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Abstract
We present xspells, a model-agnostic local approach for explaining the decisions of black 
box models in classification of short texts. The explanations provided consist of a set of 
exemplar sentences and a set of counter-exemplar sentences. The former are examples clas-
sified by the black box with the same label as the text to explain. The latter are examples 
classified with a different label (a form of counter-factuals). Both are close in meaning to 
the text to explain, and both are meaningful sentences – albeit they are synthetically gener-
ated. xspells generates neighbors of the text to explain in a latent space using Variational 
Autoencoders for encoding text and decoding latent instances. A decision tree is learned 
from randomly generated neighbors, and used to drive the selection of the exemplars and 
counter-exemplars. Moreover, diversity of counter-exemplars is modeled as an optimiza-
tion problem, solved by a greedy algorithm with theoretical guarantee. We report experi-
ments on three datasets showing that xspells outperforms the well-known lime method in 
terms of quality of explanations, fidelity, diversity, and usefulness, and that is comparable 
to it in terms of stability.
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1 Introduction

Text classification is the task of assigning to strings of text a label from a predefined set. 
Automating text classification is motivated by the massive amount of texts available in 
the current digital age, and by the complexity of determining the correct label for new 
texts. Automated text classification is made possible by increasingly accurate algorithms 
(Kowsari et al. 2019), such as supervised models from machine learning (Sebastiani 2002) 
and deep learning (Minaee et  al. 2021), or semantic methods Altinel and Ganiz (2018) 
that overcome the simple representation of texts as bag of words. For example, sentiment 
classification Liu and Zhang (2012) of subjective texts about a product (or, a brand, a poli-
tician, a regulation, etc.) into positive, negative, or neutral opinions is supported by sev-
eral techniques Hemmatian and Sohrabi (2019). Other applications of text classification Li 
et al. (2020); Zhou et al. (2020) include: filling texts into appropriate sections in websites 
or folders (document organization); assigning one or more subjects to texts (topic labe-
ling); selecting relevant texts from a stream (text filtering); detecting unsolicited emails 
(spam detection); determining the stance – favor, against, neither – of the author of a text 
towards a target (stance detection); etc.

The classification of short texts   (Song et al. 2014), which abound in micro-blogging 
sites such as Twitter and in online reviews, is especially challenging, due to their spar-
sity, non-uniformity, and noisiness. Deep Neural Networks (DNNs) Korde and Mahender 
(2012), Zhang et al. (2015) and Random Forests (RFs) da Silva et al. (2014) and  Xu et al. 
(2012), have been shown to be effective in terms of predictive accuracy and robustness to 
noise. However, the decision logic learned by a DNN or by a RF to classify a given text 
remains obscure to human inspection. These inscrutable “black box” models may repro-
duce and amplify biases learned from data, such as prejudice (Bolukbasi et al. 2016), or 
they may introduce new forms of bias (Olteanu et al. 2019), e.g., due to spurious correla-
tions. When opinions concern specific individuals, this may also result in social discrimi-
nation against protected-by-law groups identified by their sensitive traits (e.g. gender iden-
tity, sexual orientation, ethnic background) (Ntoutsi 2020).

Explainability of decisions made by black box models is nowadays a mandatory require-
ment (Doshi-Velez and Kim 2017; Freitas 2013) for the social acceptance of Artificial 
Intelligence (AI) applications Danks (2019). Developers need to understand a model’s deci-
sions for debugging and optimization. For example, to characterize conditions under which 
the model can be trustfully applied, and conditions for which the model should abstain to 
make decisions. People subject to black box decisions may inquire to be provided with 
“meaningful information of the logic involved” (articles 13–15 of European Union Gen-
eral Data Protection Regulation, sometimes referred to as right to legibility (Malgieri and 
Comandé 2017) or right to explanation (Selbst and Powles 2017)). For example, if a com-
ment in a social network has been removed because it has been classified as hate speech, 
the author has the right to know why the machine learning system has assigned such a label 
to her comment.

In this paper, we investigate the problem of explaining the decisions of a black box 
model (simply, a black box) when classifying a given short text in input, e.g., as in sen-
timent classification. We design and experiment with a model-agnostic local approach 
named xspells (explaining sentiment prediction generating exemplars in the latent space). 
xspells’s explanations for the prediction y = b(x) assigned by a black box b to a short text 
x consists of set of exemplar texts E, a set of counter-exemplar texts C, and the most fre-
quent words in each of those sets W = WE ∪WC . Exemplars are sentences classified by 
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the black box with the same label as x and close in meaning to x. They are intended to 
provide the user with hints about the kind of texts in the neighborhood of x that the black 
box classifies in the same way as x. Counter-exemplars are sentences that the black box 
classifies differently from y, but like exemplars, are also close in meaning to x. They are 
intended to provide the user with hints about the kind of texts in the neighborhood of x that 
the black box classifies differently from x. The usefulness of counter-factual reasoning has 
been widely recognized in the literature on Explainable AI Byrne (2019), particularly as 
a tool for causal understanding of the behavior of black boxes. Diversity of the provided 
counter-exemplars is modeled as an optimization problem, which is solved by resorting 
to a greedy algorithm with a theoretical guarantee. By contrasting exemplars and counter-
exemplars, the user can gain an understanding of the factors affecting the classification of 
x. To help such an understanding, xspells provides also the most frequent words appearing 
in the exemplar texts E and in the counter-exemplar texts C.

The main novelty of our approach lies in the fact that the exemplars and counter-exem-
plars produced by xspells are meaningful texts, albeit synthetically generated. We map the 
input text x from a (sparse) high-dimensional vector space into a low-dimensional latent 
space vector z by means of Variational Autoencoders Kingma and Welling (2014), which 
are effective in encoding and decoding diverse and well-formed short texts (Bowman et al. 
2016). Then we study the behavior of the black box b in the neighborhood of z, or, more 
precisely, the behavior of b on texts decoded back from the latent space. Finally, we exploit 
a decision tree built from latent space neighborhood instances to drive the selection of 
exemplars and counter-exemplars. Experiments on three standard datasets and two black 
box classifiers show that xspells overtakes the baseline method lime Ribeiro et al. (2016) 
by providing understandable, faithful, useful, and stable explanations.

This paper extends the conference version Lampridis et  al. (2020) in several aspects. 
First, we formulate the problem of diverse counter-exemplar selection and provide a solu-
tion based on a greedy algorithm. Second, in addition to training a VAE on a subset of 
available data, we consider using a pre-trained VAE from the state of the art. Third, a 
deeper experimental qualitative/quantitative analysis is conducted. The rest of the paper is 
organized as follows. Section 2 discusses related work. Section 3 formalizes the problem 
and recalls key notions for the proposed method, which is described in Sect. 4. Section 5 
presents the experimental results. Finally, Sect. 6 summarizes our contribution, its limita-
tions, and future work.

2  Related work

Research on interpretability and explainability in AI has bloomed over the last few years 
(Guidotti et  al. 2019b; Miller 2019), with many implementations of proposed methods 
(Bodria et  al. 2021; Linardatos et  al. 2021). Intrinsically explainable AI models can be 
directly interpretable by humans, or the explanation of their decisions arise as part of their 
prediction process (self-explainability). Examples in the area of short text classification 
include linear classifiers exploiting word taxonomies (Skrlj et al. 2021) or lexicons (Clos 
and Wiratunga 2017). The best performing text classifiers, however, rely on black box 
models, which are inaccessible, inscrutable, or simply too complex for humans to under-
stand. Hence, they require post-hoc explanations of their decisions. Explanation methods 
can be categorized as: (i) Model-specific or model-agnostic, depending on whether the 
approach requires access to the internals of the black box; (ii) Local or global, depending 
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on whether the approach explains the prediction for a specific instance or the overall logic 
of the black box.

xspells falls into the category of local, model-agnostic methods. Well known tools in 
this category that are able to work also on textual data include lime, anchor and shap. 
lime Ribeiro et al. (2016) randomly generates synthetic instances in the neighborhood of 
the instance to explain. An interpretable linear model is trained from such instances. Fea-
ture weights of the linear model are used for explaining the feature importance over the 
instance to explain. In the case of texts, a feature is associated to each of the top frequent 
words in a dataset. lime has two main weaknesses. First, the number of top features/words 
to be considered is assumed to be provided as an input by the user. Second, the neighbor-
hood texts are generated by randomly removing words, possibly generating meaningless 
texts. anchor Ribeiro et al. (2018) follows the main ideas of lime but it returns decision 
rules (called anchors) as explanations. In the case of texts, such rules state which words, 
once fixed, do not alter the decision of the black box when randomly replacing all other 
words by similar words (in an embedding space) with the same part-of-speech (POS) tag. 
anchor adopts a bandit algorithm that constructs anchors with predefined minimum pre-
cision. Its weaknesses include the need for user-defined precision threshold parameters, 
and, as for lime, the generation of possibly meaningless instances. shap Lundberg and Lee 
(2017) relates game theory with local explanations and overcomes some of the limitations 
of lime and anchor. Also shap audits the black box with possibly meaningless synthetic 
sentences. The method xspells proposed in this paper recovers from this drawback by gen-
erating the sentences for the neighborhood in a latent space by taking advantage of vari-
ational autoencoders.

With regard to model-specific local approaches, lionets, deeplift and neurox are 
designed to explain deep neural networks and they are able to work on textual data. deeplift 
Shrikumar et al. (2017) decomposes the prediction of neural networks on a specific input 
by back-propagating the contributions of all neurons in the network to the input features. 
Then it compares the activation of each neuron to its “reference activation” and it assigns 
contribution scores according to the difference. neurox Dalvi et  al. (2019) facilitates the 
analysis of individual neurons in DNNs. In particular, it identifies specific dimensions in 
the vector representations learned by a neural network model that are responsible for spe-
cific properties. Afterwards, it allows for the ranking of neurons and dimensions based on 
their overall saliency. Finally, lionets Mollas et  al. (2019) looks at the penultimate layer 
of a DNN, which models texts in an alternative representation, randomly permutes the 
weights of nodes in that layer to generate new vectors, classifies them, observes the classi-
fication outcome and returns the explanation using a linear regressor like lime. Differently 
from these model-specific methods, xspells is not tied to a specific architecture and can be 
used to explain any black box classifier.

Other approaches such as IntGrad Sundararajan et al. (2017), LRP Bach et al. (2015), 
DeepLift Shrikumar et al. (2017) and L2X Chen et al. (2018) are designed to explain image 
classifiers. However, they can be adapted to work on text classifiers by returning a sort of 
saliency map as explanation, also named sentence highlighting, that highlights the most 
important words responsible for the classification. For instance, Arras et al. (2017) adapts 
the model-specifc approach of layer-wise relevance propagation (LRP Bach et al. 2015) to 
extract word-wise relevance score. Similarly, Li et al. (2016) proposes an attention-based 
sentence-highlighting explanation system that extracts a saliency score for every word by 
using the weights layer of a DNN black box. Attention-based explanations aim also at con-
necting the importance of various words in a sentence. For instance, Vaswani et al. (2017) 
provides the explanation as a matrix where rows and columns represent a word and the 
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value in the cell is proportional to the self-attention in the explanation between the words 
at the row/column of the cell. Visualization of such a matrix can also highlight connections 
among words (Hoover et al. 2019). Compared to such approaches, the explanation given by 
xspells is “instance-wide” as it is formed by prototypes showing with examples/counter-
examples similar/different classification outcomes. On the other hand, those approaches 
return an explanation that points the attention on single words causing the classification 
outcomes.

Regarding counter-factual approaches, while there is a growing literature for tabular 
data and images (Artelt and Hammer 2019; Verma et al. 2020), to the best of our knowl-
edge our proposal is an original contribution in the context of short text classification. A 
form of contrastive explanations has been proposed in the local model-specific approach of 
Croce et al. (2019) for a self-explaining question classification system based on LRP. Here, 
the top texts from the training set which contribute the most (negatively) to the decision are 
returned as counter-exemplars.

Finally, for explainability in Natural Language Processing beyond classification, we 
refer to a recent survey Danilevsky et al. (2020) and its associated living website Qian etal 
(2021).

3  Setting the stage

In this paper, we address the black box outcome explanation problem Guidotti et  al. 
(2019b) in the domain of short text classification. We will only consider and experiment 
with short texts such as posts on social networks, brief reviews, or single sentences. These 
are typically categorized into two or a small number of class labels, as in sentiment clas-
sification, stance detection, hate-speech recognition, etc. Text classification is particularly 
challenging in these cases, with high risks of biased decisions accompanied with an urgent 
need for black box explanation methods. A black box model is a non-interpretable or inac-
cessible text classifier b which assigns a class label y to a given text x,  i.e., b(x) = y . We 
assume that the black box b can be queried at will. We use the notation b(X) as a shorthand 
for {b(x) | x ∈ X}.

Definition 1 Let b be a black box text classifier, and x a text for which the decision 
y = b(x) has to be explained. The black box outcome explanation problem for text clas-
sification consists of providing an explanation � ∈ Ξ belonging to a human-interpretable 
domain Ξ.

In the following, we introduce the key tools used in our approach.

3.1  Local explainers, factuals and counter‑factuals

In the context of tabular data, a widely adopted human-interpretable domain Ξ consists of 
if-then rules. They provide conditions (in the if-part) met by the instance x to be explained, 
that determined the answer of the black box (then-part). Rules can also be used to pro-
vide counter-factuals, namely alternative conditions, not met by x, that would determine 
a different answer by the black box Byrne (2019). In our approach, we will build on lore 
Guidotti et al. (2019a), a local explainer for tabular data that learns a decision tree from a 
given neighborhood Z of the instance to explain. Such a tree is a surrogate model of the 
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black box, i.e.,  it is trained to reproduce the decisions of the black box locally to x. lore 
provides as output: (i) a factual rule p → y , corresponding to the path p in the surrogate 
tree that explains why an instance x has been labeled as y by the black box b; and (ii) a set 
of counter-factual rules p[�] → y� explaining (minimal) changes � in the features of x that 
would change the class y assigned by b to y′ . In lore, the neighborhood Z is synthetically 
generated using a genetic algorithm that balances the number of instances similar to x and 
with its same label y, and the number of instances similar to x but with a different label 
y′ ≠ y assigned by b. One first problem with directly using lore is that texts are not tabular 
data. We will tackle this issue by mapping a large m-dimensional space of words to a small 
k-dimensional space of numbers (latent space), a tabular space from which rules can be 
extracted.

3.2  Variational autoencoders for short text generation

Local explanation methods, such as lore, audit the behavior of a black box in the neigh-
borhood of the instance to explain. A second non-trivial problem with textual data is how 
to generate meaningful synthetic sentences in the neighborhood (w.r.t.  semantic similar-
ity) of the instance. We tackle this problem by adopting Variational Autoencoders (VAEs) 
(Kingma and Welling 2014), which have been shown to be very effective (Bowman et al. 
2016) in generating diverse and well-formed (short text) sentences. A VAE is trained 
with the aim of learning a representation that reduces the dimensionality from the space 
of words to the latent space, also capturing non-linear relationships. An encoder � , and a 
decoder � are simultaneously learned with the objective of minimizing the reconstruction 
loss. Starting from the reduced encoding z = � (x) , the VAE reconstructs a representation as 
close as possible to its original input x̃ = 𝜂(z) ≃ x . After training, the decoder can be used 
with generative purposes to reconstruct instances never observed by generating vectors in 
the latent space of dimensionality k. The difference to standard autoencoders (Hinton and 
Salakhutdinov 2006) is that VAEs are trained by considering an additional limitation on 
the loss function such that the latent space is scattered and does not contain “dead zones”. 
Indeed, the name “variational” comes from the fact that VAEs work by approaching the 
posterior distribution with a variational distribution. The encoder � emits the parameters 
for this variational distribution, in terms of a multi-factorial Gaussian distribution, and the 
latent representation is taken by sampling this distribution. The decoder � takes as input 
the latent representation and focuses on reconstructing the original input from it. The 
avoidance of dead zones ensures that the instances reconstructed from vectors in the latent 
space, e.g., posts or tweets, are semantically meaningful Bowman et al. (2016).
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4  Explaining short text classifiers

We propose a local model-agnostic explainer for classification of short texts, called xspells 
(e xplaining sentiment prediction generating exemplars in the latent space). Given a black 
box b, a short text x, e.g., a post on a social network, and the class label y = b(x) assigned 
by the black box, e.g., hate or neutral, the explanation provided by xspells is composed of: 
(i) A set of exemplar texts; (ii) A set of counter-exemplar texts; and, (iii) The set of most 
common words in exemplars and counter-exemplars. Exemplar and counter-exemplar texts 
respectively illustrate instances classified with the same and with a different label than x. 
Such texts are close in meaning to x, and they offer an understanding of what makes the 
black box determine the label of texts in the neighborhood of x. Exemplars help in under-
standing reasons for, e.g., the sentiment assigned to x. Counter-exemplars help in under-
standing reasons that would reverse the sentiment assigned. The most common words in 
the exemplars and counter-exemplars may allow for highlighting terms (not necessarily 
appearing in x) that discriminate between the assigned label and a different one. These 
components form the human-interpretable explanation � ∈ Ξ for the classification y = b(x) 
returned by xspells, whose aim is to satisfy the requirements of counter-factuability, usa-
bility, and meaningfulness of an explanation (Byrne 2019; Miller 2019; Pedreschi et  al. 
2019).

Fig. 1  xspells process (part 1) on a sample input. xspells takes as input the short text x and the assigned 
label b(x). After coding the text into the latent space and generating a neighborhood, a decision tree over the 
latent features ( L1,L2,… ) is learned
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Besides the black box b and the text x to explain, xspells is parametric in: an encoder 
� and a decoder � for representing texts in a compact way in the latent space. Algorithm 1 
details xspells, and Figs. 1 and 2 show the steps of the explanation process on a sample 
input. We describe the process in detail by a simple example x: “the stupid brown fox", 
classified as “hate". First, x is transformed into a low-dimensionality vector z = � (x) in the 
latent space. xspells then generates a neighborhood Z of z, which is decoded back to a set 
of texts Z̃ (e.g. “stupid brown fox", “stupid red dog"). The dataset Z and the decisions of 
the black box on the decoded text Y = b(Z̃) are used to train a surrogate decision tree (in 
the latent space).

Then, the explCexpl() module selects exemplars E (e.g. “stupid brown fox", “stupid red 
dog") and counter-exemplars C (e.g. “lovely brown cat", “cute red cat") from Z by exploit-
ing the knowledge extracted (i.e., the decision tree branches), and decodes them into texts. 
Finally, the most common words W = WE ∪WC (here “stupid, silly, fox", “lovely, cute, 
cat") are extracted from E and C and the overall explanation � is returned. Details of each 
step are presented in the rest of this section.

4.1  Latent encoding and neighborhood generation

The input text x is first passed to a trained VAE � (line 1 of Algorithm 1), thus obtaining 
the latent space representation z = � (x) . The number of latent dimensions k is kept low 
to avoid dimensionality problems. While xspells is parametric in the encoder-decoder, 
we considered in the experiments two actual implementations. The first one is trained 
on a subset of available data. It captures the sequential information in texts by means of 
long short-term memory layers (LSTM) (Hochreiter and Schmidhuber 1997) for both the 
encoder � and decoder � (lines 1 and 3). In particular, the decoder � is trained to predict 
the next characters of a text given the previous characters of the text, with the purpose of 

Fig. 2  xspells process (part 2) on a sample input. The figure starts at the extraction of exemplars (u) and 
counter-exemplars (v) from the decision tree in the latent space. The output of xspells is a set of exemplars 
and counter-exemplars, and the most common discriminative words
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reconstructing the original text. The second implementation relies instead on a state-of-the-
art VAE already pretrained on a large text corpus (details in Sect. 5).

xspells generates a set Z of n instances in the latent feature space for a given z. The 
neighborhood generation function neighgen (line 2) can be implemented by adopting 
several different strategies, ranging from a purely random approach like in lime (Ribeiro 
et  al. 2016), to using a given distribution and a genetic algorithm maximizing a fitness 
function like in lore (Guidotti et al. 2019a). xspells adopts a random generation of latent 
synthetic instances by relying on the fact that the encoder maps uniformly the data dis-
tribution over the latent space. Duplicated instances in the random generation processes 
are removed, keeping only distinct ones. Next, xspells uses the synthetically generated 
instances Z̃ for querying the black box b (line 4). This is made possible by turning back 
the latent representation to text through the decoder � Bowman et al. (2016) (line 3). We 
tackle the requirement of generating local instances by randomly generating N ≫ n latent 
instances, and then retaining in Z only the n closest instances to z, i.e., |Z| = n . Such an 
heuristics balances diversity of instances in Z with similarity w.r.t. x. The distance function 
used in the latent space is the Euclidean distance. The neighborhood generation neighgen 
actually returns a partitioned set Z = Z= ∪ Z≠ with z� ∈ Z= such that b(�(z�)) = b(�(z)) , and 
instances z� ∈ Z≠ such that b(�(z�)) ≠ b(�(z)) . We further consider the problem of imbal-
anced distributions in Z, which may lead to weak decision trees. Class balancing between 
the two partitions is achieved by adopting the SMOTE Chawla et al. (2002) procedure if 
the proportion of the minority class is less than a predefined threshold �.

4.2  Local latent rules and explanation extraction

Given Z and Y = b(Z̃) , xspells builds a latent decision tree ldt (line 5) acting as a local sur-
rogate of the black box, i.e., being able to locally mime the behavior of b. xspells adopts 
decision trees because decision rules can be naturally derived from a root-to-leaf path 
(Guidotti et al. 2019a). Indeed, the premise p of a rule r = p→y is the conjunction of the 
split conditions from the root to the leaf of the tree that is followed by features in z. This 
approach is a variant of lore (see Sect. 3.1) but in a latent feature space. The consequence 
y of the rule is the class assigned at that leaf1.

Given a text x, the explanations returned by xspells are of the form � = ⟨E,C,W⟩ , 
where: E = {ex

1
,… , ex

u
} is the set of exemplars ( b(ex

i
) = b(x) ∀i ∈ [1, u] ); C = {cx

1
,… , cx

v
} 

is the set of counter-exemplars ( b(cx
i
) ≠ b(x) ∀i ∈ [1, v] ); and W = WE ∪WC is a union of 

the set WE of the h most frequent words in exemplars E and of the set WE of the h most 
frequent words in counter-exemplars C. Here, u, v, and h are parameters that can be set in 
xspells. Exemplars are chosen starting from the latent instances in Z which satisfy both the 
premise p and the consequence y of the rule r = p → y above, namely the instances z� ∈ Z 
that follow the same path as z in the decision tree, and such that the b(�(z�)) = y . We visu-
alized this in Fig. 2. By construction, elements in the same leaf as the instance to explain 
are candidate exemplars. The u instances z′ closest to z are selected, using Euclidean dis-
tance. They are decoded back to the text space �(z�) and included in E. Counter-exemplars 
are chosen starting from the latent instances z� ∈ Z which do not satisfy the premise p and 

1 In theory, it might happen that y ≠ b(�(z)) = b(x) , namely the path followed by z predicts a label differ-
ent from b(x). In our experiments, this never occurred. In such cases, xspells reboots by generating a new 
neighborhood and then a new decision tree.
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such that b(�(z�)) ≠ b(x) . Let us call them the set A of admissible counter-exemplars. The 
v instances in A closest to z are chosen. They are decoded back to the text space �(z�) 
and included in C. We call such an approach distance-based counter-exemplar selection. 
Again, this is visualized in Fig. 2.

4.3  Diversity

Consider the set A of admissible counter-exemplars. The distance-based strategy of select-
ing the v instances in A closest to z may return counter-exemplars too similar to each other. 
Here, we consider the problem of improving diversity of the returned instances by pro-
posing a diversity-based counter-exemplar selection. The presentation is for counter-exem-
plars, but the approach applies to exemplars simply by considering as admissible set the 
instances of Z satisfying the premise and the consequence of the rule p → y.

There are several ways of formulating diversity requirements. For example, Mothilal 
et al. (2020) combines the search for counter-factuals (in tabular instances) with diversity 
maximization by resorting to gradient descent for solving an optimization problem. In our 
case, we have a somehow simpler problem, since the set of admissible counter-factuals 
is given. We formulate our problem as maximizing a function over subsets of admissible 
counter-exemplars:

where hz(S) is an objective function to be optimized under a size constraint for S. We write 
z as sub-script to denote that hz(S) depends also on the instance z. We choose the following 
objective function:

which maximizes the difference between the coverage of the k-nearest instances of counter-
exemplars (a measure of diversity) and the total distance of counter-exemplars from z (a 
measure of proximity) regularized by a parameter � . The distance function dist , which is 
also used in the k-nearest neighborhood function nnk() , is the Euclidean distance between 
min-max normalized vectors. An efficient greedy algorithm with formal guarantees can be 
devised for the function above. For details, see Appendix 1.

Let us discuss here how to set � . Let k be the number of nearest neighbors considered in 
nnk(a) (including a itself) and let a0 ∈ A be the closest instance to z, i.e., such that the dis-
tance d0 = dist(a0, z) is minimal. We have that hz({a0}) = k − � ⋅ d0 , where k is the gain of 
adding a0 to the empty set, and � ⋅ d0 the cost. In order to have at least a0 selected, it must 
hold that hz({a0}) > 0 , hence 𝜆 < k∕d0 . Since k ≥ 1 , we conservatively set:

See Appendix 1 for a simulation on the dependency of such � over k.

(1)argmax
S⊆A∧|S|≤v

hz(S)

(2)hz(S) = |
⋃

a∈S

nnk(a)| − �
∑

a∈S

dist(a, z)

(3)� = 1∕(2d0)
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5  Experiments

In this section, we illustrate a qualitative and quantitative experimental analysis of faith-
fulness, usefulness, stability and diversity properties of xspells explanations. The xspells 
system has been developed2 in Python. It relies on the CART decision tree algorithm as 
provided by the scikit-learn library, on a VAE implemented with the keras library, 
as well as on Optimus3, a VAE that is pretrained on a large text corpus Li et al. (2020), spe-
cifically from Wikipedia.

5.1  Experimental settings

Datasets. We conduct experiments on a total of five datasets covering a wide array of prob-
lems within the short text classification domain. These include sentiment classification, 
hate speech identification, spam detection, fake news detection and question classification 
(Li et al. 2020; Zhou et al. 2020). The hate speech dataset (hate) Davidson et al. (2017) 
contains tweets labeled as hate, offensive or neutral. Here, we focus on the 1430 tweets that 
belong to the hate class, and on the 4163 tweets of the neutral class. The polarity dataset 
(polarity) Pang and Lee (2005) contains 10,660 tweets about movie reviews. Half of 
these tweets are classified as negative reviews, and the other half as positive ones. The 
third dataset we look at contains comments from five YouTube videos (youtube) Alberto 
et al. (2015), either classified as spam or ham (i.e., not spam). The final labels are no spam 
and spam The liar dataset (liar) Wang (2017) contains 12,788 manually annotated short 
statements with regards to whether they contain false or real information and are taken 
from politifact.com. This dataset contains six classes ranging from utterly false news to 
completely real news. Following related work Alhindi et al. (2018), we merge the classes 
to convert the task to a binary classification one. The labels are named fake news and real 
news respectively. Finally, the question dataset (question) Li and Roth (2002) contains 
questions categorized into six different semantic classes. To turn the problem into binary 
classification, we considered a "1 vs rest" classifier. where the label defined as 1 is the one 
with the largest number of instances. This class label is entity and it reflects questions that 
are about a specific entity. Thus, the two emerging labels are named entity and all other 
classes All these datasets are remarkable examples where a black box approach is likely 
to be used to remove or flag posts or to even ban users, possibly in an automated way, or 

Table 1  Dataset descriptions and data partitions

No. Avg. no. Train (test) size Tuning (explanation) size

Dataset Instances Words Black box BVAE OVAE

Hate 5593 20.36 4194 (1399) 1399 (1399) 1049 (350)
Polarity 10,660 21.64 7995 (2665) 2665 (2665) 1998 (667)
Youtube 1778 21.01 1378 (400) 400 (400) 302 (98)
Liar 12,788 18.38 9591 (3197) 3197 (3197) 2397 (800)
Question 5891 8.76 4418 (1473) 1473 (1473) 1104 (369)

2 The source code of xspells is available at: https:// github. com/ lstate/ X- SPELLS- V2.
3 https:// github. com/ Chuny uanLI/ Optim us.

https://github.com/lstate/X-SPELLS-V2
https://github.com/ChunyuanLI/Optimus
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to recommend topics based on user questions, possibly leading to wrong answers. Such 
extreme actions risk to hurt the free speech rights of people. Explanations of the black box 
decisions are then of primary relevance both to account for the action and to test or debug 
a black box. Datasets details are reported in Table 1 (left). We will experiment with binary 
(short) text classification. This is not a limitation of the proposed approach, which is able 
to deal with multi-class black boxes. Rather, the problem traces back to the limited size 
of the available datasets, which have to be partitioned into different sets for training black 
boxes, tuning VAEs, and testing the approach, as described next. Working with more than 
two classes makes it harder to train black boxes with acceptable performances.

Experimental scenarios. For each dataset, we use 75% of the available data for training a 
black box machine learning classifier. We call such a subset the training set. The remaining 
25% of data, called the test set, is used for training/tuning the autoencoder and for explain-
ing the black box decisions. More specifically, the test set is further split into 75% for train-
ing/tuning the autoencoder, called the tuning set, and 25% as the set of instances to explain, 
called the explanation set. All splits are stratified. We call this scenario the standard case. 
The VAE that we implemented, when trained on the tuning set, will be denoted as SVAE 
(for “standard VAE"). Also, we call OVAE the Optimus (Li et al. 2020) VAE, when it is 
fine-tuned using the tuning set. We will also experiment with an alternative scenario, which 
simulates the ideal situation when the autoencoder has a perfect knowledge of the (domain 
of the) instances to explain. In this scenario, both the tuning set and the explanation set are 
fixed to the whole test set. In particular, we call BVAE (for “best case VAE") the VAE we 
implemented, when it is trained on the whole test set. This scenario is realistic during the 
development cycle of a black box, when the developers want to debug its decisions on a set 
of instances representative of the population. Finally, for computational efficiency reasons, 
in both scenarios we selected 100 instances (98 for the youtube dataset in the case of the 
standard scenario) from the explanation set to calculate the quantitative evaluation metrics 
(fidelity, usefulness, stability, and diversity).

Black boxes. We trained and explained the following black box classifiers: Random For-
ests (Tan et al. 2016) (RF) as implemented by the scikit-learn library, and Deep Neu-
ral Networks (DNN) as implemented with the keras library. For the RF, we transformed 
texts into their TF-IDF weight vectors (Tan et al. 2016), after removing Twitter stop-words 
such as “rt”, hashtags, URLs and usernames. For the youtube dataset we additionally 
removed emojis and texts that hold more than 140 characters (maximum length of a tweet 
until 2017). A randomized cross-validation search was then performed for parameter tun-
ing. Parameters for RF models were set as follows: 100 decision trees, Gini split criterion, 

Table 2  Black box model 
accuracy and MRE of BVAE and 
OVAE

Accuracy MRE

Dataset RF DNN BVAE OVAE

Hate 0.92 0.87 0.26 ± 0.15 0.95 ± 0.08
Polarity 0.67 0.73 0.58 ± 0.35 0.95 ± 0.07
Youtube 0.92 0.91 0.41 ± 0.39 0.76 ± 0.30
Liar 0.61 0.59 0.59 ± 0.39 0.92 ± 0.09
Question 0.85 0.84 0.33 ± 0.34 0.80 ± 0.20
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√
m random features where m is the total number of features; no limit on tree depth. The 

DNNs adopted have the architecture shown in Fig. 3. The first layer is a dense embedding 
layer. It takes as input a sparse vector representation of each text (subject to same pre-
processing steps as for the RF, without the TF-IDF representation) obtained by using a 
Keras tokenizer4 to turn the text into an array of integers and a padder so that each vector 
has the same length. This way, we allow the network to learn its own dense embeddings of 
size 64. The first embedding layer is followed by a dropout layer at 0.25. Afterwards, the 
DNN is composed by three dense layers with sizes 64, 512 and 128. The central layer is an 
LSTM (Hochreiter and Schmidhuber 1997) that captures the sequential nature of texts and 
has size 100. After that, there are three dense layers with sizes 512, 64 and 32. The dense 
layers adopt the ReLu activation function. Finally, the sigmoid activation function is used 
for the final classification. We adopted binary cross-entropy as loss function and the Adam 
optimizer. We trained the DNN for a maximum of 100 epochs, or until the performance of 
the model stops improving on a held out validation dataset for more than 2 epochs. Clas-
sification accuracies are reported in Table 2.

VAEs. Here, we describe the structure and the training parameters of the VAEs we 
developed. We distinguish the best scenario (BVAE) from the standard scenario (SVAE). 
The performances of SVAE were considerably worse than BVAE (see later on). For 
this reason, we decided to adopt the pre-trained Optimus VAE in the standard scenario 
(OVAE). Experiments in the following subsections will involve only BVAE and OVAE. 
Table  2 reports the Mean Reconstruction Error (MRE) calculated as the average cosine 
similarity distance between an instance in the explanation set and its reconstructed text 
when converted to TF-IDF vectors. Since the OVAE generates texts that are similar in 
meaning but more diverse in words, the MRE is for all datasets higher (worse) compared to 
the BVAE. However, this does not mean the generated texts are not useful.

Fig. 3  Architecture of DNN black boxes. Bold text: type of layer. Numbers: layer size

4 https:// keras. io/ prepr ocess ing/ text.

https://keras.io/preprocessing/text
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Both BVAE and SVAE have their encoders � and decoders � implemented as a single 
LSTM layer. This design choice is inspired by the widely successful usage of seq2seq mod-
els for texts viewed as sequences of characters (Sutskever et  al. 2014). We fed the text 
into the VAE using a one-hot vectorization. In order to have control over the dimension-
ality of the input, and a fortiori for the computational resources required for training the 
VAE, we kept a maximum of 5000 distinct words for each dataset (this actually affects 
the polarity and liar datasets). This vocabulary was extended with the 1,000 most 
common English words5 to provide to the VAE also knowledge about unseen words with 
respect to the training set. The resulting size of the input tensors was 33 ⋅ 4947=163, 251 
for the hate dataset, 49 ⋅ 5287=259, 063 for the polarity dataset after Twitter stop-
words removal for both of the previous datasets, 32 ⋅ 1666=53, 312 for the youtube data-
set, 67 ⋅ 5319=356, 373 for the liar dataset, and 35 ⋅ 3966=138, 810 for the question 
dataset. The numbers above represent the maximum text length (number of words) and 
the number of distinct words considered. These dimensionalities are manageable because 
the input consists of short texts. We considered k=500 latent features6 for all datasets. The 

Table 3  MRE of SVAE Training epochs

Dataset 100 30

Hate 0.96 ± 0.09 0.95 ± 0.08
Polarity 0.96 ± 0.04 0.95 ± 0.06

Fig. 4  Training and validation error for SVAE. The total training loss can be further deconstructed in the 
reconstruction loss and the Kullback-Leibler loss. The validation error increases after roughly 30 epochs

5 https:// 1000m ostco mmonw ords. com/ 1000- most- common- engli sh- words/
6 Experiments (not reported due to lack of space) show that k = 500 is a good compromise between MRE 
and training time when varying k ∈ {100, 250, 500, 1000, 2500}.

https://1000mostcommonwords.com/1000-most-common-english-words/
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number of training epochs of the BVAE are 200 for the hate, the youtube and ques-
tion dataset, 250 for the polarity and the liar dataset. These numbers were chosen 
after observing the epoch at which the reconstruction loss stabilized.

We proceeded similarly for SVAE. As a first approach, we trained a VAE for 100 epochs 
for the hate and polarity datasets. Figure 4 highlights that the validation error has a 
minimum at roughly 30 epochs for both datasets. As expected, the MRE values after 30 
epochs of training are lower (better) than after 100 epochs, see also Table  3. However, 
these values are considerably worse than for the BVAE (cf. Table 2). We also observed that 
the Kullback-Leibler loss term is much smaller than the reconstruction loss (see Fig. 4), a 
phenomenon also know as KL vanishing. Therefore we experimented with Kullback-Lei-
bler annealing as e.g. described in (Bowman et al. 2016), but could not obtain good enough 
results to continue with the subsequent experiments using SVAE.

Finally, fine-tuning of the OVAE was done for 10 epochs and on each dataset separately. 
Several variants of the pretrained autoencoder are released: we used the version with 768 
latent dimensions and set the parameter � = 0.5 (weighting the Kullback-Leibler loss term). 
This is a trade-off between reconstruction quality of the sentences and smooth generation 
of new data instances, i.e., between a standard autoencoder and a full variational autoen-
coder. We disabled SMOTE for class balancing of sentences generated by the OVAE.

Hyper-parameters. We set the following xspells hyper-parameters. The neighborhood 
generation neighgen is run with N=600 , n=200 , �=40% . For the latent decision tree, we 
used the default parameters of the CART implementation7. Finally, with regards to the 
explanation hyper-parameters, we set u=v=5 (counter-)exemplars, and h=5 most frequent 
words for exemplars and for counter-exemplars. Finally, unless otherwise stated, we adopt 
the diversity-based counter-exemplar selection, setting k = 5 for the nnk() function in (2).

Compared approaches. We compare xspells against lime (Ribeiro et al. 2016), and, for 
the qualitative part, also against anchor. We cannot compare against shap (Lundberg and 
Lee 2017) because it is not immediate how to adapt it to text classifiers. As discussed in 
Sect.  2, we do not compare to adaptions of IntGrad (Sundararajan et  al. 2017) or LRP 
(Bach et  al. 2015), originally proposed for image classifiers, to explain text classifiers 
because they are not model-agnostic.

5.2  Qualitative evaluation

In this section, we qualitatively evaluate the explanations by xspells and contrast them with 
the ones by lime and anchor. Example texts labeled as hate/negative/spam/fake news/entity 
are shown in Table  4 to Table  8. Each table contains three exemplars and two counter-
exemplars for both the BVAE and the OVAE.

Table 4 reports an example for the hate dataset. This dataset is only used for research 
purposes, we clearly distance from any form of discrimination expressed in there. In par-
ticular, we avoid reproducing extremely offensive words by writing “N" instead of the 
N-word. Explanations based on the BVAE for DNN and RF are clearly offensive when it 
comes to exemplars, while the opposite is true with counter exemplars. Exemplars in the 
case of OVAE are instead more diverse, whilst counter-exemplars of DNN and RF coincide 

7 The scikit-learn library does not implement advanced features such as post-pruning (Ruggieri 
2012), feature selection (Ruggieri 2019), or non-greedy induction (Bertsimas and Dunn 2017), that are 
designed to produce smaller and more accurate decision trees. In turn, these properties could lead to expla-
nations closer to the instance under analysis, and to latent decision tree with higher fidelity.
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in this case. In both cases, top words in the exemplar class tend to be very strong/offensive 
and they can be clearly associated to hate speech.

Table 5 shows an example for the polarity dataset. A clear difference between both 
BVAE and OVAE is the sentences length. Instances generated by the OVAE are in general 
longer, nevertheless meaningful. This is emphasized by a lower relative word frequency. 
All generated exemplar sentences are different to each other, whereas one counter-exem-
plar is picked up both for DNN and RF in the case of OVAE. Instances explained by the 
BVAE contain the top word “bad” in their factual (negative) class with a high relative word 
frequency8. It can be clearly assigned to a negative sentiment. In this example, we have 
two cases where the black box prediction was not correct, i.e., a misclassification occurred. 
This is the case for the BVAE RF and OVAE DNN. We can see that exemplars and coun-
ter-exemplars do not contrast very well against each other, i.e., do not clearly distinguish 
different classes. This is consistent, for instance, with a possible overfitting of the black 
box in the neighborhood of the instance to explain. More specifically, in the case of the 

Table 4  Explanations returned by xspells for texts labeled as hate in the hate dataset for BVAE and 
OVAE. Three exemplars (E) and two counter-exemplars (C) for each tweet. Relative word frequencies over 
u = v = 5 (counter-)exemplars in parenthesis

Text Fat ass hoe holding up the machine

(counter-)exemplars E/C W= W≠

BVAE RF she is a cunt E bitch (.17) one (.10)
truth only a faggot would turn down E ass (.11) inmate (.0.05)
bitch ass N be hating on us E N (.11) sums (.05)
do you think the guinea pig was okay C hating (.11) return (.05)
an inmate sums up what return means C cunt (.06) means (.05)

BVAE DNN fucking with these faggot N are E N (.11) let (.06)
spending money on these hoes N E subtweet (.05) coons (.06)
subtweet me one more time you diy E faggot (.05) overpriced (.06)
let the coons be great C hoes (.05) great (.06)
only the field ready for today’s game C diy (.05) complete (.06)

OVAE RF N don t let a dude treat you like a yellow starburst E ass (.08) loaded (.05)
justmilz delete that stupid bitches funky monkey E N (.04) suit (.05)
i highly doubt it faggot joe E let (.04) getting (.05)
it s a loaded suit i m getting the worm C dude (.04) worm (.05)
consider this racca the buccawg C treat (.04) consider (.05)

OVAE DNN talking heads ghetto trash like faggot masochist E like (.08) loaded (.5)
suck ass bird shit my cue is to trap u E faggot (.08) suit (.05)
this weird baby sitting on a curb looking like a faggot E suck (.08) getting (.05)
’it s a loaded suit i m getting the worm C talking (.04) worm (.05)
consider this racca the buccawg C heads (.04) consider (.05)

8 For space restrictions, Table 4 to Table 6 report only two counter-exemplars. However, frequencies are 
computed over the v = 5 counter-exemplars returned by xspells. This explains frequent words not appearing 
in the two reported sentences.
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BVAE DNN, we can see that exemplars seem to praise the movie, while counter-exemplars 
criticize it. This is in-line with the fact that the label was in-correctly predicted as positive.

Generated sentences for the youtube dataset are rather short, as displayed in Table 6. 
Both VAEs are able to pick up key words from the spam comments as most frequent words 
in their explanations, e.g. “subscribe”, “check” or “video”. This is mirrored by the exem-
plar sentences from the BVAE, which are very similar to each other. For the OVAE, sen-
tences are more diverse, but transport a similar meaning. For the BVAE, most frequent 
counter-factual words do not show a pattern whereas in the OVAE example for RF, we can 
repeatedly observe the words “love” and “song”. There is also a misclassification in this 
example in the case of the OVAE RF. It can be notable that the exemplars and counter-
exemplars have switched in the meaning that they convey. Exemplars show interest, while 
counter-exemplars are spammy.

In Table 7 are the results for the liar dataset. In this example, counter exemplar sen-
tences seem to make outlandish claims, while exemplar sentences seem more grounded. In 
the case of the BVAE, the top words don’t contrast each other very well. In the OVAE, we 
can see that more negative words appear in the exemplar case.

Finally, the results regarding the question dataset, can be seen in Table  8. In this 
example, both black boxes for the OVAE have misclassified the sentence. In the case of 
the BVAE, we can see that the exemplars correctly show that the answer to the question 

Table 6  Explanations returned by xspells for texts labeled as spam in the youtube dataset for BVAE and 
OVAE. Three exemplars (E) and two counter-exemplars (C) for each tweet. Relative word frequencies over 
u = v = 5 (counter-)exemplars in parenthesis

Text Check out this video on youtube

(counter-)exemplars E/C W= W≠

BVAE RF - please suscribe i am bored of 5 subscribers E please (.11) hey (.10)
- subscribe me if u love eminem !‘ end ?‘ E suscribe (.11) subscribe (.0.05)
- please subscribe me for the wet seal E subscribe (.05) u (.05)
- subscribe i ll u are watching in C bored (.05) watching (.05)
- oh my god go to 1 billion of replay C 5 (.05) oh (.05)

BVAE DNN - subscribe and if you are watching E subscribe (.24) hear (.14)
- please subscribe me for u wet i will E please (.24) rather (.07)
- please subscribe me for u longer E u (.12) propa (.07)
- i m rather hear some propa explicit C wet (.12) explicit (.07)
- what i m shufflin as if gangnam style C watching (.06) shufflin (.07)

OVAE RF - best song for dancing E omg (.14) youtube (.16)
- imfao is epic music video E best (.11) check (.11)
- i like the p E song (.07) u (.11)
- like this comment on youtube C dancing (.07) love (.11)
- hey everyone check out my new song at youtube C eh (.07) omg (.06)

OVAE DNN - check out my black dubstep video E check (.12) hi (.10)
- follow em on twitter for the latest insta video E video (.08) cross (.10)
- yeah check out this playlist on youtube E black (.04) eminem (.10)
- the rules section shuffle 5 song videos C dubstep (.04) rules (.05)
- eminem beat eminem in the cross fire C channel (.04) section (.05)
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asked is with respect to an entity, while the counter-exemplars ask either for definitions or 
explanations. This is not the case for the OVAE, as the exemplars are making geographical 
inquiries or asking questions regarding descriptions.

We contrast explanations of xspells against those from lime reported in Table  9. The 
texts from all the datasets except the liar text are correctly explained by lime. For the 
youtube comment, for instance, we observe that the most important words are for both 
black box models “check" and “out", but receive no further information. Overall, since lime 
extracts words from the text under analysis, it can only provide explanations using such 
words. On the contrary, the (counter-)exemplars of xspells consist of several and diverse 
texts which are (most of the times) close in meaning to the text under analysis, but including 
different wordings that help the user better grasp the reasons behind black box decision. A 
similar conclusion holds for anchor, which produces as explanations a subset of the words 
in the text – called anchors. For the youtube example and the RF black box, it returns the 
anchors “out" and “youtube", with a precision of 100%. This means that when both words 

Table 8  Explanations returned by xspells for texts labeled as entity in the question dataset for BVAE 
and OVAE. Three exemplars (E) and two counter-exemplars (C) for each tweet. Relative word frequencies 
over u = v = 5 (counter-)exemplars in parenthesis

Text What is money made of

(counter-)exemplars E/C W= W≠

BVAE RF - what do i call a newborn kangaroo E lengths (.13) mean (.13)
- what are some chemical properties of mende-

levium
E pearl (.06) dot (.0.05)

- what did the yalta conference lead to E necklaces (.06) word (.05)
- what does the word fonight mean in maryland C yalta (.06) g (.05)
- what does the dot on the letter i mean C conference (.06) stand (.05)

BVAE DNN - what are the components of polyester E warlock (.07) wear (.07)
- what are the colors of the german flag E wear (.07) father (.07)
- what did warlock wear on his forehead E colors (.07) bras (.07)
- why do girls have to wear training bras C forehead (.07) manufacture (.07)
- what did andy hardy s father do C polyester (.07) fair (.07)

OVAE RF - what s the third largest city in america E city (.08) cruel (.14)
- what new york city landmark has 168 steps to 

its crown
E third (.04) man (.04)

- how many acres of space does a tennis ball 
occupy

E largest (.04) dog (.04)

- what is the most expensive restaurant in myle 
beach

C america (.04) cage (.04)

- what city s newspaper boasts the most famous 
prints

C much (.04) doubles (.04)

OVAE DNN - what is the literal meaning of thank you notes E biggest (.06) largest (.18)
- where does american postage go to college E city (.06) cathedral (.18)
- what s the longest english composer record E april (.06) world (.12)
- what s the name given to a group of geese C 1998 (.06) festival (.06)
- what s the largest cathedral in the us C capital (.06) rebranded (.06)
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are present in a randomly generated neighbor instance, then the black box labels the text 
as spam. anchor outputs also exemplar texts, obtained from the random generation of the 
neighborhood. Differently from lime, however, the randomness can be driven by distance in 
some embedding space between a word in the text and others words with the same POS tag. 
On our sample text, using the embedding provided by the BERT transformers Devlin et al. 
(2019), the following top five exemplars are returned9 for the youtube text:

– cut out the video on youtube
– check out this page on youtube
– check out movie trailers on youtube
– file out play list on youtube
– get out loud online on youtube

These exemplars have the same syntactic structure of the text to explain (and the same 
size). On the positive side, this leads to syntactically valid texts, yet not necessarily mean-
ingful (as the last two ones). This is not true, however, for tweets, which lack the formal 
structure of sentences, and then relying on POS tagging is not effective. For instance, 
the exemplars returned for the sample text of the polarity dataset are meaniningless. 
Moreover, exemplars of anchor do not show much variation with respect to the text to 
explain. Examples of using anchor on the rest of the datasets can be found on our Github 
repository10.

5.3  Fidelity evaluation

Surrogate models adopted by explanation approaches should mimic the decision logic of 
the black box. Here, we show that xspells performs better than lime under such a perspec-
tive. We evaluate the faithfulness (Freitas 2013; Guidotti et al. 2019b) of the latent decision 
tree adopted by xspells by measuring how well it reproduces the behavior of the black 
box b in the neighborhood of the text x to explain – a metric known as fidelity. Let Z be 
the neighborhood of z in the latent space generated at line 2 of Alg. 1 and ldt be the surro-
gate decision tree computed at line 5. The fidelity metric is |{y ∈ Z | ldt(y) = b(�(y))}|∕|Z| , 
namely the accuracy of ldt assuming as ground truth the black box. The fidelity values over 
all instances in the explanation set are aggregated by taking their average and standard 
deviation.

We compare xspells against lime, which adopts as surrogate model a linear regres-
sion over the feature space of words and generates the neighborhood using a purely ran-
dom strategy. Table 10 reports the average fidelity and its standard deviation for lime and 
xspells in its variants depending on the type of VAE adopted. We notice how on every 
dataset and on every black box xspells fidelity is markedly higher than the one of lime 
independently from the VAE adopted.

9 Full details for all sample texts are available at the Github repository of xspells.
10 https:// github. com/ lstate/ X- SPELLS- V2/ blob/ main/ exper iments/ anchor_ text. ipynb.

https://github.com/lstate/X-SPELLS-V2/blob/main/experiments/anchor_text.ipynb
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5.4  Usefulness evaluation

In this section, we investigate on the usefulness of xspells explanations for the user. How 
can we evaluate the usefulness of explanations? The gold standard would require to run lab 
experiments involving human evaluators. Inspired by Kim et al. (2016), we provide here an 
indirect evaluation by means of a k-Nearest Neighbor (k-NN) classifier (Tan et al. 2016). 
For a text x in the explanation set, first we randomly select n exemplars and n counter-
exemplars from the output of xspells. Then, a 1-NN classifier11 is trained over such (coun-
ter-)exemplars. Finally, we test 1-NN over the text x and compare the prediction of 1-NN 
with the label b(x) predicted by the black box. In other words, the 1-NN approximates a 
human in assessing the (counter-)exemplars usefulness. The accuracy computed over all 
x’s in the explanation set is a proxy measure of how good/useful are (counter-)exemplars 
at delimiting the decision boundary of the black box. We compare such an approach with 
a baseline (or null) model consisting of a 1-NN trained on n texts per class label, selected 
randomly from the training set and not including x.

The accuracy of the two approaches are reported in Fig. 5 by varying the number n of 
exemplars and counter-exemplars. xspells neatly overcomes the baseline. The difference 
is particularly marked for when n is small. Even though the difference tend to decrease for 
large n’s, large-sized explanations are less useful in practice due to cognitive limitations of 
human evaluators. Moreover, xspells performances are quite stable w.r.t. n, i.e., even one 
or two exemplars and counter-exemplars are sufficient to let the 1-NN classifier distinguish 
the label assigned to x in an accurate way. The use of BVAE compared to OVAE does not 
significatively change in the accuracy of xspells.

5.5  Stability evaluation

Let us contrast xspells with lime as per the stability of their explanations. Stability is a key 
requirement, which heavily impacts users’ trust on post-hoc explainability methods (Rudin 
2019). For local approaches, the generation of the neighborhood introduces randomness 

Table 10  Mean and standard 
deviation of fidelity. The higher 
the better

RF xspells DNN xspells

BVAE OVAE BVAE OVAE

Hate 0.98 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.97 ± 0.01
Polarity 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
Youtube 0.98 ± 0.01 0.98 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
Liar 0.98 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.97 ± 0.01
Question 0.99 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.97 ± 0.01

RF lime DNN lime

Hate 0.71 ± 0.41 0.37 ± 0.28
Polarity 0.40 ± 0.27 0.21 ± 0.28
Youtube 0.27 ± 0.31 0.27 ± 0.30
Liar 0.41 ± 0.22 0.50 ± 0.35
Question 0.52 ± 0.30 0.37 ± 0.30

11 Distance function adopted: cosine distance between the TF-IDF representations.
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in the process, leading to different explanations for a same instance in different runs of the 
method, or to disproportionately different explanations for two close instances (Alvarez-
Melis and Jaakkola 2018). Instability of the surrogate models learned from the neighbor-
hood instance may exacerbate the problem Guidotti and Ruggieri (2019). Extensions of 
lime tackle the problem by avoiding sampling of neighbor instances in favor of training 
data (Zafar and Khan 2021), by adopting a denoising autoencoder to compute neighbor 
instances over a more robust space (Shankaranarayana and Runje 2019), or by determining 
the number of instances needed to statistically guarantee stability of the explanation (Zhou 
et al. 2021). In addition, methods using text embedding, such as ours, suffer from the vari-
ability introduced by the encoding-decoding of texts in the latent space. Several metrics of 
stability can be devised (Alvarez-Melis and Jaakkola 2018; Guidotti and Ruggieri 2019), 
either independent or specific to the explanation representation (Visani et al. 2021). A pos-
sible choice is to use sensitivity analysis with regard to how much an explanation varies on 
the basis of the randomness in the explanation process. We measure here stability as a rela-
tive notion, that we call coherence. For a given text x in the explanation set, we consider its 
closest text xc and its k-th closest text xf  , again in the explanation set. A form of Lipschitz 
condition (Alvarez-Melis and Jaakkola 2018) would require that the distance between the 
explanations e(x) and e(xf ) , normalized by the distance between x and xf  , should not be 
much different than the distance between the explanations e(x) and e(xc) , again normalized 

Fig. 5  Accuracy (usefulness) of xspells (with BVAE/OVAE) vs a baseline for an increasing number of 
exemplars and counter-exemplars adopted as neighbors. Best viewed in color
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by the distance between x and xc . Stated in words, normalized distances between expla-
nations should be as similar as possible. Formally, we introduce the following coherence 
index:

where we adopt as distance function dist the cosine distance between the TF-IDF represen-
tation of the texts, and as distance function diste the Jaccard distance between the 10 most 
frequent words in each explanation (namely, the W set). In experiments, we set xf  to be the 
k = 10-closest text w.r.t. x. For comparison, the coherence index is computed also for lime, 
with Jaccard similarity calculated between the sets of 10 words (a.k.a. features) that lime 
deems more relevant.

Table 11 reports the average coherence over the explanation set. xspells has a slightly 
worse level of coherence, yet statistically significant (p-value < 0.01 ) in most cases except 
the following ones: the youtube dataset and OVAE RF/DNN, of the polarity dataset 
and BVAE RF or OVAE RF/DNN, and of the liar dataset and BVAE RF or OVAE RF. 
This is expected, as lime’s explanations are subsets of the original text to explain, hence 
more stable across similar instances. xspells trade-offs a slightly worse stability for diver-
sity of exemplars, and, a fortiori, of the most frequent words in them. Finally, contrasting 
BVAE with OVAE, we observe the latter has lower mean and standard deviation values in 
almost all cases.

5.6  Diversity of counter‑exemplars

Let us contrast here the diversity-based with the distance-based selection of counter-exem-
plars (see Sect. 4.3), showing that the former has a better impact on diversity of counter-
exemplars. Their impact on usefulness and stability metrics are comparable (experiments 
not reported here for lack of space). Here, we consider their impact on the objective func-
tion hz() (see formula (2)). Since the diversity-based approach optimizes such an objective 
function, we expect it to perform better than the distance-based approach. The point is to 
quantify the degree of diversity it can capture.

Figure 6 shows the (kernel density estimates of the) distributions of hz(S) when S is the 
set of v counter-exemplars selected by the two strategies for each instance in the explanation 
set. The densities of the distance-based approach approximately resemble a normal distribu-
tion whereas the densities for the diversity-based approach are skewed towards higher values 
of the objective function. The difference between the two densities is statistically significant 
( p < 0.01 in the Kolmogorov-Smirnov test), irrespective of the datasets and the VAEs. This 
is expected, as for the diversity-based approach, the greedy algorithm adopted (see CSG in 
Appendix  1) provides a theoretical guarantee of approximating the optimal solution, while 
this is not the case for the distance-based approach. Finally, for the diversity-based strategy, 
the OVAE has a more peaked distribution than the BVAE, i.e., the objective function for the 
selected counter-exemplars is on average closer to the optimal solution. This can be attributed 
to the different latent spaces of the two VAEs.

Cx =
diste(e(x

f ), e(x))∕dist(xf , x)

diste(e(x
c), e(x))∕dist(xc, x)
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6  Conclusion

We have presented xspells, a local model-agnostic explanation approach for black box 
short text classifiers. The key feature of xspells is the adoption of variational autoencod-
ers for generating meaningful synthetic texts in a latent space. We considered both a pre-
trained variational autoencoder (OVAE) and two ones trained on a subset of the available 
data (SVAE and BVAE). The latent space is also revealed to be essential for inducing a 
decision tree which helps in characterizing exemplar and counter-factual exemplar texts. 
Diversity of counter-exemplars is modeled as an optimization problem. The approach 
advances over baseline explainers, such as lime, which only highlight the contribution of 
words already in the text to explain. Experiments showed that xspells also exhibits better 
fidelity and usefulness, while trading off stability with diversity.

The proposed approach has some clear limitations. First, we will consider extending 
the explanations returned by xspells with logic rules, which convey information at a more 
abstract level than exemplars. Such rules can be extracted from the decision tree on the 
latent space, but have to be decoded back to rules on texts – a challenging task. Second, 
while the framework is general enough to cover multi-class black boxes, where the class 
labels are more than two, specific experimental analysis is required to properly validate the 
approach. For example, by comparing the usage of multi-class decision trees against trans-
formation to binary problems (one vs. one, or one vs. rest). Extension of the framework are 
instead required to tackle multi-label classification, where more than one label might be 
assigned to an instance, and ranking of class labels (Sebastiani 2002). Third, xspells could 
be extended to account for long texts. While the theoretical framework does not change, 
the implementation of VAEs does not scale to large dimensionalities of the input/output. A 
possible direction is to use word2vec embeddings (Goldberg and Levy 2014). Fourth, we 
could rely on semantic and linguistic resources (Altinel and Ganiz 2018), such a thesaurus 
or domain ontologies, to empower both synthetic text generation and to enrich the expres-
siveness of the (counter-)exemplars. Finally, a user study to assess the perceived usefulness 
of the explanations of xspells would be definitively required, e.g., through crowdsourcing 
or lab experiments (Förster et al. 2020) or by comparing with human-annotated explana-
tions (Wiegreffe and Marasović 2021). In fact, automatic measures have been shown to 

Table 11  Mean and stdev of the 
coherence index C

x
 . The closer to 

1 the better

RF xspells DNN xspells

BVAE OVAE BVAE OVAE

Hate 1.14 ± 0.15 1.13 ± 0.11 1.12 ± 0.12 1.14 ± 0.10
Polarity 1.10 ± 0.11 1.09 ± 0.05 1.11 ± 0.10 1.09 ± 0.05
Youtube 1.33 ± 0.48 1.19 ± 0.24 1.33 ± 0.50 1.16 ± 0.22
Liar 1.12 ± 0.12 1.09 ± 0.13 1.10 ± 0.12 1.10 ± 0.11
Question 1.24 ± 0.29 1.20 ± 0.25 1.26 ± 0.29 1.23 ± 0.22

RF lime DNN lime

Hate 1.06 ± 0.13 1.06 ± 0.11
Polarity 1.07 ± 0.16 1.07 ± 0.09
Youtube 1.14 ± 0.46 1.17 ± 0.37
Liar 1.08 ± 0.18 1.05 ± 0.11
Question 1.10 ± 0.22 1.11 ± 0.22
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correlate moderately with human judgements (Nguyen 2018). Even more challenging is 
to incorporate in the design of the explanations, cognitive and social aspects regarding the 
users of  xspells, i.e., moving towards Human-centered Explainable (AI Ehsan and Riedl 
2020).

Appendix: Solving diversity through Sub‑modularity

Consider a function h() over sets, and let h(c|S) = h(S ∪ {c}) − h(S) be its discrete deriva-
tive. The function is sub-modular if, for A ⊆ B and c ∉ B , we have h(c|A) ≥ h(c|B) – a 
condition known as diminishing return. The objective function hz(S) in (2) is the difference 

Fig. 6  Density estimation of the objective function hz(S) (see (2)) for S selected by the distance-based and 
by the diversity-based counter-exemplar strategies. Best viewed in color
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f (S) − c(S) between a monotone non-negative sub-modular function (size of nearest neigh-
bours) and a modular function (distance from z):

The function hz(S) = f (S) − c(S) is then sub-modular, but it is not necessarily monotone nor 
non-negative. Hence the Standard Greedy (SG) algorithm (shown as as Algorithm 1) for 
monotone non-negative sub-modular optimization Nemhauser et al. (1978) does not pro-
vide any formal guarantee of approximating the optimal solution in the constrained prob-
lem (1). The maximization of such sub-modular functions has been considered recently 
Ene et  al. (2020); Harshaw et  al. (2019). Proposed algorithms return a solution S⋆ that 
approximates the best solution Sopt with the following guarantee:

for some 𝛼 < 1 . Authors of Harshaw et al. (2019) achieve � = (1 − 1∕e) ≈ 0.63 , which is 
the best possible guarantee. Authors in Ene et al. (2020) consider the application setting 
where elements in S are experts to be grouped in a team, f(S) is the size of the set of skills 
of experts in S, and the cost function c(S) is the sum of the costs of team members. They 
propose the Cost Scaled Greedy (CSG) algorithm (shown as as Algorithm 2), which con-
sists of the standard greedy algorithm (possibly, the accelerated version of Minoux (1978)) 
applied to a scaled objective function h�(S) = f (S) − 2c(S) . In our case, the discrete deriva-
tive of the scaled function is:

CSG is a simple, efficient algorithm. On the negative side, the approximation achieved 
w.r.t. (4) is for � = 1∕2 , which is slightly lower than the best theoretical guarantee.

f (S) = |
⋃

a∈S

nnk(a)| c(S) = �
∑

a∈S

dist(a, z)

(4)f (S⋆) − c(S⋆) ≥ 𝛼f (Sopt) − c(Sopt)

h�
z
(c|S) = |

⋃

a∈S∪{c}

nnk(a)| − 2�dist(c, x) − |
⋃

a∈S

nnk(a)|

Fig. 7  Simulated example: z (blue), admissible instances in grey, results by CSG using hz() in green, results 
by SG using qz() in red. Left plot parameters for hz() : k = 10 and � as in (3); and for qz() : � = 1 . Right plot 
parameters for hz() : k = 5 and � as in (3); and for qz() : � = 1.5 . Best viewed in color
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Algorithm 1 SG(A, v)
1: S ← ∅
2: for i = 1 to v do
3: a ← argmaxc∈A h(c|S)
4: S ← S ∪ {a}
5: end for
6: return S

Fig. 8  Density estimation of the objective function hz(S) (resp., qz(S) for S selected by CSG (resp., SG). 
� = 1.5 for qz() . Best viewed in color
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Figure 7 presents the results of a simulation obtained by randomly generating 100 coun-
ter-exemplars w.r.t.  the instance z (in blue) and the shown decision boundary. The green 
points are v = 10 counter-exemplars chosen by CSG using (the scaled derivative of) hz() . 
The red points are v = 10 counter-exemplars chosen by SG using another intuitive objec-
tive function:

The idea here is to maximize the mean distance between selected counter-exemplars while 
minimizing their mean distance w.r.t. z. This function is not monotone nor non-negative. 
Moreover, qz(S) cannot be stated as f (S) − g(S) for f() monotone and non-negative. Hence, 
no formal guarantee can be stated when using SG for maximizing it (and neither for CSG).

Figure 7 shows that the standard greedy algorithm using qz() leads to instances close to 
the decision boundary, and possibly close to each other. The instances selected by CSG 
using hz() , instead, distribute quite uniformly. The two plots in the figure shows the impact 
of the � (for qz() ) and k parameters (for hz() ). Larger � ’s mean larger costs in the objective 
function, hence instances selected by qz() are closer to z. Similar effects follow for smaller 
k’s in the definition of hz() when fixing � as in (3).

Finally, we contrast in Fig.  8 the distributions 12 of the objective functions hz(S) and 
qz(S) over the v = 5 counter-exemplars selected from the set of admissible ones by CSG 
and SG respectively. The images of hz() and qz() are different, hence we cannot compare 
the ranges of the densities. However, we observe that the densities of qz() are less skewed 
and peaked than those of hz() . This is expected, as for the hz() function the CSG algorithm 
provides a theoretical guarantee of approximating the optimal solution, whilst for qz() and 
the standard greedy algorithm this does not hold.
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