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Noise affects the performance of quantum technologies, hence the importance of elaborating op-
erative figures of merit that can capture its impact in exact terms. In quantum metrology, the
introduction of the Fisher information measurement noise susceptibility now allows to quantify the
robustness of measurement for single-parameter estimation. Here we extend this notion to the mul-
tiparameter quantum estimation scenario. We provide its mathematical definition in the form of a
semidefinite program. Although a closed formula could not be found, we further derive an upper and
a lower bound to the susceptibility. We then apply these techniques to two paradigmatic examples
of multiparameter estimation: the joint estimation of phase and phase-diffusion and the estimation
of the different parameters describing the incoherent mixture of optical point sources. Our figure of
merit provides clear indications on conditions allowing or hampering robustness of multiparameter
measurements.

I. INTRODUCTION

The characterization of any physical system relies on
the precise estimation of the physical parameters enter-
ing its description. This task has fundamental impor-
tance from both a purely theoretical and a technological
perspective. It can be thought of as a multiparameter es-
timation problem to be addressed with the tools of quan-
tum metrology, which aims to derive the ultimate bounds
on the precision of parameter estimation in the quantum
realm and to identify possible enhancements by exploit-
ing quantum resources, such as entanglement and squeez-
ing [1–8]. While most of the paradigmatic results have
been obtained in the context of single-parameter estima-
tion, such as phase and frequency, much attention has
also been devoted to the case of multiparameter quan-
tum metrology [9–12]. The field encompasses problems
such as the simultaneous estimation of multiple phases
[13–18], of unitary and noise parameters [19–23] and of
the parameters describing illumination from incoherent
optical point sources [24–30]. The practical relevance
of these problems justifies the introduction of the new
challenges linked to measurement incompatibility when
searching for the optimal conditions. In fact, the op-
timal measurements to estimate distinct parameters in-
dividually may not commute. This captures a charac-
teristic aspect of quantum mechanics under a different
light [31], and provides means to introduce a notion of
“quantumness” for quantum statistical models [32–34].
In addition, while collective measurements over multiple
identical copies bring no advantage for single-parameter
estimation, this strategy is instead crucial to achieving
the ultimate precision bounds in the multiple-parameter
case [9, 23, 35].

Undesired interaction with the environment and, more
in general, the noise affecting a quantum system is as
detrimental for quantum metrology, as for all quan-
tum technologies. The relative simplicity of the single-

parameter scenario has allowed the discovery of the ul-
timate bounds on the achievable precision in the pres-
ence of uncorrelated noise, and of the corresponding op-
timal protocols [36–48]. Progress in the multiparame-
ter scenario has been hindered by the strictly quantum
problem of measurement incompatibility, as well as by
multivariate nature of the underlying statistical prob-
lem. Despite these challenges, generalization of single-
parameter bounds have appeared [49–51], as well as op-
timal strategies when the noise is correctable [52]. The
theory of asymptotic multiparameter quantum estima-
tion, however, is far from being complete.

In all these approaches, the effect of noise is associated
either to an imperfect state preparation or to a noisy
evolution realising the parameter encoding. Only re-
cently, the impact of noise at the level of the measurement
stage has been addressed in different contexts [53–55].
In particular, in Ref. [54], the authors have investigated
the effect of an imperfect realization of a given quan-
tum measurement on the estimation precision; in order
to properly quantify this impact, a new figure of merit,
dubbed Fisher Information Measurement Noise Suscepti-
bility (FI MeNoS), was introduced. In this article we ex-
tend their treatment to the multiparameter scenario, by
introducing the Fisher Information Matrix-Suited Mea-
surement Noise Susceptibility (FI MaS MeNoS). Besides
giving the corresponding mathematical definition and de-
riving general formulas that will allow its evaluation, we
will focus on two paradigmatic examples: the joint es-
timation of phase and phase-diffusion with a qubit sys-
tem, and the estimation of the separation of two close
incoherent sources along with other instrumental param-
eters. Although we did not succeed at obtaining closed
expressions, we show that the problem naturally leads to
a numerical-friendly formulation as a semidefinite pro-
gram.

The article is structured as follows: in Sec. II we review
the single-parameter FI MeNos introduced in Ref. [54],
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while in Sec. III we define the multi-parameter FI MaS
MeNos, along with the derivation of upper and lower
bounds. In Sec. IV we apply our definition to the two ex-
amples mentioned above: i) the estimation of phase and
phase-diffusion encoded in single-qubit systems, evaluat-
ing FI MaS MeNoS for separable and collective measure-
ment strategies; ii) the estimation of the separation be-
tween two sources using the optimal measurement that,
in ideal conditions, overcomes Rayleigh’s curse. This
turns in to a multiparameter problem when we realise
that we must also determine the centroid of the emission
as well as the ratio of the two intensities [30, 56].

II. REVIEW OF THE FI MENOS FOR THE
SINGLE-PARAMETER CASE

We start by revising the definition and the most impor-
tant properties of the FI MeNoS introduced in Ref. [54]
by Kurdzia lek and Demkowicz-Dobrzanski, recalling the
basic ingredients of single-parameter quantum estimation
theory.

We consider a quantum statistical model, i.e. a family
of quantum states ρθ labelled by a continuous parameter
θ that one wants to estimate. If one performs a measure-
ment, mathematically described by a positive operator-
valued measure (POVM)M with elements {Mα}α=1,...,O,
the quantum statistical model is reduced to the classi-
cal statistical model p(α|θ) that corresponds to the con-
ditional probability of obtaining the measurement out-
come α = 1, . . . , O given the value of the parameter θ,
i.e. p(α|θ) = Tr[ρθMα], according to the Born rule. The
variance of any unbiased estimator of the parameter θ is
bounded by the so-called Cramér-Rao bound [57]

Var(θ) ≥ 1

KF [M ]
, (1)

where K is the number of measurements performed and
F [M ] is the classical Fisher information (FI) given by

F [M ] =

O∑
α=1

Tr[ρθMα]l2α (2)

where lα = Tr[∂θρθMα]/Tr[ρθMα] are the elements of the
logarithmic derivative of the probability vector, and the
trace Tr[·] is taken in the Hilbert space corresponding
to the density operator ρθ. The Cramér-Rao bound in
Eq. (1), asymptotically achievable in the limit of large
K, shows how the FI F [M ] quantifies the precision at-
tainable via a certain POVM M , and thus induces a hi-
erarchy between measurements: larger values of the FI
correspond to measurements yielding better estimation
precision. We finally remark that an ultimate quantum
bound can be derived by defining the quantum Fisher
information (QFI) as

Q = Tr[ρθL
2
θ] (3)

where Lθ denotes the symmetric-logarithmic derivative
(SLD) operator defined via the equation 2∂θρθ = Lθρθ +
ρθLθ. In fact the following quantum Cramér-Rao bound
holds [5, 58, 59]

Var(θ) ≥ 1

KF [M ]
≥ 1

KQ
; (4)

This bound is achievable since Q = maxM F [M ].
In Ref. [54], the authors addressed the problem of

quantifying how much the Fisher information is sensitive
to small changes of the actual measurement with respect
to the intended one. The former is described by modi-
fying the target measurement M , as (1 − ϵ)M + ϵN , by
adding a noise component N , in the form of a different
POVM with elements {Nα}—the sum of two POVMs is
meant element by element. See Appendix B in the Sup-
plementary Material of Ref. [54] for concrete examples of
how to describe common measurement imperfections in
this framework. The effect a small disturbance is quanti-
fied by the relative decrease of the FI, in the limit of an
infinitesimally small change:

χ[M,N ] = lim
ϵ→0

F [M ] − F [(1 − ϵ)M + ϵN ]

ϵF [M ]

= 1 +
G[N ]

F [M ]
,

(5)

with G[N ] =
∑

α Tr[AαNα], and Aα = l2αρθ − 2lα∂θρθ.
The FI MeNoS is then defined by taking the maximum
of this quantity over all noise POVMs, and a closed an-
alytical form is obtained

σ[M ] = max
N

χ[M,N ]

= 1 +
1

2F [M ]

(
l2α↓ + l2α↑ + ∥Aα↓ −Aα↑∥1

)
, (6)

where lα↑ = max [{lα|α = 1, . . . , O}] and α↑ is the corre-
sponding outcome; lα↓ and α↓ are analogously defined in
terms of the minimum; we recall that the trace norm of

an operator is ∥X∥1 = Tr
[√

XX†
]
.

III. THE MULTIPARAMETER FI
SUSCEPTIBILITY

We now consider the case of a multiparameter quan-
tum statistical model ρθ̄, that is a family of quan-
tum states labeled by a vector of P parameters θ̄ =
{θ1, θ2, ..., θP }. In this case the Cramér-Rao bound is
a matrix inequality for the covariance matrix

Cov(θ̄) ≥ 1

K
F[M ]−1, (7)

i.e. the left-hand side minus the right-hand side is a
positive semi-definite matrix. The FI is now a matrix
F[M ] with elements

Fjk[M ] =
∑
α

Tr[ρθ̄Mα]lα,j lα,k, (8)
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Here, we have introduced

lα,j =
Tr[∂jρθ̄Mα]

Tr[ρθ̄Mα]
. (9)

with the short-hand notation ∂j = ∂θj . Also in the multi-
parameter case one can define a more fundamental quan-
tum bound via the matrix inequality

Cov(θ̄) ≥ 1

K
F[M ]−1 ≥ 1

K
Q−1 , (10)

that can be translated to a scalar bound as∑
j

Var(θj) ≥
1

K
tr[F[M ]−1] ≥ 1

K
tr[Q−1] . (11)

Note that in the formulas above, tr[O] denotes the trace
taken over the matrix space O, in contrast to the trace
Tr operating over the Hilbert space. The elements of
the QFI matrix Q are defined via the SLD operators Lj

for each individual parameter as Qjk = Tr[ρθ̄(LjLk +
LkLj)/2]. Unlike the single-parameter case, neither the
matrix bound (10) nor the scalar bound (11) are achiev-
able in general, and tighter bounds can be derived (see,
e.g., Ref. [9] for more details).

A. Scalar susceptibility for multiple parameters

Dealing with multiple parameters, we may introduce
a matrix susceptibility at fixed noise N , extending the
definition (5) for the single-parameter case:

Ξ[M,N ] = F[M ]−1 lim
ϵ→0

F[M ] − F[(1 − ϵ)M + ϵN ]

ϵ
.

(12)
The explicit evaluation of the limit results in the expres-
sion

Ξ[M,N ] = I + F−1[M ]G[N ], (13)

with

G[N ] =
∑
α

Tr[AαNα],

Aα;j,k = lα,j lα,kρθ − lα,j∂kρθ − lα,k∂jρθ.

(14)

The derivation is found in Appendix A. However Ξ[M,N ]
is not a univocal matrix-valued generalization of the
single-parameter scalar quantity χ[M,N ]: F[M ]−1 and
G[N ] may not commute, thus their ordering matters. To
avoid this ambiguity and also to be able to perform an
optimization over noise POVMs, we introduce a scalar
quantity also in the multiparameter scenario:

X[M,N ] = tr [Ξ[M,N ]] = P + tr[F[M ]−1G[N ]] (15)

Note that this resolves the ambiguity mentioned above,
since the cyclicity of the trace ensures the same fig-
ure of merit is obtained for any matrix of the form
F[M ]−qG[N ]F[M ]−p with p+ q = 1.

A useful property of X[N,M ] is its invariance under
reparametrizations of the statistical model. We recall
that for a new set of parameters φ⃗(θ) = {φ1, φ2, ..., φP }
the matrix Jij = ∂φi

θj(φ⃗), i.e. the transpose of the Ja-
cobian matrix, links the original and reparametrised FI
matrices as [5]

F̃ = JFJT; (16)

where we use the tilde to denote the new parameteriza-
tion, also for partial derivatives ∂̃j = ∂φj

and similarly

for l̃α,j and Ãα;j,k.

Since ∇̃ρ = J · ∇ρ, due to the definitions (9) and (14),
we have that the matrix G[N ] transforms as the FI ma-
trix

G̃[N ] = JG[N ]JT, (17)

and thus the trace in (15) is invariant under
reparametrization, as claimed.

1. Semidefinite program

The FI MaS MeNoS can then be defined as in Eq. (6)
by maximizing over all the possible noise POVM N ,

Σ[M ] = max
N

X[M,N ] . (18)

This quantity then captures the robustness of the mea-
surement M for the multiparameter estimation task as
a whole. Mathematically, the function to maximize is
linear in the POVM elements Nα, which belong to the
convex cone of positive semidefinite matrices Nα ≥ 0
and have to satisfy the linear constraint

∑
αNα = 1.

This is thus a semidefinite program (SDP) [60], a class of
optimization problems that is pivotal in quantum infor-
mation science [61–63]. From a practical point of view,
many efficient algorithms for SDPs exist, which allow
to obtain precise numerical solutions even for problems
with relatively big matrices. The closed-form solution in
Eq. (6) can be obtained for single-parameter estimation
only because it is possible to reduce the optimization to
a two-outcome POVM [54]; this is generally not the case
for multiparameter problems. This suggests an analogy
with minimal-error state discrimination: for two alter-
native hypotheses, an expression can be found in terms
of trace norm, while no close form is available more than
two. In the following we show how to simplify the formu-
lation of the optimization problem, which is useful both
for a practical implementation of the SDP and to derive
upper and lower bounds on Σ[M ].

The invariance of X[N,M ] allows us to work in the
diagonal parametrization in which the FI matrix is diag-
onal, i.e. reparametrizing the model such that the rows
of J are the eigenvectors of F. This also implies that J
will be orthogonal, but we could also go to the “natural
parametrization” in which F = 1P , meaning that J is not
orthogonal and includes all the F̃jj factors that appear
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below. In the rest of the manuscript, the tilde will denote
the diagonal parametrization exclusively. This allows to
express the optimization in a simpler form

Σ[M ] = P + max
N

O∑
α=1

P∑
j=1

Tr[Ãα;jjNα]

F̃jj

(19)

= P + max
N

O∑
α=1

Tr

Nα

 P∑
j=1

Ãα;jj

F̃jj

 .
Note that one can also implement the linear constraint
explicitly and eliminate one matrix variable, by setting

NO = 1−
∑O−1

α=1 Nα and optimizing {Nα}α=1,...,O−1 with

the inequality constraint
∑O−1

α=1 Nα ≤ 1. This optimiza-
tion can be easily fed to a modelling language for a nu-
merical evaluation of the FI MaS MeNoS.

2. Possible reduction of the number of outcomes of N

While it is not generally possible to restrict the opti-
mization to POVMs with only two outcomes, it may still
be possible to reduce the number of relevant outcomes
also in the multiparameter case. First, we introduce the
functions

fα(x⃗) = cα∥x⃗∥2 − x⃗ · δ⃗α, (20)

where cα = Tr[ρθ̄Nα] ≥ 0, δα,j = 2Tr[∂̃jρθ̄Nα]/
√
F̃jj

and ∥x⃗∥2 =
∑

j x
2
j is the Euclidean norm, mak-

ing fα a convex function of x⃗. Second, we in-

troduce the collection of O vectors in RP : L⃗α =[
l̃α,1/

√
F̃11, l̃α,2/

√
F̃22, ..., l̃α,P /

√
F̃PP

]
, where α ∈

{1, . . . , O} labels the outcomes of M . With these defi-
nitions we obtain

X[M,N ] = P +
O∑

α=1

fα(L⃗α). (21)

Geometrically, the vectors {L⃗α}α=1,...,O represent O
points in a P -dimensional Euclidean space. The convex
hull of these points forms a convex polytope and its ver-
tices, or extremal points, must be a subset of the original
points. We denote the number of vertices with E and
we rearrange the outcomes of M such that the vertices

correspond to the first E elements L⃗1, ..., L⃗E .
These geometric considerations can be used to re-

strict the class of noise POVMs over which the max-
imisation of X[M,N ] must be carried out. Due to the
convexity of the functions fα(x⃗), they will present a
maximum in correspondence of at least one of the ver-
tices of the polytope. Suppose that fE+1(x⃗) is max-

imised for x⃗ = L⃗1, and consider a generic noise POVM
N = {N1, N2, ..., NE , NE+1, ...}, as well as its variation
N ′ = {N1+NE+1, N2, ..., NE , 0, ...}: by virtue of (21), we

get X[M,N ′]−X[M,N ] = fE+1(L⃗1)− fE+1(L⃗E+1) ≥ 0.
Applying this argument to all the non-extremal outcomes
we conclude that the optimal POVM N that maximizes
X[M,N ] can be restricted to have at most E outcomes
corresponding to the extremal points. This transposes a
property of the single-parameter FI MeNoS to the mul-
tiparameter case. These geometrical considerations may
help restricting the search of the optimal POVM N for
a moderate number of parameters; in fact, for arbitrary
dimension finding the vertex points is not a trivial com-
putational task.

B. Upper and lower bounds

1. Lower bound

The FI MaS MeNoS is, by definition, limited from be-
low by any X[M,N ] at fixed N . We can then choose
a noise POVM with only two outcomes, corresponding
to the outcomes α′ and α′′ of M , which we denote as
N (α′,α′′) = {. . . , H, . . . ,1 − H, . . . } with 0 ≤ H ≤ 1,
where H appears in the α′-th position and 1 − H in
the α′′-th. This choice leads to a lower bound Σ[M ] ≥
Σ

(α′,α′′)
L [M ] that depends on the choice of α′ and α′′:

Σ
(α′,α′′)
L [M ] − P = max

0≤H≤1
tr
[
F[M ]−1G[N (α′,α′′)]

]
(22)

= ∥L⃗α′∥2 + max
0≤H≤1

Tr

H
 P∑

j=1

Ãα′;jj − Ãα′′;jj

F̃jj


(23)

=
∥L⃗α′∥2 + ∥L⃗α′′∥2

2
+

∥∥∥∥∥∥
P∑

j=1

Ãα′,jj − Ãα′′,jj

2F̃jj

∥∥∥∥∥∥
1

. (24)

The second line is obtained by using the diago-
nal parametrization, as in (19), together with the
form of the two-outcome POVM and the fact that

Tr
[∑P

j=1 Ãα;jj/F̃jj

]
= ∥L⃗α∥2, since Tr[∂jρθ] = 0. From

here the derivation is analogous to the single-parameter
case (6): the third line is a well-known identity, see
e.g. [62, pp. 126-127], which forms the basis of the Holevo-
Helstrom theorem [61, Theorem 3.4, p. 128].

Finally, the tightest of this class of lower bounds, de-
noted by ΣL[M ], is obtained by taking the maximum
over the choice of outcome pairs α′ and α′′:

Σ[M ] ≥ ΣL[M ] = max
(α′,α′′)

Σ
(α′,α′′)
L [M ]. (25)

2. Upper bound

A simple upper bound can be obtained by maximiz-
ing each term in the sum in Eq. (19) separately instead
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of optimizing the whole sum simultaneously. Each in-
dividual optimiziation clearly corresponds to the single-
parameter FI MeNoS for each parameter in the diagonal
parametrization. Substituting the closed-form expres-
sion (6), the bound reads

Σ[M ] ≤ ΣU [M ] =
∑
j

σj [M ] (26)

σj [M ] = 1 +
1

2F̃jj [M ]

(
l̃2
α↓

j

+ l̃2
α↑

j

+ ∥Ãnj ,jj − Ãmj ,jj∥1
)

where indexes α↓
j and α↑

j , associated to the minimum and

maximum of the set {lα,j} respectively, may now differ
depending on the parameter.

IV. APPLICATION TO MULTIPARAMETER
QUANTUM ESTIMATION PROBLEMS

We will now address the evaluation of the FI MaS
MeNoS Σ[M ] for measurement strategies in two paradig-
matic examples of multiparameter quantum estimation.
We will first consider the problem of estimating phase
and phase-diffusion via qubit probes [19–23], and we
will then approach the estimation of centroid, separa-
tion, and relative intensities of two incoherent point
sources [26, 27, 30]. A companion notebook with the
code used to produce the numerical results for both ex-
amples is available online [64].

A. Simultaneous estimation of phase and dephasing

We now consider the joint estimation of a phase ϕ
and dephasing ∆ encoded in a qubit quantum statisti-
cal model ρθ̄, which in the σz-basis reads

ρθ̄ =
1

2

(
1 e−iϕ−∆

eiϕ−∆ 1

)
, θ̄ = (ϕ,∆) . (27)

This has served as a common test for multiparameter
estimation [19–23].

Our aim is to quantify the FI MaS MeNoS associated to
the two different strategies: i) a separable-measurement
strategy, corresponding to a four-outcome single-qubit
POVM M (sep) such that

M
(sep)
1 = |+x⟩⟨+x|/2 M

(sep)
2 = |−x⟩⟨−x|/2

M
(sep)
3 = |+y⟩⟨+y|/2 M

(sep)
4 = |−y⟩⟨−y|/2 (28)

where |±x⟩ and |±y⟩ are eigenstates respectively of σx
and σy; ii) an entangled-measurement strategy on two
copies ρθ̄ ⊗ ρθ̄, corresponding to the Bell measurement
POVM

M
(ent)
1 = |Ψ+⟩⟨Ψ+| M

(ent)
2 = |Ψ−⟩⟨Ψ−|

M
(ent)
3 = |Φ+⟩⟨Φ+| M

(ent)
4 = |Φ−⟩⟨Φ−| (29)

where |Ψ±⟩ and |Φ±⟩ denote the four Bell states. It has
been in fact discussed how the use of a Bell-measurement
on two copies of the state (27) can result in an improved
extraction of the FI with respect to separable measure-
ments [23]. In particular, following the idea put forward
in Ref. [35], one can define a parameter quantifying how
the estimation via a certain POVM M acting on m copies
of the state ρθ̄ is far from the multiparameter bound as

r[M ] =
m tr[F[M ]−1]

tr[Q−1]
≥ 1 . (30)

The lower bound r[M ] = 1 is achieved whenever the
scalar bound (11) is saturated. One can prove that, given
the quantum statistical model ρθ̄ in Eq. (27), the two
SLD operators satisfy the weak-commutativity condition
Tr[ρθ̄[Lϕ, L∆]] = 0. This implies that the quantum sta-
tistical model is asymptotically classical [9], meaning that
a POVM M acting on an asymptotically large number of
copies m→ ∞ exists such that the bound (11) is achiev-
able, and thus r[M ] → 1 in this limit. By considering
the two strategies introduced above, one has

r[M (sep)] = 2 , (31)

r[M (ent)] =
1 − 2 e4∆

1 − 2 e2∆
, for ϕ = π/4 (32)

where r[M (ent)] has been minimized over the phase pa-
rameter ϕ. One can thus show that for a specific value
of the phase ϕ and for vanishing dephasing ∆ ≈ 0 the
scalar Cramér-Rao bound (11) is already saturated by
implementing a two-copy entangled measurement strat-
egy, while for larger values of dephasing ∆ ≳ 0.27 the Bell
measurement performs worse than the separable one, see
panel (b) of Fig. 1.

We study the behaviour of the FI MaS MeNoS for the
two POVMs in this regime, in order to understand any
possible relationship between efficiency in the multipa-
rameter estimation and noise susceptibility. In Fig. 1 we
plot the FI MaS MeNoS Σ[M ], that has been obtained by
a numerical evaluation using Eq. (19) as a semidefinite
program (SDP) in Python using CVXPY [65]. For com-
parison, we also report the corresponding upper bound
ΣU [M ] and lower bound ΣL[M ] both for the separable
measurement M (sep) and for the entangled measurement
M (ent). We fix ϕ = π/4 and plot the quantities as a
function of ∆.

First, we observe that the bounds ΣL and ΣU give
reliable information on the actual multiparameter sus-
ceptibilities. On the one hand, we observe that for this
problem the exact result obtained by solving the SDP is
close to the lower bound ΣL, being almost identical in
the case of separable measurements on a single copy. On
the other hand, the bounds capture the behaviour in the
limit of vanishing noise ∆ → 0, where the susceptibility
Σ[M (ent)] diverges, while Σ[M (sep)] tends to a finite value.
Thus, even if a projection onto Bell states allows to satu-
rate the multiparameter quantum Cramér-Rao bound as
∆ → 0, such a measurement becomes highly susceptible
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FIG. 1. Panel (a): noise susceptibility (computed via SDP,
solid lines), upper bound (dotted lines) and lower bound
(dashed lines) for phase and phase diffusion estimation as
a function of the phase diffusion parameter ∆, for ϕ = π/4.
Panel (b): degree of optimality of the POVM. Shades of red

refer to the Bell-state measurement M (ent), while shades of
blue to the separable measurement M (sep).

to imperfections in its implementation. This supports
qualitative observations that had been put forward in
Ref. [23]. Intriguingly, the parameter region ∆ ≲ 0.27,
where the entangled measurement performs better, cor-
responds also to the region in which its FI MaS MeNos
becomes larger than for the separable POVM. For inter-
mediate values of ∆ there is a small region where the
susceptibility of the entangled measurement sits slightly
below the separable case, but as ∆ increases Σ[M (ent)]
starts growing again, while Σ[M (sep)] decreases monoton-
ically.

B. Multiparameter quantum metrology of weak
incoherent point sources

As our second example, we consider the problem of
estimating the separation s of two incoherent sources.
These are found close to their centroid position xc, with
a relative intensity q. All these parameters are unknown
and must be estimated at once. Under the assumption
of weak sources, a suitable quantum statistical model to
describe the state of a single photon at the image plane
is given by

ρθ̄ = q|ψ+⟩⟨ψ+| + (1 − q)|ψ−⟩⟨ψ−| (33)

where the states |ψ±⟩ are defined by projecting on the
x-basis as x-displaced Gaussian point spread functions

⟨x|ψ±⟩ = g(x, xc ± s/2) (34)

with

g(x, x0) =
1

(2π)1/4
exp

{
− (x− x0)2

4

}
. (35)

A proper analysis on the ultimate quantum limit
on this kind of estimation has been extensively dis-
cussed [27, 56], showing how the Rayleigh criterion can
be in principle overcome also in the multiparameter sce-
nario. While the most immediate interpretation is given
in terms of optical sources, the same formalism can be
readily applied to a mixture of incoherent short pulses
with a given time-delay s, and an experimental verifi-
cation of quantum timing resolution has been shown in
Ref. [30].

The optimal measurement that has been realized in
Ref. [30], was previously theoretically investigated in
Refs. [26, 27]. For small values of s this consists in a
5-outcome POVM with Mj = |vj⟩⟨vj |, j = 0, . . . , 3, and

M4 = 1−
∑3

j=0Mj . In particular one shows that

|vj⟩ =

3∑
k=0

wj,k|Φk⟩ (36)

where the states |Φk⟩ are defined by their projection on
the x-basis as

⟨x|Φn⟩ = g(x, x̄)Hn

(
x− x̄√

2

)
, (37)

where Hn(x) is the n-th Hermite-Gauss polynomial:

Hn(x) = (−1)nex
2

(dne−x2

/dxn). These states thus rep-
resent Hermite-Gauss modes centered on the position x̄.
The weight matrix entering in (36) is

w =


0 1√

6
1√
2

− 1√
3

0 1√
6

− 1√
2

− 1√
3√

2
5

√
2
5 0 1√

5

−
√

3
5

2√
15

0
√

2
15

 , (38)

while the central position x̄ for the optimal measurement
is equal to x̄opt = xc + (q − 1/2)s [26]. Contrary to
the direct intensity detection, this measurement strategy
shows a non-vanishing precision also in the limit s → 0,
when q = 1/2.

In order to show the optimality of the POVM in the
small s regime we consider the quantities

rs[M ] =
(F[M ]−1)1,1

(Q−1)1,1
≥ 1 , (39)

and

rmulti[M ] =
tr[F[M ]−1]

tr[Q−1]
≥ 1 . (40)
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FIG. 2. Panel (a): Noise susceptibility Σ[M ] (solid lines)
and upper bound (dashed lines) for the estimation of the pa-
rameters (s, xc, θ) of incoherent point sources, as a function
of the spatial separation s. Panel (b): optimality parameter
rs[M ] for the estimation of s as a single parameter. Panel (c):
optimality parameter rmulti[M ] for the joint estimation of the
three parameters.

The numerator and denominator of the first quantity
rs[M ] correspond to the classical and quantum Cramér-
Rao bound for the estimation of the sources separation
s, taking into account the centroid xc and the relative
intensity q as (unknown) nuisance parameters [66, 67].
This means that, while the parameter of interest is only
s, we do not neglect that estimates of s are generally cor-
related with the estimates of the other two parameters.
This increases the error, since (F[M ]−1)1,1 ≥ 1/F[M ]1,1
(and analogously for the QFI), where the right-hand side
is the single-parameter Cramér-Rao bound (in which q
and xc are assumed to be perfectly known).

The second quantity in Eq. (40), analogous to the one
defined for the previous example in Eq. (30), quantifies
the optimality of the measurement strategy for the esti-
mation of all the parameters (in this scenario the mea-
surement is applied to a single copy of the quantum state,
i.e. m = 1). Both quantities (39) and (40) achieve their
minimum value when the measurement is optimal, i.e.
it saturates the (single- or multi-parameter) quantum
Cramér-Rao bound. As we can notice from panels (b)
and (c) of Fig. 2, this measurement enjoys such an opti-
mality when the spatial separation s goes to zero, both
for the estimation of s only and of all three parameters.
The quality of the estimation of both s, as captured by
(39), and of all three parameters, captured by (40), in-
creases as the intensity unbalance q increases, i.e. as

q moves away from the balanced q = 1/2 towards the
values q = 0 (or equivalently q = 1). However, we see
a qualtitive difference between the estimation of s and
multiparameter estimation, the latter performing much
closer to optimality, rmulti[M ] ≈ 1. We remind, however,
that this metric should be adopted to compare the preci-
sion obtainable with a given measurement to the relative
Cramér-Rao bound, but not to compare different estima-
tion problems. For example, the absolute error on the es-
timation of s is independent of its value only for q = 1/2;
in other cases it grows as s → 0, but more favourably
compared to direct intensity measurements [27].

The fact that multiparameter estimation performs
closer to optimality than the single parameter case may
appear counterintuitive. We can partly explain this be-
haviour by noticing that the uncertainties about the dif-
ferent parameters may vary by orders of magnitude, even
when each one reaches its individual Cramér-Rao bound.
Consequently, if equal weights are applied, the sum of the
variances can be dominated by the contribution of one
parameter over the others—specifically, the uncertainty
on q is by far the leading term. Since the measurement is
optimal for the estimation of q, we get rmulti[M ] ≈ 1 due
to this dominating behaviour regardless the behaviour of
the other two contributions.

It is possible to evaluate the multiparameter suscep-
tibility and its upper and lower bounds using the ex-
pressions in Sec. III, even if the states |ψ±⟩ are infinite-
dimensional. As a matter of fact, the finite rank of
the quantum statistical model makes it possible to work
with finite-dimensional matrices for ρθ̄ and its deriva-
tives, by introducing a suitable orthonormal basis of
span {|ψ+⟩ , |ψ−⟩ , |∂1ψ+⟩ , |∂1ψ−⟩} (derivatives with re-
spect to the other two parameters still give operators
supported on this subspace). Details on these calcula-
tions are expanded in Appendix B. After this procedure,
we can adopt the same numerical techniques as for the
previous example; the code is available at [64].

In panel (a) of Fig. 2 we show the multiparameter sus-
ceptibility Σ[M ] as a function of s for different values
of q. Since we are considering the optimal measurement
centered around x̄opt, the problem enjoys a translational
invariance and the figures of merit do not depend on the
specific value of xc. The exact value of Σ[M ] obtained
with the SDP is close to the lower bound (indistinguish-
able in the plot) also for this model. While the discrep-
ancy with the upper bound is more significant, it is still
a small difference relative to the large values that the
quantities attain. For this reason the dashed lines cor-
responding to the upper bound are barely appreciable in
logarithmic scale.

We observe that both the noise susceptibility Σ[M ] and
the optimality figures of merit rs[M ] and rmulti[M ] are
monotonic in q; the former is decreasing while the latter
is increasing (clearly, the situation would be reversed for
q > 1/2). Thus, we can conclude that when the measure-
ment gets more optimal the price to pay is an increased
sensitivity to noise (a similar conclusion was drawn in
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previous example, albeit only in the region ∆ ≲ 0.4 in
which entangled measurements perform well). More im-
portantly, we also observe that the susceptibility Σ[M ] is
diverging for s → 0: i.e. when the measurement is opti-
mal, small errors in its implementation of the POVM are
highly detrimental.

V. CONCLUSIONS AND OUTLOOKS

Local quantum estimation theory has provided an in-
strumental set of tools for the theoretical analysis of
quantum metrology. However, to properly address prac-
tical implementations, we argue that the performance of
a particular measurement (or more generally a particular
metrological strategy) should be assessed beyond its abil-
ity to saturate the fundamental quantum Cramér-Rao
bound. Following Ref. [47], we have approached this is-
sue from the observation that all measurements are nec-
essarily imperfect, extending the framework to multiple
parameters.

The analysis of multiparameter measurements is beset
on all sides by the noncommutativity of the individual op-
timal measurements, as well as by statistical correlations.
We have nevertheless succeeded in finding a workable def-
inition for the susceptibility to measurement noise; this
is able to provide concise information in the form of a
scalar figure of merit, which is efficiently computable as
an SDP. We have also established closed-form upper and
lower bounds; our examples show these can be sufficiently
tight to be useful.

The examples also revealed that better performance of
a measurement, in the sense of being closer to attaining
the quantum Cramér-Rao bound, often comes attached
to an increased sensitivity to noise.

We observe that in Ref. [68] a new cost function for
multiparameter estimation has been introduced. This
takes into account the idea that a measurement should
perform well not only at the true parameter value but
also in its vicinity. We see this as a complementary ap-
proach to ours: both a purely local analysis and the as-
sumption of perfect measurements are idealizations. Go-
ing beyond them, new ways to assess the performance of
a measurement for parameter estimation are introduced
that are different from the evaluation of the correspond-
ing Cramér-Rao bound. Intriguingly, the optimal mea-
surement for noiseless single-parameter metrology pre-
sented in Ref. [68] corresponds to the measurement that
minimize the FI noise susceptibility, found in Ref. [47].
It is an interesting open question to understand if deeper
connections between these two frameworks may exist, es-
pecially in the more intricate case of multiple parameters.

In conclusion, our work enriches the toolkit for the
inspection of metrological schemes, being applicable to
classical and quantum schemes equally well. Future de-
velopments will consider Bayesian schemes, which may
affect robustness through prior knowledge, as well as dif-
ferent weighting among the parameters.
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Appendix A: On the evaluation of Eq. (12)

The limit in Eq. (12) can be calculated from the ele-
ments of the F matrix:

Fj,k[(1 − ϵ)M + ϵN ] =

=
∑
α

Tr[ρθ̄Mα]
((1 − ϵ)lα,j + ϵmα,j)((1 − ϵ)lα,k + ϵmα,k)

(1 − ϵ) + ϵ Tr[ρθ̄Nα]
Tr[ρθ̄Mα]

,

(A1)

where we have used the linearity of the trace, and have
defined mα,j = Tr[∂jρθ̄Nα]/Tr[ρθ̄Mα]. This implies that

Fj,k[M ] − Fj,k[(1 − ϵ)M + ϵN ]

ϵ
=

1

ϵ

∑
α

Tr[ρθ̄Mα]lα,j lα,k−Tr[ρθ̄Mα]
((1 − ϵ)lα,j + ϵmα,j)((1 − ϵ)lα,k + ϵmα,k)

(1 − ϵ) + ϵ Tr[ρθ̄Nα]
Tr[ρθ̄Mα]

. (A2)

For ϵ ≃ 0, one can take the approximation

1

(1 − ϵ) + ϵ Tr[ρθ̄Nα]
Tr[ρθ̄Mα]

≃ 1 − ϵ

(
Tr[ρθ̄Nα]

Tr[ρθ̄Mα]
− 1

)
, (A3)

that leads, in the limit of an infinitely small disturbance,
to the expression

lim
ϵ→0

Fj,k[M ] − Fj,k[(1 − ϵ)M + ϵN ]

ϵ
=

= Fj,k[M ] +
∑
α

Tr[Aα;jkNα],
(A4)

and, consequently, to our claim.

Appendix B: Multiparameter quantum metrology of
incoherent point sources - finite dimensional

calculations

In this appendix we present the details of the calcu-
lations needed to evaluate Σ[M ] for the estimation of
incoherent optical point sources. By following the idea
pursued in Ref. [54], we will first define an orthonor-
mal basis of vectors {|bj⟩}4j=1 = {|0⟩s, |1⟩s, |0⟩a, |1⟩a}
We need only four basis elements because the derivative
with respect to s and xc are linearly dependent, since
|∂2ψ±⟩ = ±2 |∂1ψ±⟩. We can then use this basis to ex-
press the quantum state ρθ̄ and its derivatives ∂jρθ̄ with
respect to the parameters θ̄ = (s, xc, q).

We define the orthonormal basis elements as

|0⟩s = K0s (|ψ+⟩ + |ψ−⟩) , (B1)

|0⟩a = K0a (|ψ+⟩ − |ψ−⟩) , (B2)

|1⟩s = K1s (|∂1ψ+⟩ + |∂1ψ−⟩ − ξK0s|0⟩s) , (B3)

|1⟩a = K1a (|∂1ψ+⟩ − |∂1ψ−⟩ + ξK0a|0⟩a) , (B4)

where

ν = ⟨ψ−|ψ+⟩ = e−
s2

8 (B5)

ξ = ⟨ψ+|∂1ψ−⟩ + ⟨ψ−|∂1ψ+⟩ = −ν s
4

(B6)

λ = 2⟨∂1ψ+|∂1ψ−⟩ =
ν

32

[
s2 − 4

]
(B7)

K0s =
1√

2(1 + ν)
, (B8)

K0a =
1√

2(1 − ν)
, (B9)

K1s =

[
1

8
+ λ− (K0sξ)

2

]− 1
2

(B10)

K1a =

[
1

8
− λ− (K0aξ)

2

]− 1
2

. (B11)

The matrix

K =
1

2


1

K0s

1
K0a

0 0
1

K0s
− 1

K0a
0 0

K0sξ −K0aξ
1

K1s

1
K1a

K0sξ K0aξ
1

K1s
− 1

K1a

 (B12)

is used to express the non-orthogonal basis vectors
{|vj⟩}4j=1 = {|ψ+⟩ , |ψ−⟩ , |∂1ψ+⟩ , |∂1ψ−⟩} as linear com-
binations of the orthonormal basis as |vi⟩ =

∑
k Kik |bk⟩.

The quantum state ρθ̄ and its derivatives can be writ-
ten written as finite dimensional matrices with respect to
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the orthonormal basis b through the matrix K as follows

ρθ̄ = KT

 q 0 0 0
0 1 − q 0 0
0 0 0 0
0 0 0 0

K (B13)

∂1ρθ̄ = KT

 0 0 q 0
0 0 0 1 − q
q 0 0 0
0 1 − q 0 0

K (B14)

∂2ρθ̄ = 2KT

 0 0 q 0
0 0 0 q − 1
q 0 0 0
0 q − 1 0 0

K (B15)

∂3ρθ̄ = KT

 1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

K . (B16)

We conclude this section by mentioning that for this
problem it is easier to compute the QFI working directly
with non-orthogonal bases [29, 69]; similarly, a formu-
lation of the FI MaS MeNoS in terms of nonorthogonal
bases is also possible. We have not pursued this approach
here to avoid unnecessary complications in the notation
and to remain consistent with the treatment of Ref. [54].
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