|�A(G0) \Ω| ≥ �|�A(G0)| for every A ∈ (0, 1 − |G0 |);

(e) there is a constant Λ > 0 such that for every G0 ∈ %Ω ∩ �1 and every A ∈ (0, 1 − |G0 |), we have��{0 < ) < AC} ∩ �A(G0)
�� ≤ ΛC |�A | for every C > 0;

(f) there is a constant � > 0 such that for every G0 ∈ %Ω ∩ �1 and every A ∈ (0, 1 − |G0 |), we have

sup
G∈�A (G0)

)(G) ≥ �A.

Then the boundary Harnack principle holds inΩ in the sense of Definition 5.1.
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In Section 5.4, we will show that it is possible to deduce Theorem 5.1 immediately once we prove the
following boundary Harnack inequality:

Theorem 5.2 Under the same assumptions of Theorem 5.1, there are " > 0, � ∈ (0, �] and 0 < � < ' ≤ 1,
depending on the dimension 3 and the constants from (a)–(f), such that the following holds:

Boundary Harnack inequality. Suppose that D, E : �1 → ℝ are non-negative continuous functions
satisfying 

ΔD = ΔE = 0 inΩ ∩ �1 ,

D = E = 0 on �1 \Ω,
D(G0) = E(G0) for some G0 ∈ �' ∩ {) > �'}.

(5.1)

Then
"−1E(G) ≤ D(G) ≤ "E(G) for every G ∈ ��.

Consequently, if a domain Ω ⊂ �1 admits a function satisfying (a)–(f), then the boundary Harnack
inequality holds onΩ. This general principle is well-known in the literature and was used, for instance,
in [1], [52] and [130, 131]. However, in all these papers, the result is obtained by showing that the
optimal domain Ω is NTA (see Definition 5.4) and deducing the boundary Harnack inequality by
applying a well-known result by Jerison and Kenig that can be found in [103].

The main novelty of [124] is not the result but the strategy used to achieve it. Indeed, we give a direct
proof that essentially uses only the mean value formula for harmonic functions and the classical
Alt-Caffarelli-Friedman monotonicity formula for subharmonic functions [5].

To conclude this section, we define non-tangentially accessible (NTA) domains. First, we need to introduce
the so-called corkscrew condition:

Definition 5.2 An open setΩ ⊂ ℝ3 satisfies the interior (exterior) corkscrew condition if there are A0 > 0 and
� > 0 such that for all A ∈ (0, A0) and G ∈ %Ω, �(G, A) ∩Ω (�(G, A) ∩ (ℝ3 \Ω)) contains a ball of radius �A.

Moreover, we say that an open setΩ satisfies the corkscrew condition if it satisfies both the interior
and the exterior corkscrew condition.

Definition 5.3 (Harnack-chain) LetΩ ⊂ ℝ3 be an open set and  ≥ 1. A sequence of balls �0 , . . . , �: ⊂ Ω
is an -Harnack chain if, for all 8 = 1, . . . , :, we have

�8 ∩ �8−1 ≠ ∅ and −13(�8 , %Ω) ≤ A(�8) ≤ 3(�8 , %Ω).

Definition 5.4 A bounded open setΩ is a NTA domain in the metric space ℝ3 if the following holds:

• Ω satisfies the corkscrew condition;
• there exists  ≥ 1 such that, for all � > 0 and all G, H ∈ Ω for which we have

3(G, %Ω), 3(H, %Ω) ≥ � and 3(G, H) ≤ ��

for some � > 0, there exists an -Harnack chain �0 , . . . , �: ⊂ Ω with G ∈ �0, H ∈ �: ; in addition, the
length of the chain : may depend on �, but not on �.

5.1.1 Outline of the chapter and further remarks

In Section 5.2 we prove interior Harnack inequalities close and away from the boundary since they
are fundamental for our main result and encode the geometric properties of the domain we are
considering (in particular, see Lemma 5.2 and Lemma 5.4).
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In Section 5.3 we prove the boundary Harnack inequality (Theorem 5.1) following step-by-step the
strategy developed in the recent paper [74] by De Silva and Savin. Finally, in Section 5.4 we show how
to deduce the boundary Harnack principle from Theorem 5.2.

Notice that, in general, the boundary Harnack principle on a domainΩ is obtained as a consequence
of the validity of the boundary Harnack inequality at any scale and for any couple of non-negative
functions D and E satisfying (5.1) on a rescaling ofΩ. This implication is well-known in the literature
(see, for example, [103]) and in Section 5.4 we give a short proof of this fact in our setting.

Remark 5.1 The assumptions of Theorem 5.1 are scale-invariant. Indeed, letΩ and ) be as in Theorem
5.1 and let G0 ∈ %Ω ∩ �1. If we define the corresponding rescalings centered at G0 as

ΩA,G0 :=
1
A
(Ω − G0) and )A,G0 :=

)(G0 + AG)
A

,

for A ∈ (0, 1 − |G0 |), then it is easy to verify thatΩA,G0 ⊂ �1 and that the properties (a)–(e) are satisfied
with the same constants.

Remark 5.2 The assumption (f) is only needed to ensure that the set

�' ∩ {) > �'},

appearing in (5.1), is non-empty, at least for � > 0 small enough. Indeed, if we assume that the couple
(Ω, )) satisfies (a) and (f) of Theorem 5.1, then

�A(G0) ∩ {) > A�} ≠ ∅

for every G0 ∈ %Ω ∩ �1, A ∈ (0, 1 − |G0 |) and � ∈ (0, �).

Several versions of the boundary Harnack inequality (B.H.I.) appeared recently in the literature, for
instance

I in [121], the authors established a B.H.I. on the class of nodal domains of solutions to uniformly
elliptic equations in divergence form;

I in [3], it was proved for solutions with right-hand side on sufficiently flat Lipschitz domains.

To conclude this section, we also refer to [73] for a higher-order boundary Harnack principle.

5.2 Harnack chains and interior Harnack inequalities

This section aims to prove the existence of Harnack chains (see Definition 5.3) and, consequently,
deduce Harnack-type inequalities close and away from the boundary.

5.2.1 Harnack inequality close to the boundary

We now show how to construct short Harnack chains starting from a point close to the boundary ofΩ
and deduce (by iteration) the Harnack inequality close to the boundary in Lemma 5.2.

Lemma 5.1 Let Ω ⊂ �1 with 0 ∈ %Ω and ) : �1 → ℝ satisfy the conditions (a)–(c) of Theorem 5.1, let
G0 ∈ {) > 0} ∩ �1 be a point such that

A := 3(G0 , %Ω) <
1
3
(1 − |G0 |) ,

and let I0 be a projection of G0 onto %Ω. Then there is H0 ∈ %�A(G0) such that:
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(i) )(H0) ≥ (1 + �))(G0), where � > 0, depends only on the dimension 3, and the constants ! from
assumption (a) and � from assumption (b);

(ii) there is a constant 2H > 1, depending only on the dimension 3 and the constants ! and �, such that for
every positive harmonic function F : Ω→ ℝ, we have

2−1
HF(H0) ≤ F(G0) ≤ 2HF(H0).

Proof. Let & > 0 and notice that, since ) is a subharmonic function by (c), we can estimate the difference
between the average on %�A(G0) and )(G0) as follows:

−
∫
%�A (G0)

)(G) 3G − )(G0) =
1
3$3

∫ A

0
B1−3Δ)(�B(G0)) 3B ≥ 0.

Now, let the radius � > 0 be such that

H3−1 (
%�A(G0) ∩ ��(I0)

)
= &3−1H3−1 (%�A(G0)) ,

and choose & > 0 satisfying � ≤ 2&A. Then, by the Lipschitz continuity of ), we get

)(G) ≤ 2!&A for every G ∈ %�A(G0) ∩ ��(I0),

where ! is the Lipschitz constant from (a). If we now let

" := max
{
)(G) : G ∈ %�A(G0)

}
,

we can put everything together (included the assumption (b)) with the estimate above to obtain

)(G0) ≤ −
∫
%�A (G0)

)(G) 3G ≤ 1
A3−1

(
(2&A)3−12!&A +"

(
A3−1 − (2&A)3−1

))
≤ 1
A3−1

(
(2&A)3−1 2!&

�
)(G0) +"

(
A3−1 − (2&A)3−1

))
≤ (2&)3−1 2!&

�
)(G0) +"

(
1 − (2&)3−1) ,

which, in turn, implies that (
1 − &3−1 23!&

�

)
)(G0) ≤

(
1 − &3−1

)
".

We need the factor on the left-hand side to be positive, so we modify (if necessary) the value of & in
such a way that the following holds:

23!&
�
≤ 1

23−1 =⇒ 1 − &3−1 23!&
�
≥ 1 −

( &
2

)3−1
.

Finally, notice that any point H0 ∈ %�A(G0) that achieves the maximum (i.e., such that " = )(H0))
satisfies the condition (i); more precisely, we have

(1 + �))(G0) ≤ )(H0) with 1 + � :=
1

1 − (2&)3−1

(
1 − &3−1

)
.

In order to prove (ii), we notice that by the Lipschitz continuity of ), we have

3(H0 , �1 \Ω) ≥
1
!
)(H0) ≥

1
!
)(G0) ≥

�
!
A,
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which means that
�A(G0) ∩ � A�

!
(H0) ⊂ Ω,

and the thesis follows by the classical Harnack inequality [80, Chapter 6].

Consequently, by iterating this result, we obtain the following Harnack-type inequality that holds for
points close enough to the boundary.

Lemma 5.2 Under the same assumptions of Lemma 5.1, there are constants � ≥ 1 and �0 > 0, depending only
on 3, ! and � such that, for every positive harmonic function F : Ω→ ℝ, we have

sup
�1/2∩{)> �

2 }
F ≤ � sup

�1∩{)>�}
F and inf

�1/2∩{)> �
2 }
F ≥ 1

�
inf

�1∩{)>�}
F

for every � ∈ (0, �0].

Proof. Let G0 ∈ �1/2 ∩ {) > �
2 }. If )(G0) > �, then for any � ≥ 1 we have

1
�

inf
�1∩{)>�}

F ≤ F(G0) and F(G0) ≤ � sup
�1∩{)>�}

F,

so we only need to consider the case G0 ∈ �1/2 ∩ { �2 < ) ≤ �}. Let G1 be the point H0 obtained with
Lemma 5.1 starting from G0. Then

)(G1) ≥ (1 + �))(G0) ≥ (1 + �)
�
2
,

and, by construction, we have G1 ∈ %�A(G0)with A := 3(G0 , �1 \Ω). It follows from (b) that

|G0 − G1 | = A ≤
1
�
)(G0) ≤

�
�

and, if G1 ∈ {) ≤ �}, we can repeat the same procedure to find a point G2. Iterating this argument, we
obtain a sequence of points G= such that

G= ∈ �A= ∩
{
�
2
(1 + �)= < ) ≤ �

}
with A= :=

1
2
+ = �

�
,

satisfying the estimates
2−=H F(G=) ≤ F(G0) ≤ 2=H F(G=),

where 2H > 1 is the Harnack constant from (ii) of Lemma 5.1. Now, let # to be the largest integer for
which G# ∈ �1 ∩ {) ≤ �} and to which we can still apply Lemma 5.1 to obtain a point G#+1. Then

1
2
(1 + �)# ≤ 1,

which implies that # is bounded above by

# ≤ 1
log2(1 + �)

.

As a consequence, the radius associated to G#+1 satisfies

A#+1 ≤
1
2
+ (# + 1) �

�
≤ 1

2
+

( 1
log2(1 + �)

+ 1
) �0
�
,
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so, by choosing �0 > 0 small enough, we can assume A#+1 ≤ 3/4 and apply Lemma 5.1 to G#+1 to
obtain another point G#+2, which leads to the end of the iterative procedure because

G#+2 ∈ {) > �}.

Therefore, we have
2
−(#+1)
H

min
�1∩{)>�}

F ≤ 2−(#+1)
H

F(G#+1) ≤ F(G0)

and
F(G0) ≤ 2#+1

H F(G#+1) ≤ 2#+1
H max

�1∩{)>�}
F.

Finally, the results follows by taking � := 2#+1
H
≥ 1 and G0 as the point at which the maximum (resp.

the minimum) of the function F is achieved in the set �1 ∩ {) ≥ �/2}.

5.2.2 Harnack inequality away from the boundary

The goal of this section is to prove an interior Harnack-type inequality. As above, we will deduce it
starting from the construction of interior Harnack chains, which is achieved by combining (c) with the
monotonicity formula of Alt-Caffarelli-Friedman [5].

Lemma 5.3 Suppose that Ω ⊂ �1, with 0 ∈ %Ω, and ) : �1 → ℝ satisfy the conditions (a), (c) and (d) of
Theorem 5.1. For every � ∈ (0, 2!) there is � ∈ (0, 1) such that the following holds:

Claim. For every ' ∈ (0, 1) and every couple of points G1 , G2 ∈ ��' ∩ {) > �'}, there is
a curve connecting G1 to G2 in �' ∩ {) > (�/2)'}.

Proof. We argue by contradiction. Fix � ∈ (0, 1) and suppose that G1 , G2 ∈ ��' ∩ {) > �'} lie in two
different connected components, which we denote byΩ1 andΩ2, of

�' ∩
{
) >

�
2
'

}
.

Let )1 and )2 be the restrictions of the function () − �/2 ')+ toΩ1 andΩ2 respectively. It is easy to
verify that both are !-Lipschitz, where ! is given in (a), and satisfy

) 9(G 9) ≥
�
2
' for 9 = 1, 2.

Moreover, for every A ∈ [�', '], there is GA ∈ %�A such that

)1(GA) = )2(GA) = 0

since it is sufficient to take GA ∈ {) < (�/2)'}. Now let

# 9 := () 9 −
3�
4
')+ for 9 = 1, 2,

and notice that each # 9 is !-Lipschitz, harmonic where positive, and satisfies

# 9(G 9) ≥
�
4
' and # 9 ≡ 0 on ��'/4!(GA)
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for every A ∈ [�', ']. If � is small enough, this implies the density estimate

(A) :=
H3−1

(
{#1 = #2 = 0} ∩ %�A

)
H3−1(%�A)

≥ �
(

�3−1

(4!)3−1

)
for every A ∈ [�', '],

where � : [0,+∞) → ℝ is a continuously differentiable increasing function depending only on 3 and
such that �(0) = 0 and �′(0) > 0. Consider the function

Φ(A) :=
1
A4

(∫
�A

|∇#1 |2

|G |3−2 3G

) (∫
�A

|∇#2 |2

|G |3−2 3G

)
,

and notice that, by [5] (see also [1, Lemma 4.3]), we have

3

3A
[lnΦ(A)] ≥ 1

A
� ((A)) ,

where � : [0,+∞) → ℝ is a positive increasing convex function with �(0) = 0 and �′(0) > 0. As a
consequence, for � > 0 small enough, we have

3

3A
[lnΦ(A)] ≥ �3

1
A

�3−1

(4!)3−1 ,

so integrating both sides and taking into account that )1(0) = 0 = )2(0) leads to the estimate[
−
∫
�A

|∇#1 |2 3G
] [
−
∫
�A

|∇#2 |2 3G
]
≤ Φ(A) ≤

(
A

'

)�
Φ('), for every A ∈ [�', '],

where � := �3(�/(4!))3−1. Moreover, by the density estimate (d) and the classical Poincaré inequality
(4.12), we deduce the following estimate on the average of #2

9
:

1
A4

[
−
∫
�A

#2
1 3G

] [
−
∫
�A

#2
2 3G

]
≤

(
A

'

)�
Φ('), for every A ∈ [�', '].

To conclude we also need an estimate from below. By the Lipschitz continuity (a), we have

#8(G) ≥
�
4
' − !|G − G8 | in ��(G8) for 8 = 1, 2.

If we now choose � := �'/(4!), then it is easy to verify that � ≤ '/2; therefore, we have∫
�A

#2
8 3G ≥

∫
�A∩��(G8 )

#2
8 3G ≥

∫
�A∩��(G8 )

(
�
4
' − !|G − G8 |

)2

3G

≥ 23
∫
��(G8 )

(
�
4
' − !|G − G8 |

)2

3G ,
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where 23 is a dimensional constant. Now, a straightforward computation gives∫
��(G8 )

(
�
4
' − !|G − G8 |

)2

3G ≥ 1
|�� |

(∫
��

(
�
4
' − !|G |

)
3G

)2

=
(3$3)2
$3�3

(∫ �

0
B3−1

(
�
4
' − B!

)
3B

)2

=
(3$3)2
$3�3

(
!

∫ �

0
B3−1 (

� − B
)
3B

)2

=
$33

2

(3 + 1)2 !
2�3+2.

It follows that
1
A2 −

∫
�A

#2
8 3G ≥ �3

�3+2

!3

(
'

A

)3+2

and, by the Lipschitz continuity of #1 and #2, we obtain the inequality

�3
�23+4

!23 ≤
(
A

'

)3+2+�
Φ(') ≤

(
A

'

)3+2+� $2
3
!4

4
for every A ∈ [�', '].

In particular, if we take A = �', we deduce that

�3+2+� ≥ �3
(
�
!

)23+4

,

which is a contradiction if � is small enough.

We are now ready to state and prove the interior Harnack-type inequality:

Lemma 5.4 Suppose that Ω ⊂ �1, with 0 ∈ %Ω, and ) : �1 → ℝ satisfy the conditions (a), (c) and (d) of
Theorem 5.1. Then for every � > 0 there is '0 for which the following holds:

Claim. For every ' ∈ (0, '0], there is a constant �H := �H(�, ') > 0 such that for every
positive harmonic function F : Ω ∩ �1 → ℝ satisfying

F ≥ 0 in Ω ∩ �1 and ΔF = 0 in Ω ∩ �1 ,

we have
inf

{)>�'}∩�'
F ≥ �H sup

{)>�'}∩�'
F.

To prove Lemma 5.4 it is sufficient to show that there are # ∈ ℕ and ' > 0 such that, for every pair of
points G0 , H0 ∈ {) > �'} ∩ �', there are a curve � : [0, 1] → �1 satisfying

�(0) = G0 and �(1) = H0 ,

and a family of balls
{
�A(G 9) : 9 = 1, . . . , #

}
with the following properties:

• G 9 ∈ �([0, 1]) for every 9 = 1, . . . , # ;
• �2A(G 9) ⊂ Ω for every 9 = 1, . . . , # ;
• the family

{
�A(G 9) : 9 = 1, . . . , #

}
is an open covering of �([0, 1]).

The existence of such a family is an immediate consequence of Lemma 5.3 together with a standard
covering theorem (see, for example, [82, Section 1.3]).
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5.3 Boundary Harnack inequality

In this section, we prove the boundary Harnack inequality (Theorem 5.2) following the recent proof
given by De Silva-Savin in [74], which is divided into the following three main steps:

(s1) we prove Lemma 5.6, from which the boundary Harnack inequality follows by an iteration
procedure;

(s2) we prove Proposition 5.1, which allows us to start the iteration procedure. It is obtained as a
consequence of Lemma 5.7 and the Harnack-type estimate Lemma 5.8;

(s3) we combine the results from the previous points to obtain the proof of Theorem 5.2.

Remark 5.3 For general operators Lemma 5.8 is contained in the proof of the Krylov-Safonov’s
Theorem [117] (see also [48, Theorem 4.8] and [74, Theorem 1.3]), while in our case it is a consequence
of the mean-value formula.

First step: oscillation estimate and iteration lemma

The main result of this step is obtained as a consequence of Lemma 5.2 and the oscillation lemma
from the De Giorgi’s theorem [90, Chapter 8], which we now recall:

Lemma 5.5 (Oscillation) Let F : �1 → ℝ be a subharmonic function, bounded in [0, 1] and such that��{F = 0} ∩ �1/4
�� ≥ �

���1/4
��

for some � > 0. Then there exists 2 := 2(�, 3) > 0 such that

F ≤ 1 − 2 on �1/2. (5.2)

Proof. By the mean value formula, for every G0 ∈ �1/4 we have

F(G0) ≤
1
|�1/2 |

∫
�1/2(G0)

F(G) 3G ≤ 1
|�1/2 |

(
|�1/2 | − �|�1/4 |

)
= 1 −

�

23
.

Now let H0 ∈ �1/2. Since �1/2(H0) ∩ �1/4 contains at least a ball of radius 1/8, we can exploit the previous
estimate in �1/4 to obtain the estimate

F(H0) ≤
1
|�1/2 |

∫
�1/2(H0)

F(G) 3G ≤ 1
|�1/2 |

(
|�1/2 | −

�

23
|�1/8 |

)
= 1 −

�

83
,

which is precisely (5.2) with 2 = 8−3�.

Lemma 5.6 LetΩ ⊂ �1, with 0 ∈ %Ω, and ) : �1 → ℝ satisfy the conditions (a)–(d) of Theorem 5.1. Then
there are constants �1 , 0 > 0 depending on 3 and (a), (b) and (d), for which the following holds:
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Claim. Suppose that F : �1 → ℝ is a continuous function satisfying
ΔF = 0 in �1 ∩ {) > 0}
F = 0 on �1 ∩ {) = 0}
F ≥ " on �1 ∩ {) > �}
F ≥ −1 on �1 ∩ {0 < ) ≤ �},

(5.3)

for some � ∈ (0, �1] and some" > 0. Then we have
ΔF = 0 in �1/2 ∩ {) > 0}
F = 0 on �1/2 ∩ {) = 0}
F ≥ 0" on �1/2 ∩ {) > �

2 }
F ≥ −0 on �1/2 ∩ {0 < ) ≤ �

2 }.

In particular, if we let F+ and F− be respectively the positive and negative part of F, we get
the following estimates:

sup
�1/2∩Ω

F− ≤ 0 and inf
�1/2∩{)>�/2}

F+ ≥ 0" ≥ " sup
�1/2∩{)≤�/2}

F−.

Proof. By (5.3), the function F + 1 is harmonic on �1 ∩Ω and non-negative. If we take �1 to be the
constant �0 from Lemma 5.2, then it turns out that

min
�1/2∩{)> �

2 }
(F + 1) ≥ 1

�
min

�1∩{)>�}
(F + 1) ≥ 1

�
(" + 1).

Therefore, if we choose 0 to be such that

0 ≤ 1
2�

and " = 2�,

then we get

min
�1/2∩{)> �

2 }
F ≥ 1

�
(" + 1) − 1 ≥ 1 ≥ 0".

On the other hand, by the density bound (d) and the classical De Giorgi’s oscillation lemma (see [74,
Theorem 1.2]) applied to F−, we get

sup
�1/2

F− ≤ (1 − 2) sup
�1

F− ≤ 1 − 2,

where 2 ∈ (0, 1) is the dimensional constant from Lemma 5.5. Thus, the conclusion follows by taking
0 to be the minimum between 1/(2�) and 1 − 2.

Second step: growth lemma and Krylov-Safonov-type estimate

We now prove a bound which allows us to start the iterative procedure. Notice that this is the only
point of the proof in which the assumption (e) is used.

Proposition 5.1 Suppose thatΩ ⊂ �1, with 0 ∈ %Ω, and ) : �1 → ℝ satisfy the conditions (a)–(c) and (e) of
Theorem 5.1. Then, there are �, �2 > 0 depending on 3 and (a)–(e), for which the following holds:
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Claim. If F : �1 → ℝ is a non-negative continuous function satisfying
ΔF = 0 in �1 ∩ {) > 0}
F = 0 on �1 ∩ {) = 0}
F ≤ 1 on �1 ∩ {) ≥ �2},

then
F ≤ � in �1/4.

We obtain the proof of this proposition combining two technical results. The first lemma is a
consequence of the Harnack-type inequality close to the boundary (see Lemma 5.2).

Lemma 5.7 Let Ω ⊂ �1, with 0 ∈ %Ω, and ) : �1 → ℝ satisfy the conditions (a)–(c) of Theorem 5.1. Then
there are constants �2 , �, ? > 0 depending on 3, ! and � from (a) and (b), for which the following holds:

Claim. For every � ∈ (0, �2] and every positive harmonic F : Ω→ ℝ such that

F ≤ 1 on �1 ∩ {) > �},

we have
F ≤ �)−? on �1/2 ∩Ω.

Remark 5.4 Notice that the constants �2 from Lemma 5.7 and Proposition 5.1 are the same.

Proof of Lemma 5.7. First, notice that for every � < �̃ ∈ (0, �2]we have

F ≤ 1 on �1 ∩ {) > �} =⇒ F ≤ 1 on �1 ∩ {) > �̃},

so it is sufficient to prove the claim for � = �2. Let G0 ∈ �1/2 ∩Ω and ℓ ≥ 1 be a fixed constant that we
will choose later. If G0 is such that

)(G0) ≥ ℓ�2 ,

then it is enough to choose any � ≥ !? since by the Lipschitz bound (a) and the fact that G0 ∈ {) > �2},
we have the inequality

F(G0) ≤ 1 ≤ !?
(
max
�1/2

)

)−?
≤ !?)(G0)−? .

Therefore, assume )(G0) ≤ ℓ�2. Let I0 be the projection of G0 on %Ω ∩ �1. By (b), we have

A := |G0 − I0 | ≤
1
�
)(G0) ≤

ℓ�2
�
.

Thus, if ℓ�2 > 0 is small enough (for example, ℓ�2 ≤ �/8), then we have A ≤ 1/8 and, in particular,
�2A(I0) ⊂ �1. Moreover, by (b) we get

�
2

2A = � |G0 − I0 | ≤ )(G0)

and so, since ℓ�2 ≤ �
2 , the following holds:

G0 ∈ �2A(I0) ∩
{
) > �A

}
⊂ �2A(I0) ∩

{
) > 2ℓ�2A

}
.

Now assume that ℓ�2 ≤ �0, where �0 is the threshold from Lemma 5.2, and let = ≥ 1 be the only
integer such that

2=A ≤ 1
4
< 2=+1A.
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Then �2= A(I0) ⊂ �1, and we can iterate the estimate from Lemma 5.2 obtaining

F(G0) ≤ max
�2A (I0)∩{)>2Aℓ�2}

F ≤ �=−1 max
�2= A (I0)∩{)>2=ℓ�2A}

F ≤ �=−1 max
�1∩{)> ℓ�2

8 }
F,

which means that we can take ℓ = 8. Moreover, since

2 ≤ �)(G0)−1 ,

by choosing ? > 0 such that �=−1 = 2? > 1, we get

F(G0) ≤ �=−1 max
�1∩{)>�2}

F ≤ 2? max
�1∩{)>�2}

F ≤ �?)(G0)−? ,

proving the claim. Notice that it is enough to choose �2 and � as

�2 ≤ min
{
�
64
,
�0
8

}
and � = max{�? , !?}.

Corollary 5.1 There exists �1 > 0 such that for every � ∈ (0, �1] there is a constant ), depending on 3, �, !, �
and Λ for which the following holds. For every positive harmonic function F : Ω→ ℝ, satisfying

F ≤ 1 on �1 ∩ {) > �},

we have F ≤ ) on �1/4.

In the proof of Proposition 5.1 we need the following Krylov-Safonov-type estimate, which was also used
in [74, Theorem 1.3]. In our framework, there is a simple proof based on the mean-value formula.

Lemma 5.8 (A Krylov-Safonov-type estimate) Suppose thatΩ is an open set in �1 and that the continuous∗
function F : �1 → ℝ is such that:

• F is non-negative on �1 and vanishes identically on �1 \Ω;
• F is harmonic inΩ and subharmonic in �1;
• Ω satisfies the exterior density bound (d) in �1;
• there is & > 0 such that

∫
�1
F& 3G ≤ 1.

Then there is a constant" > 0, depending on 3, the density bound � from (d) and &, such that

F ≤ " in �1/2.

Proof. Let G0 ∈ �1/2 ∩Ω, ' := dist(G0 , %Ω) and" := F(G0) > 0. We fix � := &/(23) and, for simplicity,
divide the proof into two cases:

(1) Assume that 2' ≥ "−�. The function F is harmonic and positive on �'(G0), so by the classical
Harnack inequality [80, Chapter 6] there exists 2 := 2(3) > 0 such that

F ≥ 2" in �'/2(G0).

∗ We notice that this assumption is not restrictive as below we will also assume F is harmonic in Ω and that Ω satisfies an
exterior density bound.
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It follows that
1 ≥

∫
�1

F& 3G ≥
∫
�'/2(G0)

F& 3G

≥
���'/2

�� (2")&
≥ $3 2

&

43
"−3�+& =

$3 2
&

43
"

&
2 ,

which means that in this case there is a constant �3,& such that" ≤ �3,&.

(2) Suppose, by contradiction, that 2' ≤ "−� and " > �3,&, where �3,& is the constant defined
above. If I0 denotes the projection of G0 on %Ω ∩ �1, then

�"−�/2(I0) ⊆ �"−� (G0) ⊂ �1.

In particular, since ΔF ≥ 0 in �1, the mean value formula gives

" = F(G0) ≤
1

|�"−� |

∫
�
"−� (G0)

F(G) 3G

≤ |�"−� (G0) ∩Ω|
|�"−� |

‖F‖!∞(�
"−� (G0)) ,

which, by the density estimate (d) in the ball �"−�/2(I0), leads to

" ≤ (1 − 2−3�)‖F‖!∞(�
"−� (G0)) ≤

1
1 + 2−3�

‖F‖!∞(�
"−� (G0)).

Consequently, there exists a point G1 ∈ �"−� (G0) such that

F(G1) ≥ (1 + 2−3�)",

and, iterating, we obtain a sequence of points G= ∈ Ω ∩ �1 satisfying the following properties:

F(G=+1) ≥ "(1 + 2−3�)= and |G=+1 − G= | ≤
1

"�(1 + 2−3�)=�
.

Now, if we choose" > 0 large enough, then

+∞∑
==0

1
"�(1 + 2−3�)=�

≤ 1
4
,

so G= is defined for every = ≥ 1 (it never leavesΩ∩�3/4), but this is impossible since F(G=) → ∞.

We are now ready to prove the main result of this step:

Proof of Proposition 5.1. It is sufficient to show that there are  > 0 and � > 0 such that∫
�1/2

F 3G ≤ �.
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Indeed, by Lemma 5.7 and assumption (e) (in which Λ appears), we have that∫
�1/2

(�)−?) 3G = �?

∫ +∞

0
C?−1 |{)−1 > C} ∩ �1/2 | 3C

≤ �?

(
|�1/2 |

∫ 1

0
C?−1 3C +

∫ +∞

1
C?−1 |{)−1 > C} ∩ �1/2 | 3C

)
≤ �?

(
1
?
|�1/2 | +

∫ +∞

1
C?−1 |{) < 1/C} ∩ �1/2 | 3C

)
≤ �?

(
1
?
|�1/2 | +Λ|�1/2 |

∫ +∞

1
C?−2 3C

)
= � |�1/2 |

(
1 +Λ

?

1 − ?

)
,

so we can choose  = 1/(2?), and the conclusion follows from Lemma 5.8.

Third step: conclusion of the proof

We are now ready to prove Theorem 5.2. For this, we show that it is possible to choose" and � > 0 in
such a way that the iterative procedure in Lemma 5.6 can start.

Lemma 5.9 Suppose that Ω ⊂ �1, with 0 ∈ %Ω, and ) : �1 → ℝ satisfy the conditions (a)–(e) of Theorem
5.1. Let ' ∈ (0, '0], where '0 is the radius from Lemma 5.4. Then there are constants

�∗ > 0 and � ≤ min{�, �1 , �2}† ,

depending on the dimension 3, the radius ', and the constants from the assumptions (a)–(e), such that for every
couple of non-negative continuous functions

D, E : �1 → ℝ

satisfying 
ΔD = ΔE = 0 inΩ ∩ �1

D = E = 0 on �1 \Ω
D(G0) = E(G0) for some G0 ∈ �' ∩ {) > �'},

we have that the two functions

F1 := �∗D − E and F2 := �∗E − D

fulfill the assumptions of Lemma 5.6.

Proof. First, notice that by Lemma 5.4 there is a constant � (depending also on ') such that

1
�
≤ D, E ≤ � on �' ∩ {) > �'}.

Thus, by Proposition 5.1, there is a constant Λ > 0 such that

E ≤ Λ in �'/4 ,

† �1 and �2 are the constants from Lemma 5.6 and Proposition 5.1, while � is the constant from (f) of Theorem 5.1.
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and a constant � > 0 such that

D ≤ � in �'/4 ∩
{
) >

�
4
'

}
.

Thus, for some �1 , �2 > 0 large enough, the functions �1D − E and �2E − D satisfy the assumption of
Lemma 5.6. Finally, the result follows by taking �∗ := max{�1 , �2}.

We are finally ready to put together everything we have proved so far to establish the boundary
Harnack inequality:

Proof of Theorem 5.2. If we choose ' and � small enough, we can apply Lemma 5.9 in a neighborhood
of the origin. In particular, there are � ∈ (0, ') and � > 0 such that

sup
�'/4(G0)∩Ω

(�∗D − E)− ≤ 0 and inf
�'/4(G0)∩{)> '

4 �}
(�∗D − E)+ > 0,

for every G0 ∈ ��. Iterating Lemma 5.6 (up to a dilatation and rescaling), we obtain

�∗D − E ≥ 0 in �A= (G0) ∩ {) > A=�}

for every = ≥ 0, where we set A= := '2−2−= . Now, it is sufficient to notice that for � > 0 small enough
the following collection of sets{

�A= (G0) ∩ {) > A=�} : G0 ∈ %Ω ∩ �� , = ≥ 0
}

is a covering of ��. By repeating the same argument with �∗E − D, we conclude the proof.

5.4 Proof of Theorem 5.1: the boundary Harnack principle

We are now ready to prove that the boundary Harnack principle (Theorem 5.1) can be obtained as a
consequence of the boundary Harnack inequality (Theorem 5.2). More precisely, we show that given
any two harmonic functions D, E : Ω→ ℝ vanishing identically on the boundary %Ω, the ratio

D

E
: Ω→ ℝ

is -Hölder continuous up to the boundary. We achieve this as a consequence of Proposition 5.2,
which is well-known in the literature (see, e.g., [108, Corollary 1.3.8]); here, we give a detailed proof
for the sake of completeness.

Definition 5.5 Let Ω ⊂ �1 be an open set. We say that Ω has the BH half-space property if there is a
constant " > 0 such that for every G0 ∈ %Ω ∩ �1/2 and A ∈ (0, 1 − |G0 |), there exists %A(G0) ∈ �A(G0) ∩Ω
with the following property:

BH property. For every pair of continuous non-negative functions D, E : �A(G0) → ℝ

satisfying 
ΔD = ΔE = 0 in �A(G0) ∩Ω,
D = E = 0 on �A(G0) \Ω,
D(%A(G0)) = E(%A(G0)),

we have that
"−1 ≤ D(G)

E(G) ≤ " for every G ∈ �A/2(G0) ∩Ω.
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Proposition 5.2 Let Ω ⊂ �1 be an open set satisfying the BH half-space property. Then there are , � > 0,
depending on 2," and 3, such that for every pair of continuous non-negative functions

D, E : �1 → ℝ

satisfying 
ΔD = ΔE = 0 in �1 ∩Ω,
D = E = 0 on �1 \Ω,
D(%1(0)) = E(%1(0)) > 0,

the following -Hölder estimate holds:����D(G)E(G) −
D(H)
E(H)

���� ≤ � |G − H | for every G, H ∈ �1/4 ∩Ω. (5.4)

In order to prove this proposition, it is sufficient to estimate the oscillation of D
E from one scale to

another with a constant strictly smaller than one.

Lemma 5.10 LetΩ ⊂ �1 be an open set satisfying the BH half-space property. Then for every G0 ∈ %Ω ∩ �1/2,
every A ≤ 1

2 , and every pair of continuous non-negative functions D, E : �A(G0) → ℝ satisfying{
ΔD = ΔE = 0 in �A(G0) ∩Ω
D = E = 0 on �A(G0) \Ω,

we have
oscΩ∩�A/2(G0)

[
D

E

]
≤

(
1 − 1

2"

)
oscΩ∩�A (G0)

[
D

E

]
,

where" is the constant given by Definition 5.5 and the oscillation is defined in (4.21).

Proof. Set %A := %A(G0) and consider the quantities

<A := inf
Ω∩�A (G0)

D

E
and "A := sup

Ω∩�A (G0)

D

E
.

Suppose that D(%A)/E(%A) ≥ ("A+<A)/2. Then the functions D−<AE and E are harmonic, non-negative
in �A(G0) and satisfy the estimate

D(%A) − <AE(%A) ≥
"A − <A

2
E(%A).

Therefore, using the BH half-space property (Definition 5.5), we get

D − <AE ≥
1
"

"A − <A

2
E in �A/2(G0),

so we can divide by E and take the inf overΩ to obtain

inf
Ω∩�A/2(G0)

D

E
≥ <A +

1
"

"A − <A

2
.

On the other hand, the supremum on �A/2(G0) is smaller than or equal to (by definition) the supremum
on the ball of radius A, i.e.,

sup
Ω∩�A/2(G0)

D

E
≤ sup
Ω∩�A (G0)

D

E
= "A ,
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which means that we can estimate the oscillation on �A/2(G0) as follows:

oscΩ∩�A/2(G0)
[
D

E

]
≤ "A −

(
<A +

1
"

"A − <A

2

)
= ("A − <A)

(
1 − 1

2"

)
.

The same strategy (estimating the supremum instead of the infimum) can be employed if we assume
that D(%A)/E(%A) ≤ ("A + <A)/2. Indeed, we have

"AE − D ≥
1
"

"A − <A

2
E in �A/2(G0),

which implies that

sup
Ω∩�A/2(G0)

D

E
≤ "A −

1
"

"A − <A

2
.

On the other hand, the inf over �A/2(G0) is always larger than or equal to the inf over the ball of radius
A; more precisely, we have

inf
Ω∩�A/2(G0)

D

E
≥ inf
Ω∩�A (G0)

D

E
= <A ,

which means that the oscillation on �A/2(G0) can be estimate as

oscΩ∩�A/2(G0)
[
D

E

]
≤

(
"A −

1
"

"A − <A

2

)
− <A = ("A − <A)

(
1 − 1

2"

)
,

concluding the proof.

Proof of Proposition 5.2. We will prove the following claim:

Claim. There is a constant 2 ∈ (0, 1) such that for every G0 ∈ Ω ∩ �1/2, every A ≤ 1/2,
and every pair of continuous and non-negative functions

D, E : �A(G0) → ℝ

satisfying

ΔD = ΔE = 0 in �A ∩Ω and D = E = 0 on �A \Ω,

we have that
oscΩ∩� A

16
(G0)

[
D

E

]
≤ (1 − 2) oscΩ∩�A (G0)

[
D

E

]
.

In order to prove this claim we consider two different scenarios:

(1) Suppose that there is a point H0 ∈ %Ω ∩ �A/8(G0). Then we have that �A/2(H0) ⊂ �A(G0) and, by
Lemma 5.10, we can estimate the oscillation on a smaller ball as follows:

osc�A/4(H0)∩Ω
[
D

E

]
≤

(
1 − 1

2"

)
osc�A/2(H0)∩Ω

[
D

E

]
≤

(
1 − 1

2"

)
osc�A (G0)∩Ω

[
D

E

]
.

Now, since �A/8(G0) ⊂ �A/4(H0), we conclude that

osc�A/8(G0)∩Ω
[
D

E

]
≤ (1 − 2) osc�A (G0)∩Ω

[
D

E

]
, with 2 =

1
2"

.
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(2) Suppose that �A/8(G0) ⊂ Ω. Then the classical (interior) Harnack inequality tells us that

osc�A/16(G0)∩Ω
[
D

E

]
≤ (1 − �3) osc�A/8(G0)∩Ω

[
D

E

]
≤ (1 − �3) osc�A (G0)∩Ω

[
D

E

]
,

where �3 ∈ (0, 1) is a dimensional constant given by the Harnack inequality.

The -Hölder estimate (5.4) now follows by a standard argument since we have a bound on the
oscillation which can be iterated.

5.5 Some applications

To conclude this chapter, we discuss two examples (arising from shape optimization problems) of
domains that satisfy the conditions of Theorem 5.1. For further applications, see [109] and [110].

5.5.1 The vectorial free boundary problem

Consider the functional
F(*) :=

∫
�1

|∇* |2 3G + |{|* | > 0}| ,

defined for any vector-valued function* : �1 → ℝ: .

Definition 5.6 A function * : �1 → ℝ: is a solution of the vectorial problem if it minimizes Famong all
vector-valued functions with prescribed values on %�1.

Definition 5.7 A vector-valued function* : �1 → ℝ: is non-degenerate if there is a component D8 which is
strictly positive in {|* > 0|} ∩ �1.

The non-degenerate case was first studied in [52], [115] and [130], while the regularity of the flat free
boundaries in the degenerate case was first obtained in [116]; see also [75] for a different approach,
and [142] for an analysis of the singular part of the free boundaries in dimension two.

In any case, the proofs in [52], [130] and [131], of the �1,-regularity of the flat free boundaries are all
based on the Boundary Harnack principle, which allows transforming the free boundary condition

:∑
9=1
|∇D9 |2 = 1 on %{|* > 0|} ∩ �1 ,

into a condition of the form

|∇D9 | = 6(G) on %{|* > 0|} ∩ �1 ,

involving just one component of * and an auxiliary Hölder-continuous function 6 : %Ω → ℝ. To
prove that the Boundary Harnack principle holds onΩ* := {|* | > 0}, in [52] it was shown thatΩ* is
an NTA domain (Definition 5.4), while in [130] it was proved thatΩ* is Reifenberg-flat; in both cases,
the conclusion followed from [103].

Consequently, our main result (Theorem 5.1) offers an alternative approach. In fact, the modulus
|* | of a variational solution* satisfies the conditions of Theorem 5.1. In fact, (a) and (c) are clearly
satisfied. For the Lipschitz continuity and the non-degeneracy (f) of |* | we refer to [130], while (e)
was proved in [131, Section 2.2]. Moreover, in the non-degenerate case, in [115] it was shown that up
to a constant one can bound |* | from above with D1. Thus, (b) is an immediate consequence from
the classical interior Harnack inequality and the non-degeneracy of |* |. Finally, the exterior density
estimate (d) was proved in [130].
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5.5.2 Subsolutions and supersolutions

Fix Λ > 0. For every non-negative function D : �1 → ℝ, we define the functional

FΛ(D) :=
∫
�1

|∇D |2 3G +Λ |{D > 0}| .

Definition 5.8 A non-negative function D : �1 → ℝ is a supersolution of FΛ if

FΛ(D) ≤ FΛ(E)

for every non-negative E : �1 → ℝ such that

E = D on %�1 and D ≤ E.

Similarly, we say that D is a subsolution if the condition D ≤ E is replaced by E ≤ D.

Notice that if D is at the same time a sub- and a supersolution of FΛ, then D is a minimizer of FΛ and
thus, by the classical result of Alt and Caffarelli [4], the free boundary %{D > 0} is smooth in �1 up to
a set (of singular points) of "small" Hausdorff dimension.

Problem 5.1 If D is a subsolution for F� and a supersolution for FΛ with � ≠ Λ, then nothing is known
about the local structure of the free boundary.

Although this is an open problem, from the analysis in [4, Sections 3 and 4] (and [145]), one can easily
check that we have the following result.

Proposition 5.3 Fix 0 < � < Λ are let D ∈ �1(�1) be a non-negative function, which is a subsolution for F�

and a supersolution for FΛ. Then D satisfies the conditions (a)–(f) of Theorem 5.1 and the Boundary Harnack
principle holds on the set

ΩD = {D > 0} ∩ �1.
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The goal of this chapter is to describe the results obtained in [123], which will play a crucial role in the
proof of the �1,-regularity of the free boundary in Section 7.5.

6.1 Main results and some remarks

Let D, E ∈ �0(�1) be two continuous non-negative functions on the unit ball in ℝ3 such that

Ω := {D > 0} = {E > 0}.

Suppose that D and E are also solutions of the free boundary problem

− ΔD = 0 inΩ, (6.1)
− ΔE = 0 inΩ, (6.2)
%D

%=

%E

%=
= 1 on %Ω ∩ �1 , (6.3)

where the two equations (6.1)-(6.2) hold in the classical sense inΩ. On the other hand, since we will
not assumeΩ regular, the boundary condition (6.3) is to be intended in a generalized sense. Following
the classical approach of Caffarelli [46, 47], for simplicity, in the introduction and in Theorem 6.1, we
will assume that (6.3) holds in the sense of Definition 6.1 below.

The main result of [123] applies to a more general notion of solutions. However, we postpone the
discussion to Section 6.2 to avoid technicalities.

Definition 6.1 (Definition of solutions) We say that (6.3) holds, if at any point G0 ∈ %Ω ∩ �1 at which %Ω
admits a one-sided tangent ball∗, we have that the functions D and E can be expanded as

D(G) =  ((G − G0) · �)+ + > (|G − G0 |) ,
E(G) = � ((G − G0) · �)+ + > (|G − G0 |) ,

where � is a unit vector and , � ∈ ℝ positive numbers such that � = 1.

Our main result is a regularity theorem that applies to solutions that are sufficiently &-flat in the sense
of the following definition:

Definition 6.2 (Flatness) We say that D and E are &-flat in �1, if there are a unit vector � ∈ %�1 and positive
constants  and � with � = 1, such that

 (G · � − &)+ ≤ D(G) ≤  (G · � + &)+ for every G ∈ �1 ,

� (G · � − &)+ ≤ E(G) ≤ � (G · � + &)+ for every G ∈ �1.

We will also say that D and E are &-flat in the direction �.

Theorem 6.1 There is &0 > 0 such that, if D and E are non-negative continuous functions on �1 which are
solutions of (6.1)-(6.2)-(6.3) and &-flat in �1, for some & ∈ (0, &0], then %Ω is �1, in �1/2.

∗ For a precise definition of one-sided tangent ball, see Definition 6.3.



130 6 Epsilon-regularity for a free boundary system

Notice that Theorem 6.1 follows directly from Theorem 6.3 (which is proved in Subsection 6.2.3) as it
is the same result for a more general notion of solutions, which we define in Section 6.2 in terms of the
blow-ups of D and E. The proof of Theorem 6.3 will be given in Section 6.3 and Section 6.4.

The rest of the introduction is organized as follows. In Subsection 6.1.1, we discuss the relation of
the system (6.1)-(6.2)-(6.3) to the well-known one-phase, two-phase and vectorial Bernoulli problems,
with which it shares several key features. In Subsection 6.1.2, we explain the overall strategy and the
novelties of the proof and, finally, in Subsection 6.1.3 we discuss the applications of our result to the
theory of shape optimization.

6.1.1 The classical one-phase, two-phase and vectorial problems

The free boundary problem (6.1)-(6.2)-(6.3) is a vectorial analogue of the classical one-phase problem{
ΔD = 0 inΩ := {D > 0},
|∇D | = 1 on %Ω ∩ �1 ,

(6.4)

which was introduced by Alt and Caffarelli in [4]. Later, in a series of papers (see [46, 47] and the book
[51]), Caffarelli studied the following two-phase problem, in which the solution is given by a single
function D : �1 → ℝ that changes sign:{

ΔD = 0 inΩ+ := {D > 0} and Ω− := {D < 0} ,
(%+=D)2 − (%−=D)2 = 1 on %Ω+ ∩ %Ω− ∩ �1.

(6.5)

Here, the transmission condition on the boundary %Ω+∩ %Ω− is defined in terms of Taylor expansions
at points with a one-sided tangent ball (contained inΩ+ orΩ−), precisely as in Definition 6.1, while =
denotes the normal to %Ω+ ∩ %Ω− at such points.

Recently, De Silva [68] gave a different proof to the one-phase &-regularity theorem from [4]. The
method found application to several generalizations of (6.5) (see [69], [70] and [71]), and opened the
way to the original two-phase problem of Alt-Caffarelli-Friedman [5], for which the �1, regularity of
the free boundary in every dimension was proved only recently in [67] by a similar argument.

Inspired by a problem arising in the theory of shape optimization, a cooperative vectorial version of the
one-phase problem was introduced in [52], [115], and [130]. In this case, the solutions are functions

* = (D1 , . . . , D:) : �1 → ℝ:

satisfying {
−Δ* = 0 inΩ := {|* | > 0},∑:
9=1 |∇D9 |2 = 1 on %Ω ∩ �1.

(6.6)

The regularity of the vectorial free boundaries turned out to be quite challenging, especially when it
comes to viscosity solutions. This is mainly because the regularity techniques, based on the maximum
principle and the comparison of the solutions with suitable test functions (see, for instance, [68] and
[67]), are, in general, hard to implement in the case of systems. Epsilon-regularity theorems for the
vectorial problem (6.6) were proved in [52, 115, 116, 130, 131, 142] and more recently, in [75], where the
regularity of the flat free boundaries was obtained directly for viscosity solutions.

Several properties are specific to this problem. First of all, as (6.4) and (6.5), it has an underlying
variational structure, which allows the use of purely variational techniques as the epiperimetric
inequality [142] and which allows proving the regularity of minimizers (and almost-minimizers).
Second, the problem is invariant with respect to vertical rotations (that is, if * is a solution and if
� is an orthogonal matrix, then �* is also a solution), which in particular allows to write the free
boundary condition in (6.6) in terms of the modulus |* | as |∇|* | | = 1 on %Ω (see [130] and [75]).
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6.1.2 Outline of the chapter

The free boundary problem (6.1)-(6.2)-(6.3) arises in the study of a whole class of shape optimization
problems, which we discuss in more details in Subsection 6.1.3. However, unlike the one-phase [4],
the two-phase [5] and the vectorial problem [52, 130], it does not have an underlying variational
structure in terms of D and E, which means that strategies based on the epiperimetric inequality [142]
are not useful here. Therefore, we prove an improvement-of-flatness theorem, from which Theorem
6.1 follows by a standard argument (see [145] for more details).

Theorem 6.2 (Improvement of flatness) There are dimensional constants &0 > 0 and � > 0 such that the
following holds:

Improvement of flatness. Let D, E ∈ �0(�1) be two non-negative functions, which are also solutions
to (6.1)-(6.2)-(6.3), and assume 0 ∈ %Ω. If D and E satisfy, for some & < &0,

(G3 − &)+ ≤ D(G) ≤ (G3 + &)+ and (G3 − &)+ ≤ E(G) ≤ (G3 + &)+

in �1, then there are a unit vector � ∈ ℝ3 with |� − 43 | ≤ �& and a radius � ∈ (0, 1) such that

̃
(
G · � − &

2

)
+
≤
D(�G)
�
≤ ̃

(
G · � + &

2

)
+

and �̃
(
G · � − &

2

)
+
≤
E(�G)
�
≤ �̃

(
G · � + &

2

)
+

for all G ∈ �1, where ̃ and �̃ are such that ̃�̃ = 1, |1 − ̃ | ≤ �& and |1 − �̃ | ≤ �&.

Remark 6.1We actually prove a more general improvement-of-flatness result in Theorem 6.5.

To prove this result, we use the general strategy developed by De Silva in [68] for viscosity solutions of
the one-phase problem, which consists of two main ingredients: a partial Harnack inequality and the
analysis of the linearized problem.

We argue by contradiction, taking a sequence of solutions (D= , E=), which are &=-flat with &= → 0, and
considering the corresponding linearizing sequence

D̃=(G) =
D=(G) − G3

&=
and Ẽ=(G) =

E=(G) − G3
&=

.

The first step is to show that they converge to some D∞ and E∞, and this is done by proving a partial
Harnack inequality (see Section 6.3). Roughly speaking, we show that for any couple (D, E) of &-flat
solutions, with & ≤ &0, there is 2 ∈ (0, 1) such that either

(G3 − (1 − 2)&)+ ≤ D(G) ≤ (G3 + &)+ and (G3 − (1 − 2)&)+ ≤ E(G) ≤ (G3 + &)+ in �1/2 , (6.7)

or

(G3 − &)+ ≤ D(G) ≤ (G3 + (1 − 2)&)+ and (G3 − &)+ ≤ E(G) ≤ (G3 + (1 − 2)&)+ in �1/2. (6.8)

In other words, the flatness is improved either above or below, in the same direction 43, but without
the scaling factor that would allow us to iterate without going above the threshold &0.

The second step is to show that the D∞ and E∞ are solutions to a PDE problem (the so-called linearized
problem or limit problem), from which one can obtain an oscillation decay for D∞ and E∞ that can then
be transferred back to D̃= and Ẽ= , for some = large enough. In our case, the linearized problem is the
following system of PDEs{

ΔD∞ = ΔE∞ = 0 in �1 ∩ {G3 > 0},
D∞ = E∞ and %G3D∞ + %G3E∞ = 0 on �1 ∩ {G3 = 0},
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which we discuss in more details in Lemma 6.3 and Section 6.4. In our framework, the partial Harnack
inequality is the most challenging part of the proof. Indeed, in the one-phase and two-phase (see [68],
[69–71], and [67]), the validity of (6.7)-(6.8) is obtained by constructing explicit competitors, which
are essentially variations of the constructions in [68]. However, in our case, the functions D and E are
not solutions to any free boundary problem (if considered separately), meaning we cannot construct
explicit competitors.

That said, inspired by [75], it is possible to use appropriate combinations of D and E, which are
crucial in both steps of our proof. More precisely, we show that if D and E are viscosity solutions
to (6.1)-(6.2)-(6.3), then

√
DE and 1

2 (D + E) are respectively a viscosity subsolution and viscosity
supersolution of the one-phase problem (6.4) (see Lemma 6.1 and Remark 6.10)†. Moreover, it is easy
to check that

√
DE and 1

2 (D + E) inherit the flatness of D and E. Thus, by using the competitors from
[68] on these functions, we obtain the following dichotomy:

the flatness of 1
2 (D + E) is improved from above or the flatness of

√
DE is improved from below.

This information cannot be transferred back to D and E by algebraic manipulations since, for example,
a bound from below on

√
DE does not imply a bound from below for both D and E. However, we notice

that the improved flatness of
√
DE or 1

2 (D + E) implies that in �1/2 the boundary %Ω is trapped between
two nearby translations of a half-space, which are distant at most (2 − 2)&. Using this geometric
information and a comparison argument based on the boundary Harnack principle, in Lemma 6.2, we
obtain that also the flatness of D and E improves in �1/2.

6.1.3 On the boundary condition (%=D)(%=E) = 1 and its relation to a shape

optimization problem

Our result applies to a whole class of shape optimization problems, that is, variational problems

min {�(Ω) : Ω ∈ A} ,

where A is an admissible class of subsets ofℝ3 . Typically, we consider sets of fixed measure contained
in a given bounded open set � ⊂ ℝ3, while the functional � satisfies

$ ⊆ Ω =⇒ �($) ≥ �(Ω),

and depends on the resolvent of an elliptic operator with Dirichlet boundary conditions. The shape
functionals are usually related to models in Engineering, Mechanics and Material Sciences and in
most of the cases fall in one of the following main classes:

I spectral functionals;
I integral functionals.

For more details, we refer to the books [21, 97, 98, 100], the survey paper [30] and the articles [111, 139].
The spectral functionals are functionals of the form

�(Ω) = �(�1(Ω), . . . ,�:(Ω)),

where � : ℝ: → ℝ is a monotone function and �1(Ω), . . . ,�:(Ω) are the eigenvalues of the Laplacian
on Ω with Dirichlet boundary condition. The regularity and the local structure of these optimal
sets were studied in [26], [115, 116], [130] (see also [19] and [132] for the special cases �(Ω) = �1(Ω)
and �(Ω) = �2(Ω)), and are related to the vectorial Bernoulli problem from [52], [130] and [131]. An
&-regularity theorem for general spectral functionals was obtained in [116].
† This situation is similar to the one of the vectorial problem (6.6) in which each of the components of * is a viscosity
supersolution, while, as it was shown in [130], the modulus |* | satisfies |∇|* | | = 1 on %{|* | > 0} and is a viscosity subsolution
of (6.4); this was used in [75] to prove a partial Harnack inequality and an &-regularity theorem for solutions of (6.6).
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The integral functionals, on the other hand, can be written in the form

�(Ω) =
∫
�

9(DΩ , G) 3G, (6.9)

where 9 : ℝ × � → ℝ is a given function and the state function DΩ is the unique solution of{
−ΔD = 5 inΩ,

D ∈ �1
0 (Ω),

the right-hand side 5 : � → ℝ being a fixed measurable function.

As it was observed already in [45], a free boundary system of the form (6.1)-(6.2)-(6.3) naturally arises
in the computation of the first variation of �. This is easy to see if one formally computes the first
variation of � for smooth sets. Indeed, ifΩ is a smooth optimal set and � ∈ �∞(�;ℝ3) a compactly
supported vector field, then we can define the family of sets

ΩC := (�3 + C�)(Ω),

and the corresponding family of state functions DC := DΩC . Then the first variation of � is given by

��(Ω)[�] :=
3

3C

���
C=0
�(ΩC) =

3

3C

���
C=0

∫
ΩC

9(DC , G) 3G

=
3

3C

���
C=0

[∫
�

(
9(DC , G) − 9(0, G)

)
3G +

∫
ΩC

9(0, G) 3G
]

=

∫
Ω

D′
%9

%D
(DΩ , G) 3G +

∫
%Ω
9(0, G) � · =Ω 3H3−1 ,

where =Ω(G) to be the exterior normal at G ∈ %Ω and the formal derivative D′ (of DC at C = 0) is the
solution of the boundary value problem{

−ΔD′ = 0 inΩ,
D′ = −� · ∇DΩ on %Ω,

in which the condition on %Ω is a consequence of the fact that, given G ∈ %Ω, we have

DC(G + C�(G)) = 0 for every C ∈ ℝ.

We next define the function
6(G) := −

%9

%D
(DΩ(G), G),

and the solution EΩ of the problem {
−ΔE = 6 inΩ,

E ∈ �1
0 (Ω).

Remark 6.2 Notice that, to have the monotonicity of �, it is natural to assume 5 ≥ 0 and %D 9(G, D) ≤ 0,
which, in turn, implies 6 ≥ 0 and that both DΩ and EΩ are non-negative. On the other hand, if 5 and
%D 9(G, D) change sign, then, in general, an optimal set might not exist (see, for instance, [45]).

In order to complete the computation of ��(Ω)[�], we integrate by parts inΩ, obtaining

−
∫
Ω

D′6(G) 3G =
∫
Ω

D′ΔEΩ 3G = −
∫
Ω

∇D′ · ∇EΩ 3G +
∫
%Ω
D′
%DΩ
%=

=

∫
%Ω
D′
%DΩ
%=

.
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Now, since ∇DΩ is parallel to =Ω at the boundary, we have

D′ = −� · ∇DΩ = −(� · =Ω)(=Ω · ∇DΩ),

and thus the first variation of � is given by

��(Ω)[�] =
∫
%Ω

(
−%DΩ

%=

%EΩ
%=
+ 9(0, G)

)
=Ω · � .

Since the vector field � is arbitrary andΩ is a minimizer among the sets of prescribed measure, in a
neighborhood �A(G0) of a point G0 of the free boundary %Ω ∩ �, DΩ and EΩ are solutions of

−ΔD = 5 inΩ ∩ �A(G0),
−ΔE = 6 inΩ ∩ �A(G0),
(%=D)(%=E) = 2 + 9(0, G) on %Ω ∩ �A(G0),

where 2 is a positive constant.

Remark 6.3 Our definition Definition 6.1 is a generalization of the notion proposed by Caffarelli in the
context of a two-phase free boundary problem [46, 47].

Remark 6.4 In Theorem 6.1, we do not assume that the functions D and E are minimizers of a functional
or solutions of a shape optimization problem of any kind, so this result is of independent interest and
can be seen as a one-phase vectorial version of the classical results of Caffarelli [46, 47].

6.2 On the viscosity formulations of solution

In this section, we briefly discuss the boundary condition (6.3) since, as mentioned above, we will
prove a more general theorem for generalized solutions in the sense of Definition 6.5.

Definition 6.3 (One sided tangent balls) LetΩ ⊂ ℝ3 be an open set and let G0 ∈ %Ω. We say thatΩ admits
a one-sided tangent ball at G0 if one of the following conditions hold:

(i) interior: there are A > 0 and H0 ∈ Ω such that

�A(H0) ⊂ Ω and %�A(H0) ∩ %Ω = {G0};

(ii) exterior: there are A > 0 and H0 ∈ ℝ3 \Ω such that

�A(H0) ⊂ ℝ3 \Ω and %�A(H0) ∩ %Ω = {G0}.

Moreover, we use the notation �G0 ,H0 to denote the exterior normal, which is given by

H0 − G0

|H0 − G0 |
if the ball is interior, −

H0 − G0

|H0 − G0 |
if the ball is exterior. (6.10)

When Ω is regular, we notice that the vector �G0 ,H0 is the inner normal to %Ω at G0, while for non-smooth
domains, it may depend on the ball �A(H0).

Let & : �1 → ℝ be a �0,-regular function (for some  > 0) and suppose that there is �& ≥ 1 such
that

�−1
& ≤ &(G) ≤ �& for all G ∈ �1.

Then we can generalize the notion of solutions given in Definition 6.1 as follows:
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Definition 6.4 (Definition of solutions, I) Given two continuous non-negative functions D, E : �1 → ℝ

with the same supportΩ = {D > 0} = {E > 0}, we say that

%D

%=

%E

%=
= & on %Ω ∩ �1 ,

if at any point G0 ∈ %Ω ∩ �1, for which %Ω admits a one-sided tangent ball at G0, we have that the functions D
and E can be expanded as

D(G) =  ((G − G0) · �)+ + > (|G − G0 |) ,
E(G) = � ((G − G0) · �)+ + > (|G − G0 |) ,

where � is given by (6.10) and , � are positive real numbers such that

� = &(G0).

Remark 6.5 This definition implies that if %Ω admits a one-sided tangent ball at G0 ∈ %Ω, it is unique
and thus excludes a priori domains with angles and cusps. Moreover, the blow-ups of D and E are
unique at such points.

That said, a priori, we do not know whether the domain has cusps or not, so we need a more general
definition that works in the most general framework possible.

6.2.1 A more general notion of solution

For every G0 ∈ %Ω ∩ �1 and every A > 0 small enough, we define

DA,G0(G) =
1
A
D(G0 + AG) and EA,G0(G) =

1
A
E(G0 + AG).

Throughout the paper we will also adopt the notation DA := DA,0 and EA := EA,0. Therefore, we can
express Definition 6.4 in terms of the rescalings DA,G0 and EA,G0 in the following way:

Remark 6.6 Let D, E : �1 → ℝ be two non-negative continuous functions with the same support

Ω := {D > 0} = {E > 0}.

Then the following are equivalent:

(i) (%=D)(%=E) = & on %Ω ∩ �1 in the sense of Definition 6.4;
(ii) at any point G0 ∈ %Ω ∩ �1, for which one of the conditions (i) and (ii) of Definition 6.3 hold, we

have that DA,G0 and EA,G0 converge uniformy in �1 as A → 0 respectively to

G ↦→  ((G − G0) · �)+ and G ↦→ � ((G − G0) · �)+ ,

where , � > 0 are such that � = &(G0) and � ∈ ℝ3 is the unit vector given by (6.10).

In particular, Remark 6.6 implies that Definition 6.4 can be generalized as follows.

Definition 6.5 (Definition of solutions, II) Given two continuous non-negative functions D, E : �1 → ℝ

with the same supportΩ = {D > 0} = {E > 0}, we say that

%D

%=

%E

%=
= & on %Ω ∩ �1 ,

if at any point G0 ∈ %Ω ∩ �1, for which one of the conditions (i) and (ii) of Definition 6.3 holds, there are

I a decreasing sequence A= → 0;
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I two positive constants  > 0 and � > 0 such that � = &(G0);
I a unit vector � ∈ ℝ3;

such that the sequences DA= ,G0 and EA= ,G0 converge uniformly in �1 respectively to

D0(G) :=  (G · �)+ and E0(G) := � (G · �)+ .

Remark 6.7We say that D0 and E0 are blow-up limits of D and E at G0. We notice that the blow-up
limits at a point may not be unique since, a priori, they may depend on the sequence A= → 0.

Remark 6.8 The sequence A= → 0 from Definition 6.5 may depend on the tangent ball �A(H0) at G0
which is not necessarily unique. Thus, we do not assume that the blow-ups of D and E at G0 and the
tangent ball �A(H0) are unique.

6.2.2 Optimality conditions in viscosity sense

We are now ready to give the viscosity formulation (Lemma 6.1) of the free boundary condition in the
generalized definition, which will play a crucial later in proving the main results.

Definition 6.6 Let D : �1 → ℝ be a continuous non-negative function, ! ∈ �∞(ℝ3) be given and

!+(G) := max{!(G), 0}.

• We say that !+ touches D from below at G0 ∈ %{D > 0} ∩ �1 if D(G0) = !(G0) = 0 and

!+(G) ≤ D(G) for every G in a neighborhood of G0.

• We say that !+ touches D from above at G0 ∈ %{D > 0} ∩ �1 if D(G0) = !(G0) = 0 and

!+(G) ≥ D(G) for every G in a neighborhood of G0.

As mentioned in the introduction, we cannot prove the partial Harnack inequality (Theorem 6.4) for D
and E because there is no underlying variational structure. However, since

√
DE and

D + E
2

are, respectively, a subsolution and a supersolution of the one-phase problem, we can prove the
following viscosity lemma:

Lemma 6.1 Suppose that D and E satisfy

%D

%=

%E

%=
= 1 on %Ω ∩ �1

in the sense of Definition 6.5. Then the following holds:

(a) If !+ touches
√
DE from below at a point G0 ∈ �1 ∩ %Ω, then |∇!(G0)| ≤ 1.

(b) If !+ touches
√
DE from above at a point G0 ∈ �1 ∩ %Ω, then |∇!(G0)| ≥ 1.

(c) If 0 and 1 are constants such that

0, 1 > 0 and 01 = 1,

and if !+ touches the function F01 := 1
2 (0D + 1E) from above at G0 ∈ �1 ∩ %Ω, then |∇!(G0)| ≥ 1.
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Proof. We start by proving (c). Suppose that !+ touches F01 from above at G0 ∈ %Ω. Then there is a
ball touching %Ω at G0 from outside (in the sense of Definition 6.3 (ii)). But then, by Definition 6.5,
there are blow-up limits of D and E given respectively by

D0(G) =  (G · �)+ and E0(G) = � (G · �)+ . (6.11)

Moreover, since ! is smooth, the blow-up of !+ is given by

!0(G) =
(
G · ∇!(G0)

)
+ . (6.12)

By hypothesis, we have that !0 touches from above (at the origin) the function

G ↦−→ 1
2
(0D0(G) + 1E0(G)) =

0 + 1�
2

(G · �)+ ,

so, since 0 + 1� ≥ 2
√
0�1 = 2, we have that !0 touches from above also the function

G ↦−→ (G · �)+ .

Thus, ∇!(G0) = � and, in particular, |∇!(G0)| ≥ 1. We next prove (a) and (b). If !+ touches
√
DE from

below (resp. above) at G0 ∈ %Ω, then %Ω has an interior (resp. exterior) tangent ball at G0. In particular,
by Definition 6.5, D and E have blow-ups D0 and E0 given by (6.11). But then the function

√
D0E0 = (G · �)+

is a blow-up limit of
√
DE and, using again that the blow-up of !+ is (6.12), we conclude.

6.2.3 Generalization of the main result

We are now ready to state the generalization of Theorem 6.1. The presence of 5 , 6, and & leads to
minor technical adjustments to the proof, so we will not go through it.

Theorem 6.3 Let 5 , 6 ∈ !∞(�1) be non-negative functions and & ∈ �0,(�1). Suppose that D, E ∈ �(�1)
are non-negative solutions of the system

−ΔD = 5 inΩ,
−ΔE = 6 inΩ,
%D

%=

%E

%=
= & on %Ω ∩ �1 ,

(6.13)

where the free boundary condition holds in the sense of Definition 6.5. Then there is & > 0 such that, if D and E
are &-flat in �1 and we have the estimates

‖ 5 ‖!∞(�1) + ‖6‖!∞(�1) ≤ &2 and ‖&(G) − 1‖!∞(�1) ≤ &,

then %Ω is �1, in �1/2.

Remark 6.9 The positivity assumption on 5 and 6 is technical and is only required for the estimate on
the Laplacian of

√
DE in Remark 6.10. Without this assumption, one should know that the functions D

and E are comparable onΩ, i.e., that D/E is bounded away from zero and infinity.
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6.3 A partial Harnack inequality

In this section, we prove the partial Harnack inequality for solutions to (6.13) following the strategy
proposed in [68]. Indeed, as already mentioned, the boundary condition does not allow us to work
with D and E directly, so we study the improvement of flatness of the auxiliary functions

D + E
2

and
√
DE,

in order to trap the boundary %Ω between nearby translations of a half-space.

Remark 6.10 This strategy relies on the fact that the auxiliary functions are, respectively, subsolution
and supersolution for the scalar one-phase problem (6.4). Indeed, if D and E are harmonic inΩ and
satisfy Lemma 6.1 (c), then F := 1/2(D + E) is a subsolution since{

−ΔF = 0 inΩ,
|∇F | ≥ 1 on %Ω.

On the other hand, the function I :=
√
DE is a supersolution since{
−ΔI ≥ 0 inΩ,
|∇I | = 1 on%Ω.

The boundary condition follows again from Lemma 6.1, while the superharmonicity inΩ from the
fact that, if D, E : Ω→ ℝ are positive and superharmonic on an open setΩ, then

Δ

(√
DE

)
= div

(
D∇E + E∇D

2
√
DE

)
=
DΔE + 2∇D · ∇E + EΔD

2
√
DE

− (D∇E + E∇D) · D∇E + E∇D
4(DE)3/2

=
2DE (DΔE + EΔD) + 4DE∇D · ∇E − |D∇E + E∇D |2

4(DE)3/2

=
(DΔE + EΔD)

2
√
DE

− |D∇E − E∇D |
2

4(DE)3/2
≤ (DΔE + EΔD)

2
√
DE

≤ 0.

We now show that an improvement-of-flatness result for D and E follows immediately once we can
trap the setΩ between two nearby translations of a half-space.

Lemma 6.2 Let & > 0 and ) ∈ �(�1) be a non-negative solution of

−Δ) = 5 in �1 ∩ {) > 0},

with 5 ∈ !∞(�1). Assume that

�(G3 + 0)+ ≤ )(G) ≤ �(G3 + 0 + &)+ for all G ∈ �1 , (6.14)

with |0 | ≤ 1 and, for some � ∈ (0, 1) universal constant, either one of the following inclusions holds:

Ω ⊃ {G3 + 0 + �& > 0} ∩ �1/4 or Ω ⊂ {G3 + 0 + (1 − �)& > 0} ∩ �1/4. (6.15)

Then there are �, � ∈ (0, 1) dimensional constants such that either

)(G) ≥ �(G3 + 0 + �&)+ or )(G) ≤ �(G3 + 0 + (1 − �)&)+ ,
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holds for every G ∈ ��.

Proof. Suppose that the first inclusion in (6.15) holds, i.e.,

Ω ⊃ {G3 + 0 + �& > 0} ∩ �1/4.

Set � = �1/4 \ {G3 ≤ −0 − �&}, and consider the function
Δ! = 0 in �
! = 0 in �1/4 \ �
! = F on %�1/4

with F := ) − 1
2
(G3 + 0 + �&)2+‖ 5 ‖!∞(�1).

Since ) > 0 in �, we have −Δ) ≥ −‖ 5 ‖!∞(�1) in �, and thus −ΔF ≥ 0 in �. Then, by applying the
maximum principle in �, we get

! ≤ F ≤ ) in �.

On the other hand, since ) ≥ 0 = ! in �1/4 \ �, it follows that ! ≤ ) in �1/4. Thus, we claim that

! ≥ �(G3 + 0 + �&)+ for all G ∈ �1/32 , (6.16)

for some universal � ∈ (0, 1), from which the desired inequality follows. By (6.14) we know that

�(G3 + 0 + �&)+ ≤ �

(
G3 + 0 +

1 + �
2

&

)
+
≤ ) + 1 + �

2
�& in �1/4 ,

and, since ! = ) on %�1/4, we get

�(G3 + 0 + �&)+ ≤ ! + 1 + �
2

�& on %�1/4.

Therefore, applying the maximum principle in � yields

�(G3 + 0 + �&)+ − ! ≤
1 + �

2
�& in �1/4.

Consider now the function 
−Δℎ = 0 in �,
ℎ = 0 in �3/16 \ �,
ℎ = 1+�

2 �& on %�3/16.

Clearly, 0 ≤ ℎ ≤ 1+�
2 �&, and by the maximum principle

�(G3 + 0 + �&)+ − ! ≤ ℎ in �3/16. (6.17)

Now, by the boundary Harnack inequality, if we set Ḡ = (1/8)43, we get

ℎ(G) ≤ �1
ℎ(Ḡ)

(1/8 + 0 + �&)+
(G3 + 0 + �&)+ ≤ �2�&(G3 + 0 + �&)+ in �1/8 ,

for some universal constants �1 , �2 > 0. This last inequality, together with (6.17), leads to

(1 − �2&)�(G3 + 0 + �&)+ ≤ ! in �1/8.

On the other hand, since there exists � ∈ (0, 1), � < � and � < 1/8 such that

(G3 + 0 + �&)+ ≤ (1 − �2&)(G3 + 0 + �&)+ for all G ∈ �� ,

we conclude the proof of the claim (6.16). Now suppose that the second inclusion of (6.24) holds,
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namely we have
Ω ⊂ {G3 + 0 + (1 − �)& > 0} ∩ �1/4.

Set � = �1/4 \ {G3 ≤ −0 − (1 − �)&} and consider the function
Δ! = 0 in �
! = 0 in �1/4 \ �
! = F on %�1/4

with F = ) + 1
2
(G3 + 0 + (1 − �)&)2+‖ 5 ‖!∞(�1).

Notice that F > 0 and −ΔF ≤ 0 in �. Therefore, by maximum principle

! ≥ F in �1/4 ,

and, since F ≥ ) in �1/4, we have ! ≥ ) in �1/4. We claim that

! ≤ �(G3 + 0 + (1 − �)&)+ for all G ∈ �1/32 ,

for some � ∈ (0, 1), from which the desired inequality follows. By (6.14) we know that

) − 1 + �
2

�& ≤ �

(
G3 + 0 +

1 − �
2

&

)
+
≤ � (G3 + 0 + (1 − �)&)+ in �1/4 ,

and, since ! = ) on %�1/4, we deduce that

) − �(G3 + 0 + (1 − �)&)+ ≤
1 + �

2
�& on %�1/4.

Therefore, by applying the maximum principle in �, we get

) − �(G3 + 0 + (1 − �)&)+ ≤
1 + �

2
�& in �1/4.

Consider now the function 
−Δℎ = 0 in �
ℎ = 0 in �3/16 \ �
ℎ = 1+�

2 �& on %�3/16.

Clearly, 0 ≤ ℎ ≤ 1+�
2 �&, and by the maximum principle

) − �(G3 + 0 + (1 − �)&)+ ≤ ℎ in �3/16. (6.18)

Now, by the boundary Harnack inequality, if we set Ḡ = 1/843, we find that

ℎ(G) ≤ �1
ℎ(Ḡ)

(1/8 + 0 + (1 − �)&)+
(G3 + 0 + (1 − �)&)+ ≤ �2�&(G3 + 0 + (1 − �)&)+ in �1/8

for some universal constants �1 , �2 > 0. This last inequality, together with (6.18), leads to

) ≤ (1 + �2)�(G3 + 0 + (1 − �)&)+ in �1/8.

On the other hand, since there is � ∈ (0, 1) and � < � such that

(1 + �2)(G3 + 0 + (1 − �)&)+ ≤ (G3 + 0 + (1 − �)&)+ for all G ∈ �' ,

we conclude the proof.

We now prove the partial Harnack inequality for solutions to (6.13). This result will later be applied to
the rescalings DA,G0 and EA,G0 at some point G0 ∈ Ω̄.
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Theorem 6.4 (Partial Harnack) Given  > 0, there are &0 , � > 0 such that the following holds. If D and E are
solutions of (6.13) in the sense of Definition 6.5 with 0 ∈ Ω̄ and

(G3 + 0)+ ≤ D(G) ≤ (G3 + 1)+ for all G ∈ �1 ,

�(G3 + 0)+ ≤ E(G) ≤ �(G3 + 1)+ for all G ∈ �1 ,

for some  and � satisfying
0 < , � ≤  and � = 1,

and some 0 and 1 such that
|0 |, |1 | < 1

10
and 1 − 0 ≤ &0 ,

then there are 0̃ , 1̃ satisfying 1̃ − 0̃ ≤ (1 − �)(1 − 0) for some � > 0 such that

(G3 + 0̃)+ ≤ D(G) ≤ (G3 + 1̃)+
�(G3 + 0̃)+ ≤ E(G) ≤ �(G3 + 1̃)+

,

for all G ∈ ��, with � < 1/8 depending on 3 only.

Proof. As in [68], let Ḡ := 43/5 and consider the function F : ℝ3 → ℝ defined as

F(G) :=


1 if G ∈ �1/20(Ḡ),
0 if G ∉ �3/4(Ḡ),
2̄
(
|G − Ḡ |−3 − (3/4)−3

)
if G ∈ �3/4(Ḡ) \ �1/20(Ḡ),

where 2̄ := 203 − (4/3)3. Notice that the function F is nonzero exactly on �3/4(Ḡ) and it satisfies the
following properties on �3/4(Ḡ) \ �1/20(Ḡ):

(w1) it is subharmonic since ΔF(G) = 232̄ |G − Ḡ |−3−2 ≥ 232̄(3/4)−3−2 > 0;

(w2) %G3F is striclty positive on the half-space {G3 < 1/10}.

Step 1. Invariant transformation and flatness estimates.

By assumption, we have

1
10 
≤ D(Ḡ) ≤ 10 and

1
10 
≤ E(Ḡ) ≤ 10 ,

so there is a constant 2 ∈ [(100 )−1 , 100 ] such D̃ := 2D and Ẽ := 2−1E satisfy

D̃(Ḡ) = Ẽ(Ḡ),

and are also a solution to (6.1)-(6.2)-(6.3). Moreover, the flatness is preserved since{
̃(G3 + 0)+ ≤ D̃(G) ≤ ̃(G3 + 1)+ for all G ∈ �1 ,

�̃(G3 + 0)+ ≤ Ẽ(G) ≤ �̃(G3 + 1)+ for all G ∈ �1 ,
(6.19)

where
̃ := 2 and �̃ := 2−1�.

Now, let & := 1 − 0 < &0 and, without loss of generality, assume

̃ := 1 + � ≥ 1 ≥ 1
1 + � = �̃.
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Then, since D̃(Ḡ) = Ẽ(Ḡ), by (6.19) we have

̃

(
1
5
+ 0

)
≤ �̃

(
1
5
+ 1

)
,

from which it follows that

1 + � = ̃ ≤
[

1/5 + 1
1/5 + 0

]
�̃ ≤

1/5 + 1
1/5 + 0 = 1 + 1 − 0

1/5 + 0 ≤ 1 + 10&.

In particular, this implies that � ≤ 10& and

1 ≥ �̃ =
1

1 + � ≥ 1 − � ≥ 1 − 10&,

which, finally, yields the following estimate:

1 ≤
̃ + �̃

2
=

1
2

(
1 + � + 1

1 + �

)
≤ 1 + �2 ≤ 1 + 100&2.

This, together with (6.19), implies that for all G ∈ �1 we have{
(G3 + 0)+ ≤ (D̃(G)Ẽ(G))1/2 ≤ (G3 + 1)+
(G3 + 0)+ ≤ 1

2 (D̃(G) + Ẽ(G)) ≤ (1 + 100&2)(G3 + 1)+ ,
(6.20)

with
D̃(Ḡ) = Ẽ(Ḡ) = (D̃(Ḡ)Ẽ(Ḡ))1/2 = D̃(Ḡ) + Ẽ(Ḡ)

2
.

Now, using again (6.19) and choosing &0 such that � ≤ 10& ≤ 10&0 ≤ 1/2, we have

|D̃ − Ẽ | ≤ 2& in �1.

Moreover, since 0, 1 ≤ 1/10, we also have the estimate

1 ≥ D̃ ≥ 1
40

in �1/20(Ḡ),

and this implies that we can choose &0 small enough such that on �1/20(Ḡ) there holds

0 ≤ D̃ + Ẽ
2
− (D̃ Ẽ)1/2 = D̃

(
1 + 1

2
Ẽ − D̃
D̃

)
− D̃

√
1 + Ẽ − D̃

D̃
≤ �&2 , (6.21)

where � is a positive constant that depends on the dimension 3 only.

Step 2. Gaining space for the domainΩ.

We now argue as in [68] and [75] by considering separately the following two cases:

D̃(Ḡ) + Ẽ(Ḡ)
2

≥ &
2
+ (Ḡ3 + 0)+ and

D̃(Ḡ) + Ẽ(Ḡ)
2

≤ &
2
+ (Ḡ3 + 0)+.

In the first case, since |0 | < 1/10, we have �1/10(Ḡ) ⊂ {G3 + 0 > 0}, and so the function

ℎ(G) :=
D̃(G) + Ẽ(G)

2
− (Ḡ3 + 0)+
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is non-negative and solves a uniformly elliptic equation in �1/10(Ḡ) with right-hand side bounded from
above and below by &2. Therefore, since ℎ(Ḡ) ≥ &

2 , the classical Harnack inequality yields

ℎ ≥ �H& in �1/20(Ḡ),

where �H is a positive constant that depends on 3 only. Now, using (6.21) and choosing &0 small
enough (depending on the dimension), we get that

(D̃Ẽ)1/2 − (G3 + 0) ≥
1
2
�H& in �1/20(Ḡ).

Now consider the family of functions

#C(G) := G3 + 0 +
1
2
�H&(F(G) − 1) + 1

2
�H&C ,

defined for C ≥ 0 and G ∈ �1. So far we proved that

(D̃(G)Ẽ(G))1/2 >
(
#C(G)

)
+ for every G ∈ �1/20(Ḡ) and every C < 1.

We will show that the same inequality holds for every G ∈ �1. Notice that the family of functions #C
satisfies, as a consequence of (w-i) and (w-ii), the following properties:

(#1) Δ#C ≥ �& > 0 on �3/4(Ḡ) \ �1/20(Ḡ);

(#2) |∇#C |(G) > 1 on
(
�3/4(Ḡ) \ �1/20(Ḡ)

)
∩ {G3 < 1/10}.

We argue by contradiction. Suppose that for some C < 1 there exists H ∈ �1 such that #C touches (D̃Ẽ)1/2
from below at H. By Remark 6.10 and (#1), we have

H ∉ Ω ∩
(
�3/4(Ḡ) \ �1/20(Ḡ)

)
.

On the other hand, by (#2) and Lemma 6.1, we have

H ∉ %Ω ∩
(
�3/4(Ḡ) \ �1/20(Ḡ)

)
,

and this is a contradiction. Consequently, for every G ∈ �1 there holds

(D̃(G)Ẽ(G))1/2 >
(
G3 + 0 +

1
2
�H&F(G)

)
+
,

and, in particular, it follows that

Ω ⊃
{
G ∈ �1 : G3 + 0 +

1
2
�H&F(G) > 0

}
. (6.22)

For the second case, we first notice that it is equivalent to

&
2
≤ Ḡ3 + 1 −

D̃(Ḡ) + Ẽ(Ḡ)
2

.

Using this estimate, (6.20) and the Harnack inequality in �1/10(Ḡ), we get that

(1 + 100&2)(G3 + 1) −
D̃ + Ẽ

2
≥ �H& in �1/20(Ḡ).

Now consider the family of functions

�C(G) := (1 + 100&2)(G3 + 1) − �H&(F(G) − 1) − �H&C ,
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defined for C ≥ 0 and G ∈ �1. Then

D̃(G) + Ẽ(G)
2

>
(
�C(G)

)
+ for every G ∈ �1/20(Ḡ) and every C < 1.

Let us prove that the same inequality holds for every G ∈ �1. Notice that, for every C > 0, we have

(�1) Δ�C < −�& on �3/4(Ḡ) \ �1/20(Ḡ);

(�2) |∇�C |(G) < 1 on
(
�3/4(Ḡ) \ �1/20(Ḡ)

)
∩ {G3 < 1/10}.

We argue once again by contradiction. Suppose that for some C < 1 there exists I ∈ �1 such that �C
touches from above 1/2(D̃ + Ẽ) at I. By (�1), we have

I ∉ Ω ∩
(
�3/4(Ḡ) \ �1/20(Ḡ)

)
.

On the other hand, by (�2) and Lemma 6.1, we have

I ∉ %Ω ∩
(
�3/4(Ḡ) \ �1/20(Ḡ)

)
,

and this is a contradiction. As a consequence, we have

D̃(G) + Ẽ(G)
2

≤
(
(1 + 100&2)(G3 + 1) − �H&F(G)

)
+ for every G ∈ �1 ,

and, in particular,
Ω ⊂

{
G ∈ �1 : (1 + 100&2)(G3 + 1) − �H&F(G) > 0

}
.

Finally, choosing &0 small enough and using that F is bounded away from zero in �1/4, we get

Ω ⊂
{
G ∈ �1/4 : G3 + 1 −

1
2
�H&F(G) > 0

}
. (6.23)

Step 3. Conclusion of the proof

So far we proved that we have one of the two inclusions (6.22) and (6.23); more precisely, there is a
constant � > 0 such that either

Ω ⊃ {G3 + 0 + �& > 0} ∩ �1/4 or Ω ⊂ {G3 + 1 − �& > 0} ∩ �1/4. (6.24)

Then, by applying Lemma 6.2 to both D and E (replacing � respectively with  and �), we find a
universal constant � ∈ (0, 1) such that either{

D(G) ≤ (G3 + 1 − �(1 − 0))+
E(G) ≤ �(G3 + 1 − �(1 − 0))+

or

{
D(G) ≥ (G3 + 0 + �(1 − 0))+
E(G) ≥ �(G3 + 0 + �(1 − 0))+

for every G ∈ ��, with � < 1/8 that depends on the dimension 3 only.

Proposition 6.1 Let (D= , E=) be a sequence of solutions to (6.13) in the sense of Definition 6.5. Let

Ω= := {D= > 0} = {E= > 0}

with 0 ∈ %Ω= for every = ∈ ℕ. Suppose that there is a sequence &= → 0 such that

(G3 − &=)+ ≤ D=(G) ≤ (G3 + &=)+ and (G3 − &=)+ ≤ E=(G) ≤ (G3 + &=)+
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for every G ∈ �1. Then there are continuous functions

D̃∞ : �+1 → ℝ and Ẽ∞ : �+1 → ℝ,

with �+1 = �1 ∩ {G3 > 0}, such that the following properties hold:

(i) The graphs overΩ= of
D̃= =

D= − G3
&=

and Ẽ= =
E= − G3
&=

,

converge in the Hausdorff distance respectively to the graphs of D∞ and E∞ over �+1 .

(ii) The graph overΩ= of

F̃= =

√
D=E= − G3

&=
,

converge in the Hausdorff distance to the graph of 1
2 (D∞ + E∞) over �+1 .

Proof. The proof of (i) follows from Theorem 6.4 exactly as in [68], while to prove (ii) we first notice
that, for any � > 0 fixed, the sequences D̃= and Ẽ= converge uniformly on �1∩{G3 > �} to the functions
D̃∞ and Ẽ∞. In particular, this implies that

√
D=E= − G3

&=
=

√
(G3 + &= D̃=)(G3 + &= Ẽ=) − G3

&=
=

1
2
(D̃= + Ẽ=) + >(&=),

which proves the claim on every �1 ∩ {G3 > �}. Now, in order to have the convergence of the graphs
over the whole �+1 , we notice that by (6.20) the oscillation of

√
D=E= − G3 decays when passing from

�1 to a smaller ball ��. Using again the argument from [68], we get that the graphs of

F̃= =

√
D=E= − G3

&=
,

Hausdorff-converge to the graph of a Hölder-continuous function

F̃∞ : �̄+1 → ℝ.

Now, since F̃∞ = 1
2 (D̃∞ + Ẽ∞) on each set �1 ∩ {G3 > �}, we get that F̃∞ = 1

2 (D̃∞ + Ẽ∞) on �̄+1 , and
this concludes the proof.

6.4 Improvement of flatness

This section’s goal is to prove ourmain result, the improvement of flatness, fromwhich the �1,-regularity
of the free boundary will follow by standard arguments. Notice that, in view of the invariance of (6.13)
under suitable multiplication (see Step 1 of Theorem 6.4), we can express the flatness conditions of
Definition 6.2 without loss of generality with

 = � = 1.

The main result of this section is the following:

Theorem 6.5 Let (D, E) be solutions to (6.13) in the sense of Definition 6.5, set

Ω := {D > 0} = {E > 0},

and suppose that 0 ∈ %Ω. Then there are constants &0 > 0 and � > 0 such that the following holds:
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Improvement of flatness. If (D, E) is a couple of solutions satisfying

(G3 − &)+ ≤ D(G) ≤ (G3 + &)+ and (G3 − &)+ ≤ E(G) ≤ (G3 + &)+ in �1 ,

for some & < &0, then there are a unit vector � ∈ ℝ3 with |� − 43 | ≤ �& and a radius � ∈ (0, 1)
such that

̃
(
G · � − &

2

)
+
≤ D�(G) ≤ ̃

(
G · � + &

2

)
+

and �̃
(
G · � − &

2

)
+
≤ E�(G) ≤ �̃

(
G · � + &

2

)
+

for all G ∈ ��, where ̃ and �̃ are positive constants that satisfy

̃�̃ = 1 and |1 − ̃ |, |1 − �̃ | ≤ �&.

We postpone the construction of the limiting problem arising from the linearization to Lemma 6.3 and
Lemma 6.4, and we directly prove the improvement-of-flatness result.

Proof. We argue by contradiction. Let (D= , E=) be a sequence of solutions such that

(G3 − &=)+ ≤ D=(G) ≤ (G3 + &=)+ and (G3 − &=)+ ≤ E=(G) ≤ (G3 + &=)+ ,

where &= is an infinitesimal sequence. LetΩ := {D= > 0} = {E= > 0} and consider

D̃= =
D= − G3

&=
and Ẽ= =

E= − G3
&=

(6.25)

on Ω̄= . By the compactness result of Proposition 6.1,we get that (D̃= , Ẽ=) converges, up to a subsequences,
to a couple of continuous functions

D̃∞ : �1 ∩ {G3 ≥ 0} → ℝ and Ẽ∞ : �1 ∩ {G3 ≥ 0} → ℝ. (6.26)

By Lemma 6.3, the functions

" :=
1
2
(D̃∞ + Ẽ∞) and � :=

1
2
(D̃∞ − Ẽ∞)

are classic solutions of the following PDEs:{
Δ" = 0 in �1 ∩ {G3 > 0},
%G3" = 0 on �1 ∩ {G3 = 0}.

and

{
Δ� = 0 in �1 ∩ {G3 > 0},
� = 0 on �1 ∩ {G3 = 0}.

Therefore, by the regularity result Lemma 6.4, we get

|D̃∞(G) − G · ∇D̃∞(0)| ≤ �3�2 and |Ẽ∞(G) − G · ∇Ẽ∞(0)| ≤ �3�2

for every G ∈ �� ∩ {G3 ≥ 0}, which can be rewritten as follows:
G · ∇D̃∞(0) − �3�2 ≤ D̃∞(G) ≤ G · ∇D̃∞(0) + �3�2

G · ∇Ẽ∞(0) − �3�2 ≤ Ẽ∞(G) ≤ G · ∇Ẽ∞(0) + �3�2
for every G ∈ �� ∩ {G3 ≥ 0}.

This implies that, if = is large enough, then
G · ∇D̃∞(0) − 2�3�2 ≤ D̃=(G) ≤ G · ∇D̃∞(0) + 2�3�2

G · ∇Ẽ∞(0) − 2�3�2 ≤ Ẽ=(G) ≤ G · ∇Ẽ∞(0) + 2�3�2
for every G ∈ �� ∩ Ω̄= ,
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which, by the definition of D̃= and Ẽ= , can also be written as

G · (43 + &=∇D̃∞(0)) − &=2�3� ≤ (D=)�(G) ≤ G · (43 + &=∇D̃∞(0)) + &=2�3�
G · (43 + &=∇Ẽ∞(0)) − &=2�3� ≤ (E=)�(G) ≤ G · (43 + &=∇Ẽ∞(0)) + &=2�3�

for every G ∈ �1 ∩
(

1
�Ω

)
. To simplify the notations, we introduce the quantities

+ := ∇"(0) and 2 :=
%�

%G3
(0),

so the inequalities above can be rewritten as follows:

G · (43 + &=+ + 2&=43) − &=2�3� ≤ (D=)�(G) ≤ G · (43 + &=+ + 2&=43) + &=2�3�,
G · (43 + &=+ − 2&=43) − &=2�3� ≤ (E=)�(G) ≤ G · (43 + &=+ − 2&=43) + &=2�3�.

Now, since by Lemma 6.3 + and 43 are orthogonal, a simple computation shows that

|43(1 ± 2&=) + &=+ | =
√

1 ± 22&= + &2
=(22 + |+ |2) = 1 ± 2&= + $(&2

=),

so, fixing � > 0 small enough and taking &= sufficiently small with respect to �, we get

G · 43 + &=+|43 + &=+ |
− 1

2
&= ≤

1
1 + 2&=

(D=)�(G) ≤ G ·
43 + &=+
|43 + &=+ |

+ 1
2
&=

G · 43 + &=+|43 + &=+ |
− 1

2
&= ≤ (1 + 2&=)(E=)�(G) ≤ G ·

43 + &=+
|43 + &=+ |

+ 1
2
&=

for every G ∈ �1 ∩
(

1
�Ω

)
. Finally, the contradiction follows by taking

� =
43 + &=+
|43 + &=+ |

, ̃ = 1 + 2&= and �̃ = ̃−1.

Using the same notations of the proof of Theorem 6.5, we introduce the limiting problem arising from
the linearization near flat free boundary points.

Lemma 6.3 (The linearized problem) Let D̃∞ and Ẽ∞ be as in (6.26) and set

" :=
1
2
(D̃∞ + Ẽ∞) and � :=

1
2
(D̃∞ − Ẽ∞) .

Then," and � are classical solutions of{
Δ" = 0 in �1 ∩ {G3 > 0},
%G3" = 0 on �1 ∩ {G3 = 0}.

and

{
Δ� = 0 in �1 ∩ {G3 > 0},
� = 0 on �1 ∩ {G3 = 0}.

(6.27)

Proof. We divide the proof into several steps.

Step 1. Equations in {G3 > 0}.

First we notice that the equation

Δ" = Δ� = 0 in �1 ∩ {G3 > 0}
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follows from the fact that on every compact subset of �1 ∩ {G3 > 0}, the functions D̃= and Ẽ= given by
(6.25) are harmonic and converge uniformly to D̃∞ and Ẽ∞ respectively.

Step 2. Boundary condition for �.

To prove the boundary condition

� = 0 on �1 ∩ {G3 = 0},

we notice that the graphs of D̃= and Ẽ= over %Ω= are both given by the graph of −(1/&=)G3. Thus, by
the Hausdorff convergence of the graphs, we get that

D∞ = E∞ on �1 ∩ {G3 = 0}.

The other boundary condition we need to prove is that

%"

%G3
= 0 on �1 ∩ {G3 = 0}

is satisfied in the viscosity sense. Nonetheless, notice that the fact that" is a classical solution of the
linearized problem follows by [68, Lemma 2.6]).

Step 3. The boundary condition for" from below.

Suppose that a quadratic polynomial % touches" strictly from below at a point G0 ∈ {G3 = 0}. We
want to show that %3%(G0) ≤ 0 so, arguing by contradiction, let us assume that

%%

%G3
(G0) > 0, (6.28)

and notice that we can also assume that Δ% > 0 in a neighborhood of G0. Let

F̃= :=
√
D=E= − G3

&=
: Ω= → ℝ.

By Proposition 6.1, we have that the sequence of graphs of F̃= over Ω= converges in the Hausdorff
sense to the graph of" over �1 ∩ {G3 ≥ 0}. In particular, this means that the graph of % touches from
below the graph of F̃= at some point G= ∈ Ω= and, since F̃= is superharmonic inΩ= (see Remark 6.10),
we have that G= ∈ %Ω. As a consequence, we get

%(G) ≤
√
D=(G)E=(G) − G3

&=
for every G ∈ Ω= ,

with an equality when G = G= , which can be rewritten as

&=%(G) + G3 ≤
√
D=(G)E=(G) for every G ∈ Ω= .

Setting
!(G) := &=%(G) + G3 ,

we can easily verify that !+ touches
√
D=E= from below at G= , and thus by Lemma 6.1 we find that

1 + & %%
%G3
(G=) = %G3!(G=) ≤ |∇!(G=)| ≤ 1,

which is a contradiction with (6.28).
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Step 4. The boundary condition for" from above.

Suppose that a quadratic polynomial % touches " strictly from above at a point H0 ∈ {G3 = 0}. We
want to prove that %3%(H0) ≥ 0 so, arguing by contradiction, we assume that

%%

%G3
(H0) < 0,

and we notice that we can also require Δ% < 0 in a neighborhood of H0. By the Hausdorff convergence
of the graphs, the graph of % touches from above the graph of

1
2
(D̃= + Ẽ=)

at a point H= ∈ Ω= . Since D̃= and Ẽ= are harmonic inΩ= , we have H= ∈ %Ω= . Consequently,

%(G) ≥ 1
2

(
D=(G) − G3

&=
+ E=(G) − G3

&=

)
for everyG ∈ Ω= ,

with an equality when G = H= , which can be rewritten as

G3 + &=%(G) ≥
D=(G) + E=(G)

2
for every G ∈ Ω= .

Let
#(G) := G3 + &=%(G),

and notice that #+ touches 1
2 (D=(G) + E=(G)) from above at H= . Thus, by Lemma 6.1, we get

1 ≤ |∇#(H=)|2 = 1 + 2&=
%%

%G3
(H=) + &2

= |∇%(H=)|2 ,

which can be rewritten as
%%

%G3
(H=) +

&=
2
|∇%(H=)|2 ≥ 0.

Passing to the limit as = →∞, we deduce that %G3%(H0) ≥ 0, and this is a contradiction.

Remark 6.11 For the vectorial Bernoulli problem, in [75, 115] the authors proved that the linearized
problem arising by the improvement of the flatness technique is a system of decoupled equations in
which the first component satisfies a Neumann problem, while the others have Dirichlet boundary
conditions. On the contrary, in our case, the nonlinear formulation of the free boundary condition (6.3)
requires considering suitable linear combinations of the solutions D, E to detect the problem solved by
the limits D∞ , E∞.

For the sake of completeness, we sketch the proof of the decay for the solutions of the linearized
problem (6.27), which we used in the proof of Theorem 6.5.

Lemma 6.4 (First and second order estimates) Let D̃∞ and Ẽ∞ be as in Lemma 6.3. Then D̃∞ and Ẽ∞ are
�∞ in �1 ∩ {G3 ≥ 0} and we have the estimates

‖∇D̃∞‖!∞(�1/2∩{G3≥0}) + ‖∇Ẽ∞‖!∞(�1/2∩{G3≥0}) ≤ �3 ,

and {
|D̃∞(G) − G · ∇D̃∞(0)| ≤ �3 |G |2

|Ẽ∞(G) − G · ∇Ẽ∞(0)| ≤ �3 |G |2
for every G ∈ �1/2 ∩ {G3 ≥ 0} . (6.29)

Moreover, we have

∇D̃∞(0) = ∇Ẽ∞(0) + 43
%(D̃∞ − Ẽ∞)

%G3
(0). (6.30)
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Proof. Let " and � be as in Lemma 6.3. Then both can be extended to (respectively, an even and
an odd) harmonic functions in the ball �1 and we can use the classical gradient and second-order
estimates (see, e.g., [145, Lemma 7.17]) for a harmonic function ℎ : �' → ℝ, that is,

‖∇ℎ‖!∞(�'/2) ≤
�3
'
‖ℎ‖!∞(�') ,

and
|ℎ(G) − ℎ(0) − G · ∇ℎ(0)| ≤ �3

'2 |G |
2‖ℎ‖!∞(�') for every G ∈ �'/2 ,

where �3 is a dimensional constant. Now, since D̃∞(0) = Ẽ∞(0) = 0 and

|D̃∞ | ≤ 1 and |Ẽ∞ | ≤ 1 in �1 ∩ {G3 ≥ 0},

and since" = D̃∞ + Ẽ∞ and � = D̃∞ − Ẽ∞, we get that{
|�(G) − G · ∇�(0)| ≤ �3 |G |2

|"(G) − G · ∇"(0)| ≤ �3 |G |2
for every G ∈ �1/2 ∩ {G3 ≥ 0},

which gives (6.29). Finally, (6.30) follows from the fact that � ≡ 0 on {G3 = 0}.



Regularity of the minima of integral shape

functionals: the non-degenerate case 7

In this chapter, we give a brief overview of [37], which aims to prove some regularity properties of the
problem studied in Chapter 4 when ? = 2 (see Theorem 4.2 for a precise statement). Since the work
is still ongoing, we will not go over all the proofs but, instead, focus on explaining how the results
obtained in Chapter 5 and Chapter 6 play a crucial role here.

7.1 Formulation of the problem

For any set of finite measureΩ ⊂ ℝ3 , which will be the control variable, we consider the solution DΩ,
which will be the corresponding state variable, of the PDE{

−ΔDΩ = 5 inΩ ,

DΩ = 0 on %Ω ,
(7.1)

where 5 is a prescribed right-hand side. We define the cost functional � as

�(D, �1) :=
∫
�1

−6(G)D 3G + |�1 ∩ {D > 0}|,

where the function 6 : �1 → ℝ is given. In this chapter, we consider the shape optimization problem

min {�(DΩ , �1) : Ω ∈ A} , (7.2)

where the admissible class of sets A is defined by

A :=
{
Ω ⊂ �1 : Ω quasi-open, |Ω| ≤ 1

}
.

Our main result is Theorem 4.2, which we now restate slightly differently to make the remaining of
this chapter easier to follow.

Theorem 7.1 Let 3 ≥ 2 andΩ ⊂ ℝ3 be a solution to (7.2). Suppose that the following conditions hold:

(a) 5 , 6 ∈ �2
2 (�1);

(b) 5 ≥ 0 in �1, and DΩ > 0 inΩ;
(c) there are constants �1 , �2 > 0 such that

�16 ≤ 5 ≤ �26 in �1. (7.3)

Then there is a closed set ( ⊆ %Ω ∩ �1 such that:

(i) %Ω ∩ �1 \ ( ∈ �1, for some  ∈ (0, 1];
(ii) ( is empty if 3 ≤ 4 and dimH(() ≤ 3 − 5, if 3 ≥ 5.

Remark 7.1 In the case 5 = 6, a setΩ which is optimal in �1, takes the formΩ = {DΩ > 0}, where DΩ
solves the following minimization problem:

min
{

1
2

∫
�1

|∇D |2 3G −
∫
Ω

5 (G)D 3G + |�1 ∩ {D > 0}| : D ∈ �1
0 (�1)

}
. (7.4)

Thus, the above result follows from the classical regularity theory for the one-phase Alt-Caffarelli
problem; see, for example, the papers [4], [147], [68], [49, 50], [104], [72] and [95].
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When 5 ≠ 6, the problem cannot be reduced to a variational problem for an integral functional with
variables D and E. In this case, D and E are formally the solutions of the free boundary system

−ΔD = 5 inΩ ∩ �1 ,

−ΔE = 6 inΩ ∩ �1 ,

D = E = 0 and |∇D | |∇E | = 1 on �1 ∩ %Ω.

For viscosity solutions, the regularity of the flat free boundaries was proved in [130], while the fact
that the state functions on the optimal sets are viscosity solutions follows from the boundary Harnack
inequality [131]. The main novelty of our work is the analysis of the dimension of the singular set,
which we achieve by developing a new theory for stable solutions to the Alt-Caffarelli problem.

Remark 7.2 A setΩ, which is optimal in �1, is a stable critical point of the shape functional

Ω ↦−→ �(DΩ),

with respect to inner variations, in the sense that

3

3C

����
C=0

� (DΩC , �1) = 0 and
32

3C2

����
C=0

� (DΩC , �1) ≥ 0

for every vector field � ∈ �∞2 (�1;ℝ3), whereΩC := (Id+C�)(Ω).

We prove in Section 7.4 that this notion is stable under blow-up limits and that Federer’s dimension
reduction principle holds for this class of solutions. Next, we show that the blow-up limits of our
solutions are global one-homogeneous (Subsection 7.4.2) minimizers of the one-phase Alt-Caffarelli
problem and that our notion of stability implies the stability inequality of Caffarelli-Jerison-Kenig on
the limit cones (Subsection 7.6.2). Thus, the bound on the critical dimension (which is the dimension
where singular cones appear for the first time) follows by the results of Jerison-Savin [104] and De
Silva-Jerison [72] for the classical one-phase problem.

7.2 On the minimality condition

In this section, we discuss the existence of minimizers for the problem (7.2). More precisely, in
Subsection 7.2.1, we provide two alternative optimality conditions satisfied by the shape optimizer
Ω and the corresponding state variable DΩ. These conditions will be essential in studying the local
properties ofΩ in Section 7.3. Moreover, in Subsection 7.2.2, we compute some variations along inner
perturbations to deduce the optimizer’s stationary and stability conditions.

Let us recall few notations associated to the state equation (7.1). The state variable DΩ can be obtained
by minimizing the functional

� 5 (D, �1) :=
1
2

∫
�1

|∇D |2 3G −
∫
�1

5 (G)D 3G

among all functions D ∈ �1
0 (Ω) such that −ΔDΩ ≤ 5 in ℝ3 in the sense of distributions; thus, we have

� 5 (DΩ , �1) = −
1
2

∫
�1

5 DΩ 3G and ‖DΩ‖!∞(Ω) ≤
|Ω|2/3

23 |Ω|2/3
‖ 5 ‖!∞ . (7.5)

Proposition 7.1 Suppose that 5 , 6 ∈ !2(�1) satisfy the following assumptions:

(a) 5 , 6 ≥ 0 in �1;
(b) there is a constant �2 > 0 such that 5 (G) ≤ �26(G) for every G ∈ �1.
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Then the minimization problem (7.2) admits a solutionΩ ∈ Awhich is given by

Ω = {DΩ > 0}.

Moreover, the setΩ is open.

Proof. The existence of solutions in the admissible class follows immediately from assumption (a), as
already pointed out in [45]. Indeed, by the maximum principle, the map

A 3 Ω ↦−→ DΩ ∈ �1
0 (Ω)

is monotonically increasing, and the cost functional � is decreasing with respect toΩ, so applying [32,
Theorem 2.5] gives the existence of a quasi-open solutionΩ.

To prove thatΩ is open, we combine (b) with Theorem 4.1 (more precisely, Remark 4.5). Indeed, since
5 is non-negative, by the maximum principle we have that

Ω = {DΩ > 0},

and so the continuity of DΩ implies the claimed result.

Now, to exploit the results obtained in Chapter 5 and Chapter 6, as suggested in [45] we introduce the
state function associated to the cost term 6. More precisely, if we denote by EΩ the solution to{

−ΔEΩ = 6 inΩ,
EΩ = 0 on %Ω,

integrating by parts the functional � yields

�(DΩ , �1) =
∫
�1

(
∇DΩ∇EΩ − 6(G)DΩ − 5 (G)EΩ

)
3G + |�1 ∩ {DΩ > 0}|

= −
∫
�1

5 (G)EΩ 3G + |�1 ∩ {EΩ > 0}|

for everyΩ ∈ A, from which it follows that the minimization problems below are equivalent:

min
Ω∈A

{∫
�1

(
−6(G)DΩ + 1{DΩ>0}(G)

)
3G

}
= min
Ω∈A

{∫
�1

(
− 5 (G)EΩ + 1{EΩ>0}(G)

)
3G

}
. (7.6)

Moreover, it is easy to verify that, if the assumption (7.3) holds in �1, then

�1EΩ ≤ DΩ ≤ �2EΩ in �1.

7.2.1 Almost-minimality conditions

To prove that DΩ and EΩ are Lipschitz-continuous when Ω is optimal, we need to introduce the
following two almost-minimality conditions formulated in terms of the state variables:

Proposition 7.2 LetΩ be an optimal set in �1 and let DΩ be the corresponding state variable satisfying (7.1). If
the inequality (7.3) holds, then DΩ satisfies the following properties:

(a) Outward optimality. For every $ ∈ A such thatΩ ⊆ $, we have

� 5 (DΩ , �1) +
�2
2
|�1 ∩Ω| ≤ � 5 (), �1) +

�2
2
|�1 ∩ $ | for every ) ∈ �1

0 ($).
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Moreover, for every G0 ∈ �1, A > 0 such thatΩ ∪ �A(G0) ⊂ �1, we have

� 5 (DΩ , �A(G0)) ≤ � 5 (), �A(G0)) +
�2
2
$3A

3 , (7.7)

for every ) ∈ �1(�A(G0)) such that ) − DΩ ∈ �1
0 (�A(G0)).

(b) Inward optimality. For every $ ∈ A such that $ ⊆ Ω, we have

� 5 (DΩ , �1) +
�1
2
|�1 ∩Ω| ≤ � 5 (), �1) +

�1
2
|�1 ∩ $ | for every ) ∈ �1

0 ($).

Since both optimality conditions are satisfied, we say that DΩ is an almost-minimizer of � 5 in �1.

Proof. Let $ ∈ Aand let D$ be the associated state variable. If we assume thatΩ ⊆ $, then

5 ≥ 0 =⇒ DΩ ≤ D$ in �1

follows from themaximumprinciple. Moreover, the optimality condition �(DΩ , �1) ≤ �(D$ , �1) implies∫
�1

6(D$ − DΩ) 3G ≤ |�1 ∩ $ | − |�1 ∩Ω|,

so, using the right-hand side of (7.3), we get

� 5 (DΩ , �1) +
�2
2
|�1 ∩Ω| ≤ � 5 (D$ , �1) +

�2
2
|�1 ∩ $ |.

The outward optimality follows immediately by noticing that

� 5 (D$ , �1) +
�2
2
|�1 ∩ {D$ > 0}| ≤ � 5 (), �1) +

�2
2
|�1 ∩ $ |,

as a consequence of the fact that D$ minimizes � 5 in �1
0 ($). In particular, if we take G0 ∈ �1 and A > 0

such that $ := Ω ∪ �A(G0) ⊂ �1, then the localized version (7.7) follows by choosing ) = DΩ + ! in
the inequality above, where ! ∈ �1

0 (�A(G0)).
Finally, the inward optimality condition follows in a similar way using the left-hand side of (7.3).

7.2.2 Stationary and stability condition under inner variations

In order to characterize the blow-up limit of the state variables, it is more convenient to formulate the
cost functional � of (7.2) using both state functions as follows:

�(DΩ , �1) =
∫
�1

(
∇DΩ∇EΩ − 6DΩ − 5 EΩ

)
3G + |�1 ∩Ω|.

Moreover, for every � ⊆ ℝ3 we introduce the Alt-Caffarelli functional (see [4]):

�$(D, 3) =
∫
�

|∇D |2 3G + |� ∩ {D > 0}|, (7.8)

defined for every D ∈ �1(�) which is non-negative in �. This functional will arise in the blow-up
analysis and will play a crucial role in studying the singular party of the free boundary.

The first step of this section is to compute the stationary condition associated to � with respect to
internal perturbations obtained with compactly supported smooth vector fields.
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Lemma 7.1 LetΩ ⊂ �1 be open and let 5 ∈ �2
2 (�1) such that 5 ≥ 0 in �1. Let � ∈ �∞2 (�1;ℝ3) be a compactly

supported vector field and denote by ΦC the corresponding diffeomorphism

ΦC(G) = G + C�(G) in �1.

Then, if we setΩC := ΦC(Ω), the map C ↦→ DC := DΩC ◦ΦC is �2-differentiable and satisfies

DC = DΩ + C �D + C2 �2D + >(C2) as C → 0+ , (7.9)

where �D and �2D are, respectively, the solutions to{
−Δ(�D) = div (��∇DΩ) + � 5
�D ∈ �1

0 (Ω)
(7.10)

and {
−Δ(�2D) = div

(
��∇(�D)) + div((�2�)∇D

)
+ �2 5

�2D ∈ �1
0 (Ω)

(7.11)

with coefficients given by

�� = −�� − (��)) + div � Id

�2� = (��))�� −
(
(��))

)2 − (��)2 − div �
(
�� + (��))

)
+ (div �)2 − Tr((��)2)

2
Id,

� 5 = div( 5 �),

�2 5 =
1
2
� · (�2 5 )� + 5 (div �)2 − Tr((��)2)

2
+ div �(∇ 5 · �).

(7.12)

Proof. First, notice that DC ∈ �1
0 (Ω) is the unique solution of the PDE

−div (�C∇DC) = 5C inΩ, (7.13)

where �C and 5C are defined as follows:

5C := 5 (ΦC)|det(�ΦC)| and �C := (�ΦC)−1(�ΦC)−) |det(�ΦC)|.

To prove the �2-diffentiability of the problem with respect to C > 0, we follow the strategy proposed
in [100, Proposition 5.3.7]. Indeed, since 5 ∈ �2

2 (�1) and � ∈ �∞2 (�1;ℝ3), we have

C ∈ ℝ ↦−→ 5C ∈ !2(�1) ⊂ !2(ℝ3) ⊂ �−1(Ω) is �2

C ∈ ℝ ↦−→ �C ∈ !∞(ℝ3;ℝ3×3) is �∞ ,

while the map
!∞(ℝ3;ℝ3×3) × �1

0 (Ω) 3 (�, F) ↦−→ −div(�∇F) ∈ �−1(Ω)

is smooth since it is bilinear and continuous. Now, consider the operator

� : ℝ × �1
0 (Ω) 3 (B, F) ↦−→ −div (�B∇F) − 5B ∈ �−1(Ω)

and notice that �(C , DC) = 0 for every C > 0. Since

�F�(0, D0)[!] = −Δ! for every ! ∈ �1
0 (Ω)

is an isomorphism from �1
0 (Ω) into �−1(Ω), by the implicit function theorem there exists a map
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C ↦→ F(C) of class �2 such that F(0) = D0 and

�(C , F(C)) = 0 in a neighborhood of C = 0.

However, the solution to (7.13) is unique, so DC = F(C) is �2-differentiable as claimed. Thus, there are
functions �D, �2D ∈ �1

0 (Ω) such that

DC = DΩ + C �D + C2 �2D + >(C2) as C → 0,

which proves (7.9). On the other hand, by differentiating the terms in (7.13), we get

�C = Id+C�� + C2�2� + O(C3), and 5C = 5 + C� 5 + C2�2 5 + >(C2), (7.14)

where ��, � 5 , �2� and �2 5 are given by (7.12). Therefore, by substituting the previous expansions
into (7.13) and differentiating with respect to C, we obtain

− Δ(�D) = div(��∇DΩ) + � 5
− Δ(�2D) = div(��∇(�D)) + div(�2�∇D) + �2 5

weakly in �1
0 (Ω), which completes the proof of (7.10) and (7.11).

In general, it is not possible to ensure �2-differentiability of the map C ↦→ DΩC without assuming
higher regularity of the domainΩ (see in [100, Section 5.3.5]). Nonetheless, we can slightly improve
the previous result by proving �1-differentiability of C ↦→ DΩC .

Corollary 7.1 LetΩ ⊂ �1 be open and 5 ∈ �2
2 (�1) such that 5 ≥ 0 in �1. Let � ∈ �∞2 (�1;ℝ3) be a compactly

supported smooth vector field and denote by ΦC the corresponding diffeomorphism

ΦC(G) = G + C�(G) for every G ∈ �1.

Then, denotingΩC = ΦC(Ω), the map C ↦→ DΩC is �1-differentiable and satisfies

DΩC = DΩ + CD′ + >(C) as C → 0,

where D′ ∈ �1(Ω) is a solution to

D′ + ∇D · � ∈ �1
0 (Ω) and − ΔD′ = 0 inΩ.

Proof. The same argument used to prove works [100, Theorem 5.3.2]. First, arguing as in Lemma 7.1,
we deduce that C ↦→ DC := DΩC ◦ΦC is �1-differentiable; moreover, we have

DΩC = DC ◦ΨC ∈ �1
0 (Ω),

whereΨC := (ΦC)−1 is also a diffeomorphism. Thus, by applying [100, Lemma 5.3.3] (with ? = 2 and
6(C) = DC), we get that C ↦→ DΩC is �1-differentiable and, by [100, eq. 5.36], we get

D′ + ∇D · � = �D in �1
0 (Ω).

Finally, since we have
Δ(∇D · �) = −div(��∇DΩ) − � 5 inΩ,

it follows that D′ is harmonic inΩ, concluding the proof.

We are now ready to compute the first variation of the function � along inner smooth perturbations
with compact support.
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Lemma 7.2 LetΩ ⊂ �1, � ∈ �∞2 (�1;ℝ3), ΦC andΩC be as above. Then

%

%C

����
C=0
�(DΩC , �1) =

∫
Ω

[
div � (∇DΩ · ∇EΩ + 1) − ∇DΩ ·

(
(��)) + (��)

)
∇EΩ

]
3G

· · · −
∫
Ω

[
DΩ div(6�) + EΩ div( 5 �)

]
3G.

(7.15)

Moreover, if spt � ∩ %Ω is �2-regular in �1, then

%�(Ω, �1)[�] :=
%

%C

����
C=0
�(DΩ , �1) =

∫
%Ω
(� · �) (1 − |∇DΩ | |∇EΩ |) 3�,

where � is the outer normal to %Ω.

Proof. By applying Lemma 7.1 to both C ↦→ DC and C ↦→ EC , we get

DC = DΩ + C�D + >(C) and EC = EΩ + C�E + >(C)

as C → 0, where �D, �E ∈ �1
0 (Ω) satisfy, respectively,

−Δ(�D) = div(��∇DΩ) + � 5 and − Δ(�E) = div(��∇EΩ) + �6. (7.16)

Therefore, if we combine (7.12), (7.14) and (7.16), and plug them into �, we get

�(DΩC , �1) =
∫
�1

[
∇DΩC · ∇EΩC − 6DΩC − 5 EΩC

]
3G + |�1 ∩ΩC |

=

∫
�1

[
∇DC · �C∇EC − 6CDC − 5CEC + 1Ω(I)|det(�ΦC)|

]
3I

= �(DΩ , �1) + C
∫
�1

[
∇�D · ∇EΩ + ∇DΩ · ∇�E − 6�D − 5 �E

]
3G

· · · + C
∫
�1

[
∇DΩ · ��∇EΩ − DΩ�6 − EΩ� 5 + 1Ω div �

]
3G + >(C)

= �(DΩ , �1) + C
∫
Ω

[
∇DΩ · ��∇EΩ − DΩ�6 − EΩ� 5 + div �

]
3G + >(C),

where the first equality follows from the change of variables G = ΦC(I), while the last follows from
an integration by parts. Thus, by differentiating in C at C = 0 and substituting (7.12), we obtain (7.15),
concluding the first part of the proof.

Now assume %Ω ∩ spt � ∈ �2. Since for D, E ∈ �1(Ω)we have

div � (∇DΩ · ∇EΩ) − ∇DΩ · ((��)) + (��))∇EΩ = div (�(∇DΩ · ∇EΩ) − (∇DΩ · �)∇EΩ − (∇EΩ · �)∇DΩ)
· · · + (∇EΩ · �)ΔDΩ + (∇D · �)ΔEΩ ,

if we integrate by parts, we get

%�(Ω, �1)[�] =
∫
Ω

div (�((∇DΩ · ∇EΩ) + 1) − (∇DΩ · �)∇EΩ − (∇EΩ · �)∇DΩ) 3G

· · · −
∫
Ω

[
(∇DΩ · �)6 + DΩ div(6�) + (∇EΩ · �) 5 + EΩ div( 5 �)

]
3G

=

∫
%Ω
[(� · �)((∇D · ∇E) + 1) − (∇D · �)(� · ∇E) − (∇E · �)(� · ∇D)] 3�

· · · −
∫
Ω

[
div(6DΩ�) + div( 5 EΩ�)

]
3G.
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Since DΩ and EΩ are positive onΩ and zero on %Ω, we have

∇DΩ = −� |∇DΩ | and ∇EΩ = −� |∇EΩ |,

from which it follows that

%�(Ω, �1)[�] =
∫
%Ω
[(� · �)(|∇DΩ | |∇EΩ | + 1) − |∇DΩ |(� · �)|∇EΩ | − |∇EΩ |(� · �)|∇DΩ |] 3�

=

∫
%Ω
(� · �)(1 − |∇DΩ | |∇EΩ |) 3�,

and this concludes the proof.

The following result is an immediate consequence of the previous lemma; indeed, if we take asΩ a
minimizer of (7.2), then

Ω optimal for � =⇒ %�(Ω, �1)[�] = 0 for every � ∈ �∞2 (�1;ℝ3).

Corollary 7.2 LetΩ be a solution to (7.2) and DΩ , EΩ the associated state variables. Then∫
Ω

[
div � (∇DΩ · ∇EΩ + 1) − ∇DΩ · ((��)) + (��))∇EΩ − DΩ div(6�) − EΩ div( 5 �)

]
3G = 0

for every � ∈ �∞2 (�1;ℝ3). Moreover, if %Ω ∩ �1 is �2-regular, we get that

|∇DΩ | |∇EΩ | = 1 on %Ω ∩ �1.

Finally, in the following result, we compute the second variation of the functional � along inner
perturbations with compact support.

Lemma 7.3 LetΩ ⊂ �1, � ∈ �∞2 (�1;ℝ3), ΦC andΩC be as above. Then

%2�(Ω, �1)[�] :=
%2

%C2

����
C=0
�(DΩC , �1) =

∫
Ω

∇D · (�2�)∇E − ∇�D · ∇�E − (�2 5 )E − (�26)D 3G

· · · +
∫
Ω

1
2

( (
div �

)2 − Tr
(
(��)2

) )
3G,

(7.17)

where �2�, �2 5 and �26 are given by (7.12) and �D, �E ∈ �1
0 (Ω) are defined in Lemma 7.1. Moreover, if

spt � ∩ %Ω is �2-regular in �1, then

%2�(Ω, �1)[�] =
∫
%Ω
(� · �) (1 − |∇DΩ | |∇EΩ |) 3�,

where � is the outer normal to %Ω.

Proof. By applying Lemma 7.1 to both

C ↦−→ DC := DΩC · ΦC and C ↦−→ EC := EΩC · ΦC ,

we deduce the �2-rectifiability and the expansions

DC = DΩ + C �D + C2 �2D + >(C2) and EC = EΩ + C �E + C2 �2E + >(C2)
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as C → 0, where �D, �E satisfy (7.16) and �2D, �2E ∈ �1
0 (Ω) such that

−Δ(�2D) = div (��∇(�D)) + div
(
�2�∇D

)
+ �2 5 ,

−Δ(�2E) = div (��∇(�E)) + div
(
�2�∇E

)
+ �26.

Therefore, arguing exactly as in Lemma 7.2, we get

�(DΩC , �1) = �(DΩ , �1) + C %�(Ω, �1)[�] + C2 %2�(Ω, �1)[�] + >(C2),

where %�(Ω, �1)[�] is defined by (7.15), and

%2�(Ω, �1)[�] =
∫
Ω

[
∇(�2D) · ∇E + ∇D · (�2�)∇E + ∇D · ∇(�2E)

]
3G

· · · +
∫
Ω

[∇(�D) · ∇(�E) + ∇(�D) · (��)∇E + ∇D · (��)∇�E] 3G

· · · −
∫
Ω

[
5 (�2E) + (� 5 )(�E) + (�2 5 )E + 6(�2D) + (�6)(�D) + (�26)D

]
3G

· · · +
∫
Ω

1
2

[
(div �)2 − Tr

(
(��)2

) ]
3G.

If we now test the equations for �D and �E in (7.16) respectively with �E and �D, we get∫
Ω

∇(�D) ·∇(�E) 3G =
∫
Ω

[
−∇(�E) · (��)∇D + (�E)(� 5 )

]
3G =

∫
Ω

[
−∇(�D) · (��)∇E + (�D)(�6)

]
3G.

Then, by exploiting the equations −ΔDΩ = 5 and −ΔEΩ = 6, we infer that

%2�(Ω, �1)[�] =
∫
Ω

[
∇D · (�2�)∇E − ∇�D · ∇�E − (�2 5 )E − (�26)D

]
3G

· · · +
∫
Ω

1
2

[
(div �)2 − Tr

(
(��)2

) ]
3G,

completing the proof of (7.17). The second assertion, on the other hand, follows from a standard
computation exactly as in Lemma 7.2.

We conclude with the following result, in which we give an equivalent formulation of the second
variation along inner perturbations in the case of �2-regular domains.

Corollary 7.3 LetΩ and � ∈ �∞2 (�1;ℝ3) be as above and assume that spt � ∩ %Ω is �2-regular. Then, given
D′, E′ ∈ �1(Ω) such that{

ΔD′ = 0 inΩ
D′ = |∇DΩ |(� · �) on %Ω

and

{
ΔE′ = 0 inΩ
E′ = |∇EΩ |(� · �) on %Ω

the second variation (7.17) can be written as follows:

%2�(Ω, �1)[�] = 2
∫
Ω

∇D′ · ∇E′ 3G +
∫
%Ω
(� · �)2

[
(1 + |∇DΩ | |∇EΩ |)� + 6 |∇DΩ | + 5 |∇EΩ |

]
3�,

where � is the outer normal to %Ω and � denotes the mean curvature of %Ω.

Proof. First, recall that, under our regularity assumption, in Lemma 7.2 we proved that

%�(Ω, �1)[�] =
∫
%Ω
(� · �)(1 − |∇DΩ | |∇EΩ |) 3� =

∫
Ω

div ((1 − ∇DΩ · ∇EΩ)�) 3G,
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where � is the outer normal to %Ω. Since %Ω is �2-smooth and 5 ∈ �2
2 (�1), we have

C ↦−→ (1 − ∇DΩC · ∇EΩC ) ∈ �1
(
[0, )); !1(ℝ3)

)
∩ �0

(
[0, )); ,1,1(ℝ3)

)
,

so we can compute the second variation of � atΩ as follows:

%2�(Ω, �1)[�] =
%

%C

����
C=0

∫
ΩC

div ((1 − ∇DΩC · ∇EΩC )� ◦ΨC) 3G,

whereΨC := (ΦC)−1 is a diffeomorphism for C > 0 small enough. To compute this, taking into account
that ∇DΩ = −|∇DΩ |� and ∇EΩ = −|∇EΩ |� on %Ω, we consider D′, E′ ∈ �1(Ω) satisfying{

ΔD′ = 0 inΩ
D′ = |∇DΩ |(� · �) on %Ω

and

{
ΔE′ = 0 inΩ
E′ = |∇EΩ |(� · �) on %Ω

exactly as in Corollary 7.1. Then, we can expand DΩC and EΩC for C → 0 as

DΩC = DΩ + CD′ + >(C) and EΩC = EΩ + CE′ + >(C),

and, since (� ◦ !C)′ |C=0 = −��)�, it follows that

%2�(Ω, �1)[�] = −
∫
Ω

div ((∇DΩ · ∇E′ + ∇D′ · ∇EΩ)�) 3G

· · · +
∫
%Ω

[
div ((1 − ∇DΩ · ∇EΩ)�) (� · �) − (1 − ∇DΩ · ∇EΩ)(� · ��)�)(� · �)

]
3�.

To conclude, notice that
div � − (� · ��)�) = �(� · �),

where � is the mean curvature of %Ω, and

∇(∇DΩ · ∇EΩ) · � = (%�EΩ)(%2
�DΩ) + (%�DΩ)(%2

�EΩ) = −2� |∇EΩ | |∇EΩ | + 6 |∇DΩ | + 5 |∇EΩ |

on %Ω. It follows that

%2�(Ω, �1)[�] =
∫
%Ω
(D′%�E′ + E′%�D′) 3G +

∫
%Ω
(� · �)2

[
(1 + |∇DΩ | |∇EΩ |)� + 6 |∇DΩ | + 5 |∇EΩ |

]
3�

= 2
∫
Ω

∇D′ · ∇E′ 3G +
∫
%Ω
(� · �)2

[
(1 + |∇DΩ | |∇EΩ |)� + 6 |∇DΩ | + 5 |∇EΩ |

]
3�,

and this concludes the proof of the alternative formulation.

To conclude this section, we give the first and second variations of the one-phase functional (7.8),
which are obtained through the same computations as above.

Lemma 7.4 Let � ∈ �∞2 (�1;ℝ3) and ΦC be as above. If DC is the solution to
ΔDC = 0 in � ∩ΦC({D > 0})
DC = 0 on � ∩ %ΦC({D > 0})
DC = D on %� ∩ΦC({D > 0}),

then the first variation is given by

%

%C

����
C=0
�$(DC , �1) =

∫
�1

[
∇D · ��∇D + 1{D>0} div �

]
3G,
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and the second variation by

%2

%C2

����
C=0
�$(DC , �1) =

∫
�1

[
∇D · (�2�)∇D − |∇�D |2 + 1

2

(
(div �)2 − Tr

(
(��)2

) )
1{D>0}

]
3G,

where �� and �2� are defined in (7.12) and �D ∈ �1
0 ({D > 0}) is the solution to

−Δ(�D) = div(��∇D) in � ∩ {D > 0}.

For the remainder of this chapter, wewill use the notations %�$(D, �1)[�] and %2�$(D, �1)[�] to identify,
respectively, the first and second variations of �$ at D under the inner perturbation �.

7.3 Lipschitz regularity and non-degeneracy of state variables

This section aims to study the local properties of shape optimizers. More precisely, we prove that
the state variables DΩ and EΩ (associated to an optimal shape) are Lipschitz-continuous and non-
degenerate, and we obtain, as a consequence, a density estimate for optimal shapes.

Lemma 7.5 Suppose that DΩ satisfies the outward optimality of Proposition 7.2. Then DΩ is locally Lipschitz in
�1, and the Lipschitz constant depends on 3, ‖ 5 ‖!∞(ℝ3) and �2.

Proof. Let G0 ∈ �1 and A > 0. If $ := Ω ∩ �A(G0) and ) ∈ �1
0 ($) such that E := ) − DΩ ∈ �1

0 (�A(G0)),
then, by the outward optimality of Proposition 7.2, up to taking A smaller, we get

� 5 (DΩ , �A(G0)) ≤ � 5 (E, �A(G0)) +
�2
2
$3A

3 . (7.18)

Moreover, by (7.7) the validity of the condition (7.18) can be extended to every ball in �1. Thus, since
DΩ is a local quasi-minimizer in the sense of [26, Definition 3.1], by applying [26, Theorem 3.3] we
immediately deduce the thesis.

The next result asserts that state functions satisfying the inward optimality condition are non-
degenerate. We achieve this by adapting the proof of [4, Lemma 4.4] to our framework.

Lemma 7.6 Suppose that DΩ satisfies the inward optimality of Proposition 7.2. Then there are �0 , A0 > 0,

depending only on 3, ‖ 5 ‖!∞ and �1, such that, for every G0 ∈ {DΩ > 0} ∩ �1 and A ∈ (0, A0], we have

‖D‖!∞(�2A ) ≤ �0A =⇒ D ≡ 0 on �A(G0).

Remark 7.3 In [95, Lemma 2.8], the same problem in the case of local minimizers of (7.4) has already
been addressed. For completeness, we sketch the proof and focus on the role of inward optimality.

Proof. First, notice that it is not restrictive to assume that G0 = 0 ∈ %{DΩ > 0}. For A > 0, denote by !1
and )1 the solutions to

−Δ!1 = 0 in �2 \ �1

!1 = 0 in �1

!1 = 1 on %�2

and


−Δ)1 = 1 in �2 \ �1

)1 = 0 in �1

)1 = 0 on %�2

and set
�A(G) := ‖DΩ‖!∞(�2A )!1

(
G

A

)
+ A2‖ 5 ‖!∞(ℝ3))1

(
G

A

)
.
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Notice that −Δ�A = ‖ 5 ‖!∞ , �A is radially symmetric in �2A \ �A , and

‖∇�A ‖!∞(%�A ) ≤ �3
( ‖DΩ‖!∞(�2A )

A
+ A‖ 5 ‖!∞(ℝ3)

)
≤ �3(�0 + A0‖ 5 ‖!∞(ℝ3)).

Therefore, if we consider the competitor D̃ ∈ �1
loc(�1) defined by

D̃(G) :=


DΩ(G), if �1 \ �2A ,

min{DΩ(G), �A(G)} in �2A \ �A ,
0 in �A ,

then {D̃ > 0} = {DΩ > 0} in �2A \ �A and, more generally, we have

{D̃ > 0} ⊆ {DΩ > 0}.

Therefore, since D̃ ≥ 0 in �1 and D̃ = DΩ in �1 \ �2A , we can apply the inward optimality of Proposition
7.2 to obtain the inequality

� 5 (DΩ , �2A) +
�1
2
|�2A ∩ {DΩ > 0}| ≤ � 5 (D̃ , �2A) +

�1
2
|�2A ∩ {D̃ > 0}|,

which, taking into account the definition of D̃, can be rewritten as follows:

� 5 (DΩ , �A) +
�1
2
|�A ∩ {DΩ > 0}| ≤ � 5 (D̃ , �2A \ �A) − � 5 (DΩ , �2A \ �A).

It follows that

� 5 (DΩ , �A) +
�1
2
|�A ∩ {DΩ > 0}| ≤ 1

2

∫
�2A\�A

[
|∇D̃ |2 − |∇DΩ |2

]
3G −

∫
�2A\�A

5 (D̃ − DΩ) 3G

≤
∫
{DΩ≠D̃}∩(�2A\�A )

[
∇D̃ · ∇(D̃ − DΩ) − 5 (D̃ − DΩ)

]
3G,

where {DΩ ≠ D̃} = {DΩ > �A} by construction. Since −Δ�A − 5 ≥ 0 in �2A \ �A , we deduce that

� 5 (DΩ , �A) +
�1
2
|�A ∩ {DΩ > 0}| ≤

∫
{DΩ>�A }∩(�2A\�A )

(−Δ�A − 5 )(�A − DΩ) 3G +
∫
%�A

DΩ |∇�A | 3�

≤ ‖∇�A ‖!∞(%�A )
∫
%�A

DΩ 3�,

which, in turn, implies that∫
�A

|∇DΩ |2 3G + �1 |�A ∩ {DΩ > 0}| ≤ �3
(
�0 + A0‖ 5 ‖!∞(ℝ3)

) (∫
%�A

DΩ 3� +
1
A

∫
�A

DΩ 3G

)
. (7.19)

On the other hand, by the,1,1-trace inequality (see, e.g., [129]), we have∫
%�A

DΩ 3� +
1
A

∫
�A

DΩ 3G ≤ �3
(∫

�A

|∇DΩ | 3G +
1
A

∫
�A

DΩ 3G

)
≤ �3

∫
�A

|∇DΩ |2 3G + �3
(
1 + 1

A
‖D‖!∞(�2A )

)
|�A ∩ {DΩ > 0}|,

which means that
1 ≤ �3

(
�0 + A0‖ 5 ‖!∞(ℝ3)

)
max{1, �−1

1 } (1 + �0) . (7.20)

By choosing �0 , A0 > 0 small enough for the right-hand side in (7.20) to be smaller than 1, we get that
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the left-hand side of (7.19) is equal to zero, and so DΩ ≡ 0 in �A . In conclusion, notice that, by (7.20),
the constants �0 and A0 depend on 3, ‖ 5 ‖!∞ and �1 only.

The next result summarizes the content of this section so far, which is the Lipschitz-continuity and
non-degeneracy (close to the boundary) of the state variables DΩ and EΩ forΩ optimal.

Proposition 7.3 Let DΩ and EΩ be the state variables associated to the optimal setΩ in �1 and suppose there
are constants �1 , �2 > 0 such that (7.3) holds. Then

(i) DΩ and EΩ are locally Lipschitz-continuous in�1, and the Lipschitz constants depends on 3, ‖ 5 ‖!∞(ℝ3) , �1
and �2;

(ii) if G0 ∈ %Ω, for every A ∈ (0, (1 − |G0 |)/2), we have

sup
G∈�A (G0)

DΩ(G) ≥ �̃A and sup
G∈�A (G0)

EΩ(G) ≥ �̃A, (7.21)

where �̃ > 0 is a constant that depends only on 3, ‖ 5 ‖!∞(ℝ3) , �1 and �2.

Proof. It is enough to combine Proposition 7.2 with Lemma 7.5 and Lemma 7.6 to conclude.

We now show a density estimate that follow directly from Proposition 7.3.

Proposition 7.4 Let Ω be a solution to (7.2) in �1 and DΩ be the associated state variable. Then there are
&0 , A0 > 0 such that we have

&0$3A
3 ≤ |�A(G0) ∩ {DΩ > 0}| ≤ (1 − &0)$3A

3

for every G0 ∈ %Ω and every A ≤ A0, with &0 , A0 depending only on 3, ‖ 5 ‖!∞ , �1 and �2.

Proof. Suppose G0 = 0 ∈ %Ω. The proof of the lower bound follows from Proposition 7.3 since

I on the one hand, for A small enough there exists GA ∈ �A ∩ {DΩ > 0} such that

DΩ(GA) ≥ �̃A;

I on the other hand, the function DΩ is Lipschitz-continuous and so, if we set

�0 := min
{
1,

�

[DΩ]�0,1

}
,

then we get DΩ > 0 in ��0A(GA), which proves the lower bound. The quantity [DΩ]�0,1 denotes
the Lipschitz seminorm, which is defined as

[DΩ]�0,1 := sup
G,H∈Ω

|D(G) − D(H)|
|G − H | .

For the upper bound on the density, let us consider the solution ℎ to the problem{
−Δℎ = ‖ 5 ‖!∞ in �A
ℎ = DΩ on �1 \ �A .

By the maximum principle, since −Δ(ℎ − DΩ) ≥ 0 in �1, we have DΩ ≤ ℎ in �A , and so

{DΩ > 0} ∩ �A ⊂ {ℎ > 0} ∩ �A .
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Now, the outward optimality of Proposition 7.2 yields

�2
2
|�A ∩ {DΩ = 0}| ≥ � 5 (DΩ , �A) − � 5 (ℎ, �A)

≥ 1
2

∫
�A

[
|∇(DΩ − ℎ)|2 + 2∇ℎ · ∇(DΩ − ℎ)

]
3G −

∫
�A

5 (DΩ − ℎ) 3G

≥ 1
2

∫
�A

[
|∇(DΩ − ℎ)|2 + 2(−Δℎ − 5 )(DΩ − ℎ)

]
3G

≥ 1
2

∫
�A

|∇(DΩ − ℎ)|2 3G.

Next, using the classical Poincaré inequality (4.12) and the Cauchy-Schwarz inequality, we obtain∫
�A

|∇(DΩ − ℎ)|2 3G ≥
�3

|�A |

(
1
A

∫
�A

(ℎ − DΩ) 3G
)2

.

Moreover, the classical Harnack inequality gives

�̃A ≤ sup
H∈�A/2

DΩ(H) ≤ sup
H∈�A/2

ℎ(H) ≤ �3
[
ℎ(G) + A2‖ 5 ‖!∞(ℝ3)

]
for every G ∈ �A/2; thus, by taking A0 > 0 such that �3A0‖ 5 ‖!∞(ℝ3) ≤ �̃, we get

ℎ ≥ 1
2
�̃

�3
A := �̄A in �A/2.

To estimate the function DΩ, on the other hand, we exploit the fact that DΩ Lipschitz-continuous and
DΩ(0) = 0, obtaining

DΩ ≤ !&A in �&A ,

for some ! > 0 that depends on 3, ‖ 5 ‖!∞ , �1 and �2 only. Finally, by choosing & > 0 small enough, for
example �̄ ≥ 2!&, we get ∫

�A

(ℎ − DΩ) 3G ≥
∫
�&A

(ℎ − DΩ) 3G ≥ !& |�&A |,

and this concludes the proof.

To conclude this section, we prove a technical result which will play a crucial role in the proof of the
existence of a homogeneous blow-up limit.

Lemma 7.7 Let Ω be a solution to (7.2) in �1 and DΩ be the associated state variable. Then, for every
G0 ∈ %Ω ∩ �1 and every A ∈ (0, 1 − |G0 |), we have

|{0 < DΩ < AC} ∩ �A(G0)| ≤ �C |�A | for every C ∈ (0, 1). (7.22)

This estimate has already been established in [38, Theorem 1.10], but we sketch the main ideas here for
completeness.

Proof. Suppose that G0 = 0 ∈ %Ω and fix C > 0. If we let � ∈ �∞2 (�2A) be such that � ∈ [0, 1] and � ≡ 1
in �A , then we can define

)(G) := �(DΩ(G) − AC)+ + (1 − �)DΩ(G).

Taking $ = Ω and ) as a test function in the inward optimality condition of Proposition 7.2, we get

� 5 (DΩ , �2A) +
�1
2
|�2A ∩Ω| ≤ � 5 (), �2A) +

�1
2
|�2A ∩ $ |.
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Now, consider the decompositionΩ = {DΩ > AC} ∪ {0 < DΩ ≤ AC} and notice that

)(G) = DΩ(G) − AC� in {DΩ > AC} =: Ω1 ,

)(G) = (1 − �)DΩ(G) in {0 < DΩ ≤ AC} =: Ω2.

It follows that

� 5 (), �2A) =
∫
Ω1

[
1
2
|∇DΩ |2 +

(AC)2
2
|∇�|2 − AC(∇DΩ · ∇�) − 5 (DΩ − AC�)

]
3G

· · · +
∫
Ω2

[
(1 − �)2

2
|∇DΩ |2 +

D2
Ω

2
|∇�|2 − (1 − �)DΩ(∇DΩ · ∇�) − 5 DΩ(1 − �)

]
3G

≤ � 5 (DΩ , �2A) − AC
∫
Ω1

∇DΩ · ∇� 3G +
∫
�2A

[
(AC)2

2
|∇�|2 + 5 AC�

]
3G

· · · +
∫
Ω2

[ (1 − �)2 − 1
2

|∇DΩ |2 − (1 − �)DΩ(∇DΩ · ∇�)
]
3G

≤ � 5 (DΩ , �2A) + �C
(
A[DΩ]�0,1(�2A ) + A‖ 5 ‖!∞(ℝ3) + C

)
|�A | −

∫
Ω2

1
2
|∇DΩ |2 3G,

and
|�2A ∩ {) > 0}| ≤ |�A ∩Ω1 | + |�2A \ �A |.

Therefore, we obtain the desired estimate

1
2

∫
Ω2

|∇DΩ |2 3G +
�1
2
|�A ∩Ω2 | ≤ �C |�A |

with � > 0 depending only on the Lipschitz constant of DΩ, ‖ 5 ‖!∞(ℝ3) and 3.

7.4 Compactness and convergence of blow-up sequences

This section aims to study the compactness of blow-up sequences and the main properties of blow-up
limits. Indeed, they are essential for determining the local behavior of the free boundary and for the
characterization of both regular and singular strata.

Definition 7.1 Let Ω be a solution to (7.2) and let D := DΩ and E := EΩ. If G0 ∈ %Ω and A: ↘ 0+ is a
sequence such that �A: (G0) ⊂ �1 for every :, we define the associated blow-up sequence by

DG0 ,A: (G) :=
D(G0 + A:G)

A:
and EG0 ,A: (G) :=

E(G0 + A:G)
A:

,

with both functions defined in a suitable rescaling ofΩ, namely

Ω: :=
Ω − G0
A:

=

{
G − G0
A:

: G ∈ Ω
}
.

Throughout this section, we will always assume (a)–(c) of Theorem 4.2. The idea is to prove the
compactness of the blow-up sequences and the existence of a blow-up limit, which may not be
homogeneous. Next, using the stationary conditions of Subsection 7.2.2, we establish that there is a
blow-up sequence converging to a homogeneous limit at every point.
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7.4.1 Compactness of blow-up sequences

ByProposition 7.3, the blow-up sequence DG0 ,A: is uniformly Lipschitz-continuous and locally uniformly
bounded in ℝ3. Moreover, by (7.5) we have the estimate∫

�'

|∇DG0 ,A: |2 3G =
1
(A:)3

∫
�A: '(G0)

|∇D |2 3G = 1
A3
:

∫
�'A: (G0)

5 D 3G ≤
‖ 5 ‖2

!∞(ℝ3)
23

($3')3 (7.23)

for every ' ≤ (1 − |G0 |)/A: , and so DG0 ,A: is uniformly bounded in �1
loc(ℝ3).

Remark 7.4 The estimate (7.23) holds true if we replace (D, 5 ) with (E, 6) as a consequence of the fact
that, by (7.6), the two state variable are interchangeable.

Remark 7.5 Applying the Ascoli-Arzelá theorem, we deduce that, up to subsequences, the blow-up
sequences converge locally uniformly on every compact set to non-trivial functions

D0 , E0 ∈ �1
loc(ℝ

3) ∩ �0,1
loc (ℝ

3)

such that, for every ' > 0, the following properties hold:

• DG0 ,A: → D0 and EG0 ,A: → E in �0,
loc (�') for every  ∈ (0, 1);

• DG0 ,A: ⇀ D0 and EG0 ,A: ⇀ E0 weakly in �1(�').
• the setΩ: minimizes the functional

1
2

∫
Ω:

|∇DG0 ,A: |2 3G − A2
:

∫
Ω:

5G0 ,A:DG0 ,A: 3G + |Ω: |

in the class of admissible sets
{
Ω ⊂ �1/A: (−G0) : Ω quasi open, |Ω| ≤ 1/A:

}
.

The following proposition is a compactness result for blow-up sequences associated with almost-
minimizers in the sense of Proposition 7.2. We already mentioned that the state functions of optimal
sets satisfy these conditions; nevertheless, we state the result in such generality to apply the blow-up
analysis in Subsection 7.4.2.

Proposition 7.5 LetΩ ⊂ ℝ3 be open and DΩ ∈ �1
0 (Ω) the corresponding state variable. Assume that

(a) DΩ is Lipschitz-continuous in ℝ3, the Lipschitz constants is universal, and∫
�A (G0)

|∇D |2 3G ≤ ($3A)3
‖ 5 ‖2

!∞(ℝ3)
23

for every G0 ∈ �1 and A < 1 − |G0 |; (7.24)

(b) there is �̃ > 0 universal such that, given G0 ∈ %Ω, we have

sup
G∈�A (G0)

DΩ(G) ≥ �̃A for every A ∈ (0, (1 − |G0 |)/2);

(c) for every ) ∈ �1(�1) non-negative and such that {) > 0} ⊇ {DΩ > 0}, we have

� 5 (D, �1) +
�2
2
|�1 ∩Ω| ≤ � 5 (), �1) +

�2
2
|�1 ∩ {) > 0}|.

Then, given G0 ∈ %Ω and A: ↘ 0+, the following properties hold (up to subsequences):

(1) DG0 ,A: → D0 locally uniformly on every compact set and D0 ∈ �1
loc(ℝ3) ∩ �0,1

loc (ℝ3);
(2) DG0 ,A: → D0 strongly in �1

loc(ℝ3) and D0 satisfies (7.24);
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(3) the sequence of the characteristic functions converges:

1{DG0 ,A:>0} → 1{D0>0} strongly in !1
loc(ℝ

3);

(4) for any ' > 0, we have

�0(D0 , �') +
�2
2
|�' ∩ {D0 > 0}| ≤ �0(), �') +

�2
2
|�' ∩ {) > 0}|,

for every ) ∈ �1(�') such that ) − D0 ∈ �1
0 (�') and {) > 0} ∩ �' ⊇ {D0 > 0} ∩ �'.

Proof. Let D: := DG0 ,A: , 5: := 5G0 ,A: , 6: := 6G0 ,A: and Ω: := (Ω − G0)/A: . Then, if we rescale (7.24)
accordingly, we get the inequality∫

�'

|∇D: |2 3G ≤ ($3')3
‖ 5 ‖2

!∞(ℝ3)
23

for every ' ≤ 'Ω :=
1 − |G0 |
A:

.

By the assumptions (a) and (b), we already know that D: converges locally uniformly on every compact
set to a non-trivial function D0 ∈ �1

loc(ℝ3) ∩ �0,1
loc (ℝ3) and

1{D0>0} ≤ lim inf
:→∞

1{D:>0} .

Now, since the sequence converges weakly in�1
loc(ℝ3), we need to show that the sequence D: converges

strongly in the �1-topology to D0.

Step 1. Strong convergence in the �1-topology

Let  be a compact set and ' > 0 a radius such that  ⊂ �'. Moreover, let � ∈ �∞2 (�') be a smooth
cut-off function satisfying the following properties:

� ∈ [0, 1] in �' and �
��
 
≡ 1.

Consider :0 > 0 be such that �' ⊂ Ω: for every : > :0. Then, if we test the equation (7.1) with the
function �2(D: − D0), we obtain∫

�'

∇D: · ∇(�2(D: − D0)) 3G = 0 for every : > :0.

It follows that∫
�'

|∇(�D:)|2 3G ≤
∫
�'

[
�2∇D: · ∇D0 + 2D0�∇D: · ∇� + D2

0 |∇�|2
]
3G +

∫
�'

(D2
:
− D2

0)|∇�|2 3G,

which implies, by using both the weak �1-convergence and the uniform one, that

lim sup
:→∞

∫
�'

|∇(�D:)|2 3G ≤
∫
�'

|∇(�D0)|2 3G.

Therefore, the sequence �D: converges strongly in �1(�'), and so D: → D0 strongly in �1( ).

Step 2. Convergence of the characteristic functions

Fix ' > 0 and let � ∈ �∞2 (ℝ3) be a cut-off function such that 0 ≤ � ≤ 1 and � ≡ 1 on �'. Let : ≥ :0
with :0 > 0 be such that �' ⊂ �1/A: (−G0) and consider the competitor

D̃: := �D0 + (1 − �)D: ∈ �1
loc(ℝ

3).
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Notice that, if we set Ω̃: = {D̃: > 0}, since D0 ≥ 0 and D: ≥ 0 in ℝ3, we have Ω: ⊆ Ω̃: and, more
precisely, it is easy to verify that

D̃: = D: in {� = 0} and Ω̃: ∩ {� = 0} = Ω: ∩ {� = 0}.

Then, by rescaling (c), we get

�A2
:
5:
(D: , �1/A: (−G0)) +

�2
2
|�1/A: (−G0) ∩Ω: | ≤ �A2

:
5:
(), �1/A: (−G0)) +

�2
2
|�1/A: (−G0) ∩ {) > 0}|

for every ) ∈ �1(�1/A: (−G0)) non-negative and such that {) > 0} ⊇ {D: > 0}. Therefore, by testing
the inequality taking the function ) = D̃: , we get∫

{�>0}

[
1
2
|∇D: |2 − A2

:
5:D:

]
3G + �2

2
|Ω ∩ {� > 0}|

≤
∫
{�>0}

[
1
2
|∇D̃: |2 − A2

:
5: D̃:

]
3G + �2

2
|Ω̃: ∩ {� > 0}|.

The second term on the right-hand side can easily be estimated by

|Ω̃: ∩ {� > 0}| ≤ |Ω0 ∩ {� = 1}| + |{0 < � < 1}|,

from which it follows that

�2
2

(
|Ω: ∩ {� = 1}| − |Ω0 ∩ {� = 1}| − |{0 < � < 1}|

)
≤ 1

2

∫
{�>0}

[
|∇D̃: |2 − |∇D: |2

]
3G

· · · + A2
:

∫
{�>0}

5: |D̃: − D: | 3G,

where, on {� > 0}, we have

|∇D: |2 − |∇D̃: |2 = (1 − (1 − �)2)|∇D: |2 − �2 |∇D0 |2 − |D0 − D: |2 |∇�|2

· · · − 2(D0 − D:)〈∇�, �∇D0 + (1 − �)∇D:〉 − 2�(1 − �)〈∇D0 ,∇D:〉.

Since D: converges strongly in �1(�') to D0, we get

lim sup
:→∞

(
|Ω: ∩ {� = 1}| − |Ω0 ∩ {� = 1}|

)
≤ |{0 < � < 1}|.

Since � is arbitrary outside of the ball �' , the right-hand side can be made as small as we need, which
ultimately implies the desired equality.

Step 3. Proof of property (4)

Let ' > 0 and :0 > 0 be such that, for every : ≥ :0, we have �' ⊂ �1/A: (−G0). Then, we consider the
competitor ): ∈ �1

loc(ℝ3), defined by
): := D: + !

for some ! ∈ �1
0 (�'), and such that {): > 0} ∩ �' ⊇ Ω: ∩ �'. By (c), we get

�A2
:
5:
(D: , �') +

�2
2
|�' ∩Ω: | ≤ �A2

:
5:
(): , �') +

�2
2
|�' ∩ {): > 0}|

for every : ≥ :0. Thus, using the properties (2)-(3) and the uniform Lipschitz-continuity of D: , we
pass to the limit as : →∞ and (up to subsequences) get

�0(D0 , �') +
�2
2
|�' ∩Ω0 | ≤ �0()0 , �') +

�2
2
|�' ∩ {)0 > 0}|,
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where )0 − D0 = ! ∈ �1
0 (�') and {)0 > 0} ⊇ {D0 > 0}.

To conclude this section, we exploit the strong compactness of Proposition 7.5 to deduce the following
characterization of blow-up limits of state variables associated to optimal sets.

Proposition 7.6 Let Ω be a solution to (7.2) and (DG0 ,A: ): , (EG0 ,A: ): the blow-up sequences associated to the
state variables DΩ and EΩ, centered at G0 ∈ %Ω and with A: ↘ 0+. Then the following holds:

(1) there exists &0 > 0 such that

&0$3A
3 ≤ |�A(G0) ∩ {D0 > 0}| ≤ (1 − &0)$3A

3 ,

and
|{0 < D0 < AC} ∩ �A(G0)| ≤ �C |�A | (7.25)

for every G0 ∈ %Ω0 and every A, C > 0, whereΩ0 := {D0 > 0} = {E0 > 0};
(2) the sequence of closed sets �' ∩ {DΩ:

> 0} and their complements inℝ3 converge in the Hausdorff sense
respectively to �' ∩ {DΩ0 > 0} and ℝ3 \ �' ∩ {DΩ:

> 0};
(3) the blow-up limit D0 is non-degenerate at zero, namely there exists a constant �0 > 0 such that

sup
G∈�A

D0(G) ≥ �0A and sup
G∈�A

E0(G) ≥ �0A

for every A > 0.

Moreover, the blow-up limits D0 and E0 are harmonic inΩ0, i.e.,{
−ΔD0 = 0 inΩ0

−ΔE0 = 0 inΩ0 ,
(7.26)

and are stationary, in the sense that∫
ℝ3

[
div � (∇D0 · ∇E0 + 1) − ∇D0 · ((��)) + (��))∇E0

]
3G = 0 (7.27)

for every � ∈ �∞2 (ℝ3; ℝ3).

Proof. First, notice that by (7.23), Proposition 7.2 and Proposition 7.3, the functions DΩ and EΩ fulfill
the assumptions of Proposition 7.5, so we can use the properties (1)–(4) in the following.

Step 1. Density estimate (1) and Hausdorff convergence

By Proposition 7.4, we know that for every : > 0 we have

&0$3A
3 ≤ |�A(G0) ∩ {D: > 0}| ≤ (1 − &0)$3A

3 , for A < A0/A: and G0 ∈ %Ω: . (7.28)

Now, it is well-known that the convergence of the sequence of characteristic functions in the strong
topology of !1, which is given by property (3) of Proposition 7.5, together with (7.28), implies the
Hausdorff convergence of the sets:

Ω: ∩ �'(G0) → Ω0 ∩ �'(G0) locally in ℝ3 .

Obviously, the same result holds for the complements. Moreover, by rescaling (7.22), for C > 0 we get
the inequality

|{0 < D: < AC} ∩ �A(G0)| ≤ �C |�A | for A < A0/A: and G0 ∈ %Ω: ,
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which converges to (7.25) as : →∞ by Proposition 7.5.

Step 2. Non-degeneracy of the blow-up limit D0

By Proposition 7.3, for every : > 0, the rescaled function D: is non-degenerate in the sense that for
every G0 ∈ Ω: there holds

sup
G∈�A (G0)

D:(G) ≥ �0A for every A ≤ 1/2A: .

Notice that this inequality is obtained by applying (7.21) in �A: A(G0) for DΩ. Finally, by the uniform
convergence of D: and Step 1, for every G0 ∈ Ω0 we get

sup
G∈�A (G0)

D0(G) ≥ �0A for every A > 0,

concluding the proof of the non-degeneracy.

Step 3. Harmonicity and stationary condition

If we rescale the state equations for DΩ and EΩ, we get{
−ΔD: = A2

:
5: inΩ: ,

−ΔE: = A2
:
6: inΩ: .

(7.29)

Indeed, by rescaling (7.2), we have thatΩ: minimizes the functional∫
�1/A: (−G0)

[
−A2

:
6:(G)D:

]
3G + |�1/A: (−G0) ∩ {D: > 0}| (7.30)

among all quasi-open subsets of �1/A: (−G0), where D: satisfies{
−ΔD: = A2

:
5: inΩ:

D: = 0 on %Ω: .

First, by combining (7.29) with the strong convergence of Proposition 7.5, we deduce the harmonicity
of the blow-up limits D0 and E0, that is,∫

ℝ3

∇! · ∇D0 3G =

∫
ℝ3

∇! · ∇E0 3G = 0 for every ! ∈ �∞2 (Ω0).

On the other hand, sinceΩ: minimizes (7.30), by Corollary 7.2 we get∫
Ω:

[
div � (∇D: · ∇E: + 1) − ∇D: · ((��)) + (��))∇E:

]
3G = A2

:

∫
Ω:

[
D: div(6:�) + E: div( 5:�)

]
3G

for every � ∈ �∞2 (�1/A: (−G0); ℝ3). Now, let � ∈ �∞2 (ℝ3; ℝ3) and :0 > 0 such that spt � ⊂ �1/A: (−G0)
for every : > :0. Then, taking into account that

| spt(�)| ≤ $3A
−3
:0

for every : > :0 ,

we get ����A2
:

∫
Ω:

[
D: div(6:�) + E: div( 5:�)

]
3G

���� ≤ A: |Ω|2/3
3$2/3

3

max{‖ 5 ‖�2 , ‖6‖�2}2‖�‖�1 | spt(�)|,
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which, in turn, implies����∫
spt �

[
div � (∇D: · ∇E: + 1) − ∇D: · ((��)) + (��))∇E:

]
3G

���� ≤ A:�(3,Ω, 5 , 6)‖�‖�1 | spt(�)|.

Finally, up to a subsequences, we pass to the limit as : →∞ and, by the strong �1-convergence on
every compact set of ℝ3, we deduce that (7.27) holds for every � ∈ �∞2 (ℝ3; ℝ3).

7.4.2 Homogeneous blow-up limit

This section aims to improve Proposition 7.6 by constructing, at every G0 ∈ %Ω, a sequence of radii
A: ↘ 0+ such that the corresponding blow-up limits D0 and E0 are 1-homogeneous and

D0 = ΛE0

for some Λ > 0. This is obtained in Proposition 7.7, but, before we can state it, we need some
preliminary results that follow from the theory developed in Chapter 5.

In the lemma below, we prove that the blow-up limits of DΩ and EΩ obtained in Proposition 7.6
coincide up to a multiplicative Hölder-continuous function. This follows by showing that the positivity
set of DΩ satisfies the geometric conditions of Theorem 5.1, which ensure the validity of the boundary
Harnack principle (see Definition 5.1 for more details).

Lemma 7.8 Let Ω ⊂ �1 be a solution to (7.2) and D0 , E0 be two blow-up limits of the corresponding state
variables DΩ and EΩ. Then the boundary Harnack principle (B.H.P.) holds in

Ω = {D0 > 0} = {E0 > 0}.

In other words, for every ' > 0, the ratio D0/E0 can be extended to a positive �0,-regular function on �' ∩Ω0.

Proof. Fix ' > 0. The result follows once we show that the setΩ0 = {D0 > 0} = {E0 > 0} satisfies the
assumptions (a)–(f) of Theorem 5.1 in �'. Indeed, by Proposition 7.6 both D0 and E0 are

I continuous in �',
I positive and harmonic in �' ∩Ω0,
I vanishing identically on �' \Ω0,

so, by the B.H.P., the ratio D0/E0 can be extended to a �0,-regular function on �'∩Ω0. Now, following
the notations of Theorem 5.1, let ) := D0 : �' → ℝ and notice that:

(a) by definition ofΩ0, we have ) > 0 inΩ0 and ) ≡ 0 on �' \Ω0; moreover, using the property (1)
of Proposition 7.5 and the Ascoli-Arzelá theorem, we deduce that ) is Lipschitz-continuous,
and the Lipschitz constant depends on 3, ‖ 5 ‖!∞(ℝ3) , �1 and �2;

(b) by property (3) of Proposition 7.6, there exists � > 0 such that

)(G) ≥ �3(G, �' \Ω0) for every G ∈ �'/2 ;

(c) since ) ≥ 0 and Δ) = 0 inΩ0, we have

Δ) ≥ 0 in ℝ3 in the sense of distributions;

(d) using property (1) of Proposition 7.6, there is a constant � > 0 such that, for every G0 ∈ %Ω∩ �' ,
we have

|�A(G0) \Ω| ≥ �|�A(G0)| for every A ∈ (0, ' − |G0 |) ;
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(e) by (7.25), there is Λ > 0 such that, for every G0 ∈ %Ω0 ∩ �' and every A ∈ (0, ' − |G0 |), we have��{0 < ) < AC} ∩ �A(G0)
�� ≤ ΛC |�A | for every C > 0 ;

(f) by property (3) of Proposition 7.6, there is � > 0 such that, for every G0 ∈ %Ω0 ∩ �' and every
A ∈ (0, ' − |G0 |), we have

sup
G∈�'(G0)

)(G) ≥ �'.

Since all the geometric assumptions are fulfilled, we can apply Theorem 5.1 and conclude the proof.

In order to prove the existence of a homogeneous blow-up limit, we need to establish a Weiss-type
monotonicity formula. As well-known in the literature, this result usually characterizes the possible
blow-up limits at free boundary points.

Lemma 7.9 LetΩ ⊂ ℝ3 be an unbounded open set and D ∈ �1
loc(Ω) be a continuous non-negative function

such that D ≡ 0 in ℝ3 \Ω, D > 0 inΩ, and∫
Ω

[
div �

(
|∇D |2 + 1

)
− ∇D ·

(
(��)) + (��)

)
∇D

]
3G = 0 for every � ∈ �∞2 (ℝ3; ℝ3). (7.31)

Then, for every G0 ∈ %Ω and A > 0, the map

(0,+∞) 3 A ↦−→,(DG0 ,A) :=
∫
�1

|∇DG0 ,A |2 3G −
∫
%�1

|DG0 ,A |2 3�

is non-decreasing. Moreover, there holds

%

%A
,(DG0 ,A) ≥

2
A

∫
%�1

|G · ∇DG0 ,A − DG0 ,A |2 3�, (7.32)

and, as a consequence, the map is constant if and only if D is 1-homogeneous in ℝ3.

Proof. Let G0 ∈ %Ω and fix A > 0. By [145, Lemma 9.2], we have that

%

%A
,(DG0 ,A) =

3

A

[
,(IG0 ,A) −,(DG0 ,A)

]
+ 1
A

∫
%�1

|(G − G0) · ∇DG0 ,A − DG0 ,A |2 3�,

where IG0 ,A is the 1-homogeneous extension of DG0 ,A in �1, that is,

IG0 ,A(G) := |G | DG0 ,A

(
G

|G |

)
.

On the other hand, since (7.31) coincides with the stationary condition associated to local minimizers
of the functional

J(D, �1) =
∫
�1

|∇D |2 3G + |�1 ∩ {D > 0}|,

by [145, Lemma 9.8] we get

,(IG0 ,A) −,(DG0 ,A) =
3

A

∫
%�1

|(G − G0) · ∇DG0 ,A − DG0 ,A |2 3�,

which implies (7.32).

We are now ready to state the main result, which asserts that the blow-up procedure can construct
two blow-up sequences associated (for the state variables) converging to homogeneous functions by
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iterating three times. Moreover, these two limits are equal up to a multiplicative constant and are
one-homogeneous stationary solutions to the one-phase free boundary problem.

Proposition 7.7 LetΩ be a solution to (7.2) and DΩ , EΩ the associated state variables. Then, at every G0 ∈ %Ω,
there exists a sequence of radii �: ↘ 0+ such that

(1) DG0 ,�: and EG0 ,�: converge, in the sense of Proposition 7.5, to some D000 , E000 ∈ �1
loc(ℝ3) ∩ �0,1

loc (ℝ3);
(2) there is a universal constant Λ > 0 such that D000 = ΛE000 in ℝ3;

(3) the function D000 is 1-homogeneous and satisfies the property (1)-(3) of Proposition 7.6.

Moreover, the blow-up limit D000 satisfies the PDE{
ΔD000 = 0 in {D000 > 0}
D000 = 0 on %{D000 > 0},

and the integral condition∫
ℝ3

[
div �

(
|∇D000 |2 + 1

)
− ∇D000 ·

(
(��)) + (��)

)
∇D000

]
3G = 0 for every � ∈ �∞2 (ℝ3; ℝ3).

Proof. As mentioned above, we have to apply three times the blow-up analysis to construct the desired
sequence of radii; thus, we divide the proof into four steps.

Step 1. Analysis of the first blow-up

By Proposition 7.5 and Proposition 7.6, there exists a sequence A: ↘ 0+ such that

DG0 ,A: (G) =
D(G0 + A:G)

A:
→ D0 and E0,A: =

E(G0 + A:G)
A:

→ E0 ,

where D0 and E0 satisfy (7.26) and (7.27). Moreover, by Lemma 7.8, there exists F0 ∈ �0,(�1 ∩Ω0)
such that F0 > 0 and

D0 ≡ E0F0 , in �1 ∩Ω0. (7.33)

On the other hand, by (1)-(2)-(4) of Proposition 7.5 and (3) of Proposition 7.6, we know thatΩ0 and
both D0 and E0 satisfy the assumption of Proposition 7.5, which allows to obtain the existence of
blow-up limits for the functions D0 and E0.

Step 2. Analysis of the second blow-up

By Proposition 7.5, there are a sequence ': ↘ 0+ and D00 , E00 ∈ �1
loc(ℝ3) ∩ �0,1

loc (ℝ3) such that

D0,': (G) =
1
':
D0(':G) → D00 , E0,': =

1
':
E0(':G) → E00 , Ω0,: =

1
':
Ω0 → Ω00.

On the other hand, by rescaling (7.33), we have

D0,': (G) = F(':G)E0,': (G) in �1/': ∩Ω0,: ,

where F > 0 and F ∈ �0,(�1 ∩Ω0,:). Therefore, by passing to the limit as : → +∞, we get

D00(G) = F(0)E00(G) for every G ∈ �1 ∩Ω00 ,
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which implies that D00 and E00 are equal up to a positive multiplicative constant. Thus, by combining
it with the rescaled version of (7.26) and (7.27), we deduce that 0 ∈ %Ω00 and{

ΔD00 = 0 in {D00 > 0}
D00 = 0 on %{D00 > 0}

and∫
ℝ3

[
div �

(
|∇D00 |2 + 1

)
− ∇D00 · ((��)) + (��))∇D00

]
3G = 0 for every � ∈ �∞2 (ℝ3; ℝ3).

As in the previous step, by (1)-(2)-(4) of Proposition 7.5 and (3) of Proposition 7.6, we have thatΩ00
and both D00 and E00 satisfy the assumption of Proposition 7.5.

Step 3. Analysis of the third blow-up

We claim that any blow-up of D00 at 0 ∈ %Ω00 is one-homogeneous. Indeed, repeating the blow-up
analysis, we can find C: ↘ 0+ and D000 ∈ �1

loc(ℝ3) ∩ �0,1
loc (ℝ3) such that

D00,C: (G) =
D00(C:G)
C:

→ D000 and Ω00,: =
1
C:
Ω0 → Ω000.

By Proposition 7.5, the blow-up sequence converges strongly in the �1
loc-topology andΩ00,: converges

locally in Hausdorff in ℝ3. Therefore, arguing as in Proposition 7.6, we get

sup
�A

D000 ≥ �0A for every A > 0.

Similarly the estimate in (1) follows by the strong !1-convergence of (3). Now, by Step 2, the function
D00 and the setΩ00 fulfill the assumptions of Lemma 7.9; therefore, the map

(0,+∞) 3 C ↦−→,(D00,C) =
∫
�1

|∇D00,C |2 3G −
∫
%�1

D2
00,C 3�

is non-decreasing. Notice that this implies the existence of the limit

, = lim
C→0+

,(D00,C) ≥ 0.

In addition, by the strong �1-convergence, for every B > 0 we have

, = lim
C:→0+

,(D00,C: B) =
1
B3

∫
�B

|∇D000 |2 3G −
1
B3+1

∫
%�B

D2
000 3� =,(D000,B),

which implies,(D000,B) =, in (0,+∞). By (7.32), this implies that

0 =
%

%B
,(D000,B) ≥

2
B

∫
%�1

|G · ∇D000,B − D000,B |2 3�,

and from this we finally deduce that the blow-up limit D000 is one-homogeneous in ℝ3.

Step 4. Conclusion of the proof

The idea is to now construct the sequence (�:): with a diagonal argument. Indeed, for every C: > 0,
we choose 'C: > 0 and AC: > 0 in such a way that the following holds:���D0,'C: (C:G) − D00(C:G)

��� ≤ 2−: C: and
���DG0 ,AC:

('C: C:G) − D0('C: C:G)
��� ≤ 2−:'C: C: .
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Thus, if we consider �: = C:'C: AC: as before, by the triangle inequality we get��DG0 ,�: − D000
�� ≤ ��DG0 ,A:': C: − D000

��
≤

���DG0 ,AC:
('C: C:G) − D0('C: C:G)

���
'C: C:

+

���D0,'C: (C:G) − D00(C:G)
���

C:
+

��D00,C: − D000
��

≤ 2−:+1 +
��D00,C: − D000

�� ,
which implies the claimed result by adapting the strategy to all the topologies involved in the
compactness result of Proposition 7.5.

7.4.3 Regular and singular parts of the free boundary

In view of the previous results, we conclude this section by defining the regular and singular parts of
the free boundary.

Lemma 7.10 Let 3 = 2 and Ω be a solution to (7.2). Then, at every point G0 ∈ %Ω, there are two blow-up
limits D0 and E0 such that

D0(G) = (G · �)+ and E0(G) = �(G · �)+ ,

where � ∈ ℝ3 is a unit vector and , � > 0 constants such that  · � = 1.

Definition 7.2 LetΩ be a solution to (7.2) and DΩ , EΩ the associated state variables. We denote with Reg(%Ω)
the regular part of %Ω, that is the set of all G0 ∈ %Ω such that there are two blow-up limits D0 , E0 satisfying

D0(G) = (G · �)+ and E0(G) = �(G · �)+ ,

for some unit vector � ∈ ℝ3 and , � > 0 with  · � = 1. Consequently, the set

Sing(%Ω) = %Ω \ Reg(%Ω)

is called singular part of %Ω.

7.5 Proof of Theorem 4.2 (i) : �1,
-regularity of Reg(%Ω)

The goal of this section is to prove the first assertion of Theorem 4.2, i.e., that the regular part of %Ω
(in the sense of Definition 7.2) is �1,-regular for some  ∈ (0, 1].

7.5.1 Viscosity formulation

Notice that, following the same arguments of [5, 130, 131], using Corollary 7.2, it is possible to derive
the following boundary optimality condition for domains with smooth boundary:

|∇DΩ | |∇EΩ | = 1 on %Ω.

Nevertheless, in order to extend this condition to general domains, the most appropriate formulation
seems to rely on the notion of viscosity solutions; see Definition 6.1 and Definition 6.5.

Proposition 7.8 LetΩ be solution to (7.2). Then the corresponding state variables DΩ and EΩ satisfy

|∇DΩ | |∇EΩ | = 1 on %Ω ∩ �1 (7.34)
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in the viscosity sense (for more details, see Theorem 6.3 and Definition 6.5 with & ≡ 1).

Proof. The state variables satisfy, by definition, the equations{
−ΔDΩ = 5 inΩ ∩ �1 ,

−ΔEΩ = 6 inΩ ∩ �1 ,

in the classical sense, so we only need to focus on the boundary condition. First, by Proposition 7.7, at
every G0 ∈ %Ω ∩ �1 there exists a sequence of radii A: ↘ 0+ such that

(1) DG0 ,A: and EG0 ,A: converge in the sense of Proposition 7.5 to some D0 , E0 ∈ �1
loc(ℝ3) ∩ �0,1

loc (ℝ3);
(2) there is a universal constant Λ > 0 such that D0 ≡ ΛE0 in ℝ3;

(3) the functions D0 and E0 are 1-homogeneous solutions that satisfy (1)–(3) of Proposition 7.6.

Moreover, by Proposition 7.7 we have that D0 satisfies the integral condition∫
ℝ3

[
div �

(
|∇D0 |2 + 1

)
− ∇D0 · ((��)) + (��))∇D0

]
3G = 0 for every � ∈ �∞2 (ℝ3; ℝ3), (7.35)

and the trace !0 of D0, defined on S3−1, satisfies
−Δ(!0 = (3 − 1)!0 in S3−1 ∩ {D0 > 0}
!0 > 0 in S3−1 ∩ {D0 > 0}
!0 = 0 on S3−1 ∩ %{D0 > 0},

(7.36)

where −Δ( is the Laplace-Beltrami operator on S3−1; see [105] for more details. On the other hand,
sinceΩ admits a one-side tangent ball at G0, there exists a unit vector � ∈ ℝ3 such that

either {G · � > 0} ⊆ {D0 > 0} or {D0 > 0} ⊆ {G · � > 0}.

In the first case, it turns out that {D0 > 0} = {G · � > 0}. In the second case, instead, since

H3−1({D0 > 0} ∩ S3−1) ≤ 3$3

2
,

we obtain the inequality
dimH({D0 > 0} ∩ S3−1) ≥ 3 − 1,

and the equality holds if and only if {D0 > 0} = {G · � > 0}. Thus, by the uniqueness of solution to
(7.36) in the half-sphere, we get that

D0(G) :=  (G · �)+ and E0(G) := � (G · �)+

for some , � > 0. Finally, since %{D0 > 0} ∩ �1 is smooth, we can integrate by parts (7.35) as in the
proof of Lemma 7.2, and deduce that∫

%{D0>0}
(� · �)(1 − |∇D0 | |∇E0 |) 3� = 0 for every � ∈ �∞2 (ℝ3; ℝ3),

which, in turn, implies the thesis:

� = |∇D0 | |∇E0 | = 1 on %{D0 > 0}.
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7.5.2 Proof of the �1,
-regularity

We are finally ready to prove assertion (i) of Theorem 5.1. We achieve this by proving the following
lemma, which is a consequence of the epsilon-regularity theory developed in Chapter 6.

Lemma 7.11 LetΩ be a solution to (7.2). Then Reg(%Ω) is locally the graph of a �1, function.

Proof. Let G0 ∈ Reg(%Ω) and let DG0 ,A: , EG0 ,A: be the blow-up sequences of Proposition 7.7. Then, by the
uniform convergence on compact sets, there are , � > 0 and a unit vector � ∈ ℝ3 such that

� = 1,

and the following holds: for every & > 0 there is :0 > 0 such that, for every : ≥ :0, we have{
‖DG0 ,A: − (G · �)+‖!∞(�1) ≤ &

‖EG0 ,A: − �(G · �)+‖!∞(�1) ≤ &

and {
DG0 ,A: = EG0 ,A: = 0 in {G · � < −&},
DG0 ,A: , EG0 ,A: > 0 in {& < G · �}.

Thus, we get
(G · � − 2&)+ ≤DG0 ,A: (G) ≤ (G · � + 2&)+ for every G ∈ �1 ,

�(G · � − 2&)+ ≤EG0 ,A: (G) ≤ �(G · � + 2&)+ for every G ∈ �1 ,

whichmeans that DG0 ,A: and EG0 ,A: are 2&-flat in the direction � (in the sense of Definition 6.2). Moreover,
if we rescale the state equations, we get{

−ΔDG0 ,A: = A
2
:
5: in �1 ∩ {DG0 ,A: > 0}

−ΔEG0 ,A: = A
2
:
6: in �1 ∩ {DG0 ,A: > 0},

where
‖ΔDG0 ,A: ‖!∞(�1) + ‖ΔEG0 ,A: ‖!∞(�1) ≤ A:

(
‖ 5 ‖!∞(�1) + ‖6‖!∞(�1)

)
.

On the other hand, since both DG0 ,A: and EG0 ,A: satisfy (7.34) in the viscosity sense, we apply Theorem
6.3 to obtain an integer :̄ > 0 such that

%{DG0 ,A: > 0} ∩ �1/2 ∈ �1, for every : ≥ :̄ .

Finally, the result follows by rescaling back to the original problem.

7.6 Proof of Theorem 4.2 (ii) : dimension of Sing(%Ω)

The goal of this section is to prove the second assertion of Theorem 4.2, which is that the Hausdorff
dimension of Sing(%Ω), whereΩ is optimal, is bounded by

dimH(Sing(%Ω)) ≤ 3 − 5

if 3 ≥ 5, and is empty if 3 ≤ 4.
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7.6.1 Convergence of first and second variation

The first step consists of showing that the blow-up limits given by Proposition 7.7 are stable critical
points in sense of Alf-Caffarelli - see Definition 7.3 for more details -.

Lemma 7.12 Let Ω ⊂ ℝ3 be a bounded open set and let 5 ∈ �2
2 (ℝ3) be a non-negative function. For any

compactly supported smooth vector field � ∈ �∞2 (ℝ3; ℝ3), denote by �D the solution to{
−Δ(�D) = div(��∇DΩ) + � 5 inΩ,

�D ∈ �1
0 (Ω),

(7.37)

where �� and � 5 are defined as in (7.12). If  := spt �, then

‖∇(�D)‖!2(Ω) + ‖�D‖!∞(Ω) ≤ �3
(
‖ 5 ‖!∞ + [DΩ]�0,1

)
| |1/3‖�‖�2

for some dimensional constant �3 > 0.

Proof. First, notice that �D is also given by the unique solution to the minimization problem

min
)∈�1

0 (Ω)

{∫
Ω

1
2
|∇) |2 3G +

∫
Ω

∇) · (��∇DΩ + 5 �) 3G
}
,

so we consider the competitor ) := min{�D, C} for C > 0 and, by minimality of �D, we have∫
ΩC

1
2
|∇(�D − C)+ |2 3G ≤

∫
ΩC

∇(�D − C)+ · ((��)∇DΩ + 5 �) 3G,

whereΩC = {�D > C}. Using Young’s inequality, we get∫
ΩC

|∇(�D − C)+ |2 3G ≤ �
∫
ΩC∩ 

|(��)∇DΩ + 5 �|2 3G

≤ �‖�‖2
�2

∫
ΩC∩ 

|∇DΩ |2 3G + �‖ 5 �‖2!∞ |ΩC ∩  |

≤ �
(
‖ 5 ‖2!∞ + [DΩ]

2
�0,1

)
|ΩC ∩  |‖�‖2�2 ,

which, by the Sobolev embedding (Theorem 4.7), leads to the following inequality:

‖(�D − C)+‖!2∗ (ΩC ) ≤ �
(
‖ 5 ‖!∞ + [DΩ]�0,1

)
|ΩC ∩  |‖�‖�2 .

Moreover, for any ) > C, we have

‖(�D − C)+‖!2∗ (ΩC ) ≥ () − C)|Ω) ∩  |(3−2)/(23) ,

so, if we consider the sequence C: := (1 − 2−:)) and use the inequality above, we get

)2−:"(3−2)/(23)
:+1 ≤ �

(
‖ 5 ‖!∞ + [DΩ]�0,1

)
‖�‖�2 ‖ 5 ‖!∞(ℝ3)"

1/2
:
,

where we use the notation": := |ΩC: ∩  |. It follows that

":+1 ≤ �
( ‖ 5 ‖!∞ + [DΩ]�0,1

)
‖ 5 ‖!∞ ‖�‖�2

)23/(3−2)
223:/(3−2)"1+2/(3−2)

:
,
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which means that, if we choose ) such that

�

( ‖ 5 ‖!∞ + [DΩ]�0,1

)
‖ 5 ‖!∞ ‖�‖�2

)23/(3−2)
= 23 |Ω ∩  |−2/(3−2) = 23"−2/(3−2)

0 ,

then it is easy to verify that
|Ω) ∩  | = lim

:→∞
": = 0.

If we repeat the same argument with max{�D, C} instead of min{�D, C}, we conclude that

‖�D‖!∞(Ω) ≤ �3
(
‖ 5 ‖!∞ + [DΩ]�0,1

)
| |1/3‖ 5 ‖!∞(ℝ3)‖�‖�2

for some �3 > 0. Similarly, since �D solves (7.37), by Hölder’s inequality we get∫
ℝ3

|∇(�D)|2 3G ≤
∫
 

��(��)∇DΩ + 5 ���2 3G
≤ ‖�‖2

�2

∫
 

|∇DΩ |2 3G + ‖ 5 ‖2!∞ ‖�‖
2
�2 | |,

which, using (7.5), implies the desired estimate:

‖∇�D‖2
!2(Ω) ≤ �3

(
‖ 5 ‖2!∞ + [DΩ]

2
�0,1

)
‖�‖2

�2 | |.

Lemma 7.13 LetΩ be a solution to (7.2), let � ∈ �∞2 (ℝ3; ℝ3) be a smooth compactly supported vector field,
and fix A > 0 and G0 ∈ %Ω. If the blow-up family (DG0 ,A: ,Ω:) converges to a blow-up limit (D0 ,Ω0) in the
sense of Proposition 7.7, then the sequence �DG0 ,A: of solutions to{

−Δ(�DG0 ,A: ) = div
(
��∇DG0 ,A: + 5G0 ,A:�

)
inΩ:

�DG0 ,A: ∈ �1
0 (Ω:)

converges strongly in �1
loc(ℝ3) ∩ ¤�1(ℝ3) to the solution F ∈ �1

0 (Ω0) to

−ΔF = div(��∇D0) inΩ0.

Proof. Let D: = DG0 ,A: , 5: = A2
:
5G0 ,A: and  = spt �, and denote by �D: ∈ �1

0 (Ω:) the solution to

−Δ(�D:) = div(��∇D:) + div( 5:�) = 0 inΩ: . (7.38)

In other words, the function �D: minimizes in �1
0 (Ω:) the functional

�:()) =
∫
ℝ3

1
2
|∇) |2 3G +

∫
ℝ3

∇) · �: 3G, where �: = ��∇D: + 5:� ∈ !∞( ),

and, integrating by parts (7.38), we get

�:(�D:) =
1
2

∫
 

∇�D: · �: 3G = −
1
2

∫
ℝ3

|∇�D: |2 3G.

Now, by Lemma 7.12, we have the estimate

‖∇�D: ‖!2(Ω: ) + ‖�D: ‖!∞(Ω: ) ≤ �3
(
‖ 5: ‖!∞ + [D:]�0,1

)
| |1/3‖�‖�2

≤ �3
(
A2
:
‖ 5 ‖!∞ + [DΩ]�0,1

)
| |1/3‖�‖�2 ,
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so the sequence �D: is uniformly bounded in �1
loc(ℝ3) and, up to a subsequences, we have

�D: → F ∈ �1
loc(ℝ

3) weakly in �1
loc(ℝ

3) ∩ ¤�1(ℝ3).

On the other hand, by Proposition 7.7 we have D: → D0 ∈ �1
loc(ℝ3) ∩ �0,1

loc (ℝ3) strongly in �1
loc(ℝ3)

and locally uniformly in ℝ3. Moreover, we have

Ω: ∩  
:→+∞−−−−−→ Ω0 ∩  in the Hausdorff distance,

1Ω:
→ 1Ω0 in !1( ),

so, using (7.38), we can find :0 > 0 such that, for every : ≥ :0 we have∫
ℝ3

[
∇�D: · ∇) + ∇) · �:

]
3G = 0 for every ) ∈ �1

0 (Ω0).

Therefore, since 5: → 0, |∇D: | → |∇D0 | strongly in !2
loc(ℝ3), we take the limit : →∞ and deduce that∫

ℝ3

[
∇F · ∇) + ∇) · ��∇D0

]
3G = 0 for every ) ∈ �1

0 (Ω0).

To conclude, we need to show the strong convergence of �D: in ¤�1(ℝ3). However, since �D: converges
to F weakly in ¤�1(ℝ3), it is enough to prove the convergence of the !2-norms:

lim
:→∞

∫
ℝ3

|∇(�D:)|2 3G =
∫
ℝ3

|∇F |2 3G.

Since F ∈ �1
0 (Ω)minimizes (in �1

0 (Ω)) the functional

�0()) =
∫
ℝ3

1
2
|∇) |2 3G +

∫
ℝ3

∇) · �0 3G, with �0 = ��∇D0 ,

by a direct computation we get

�:(�D:) = �0(F) +
1
2

∫
 

(F − �D:)div �0 3G +
1
2

∫
 

∇�D: · (�: − �0) 3G.

It follows that

|�:(�D:) − �0(F)| ≤
1
2
‖F − �D: ‖!2( )‖ div �0‖!2( ) +

1
2
‖�D: ‖�1( )‖�: − �0‖!2( )

and, since �D: is uniformly bounded in �1( ), we get that �D: → F strongly in !2( ) and so the
previous right hand-side goes to zero, as : →∞.

To conclude this section, we improve Proposition 7.7 by showing that at every point of %Ω there exists
a blow-up limit which is a one-homogeneous stable critical point of the Alt-Caffarelli functional.

Proposition 7.9 LetΩ be a solution to (7.2) and DΩ , EΩ be the associated state variables. Then, at every point
G0 ∈ %Ω, there exists a sequence �: ↘ 0+ such that

(i) DG0 ,�: and EG0 ,�: converge in the sense of Proposition 7.7 to some multiple of D0 ∈ �1
loc(ℝ3) ∩ �0,1

loc (ℝ3);
(ii) the function D0 is one-homogeneous and satisfies

%�$(D0 , �1)[�] = 0 and %2�$(D0 , �1)[�] ≥ 0

for every smooth compactly supported vector field � ∈ �∞2 (ℝ3;ℝ3). In other words, it is a stable critical
point in sense of Definition 7.3.
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7.6.2 Stable solutions for the Alt-Caffarelli functional

In view of what we have proved in Subsection 7.2.2, Section 7.4 and Subsection 7.6.1, we give the
following definition of stable critical point in sense of Alf-Caffarelli:

Definition 7.3 Let � be an open set and let D ∈ �1(�) be non-negative. We say that D is a stable critical
point for the Alt-Caffarelli functional if, for every � ∈ �∞2 (ℝ3; ℝ3), we have

%�$(D, �1)[�] = 0 and %2�$(D, �1)[�] ≥ 0,

where �� and �2� are given in (7.12). For more details on the first and second variation, see Lemma 7.4

Remark 7.6 Here we consider a slightly different definition of stable critical point. Indeed, we use the
diffeomorphism

ΦC(G) = G + C�(G),

while in [4] they consider ΦC(G) = G + �(C , G), so they only coincide at the infinitesimal level.

Proposition 7.10 Let � be an open set in ℝ3. Suppose that D ∈ �1(�) be a non-negative function. Then, the
following are equivalent:

(1) D is a stable critical point for the Alt-Caffarelli functional in �;
(2) D is a stable critical point of the Alt-Caffarelli functional in every bounded open setΩ ⊂ �.

Proposition 7.11 Blow-up limits of stable critical points are stable critical cones.

Theorem 7.2 The stable critical cones with isolated singuarity in zero are stable in the sense of Jerison-Savin
and Caffarelli-Jerison-Kenig.

This result follows immediately exactly as in the proof of [50, Lemma 1].

Proposition 7.12 There is a critical dimension 3∗ such that the stable critical cones for Alt-Caffarelli are smooth
in ℝ3 if 3 < 3∗, are smooth in ℝ3 \ {0} if 3 = 3∗ and, if 3 > 3∗, dim(Sing(%Ω)) < 3 − 3∗.

Remark 7.7 By [50] and [104], we know that 3∗ ≥ 5. Conversely, by [72], we have 3∗ ≤ 7.

7.6.3 Analysis of the dimension of the singular set

We are finally ready to prove that the second assertion of our main result Theorem 4.2.

Lemma 7.14 (Existence of points of positive density) Let B > 0 and let  ⊂ ℝ3 be a given set. IfHB( ) > 0,
then there exists G0 ∈  such that

lim sup
A→0

HB ( ∩ �A(G0))
AB

> 0.

Let (D= , E= ,Ω=) be a blow-up sequence as in Proposition 7.9 and denote by (D0 , E0 ,Ω0) the blow-up
limits. We are now interested in the connection between

Sing(%Ω=) and Sing(%Ω0)

The following result, proved in [145], gives us a kind of convergence and, more importantly, the upper
semicontinuity condition (7.39).

Lemma 7.15 Let D= : � → ℝ be a sequence of continuous non-negative functions and letΩ= := {D= > 0}.
Suppose that the following conditions hold:
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(i) Uniform &-regularity. There are constants &, ' > 0 such that the following holds: if = ∈ ℕ, G0 ∈
%Ω= ∩ � and A ∈ (0, ') are such that �A(G0) ⊂ � and

‖D= − (G − G0) · �‖!∞(�A (G0)) ≤ &A for some � ∈ %�1 ,

then %Ω= = Reg(%Ω=) in �A/2(G0).
(ii) Uniform non-degeneracy. There are constants �, A0 > 0 for which if = ∈ ℕ, G0 ∈ %Ω= ∩ � and

A ∈ (0, A0) are such that �A(G0) ⊂ �, then

‖D= ‖!∞(�A (G0)) ≥ �A.

(iii) Uniform convergence. The sequence D= converges locally uniformly in � to a function D0 : � → '.

Then, for every compact set  ⊂ �, the following holds: if* ⊂ � is open and contains  ∩ Sing%Ω0, then
there is =0 ∈ ℕ such that

Sing(%Ω=) ∩  ⊂ * for every = ≥ =0.

In particular, for every B > 0, we have

HB
∞

(
 ∩ Sing(%Ω0)

)
≥ lim sup

=→∞
HB
∞

(
 ∩ Sing(%Ω=)

)
. (7.39)

Lemma 7.16 (Blowup of one-homogeneous functions) Let I : ℝ3 → ℝ be a one-homogeneous locally
Lipschitz continuous function. Let 0 ≠ G0 ∈ %ΩI , A= → 0 and

IA= ,G0(G) :=
1
A=
I(G0 + A=G)

be a blowup sequence converging locally uniformly to a function I0 : ℝ3 → ℝ. Then I0 is invariant in the
direction G0, that is,

I0(G + CG0) = I0(G) for every G, C ∈ ℝ. (7.40)

This result is crucial because, by Proposition 7.9, we have that

D0 = ΛE0 and D0 is one-homogeneous,

so, if we consider a further blow-up, we can apply (7.40) to deduce that D0G0 is invariant in one
direction; therefore, if both 0 and G0 ≠ 0 are singular points, then

[0, G0] = {CG0 : C ∈ [0, 1]} ⊂ Sing(%{DΩ > 0}),

and, as we see below, this obviously plays a fundamental role in determining the Hausdorff dimension
of singular points.

Lemma 7.17 (Dimension reduction) Let D0 be a one-homogeneous functions which is a stable critical point in
the sense of Definition 7.3. Then the following holds:

H3−3∗+&(Sing(%{D0 > 0})) = 0 for every & > 0.

Proof of Theorem 4.2. We argue by contradiction and assume that

H3−3∗+&(Sing(%Ω)) > 0

for some & > 0. We can assume, up to translation, that 0 ∈ Sing(%Ω). Consider now the blow-up limit
D0 given by Proposition 7.7. It is one-homogeneous and, by Lemma 7.13, we have

DΩ stable critical point =⇒ D0 stable critical point
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in the sense of Definition 7.3. Moreover, by Lemma 7.15 we know that

H3−3∗+&(Sing(%Ω)) > 0 =⇒ H3−3∗+&(Sing(%{D0 > 0})) > 0,

so we can apply Lemma 7.14 and find a singular point G0 ≠ 0 for D0 and a sequence of radii A= → 0
such that the following holds:

H3−3∗+& (
�A= (G0) ∩ Sing(%{D0 > 0})

)
≥ &A3−5+&

= .

Taking the blow-up sequence D= := (D0)A= ,G0 , we get that

H3−3∗+& (
�1 ∩ Sing(%{D= > 0})

)
≥ &.

Moreover, since D0 is one-homogeneous, the same is true for D00, which denotes the blow-up limit of
D= ; therefore, we apply Lemma 7.17 and deduce that

H3−3∗+&(�1 ∩ Sing(%{D00 > 0})) ≥ &,

but this is a contradiction with (7.39), concluding the proof of Theorem 4.2.
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