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Preface
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large molecular systems, Int. J. Quantum Chem. just accepted (April 2015);
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rigid Organic Molecules, J. Phys. Chem. A 119, 2058 (2015);

• F. Egidi, T. Giovannini, M. Piccardo, J. Bloino, C. Cappelli, V. Barone,
Stereoelectronic, Vibrational, and Environmental Contributions to Polariz-
abilities of Large Molecular Systems: A Feasible Anharmonic Protocol, J.
Chem. Theory Comput. 10, 2456 (2014);

• C. Latouche, F. Palazzetti, D. Skouteris, V. Barone, High-Accuracy Vi-
brational Computations for Transition-Metal Complexes Including Anhar-
monic Corrections: Ferrocene, Ruthenocene, and Osmocene as Test Cases,
J. Chem. Theory Comput. 10, 4565 (2014).
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These Ph.D. studies have also led to the applications published in:
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mophore, Phys. Chem. Chem. Phys. 16, 10059 (2014).



Introduction

Vibrational and rotational spectroscopies are among the most powerful tools
for the study of chemical systems [1, 2]. The investigation of the rotational and
roto-vibrational spectra of polyatomic molecules has become of basic importance
to determine accurate molecular geometries, as well as to get information on molec-
ular force fields, roto-vibrational interaction parameters and the relations between
structure and chemical-physical properties. Nowadays, there is a constant interplay
between molecular spectroscopy and computational chemistry. Indeed, computed
data have become crucial for the interpretation of experimental results and, con-
versely, accurate spectroscopic measurements are used as benchmarks to validate
theoretical approaches [1–6].

The reliability of the theoretical models to support experimental findings is re-
lated to their accuracy. To this end, attention is usually concentrated on the choice
of the method used to compute the electronic structure, and the way in which nu-
clear motions are simulated is often basic, namely the harmonic approximation for
vibrations and the rigid-rotor approximation for rotations. However, the neglect
of anharmonicity and roto-vibrational couplings can lead to significant errors and
may result in incorrect interpretations of experimental data. To overcome such a
limitation, various strategies have been devised [7–28].

Among them, the approach based on perturbation theory applied to the expan-
sion of the molecular Hamiltonian in power series of products of vibrational and
rotational operators, also referred to as vibrational perturbation theory (VPT),
is particularly appealing for its computational efficiency to treat medium-to-large
semi-rigid systems [29–43]. Moreover, some formulations of VPT, such as the
Van Vleck contact transformation method, completely justify a generalized model
(GVPT) [44, 45], coupling the advantages of the perturbative development to deal
with weakly coupled terms and those of the variational treatment to handle tight
coupled ones. Implementation of VPT approaches in computational programs for
chemistry has become common and black-box procedures have been devised to
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offer simple yet reliable ways of computing accurate roto-vibrational spectra [3,
31, 46–54].

In this context, two points should be noted:

• taking into account that the majority of chemical systems fall into the asym-
metric top category and because of the simpler formulation, most develop-
ments in the last years have been focused on this case. As a result, a signif-
icant ensemble of molecular systems, ranging from small to large sizes, and
of interest in various research fields, has been excluded or approximately
treated. Among others, we can mention organic and organometallic com-
pounds as coronene and ferrocene [38, 55–57] or acetylene derivatives [58–
69]. The proper and effective introduction of symmetry leads to different
developments for linear, symmetric and spherical top systems with respect
to the formulation of asymmetric tops. Though the rotational problem is
simpler in the first three cases than in the last one, because the rigid ro-
tor problem can be solved analytically, the theory of linear, symmetric or
spherical top molecules shows a number of complications due to the pres-
ence of degenerate vibrational modes, that makes analytical expressions for
the vibrational interaction terms less simple [70, 71].

• several studies have been performed concerning vibrational averaging [22,
72–77] and transition matrix elements [31, 38, 42, 43, 52, 78–96] for molec-
ular properties. Comparatively, less work has been done to compute vi-
brational transition moments beyond the harmonic approximation, due to
the complexity of treating at the same time anharmonicity either of the
wavefunction (mechanical anharmonicity) and of the property (electric an-
harmonicity). The complete treatments are highly demanding due to the
large number of terms involved and their complexity. Only recently compact
analytical formulas have been presented in the literature to handle transi-
tion moments of fundamentals, overtones, and combination bands of different
properties (i.e. electric and magnetic dipoles and polarizability tensor) [97,
98]. However, it should be noted that the latter developments were limited
to excitations from the vibrational ground state.

Starting from the developments already presented in the literature [29, 32, 47,
99, 100], the main aim of this work is to present a complete framework for the vi-
brational energies and vibrational averaged properties of asymmetric tops, as well
as, linear and symmetric tops. We review and generalize the formalism in order to
completely support intrinsic and accidental degeneracies, where the first ones are
generated by the molecular symmetry and lead to further terms in VPT develop-
ments, and the latter are not imposed by the symmetry of the Hamiltonian and
lead to singularities in the perturbative formulation, e.g. the well-known Fermi
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resonances [32, 101, 102]. Particular attention is devoted to the latter singulari-
ties, presenting their treatment both within the rigorous variational-perturbative
coupled GVPT approach, and within approximate methods. Moreover, a full gen-
eral formulation of the roto-vibrational energies is presented to allow a unified
treatment of both minima and first-order saddle points of the molecular potential
energy surface (PES). Together with spectroscopic quantities, also thermodynamic
functions and reaction rates are considered.

Focusing on the asymmetric top systems, then we present the first development
concerning the generalization of the transition matrix elements for vibrational
excitations from a generic vibrational states, where the anharmonicity of both the
wavefunction and the properties is taken into account.

This document is organized in two parts. The first is dedicated to the pre-
sentation of the theoretical framework discussed above. In the second part, first
we focus our attention on the issue of determination of accurate molecular ge-
ometries, which is essential for a correct development of accurate force fields, as
well as, for a deeper understanding of physical-chemical properties and a fruitful
interplay of experiment and theory. Then, we discuss the vibrational energies and
thermodynamic quantities of different molecular systems in order to validate our
developments and show the feasibility and the limitations of the VPT approach.

Because of the large number of acronyms that will be used to name the different
developments and approximations presented in the text, an acronyms index has
been reported at the end of this document.





Part I

Theory
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I think I can safely say that nobody
understands quantum mechanics.

Richard Feynman
1918-1988

This first part presents the molecular Hamiltonian and its treatment by per-
turbation theory to compute roto-vibrational energies, thermodynamic quantities
and molecular properties. The formulation is completely generalized and reviewed
in order to support both intrinsic and accidental degenerations, where the former
are generated by the molecular symmetry present in linear and symmetric top
systems.

As a reminder, a symmetric top is defined by two properties: the equilibrium
configuration of the nuclei has a symmetry axis of order 3 or higher and, if there
is more than one axis satisfying the above condition, these axes are all coincident.
If all the above conditions are present, the molecule has two equal moments of
inertia. Otherwise, the molecule is either an asymmetric top (first condition not
met, all moments of inertia different) or a spherical top (second condition not
satisfied, all moments of inertia are equal). Moreover, in a linear top system all the
nuclei fall on a straight line and the molecule has one vanishing moment of inertia
and two non-null coincident ones. Asymmetric tops have only non-degenerate
harmonic vibrational frequencies, linear and symmetric tops both non-degenerate
and doubly-degenerate harmonic frequencies, and spherical tops can be affected
by degenerations larger than two.

The developments for the molecular Hamiltonian presented in the following
consider systems involving at most doubly-degenerate harmonic frequencies, let-
ting aside the case of spherical tops.





Chapter 1
General framework

The theoretical framework presented in this work relies on a number of ap-
proximations, in particular the Born-Oppenheimer (BO) approximation and the
Eckart-Sayvetz conditions, and assumptions, specifically regarding the molecular
and normal modes orientations, which will be presented in this first section.

Afterwards, a short recall of the harmonic vibrational theory is presented to
introduce the equation of the molecular Hamiltonian of nuclei and its treatment
by perturbation theory.

1.1 The Born-Oppenheimer approximation
The BO approximation allows to separate the total Hamiltonian of a molecule

into an electronic and a nuclear component [103, 104]. To briefly recall it, let we
start writing down the complete Hamiltonian of a molecular system,

Hmol = Tnuc + Tel + Vnuc,nuc + Vnuc,el + Vel,el (1.1)

where the first two terms on the right-hand side are the kinetic energy of the nuclei
and the electrons, respectively, and the remaining terms are the potential energies.
Tnuc contains a sum of terms weighted by the nuclear masses. For this reason, it
can be regarded as a small term with respect to the electronic Hamiltonian,

Hel = Tel + Vnuc,nuc + Vnuc,el + Vel,el (1.2)

Assuming that the Schrödinger equation for Hel for a given nuclear configuration
R can be exactly solved, each eigenstates | Ψi(r,R) 〉 of the total Hamiltonian
Hmol can be expressed in the basis of the eigenstates | ϕj(r;R) 〉 of the electronic
Hamiltonian Hel as,

|Ψi(r,R) 〉 =
∑
j

ψij(R)| ϕj(r;R) 〉 (1.3)

11



12 CHAPTER 1. GENERAL FRAMEWORK

where with “;” we indicate that the electronic state is function of the electronic
coordinates r and parametrically depends on the nuclear coordinates R.
Therefore, introducing the states given by eq. 1.3 into the Schrödinger equation of
Hmol, it can be shown that we obtain,[

Tnuc + Ek(R)− Ei
]
ψik(R) =

∑
j

[
Aij(R) + Bij(R)

]
ψjk(R) (1.4)

where Ek(R) and Ei are the eigenvalues of Hel and Hmol, respectively. Aij(R) and
Bij(R) are non-adiabatic coupling coefficients, which allow the interaction between
the states i and j. Since they depend on the inverse of the nuclear masses, and
assuming there is no large coupling between the different electronic states, they are
usually small. Then eq. 1.3 can be simplified neglecting the latter terms, leading
to the approximate equation,

[Tnuc + Ek(R)]ψik(R) = Eiψik(R) (1.5)

where now the electronic energy Ei(R) plays the role of an external potential in
which the nuclei move (i.e. PES). From a classical point of view, this means that
the electrons interact and move in a field of fixed nuclei and the nuclei move in
an external potential generated by the electrons. Moreover, with the BO approxi-
mation the molecular wavefunction can be expressed as a product of an electronic
and a nuclear wavefunction.

1.2 The Eckart-Sayvetz conditions
In order to further simplify the problem, the space-fixed coordinates system

X, Y, Z can be replaced by new coordinate systems suitable for the description
of the individual types of molecular motions, which are the overall translations
and rotations and the vibrations of atomic nuclei. This is possible by choosing an
appropriate Cartesian axis system x, y, z that moves and rotates with the molecule,
hereafter called molecule-fixed system [32, 33]. With respect to X, Y, Z one, a set
of N equations holds for the positions of the N nuclei in the x, y, z system,

Rq = R0 + B(θ, φ, χ)(d0
q + dq) (q = 1, 2, . . . , N) (1.6)

where R0 is the the position vector of the molecule-fixed system origin with respect
to the space-fixed one and B is a 3×3 orthogonal transformation matrix, function
of θ, φ, χ Euler angles, which give the orientation of X, Y, Z system with respect to
x, y, z one. (d0

q +dq) is the vector of the x, y, z coordinates for the atom q, defined
as the displacement dq with respect to a reference position d0

q. The N position
vectors d0

q define a reference configuration of nuclei.
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It is possible to choose a reference configuration in many different ways. For
example, the configuration that corresponds to the minimum of the PES is called
“equilibrium configuration of the atomic nuclei”. In this work, only rigid refer-
ence configurations will be considered, for which ḋq,τ [≡ d(dq,τ )/dt] = 0 for all
q = 1, 2, . . . , N ; τ = x, y, z with respect to the molecule-fixed frame.
There are 3N variables (Rq,τ , q = 1, 2, . . . , N , τ = X, Y, Z) on the left-hand
sides of the equations 1.6, while 3N + 6 variables (3N + 5 for linear configura-
tions) on the right-hand sides (3 from R0, 3 or 2 Euler angles and 3N from dq,τ ,
q = 1, 2, . . . , N , τ = x, y, z). In order to have the same number of independent vari-
ables, it is necessary to introduce six constraints for the 3N coordinates (d0

q +dq).
These constraints can be defined in many different ways. Eckart [105], and later
Sayvetz [106], demonstrated that the conditions which minimize the interactions
between the translational, rotational and vibrational motions are the following:

1. we require the center of mass of the molecule to be fixed on the origin of the
x, y, z axis system: ∑

q

mq(d
0
q + dq) = 0 (1.7)

Remembering that the molecule is subject to the rotation of the x, y, z sys-
tem, described by the angular velocity ω, it follows by differentiation with
respect to time that ḋ0

q = ω × d0
q, ḋq = ω × dq + ḋq, and,

0 =
∑
q

mq

[
ω ×

(
d0
q + dq

)
+ ḋq

]
= ω ×

∑
i=1

mq

(
d0
q + dq

)
+

N∑
i=1

mqḋd

=
∑
i=1

mqḋq (1.8)

This means that there is no linear momentum during the out of reference
configuration motions, i.e. vibrations. If this relation is met, the transla-
tional motion can be totally decoupled from the rotational and vibrational
ones;

2. we require that, whenever the out of reference configuration motions produce
a rotation of the molecule, the rotating system shifts in order to eliminate
this component from the motion:∑

q

mqd
0
q × (d0

q + dq) = 0 (1.9)
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It follows by differentiation with respect to time,

0 =
∑
q

mq(ω × d0
q)× (d0

q + dq)

+
∑
q

mqd
0
q ×

[
ω × (d0

q + dq)
]

+
∑
q

mqd
0
q × ḋq

=
∑
q

mqd
0
q × ḋq (1.10)

This means that there is no zero-order angular momentum during the vibra-
tional motions. This condition minimizes the rotational-vibrational interac-
tion, usually called Coriolis coupling.

Under these two constraints, called Eckart-Sayvetz conditions, the term related to
translational motions is completely separated from the nuclear Hamiltonian and
the interaction between rotations and vibrations is minimized.

1.3 The harmonic oscillator model
Let us first consider the pure vibrational Hamiltonian of a molecular system in

a harmonic potential [32, 33],

Hvib = −1

2

∑
i,γ

(
∂2

∂Q2
iγ

− λiQ2
iγ

)
(1.11)

where λi = ωi
2, with ω the classical vibrational frequency, and we denote a mass-

weighted normal coordinate by Qiγ , where the first subscript i (or j, k, l) indicates
the vibrational frequency associated to the coordinate, and the second subscript γ
(or ε, θ, ι) takes the values 1 and 1, 2 for non-degenerate and two-fold degenerate
frequencies, respectively. The set of the normal coordinates Qiγ is related to the
Cartesian coordinates dq,τ by the relation,

dq,τ = m−1/2
q

∑
i,γ

liγq,τQiγ (1.12)

If all frequencies are non-degenerate, the eigenfunctions of the Hamiltonian 1.11
will be written as the product of 3N − 6 (3N − 5 for linear systems) independent
eigenfunctions φm(Qm;nm),

− 1

2

(
∂2

∂Q2
m

− λiQ2
m

)
φm(Qm;nm) = Em(nm)φi(Qi;nm) (1.13)
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and the vibrational energy as the sum of 3N − 6[5] eigenvalues Em(nm), where
hereafter we reserve the subscript m,n, o, p to non-degenerate vibrations (omitting
the second subscript 1).

Eq. 1.13 is the well-known Schrödinger equation for one-dimensional harmonic
oscillators. The solutions were obtained by Schrödinger in terms of the dimension-
less normal coordinates qi and the conjugate momenta pi,

qi = γ
1/2
i Qi pi = Pi/(γ

1/2
i ~) (1.14)

where Pi = −i~∂/∂Qi and γi = λ
1/2
i /~. The introduction of the above terms in

eq. 1.13 leads to the solutions,

φm(qm;nm) = Nm(nm)Hm(qm;nm)e−q
2
m/2 Em(nm) = ~ωm

(
nm +

1

2

)
(1.15)

where nm = 0, 1, 2, . . . is a parameter, called vibrational quantum number, Nm is
a normalization factor and Hm is an Hermite polynomial of degree nm.

If two normal coordinates are associated to the same frequency ωs, the functions
φs(Qs1 , Qs2 ;ns, ls) will be the solutions of,

−1

2

[
∂2

∂Q2
s1

+
∂2

∂Q2
s2

− λs
(
Q2
s1

+Q2
s2

)]
φs(Qs1 , Qs2 ;ns, ls) =

Es(ns, ls)φs(Qs1 , Qs2 ;ns, ls) (1.16)

where hereafter we use the subscript s, t, u, v to indicate doubly-degenerate vibra-
tions. The solutions of eq. 1.16 is found introducing the reduced normal coordi-
nates qs1 and qs2 and then the set of polar coordinates % (0 6 % < +∞) and ϕ
(0 6 ϕ < 2π), defined as,

qs1 = % cosϕ qs2 = % sinϕ (1.17)

The eigenfunctions of eq. 1.16 can be written as the product of a radial %-dependent
and an angular ϕ-dependent functions,

φs(qs1 , qs2 ;ns, ls) = Ns(ns, ls)
[
e−%/2%|ls|Ls(%;ns, ls)

][
eilsϕ

]
(1.18)

where Ns is a normalization factor, Ls is the associated Laguerre polynomial and
ns and ls are two parameters, which can be assume the following values,

ns = 0, 1, 2, . . . (1.19)
ls = ±ns,±(ns − 2),±(ns − 4), . . . ,±1 or 0 (1.20)
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The presence of eilsϕ in eq. 1.18 indicates the existence of a vibrational angular
momentum. For this reason, ls is called vibrational angular momentum quan-
tum number. Finally, the expression for the energy levels of the two-dimensional
isotropic harmonic oscillator is,

Es(ns) = ~ωs (ns + 1) (1.21)

It is noteworthy that Es is independent of ls and then (ns + 1)-fold degenerate.

1.4 Normal modes orientation
Since all combinations of the normal coordinates related to a degenerate fre-

quency are again normal coordinates, standard rules can be used to orient them [70,
71].

As first point, the principal symmetry axis of the molecule is superimposed
with the z axis of moving reference frame. The N -fold order of the z axis is then
equal to the order of the symmetry operation R used for the definition of the non-
degenerate (A,B) and degenerate (E1, E2, E3, . . .) symmetry species.
The standard orientation chosen for the degenerate normal coordinates will be
defined by two rules:

1. the relative signs of all Qs1 and Qs2 are chosen such that they transform
under the operation R according to,[

RQs1

RQs2

]
=

[
cosα sinα
− sinα cosα

] [
Qs1

Qs2

]
(1.22)

where α = 2πm/N and m = 1, 2, 3, . . . is the integer corresponding to the
subscripts of the symmetry species label E1, E2, E3, . . . (1 6 m < N/2). It is
noteworthy that when m = 1, Qs1 and Qs2 transform exactly like the x and
y components of a vector in a two-dimensional plane.

2. the orientation of every couple of coordinates Qs1 and Qs2 is chosen so that
every Qs1 is symmetric and every Qs2 is antisymmetric with respect to the
operation R′, [

R′Qs1

R′Qs2

]
=

[
+1 0
0 −1

] [
Qs1

Qs2

]
(1.23)

where R′ is a rotation about a two-fold axis perpendicular to z when the
group is Dn, Dnh, DNd (N odd), D(N/2)d (N/2 even) and a reflexion with
respect to a plane σv (through the z axis) when the group is Cnv.

Using these rules, the non-vanishing PES derivatives and Coriolis coupling con-
stants can be classified by their symmetry relations.
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1.5 Nuclear Hamiltonian and perturbation theory
Within the BO approximation and the Eckart-Sayvetz conditions, the roto-

vibrational quantum mechanical Hamiltonian for the equilibrium configuration of
the atomic nuclei in a given electronic state can be written as [32, 102, 107],

Hnuc =
~2

2

∑
τ,η

µτη (Jτ − πτ ) (Jη − πη) +
1

2

∑
i,γ

P 2
iγ + V + U (1.24)

where µτη is an element of the effective inverse molecular inertia tensor µ and
~Jτ and ~πτ are, respectively, the components of the total and vibrational angular
momentum operators along the molecule-fixed Cartesian axes τ , η or % [30, 32,
102, 108]. The explicit form of the latter is,

~πτ =
∑
i,γ

∑
j,ε

ζiγjε,τQiγPjε (1.25)

where ζiγjε,τ is the Coriolis constant, which couples Qiγ to Qjε vibrational modes
through the τ axis rotation:

ζiγjε,τ = −ζjεiγ ,τ
=
∑
k,θ

(
lkθiγ ,ηlkθjε,% − liγjε,%lkθiγ ,η

)
(1.26)

lkθ,i is from eq. 1.12. V is the PES in which nuclei move and U is a mass-dependent
contribution, which vanishes for linear systems [102, 108],

U = −~2

8

∑
τ

µττ (1.27)

In eq. 1.24 both µ and V can be expanded as Taylor series of the mass-weighted
normal coordinates Q about the equilibrium geometry[32, 102],

µτη = µeτη −
∑
i,γ

µeττaiγ ,τηµ
e
ηηQiγ

+
3

4

∑
ς

∑
i,γ

∑
j,ε

µeττaiγ ,τ ςµ
e
ςςajε,ςηµ

e
ηηQiγQjε + . . . (1.28)

V =
1

2

∑
i,γ

λiQ
2
iγ +

1

6

∑
i,γ

∑
j,ε

∑
k,θ

KiγjεkθQiγQjεQkθ

+
1

24

∑
i,γ

∑
j,ε

∑
k,θ

∑
l,ι

KiγjεkθlιQiγQjεQkθQlι + . . . (1.29)
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where µeτη = {[Ie]−1}τη is an element of the inverse of the equilibrium inertia
moment of the molecule,

Ie =
∑
q

mq

(
|dq|21− dq · dT

q

)
(1.30)

and aiγ ,τη = (∂Ieτη/∂Qiγ )[3, 32, 108]. Kiγjεkθ and Kiγjεkθlι are respectively the third
and fourth derivatives of the potential energy with respect to the normal modes,
also referred to as the cubic and quartic force constants[32, 33, 102],

Kiγjεkθ =
∂3V

∂Qiγ∂Qjε∂Qkθ

and Kiγjεkθlι =
∂4V

∂Qiγ∂Qjε∂Qkθ∂Qlι

(1.31)

After substitution of µ and V in eq. 1.24 by their respective definitions in eqs. 1.28
and 1.29, the terms in Hnuc can be written as,

Hnuc =H20 +H30 +H40 + . . .

+H21 +H31 +H41 + . . .

+H02 +H12 +H22 + . . . (1.32)

where Hfg represents all the terms with a degree f in the vibrational operators
(Qi or Pi) and degree g in the rotational operators (Jτ ). Hence, Hf0 collect purely
vibrational terms,

H20 =
1

2

∑
i,γ

(
P 2
iγ + λiQ

2
iγ

)
(1.33)

H30 =
1

6

∑
i,γ

∑
j,ε

∑
k,θ

KiγjεkθQiγQjεQkθ (1.34)

H40 =
1

24

∑
i,γ

∑
j,ε

∑
k,θ

∑
l,ι

KiγjεkθlιQiγQjεQkθQlι +
~2

2

∑
τ

µeττπ
2
τ (1.35)

where,
~2µeττπ

2
τ

2
= Be

τ

∑
i,γ

∑
j,ε

∑
k,θ

∑
l,ι

ζiγjε,τζkθlι,τQiγPjεQkθPlι (1.36)

are the terms of the expanded Hamiltonian corresponding to the zeroth-order
development of µ written in term of the equilibrium molecular rotation constant
Be
τ = ~2/(2Ieτ ). Note that all the constants in eqs. 1.33-1.35 are given by slightly

non standard expressions based on mass-weighted vibrational normal coordinates,
rather than on their reduced counterparts, since this allows a cleaner treatment
when dealing with transition states (TSs), rather than energy minima, avoiding
complex force constants [36, 40, 109–111].
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Hf1 and Hf2 collect the Coriolis (Jτ · πη) and roto-vibrational (Jτ · Jη) terms,
respectively. More complete expressions have been reported by Aliev and Watson
(see Table I in ref. [108]). Here, we reproduce only the lower-order terms,

H02 =
∑
τ

Be
τJ

2
τ (1.37)

H21 =− 2
∑
τ

Be
τJτ
∑
i,γ

∑
j,ε

ζiγjε,τQiγPjε (1.38)

H12 =− ~2

2

∑
τ,η

JτJη
∑
i,γ

Qiγ

aiγ ,τη

Ieτ I
e
η

(1.39)

This way, Hmol can be treated perturbatively, taking as zeroth-order contri-
bution the harmonic oscillator Hamiltonian, H20. The separation in perturbative
orders of Hfg terms has been widely discussed in the literature, and different clas-
sification schemes have been proposed[3, 6, 29, 30, 32, 108]. A detailed assignment
was proposed by Aliev and Watson (see Table II of ref. [108]). It is noteworthy that
the rigid-rotor term, H02, is usually treated as part of the perturbation to avoid
rotational energy differences in the denominators of the perturbation development.

Various formulations of perturbation theory have been devised, such as the
Rayleigh-Schrödinger (RS) method [112, 113], the Bloch projector formalism [114,
115], or the Van Vleck contact transformation (CT) method [44, 45]. We recall
here the main features of the CT method. Differences with the RS development,
also commonly used in the literature, will be highlighted. The CT formalism is
based on the transformation of the Schrödinger equation [3, 30, 32, 108, 116],

Hψ = Eψ to H̃φ = Eφ (1.40)

where the original Hamiltonian H and wavefunction ψ are transformed as,

H̃ = eiSHe−iS and φ = eiSψ (1.41)

S is an Hermitian operator so that eiS is unitary. It is chosen to obtain an effective
block-diagonal Hamiltonian H̃ in a given basis φ, in order to separate each vibra-
tional level or block of degenerate or near-degenerate vibrational levels, with the
property that the eigenvalues of these blocks are the same as for H. The operator
eiS can be written as a product of successive contact transformations,

eiS = eiλS
(1)

eiλ
2S(2) . . . (1.42)

where S (n) is chosen in order to diagonalize H up to the n-th order. Up to the
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second-order, eq. 1.41 for H̃ corresponds to,

H̃(0) = H(0) (1.43)

H̃(1) = H(1) + i [S (1),H(0)] (1.44)

H̃(2) = H(2) + i [S (1),H(1)]− 1

2
[S (1), [S (1),H(0)]] + i [S (2),H(0)] (1.45)

where [X, Y ] represents a commutator. Taking matrix elements in the basis of
eigenfunctions of H(0), let us first consider the terms 〈φ(0)

Aa
| H̃(1) | φ(0)

Bb
〉 to illustrate

the choice of S (n),

〈 φ(0)

Aa
| H̃(1) | φ(0)

Bb
〉 = 〈 φ(0)

Aa
| H(1) | φ(0)

Bb
〉 − i

[
E(0)

A − E
(0)

B

]
〈 φ(0)

Aa
| S (1) | φ(0)

Bb
〉 (1.46)

where the uppercase subscript represents states with different energies and the
lowercase one differentiates degenerate states. This means that E(0)

A is the eigen-
value for all eigenstates | φ(0)

Ax
〉 of the zeroth-order Hamiltonian H(0). For the case

| φ(0)

Bb
〉 = | φ(0)

Aa
〉, which is also referred to as a diagonal matrix element of H̃(1), the

second term in the right-hand side of eq. 1.46 vanishes, that is,

〈 φ(0)

Aa
| H̃(1) | φ(0)

Aa
〉 = 〈 φ(0)

Aa
| H(1) | φ(0)

Aa
〉 (1.47)

which is identical to the result derived via RS first-order perturbation theory[112,
113]. For the off-diagonal elements with E(0)

B 6= E(0)

A , the first-order interaction term
〈 φ(0)

Aa
| H̃(1) | φ(0)

Bb
〉 will vanish if we choose S (1) satisfying the following equation,

〈 φ(0)

Aa
| S (1) | φ(0)

Bb
〉 = −

i〈 φ(0)

Aa
| H(1) | φ(0)

Bb
〉

E(0)

A − E
(0)

B

(E(0)

B 6= E(0)

A ) (1.48)

In this case, S (1) will only contribute to the effective Hamiltonian for perturbation
orders higher than the first one. If E(0)

B ≈ E(0)

A , the value of 〈 φ(0)

Aa
| S (1) | φ(0)

Bb
〉 as

defined in eq. 1.48 will be excessively large. In this case, |φ(0)

Aa
〉 and |φ(0)

Bb
〉 are said

to be in resonance and 〈 φ(0)

Aa
| S (1) | φ(0)

Bb
〉 is set to be null, so that,

〈 φ(0)

Aa
| H̃(1) | φ(0)

Bb
〉 = 〈 φ(0)

Aa
| H(1) | φ(0)

Bb
〉 (E(0)

B ≈ E(0)

A ) (1.49)

The case of degenerate states, where E(0)

B = E(0)

A , is treated in the same way as for
states of near-equal energies, with the term 〈 φ(0)

Aa
| S (1) | φ(0)

Ab
〉 set to be null, so we

have,
〈 φ(0)

Aa
| H̃(1) | φ(0)

Ab
〉 = 〈 φ(0)

Aa
| H(1) | φ(0)

Ab
〉 (1.50)

It is noteworthy that this off-diagonal term can result in the lifting, also called
doubling, of the zeroth-order energy degeneracy.
The same considerations apply for the choice of S (2) in eq. 1.45, with the difference
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that, now, we impose that the terms 〈 φ(0)

Aa
| H̃(2) | φ(0)

Bb
〉 vanish and i [S (1),H(1)] −

[S (1), [S (1),H(0)]] /2 is the perturbation correction to H(2) that derives from the
cancellation of the off-diagonal terms of H(1). It can be shown that the general
matrix element of H̃(2) is given by the expression [116],

〈 φ(0)

Aa
| H̃(2) | φ(0)

Bb
〉 = 〈 φ(0)

Aa
| H(2) | φ(0)

Bb
〉

− 1

2

∗∑
C 6=A,B

[
1

E(0)

C − E
(0)

A

+
1

E(0)

C − E
(0)

B

]∑
c

〈 φ(0)

Aa
| H(1) | φ(0)

Cc
〉〈 φ(0)

Cc
| H(1) | φ(0)

Bb
〉

(1.51)

where the first summation, with the ∗ symbol, is only carried out over the non-
resonant states. It is noteworthy that for the elements 〈 φ(0)

Aa
| H̃(1) | φ(0)

Ab
〉, be it

b = a and b 6= a, the above equation reduces to,

〈 φ(0)

Aa
| H̃(2) | φ(0)

Ab
〉 = 〈 φ(0)

Aa
| H(2) | φ(0)

Ab
〉

−
∗∑

C 6=A

∑
c

〈 φ(0)

Aa
| H(1) | φ(0)

Cc
〉〈 φ(0)

Cc
| H(1) | φ(0)

Ab
〉

E(0)

C − E
(0)

A

(1.52)

which is identical to the matrix element derived via RS second-order perturbation
theory[112, 113]. Conversely, the derivation of the off-diagonal elements of H̃(2)

with B 6= A from the Rayleigh-Schrödinger development is less rigorous. For this
reason, an alternative form with respect to eq. 1.51 has been often used for the
treatment of the latter [117–119],

〈 φ(0)

Aa
| H̃(2) | φ(0)

Bb
〉 = 〈 φ(0)

Aa
| H(2) | φ(0)

Bb
〉

−
∑
C

∑
c

〈 φ(0)

Aa
| H(1) | φ(0)

Cc
〉〈 φ(0)

Cc
| H(1) | φ(0)

Bb
〉

E(0)

C − E
(0)

AB

(1.53)

where E(0)

AB = (E(0)

A + E(0)

B )/2.





Chapter 2
Vibrational Hamiltonian

In this chapter, we focus our attention on the pure vibrational Hamiltonian
H̃vib = H20+H̃30+H̃40, which is obtained by correctingH(0) = H20 withH(1) = H30

and H(2) = H40 [32, 108]. An additional term is usually included to account for
the zeroth-order expansion of U (see eqs. 1.27 and 1.28) [30, 32, 102, 108],

U (0) = −Γ
∑
τ

~2

8Ieτ
= −Γ

∑
τ

Be
τ

4
(2.1)

where Γ = 1 for asymmetric and symmetric top systems, and Γ = 0 for linear
systems. It should be noted that, due to its small contribution, this term is
generally neglected.

After the presentation of the developments for the second-order VPT (VPT2)
energies, a particular attention is devoted to the treatments of the perturbative
equations in the presence of resonances, showing the formal developments as well
as possible approximations.

2.1 Vibrational energies
If no resonance occurs, the first-order effect of H30 does not contribute to the

energy of any vibrational state, since both diagonal (eq. 1.47), and off-diagonal
(eq. 1.50), terms are null. Hence, the perturbative corrections to the energy up to
the second order are all due to H̃40, with the largest contribution related to the
diagonal elements 〈 φ(0)

Aa
| H̃40 | φ(0)

Aa
〉.

Nielsen first derived the solution for the latter [29], which was subsequently re-
fined with more general formulas [29, 30]. Later, Plíva fixed omissions for symmet-
ric tops with a principal axis of order higher than three [99], mainly due to missing
force constants. His formulas were in turn corrected by Willetts and Handy [100].

23
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Following those works, we present here a new derivation, taking advantage of the
framework built previously for asymmetric tops [47, 53], done with an ad hoc tool,
based on a symbolic algebra program [120].

By applying the rules presented in section 1.4 to orient the degenerate normal
vibrations, simple symmetry relations can be established between sets of related
cubic and quartic force constants, as well as Coriolis constants. A first detailed
classification was done by Henry and Amat in refs. [60, 121], for the first, and
refs. [70] and [71] for the latter. For the force constants, at variance with eqs. 1.34
and 1.35, restricted sums were used in the potential energy expansions. Remem-
bering that [Qi1 , Qi2 ] = 0, the non-vanishing cubic and quartic force constants
with at least one degenerate normal mode for the case of unrestricted summations
have been reordered and reported in Tables A.2-A.8 of Appendix A. The notation
adopted in those Tables is similar to the one used by Plíva [99]. The symmetry
relations affecting the Coriolis terms has been reported in Appendix B. For tran-
sition states, the transition vector (i.e. the normal mode with the non-degenerate
imaginary frequency) is labeled by the subscript F .

In this framework, the vibrational second-order perturbation theory leads to
the following expression for the energies,

E(n, l) =E0 +
∑
i 6=F

~
√
λi ni

+
∑
i

∑
j≥i

δFijχij

(
ninj + ni

dj
2

+ nj
di
2

)
+
∑
s

∑
t≥s

gstlslt (2.2)

with,

δFij = (1− δiF )(1− δjF ) + δiF δjF (2.3)

δij is the Kronecker’s delta, n and l are respectively the principal and angular
vibrational quantum numbers, and di is the degeneracy of mode i. In the above
expression, all n- and l-independent terms are collected in E0, a term which can
be written in a form devoid of resonances,

E0 =
~
2

∑
i 6=F

√
λidi +

~2

32

∑
m

∑
n

δFmnKmmnn√
λmλn

+
~2

12

∑
s

∑
σ≤III

δσK
(σ)
ssss

λs
+

~2

8

∑
m 6=F

∑
s

Kmmss√
λmλs

+
~2

8

∑
s

∑
t6=s

∑
σ≤V II

δ′σK
(σ)
sstt√

λsλt
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− ~2
∑
m

∑
n

∑
o

[
δFmnKmmoKnno

32λo
√
λmλn

+
δFmnoKmno

2

48
√
λmλnλo(

√
λm +

√
λn +

√
λo)

]

− ~2

36

∑
s

∑
σ

{
K

(σ)
sss

}2

λs
2 − ~2

∑
m

∑
s

{
δFm
{
K

(I)
mss

}2
(
√
λm +

√
λs)

4λmλs(2
√
λs +

√
λm)

+
δFm
{
K

(III)
mss

}2
+ δFm

{
K

(IV )
mss

}2

8λs
√
λm(2

√
λs +

√
λm)

+
1

8

∑
n

δFmKmmnK
(I)
nss

λn
√
λmλs

+
1

4

∑
t>s

[
K

(I)
mssK

(I)
mtt

λm
√
λsλt

+
∑
σ

δFm
{
K

(σ)
mst

}2

√
λmλsλt(

√
λm +

√
λs +

√
λt)

]}

− ~2

4

∑
s

∑
t6=s

∑
σ

{
K

(σ)
sst

}2

λs
√
λt(2
√
λs +

√
λt)

− ~2

2

∑
s

∑
t>s

∑
u>t

∑
σ

{
K

(σ)
stu

}2

√
λsλtλu(

√
λs +

√
λt +

√
λu)

− Γ

4

∑
τ

Be
τ +

1

4

∑
τ

Be
τ

∑
m

∑
n>m

{
ζmn,τ

}2

[
δFmn(λm + λn)√

λmλn
− 2

]

+
Be
x

2

∑
m

∑
s

[{
ζ(I)
ms

}2
+
{
ζ(II)
ms

}2
] [δFm(λm + λs)√

λmλs
− 2

]

+
∑
s

∑
t>s

{
Be
z

2

[{
ζ

(I)
st

}2
+
{
ζ

(II)
st

}2
]

+Be
x

[{
ζ

(III)
st

}2
+
{
ζ

(IV )
st

}2
]}[λs + λt√

λsλt
− 2

]
(2.4)

with,

δFi = (1− δiF ) (2.5)
δFijk = (1− δiF )(1− δjF )(1− δkF ) + δiF δjF δkF (2.6)

and (see Appendix A),

δσ =

{
1 if σ = I

3/4 if σ > I
and δ′σ =

{
1 if σ = I

1/2 if σ ∈ {I, V II}
(2.7)
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The elements of the anharmonic matrices χ and g are given by,

Bmχmm =Kmmmm −
5

3

Kmmm
2

λm
−
∑
n6=m

Kmmn
2(8λm − 3λn)

λn(4λm − λn)
(2.8)

Cmnχmn =Kmmnn −
KmmmKmnn

λm
− KmmnKnnn

λn
− 2

Kmmn
2

(4λm − λn)

− 2
Kmnn

2

(4λn − λm)
+
∑
o 6=m,n

[
2Kmno

2(λm + λn − λo)
∆mno

− KmmoKnno

λo

]
+

4

~2

∑
τ

Be
τ{ζmn,τ}2(λm + λn) (2.9)

Cmsχms =Kmmss −
KmmmK

(I)
mss

λm
− 2

∑
σ

{
K

(σ)
mss

}2

(4λs − λm)

−
∑
n 6=m

KmmnK
(I)
nss

λn
+ 2

∑
t6=s

∑
σ

{
K

(σ)
mst

}2
(λm + λs − λt)
∆mst

+
4Be

x

~2

[{
ζ(I)
ms

}2
+
{
ζ(II)
ms

}2
]
(λm + λs) (2.10)

Bsχss =
∑
σ≤III

δσK
(σ)
ssss −

5

3

∑
σ

{
K

(σ)
sss

}2

λs

−
∑
m

∑
σ

δ′σ
{
K

(σ)
mss

}2
(8λs − 3λm)

λm(4λs − λm)
−
∑
t6=s

∑
σ

{
K

(σ)
sst

}2
(8λs − 3λt)

λt(4λs − λt)
(2.11)

Cstχst =
∑
σ≤V II

δ′σK
(σ)
sstt − 2

∑
σ

{
K

(σ)
sst

}2

4λs − λt
− 2

∑
σ

{
K

(σ)
stt

}2

4λt − λs

+
∑
m

[∑
σ

{
K

(σ)
mst

}2
(λs + λt − λm)

∆mst

− K
(I)
mssK

(I)
mtt

λm

]

+ 2
∑
u6=s,t

∑
σ

{
K

(σ)
stu

}2
(λs + λt − λu)
∆stu

+
4

~2

(
1

2
Be
z

[{
ζ

(I)
st

}2
+
{
ζ

(II)
st

}2
]

+Be
x

[{
ζ

(III)
st

}2
+
{
ζ

(IV )
st

}2
])

(λs + λt)

(2.12)
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Bsgss =− 1

3

∑
σ≤III

δσK
(σ)
ssss +

7

3

∑
σ

{
K

(σ)
sss

}2

λs

+
∑
m

− {
K

(I)
mss

}2

(4λs − λm)
+

[{
K

(III)
mss

}2
+
{
K

(IV )
mss

}2
]

(8λs − λm)

2λm(4λs − λm)


+
∑
t6=s

∑
σ

{
K

(σ)
sst

}2
(8λs − λt)

λt(4λs − λt)
+BsB

e
z

{
ζ(I)
ss

}2 (2.13)

gst =~2
∑
m

∑
σ

δ′′σ
{
K

(σ)
mst

}2

2∆mst

− ~2
∑
u6=s,t

∑
σ

{
K

(σ)
stu

}2

∆stu

+ ~2
∑
σ

[
δ′′σ
{
K

(σ)
sst

}2

λt(4λs − λt)
+

δ′′σ
{
K

(σ)
stt

}2

λs(4λt − λs)

]
+Be

x

[(
sx · 1− s′y · 1

)
{ζ(III)

st }2 +
(
sy · 1− s′x · 1

)
{ζ(IV )

st }2
]

+Be
z

[{
ζ

(I)
st

}2
+
{
ζ

(II)
st

}2
+ 2ζ(I)

ss ζ
(I)
tt

]
(2.14)

∆ijk =λ2
i + λ2

j + λ2
k − 2(λiλj + λiλk + λjλk) (2.15)

withBi = 16λi/~2, Cij = 4
√
λiλj/~2, sτ = sign(ζs1t1,τζs2t2,τ ), s′τ = sign(ζs1t2,τζs2t1,τ )

and (see Appendix A),

δ′′σ =

{
1 if σ ∈ {I, II}
−1 if σ ∈ {III, IV }

(2.16)

In the formulation adopted here, it is easy to see from eqs. 2.8 to 2.14 that the
matrix elements χFi, with i 6= F , are imaginary. They are excluded from the
vibrational energy, which contains only real terms, and enter, together with the
imaginary frequency ωF , in the expression providing tunneling and non classical
reflection contributions to reaction rates [53].

It is noteworthy that, at variance with eq. 2.2, the anharmonic contribution
to the vibrational energy is usually expressed in the literature as the sum of
χij(ni + di/2)(nj + dj/2) and χ0 (or G0) terms. In the specific case of symmetric
and linear tops, the χ0 term was omitted by Plíva, Willetts and Handy in their
respective works [99, 100]. It was included in the derivation proposed by Truhlar
and coworkers [39] but it was based on a less general treatment than the one pro-
posed by Plíva, which led to discrepancies with respect to the formulas given by
Willetts and Handy and obtained in the present work. The explicit form of χ0 is
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shown in Appendix B. To the best of our knowledge, this is the first time that all
terms needed to compute the vibrational energy as given in eq. 2.2 for symmetric,
asymmetric and linear tops are gathered in a single work.

From eq. 2.2, it is possible to calculate the energy of any vibrational state.
The energy of the vibrational ground state, i.e. the zero-point vibrational energy
(ZPVE), is E(0,0) = E0. It is straightforward to determine transition energies
governing vibrational spectra (i.e. at constant nF ) with the relation,

ν(∆n,∆l;n, l) = E(n+ ∆n, l + ∆l)− E(n, l)

=
∑
i

~ωi ∆ni +
∑
i

χii∆ni

(
∆ni + 2ni + di

)
+

1

2

∑
i

∑
j 6=i

χij

[
∆ni

(
nj + dj

)
+ni ∆nj + ∆ni∆nj

]

+
∑
s

gss∆ls

(
2ls + ∆ls

)
+

1

2

∑
s

∑
t6=s

gst∆ls

(
2lt + ∆lt

)
(2.17)

For excitations from the vibrational ground state, the fundamental bands are
given by [33],

ν(1i,±1i or 0i) = ~ωi + χii(1 + di) +
1

2

∑
j 6=i

χijdj + gii (2.18)

where, between parentheses, n = 0 and l = 0 in eq. 2.17 are omitted, as well as all
null quantum numbers related to the normal modes not involved in the excitation.
If i is a non-degenerate mode, gii vanishes and, since li = 0, it is usually omitted
and only the principal quantum number ni is specified. The expressions for the
first overtones are,

ν(2i, 0i) = 2~ωi + 2χii(2 + di) +
∑
j 6=i

χijdj

= 2ν(1i,±1i or 0i) + 2χii − 2gii (2.19)

ν(2i,±2i) = 2~ωi + 2χii(2 + di) +
∑
j 6=i

χijdj + 4gii

= 2ν(1i,±1i or 0i) + 2χii + 2gii (2.20)
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Finally, the first combination bands are given by,

ν(1i1j,±1i or 0i ± 1j or 0j) =~ωi + ~ωj + χii(1 + di) + χjj(1 + dj)

+ χij

(
1 +

di
2

+
dj
2

)
+

1

2

∑
k 6=i,j

(
χikdk + χjkdk

)
+ gii + gjj + gij

=ν(1i,±1i or 0i) + ν(1j,±1j or 0j) + χij + gij
(2.21)

ν(1i1j,±1i ∓ 1j) =~ωi + ~ωj + χii(1 + di) + χjj(1 + dj)

+ χij

(
1 +

di
2

+
dj
2

)
+

1

2

∑
k 6=i,j

(
χikdk + χjkdk

)
+ gii + gjj − gij

=ν(1i,±1i) + ν(1j,±1j) + χij − gij (2.22)

The fundamental band for a degenerate mode is degenerate with respect to l,
while the first overtone shows a partial lifting of the degeneracy resulting in one
non-degenerate and one doubly-degenerate levels. Combination bands of two de-
generate modes are split into two doubly-degenerate levels.

Finally, , the tunnelling probability P , of interest in chemical rate constants
computations, can be evaluated using the microcanonical ensamble with the semi-
classical TS theory of Miller and co-workers [122, 123]. They used the definitions,

ωF = i|ωF | ≡ iω̄F (2.23)

nF +
1

2
≡ iθ

π
(2.24)

χiF ≡ −iχ̄iF (2.25)

to invert the relation E = E(n, l, θ), where,

E(n, l, θ) = E(n, l) + i

[
~ω̄F −

∑
i

χ̄iF

(
ni +

1

2

)(
nF +

1

2

)]
(2.26)

and obtain the generalized barrier penetration integral θ(n, l, E) in terms of the
ni and li quantum numbers of the activated system, with i 6= F , and the total
energy E,

θ(n, l, E) =
π∆E

~ΩF

1

1 +
√

1 + 4χFF∆E/(~ΩF )2
(2.27)
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where,

∆E = E(n, l)− E (2.28)

~ΩF = ~ω̄F −
∑
i

χ̄iF (ni +
1

2
) (2.29)

In this framework, the semi-classical tunneling probability P for a one-dimensional
barrier is given by,

P (n, l, E) =
1

1 + e2θ(n,l,E)
(2.30)

2.2 Vibrational l-type doubling and l-type reso-
nance

Vibrational energies of non-degenerate states can be determined directly from
eq. 2.2. For degenerate zeroth-order states, as seen above, the interaction terms
〈 φ(0)

Aa
| H̃40 | φ(0)

Ab
〉 cannot be canceled out with S (2) and must be treated vari-

ationally. The presence of those off-diagonal elements in the variational matrix
will result in a further lifting of the degeneracy of the vibrational energies, initi-
ated with the application of the second-order correction. This splitting is called
l-type doubling or l-type resonance, depending if the diagonal energies involved
have equal or different values, respectively. Using symmetry considerations, Amat
derived a general rule to identify a priori the possible non-null off-diagonal matrix
elements [32, 124]. It depends on the N -fold principal symmetry axis and the
difference of quanta in the principal (∆ni) and angular (∆li) vibrational quantum
numbers between the states involved in the interaction term. The ensemble of
non-zero l-type off-diagonal terms is obtained from the following relations,

〈 ns, ls | H̃40 | ns, (ls ± 4)s 〉 =

U±s
√

(ns ± ls + 4)(ns + ls ± 2)(ns − ls ∓ 2)(ns ∓ ls) (2.31)

〈 nsnt, lslt | H̃40 | nsnt, (ls ± 2)s(lt ∓ 2)t 〉 =

R±st
√

(ns ± ls + 2)(nt ∓ lt + 2)(ns ∓ ls)(nt ± lt) (2.32)

〈 nsnt, lslt | H̃40 | nsnt, (ls ± 2)s(lt ± 2)t 〉 =

S±st
√

(ns ± ls + 2)(nt ± lt + 2)(ns ∓ ls)(nt ∓ lt) (2.33)

where, as usual, only the modes undergoing a change in their quantum numbers
between the two states involved in the matrix elements are shown. The off-diagonal
elements given in eq. 2.31 are non-null if N is a multiple of 4, those given in eq. 2.32
for any symmetric top molecule and the elements of eq. 2.33 if N is even.
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The first expressions of U , R and S for the various point groups have been given
by Grenier-Besson [125, 126]. The formulas have been re-derived here, with the
notation introduced in this work, and validated with respect to those obtained by
Grenier-Besson. They are gathered in the Appendix C.

2.3 Vibrational first-order resonances
It has been shown that if two states are in resonance it is not possible to make

their off-diagonal terms vanish. A resonance can connect two or several vibrational
levels and, moreover, multiple resonances can connect a network of levels. The
sub-matrices where the resonances are involved are called polyads [108, 119].

Since H̃(0) has only diagonal elements, all off-diagonal terms are null. The pres-
ence of an off-diagonal first-order correction due to H̃30 is related to the so-called
Fermi resonances. The latter are characterized by a strong interaction between
two states that differ by one quantum in one mode and two quanta in either one
(type I) or two different (type II) modes[32, 33, 101]. Due to the creation of one
vibrational quantum and the annihilation of two others, or conversely, these sin-
gularities are also called vibrational 1-2 resonances[119]. They can appear when
〈φ(0)

Aa
| H(1) | φ(0)

Bb
〉 in eq. 1.48 is excessively large or E(0)

A ≈ E
(0)
B in eq. 1.46, condition

which can occur in two cases: 2ωi ≈ ωj (type I) or ωi ≈ ωj + ωk (type II).
Different methods have been developed to overcome the problem of Fermi res-

onances. The most common approach, called deperturbed VPT2 (DVPT2), con-
sists in simply removing from the perturbative treatment the resonant terms after
their identification. The explicit expressions of the potentially resonant terms
in eqs. 2.8-2.14 are given in Appendix D. However, this treatment is incomplete
due to the neglect of the resonant terms. An improvement can be obtained by
treating variationally the levels involved in the resonance, reintroducing the re-
moved terms as off-diagonal interaction elements. This method has been called
generalized VPT2 (GVPT2) [29, 30, 32, 47] or, more recently, CVPT2+K [116] or
CVPT2+WK [127]. The list of possible off-diagonal first-order interaction terms
generalized to linear, symmetric and asymmetric tops is given in Table 2.1.

Although those methods have been widely discussed in the literature, less atten-
tion has been devoted to the identification of a general strategy to determine when
an interaction term has to be considered in resonance. Indeed, all the methods
presented above rely directly on the identification of the resonant terms. The def-
inition of a singularity giving rise to unphysical contributions is far from straight-
forward, and different schemes have been proposed. The simplest approach is to
check the magnitude of the denominator (i.e. |2ωi − ωj| and |ωi − ωj − ωk|) with
respect to a fixed threshold. If the value is below this limit, the term is considered
resonant. Such a scheme does not account for the magnitude of the numerator,
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which makes difficult the definition of a reliable threshold adapted to a wide range
of molecular systems. A more robust solution to this problem has been suggested
by Martin and co-workers[128]. Considering two resonant states |φ(0)

Aa
〉 and |φ(0)

Bb
〉,

we can write down the interaction between the two states as a variational matrix,(
〈 φ(0)

Aa
| H(0) +H(1) | φ(0)

Aa
〉 〈 φ(0)

Bb
| H(0) +H(1) | φ(0)

Aa
〉

〈 φ(0)

Aa
| H(0) +H(1) | φ(0)

Bb
〉 〈 φ(0)

Bb
| H(0) +H(1) | φ(0)

Bb
〉

)
=

(
E(0)

A ρ†

ρ E(0)

B

)
(2.34)

where ρ = 〈 φ(0)

Aa
| H(0) +H(1) | φ(0)

Bb
〉 = 〈 φ(0)

Aa
| H(1) | φ(0)

Bb
〉 and ρ† is the complex

conjugate of ρ. If ρ tends to zero, the eigenvalues E± of the matrix in eq. 2.34 can
be written as the following Taylor series,

E± =
E(0)

A + E(0)

B

2
±
√

∆2

4
+ |ρ|2

−−→
ρ→0

E(0)

A + E(0)

B

2
±

[
∆

2
+
|ρ|2

∆
− (|ρ|2)

2

∆3
+ ◦(ρ4)

]
(2.35)

where ∆ = |E(0)

A − E(0)

B | and must be non-null. Up to the second-order, E± co-
incides with the vibrational energies E(0)

A or E(0)

B corrected with a second-order
perturbation term, which arises from the interaction between | φ(0)

Aa
〉 and | φ(0)

Bb
〉

(here the case |E(0)

A − E
(0)

B | = E(0)

A − E
(0)

B ) [129],

E+ = E(0)

A +
|ρ|2

∆
and E− = E(0)

B −
|ρ|2

∆
(2.36)

where |ρ|2/∆ is precisely the possible resonant term in the VPT2 equations, i.e.
one of the terms in the summation in the right-hand side of eq. 1.52. Based on
those considerations, the importance of the higher-order perturbative terms can
be estimated from the fourth-order expansion term in eq. 2.35,

Ξ =
(|ρ|2)2

∆3
(2.37)

where ∆ = ~|2ωi − ωj| for type I Fermi resonances and ∆ = ~|ωi − ωj − ωk| for
type II Fermi resonances. Consequently, a threshold on the term can be a good
marker to evaluate the importance of higher order effects and then if the second-
order term has to be treated as resonant. Moreover, this term accounts not only
for the energy difference but also for the magnitude of ρ. In a slightly different
formulation, the threshold used to evaluate the presence of first-order resonances is
calculated taking into account all high-order expansion terms, obtained subtracting
the first two expansion terms from the square root of eq. 2.35 [127],

Ξ′ =

√
∆2

4
+ |ρ|2 − ∆

2
− |ρ|

2

∆
(2.38)
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A general approach can be derived from the development presented above,
which is to apply to all potentially resonant terms in the VPT2 formulas the
transformation described previously,

|ρ|2

∆
≈
√

∆2

4
+ |ρ|2 − ∆

2
(2.39)

An interesting feature of this approach is that there is no need for an identification
of the resonant terms, which can be inconsistent whenever one has to consider
a series of force fields for a given system, or a series of geometries along a reac-
tion path. Indeed, variations in the set of resonant terms can make difficult any
comparison of the VPT2 results between two or more simulations. This scheme
is similar to the degeneracy-corrected PT2 (DCPT2) introduced by Kuhler and
coworkers[130], which will be discussed afterwards. The interest is to prevent the
appearance of singularities in the calculation of anharmonic contributions using
a simplified variational approach, since the right-hand side of eq. 2.39 cannot di-
verge if ∆ becomes small. Far from resonance, the substitution still accounts for
the interaction between the vibrational states | φ(0)

Aa
〉 and | φ(0)

Bb
〉. At variance with

what has been done in refs. [53] and [130], this time we apply the transformation
of eq. 2.39 directly on the possibly resonant terms in the effective Hamiltonian,
that are all terms in the summation in the right-hand side of eq. 1.52, which have
frequencies differences (i.e. 2ωi−ωj or ωi− ωj − ωk) in the denominator. For this
reason, we will refer to this approach as degeneracy smeared PT2 (DSPT2). After
the complete development of eq. 1.52, the possibly resonant terms can be grouped
in sets of 2 or 4 components having the same definition of ∆. For the two terms
with the same ∆ the substitution given in eq. 2.39 leads to,∣∣〈 φ(0)

Aa
| H(1) | φ(0)

Bb
〉
∣∣2

E(0)

A − E
(0)

B

+

∣∣〈 φ(0)

Aa
| H(1) | φ(0)

Cc
〉
∣∣2

E(0)

A − E
(0)

C

= S1
|ρ1|2

∆
+ S2

|ρ2|2

∆

→ S1

√
∆2

4
+ |ρ1|2 + S2

√
∆2

4
+ |ρ2|2 − (S1 + S2)

∆

2
(2.40)

with ∆ = |E(0)

A − E
(0)

B | = |E
(0)

A − E
(0)

C |, S1 = sign(E(0)

A − E
(0)

B ) and S2 = sign(E(0)

A −
E(0)

C ). Since S1 and S2 are opposite, the last term of the transformation disappears.
As an example, let us consider the terms involving ∆ = ~|2ωm − ωn|,

|〈 nmnn | H(1) | (nm + 2)m(nn + 1)n 〉|2

~(2ωm − ωn)
+
|〈 nmnn | H(1) | (nm + 2)m(nn − 1)n 〉|2

~(2ωm − ωn)

=
~3Kmmn

2nm(nm − 1)(nn + 1)

32λmωn~(2ωm − ωn)
− ~3Kmmn

2(nm + 1)(nm + 2)nn
32λmωn~(2ωm − ωn)

(2.41)
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The substitution given in eq. 2.40 can be carried out with the following definitions,

∆ = ~|2ωm − ωn| (2.42)
|ρ1|2 = ~3Kmmn

2nm(nm − 1)(nn + 1)/(32λmωs) (2.43)
|ρ2|2 = ~3Kmmn

2(nm + 1)(nm + 2)nn/(32λmωn) (2.44)
S1 = −S2 = sign(2ωm − ωn) (2.45)

The transformation to be applied in the case of 4 terms having the same ∆ is
straightforwardly derived,∣∣〈 φ(0)

Aa
| H(1) | φ(0)

Bb
〉
∣∣2

E(0)

A − E
(0)

B

+

∣∣〈 φ(0)

Aa
| H(1) | φ(0)

Cc
〉
∣∣2

E(0)

A − E
(0)

C

+

∣∣〈 φ(0)

Aa
| H(1) | φ(0)

Dd
〉
∣∣2

E(0)

A − E
(0)

D

+

∣∣〈 φ(0)

Aa
| H(1) | φ(0)

Ee
〉
∣∣2

E(0)

A − E
(0)

E

= S1
|ρ1|2

∆
+ S2

|ρ2|2

∆
+ S3

|ρ3|2

∆
+ S4

|ρ4|2

∆

→ S1

√
∆2

4
+ |ρ1|2 + S2

√
∆2

4
+ |ρ2|2 + S3

√
∆2

4
+ |ρ3|2 + S4

√
∆2

4
+ |ρ4|2

− (S1 + S2 + S3 + S4)
∆

2
(2.46)

with ∆ = |E(0)

A −E
(0)

B | = |E
(0)

A −E
(0)

C | = |E
(0)

A −E
(0)

D | = |E
(0)

A −E
(0)

E |. As before, the
previous transformation can be further simplified since the term (S1 +S2 +S3 +S4)
is null. All potentially resonant terms and the definition required to apply the
transformation given above are gathered in Table 2.2.

The extension of the DSPT2 treatment to the off-diagonal elements 〈 φ(0)

Aa
|

H̃40 | φ(0)

Ab
〉 requires further discussion. Let us consider one of the terms in the

summation in the right-hand side of eq. 1.52 with a 6= b. This contribution can be
related to the eigenvalues of the following matrix,(

E(0)

A ρ2

ρ1 E(0)

C

)
(2.47)

where ρ1 = 〈 φ(0)

Aa
| H(1) | φ(0)

Cc
〉 and ρ2 = 〈 φ(0)

Cc
| H(1) | φ(0)

Ab
〉, with associated

eigenvalues,

E± =
E(0)

A + E(0)

C

2
±
√

∆2

4
+ ρ̄ −−→

ρ̄→0

E(0)

A + E(0)

C

2
±
[

∆

2
+
ρ̄

∆
− ρ̄2

∆3
+ ◦(ρ̄4)

]
(2.48)

ρ̄ = ρ1ρ2 and ∆ = |E(0)

A −E
(0)

C |. This matrix differs slightly from the one obtained
with the proper variational description, which has the form,(

〈 φ(0)

Aa
| H(0) +H(1) | φ(0)

Ab
〉 〈 φ(0)

Cc
| H(0) +H(1) | φ(0)

Ab
〉

〈 φ(0)

Aa
| H(0) +H(1) | φ(0)

Cc
〉 〈 φ(0)

Cc
| H(0) +H(1) | φ(0)

Cc
〉

)
=

(
0 ρ2

ρ1 E(0)

C

)
(2.49)
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Table 2.2: ∆ and |ρ|2 terms involved in the DSPT2 treatment of H̃40 diagonal elements.

Type I Fermi resonances Type II Fermi resonances

∆=~|2ωm − ωn| ∆=~|ωm − ωn − ωo|
S1=−S2 = sign(2ωm − ωn) S1=−S2 = sign(ωm − ωn − ωo)

|ρ1|2=HmmnKmmn2nm(nm − 1)(nn + 1)/32 |ρ1|2=HmnoKmno2nm(nn + 1)(no + 1)/8
|ρ2|2=HmmnKmmn2(nm + 1)(nm + 2)nn/32 |ρ2|2=HmnoKmno2(nm + 1)nnno/8

∆=~|2ωs − ωm| ∆=~|ωm − ωs − ωt|
S1=−S2 = sign(2ωs − ωm) S1=S2 = −S3 = −S4 = sign(ωm − ωs − ωt)

|ρ1|2=Hmss
{
K

(I)
mss

}2
(nm + 1)(ns + ls)(ns − ls)/32 |ρ1|2=Hmst

{
K

(I/II)
mst

}2
nm(ns + ls + 2)(nt − lt + 2)/32

|ρ2|2=Hmss
{
K

(I)
mss

}2
nm(ns + ls + 2)(ns − ls + 2)/32 |ρ2|2=Hmst

{
K

(I/II)
mst

}2
nm(ns − ls + 2)(nt + lt + 2)/32

|ρ3|2=Hmst
{
K

(I/II)
mst

}2
(nm + 1)(ns + ls)(nt − lt)/32

∆=~|2ωs − ωm| |ρ4|2=Hmst
{
K

(I/II)
mst

}2
(nm + 1)(ns − ls)(nt + lt)/32

S1=S2 = −S3 = −S4 = sign(2ωs − ωm)

|ρ1|2=Hmss
{
K

(III/IV )
mss

}2
(nm + 1)(ns + ls − 2)(ns + ls)/128 ∆=~|ωm − ωs − ωt|

|ρ2|2=Hmss
{
K

(III/IV )
mss

}2
(nm + 1)(ns − ls − 2)(ns − ls)/128 S1=S2 = −S3 = −S4 = sign(ωm − ωs − ωt)

|ρ3|2=Hmss
{
K

(III/IV )
mss

}2
nm(ns + ls + 2)(ns + ls + 4)/128 |ρ1|2=Hmst

{
K

(III/IV )
mst

}2
nm(ns + ls + 2)(nt + lt + 2)/32

|ρ4|2=Hmss
{
K

(III/IV )
mss

}2
nm(ns − ls + 2)(ns − ls + 4)/128 |ρ2|2=Hmst

{
K

(III/IV )
mst

}2
nm(ns − ls + 2)(nt − lt + 2)/32

|ρ3|2=Hmst
{
K

(III/IV )
mst

}2
(nm + 1)(ns + ls)(nt + lt)/32

∆=~|2ωs − ωt| |ρ4|2=Hmst
{
K

(III/IV )
mst

}2
(nm + 1)(ns − ls)(nt − lt)/32

S1=S2 = −S3 = −S4 = sign(2ωs − ωt)
|ρ1|2=Hsst

{
K

(I/II)
sst

}2
(ns + ls)(ns + ls − 2)(nt − lt + 2)/128 ∆=~|ωs − ωm − ωt|

|ρ2|2=Hsst
{
K

(I/II)
sst

}2
(ns − ls)(ns − ls − 2)(nt + lt + 2)/128 S1=S2 = −S3 = −S4 = sign(ωs − ωm − ωt)

|ρ3|2=Hsst
{
K

(I/II)
sst

}2
(ns + ls + 2)(ns + ls + 4)(nt − lt)/128 |ρ1|2=Hmst

{
K

(I/II)
mst

}2
(nm + 1)(ns + ls)(nt + lt + 2)/32

|ρ4|2=Hsst
{
K

(I/II)
sst

}2
(ns − ls + 2)(ns − ls + 4)(nt + lt)/128 |ρ2|2=Hmst

{
K

(I/II)
mst

}2
(nm + 1)(ns − ls)(nt − lt + 2)/32

|ρ3|2=Hmst
{
K

(I/II)
mst

}2
nm(ns + ls + 2)(nt + lt)/32

∆=~|2ωs − ωt| |ρ4|2=Hmst
{
K

(I/II)
mst

}2
nm(ns − ls + 2)(nt − lt)/32

S1=S2 = −S3 = −S4 = sign(2ωs − ωt)
|ρ1|2=Hsst

{
K

(III/IV )
sst

}2
(ns + ls)(ns + ls − 2)(nt + lt + 2)/128 ∆=~|ωs − ωm − ωt|

|ρ2|2=Hsst
{
K

(III/IV )
sst

}2
(ns − ls)(ns − ls − 2)(nt − lt + 2)/128 S1=S2 = −S3 = −S4 = sign(ωs − ωm − ωt)

|ρ3|2=Hsst
{
K

(III/IV )
sst

}2
(ns + ls + 2)(ns + ls + 4)(nt + lt)/128 |ρ1|2=Hmst

{
K

(III/IV )
mst

}2
(nm + 1)(ns + ls)(nt − lt + 2)/32

|ρ4|2=Hsst
{
K

(III/IV )
sst

}2
(ns − ls + 2)(ns − ls + 4)(nt − lt)/128 |ρ2|2=Hmst

{
K

(III/IV )
mst

}2
(nm + 1)(ns − ls)(nt + lt + 2)/32

|ρ3|2=Hmst
{
K

(III/IV )
mst

}2
nm(ns + ls + 2)(nt − lt)/32

|ρ4|2=Hmst
{
K

(III/IV )
mst

}2
nm(ns − ls + 2)(nt + lt)/32

∆=~|ωs − ωt − ωu|
S1=S2 = −S3 = −S4 = sign(ωs − ωt − ωu)

|ρ1|2=Hstu
{
K

(I/II)
stu

}2
(ns + ls)(nt − lt + 2)(nu − lu + 2)/32

|ρ2|2=Hstu
{
K

(I/II)
stu

}2
(ns − ls)(nt + lt + 2)(nu + lu + 2)/32

|ρ3|2=Hstu
{
K

(I/II)
stu

}2
(ns + ls + 2)(nt − lt)(nu − lu)/32

|ρ4|2=Hstu
{
K

(I/II)
stu

}2
(ns − ls + 2)(nt + lt)(nu + lu)/32

∆=~|ωs − ωt − ωu|
S1=S2 = −S3 = −S4 = sign(ωs − ωt − ωu)

|ρ1|2=Hstu
{
K

(III/IV )
stu

}2
(ns + ls)(nt − lt + 2)(nu + lu + 2)/32

|ρ2|2=Hstu
{
K

(III/IV )
stu

}2
(ns − ls)(nt + lt + 2)(nu − lu + 2)/32

|ρ3|2=Hstu
{
K

(III/IV )
stu

}2
(ns + ls + 2)(nt − lt)(nu + lu)/32

|ρ4|2=Hstu
{
K

(III/IV )
stu

}2
(ns − ls + 2)(nt + lt)(nu − lu)/32

Hijk = ~3/ωiωjωk and the slash symbol (“/”) between latin numbers is used as a separator between the
possible force constants for which the relation stands.
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Table 2.3: ∆, s and ρ̄ terms involved in the DSPT2 treatment of H̃40 l-doubling
off-diagonal elements.

U l-type doubling

∆ = ~|2ωs − ωm|
S̄ = sign(2ωs − ωm)

ρ̄ = Hmss

{
K

(III/IV )
mss

}2√
(ns ± ls + 4)(ns + ls ± 2)(ns − ls ∓ 2)(ns ∓ ls)/128

R l-type doubling

∆ = ~|ωm − ωs − ωt|
S̄ = −sign(ωm − ωs − ωt)
ρ̄ = Hmst

{
K

(I)
mst

}2√
(ns ± ls + 2)(nt ∓ lt + 2)(ns ∓ ls)(nt ± lt)/32

∆ = ~|ωs − ωm − ωt|
S̄ = sign(ωs − ωm − ωt)
ρ̄ = Hmst

{
K

(I)
mst

}2√
(ns ± ls + 2)(nt ∓ lt + 2)(ns ∓ ls)(nt ± lt)/32

∆ = ~|ωm − ωs − ωt|
S̄ = sign(ωm − ωs − ωt)
ρ̄ = Hmst

{
K

(II)
mst

}2√
(ns ± ls + 2)(nt ∓ lt + 2)(ns ∓ ls)(nt ± lt)/32

∆ = ~|ωs − ωm − ωt|
S̄ = −sign(ωs − ωm − ωt)
ρ̄ = Hmst

{
K

(II)
mst

}2√
(ns ± ls + 2)(nt ∓ lt + 2)(ns ∓ ls)(nt ± lt)/32

S l-type doubling

∆ = ~|ωm − ωs − ωt|
S̄ = −sign(ωm − ωs − ωt)
ρ̄ = Hmst

{
K

(III)
mst

}2√
(ns ± ls + 2)(nt ± lt + 2)(ns ∓ ls)(nt ∓ lt)/32

∆ = ~|ωs − ωm − ωt|
S̄ = sign(ωs − ωm − ωt)
ρ̄ = Hmst

{
K

(III)
mst

}2√
(ns ± ls + 2)(nt ± lt + 2)(ns ∓ ls)(nt ∓ lt)/32

∆ = ~|ωm − ωs − ωt|
S̄ = sign(ωm − ωs − ωt)
ρ̄ = Hmst

{
K

(IV )
mst

}2√
(ns ± ls + 2)(nt ± lt + 2)(ns ∓ ls)(nt ∓ lt)/32

∆ = ~|ωs − ωm − ωt|
S̄ = −sign(ωs − ωm − ωt)
ρ̄ = Hmst

{
K

(IV )
mst

}2√
(ns ± ls + 2)(nt ± lt + 2)(ns ∓ ls)(nt ∓ lt)/32

Hijk = ~3/ωiωjωk and the slash symbol (“/”) between latin numbers is used as a separator
between the possible force constants for which the relation stands.
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Nevertheless, the matrix given in eq. 2.47 is more convenient for the mathemat-
ical derivation of the possible resonant terms, on which the previous substitution
is applied,

S̄
ρ̄

∆
≈ S̄

(√
∆2

4
+ ρ̄− ∆

2

)
(2.50)

where S̄ accounts for the signs of both (E(0)

A − E
(0)

C ) and ρ̄.
To illustrate this point, let us consider the resonant term with 2ωs ≈ ωm in U±,

〈 nmns, ls | H(1) | (nm − 1)m(ns + 2)s, (ls ± 2)s 〉
~(2ωs − ωm)

× 〈 (nm − 1)m(ns + 2)s, (ls ± 2)s | H(1) | nmns, (ls ± 4)s 〉 =

~3
{
K

(III/IV )
mss

}2√
(ns ± ls + 4)(ns + ls ± 2)(ns − ls ∓ 2)(ns ∓ ls)

128ωmλs~(2ωs − ωm)
(2.51)

We then apply the relation given in eq. 2.50 after the proper identification of the
terms involved in the transformation,

∆ = ~|2ωs − ωm| (2.52)
S̄ = sign (2ωs − ωm) (2.53)

ρ̄ =
~3
{
K

(III/IV )
mss

}2√
(ns ± ls + 4)(ns + ls ± 2)(ns − ls ∓ 2)(ns ∓ ls)

128ωmλs
(2.54)

The other identification sets to be used in the transformations of the possibly
resonant terms in U , R and S are gathered in Table 2.3. An alternative way
to treat resonances was proposed by Kuhler and co-workers in 1995 and slightly
modified by some of us. The difference with the DSPT2 development lies in the
terms on which the substitution given in eq. 2.39 is applied. Indeed, in DCPT2,
the elements of the χ matrix are derived first and the possibly resonant terms
are identified within the elements of χij (eqs. 2.8–2.12) and transformed. Further
details can be found in refs. [53] and [130]. For degenerate modes, not treated
in those previous work, we use the same transformation as for non-degenerate
modes. To illustrate this point, let us consider the last term in the right-hand side
of eq. 2.11, developed in partial fractions,

−
~2
{
K

(σ)
sst

}2
(8λs − 3λt)

16λsλt(4λs − λt)
= −

~2
{
K

(σ)
sst

}2

32λsωt

(
4

ωt
+

1

2ωs + ωt
− 1

2ωs − ωt

)
(2.55)

By setting ∆ = ~|2ωs − ωt| and |ρ|2 = ~3
{
K

(σ)
sst

}2
/(32λsωt), we obtain the
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following transformation,

~3
{
K

(σ)
sst

}2

32λsωt~(2ωs − ωt)

→ sign(2ωs − ωt)

√~|2ωs − ωt|2
4

+
~3
{
K

(σ)
sst

}2

32λsωt
− ~|2ωs − ωt|

2

 (2.56)

The new χ matrix obtained by replacing possibly resonant terms in non-resonant
ones is then used in the calculations of the vibrational energies.

However, both DSPT2 and DCPT2 transformations can give poor results far
from resonance when both numerator and denominator become large. Indeed,
when ρ is large, the equivalence of eq. 2.35 is not true and, while the VPT2 term
|ρ|2/∆ can be still valid due to a large ∆, the DSPT2 and DCPT2 transformations
are incorrect. To cope with this shortcoming, an hybrid scheme (HDCPT2) has
been proposed by some of us. In this method, a switch function, Λ, is used to mix
the results from the original VPT2 and the DCPT2 approaches for all possibly
resonant terms in χ as follows[53],

fHDCPT2 = ΛfVPT2 + (1− Λ)fDCPT2 (2.57)

where fVPT2 represents the value of a possibly resonant term calculated with the
original VPT2 formulation (left-hand side term in eq. 2.56), and fDCPT2 its coun-
terpart calculated by mean of DCPT2 (right-hand side term in eq. 2.56). Λ is
defined as,

Λ =

tanh

[
α

(√
|ρ|2∆2

4
− β

)]
+ 1

2
(2.58)

where β controls the transition threshold between DCPT2 and VPT2, and α the
“smoothness” of the transition. The same scheme applies for the hybrid DSPT2
(HDSPT2),

fHDSPT2 = ΛfVPT2 + (1− Λ)fDSPT2 (2.59)

where fVPT2 is the true VPT2 term (e.g. S1|ρ1|2/∆ in eq. 2.40 or 2.46) and fDSPT2

is its DSPT2 counterpart (i.e. S1

√
(∆2/4) + |ρ1|2).

2.4 Vibrational second-order resonances
In analogy with first-order resonances, when two zeroth-order states involved

in the contact transformation given by S (2) are close to each other, the off-diagonal
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elements 〈φ(0)

Aa
| H̃(2) | φ(0)

Bb
〉 cannot be canceled out and have to be treated variaton-

ally. Many types of resonances lead to off-diagonal second order energy corrections.
According to the classification of the total change of quanta, there are 1-1, 2-2 and
1-3 second-order resonances. For asymmetric tops, a detailed description of all
these off-diagonal terms has been recently given by Rosnik and Polik [116]. The
total number of non-zero second-order off-diagonal elements becomes very large
when doubly-degenerate normal modes are also taken into account, because of
the large number of combinations of non-degenerate/doubly-degenerate normal
modes that can be obtained when considering all states involved in the matrix
elements. In this work, we have generalized the expression for the 2-2 vibrational
second-order resonances to support also doubly degenerate states, in the specific
case of the annihilation of two quanta in one mode and the creation of two quanta
in another one. Known also as Darling-Dennison resonances [131], the non-zero
off-diagonal elements for this situation are given by,

〈 nmnn | H̃(2) | (nm + 2)m(nn − 2)n 〉 =
κmn
16

√
(nm + 1)(nm + 2)nn(nn − 1) (2.60)

〈 nmns, ls | H̃(2) | (nm + 2)m(ns − 2)s, ls 〉 =
κms
16

√
(nm + 1)(nm + 2)(ns − ls)(ns + ls) (2.61)

〈 nsnt, lslt | H̃(2) | (ns + 2)s(nt − 2)t, lslt 〉 =

κ
(I)
st

16

√
(ns − ls + 2)(ns + ls + 2)(nt − lt)(nt + lt) (2.62)

〈 nsnt, lslt | H̃(2) | (ns + 2)s(nt − 2)t, (ls ± 2)s(lt ± 2)t 〉 =

κ
±(II)
st

64

√
(ns ± ls + 2)(ns ± ls + 4)(nt ∓ lt − 2)(nt ∓ lt) (2.63)

〈 nsnt, lslt | H̃(2) | (ns + 2)s(nt − 2)t, (ls ± 2)s(lt ∓ 2)t 〉 =

κ
±(III)
st

64

√
(ns ± ls + 2)(ns ± ls + 4)(nt ± lt − 2)(nt ± lt) (2.64)

The definition of the κ terms is reported in Appendix E. The second-order off-
diagonal elements are then used within the GVPT2 approach in the variational
treatment of the polyads.

Therefore, each polyad contains the deperturbed vibrational energies of the
resonances interacting states in the diagonal elements, the first- and second-order
resonances off-diagonal elements, as well as the possibly l-doubling and l-resonance,
also off-diagonal terms. Note that, up to the second-order, we will never have
〈 φ(0)

Aa
| H̃(1) + H̃(2) | φ(0)

Bb
〉, with both 〈 φ(0)

Aa
| H̃(1) | φ(0)

Bb
〉 and 〈 φ(0)

Aa
| H̃(2) | φ(0)

Bb
〉

non-null, because the couples of states interacting within first-order resonances are
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always different from the couples interacting by second-order resonances.

2.5 Vibrational partition function
The partition function of a system is the sum of the Boltzmann factors of the

energy levels Eσ each weighted by its degeneracy Dσ[132],

Q(T ) =
∑
σ

e−βEσDσ (2.65)

where β = 1/(kBT ), kB and T are the Boltzmann constant and the temperature,
respectively, and the summation is on all possibly states σ. We treat here the
vibrational molecular partition function Qvib, for which Eσ and Dσ are the energies
and degeneracies of vibrational levels. Starting from eq. 2.65 and focusing on at
most doubly degenerate vibrational modes, the harmonic vibrational partition
function Q(H)

vib is obtained by,

Q
(H)
vib =

∞∑
nm=0

∞∑
nn=0

. . .
∞∑

ns=0

∞∑
nt=0

. . . e−βE(n)(ns + 1)(nt + 1) . . . (2.66)

where E(n) =
∑

i ~ωi(ni + di/2) is the harmonic formulation of the vibrational
energy and (ns + 1) is the degeneracy due to the degenerate mode s. Developing
the previous expression,

Q
(H)
vib =e−βE

(H)
0

∞∑
nm=0

∞∑
nn=0

. . .
∞∑

ns=0

∞∑
nt=0

. . .
∏
i

e−β~ωini(ns + 1)(nt + 1) . . .

=e−βE
(H)
0

∞∑
nm=0

e−β~ωmnm . . .
∞∑

ns=0

e−β~ωsns(ns + 1) . . .

=e−βE
(H)
0

1

(1− e−β~ωm)
. . .

1

(1− e−β~ωs)2 . . .

=
e−βE

(H)
0∏

i (1− e−β~ωi)
di

(2.67)

where E(H)
0 =

∑
i ~ωidi/2 is the harmonic ZPVE and we have used the relations∑∞

n=0 q
n = 1/(1− q) and

∑∞
n=0(n+ 1)qn = 1/(1− q)2 when |q| < 1.

Unfortunately, an analytical development of Qvib is not available beyond the
harmonic level. Truhlar and Isaacson proposed a method, called simple pertur-
bation theory (SPT), in which the formal expression of the harmonic partition
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function is retained, but the ZPVE and ωi terms are replaced with their anhar-
monic counterparts [35, 130, 133],

Q
(SPT )
vib =

e−βE0∏
i (1− e−βν(1,±1 or 0)i)

di
(2.68)

where E0 is the anharmonic ZPVE given in eq. 2.4, and ν(1,±1 or 0)i, defined in
eq. 2.18, is reduced to νi below for the sake of readability. This approximation
leads to analytical expressions for the vibrational contributions to the internal
energy U , entropy S, and constant volume specific heat c [113, 132],

U =
R

kB

[
E0 +

∑
i

νidi
eβνi − 1

]
(2.69)

S =
R

kBT

∑
i

di

[
νi

eβνi − 1
− kBT ln

(
1− e−βνi

)]
(2.70)

c =
R

kBT

∑
i

die
βνi

[
νi

eβνi − 1

]2

(2.71)

where R is the Boltzmann universal gas constant.

2.6 Vibrational energy at non stationary points
In the previous sections we have analyzed the expression of vibrational energy

up to second perturbative order when the nuclei are in their equilibrium configura-
tion, which is a stationary point of the PES (∇V = 0). In this configuration, the
expansion of the potential energy on the normal coordinates is given by eq. 1.29.
Some additional terms appear if the configuration of nuclei is not a stationary
point and Q is a set of orthonormal coordinates, with Qi a generic linear combi-
nation of nuclei’s Cartesian coordinates. The new set Q will not diagonalize the
Hessian matrix H , but, if the off-diagonal elements Hij are small with respect to
the diagonal ones Hii, the latter can be regarded as perturbative terms and in-
cluded in H(1). Moreover, ∇V 6= 0 leads to first derivative terms in the expansion
of V that can be also treated as part of H(1).
Focusing on asymmetric top systems, we have,

H(1) = H30 +
∑
m

KmQm +
1

2

∑
m

∑
n6=m

KmnQmQn (2.72)

where H30 is given by eq. 1.34, Km = ∂V/∂Qm and Kmn = ∂2V/(∂Qm∂Qn). Into
the perturbative treatment, the expression for the vibrational energy up to second
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order becomes,

E ′(n) =E(n)−
∑
m

K2
m

2λm
− ~

∑
m

∑
n

KmKmnn

2λm
√
λn

(
nn +

1

2

)
− ~

∑
m

∑
n6=m

K2
mn

2
√
λn (λ2

m − λ2
n)

(
nn +

1

2

)
(2.73)

where E(n) is given by eq. 2.2.





Chapter 3
Rotational Hamiltonian

The rotational energy levels for the zero-point vibrational state are given by
the terms H̃0g (g = 2, 4, 6, 8, . . .) of the effective Hamiltonian, while the operators
H̃22, H̃42, H̃24, . . . contain the terms describing the dependence of the rotational
and centrifugal constants on the vibrational quantum numbers.
The complete treatment of all these terms has been widely discussed in the litera-
ture and we will recall in this chapter only the main aspects of the quartic H̃04 and
sextic H̃06 centrifugal distortion terms, and the perturbative corrections that can
be introduced to describe the dependence of the rotational equilibrium constants
on the vibrational quantum numbers [3, 6, 32, 134–139].

3.1 Rotational constants
The quartic centrifugal terms H̃04 form the simplest second-order contribution

to H̃rot. Their expression results from the second-order effect of H(1) = H12,

H̃04 =− ~2

4

∑
της%

JτJηJςJ%
∑
i,γ

aiγ ,τηaiγ ,ς%

2λiIeτ I
e
ηI

e
ς I

e
%

=
1

4

∑
της%

ττης%JτJηJςJ% (3.1)

where the tensor ττης% was originally introduced by Wilson [140, 141]. The sextic
centrifugal distortion constants arise from the term H̃06. The perturbation terms
required for their calculation are H12H12H22 (harmonic), H30H12H21H21 (anhar-
monic) and H12H12H21H21, H12H12H21H02, H12H12H02H02 (Coriolis), where the
last two Coriolis contributions should be considered even if they have a degree
in J greater than six because they can be reduced to sixth degree terms by the
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rotational commutators (i.e. [Jτ , Jη] = −iJς (see refs. [32, 134] for further details).
With the assignment H(1) = H02 +H12 +H21 +H30 and H(2) = H22 all contribu-
tions reported above appear in the fourth order perturbative development. The
final expression for H̃06 was obtained by Chung and Parker [142, 143] and collected
by Aliev and Watson (see Table III of ref. [139].

The vibrational contact transformation then leads to the rotational Hamilto-
nian,

H̃rot = H02 + H̃04 + H̃06 (3.2)

where now both H̃04 and H̃06 contain terms that can be reduced by the use of
rotational commutation relations. Taking as an example the explicit form of H̃04

given in eq. 3.1, there are 34 = 81 terms that can be reduced to,

H̃′04 =
1

4

∑
τη

τ′ττηηJτ
2Jη

2 (3.3)

where
τ′ττηη = τττηη + 2ττητη(1− δτη) (3.4)

As a consequence of this reduction, Be
τ is corrected by a small contribution from

the quartic terms,

Be′
τ = Be

τ +
1

4
(3τηςης − 2τςτςτ − 2ττητη) (3.5)

Be′
η and Be′

ς are obtained by cyclic permutation of the indices.
Further contact transformations with purely rotational operators, thus diagonal

in the vibrational quantum numbers, are required in order to achieve a complete
reduction of H̃rot. In the completely reduced Hamiltonian, combinations of quartic
and sextic distortion parameters are strictly related to the eigenvalues of H̃rot, and
then to physical observables. Different results can be obtained depending on the
arbitrary choice applied to fix the reduction’s parameters. The general form of the
reduced Hamiltonian of an arbitrary molecule has been given by Watson[137, 138,
144]. With the choice called by Watson asymmetric top (A) reduction, the matrix
representation of H̃rot in the symmetric top basis has the same form as that of a
rigid asymmetric top,

H̃(A)
rot =

∑
τ

B(A)
τ Jτ

2 −∆J(J2)2 −∆JkJ
2Jz

2 −∆kJz
4

− 1

2

[
(δJJ

2 + δkJz
2), (J+

2 + J−
2)
]

+
+ ΦJ(J2)3

+ ΦJk(J
2)2J2

z + ΦkJJ
2Jz

4 + ΦkJz
6

+
1

2

[
(ϕJ(J2)2 + ϕJkJ

2Jz
2 + ϕkJz

4), (J+
2 + J−

2)
]

(3.6)
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where J2 and J± are the total angular momentum and the ladder operators, re-
spectively [145] and [X, Y ]+ represents an anticommutator. ∆ and δ refer to the
quartic distortion constants, Φ, and ϕ to the sextic ones. The latter coefficients
are given in refs. [108, 134]. The disadvantage of the asymmetric top reduction
is that it fails for both genuine and accidental symmetric tops. For the latter,
the symmetric top (S) reduction suggested by Winnewisser and Van Eijck can be
used [146, 147],

H̃(S)
rot =

∑
τ

B(S)
τ Jτ

2 −DJ(J2)2 −DJkJ
2Jz

2 −DkJz
4 + d1J

2(J+
2 + J−

2)

+ d2(J+
4 + J−

4) +HJ(J2)3 +HJk(J
2)2Jz

2 +HkJJ
2Jz

4 +HkJz
6

+ h1(J2)2(J+
2 + J−

2) + h2J
2(J+

4 + J−
4) + h3(J+

6 + J−
6) (3.7)

where the expression for the quartic (D and d) and sextic (H and h) distortion
constants are presented in ref. [134].

For linear molecules, the angular momentum Jz is null. In this case, Watson
has shown that the nuclear Hamiltonian in eq. 1.24 becomes[148],

Hnuc =
~2

2
µ
[
(Jx − πx)2 + (Jy − πy)2

]
+

1

2

∑
i,γ

Piγ
2 + V (3.8)

H̃rot for linear molecules is then given by[30, 102, 108, 134],

H̃rot = Be
(
J2
x + J2

y

)
−DJ

(
J2
x + J2

y

)2
+HJ

(
J2
x + J2

y

)3 − . . . (3.9)

in which Be is the equilibrium rotational constant and the explicit formulation
of the quartic (DJ) and sextic (HJ) centrifugal distortion constants are given in
Refs. [32, 134]. H̃rot is already in a fully reduced form. The rotational energies for
linear tops are obtained by replacing (Jx

2 +Jy
2) with (J2−Jz2) and then by their

eigenvalues,

Erot = Be
[
J(J + 1)− l2

]
−DJ

[
J(J + 1)− l2

]2
+HJ

[
J(J + 1)− l2

]3 (3.10)

where J is the total angular momentum quantum number and l the total vibra-
tional angular momentum l =

∑
s ls.

3.2 Vibrational dependence of equilibrium rota-
tional constants

The vibrational dependence of the rotational constants in the quartic approx-
imation is described by,

Bv
τ = Be

τ −
∑
i

αi,τ

(
ni +

di
2

)
(3.11)
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where now v indicates a specific vibrational state. The vibrational correction
derives from the diagonal matrix elements of H̃22, specifically by the second-order
corrections, considering H(2) = H22 and H(1) = H21 +H30. For asymmetric tops,
the α constants are given by [30, 32, 108],

αm,τ = −2{Be
z}2

~ωm

[∑
τ

3am,ης
2

4Ieτ
+
∑
n

{ζmn,τ}2 3λm + λn
λm − λn

+
∑
n

Kmmn
an,ττ
2λn

]
(3.12)

Using the symmetry relations for ai,τη and ζiγjε,τ given in refs.[70, 71] and ac-
counting for the doubly-degenerate normal modes, the α coefficients for linear and
symmetric tops are [32],

αm,z = −2{Be
z}2

~ωm

[
3am,zz

2

4Iez
+
∑
n

{ζmn,z}2 3λm + λn
λm − λn

+
∑
n

Kmmn
an,zz
2λn

]
(3.13)

αs,z = −2{Be
z}2

~ωs

[
3as1,xz

2

4Iex
+
∑
t

{ζ(II)
st }2 3λs + λt

λs − λt
+
∑
m

K(I)
mss

am,zz
2λm

]
(3.14)

αm,x = −2{Be
x}2

~ωm

[
3 (am,xx

2 + am,xy
2)

4Iex
+
∑
s

(
{ζ(I)

ms}2 + {ζ(II)
ms }2

) 3λm + λs
λm − λs

+
∑
n

Kmmn
an,xx
2λn

]
(3.15)

αs,x = −2{Be
x}2

~ωs

[
3as1,xz

2

8Ize
+

3as1,xx
2

4Iex
+

1

2

∑
m

(
{ζ(I)

ms}2 + {ζ(II)
ms }2

) 3λs + λm
λs − λm

+
∑
t

(
{ζ(III)

st }2 + {ζ(IV )
st }2

) 3λs + λt
λs − λt

+
∑
m

K(I)
mss

am,xx
2λm

]
(3.16)

with αi,x = αi,y. The first contribution in eqs. 3.12-3.16 is a corrective term related
to the moment of inertia, the second one is due to the Coriolis interactions, and the
last is an anharmonic correction. It is noteworthy that the Coriolis coupling term
may be affected by resonances. In analogy with vibrational first-order resonance,
the strategy that is adopted when a resonance occurs is to expand the Coriolis
term and neglect the resonant part, as shown in Appendix D. By contrast, the
summed Coriolis coupling term

∑
i αi,τdi is not affected by resonances, as it is

possible to write,

− 2{Be
τ}2

ωi

∑
j

{ζij,τ}2 3λi + λj
λi − λj

=
{Be

τ}2

ωi

∑
j

{ζij,τ}2

ωj

[
(ωi − ωj)2

ωi + ωj
− (ωi + ωj)

2

ωi − ωj

]
(3.17)
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Taking as an example the resonance ωm ≈ ωn, we have (dm = 1 and dn = 1),∑
m

αm,τdm = . . .− 2{Be
τ}2
∑
m,n

{ζmn,τ}2

ωm

3λm + λn
λm − λn

− 2{Be
τ}2
∑
m,n

{ζnm,τ}2

ωn

3λn + λm
λn − λm

+ . . .

= . . .+ {Be
τ}2
∑
m,n

{ζmn,τ}2

ωmωn

[
(ωm − ωn)2

ωm + ωn
− (ωm + ωn)2

ωm − ωn

+
(ωn − ωm)2

ωn + ωm
− (ωn + ωm)2

ωn − ωm

]
+ . . .

= . . .+ 2{Be
τ}2
∑
m,n

{ζmn,τ}2

ωmωn

(ωm − ωn)2

ωm + ωn
+ . . . (3.18)

Similar simplifications can be applied for ωm ≈ ωs (note that the factor 1/2, which
multiplies the Coriolis terms in eq. 3.16, is simplified by ds = 2) and ωs ≈ ωt
resonances. Taking these considerations into account, it easy to see that eq. 3.11
for the vibrational ground state is devoid of resonances, i.e. B0

τ = Be
τ−
∑

i αi,τdi/2.





Chapter 4
Molecular properties

After the presentation of the roto-vibrational energies and rotational constants,
we dedicate four sections to the molecular properties.

First, we extend the previous general formalism to the expectation value of
an electronic property in a given vibrational state, of interest for the calculation
of the vibrational averaged properties for asymmetric tops, as well as, linear and
symmetric tops.

Then, focusing on asymmetric top systems, in the second section we treat the
molecular polarizability, presenting new equations to deal with the pure vibra-
tional terms, which allow the calculation of the transition probability from any
vibrational state. The new formulation is an extension of that present in the
literature, which considers only the transition from the vibrational ground state.

In the third section, the new equations are applied to the electric dipole transi-
tion moments, of great interest in the calculations of infrared spectrum intensities.

The last section is dedicated to the temperature effects, which can be intro-
duced dealing with both the vibrational averaged properties and the transition
moments.

4.1 Vibrational average
As first approximation, a generic electronic property M can be calculated

from the electronic wavefunction fixing the nuclei in their equilibrium geometry.
However, because of the property change depending on the molecular geometry, to
have accurate calculations we can introduce the effect of nuclei vibrations making
the vibrational average of the property. It is given by the expectation value of the

51



52 CHAPTER 4. MOLECULAR PROPERTIES

property M on the vibrational state | ψA 〉,

〈M 〉Aa =
〈 ψAa |M | ψAa 〉
〈 ψAa | ψAa 〉

= 〈 φ(0)

Aa
| M̃ | φ(0)

Aa
〉 (4.1)

where M̃ is the property transformed to the basis φ = eiSψ (see eq. 1.41), with
the choice φ ≡ φ(0) (we recall that 〈φ(0)

Aa
| φ(0)

Aa
〉 = 1). Also called effective property,

M̃ = eiSMe−iS is then given by (see eqs. 1.43-1.45),

M̃ (0) = M (0) (4.2)

M̃ (1) = M (1) + i [S (1),M (0)] (4.3)

M̃ (2) = M (2) + i [S (1),M (1)]− 1

2
[S (1), [S (1),M (0)]] + i [S (2),M (0)] (4.4)

where S (n) are now known from the treatment of H. Generally, M is a function
of the total angular momentum as well as the normal coordinates and momenta.
In terms of fg-subscripts notation introduced in Section 1.5, the expansion of M
can be written as [108],

M =M01 +M11 +M21 + . . .

(4.5)

Focusing here on the vibrational part, we can identify as perturbation ordersH(1) =
H30, H(2) = H40 for the Hamiltonian and M (0) = M00, M (1) = M10 and M (2) =
M20 for the property, where,

M00 =M e (4.6)

M10 =
∑
i

∑
γ

MiγQiγ (4.7)

M20 =
1

2

∑
i,j

∑
γ,ε

MiγjεQiγQjε (4.8)

M e is the property at the equilibrium position of the nuclei,

Miγ =
∂M

∂Qγ

and, Miγjε =
∂2M

∂QiγQjε

(4.9)
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By eqs. 4.2-4.4, we can find that,

〈 M̃00 〉Aa =M e (4.10)

〈 M̃10 〉Aa =0 (4.11)

〈 M̃20 〉Aa =
1

2

∑
m

Mmm√
λm

(
nm +

1

2

)
+

1

2

∑
s

Ms1s1 +Ms2s2√
λs

(
ns + 1

)

− 1

2

∑
m

∑
n

KmnnMm

λm
√
λn

(
nn +

1

2

)
−1

2

∑
m

∑
s

K
(I)
mssMm

λm
√
λs

(
ns + 1

)
(4.12)

where, differently from the cubic and quartic force treatment, we have not in-
troduced any symmetry relation between the property derivatives, with the aim
of having fully general expressions. It is noteworthy that, similar to the energy
up to second order, both CT and RS formulations lead to the same result (see
Appendix F).

If no resonances or doublings occur, the sum of the terms in eqs. 4.10-4.12 is
then the expression for the averaged property up to second perturbative order. It
is easy to see that eq. 4.12 does not contain possibly resonant terms. Despite this,
if |φ(0)

Aa
〉 is one of the n states involved in a polyad, within the GVPT2 formulation

it will be variationally combined with all the others to originate n new states.
The latter states will be the combinations given by the eigenvectors of the polyad
having the polyad’s eigenvalues as energies [108].
As an example, if the two states |φAa〉 and |φAb〉 interact by a l-doubling interaction
element (see eqs. 2.31-2.33), they will form a 2-dimensional polyad and, after the
variational diagonalization, we will have the two new states | φA′

a
〉 and | φA′

b
〉.

Then,

〈 M̃20 〉A′
a

=c2
11〈 φAa | M̃20 | φAa 〉+ c11c12〈 φAa | M̃20 | φAb 〉
+ c21c11〈 φAb | M̃20 | φAa 〉+ c2

12〈 φAb | M̃20 | φAb 〉 (4.13)

with a similar expression for | φA′
b
〉, where cij are the elements of the polyad’s

eigenvectors. It is of interest to note that the off-diagonal elements 〈 ns, ls | M̃20 |
ns, (ls + 4) 〉, 〈 nsnt, lslt | M̃20 | nsnt, (ls ± 2)s(lt ∓ 2)t 〉 and 〈 nsnt, lslt | M̃20 |
nsnt, (ls ± 2)s(lt ± 2)t 〉 are all zero, which simplifies the above expression.

4.2 Vibrational polarizability
When a molecule is placed in an static and/or dynamic electric field both

electronic and vibrational motions change to allow the redistribution of both the
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electrons and the nucleus that gives the smallest field-dependent energy. The
molecule exhibits a polarization, and the measure of this polarization is called
polarizability.

Within the BO approximation, the molecular polarizability α (both static and
frequency-dependent) in a given non-degenerate vibrational state | ψA 〉 can be
written as [89, 90, 96, 149–151]:

α =〈α 〉A +αpv
A (4.14)

where 〈α 〉A = αe+ 〈 α̃20 〉A is the vibrational averaged polarizability up to second
perturbative order, with αe the electronic polarizability of the molecule at the
equilibrium geometry and 〈 α̃20 〉A given by eq. 4.12, and αpv

A is the so-called pure
vibrational polarizability. The latter term represents the vibrational response to
the external perturbation, and can be expressed as [96, 150],

{ατ,η}pvA =
2

~
∑
B 6=A

Ω[∆]
〈 ψA | µτ | ψB 〉〈 ψB | µη | ψA 〉
〈 ψA | ψA 〉〈 ψB | ψB 〉

(4.15)

where Ω[∆] = ∆/(∆2 − νext), ∆ = (EB − EA) and νext is the frequency of the
external electric field. µ is the electric dipole moment. It is clear from this ex-
pression that, as νext increases, the pure vibrational contribution goes to zero. It
is therefore expected to be negligible in the case of light in the UV-visible range
of the spectrum. This term can instead be significant in the case of the static
polarizability (i.e. νext = 0).

Eq. 4.15 can be treated by perturbation theory in a similar way as for the
vibrational averaged term, where now the dipole moment is expressed by,

µτ = µ(0)

τ + µ(1)

τ + µ(2)

τ + . . . (4.16)

where,

µ(0)

τ = µeτ +
∑
m

µm,τQi (4.17)

µ(1)

τ =
1

2

∑
m,n

µmn,τQmQn (4.18)

µ(2)

τ =
1

6

∑
m,n,o

µmno,τQmQnQo (4.19)

µm,τ , µmn,τ , µmno,τ are respectively the first, second and third derivatives of the
electric dipole moment with respect to the normal coordinates, and µeτ the dipole
moment at the equilibrium geometry. Up to second perturbative order, the total
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value of αpv is usually separated into an harmonic term and three anharmonic
contributions, which are distinguished according to their degree of mechanical
(i.e., contributions from higher-order terms in the wavefunction expansion in RS
representation, right index) and electric (i.e. contributions from higher-order terms
in the electronic property expansions) anharmonicity,

αpv = [µ2]0,0 + [µ2]2,0 + [µ2]1,1 + [µ2]0,2 (4.20)

A formulation for the last terms is present in the literature for the specific case
of | ψA 〉 equal to the vibrational ground state [96]. Focusing on asymmetric top
systems, we present here the generalization of the previous expressions for a generic
vibrational state,

[µ2]0,0τ,η =
∑
m

µm,τµm,η√
λm

[
Ω[ν(+1)m](nm + 1) + Ω[ν(−1)m]nm

]
(4.21)

[µ2]2,0τ,η =~
∑
m

{
µmm,τµmm,η

8λm

[
Ω[ν(+2)m](nm + 2)(nm + 1) + Ω[ν(−2)m]nm(nm − 1)

]

− (µmmm,τµm,η + µm,τµmmm,η)

4λm

[
Ω[ν(+1)m]nm(nm + 1)

+ Ω[ν(−1)m]nm(nm + 1)

]}

+ ~
∑
m,n

{
(µmnn,τµm,η + µm,τµmnn,η)

4
√
λmλn

[
Ω[ν(+1)m](nm + 1)(2nn + 1)

+ Ω[ν(−1)m]nm(2nn + 1)

]}

+ ~
∑
m 6=n

{
µmn,τµmn,η

4
√
λmλn

[
Ω[ν(+1)m(+1)n](nm + 1)(nn + 1)

+ 2Ω[ν(+1)m(−1)n](nm + 1)nn + Ω[ν(−1)m(−1)n]nmnn

]}
(4.22)
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[µ2]1,1τ,η =~
∑
m,n

{
(µmm,τµn,η + µn,τµmm,η)Kmmn

8λm(4λm − λn)

[
Ω[ν(+2)m](nm + 2)(nm + 1)

+ Ω[ν(−2)m]nm(nm − 1)

]

+
(µmn,τµm,η + µm,τµmn,η)Kmmn (8λm − 3λn)

4λmλn(4λm − λn)

[
Ω[ν(+1)m]nm(nm + 1)

+ Ω[ν(−1)m]nm(nm + 1)

]}

+ ~
∑
m,n,o

{[
(µno,τµm,η + µm,τµno,η)Kmno(λm − λn + λo)

2
√
λmλo∆mno

− (µmn,τµm,η + µm,τµmn,η)Knoo

4λn
√
λmλo

]

×

[
Ω[ν(+1)m](nm + 1)(2no + 1) + Ω[ν(−1)m]nm(2no + 1)

]}

+ ~
∑
m 6=n

∑
o

{
(µmn,τµo,η + µo,τµmn,η)Kmno

4
√
λmλn(

√
λm +

√
λn +

√
λo)(
√
λm +

√
λn −

√
λo)

×

[
Ω[ν(+1)m(+1)n](nm + 1)(nn + 1) + Ω[ν(−1)m(−1)n]nmnn

]

+
(µmn,τµo,η + µo,τµmn,η)Kmno

2
√
λmλn(

√
λm −

√
λn −

√
λo)(
√
λm −

√
λn +

√
λo)

×

[
Ω[ν(+1)m(−1)n](nm + 1)nn

]}
(4.23)
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[µ2]0,2τ,η =~
∑
m

{
−µm,τµm,ηKmmmm

8λ2
m

[
Ω[ν(+1)m](nm + 1)2 + Ω[ν(−1)m]n2

m

]}

+ ~
∑
m 6=n

{
−µm,τµm,ηKmmnn

8λm
√
λmλn

[
Ω[ν(+1)m](nm + 1)(2nn + 1)

+ Ω[ν(−1)m]nm(2nn + 1)

]

− (µm,τµn,η + µn,τµm,η)Kmmmn

4λm(λm − λn)

[
Ω[ν(+1)m]nm(nm + 1)

+ Ω[ν(−1)m]nm(nm + 1)

]}

+ ~
∑
m 6=n

∑
o

{
(µm,τµn,η + µn,τµm,η)Kmnoo

4
√
λmλo(λm − λn)

[
Ω[ν(+1)m](nm + 1)(2no + 1)

+ Ω[ν(−1)m]nm(2no + 1)

]}

+ ~
∑
m,n

{
−µm,τµm,ηK

2
mmn(32λ2

m − 24λmλn + 3λ2
n)

8λ2
mλn(4λm − λn)2

[
Ω[ν(+1)m]nm(nm + 1)

+ Ω[ν(−1)m]nm(nm + 1)

]}

+ ~
∑
m,n,o

{
(µn,τµo,η + µo,τµn,η)KmmnKmmo

16λm(4λm − λn)(4λm − λo)

[
Ω[ν(+2)m](nm + 2)(nm + 1)

+ Ω[ν(−2)m]nm(nm − 1)

]

+
µm,τµm,η

λm
√
λmλo

[
KmmnKnoo

8λn
− K2

mno(λm − λn)2(3λm − λn)

4∆2
mno

+
K2
mno [(3λ2

m + 2λmλn + 3λ2
n)λ2

o − (7λm + 3λn)λ2
o + λ3

o]

4∆2
mno

]

×

[
Ω[ν(+1)m](nm + 1)(2no + 1) + Ω[ν(−1)m]nm(2no + 1)

]}
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+ ~
∑
m6=n

∑
o

{
(µm,τµn,η + µn,τµm,η)KmmoKmno (8λm − 3λo)

4λmλo(λm − λn)(4λm − λo)

×

[
Ω[ν(+1)m]nm(nm + 1) + Ω[ν(−1)m]nm(nm + 1)

]}

+ ~
∑
m6=n

∑
o,p

{
(µm,τµn,η + µn,τµm,η)√

λmλp(λm − λn)

[
KmopKnop (λm − λo + λp)

2∆mop

− KmnoKopp

4λo

]

×

[
Ω[ν(+1)m](nm + 1)(2np + 1) + Ω[ν(−1)m]nm(2np + 1)

]

+
(µp,τµo,η + µo,τµp,η)KmnoKmnp
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√
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√
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√
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√
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√
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√
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√
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√
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√
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×

[
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+
(µp,τµo,η + µo,τµp,η)KmnoKmnp
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√
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√
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√
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√
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× 1

(
√
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√
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√
λp)(
√
λm −

√
λn −

√
λp)

×

[
Ω[ν(+1)m(−1)n](nm + 1)nn

]}

+
1

~
∑
τ

∑
m,n,o

{
Be
τ (µm,τµo,η + µm,τµo,η)ζmn,τζno,τ

2
√
λmλo

×

[√
λn√
λmλo

(
1√

λm +
√
λo
− 1− δmo√

λm −
√
λo

)

−

√√
λmλo
λn

(
1√

λm +
√
λo

+
1− δmo√
λm −

√
λo

)]

×

[
Ω[ν(+1)m](nm + 1)(2nn + 1) + Ω[ν(−1)m]nm(2nn + 1)

]}
(4.24)
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4.3 Electric dipole transition moments
It can be shown that the infra-red (IR) intensity of any vibrational transition

from a given non-degenerate vibrational state | ψA 〉 is proportional to [33, 97],

IA(νext) ∝
∑
τ

∑
B 6=A

Ω[∆]
〈 ψA | µτ | ψB 〉〈 ψB | µτ | ψA 〉
〈 ψA | ψA 〉〈 ψB | ψB 〉

(4.25)

where Ω[∆] = ∆/(∆2−νext), ∆ = (EB−EA) and νext is the frequency of the exter-
nal electric field. Comparing the previous expression with eq. 4.15, it easy to see
that the intensity is proportional to the sum of the terms given by eqs. 4.21-4.24,
where now η = τ . For example, the harmonic contributions due to the vibra-
tional normal mode m to the absorption and emission intensity are respectively
proportional to,∑

τ

µ2
m,τ√
λm

(nm + 1) and,
∑
τ

µ2
m,τ√
λm

nm (4.26)

where nm is the vibrational quantum number of the modem in the |ψA〉 vibrational
state.

Observing the terms appearing in eqs. 4.21-4.24, it is noteworthy that handling
[µ]2 up to the second perturbative order means to allow transition simultaneously
involving at most two vibrational quanta. There is an alternative way to obtain
the VPT2 IR intensities: instead of applying the perturbative development on the
complete formulation of the transition property in eq. 4.25, one can first compute
the anharmonic transition dipole moment 〈 ψA | µτ | ψB 〉 and then square the
result to obtain the intensity [97, 98]. This leads to slightly different expressions,
because of the inclusion of higher order perturbative terms when the transition
property is squared. However, high order perturbative corrections are expected to
be small, therefore there should be very little numerical difference between the two
methods. In the last approach, the intensities for excitations involving more then
two vibrational quanta can be also non null. Such an example, the intensities for
excitations involving three vibrational quanta on mode m are proportional to the
square of,

〈 nm | µτ | nm + 3 〉 =
~1/2

√
(nm + 1)(nm + 2)(nm + 3)

λ
3/2
m

√
2

×

{
µmmm,τ

12
+
∑
n

[
Kmmmnµn

24(9λm − λn)
+

Kmmnµmn,τ
8(4λm − λn)

+
∑
o

KmmoKmnoµn,τ
4(9λm − λn)(4λm − λo)

]}
(4.27)
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4.4 Temperature effects
Temperature effects can be taken into account for both vibrational averaged

and pure vibrational property, as well as for electric dipole transition moments,
explicitly by summing the contributions over all vibrational states, each weighted
by its Boltzmann population.
Remembering the vibrational partition function in eq. 2.67, we can write down,∑

ν Dνe
−βEν(n)

Q
(H)
vib

=1 (4.28)

∑
ν Dνe

−βEν(n)

Q
(H)
vib

nm =

∏
i

(
1− e−βωi

)di e−βωm∏
i 6=m (1− e−βωi)di (1− e−βωm)2

=
e−βωm

(1− e−βωm)
(4.29)

∑
ν Dνe

−βEν(n)

Q
(H)
vib

ns =−
∏

i

(
1− e−βωi

)di 2e−βωs∏
i 6=s (1− e−βωi)di (e−βωm − 1)3

=
2e−βωs

(1− e−βωs)
(4.30)∑

ν Dνe
−βEν(n)

Q
(H)
vib

n2
m =−

∏
i

(
1− e−βωi

)di e−βωm(1 + e−βωm)∏
i 6=m (1− e−βωi)di (e−βωm − 1)3

=
e−βωm(1 + e−βωm)

(1− e−βωm)2 (4.31)∑
ν Dνe

−βEν(n)

Q
(H)
vib

nmnn =
e−βωm

(1− e−βωm)

e−βωn

(1− e−βωn)
(4.32)

where the summations in the left-hand sides is on all possible vibrational states ν,
and we have used the relations

∑∞
n=0 nq

n = q/(1−q)2,
∑∞

n=0 n(n+1)qn = −2q/(q−
1)3 and

∑∞
n=0 n

2qn = −q(q + 1)/(q − 1)3 when |q| < 1.
These terms can be introduced into the equations 4.12 and 4.21-4.24 in place of
the quantum numbers to obtain the temperature-dependent vibrational averages
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and transitions. For example, for [µ2]2,0τ,η we will have,

[µ2]0,0τ,η(T ) =
∑
m

µm,τµm,η√
λm

[
Ω[ν(+1)m]

(
e−βωm

1− e−βωm
+ 1

)
+ Ω[ν(−1)m]

e−βωm

1− e−βωm

]

=
∑
m

µm,τµm,η√
λm

[
Ω[ν(+1)m]

1

1− e−βωm
+ Ω[ν(−1)m]

e−βωm

1− e−βωm

]
(4.33)

Note that if we assume ν(+1)m = −ν(−1)m, the double-harmonic term becomes
temperature-independent.
Finally, in the treatment of the partition function it is possible to account for the
anharmonicity substituting the harmonic frequencies in the equations 4.29-4.32
with their anharmonic counterparts (see SPT in section 2.5). For example,

e−βωm

(1− e−βωm)

SPT
−−−−−−→ e−βνm

(1− e−βνm)
(4.34)

where νm stands for ν(1)m.
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Experience is a brutal teacher, but
you learn. My God, do you learn.

C.S. Lewis
1898-1963

In the previous chapters we have shown the equations of roto-vibrational en-
ergies and spectroscopic constants issuing from a perturbative treatment of the
molecular Hamiltonian. This formulation can be used in three different ways.

On an experimental level, once we have an effective Hamiltonian for a given
vibrational state (or for a polyad of such states), we can attempt to determine the
values of the spectroscopic constants by fitting them to the experimental frequen-
cies of transitions between the rotation-vibration states [2, 21]. Such fitting means
that we try to obtain the values of the spectroscopic constants that provide the
best agreement with the experimental data. On the other hand, we can attempt to
evaluate the spectroscopic quantities from a fully quantum mechanical approach [3,
5]. To do this, we need a molecular equilibrium geometry together with a set of
second, third and semi-diagonal fourth energy derivatives with respect to nor-
mal modes. The corresponding derivatives of properties (up to the third order)
are needed for evaluating vibrationally averaged observables or intensities (dipole
moment for infrared, polarizability for Raman, etc.). All these quantities can be
computed by current electronic structure codes at different levels of sophistication.

Hartree-Fock (HF) [152], density functional theory (DFT) [153], and second-
order Møller-Plesset theory (MP2) [154, 155] models will be employed in the
present work, but also other post-HF models (e.g. multi-configurational self-
Consistent field (MCSCF) [113, 156], coupled cluster (CC) [157, 158], etc.) could
be used. In this frame, the expressions derived in the first sections can be used
to reproduce and/or to predict the experimentally observed results. Finally, in
the so-called semi-experimental (SE) approach the experimental data are handled
with theoretical corrections to assess the physical quantities of interest.

In this work we will consider the latter two approaches. First, we will focus
our attention to the problem of the determination of accurate molecular structures
avoiding high-level expensive computations, with the aim of making feasible the
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treatment of systems of increasing size and complexity. Then we will treat the vi-
brational energies and thermodynamic quantities of different molecules, validating
our developments and pointing out the feasibility and the limitations of the VPT
approach in reproducing the experimental results.



Chapter 5
Accurate equilibrium geometries

The last decades have seen many efforts to determine accurate molecular struc-
tures for systems of increasing size and complexity [6, 21, 159–170]. Detailed
knowledge of the equilibrium structures of isolated molecular systems of chemical,
biological or technological interest is indeed a prerequisite for a deeper understand-
ing of other physical-chemical properties, ranging from a precise evaluation of the
electronic structure to the understanding and analysis of the dynamical and envi-
ronmental effects affecting the molecular structures and properties [2, 4–6, 159].
Moreover, the availability of reference molecular structures allows one to test the
accuracy of different quantum mechanical (QM) approaches [6, 171–175], and it
is essential for a correct development of accurate force fields either of general ap-
plicability (e.g. for systems of biological interest) [176–179] or specifically tailored
for individual systems [180–183]. Furthermore, robust and reliable computational
approaches are of primary importance for conformational analysis and modeling of
drugs and biomolecules[171, 184], as well as for a deeper understanding of chem-
ical reactivity in terms of transition state structures[185], which are not directly
determinable from experiment. For a fruitful interplay of experiment and theory
in the interpretation and quantification of molecular properties, and for valida-
tion purposes, it is hence desirable to have a large number of accurate equilibrium
geometries at one’s disposal.

Nowadays, an increasing number of experimental data is available thanks to
the growing interest in the field, but the structural parameters derived from exper-
iment often depend on the chosen technique and can be biased by vibration and/or
environmental conditions [5, 6]. For example, the vibrationally averaged r0 and
substitution rs structures are obtained from microwave and/or rotationally re-
solved infrared investigations through the analysis of the vibrational ground-state
rotational constants for different isotopologues, but without an explicit consider-
ation of vibrational effects [186]. The dependence of the results on experimental

67
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conditions complicates both the comparison of structures obtained with different
experimental techniques and the subsequent use of these empirical structures in
the computation of molecular properties. In addition, all vibrationally averaged
structures (r0, rs, rα,T , rg,T , etc.) depend on the isotopic species considered [186,
187].

A way to avoid all these problems is to resort to equilibrium configuration struc-
tures (usually referred to as re) at the minimum of the PES in BO approximation.
Although they are cumbersome to derive experimentally, and therefore generally
available only for small molecules, these kind of structures are preferred as they
exclude vibrational effects in a rigorous manner and are independent of the con-
sidered isotopic species. Moreover, depending solely on the electronic structure of
the molecular system, re structures are directly comparable with the results from
QM calculations.

Reference equilibrium structures can be obtained from high-level QM calcula-
tions, for instance making use of the CC singles and doubles approximation aug-
mented by a perturbative treatment of triple excitations, CCSD(T) [158], which is
able to provide accurate structures, rivaling the best experimental results, provided
that extrapolation to the complete basis-set limit and core correlation are taken
into proper account (see, for example, refs. [188–190]). However, for medium-sized
molecular systems such computations are still very challenging, due to the un-
favorable scaling of highly correlated levels of theory with the number of basis
functions.
An important step forward in this field has been provided by the introduction
of the so-called semi-experimental equilibrium geometry (hereafter rSEe ), which
is obtained by a least-squares fit of experimental rotational constants of different
isotopologues corrected by computed vibrational contributions [6, 159, 191]. Intro-
duced by Pulay et al.[191], this method is nowadays considered the best approach
to determine accurate equilibrium structures for isolated molecules [192]. Such
an interplay of theory and experiment paves the route toward the extension of
accurate structural studies to systems larger than those treatable by experimental
and QM methods separately.

From a computational point of view, the bottleneck of the SE protocol is the
calculation of the cubic force field at a level of theory sufficiently accurate to give
reliable vibrational corrections to rotational constants [192]. Actually, CCSD(T) is
considered the gold standard for this kind of determination, but the computational
cost restricts its applicability to systems of less than 10 atoms (see for example
refs. [193–195]). Such a limitation needs to be overcome in order to set up a
database of accurate molecular geometries to be used as references for benchmark
QM calculations as well as for the validation of simpler models for larger systems,
with special focus on biomolecule building blocks. Therefore, the setup and val-
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idation of a SE approach able to combine high accuracy and low computational
cost is of great interest.

In this view, we carried out a systematic study to demonstrate that the calcu-
lation of vibrational corrections from anharmonic force fields evaluated using the
DFT permits to obtain rSEe structures that agree well with the best equilibrium ge-
ometries reported in the literature, but with a significantly reduced computational
effort [196]. In previous studies, we showed that the B3LYP hybrid functional
performs remarkably well for vibrational properties, when coupled to basis sets of
at least polarized double-ζ quality including diffuse functions (in particular the
SNSD basis set) [53, 197–199]. Moreover, despite the fact that the inclusion of a
portion of the MP2 [154] energy leads to a significantly higher computational cost
with respect to B3LYP computations, the double-hybrid B2PLYP functional [200],
coupled with the cc-pVTZ basis set [201–204], has shown to provide very accurate
harmonic frequencies and anharmonic corrections [190, 205]. On these grounds,
all DFT computations have been performed at the B3LYP and B2PLYP levels.

After the presentation of the computational details, we dedicate a section to
the validation study performed on 21 small molecules (hereafter the CCse set) for
which a sufficient number of experimental rotational constants is available and
cubic CCSD(T) force fields with at least triple-ζ basis sets were computationally
feasible or already known. These reference values are next compared with those is-
suing from B3LYP, B2PLYP and MP2 cubic force fields. The remarkable accuracy
of B2PLYP/VTZ and B3LYP/SNSD results allowed us to derive new SE equilib-
rium structures for an additional set of 27 medium-sized molecules characterized
by the most representative bond patterns of organic systems, and including H, C,
N, O, F, S and Cl atoms. The whole sets of 48 SE equilibrium structures (see
Figure 5.1) determined using B2PLYP/VTZ and B3LYP/SNSD vibrational cor-
rections (hereafter referred to as the B2se and B3se sets, respectively) represents
two high quality benchmarks for structural studies and validation of computational
models.

In addition to the rigorous SE approach, theoretical and experimental data
can also be combined in cases for which the lack of experimental information for a
sufficient number of isotopologues prevents the derivation of a complete SE equilib-
rium structure. In these cases, fixing some geometrical parameters to reliable and
accurate estimates allows for the determination of the remaining structural param-
eters for systems otherwise nonentirely characterizable (see for example refs. [206–
211]). To this end, in the last sections we present a new approach, denoted as
the template approach, that exploits the accurate SE results obtained for refer-
ence molecules in order to derive SE equilibrium structures for similar systems by
avoiding highly expensive CC computations.
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5.1 Methodology and computational details
In the mixed experimental-theoretical approach, the rSEe structure is obtained

by a LSF to the SE equilibrium rotational constants (Be
τ )

SE, or their corresponding
moments of inertia (Ieτ )

SE, where the correlation between the latter and the geo-
metrical parameters is given by eq. 1.30, and (Be

τ )
SE are calculated from (B0

τ )
EXP

as,
(Be

τ )
SE = (B0

τ )
EXP − (∆B0

τ )
QM (5.1)

(∆B0
τ )

QM is explicitly given by,

(∆B0
τ )

QM =
me

mp
gττB

e
τ −

∑
i

αi,τdi
2

= ∆Bel
τ + ∆Bvib

τ (5.2)

where ∆Bvib
τ is the vibrational contribution, given by eq. 3.11, and ∆Bel

τ is an elec-
tronic contribution, evaluated from the rotational g tensor and the ratio between
electron (me) and proton (mp) masses [32, 212, 213]. Although this term is often
negligible, it will be systematically included in our computations for the sake of
completeness.

In the present investigation, the cubic force fields required for the computation
of the ∆Bvib

τ term have been evaluated at the CCSD(T) [157, 158], MP2 [154, 155]
and DFT [153] levels. The correlation-consistent polarized cc-p(wC)VnZ basis
sets [201–204] have mainly been used in CCSD(T) and MP2 calculations, with
n = T, Q denoting the cardinal number of the corresponding basis set, shortly
denoted as (wC)VnZ in the text. The frozen-core (fc) approximation has been
adopted in conjunction with the VnZ sets, while all electrons (but 1s for second-
row elements) have been correlated with wCVnZ.

The double-hybrid B2PLYP functional [200, 205, 214] has been used in con-
junction with the cc-pVTZ basis set (VTZ) [201–204], and the hybrid B3LYP
functional [215–217] with the SNSD basis set [198, 199, 218], which represents
an excellent compromise between accuracy and computational cost for vibrational
studies [197–199, 219].

The CFour program package [220] has been employed for MP2 and CCSD(T)
computations, while DFT calculations have been performed with the Gaussian
suite of programs [221]. For all computational levels, the harmonic part has been
obtained using analytic second derivatives, whereas the corresponding cubic force
field has been determined in a normal-coordinate representation via numerical
differentiation of the analytically computed harmonic force constants [47, 222–
226]. At the DFT level, the force field calculations have been carried out using
very-tight criteria for the SCF and geometry optimization convergence, together
with an ultrafine grid for the numerical integration of the two-electron integrals
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Figure 5.1: Sketch of the 39 asymmetric top molecules belonging to the B2se and
B3se sets.
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and their derivatives. The numerical differentiations have been performed with
the Gaussian default step of 0.01

√
amu Å.

The ∆Bel
τ contributions have been evaluated by calculating the gττ constants at

the B3LYP/AVTZ level of theory.
To obtain accurate reference equilibrium structures for pyruvic acid,

2-fluoropyridine and 3-fluoropyridine, we have performed geometry optimizations
at the CCSD(T) level accounting for basis-set truncation errors and core-valence
correlation effects by means of a composite approach [188, 189]. The corresponding
re is denoted as CCSD(T)/CBS+CV.

5.2 The performance of DFT force fields
A set of 21 molecules, including linear (HCN, HNC, HCO+, HNCCN+, HCCH,

HCCCCH), symmetric-top (H2CCCH2, SH+
3 , NH3) and asymmetric-top (H2O,

H2CO, CH2ClF, CH2CHF, cis-CHFCHCl, oxirane, dioxirane, cyclobutene, trans-
glyoxal, cis and trans-acrolein, pyridazine) molecules, has been selected to inves-
tigate the performance of the B2PLYP and B3LYP hybrid functionals in the com-
putation of the vibrational contributions to experimental vibrational ground-state
rotational constants (B0

τ )
EXP subsequently used in the derivation of SE equilibrium

geometries.
For all systems listed above, the experimental (B0

τ )
EXP constants and the ∆Bvib

τ

contributions computed at the CCSD(T) and MP2 levels available in the litera-
ture have been collected. When not available, MP2 and/or CCSD(T) vibrational
contributions have been calculated in this work (see Table 5.1 for details), together
with the ∆Bvib

τ contributions computed at the DFT level.
The ∆Bel

τ contributions have also been taken into account. In particular, large
∆Bel

τ values are found for H2O (from about 7.6 to 0.7% of (∆B0
τ )

QM) and H2CO
(12.5-0.6%). Furthermore, the importance of taking into account the electronic
contributions for cis and trans-acrolein and pyridazine is well known [227–229].
For both isomers of acrolein, ∆BA

el , ∆BB
el and ∆BC

el are about 3.0-4.5%, 0.5-0.6%
and 0.05-0.07% of (∆B0

τ )
QM. For pyridazine, ∆BA

el and ∆BB
el are about 0.7-1.2%

of (∆B0
τ )

QM, while ∆BC
el is about 0.3%.

The total (∆B0
τ )

QM are rather small contributions. They vary from 2% to 3%
of (B0

τ )
EXP, for systems like H2O, to less than 1% in the case of HNCCN+ and

HCCCCH. Negative (∆B0
τ )

QM corrections are obtained for all molecules except for
(BA

0 )EXP of H2O. The results obtained at the different levels of theory considered
are in a good agreement to one another. By use of eq. 13 of ref. [192], it is possible
to estimate that the resulting SE geometrical parameters differ by at most 0.25%
from those obtained with vibrational contributions at the CCSD(T) level.

In the following, the SE equilibrium structures derived using vibrational con-
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tributions from CCSD(T), MP2, B2PLYP/VTZ and B3LYP/SNSD force fields are
referred to as CCSD(T) SE, MP2 SE, B2PLYP/VTZ SE and B3LYP/SNSD SE,
respectively. The CCSD(T), B2PLYP/VTZ and B3LYP/SNSD SE equilibrium
structures are explicitly reported in Table 5.1. The B3LYP/SNSD equilibrium
structures are shown in order to be easily accessible in view of the template ap-
proach presented later in the text. The root mean square (RMS) of the residuals
in terms of equilibrium rotational constants (hereafter simply referred to as resid-
uals), and for planar molecules, the mean inertial defects ∆e = IC − IB − IA are
also given in Table 5.1 as indicators of the quality of the fits. Indeed, small values
of the RMS residuals and ∆e indicate a good quality of the fits and that (∆B0

τ )
QM

corrections lead to good SE equilibrium rotational constants, respectively.
The differences in the geometrical parameters of the MP2, B2PLYP/VTZ and

B3LYP/SNSD SE equilibrium geometries with respect to the CCSD(T) SE equi-
librium structures are graphically reported in Figure 5.2. It is noteworthy that
for the whole set of bond lengths the deviation of MP2, B2PLYP and B3LYP
results from the CCSD(T) references never exceeds 0.0026 Å. The deviations show
a nearly Gaussian distribution with mean values close to zero and mean absolute
errors (MAE) of 0.0004 Å, 0.0003 Å and 0.0007 Å for MP2, B2PLYP/VTZ and
B3LYP/SNSD, respectively (see Table 5.2), thus pointing out the good accuracy
of DFT vibrational contributions to rotational constants in evaluating SE equi-
librium structures. The small standard deviations of MP2, B2PLYP/VTZ and
B3LYP/SNSD can be considered fully satisfactory for geometrical parameter de-
terminations. A larger MAE (0.0056 Å) is obtained for r0 structures, obtained
by a LSF of the molecular parameters to the pure experimental ground-state ro-
tational constants, with a standard deviation of 0.0063 Å, a value significantly
larger than the typical uncertainty affecting the SE methodology. The deviations
for angles are also very small, with MAE of 0.03, 0.03, and 0.05 degrees for MP2,
B2PLYP/VTZ and B3LYP/SNSD, respectively. Similarly to bond lengths, these
values correspond to accuracies comparable with the intrinsic errors of the SE fit-
ting procedure. Also for angles, the deviations of r0 structures are an order of
magnitude larger than that of the various rSEe ’s.

A linear least-square fit of the CCSD(T) rSEe values, expressed as a function of
the corresponding MP2 and DFT ones, gives the parameters reported in Table 5.3.
It is noteworthy that in all cases the angular coefficient is very close to 1 and the
intercept never exceeds, in absolute value, 0.0025 Å for bond lengths and 0.06
degrees for angles. This confirms that using B3LYP corrections in the SE approach
leads to results that reproduce very well the best SE equilibrium structures. In
addition, the analysis of R2 and standard deviation values of the linear regression
does not point out any significant deviation from linearity.
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Table 5.1: rSEe and re geometries for the 21 molecules of the CCse set. Distances
in Å, angles in degrees.

rSE
e
a

re

CCSD(T) B2PLYP B3LYP B3LYP

– linear molecules –
HCNb

r(H-C) 1.0651(1)×,† 1.0647(1)† 1.0645(1)† 1.0707
r(C-N) 1.1533(1) 1.1532 1.1536(1) 1.1551
Rms resid. [MHz] 0.0001 0.0001 0.0001 -
HNCb

r(H-N) 0.9954(1)×,† 0.9953(1)† 0.9946(1)† 1.0022
r(N-C) 1.1685(1) 1.1687(1) 1.1688(1) 1.1739
Rms resid. [MHz] 0.0001 0.0001 0.0001 -
HCO+

r(H-C) 1.0919(1)×,† 1.0918(1)† 1.0916(1)† 1.0995
r(C-O) 1.1057(1) 1.1056(1) 1.1057(1) 1.1075
Rms resid. [MHz] 0.0001 0.0001 0.0001 -
HNCCN+c

r(H-N) 1.0133(1)�,† 1.0136(1)† 1.0138(2)† 1.0191
r(N-C) 1.1406(1) 1.1399(2) 1.1392(4) 1.1455
r(C-C) 1.3724(1) 1.3730(2) 1.3735(4) 1.3686
r(C-N) 1.1634(1) 1.1621(1) 1.1607(3) 1.1628
Rms resid. [MHz] 0.0002 0.0003 0.0008 -
HCCHd

r(C≡C) 1.2030(1)+,† 1.2030(1)† 1.2036(1)† 1.2060
r(C-H) 1.0617(1) 1.0613(1) 1.0611(1) 1.0676
Rms resid. [MHz] 0.0001 0.0001 0.0002 -
HCCCCHe

r(C≡C) 1.2084(3)×,† 1.2077(2)† 1.2070(4)† 1.2123
r(C-C) 1.3727(4) 1.3734(3) 1.3726(6) 1.3685
r(C-H) 1.0615(1) 1.0613(1) 1.0610(1) 1.0667
Rms resid. [MHz] 0.0008 0.0006 0.0012 -

– symmetric top molecules –
SH+

3
f

r(S-H) 1.3500(1)+,† 1.3502(1)† 1.3502(1)† 1.3683
a(H-S-H) 94.15(1) 94.13(1) 94.11(1) 94.30
Rms resid. [MHz] 0.0010 0.0007 0.0011 -
NH3

b

r(N-H) 1.0110(2)×,† 1.0111(1)† 1.0111(2)† 1.0176
a(H-N-H) 106.94(2) 106.93(2) 106.87(3) 106.59
Rms resid. [MHz] 0.0033 0.0032 0.0036 -
H2CCCH2

r(C=C) 1.3066(1)÷,† 1.3069(2)† 1.3075(2)† 1.3077
r(C-H) 1.0807(1) 1.0805(5) 1.0800(4) 1.0874
a(H-C-H) 118.26(1) 118.32(6) 118.37(5) 117.41
Rms resid. [MHz] 0.0011 0.0092 0.0081 -

– asymmetric top molecules –
H2Ob

r(O-H) 0.9573(1)×,† 0.9573(1)† 0.9572(1)† 0.9644
a(H-O-H) 104.53(1) 104.56(1) 104.47(1) 104.60
Rms resid. [MHz] 0.0004 0.0004 0.0004 -
Mean ∆e [uÅ2] 0.00506 0.00552 0.00603 -
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H2COb

r(C-O) 1.2047(1)×,† 1.2048(1)† 1.2051(1)† 1.2052
r(C-H) 1.1003(1) 1.1004(1) 1.1002(1) 1.1099
a(H-C-O) 121.65(1) 121.63(1) 121.62(1) 121.84
Rms resid. [MHz] 0.0003 0.0003 0.0003 -
Mean ∆e [uÅ2] 0.00297 0.00308 0.00223 -
CH2ClFg

r(C-H) 1.0840(1)‡,† 1.0843(1)† 1.0842(1)† 1.0896
r(C-F) 1.3594(1) 1.3593(1) 1.3591(1) 1.3682
r(C-Cl) 1.7641(1) 1.7643(1) 1.7645(1) 1.7998
a(H-C-Cl) 107.96(1) 107.95(1) 107.93(1) 107.61
a(H-C-H) 112.57(1) 112.56(1) 112.55(1) 113.23
a(F-C-Cl) 110.02(1) 110.02(2) 110.02(2) 110.15
Rms resid. [MHz] 0.0001 0.0001 0.0001 -
CH2CHF
r(C1-F) 1.3424(2)÷,† 1.3422(2)† 1.3412(5)† 1.3528
r(C1-H) 1.0792(1) 1.0788(1) 1.0784(4) 1.0856
r(C1-C2) 1.3213(2) 1.3219(2) 1.3234(6) 1.3247
r(C2-Htrans) 1.0772(1) 1.0773(1) 1.0768(4) 1.0839
r(C2-Hcis) 1.0785(1) 1.0784(1) 1.0782(3) 1.0848
a(F-C1-H) 112.10(6) 112.23(7) 112.36(19) 111.62
a(F-C1-C2) 121.72(1) 121.70(1) 121.68(1) 121.90
a(C1-C2-Htrans) 118.95(1) 118.93(1) 118.94(4) 119.25
a(C1-C2-Hcis) 121.32(1) 121.31(1) 121.29(3) 121.72
Rms resid. [MHz] 0.0001 0.0001 0.0004 -
Mean ∆e [uÅ2] 0.00281 0.00164 0.00162 -
cis-CHFCHClh

r(C1-Cl) 1.7129(2)÷,† 1.7126(7)† 1.7124(14)† 1.7404
r(C1-H) 1.0795(2) 1.0794(7) 1.0795(14) 1.0818
r(C1=C2) 1.3244(2) 1.3243(10) 1.3266(19) 1.3278
r(C2-F) 1.3313(2) 1.3318(8) 1.3306(16) 1.3416
r(C2-H) 1.0796(1) 1.0784(6) 1.0776(13) 1.0849
a(Cl-C1=C2) 123.08(1) 123.08(7) 123.08(13) 123.74
a(H-C1=C2) 121.08(2) 121.02(10) 121.06(19) 120.91
a(F-C2=C1) 122.56(2) 122.59(8) 122.47(15) 123.10
a(H-C2=C1) 123.49(2) 123.43(8) 123.33(16) 123.45
Rms resid. [MHz] 0.0002 0.0010 0.0020 -
Mean ∆e [uÅ2] 0.00712 0.01037 0.01604 -
oxiranei

r(C-C) 1.4609(2)÷,† 1.4612(2)† 1.4615(2)† 1.4674
r(C-O) 1.4274(1) 1.4276(1) 1.4281(1) 1.4324
r(C-H) 1.0816(2) 1.0816(2) 1.0814(2) 1.0889
a(C-O-C) 61.56(1) 61.56(1) 61.55(1) 61.63
a(H-C-H) 116.25(2) 116.28(2) 116.33(2) 115.75
a(H-C-O) 114.87(3) 114.86(3) 114.82(3) 115.04
Rms resid. [MHz] 0.0015 0.0015 0.0015 -
dioxiranej

r(C-O) 1.3846(5)÷ 1.3846(1)† 1.3850(1)† 1.3901
r(O-O) 1.5133(5) 1.5140(1) 1.5140(1) 1.5006
r(C-H) 1.0853(15) 1.0852(1) 1.0850(1) 1.0919
a(H-C-H) 117.03(20) 117.02(1) 117.06(1) 116.96
Rms resid. [MHz] 0.25 0.0005 0.0006 -
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trans-glyoxalk

r(C=O) 1.2046(1)÷,† 1.2047(1)† 1.2051(1)† 1.2069
r(C-C) 1.5157(1) 1.5153(1) 1.5149(2) 1.5262
r(C-H) 1.1006(1) 1.1006(1) 1.1006(1) 1.1093
a(H-C-C) 115.23(1) 115.37(1) 115.37(1) 115.14
a(O=C-H) 123.60(1) 123.46(1) 123.45(1) 123.45
Rms resid. [MHz] 0.0001 0.0002 0.0002 -
Mean ∆e [uÅ2] 0.02157 0.01271 −0.02981 -
cis-acrolein
r(C1-C2) 1.4806(1)÷,† 1.4808(1)† 1.4809(3)† 1.4840
r(C2-C3) 1.3350(1) 1.3352(1) 1.3368(2) 1.3377
r(C1-O) 1.2108(1) 1.2111(1) 1.2102(2) 1.2145
r(C1-H) 1.1024(1) 1.1016(1) 1.1021(2) 1.1113
r(C2-H) 1.0824(1) 1.0818(1) 1.0807(2) 1.0885
r(C3-Hcis) 1.0808(1) 1.0814(1) 1.0800(3) 1.0868
r(C3-Htrans) 1.0797(1) 1.0792(1) 1.0786(2) 1.0857
a(C1-C2-C3) 121.21(1) 121.26(1) 121.33(2) 122.28
a(O-C1-C2) 123.96(1) 123.95(1) 123.88(2) 124.66
a(C2-C1-H) 115.83(1) 115.78(1) 115.81(2) 115.24
a(C3-C2-H) 121.57(1) 121.65(1) 121.63(2) 121.21
a(C2-C3-Hcis) 119.85(1) 119.79(1) 119.86(2) 120.35
a(C2-C3-Htrans) 121.61(1) 121.61(1) 121.66(4) 121.73
Rms resid. [MHz] 0.0001 0.0001 0.0003 -
Mean ∆e [uÅ2] 0.01311 −0.01911 0.01346 -
trans-acrolein
r(C1-C2) 1.4702(1)÷,† 1.4699(1)† 1.4703(1)† 1.4735
r(C2-C3) 1.3354(1) 1.3356(1) 1.3355(1) 1.3384
r(C1-O) 1.2103(1) 1.2108(1) 1.2109(1) 1.2142
r(C1-H) 1.1048(1) 1.1044(1) 1.1044(1) 1.1133
r(C2-H) 1.0814(1) 1.0814(1) 1.0817(1) 1.0876
r(C3-Hcis) 1.0825(1) 1.0827(1) 1.0826(1) 1.0883
r(C3-Htrans) 1.0795(1) 1.0794(1) 1.0792(1) 1.0856
a(C1-C2-C3) 120.18(1) 120.16(1) 120.21(1) 121.02
a(O-C1-C2) 124.02(1) 123.99(1) 123.97(1) 124.21
a(C2-C1-H) 115.08(1) 115.15(1) 115.11(1) 115.02
a(C3-C2-H) 122.78(1) 122.75(1) 122.85(1) 122.41
a(C2-C3-Hcis) 120.46(1) 120.45(1) 120.44(1) 120.89
a(C2-C3-Htrans) 122.10(1) 122.12(1) 122.07(1) 122.22
Rms resid. [MHz] 0.0001 0.0001 0.0001 -
Mean ∆e [uÅ2] −0.00527 0.02043 −0.00845 -
cyclobutene
r(C1=C2) 1.3406(1)÷,† 1.3406(1)† 1.3409(1)† 1.3420
r(C2-C3) 1.5141(1) 1.5145(1) 1.5149(1) 1.5193
r(C3-C4) 1.5639(1) 1.5639(2) 1.5646(2) 1.5736
r(C1-H) 1.0805(1) 1.0803(1) 1.0801(1) 1.0867
r(C3-H) 1.0894(1) 1.0895(1) 1.0892(1) 1.0961
a(C1-C2-C3) 94.23(1) 94.23(1) 94.23(1) 94.37
a(C1-C2-H) 133.42(1) 133.45(1) 133.47(1) 133.47
a(C4-C3-H) 114.64(1) 114.63(1) 114.60(1) 114.78
a(H-C3-H) 109.09(1) 109.14(1) 109.19(1) 108.59
Rms resid. [MHz] 0.0001 0.0001 0.0001 -
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pyridazinel

r(N2-C3) 1.3302(12)ℵ0,† 1.3318(6)† 1.3324(24)† 1.3328
r(C3-C4) 1.3938(12) 1.3927(6) 1.3926(23) 1.3929
r(C4-C5) 1.3761(16) 1.3776(4) 1.3778(16) 1.3789
r(C4-H) 1.0802(4) 1.0798(1) 1.0791(5) 1.0780
r(C3-H) 1.0810(3) 1.0808(1) 1.0804(4) 1.0813
a(C3-C4-C5) 116.85(3) 116.85(1) 116.86(4) 116.87
a(N2-C3-C4) 123.86(4) 123.86(1) 123.87(5) 123.82
a(C4-C3-H) 121.35(6) 121.38(3) 121.39(11) 121.29
a(C5-C4-H) 122.37(4) 122.32(2) 122.32(7) 122.25
Rms resid. [MHz] - 0.0003 0.0013 -
Mean ∆e [uÅ2] - −0.00214 −0.00103 -

All computations have been performed in this work except where otherwise indicated.
B2PLYP and B3LYP are used in conjunction with VTZ and SNSD basis sets, respectively.
a) Graphical symbols denote the basis sets used in the calculations of CCSD(T) ∆Bvib

τ contri-
butions: ÷ VTZ; ‡ CVTZ; � VQZ; × CVQZ; + wCVQZ, ℵ0 ANO0. † denotes the inclusion of
∆Bel

τ . For all the structures calculated in this work, the uncertainties on the geometrical param-
eters are reported within parentheses, rounded to 1 · 10−4 Å for lengths and 1 · 10−2 degrees for
angles also if smaller than these values. ∆e = IC − IB − IA is the inertial defect.
b) CCSD(T) ∆Bvib

τ from ref. [230].
c) CCSD(T) ∆Bvib

τ from ref. [231].
d) CCSD(T) ∆Bvib

τ from ref. [232].
e) CCSD(T) ∆Bvib

τ from ref. [233].
f) CCSD(T) ∆Bvib

τ from ref. [234].
g) CCSD(T) ∆Bvib

τ from ref. [235].
h) CCSD(T) ∆Bvib

τ from ref. [236].
i) CCSD(T) ∆Bvib

τ from ref. [237].
j) CCSD(T) rSE

e from ref. [226].
k) CCSD(T) ∆Bvib

τ from ref. [238].
l) CCSD(T) rSE

e from ref. [229].
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Figure 5.2: Statistical distributions of the MP2, B2PLYP/VTZ and B3LYP/SNSD
deviations from CCSD(T) SE equilibrium parameters for the molecules belonging
to the CCse set (see Table 5.1).
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Table 5.2: Mean, standard deviation, and mean absolute error (MAE) for the
MP2, B2PLYP/VTZ and B3LYP/SNSD deviations from CCSD(T) SE equilibrium
parameters for the molecules belonging to the CCse set (see Table 5.1).

MP2a B2PLYP B3LYP

All bonds (68 items)
Mean +0.0001 +0.0000 −0.0001
St. Dev. 0.0006 0.0005 0.0009
MAE 0.0004 0.0003 0.0007
CH bonds (27 items)
Mean +0.0002 −0.0002 −0.0005
St. Dev. 0.0003 0.0003 0.0005
MAE 0.0002 0.0003 0.0005
CC bonds (18 items)
Mean +0.0001 0.0001 +0.0005
St. Dev. 0.0007 0.0006 0.0010
MAE 0.0005 0.0004 0.0009
CO bonds (7 items)
Mean +0.0001 0.0002 +0.0003
St. Dev. 0.0002 0.0002 0.0004
MAE 0.0001 0.0002 0.0005
All angles (42 items)
Mean +0.00 +0.00 +0.00
St. Dev. 0.04 0.05 0.08
MAE 0.03 0.03 0.05

For the different types of bonds, only the sets having at least 7 items have been considered.
B3LYP and B2PLYP are used in conjunction with SNSD and VTZ basis sets, respectively.
a) all MP2 calculations have been performed with basis sets of at least triple-ζ quality.
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Table 5.3: Parameters for linear regressions of the CCSD(T) rSEe parameters versus
the MP2, B2PLYP/VTZ and B3LYP/SNSD rSEe ones for the molecules belonging
to the CCse set (see Table 5.1).

MP2a B2PLYP/VTZ B3LYP/SNSD

All bonds
A 0.999740 1.000722 0.998132
B 0.000186 −0.000905 0.002348
R2 0.999989 0.999991 0.999977
St. Dev. 0.000405 0.000361 0.000584
All angles
A 1.000144 1.000389 1.000064
B −0.012640 −0.047032 −0.009603
R2 0.999985 0.999982 0.999956
St. Dev. 0.000609 0.000680 0.001043

rSE
e (CCSD(T)) = A · rSE

e (MP2 or DFT) +B

a) all MP2 calculations have been performed with basis sets of at least triple-ζ quality.

5.3 From small to medium-large systems
In the previous section we demonstrated that the SE equilibrium structures de-

rived from ∆Bvib
τ contributions calculated at the B2PLYP/VTZ and B3LYP/SNSD

level have an accuracy comparable to that obtained when using CCSD(T) correc-
tions. In view of these results, and aiming at increasing the number of geometrical
patterns considered, in this section B2PLYP and B3LYP SE equilibrium structures
are presented for 27 organic molecules containing H, C, N, O, F, S, and Cl atoms.

For the systems considered, to the best of our knowledge, SE equilibrium struc-
tures derived from CCSD(T) vibrational contributions are not available, but a
sufficient number of isotopologues has been characterized experimentally to allow
for a reliable determination of all geometrical parameters without any constraint
and/or assumption. Focusing on the DFT quantum mechanical models, which
permits keeping the computational costs low, the new SE equilibrium structures
are compared with the most accurate determinations available in the literature.
Together with the 21 molecules previously considered, two high-quality bench-
mark sets, including a total of 48 molecules (hereafter referred to as the B2se and
B3se sets), have been set up for validating structural predictions from other ex-
perimental and/or computational approaches. The whole B2se and B3se sets, as
well as the CCse set, are available in graphical interactive form on the Web site
dreams.sns.it.[239].

The geometrical parameters for CH2F2, CCl2F2, CH2Cl2, CHClF2, ethene,
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ethenol, propene, butadiene, cyclopropane, aziridine, benzene, pyrrole, pyrazole,
imidazole, furan, thiophene, maleic anhydride, pyridine, dimethyl ether, cis and
trans-formic acid, cis-methyl formate, glycolaldehyde, and propanal are collected
in Table 5.4 and compared with the best rSEe equilibrium structures available in
the literature. In Table 5.5, we present the first SE equilibrium structures for three
additional molecules (peroxyformic, glyoxylic and pyruvic acids), which are then
compared with the best theoretical re structures available.

It is noteworthy that for most of the systems the RMS of the residuals for r0

geometries is about one order of magnitude larger than the RMS of the residuals
for SE equilibrium geometries. The small values for the latter, less than 7 kHz for
all systems, demonstrate the good quality of the fits.

In analogy with the CCse set, equilibrium geometries obtained at the
B3LYP/SNSD level are reported in Table 5.4 because of their subsequent use
within the template approach presented in the next section.

Halomethanes

A systematic evaluation of the SE equilibrium structure for a series of chlori-
nated and fluorinated methanes has been carried out recently [240]. In this work,
in addition to the SE equilibrium structure of CH2ClF reported in the previous
section, CH2F2, CCl2F2, CH2Cl2, and CHClF2 have been considered as models to
investigate the C-X bond pattern, where X is a halogen atom and the C hybridiza-
tion is sp3. CH2F2, CCl2F2 and CH2Cl2 have C2v symmetry and are completely
characterized by 5 geometrical parameters, while CHClF2 belongs to the Cs sym-
metry group and has 6 unique structural parameters. In ref. [240], the ∆Bvib

τ

contributions have been calculated at the MP2/VTZ (with the modified V(T+d)Z
for the chlorine atom [241]) level of theory for the halomethanes considered, ex-
cept for CCl2F2 (B3LYP/6-311+G(3df,2pd)). For all these systems, there is a
good agreement between the SE equilibrium structures obtained employing DFT
and MP2 vibrational contributions.

The C-F bond length shows the largest variation with the number of hydrogens
bonded to the C atom, i.e. observing B3LYP results, it increases from 1.3286 Å
for CCl2F2 (no H atoms) to 1.3363 Å for CHClF2 (one H atom) and to 1.3533
Å/1.3594 Å for CH2F2/CH2ClF (two H atoms). A similar trend is shown by the
CCl bond length, which changes from 1.7641/1.7642 Å for CH2ClF/CH2Cl2 to
1.7558 Å for CHClF2 and to 1.7519 Å for CCl2F2. On the contrary, the CH bond
length is only marginally affected by the number of halogen atoms bonded to the
C atom (1.0810, 1.0840, 1.0849 and 1.0867 Å for CH2Cl2, CH2ClF, CHClF2, and
CH2F2, respectively).
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Substituted alkene compounds

Together with CH2CHF and cis-CHFCHCl (presented in Table 5.1), ethene,
ethenol, butadiene, and propene have been studied as representatives of the Y-
C=C-X bond pattern for noncyclic molecules, where C is sp2 hybridized and X
and Y are either halogens or C atoms.

Ethene and ethenol (or vinyl alcohol) are the simplest alkene and enol com-
pound, respectively. A rSEe structure for ethene, which is defined by 3 internal
parameters (D2h symmetry), is available in the literature [242]. It corresponds to
a weighted average of different rSEe geometries calculated by use of ∆Bvib

τ at the
MP2 and B3LYP levels, in conjunction with basis sets of at least triple-ζ qual-
ity, and where scaled quadratic force fields have been coupled with unscaled cubic
force fields in the vibrational correction calculations. The uncertainties of 0.0010
Å and 0.10 degrees on the parameters of the structure of ref. [242] (see Table 5.4)
include both the uncertainties related to the SE methodology and those estimated
from the parameter differences found using the different QM models in the ∆Bvib

τ

calculations. All the B2PLYP/VTZ and B3LYP/SNSD rSEe results, obtained by
fitting the SE IeA and IeB moments of inertia, coincide with those of ref. [242] within
the respective error bars.

The syn conformer of ethenol is fairly rigid and completely defined by 11 inter-
nal parameters (Cs symmetry). The SE equilibrium structure recently determined
using ∆Bvib

τ computed at the MP2/VQZ level [243] is given in Table 5.4 together
with the DFT rSEe results, obtained by fitting the SE IeA and IeC moments of inertia.
The agreement is extremely good and the small RMS residual and uncertainties
on the fitted parameters indicate that the B2PLYP/VTZ and B3LYP/SNSD SE
equilibrium geometries are also accurate.

Propene is the simplest monomethyl internal rotor, and it has been largely
studied by infrared and microwave spectroscopy (see refs. [244, 245] and references
therein). As a consequence, experimental rotational constants are available for a
large number of isotopologues (20). The molecular structure of propene (Cs sym-
metry with a synperplanar arrangement of the C1=C2-C3-Hplane moiety) is defined
by 15 geometrical parameters, and has recently been evaluated by means of the
SE approach using ∆Bvib

τ contributions at the MP2/VTZ(fc) level [245]. Some
remarks on the fitting procedure need to be made. Due to large uncertainties af-
fecting the (B0

A)EXP of some isotopologues [246] that lead to ill-conditioned results,
the fits have been performed on the SE equilibrium moments of inertia correspond-
ing to the (B0

B)EXP and (B0
C)EXP rotational constants. Moreover, CHDcis=CDCH3

and CH2=13CHCH3 isotopologues have been excluded from the fit with B3LYP
∆Bvib

τ corrections, while CHDcis=CDCH3, CH2=13CHCH3, CH2=CHCH2Dplane,
CHDcis=CHCH2Dplane, and CHDcis=CHCH2Dout isotopologues from the fit with
B2PLYP ∆Bvib

τ corrections, because of the corresponding large residuals affecting
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the equilibrium rotational constants.
In this framework, DFT vibrational contributions lead to residuals with very

small RMS. Some fitted geometrical parameters defining the methyl hydrogen
atoms lying outside the molecular C-C-C plane (in particular the C3-Hout bond
length (1.0895 Å and 1.0817 Å for B3LYP and B2PLYP, respectively) and the
C1=C2-C3-Hout dihedral angle (120.47 and 120.70 degrees)) are significantly smaller
than the corresponding values obtained using MP2 vibrational contributions (1.0949
Å and 121.08 degrees), where the B2PLYP results are in a better agreement with
the MP2 ones. It is noteworthy that, in contrast to the B3LYP trend, the MP2 SE
C3-Hout bond length differs significantly from the other C-H bonds, which range
between 1.0805 and 1.0862 Å.

Butadiene is a planar C2h molecule, belonging to the class of polyenes, which
are of great importance in biology and organic electronics due to a π-electron
delocalization that increases as the C=C chain gets longer. In analogy with ethene,
a rSEe structure for butadiene was obtained by Craig and co-workers from the
average of different MP2 and B3LYP rSEe geometries. The B2PLYP/VTZ and
B3LYP/SNSD rSEe parameters, obtained by fitting the SE IeA and IeC moments of
inertia, agree with those of ref. [242] within the respective error bars.

Cyclic and heterocyclic compounds

Cyclic and heterocyclic compounds are important building blocks of organic
and biological molecules. Together with cyclobutene reported in Table 5.1, which
is one of the smallest cycloalkenes, we have studied cyclopropane and benzene
(Table 5.4), which are among the simplest cycloalkanes and aromatic systems,
and oxirane, dioxirane, pyridazine (Table 5.1), aziridine, pyrrole, pyrazole, imida-
zole, furan, thiophene, maleic anydride and pyridine (Table 5.4), as prototypical
heterocyclic compounds.

Cyclopropane belongs to the D3h symmetry group and it is completely defined
by 3 geometrical parameters: the C-C and C-H distances and the HCH angle.
The SE equilibrium structure has been previously determined by using a SDQ-
MBPT(4)/VTZ cubic force field [247]. Though two rotational constants of the
parent species (B0

B and B0
C), B0

B of C3D6 and B0
A, B0

B, B0
C of C3H4D2 have been

experimentally determined, the inclusion of all of them in the fitting procedure
leads to large residuals, as also noticed in ref. [247]. The geometries reported in
Table 5.4 have been obtained by using the SE equilibrium moments of inertia of
C3H4D2, together with the SE IeB of the parent species. Thanks to its high sym-
metry (D6h), the structure of benzene is defined by only 2 geometrical parameters:
the C-H and C-C bond lengths. Its SE equilibrium structure has been determined
for the first time by Stanton et al. [248] using vibrational contributions at the
MP4(SDQ)/VTZ level. The DFT SE equilibrium structures of cyclopropane and
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benzene show small uncertainties on the geometrical parameters and are in good
agreement with the previous determinations.

Aziridine, also called ethylene imine, is one of the simplest nonaromatic N-
heterocycles. Its equilibrium structure (Cs symmetry) is completely determined
by 10 geometrical parameters, and is characterized by a high nitrogen inversion bar-
rier. The rotational spectrum of aziridine has been studied in great detail because
of its potential astrophysical interest [249–251]. Very recently, a SE equilibrium
structure has been determined by combining the experimental ground-state rota-
tional constants with ∆Bvib

τ contributions computed at the MP2/VTZ level [252].
The DFT SE equilibrium structures have been derived by fitting SE equilibrium
inertia moments, all equally weighted. The resulting SE equilibrium structures
show a very small RMS residual and good agreements with the MP2/VTZ one.

Pyrazole and imidazole are two five-membered heteroaromatic rings, with adja-
cent and nonadjacent nitrogen atoms, respectively. Both molecules are completely
characterized by 15 geometrical parameters, and have Cs symmetry. Pyrazole is
used in the synthesis of many medical/organic molecules, while imidazole is present
in important biological building-blocks, such as histidine and the related hormone
histamine. The B2PLYP/VTZ and B3LYP/SNSD rSEe geometries shown in Ta-
ble 5.4 have been obtained by fitting the SE IeB and IeC moments of inertia for
pyrazole, and IeA and IeC for imidazole, all equally weighted.

For imidazole, the experimental rotational constants used were taken from
ref. [253] without applying any corrections, while in ref. [252] the experimental
values were corrected by the contribution of theoretical quartic distortion constants
within the predicated method. In spite of these methodological differences, the
DFT rSEe parameters are in good agreement with the results of ref. [252].

Pyrrole, furan, and thiophene are three planar heterocyclic molecules belong-
ing to the C2v point group, whose structures are completely defined by 9, 8
and 8 parameters, respectively. For pyrrole and furan, the best SE equilibrium
structures reported in the literature were determined by correcting the vibra-
tional ground-state rotational constants with ∆Bvib

τ contributions calculated at
the MP2/wCVTZ and MP2/VTZ levels, respectively [252, 254]. The best SE
equilibrium geometry of thiophene was derived from a combined use of electron
diffraction (ED), microwave spectroscopy (MW) and computed vibrational contri-
butions at the B3LYP/6-311+G∗ level [255]. The DFT SE equilibrium geometries
of pyrrole and furane are in good agreement with those already available. On
the contrary, the B2PLYP/VTZ and B3LYP/SNSD SE equilibrium parameters of
thiophene collected in Table 5.4 show relevant differences with respect to those
previously determined, but a very good agreement one another. For example, the
DFT SE value for r(CS) is about 0.0087 Å longer than that of ref. [255], while
the DFT SE C=C bond length is about 0.0095 Å shorter than the corresponding
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value of ref. [255].
It is interesting to note how the C-C bond lengths change when both the H

atoms linked with the C atom in α-position with respect to the O atom of the
ring are substituted with two O atoms, that is, when moving from furan to maleic
anhydride. To the best of our knowledge, the most accurate SE equilibrium struc-
ture available for maleic anydride (C2v symmetry) was derived using a MP2/VTZ
cubic force field, also including the non negligible contribution due to ∆Bel

τ [256].
For example, the inclusion of the latter contributions reduces the RMS residual
from 8.5 kHz to 0.4 kHz and the SE equilibrium inertial defect from a mean value
of −0.01634 uÅ2 to −0.00779 uÅ2 in B3LYP calculations. For this molecule, the
MP2 and DFT SE equilibrium structures agree very well one another. From Ta-
ble 5.4 we note a significant decrease of the C3-C4 bond length when moving from
furan to maleic anhydride (1.4344 Å in furan with respect to r(C1-C2)=1.3320 Å
in maleic anhydride, see Figure 5.1 d) and a contemporary increase of the C2-C3
bond length (1.3542 Å in furan with respect to 1.4857 Å in maleic anhydride), and
of the ring C-O distance (from 1.3598 Å in furan to 1.3848 Å in maleic anhydride).

Thanks to the large number of isotopologues experimentally investigated [257,
258] and to the limited number of independent geometrical parameters (10), it is
possible to determine a full SE equilibrium structure for pyridine (C2v symmetry).
The rSEe structures given in Table 5.4 have been obtained by fitting the SE IeA and
IeC moments of inertia derived from the experimental rotational constants corrected
by ∆Bvib

τ contributions calculated at the B2PLYP/VTZ and B3LYP/SNSD levels.
The IeA moment of inertia of the C4-deuterated isotopologue (see Figure 5.1) has
been excluded from the fits because of the corresponding large residual affecting
the equilibrium rotational constant. Even in this case, the inclusion of the ∆Bel

τ

terms leads to a considerable improvement of the inertial defects. The B2PLYP
and B3LYP SE equilibrium structures remarkably agree with one another and also
with the rSEe determined in ref. [252] using B3LYP/6-311+G(3df,2pd) vibrational
corrections and the so-called predicate approach.

Ethers, aldehydes, esters and carboxylic acids

In addition to trans-glyoxal, cis- and trans-acrolein (see Table 5.1), dimethyl
ether, glycolaldehyde, propanal, formic acid and methyl formate (see Table 5.4),
as well as peroxyformic, glyoxylic and pyruvic acids (see Table 5.5) have been
investigated as models for the most significant oxygen-containing moieties.

Dimethyl ether, the simplest molecule with two internal rotors, has been stud-
ied in great detail as an interstellar molecule and because of the interest in its
rotational-torsional spectrum [259–261]. Its equilibrium structure has C2v symme-
try (characterized by antiperiplanar arrangement of both the C-O-C-Hplane moi-
eties) and is completely defined by 7 geometrical parameters. The SE equilib-



5.3. FROM SMALL TO MEDIUM-LARGE SYSTEMS 85

rium structures determined using DFT vibrational contributions are in remarkable
agreement with that obtained in ref. [243] using an MP2/VTZ cubic force field (see
Table 5.4).

Formic acid (Cs symmetry) can be considered the prototype of carboxylic acids
and presents two rotamers, the cis and trans forms. The SE equilibrium struc-
tures of both forms have been previously obtained by combining the experimental
ground-state rotational constants of several isotopologues (11 and 7 for the cis
and trans forms, respectively) with ∆Bvib

τ calculated from a MP2/VTZ cubic
force field [262]. As shown in Table 5.4, for both conformers, the SE equilibrium
structures issuing from DFT vibrational contributions are in very good agreement
with the reference SE results. There are just some discrepancies on HCO angles,
where B2PLYP results (123.87 and 125.14 degrees) are more close to the MP2 ones
(123.26 and 125.04 degrees) with respect to those given by B3LYP vibrational cor-
rections (124.21 and 125.38 degrees).

cis-methyl formate is an important interstellar molecule and is considered the
prototype system for studying the internal rotation of a methyl group [263]. At
equilibrium, cis-methyl formate possesses a symmetry plane with one pair of equiv-
alent out-of-plane hydrogen atoms (Cs symmetry) and d(C-O-Cm-Hplane) = 180.00
degrees, where Hplane is the methyl hydrogen on the symmetry plane. In ref. [263],
∆Bvib

τ contributions derived from a MP2/VTZ cubic force field were combined
with the available experimental rotational constants. The agreement between the
MP2 and DFT results is good for all parameters that are not related to the Hplane

atom. In fact, quite large discrepancies are found for both the Cm-Hplane bond
length (about 0.0052 Å) and the O-Cm-Hplane angles (about 0.69 Å). Note that
the B2PLYP/VTZ and B3LYP/SNSD are in a very good agreement one another.
As noted for propene, the DFT rSEe show a smaller difference between the Cm-Hplane

and Cm-Hout bond lengths than the MP2 SE equilibrium structure.
Glycolaldehyde can be considered the simplest sugar. Only the syn conformer,

which is stabilized by an intramolecular hydrogen bond, has been observed by
microwave spectroscopy [264–268]. It has Cs symmetry and is completely de-
fined by 12 geometrical parameters. Recently, a SE equilibrium structure was
determined by combining the ground-state experimental rotational constants with
∆Bvib

τ contributions at the MP2/VTZ level [243]. The agreement with the new
DFT SE equilibrium structures is generally good, except for some small discrep-
ancies on r(O-H) (0.9618 Å and 0.9611 Åfor B3LYP and B2PLYP, respectively,
versus 0.9593 Å for MP2), and a(C1-C2-H) (107.80 and 107.91 degrees versus
108.11 degrees). It is noteworthy that the B3LYP/SNSD rSEe is in remarkable
agreement with the high level fully theoretical re (referred to as rBOe in Table 6 of
ref. [243]): r(O-H)=0.9653 Å and a(C1-C2-H)=107.794 Å.

The syn conformer of propanal, or propionaldehyde, which is significantly more
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stable than its gauche counterpart, has Cs symmetry (with d(C1-C2-C-Hplane) =
180.00) degrees) and is completely defined by 15 geometrical parameters. Once
again, Table 5.4 shows that MP2/VTZ [243], B2PLYP/VTZ and B3LYP/SNSD
cubic force fields lead to very similar SE equilibrium structures.

Finally, we report the first determination of the SE equilibrium structures of
peroxyformic, glyoxylic and pyruvic acids (Cs symmetry) in Table 5.5, together
with the B2PLYP/VTZ equilibrium geometries and the best re structures available
for comparison purposes.

Peroxyformic acid is the simplest organic peroxyacid exhibiting internal hy-
drogen bonding. It presents a planar structure completely characterized by 9
geometrical parameters. The B2PLYP/VTZ and B3LYP/SNSD rSEe structures re-
ported in Table 5.5 show a very good agreement for all parameters except the OH
bond length, where the B3LYP result shows a quite large value (0.9770 Å) with
respect to the B2PLYP counterpart (0.9720 Å). To the best of our knowledge,
the most accurate re geometry presented in the literature has been optimized at
MP2/AVTQZ level [269]. It is reported in Table 5.5, even if not enough accurate
to allow a reliable quantitative comparison.

Glyoxylic acid is the simplest α-oxoacid (defined by 11 geometrical parameters),
while pyruvic acid is the simplest of the alpha-keto acids, with a carboxylic acid
and a ketone functional group (defined by 17 geometrical parameters). For the
former, the DFT SE equilibrium structures have been obtained by fitting the SE
IeB and IeC moments of inertia of 8 out of 9 experimentally observed isotopologues,
where the H13COCOOH isotopologue has been excluded from the fits because of
the large residuals shown by the fitted equilibrium rotational constants. The fit
for the rSEe structures of pyruvic acid have been performed using SE IeA, IeB and IeC
moments of inertia, with 3, 2 and 1 as weights respectively, of CH3COC18OOH,
CH3COCO18OH and CH3COCOOD isotopologues, and SE IeA and IC , with 3
and 1 as weights respectively, of all other isotopologues. In Table 5.5, the SE
equilibrium structures are compared with the theoretical re equilibrium geometries,
optimized at the CCSD(T)/VQZ level for glyoxylic acid (from ref. [270]), and at
the CCSD(T)/CBS+CV level for pyruvic acid (from this work).

Same discrepancies are found for the C1-C2 bonds, underestimated in the
rSEe results (1.5211 Å and 1.5356 Å for glyoxylic and pyruvic acids, respectively)
with respect to the B2PLYP rSEe (1.5244 Å and 1.5382 Å) and the CCSD(T) re
(1.5256 Åand 1.5387 Å), and for the C=O bonds, where the largest differences are
for r(C2=O) in pyruvic acid (1.2019 Å, 1.1980 Å and 1.1979 Å for B3LYP rSEe ,
B2PLYP rSEe and CCSD(T) re, respectively). Differently from all systems consid-
ered above, for these last two molecules, the B3LYP and B2PLYP SE geometries
then show differences that are relevant. The B2PLYP parameters are better in
agreement with the fully theoretical results.
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Table 5.4: rSEe and re geometries of CH2F2, CCl2F2, CH2Cl2, CHClF2, ethene,
ethenol, propene, butadiene, cyclopropane, aziridine, benzene, pyrrole, pyrazole,
imidazole, furan, thiophene, maleic anhydride, pyridine, dimethyl ether, cis and
trans-formic acid, cis-methyl formate, glycolaldehyde and propanal. Distances in
Å, angles in degrees.

rSE
e
a

re

Literature B2PLYP B3LYP B3LYP

– halomethanes –
CH2F2

b

r(C-F) 1.35323(1)† 1.3532(1)† 1.3533(1)† 1.3668
r(C-H) 1.08703(3) 1.0868(1) 1.0867(2) 1.0935
a(F-C-F) 108.282(2) 108.29(1) 108.29(1) 108.44
a(H-C-H) 113.442(9) 113.48(1) 113.48(2) 113.74
a(H-C-F) 108.750(2) 108.74(1) 108.74(1) 108.64
Rms resid. [MHz] - 0.0005 0.0013 -
CCl2F2

c

r(C-F) 1.3287(8)† 1.3285(9)† 1.3286(7)† 1.3372
r(C-Cl) 1.7519(7) 1.7520(8) 1.7519(6) 1.7857
a(F-C-F) 107.75(9) 107.78(8) 107.77(6) 108.04
a(Cl-C-Cl) 111.62(7) 111.61(5) 111.61(4) 111.83
a(Cl-C-F) 109.35(1) 109.34(3) 109.34(3) 109.22
Rms resid. [MHz] - 0.0010 0.0008 -
CH2Cl2d

r(C-H) 1.0816(2)† 1.0816(8)† 1.0810(8)† 1.0862
r(C-Cl) 1.76425(3) 1.7640(2) 1.7642(2) 1.7956
a(H-C-H) 111.772(4) 111.77(9) 111.79(9) 112.48
a(Cl-C-Cl) 112.166(3) 112.18(2) 112.18(2) 112.85
a(Cl-C-H) 108.237(10) 108.23(3) 108.23(3) 107.90
Rms resid. [MHz] - 0.0066 0.0069 -
CHClF2

d

r(C-H) 1.0850(11) 1.0850(1)† 1.0849(2)† 1.0901
r(C-F) 1.3363(5) 1.3360(2) 1.3363(4) 1.3466
r(C-Cl) 1.7560(9) 1.7562(5) 1.7558(8) 1.7915
a(H-C-F) 109.97(4) 109.98(3) 110.02(4) 110.14
a(H-C-Cl) 109.60(6) 109.56(5) 109.45(9) 109.16
a(F-C-Cl) 109.62(4) 109.61(1) 109.63(2) 109.58
a(F-C-F) 108.06(6) 108.09(2) 108.06(3) 108.23
Rms resid. [MHz] - 0.0004 0.0006 -

– substituted alkene compounds –
ethenee

r(C=C) 1.3305(10) 1.3311(1)† 1.3317(1)† 1.3322
r(C-H) 1.0805(10) 1.0807(1) 1.0805(1) 1.0870
a(C=C-H) 121.45(10) 121.42(1) 121.40(1) 121.71
a(H-C-H) 117.10(10) 117.16(1) 117.19(1) 116.58
Rms resid. [MHz] - 0.0003 0.0002 -
Mean ∆e [uÅ2] - 0.00062 0.00119 -
ethenolf

r(O-H) 0.9604(2)† 0.9603(1)† 0.9605(1)† 0.9668
r(C2-O) 1.3594(8) 1.3596(1) 1.3598(1) 1.3638
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r(C2-H) 1.0794(4) 1.0790(1) 1.0789(1) 1.0860
r(C1=C2) 1.3312(9) 1.3313(1) 1.3316(1) 1.3344
r(C1-Hcis) 1.0816(2) 1.0814(1) 1.0812(1) 1.0873
r(C1-Htrans) 1.0772(4) 1.0772(1) 1.0770(1) 1.0831
a(C2-O-H) 108.81(4) 108.75(1) 108.70(1) 109.41
a(C1=C2-H) 122.65(32) 122.51(7) 122.58(8) 122.74
a(C1=C2-O) 126.297(5) 126.28(1) 126.26(1) 126.84
a(C2-C1-Hcis) 121.90(4) 121.88(1) 121.87(1) 122.29
a(C2-C1-Htrans) 119.59(2) 119.59(1) 119.58(1) 119.86
Rms resid. [MHz] - 0.0001 0.0001 -
Mean ∆e [uÅ2] −0.00424 −0.00381 −0.00206 -
propeneg

r(C1=C2) 1.3310(7)† 1.3315(4)† 1.3326(2)† 1.3340
r(C2-C3) 1.4956(7) 1.4958(4) 1.4956(2) 1.5004
r(C1-Hcis) 1.0834(6) 1.0824(5) 1.0818(2) 1.0882
r(C1-Htrans) 1.0805(12) 1.0800(5) 1.0804(2) 1.0862
r(C2-H) 1.0857(4) 1.0844(3) 1.0841(2) 1.0909
r(C3-Hplane) 1.0862(8) 1.0873(9) 1.0880(4) 1.0947
r(C3-Hout) 1.0949(9) 1.0917(16) 1.0895(7) 1.0976
a(C1=C2-C3) 124.47(2) 124.44(2) 124.43(1) 125.29
a(C2-C1-Hcis) 121.08(5) 121.17(3) 121.13(2) 121.56
a(C2-C1-Htrans) 121.55(14) 121.44(6) 121.31(3) 121.59
a(C1=C2-H) 118.75(13) 119.07(7) 118.84(4) 118.68
a(C2=C3-Hplane) 111.10(4) 111.08(3) 111.07(2) 111.55
a(C2-C3-Hout) 110.53(11) 110.85(16) 111.02(7) 111.03
d(C1=C2-C3-Hout) 121.08(14) 120.70(18) 120.47(8) 120.80
Rms resid. [MHz] - 0.0004 0.0002 -
butadienee

r(C1=C2) 1.3376(10) 1.3380(2) 1.3386(1)† 1.3411
r(C2-C3) 1.4539(10) 1.4547(2) 1.4543(2) 1.4561
r(C1-Hcis) 1.0819(10) 1.0817(1) 1.0815(1) 1.0876
r(C1-Htrans) 1.0793(10) 1.0796(1) 1.0793(1) 1.0854
r(C2-H) 1.0847(10) 1.0842(1) 1.0839(1) 1.0903
a(C1=C2-C3) 123.62(10) 123.54(1) 123.53(1) 124.29
a(C1=C2-H) 119.91(10) 119.81(2) 119.76(1) 119.34
a(C2=C1-Hcis) 120.97(10) 120.96(1) 120.94(1) 121.41
a(C2=C1-Htrans) 121.47(10) 121.45(1) 121.43(1) 121.63
Rms resid. [MHz] - 0.0003 0.0002 -
Mean ∆e [uÅ2] - −0.00885 −0.00790 -

– cyclic and heterocyclic compounds –
cyclopropaneh

r(C-C) 1.5030(10) 1.5024(1) 1.5031(1)† 1.5094
r(C-H) 1.0786(10) 1.0790(2) 1.0787(2) 1.0856
a(H-C-H) 114.97(10) 114.87(2) 114.94(2) 114.25
Rms resid. [MHz] - 0.0020 0.0022 -
aziridinei

r(C-N) 1.47013(6)† 1.4708(1)† 1.4714(1)† 1.4740
r(C-C) 1.47703(8) 1.4772(1) 1.4777(1) 1.4845
r(N-H) 1.01279(13) 1.0124(1) 1.0126(1) 1.0180
r(C-Hcis) 1.08099(13) 1.0804(1) 1.0805(1) 1.0877
r(C-Htrans) 1.07971(13) 1.0797(1) 1.0791(1) 1.0866
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a(C-N-H) 109.376(9) 109.27(1) 109.16(1) 110.03
a(C-N-C) 60.311(6) 60.29(1) 60.28(1) 60.47
a(N-C-C) 59.845(3) 59.86(1) 59.86(1) 59.77
a(N-C-Hcis) 118.28(2) 118.43(1) 118.19(1) 118.61
a(N-C-Htrans) 114.46(2) 114.20(1) 114.38(1) 114.66
a(C-C-Hcis) 117.829(14) 117.99(1) 117.81(1) 117.99
a(C-C-Htrans) 119.538(14) 119.36(1) 119.49(1) 119.85
Rms resid. [MHz] - 0.0002 0.0001 -
benzenej

r(C-C) 1.3914(10) 1.3916(1) 1.3919(1)† 1.3961
r(C-H) 1.0802(20) 1.0799(1) 1.0795(1) 1.0865
Rms resid. [MHz] - 0.0009 0.0016 -
Mean ∆e [uÅ2] - - -
pyrrolek

r(C-N) 1.36940(17)† 1.3689(1)† 1.3694(1)† 1.3755
r(C2-C3) 1.3723(2) 1.3731(1) 1.3732(1) 1.3794
r(C3-C4) 1.4231(4) 1.4226(2) 1.4228(2) 1.4256
r(N-H) 1.00086(14) 1.0012(1) 1.0007(1) 1.0081
r(C2-H) 1.07532(13) 1.0746(1) 1.0744(1) 1.0801
r(C3-H) 1.07527(16) 1.0748(1) 1.0745(1) 1.0810
a(H-N-C2) 125.096(8) 125.08(1) 125.09(1) 125.08
a(C5-N-C2) 109.809(16) 109.84(1) 109.82(1) 109.85
a(N-C2-C3) 107.762(15) 107.75(1) 107.76(1) 107.66
a(C2-C3-C4) 107.334(12) 107.33(1) 107.33(1) 107.42
a(N-C2-H) 120.99(7) 121.23(2) 121.12(2) 121.16
a(C2-C3-H) 125.94(6) 125.88(2) 125.88(2) 125.70
Rms resid. [MHz] - 0.0001 0.0001 -
Mean ∆e [uÅ2] - 0.00236 0.00018 -
pyrazolel

r(N1-N2) 1.3431(6)† 1.3438(1) 1.3441(1)† 1.3486
r(N2=C3) 1.3286(7) 1.3289(1) 1.3289(1) 1.3329
r(C3-C4) 1.4093(6) 1.4087(11) 1.4090(11) 1.4144
r(C4=C5) 1.3771(8) 1.3761(1) 1.3765(1) 1.3817
r(C5-N1) 1.3523(6) 1.3516(1) 1.3519(1) 1.3587
r(N1-H) 1.0014(4) 1.0016(1) 1.0014(1) 1.0092
r(C3-H) 1.0755(4) 1.0761(1) 1.0757(1) 1.0817
r(C4-H) 1.0736(4) 1.0741(1) 1.0739(1) 1.0797
r(C5-H) 1.0740(5) 1.0749(1) 1.0745(1) 1.0805
a(N1-N2-C3) 104.18(3) 104.11(1) 104.11(1) 104.23
a(N2-C3-C4) 111.90(5) 111.92(2) 111.93(2) 111.88
a(C3-C4-C5) 104.46(4) 104.47(2) 104.46(2) 104.53
a(C4-C5-N1) 106.23(4) 106.26(1) 106.26(1) 106.19
a(C5-N1-N2) 113.24(5) 113.24(3) 113.24(3) 113.18
a(N2-N1-H) 118.97(11) 118.87(2) 118.95(2) 119.06
a(N2-C3-H) 119.49(14) 119.42(3) 119.51(3) 119.49
a(C3-C4-H) 128.32(13) 128.20(3) 128.18(3) 128.22
a(N1-C5-H) 121.84(11) 121.70(2) 121.75(2) 121.82
Rms resid. [MHz] - 0.0001 0.0001 -
Mean ∆e [uÅ2] - 0.00021 0.00120 -
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imidazolem

r(N1-C2) 1.3612(9)† 1.3613(7)† 1.3616(7)† 1.3671
r(C2=N3) 1.3111(8) 1.3101(6) 1.3103(6) 1.3161
r(N3-C4) 1.3797(8) 1.3792(5) 1.3794(5) 1.3789
r(C4=C5) 1.3627(8) 1.3624(41) 1.3627(41) 1.3731
r(C5-N1) 1.3738(9) 1.3741(5) 1.3743(5) 1.3802
r(N1-H) 1.0008(5) 1.0016(3) 1.0011(3) 1.0096
r(C2-H) 1.0759(6) 1.0772(3) 1.0770(3) 1.0817
r(C4-H) 1.0747(6) 1.0755(4) 1.0752(4) 1.0809
r(C5-H) 1.0764(5) 1.0765(4) 1.0764(4) 1.0793
a(N1-C2-N3) 111.91(6) 111.92(4) 111.93(4) 111.56
a(C2-N3-C4) 105.02(5) 105.03(4) 105.03(4) 105.43
a(N3-C4-C5) 110.60(6) 110.62(8) 110.62(8) 110.61
a(C4-C5-N1) 105.45(6) 105.42(21) 105.43(21) 105.12
a(C5-N1-C2) 107.02(5) 107.01(16) 106.99(16) 107.29
a(C2-N1-H) 126.23(16) 126.20(11) 126.15(11) 126.41
a(N1-C2-H) 122.53(12) 122.34(9) 122.37(9) 122.43
a(N3-C4-H) 121.51(11) 121.48(9) 121.45(9) 121.40
a(N1-C5-H) 121.92(12) 121.94(9) 121.90(9) 122.22
Rms resid. [MHz] - 0.0007 0.0006 -
Mean ∆e [uÅ2] - 0.00097 0.00096 -
furann

r(C2-O) 1.3594(7)† 1.3598(1)† 1.3598(4)† 1.3647
r(C2=C3) 1.3552(8) 1.3551(2) 1.3542(4) 1.3611
r(C3-C4) 1.432(2) 1.4317(0) 1.4344(19) 1.4357
r(C2-H) 1.0735(7) 1.0731(2) 1.0739(3) 1.0790
r(C3-H) 1.0753(6) 1.0751(1) 1.0743(3) 1.0806
a(C2-O-C5) 106.63(6) 106.61(2) 106.50(3) 106.89
a(O-C2-C3) 110.66(9) 110.66(2) 110.79(4) 110.42
a(C2-C3-C4) 106.03(7) 106.04(3) 105.96(6) 106.14
a(H-C2-O) 115.88(6) 115.88(1) 115.82(3) 115.85
a(H-C3-C4) 127.66(5) 127.68(1) 127.61(3) 127.46
Rms resid. [MHz] - 0.0003 0.0010 -
Mean ∆e [uÅ2] - −0.00097 0.00116 -
thiopheneo

r(S-C2) 1.704(2) 1.7126(5)† 1.7127(5)† 1.7404
r(C2=C3) 1.372(3) 1.3622(8) 1.3625(9) 1.3678
r(C3-C4) 1.421(4) 1.4233(21) 1.4233(21) 1.4289
r(C2-H) 1.085(5) 1.0771(5) 1.0772(5) 1.0811
r(C3-H) 1.088 1.0794(3) 1.0792(3) 1.0844
a(C2-S-C5) 92.4(2) 91.88(4) 91.88(4) 91.32
a(S-C2-C3) 111.6 111.66(3) 111.66(3) 111.53
a(C2=C3-C4) 112.2 112.40(7) 112.40(7) 112.81
a(H-C2-S) 119.9(3) 120.11(10) 120.06(10) 119.84
a(H-C3-C4) 124.4(4) 124.14(2) 124.14(3) 123.92
Rms resid. [MHz] - 0.0009 0.0010 -
Mean ∆e [uÅ2] - 0.00147 0.00340 -
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maleic anhydridep

r(C1=C2) 1.3324(5)† 1.3326(6)† 1.3320(10)† 1.3355
r(C2-C3) 1.4849(5) 1.4848(2) 1.4857(3) 1.4895
r(C3-O4) 1.3848(3) 1.3845(1) 1.3843(2) 1.3941
r(C3=O7) 1.1894(2) 1.1896(1) 1.1896(2) 1.1948
r(C1-H) 1.0765(2) 1.0760(1) 1.0761(1) 1.0822
a(C1=C2-C3) 107.96(1) 107.94(2) 107.94(3) 108.15
a(C2-C3=O7) 129.67(3) 129.65(1) 129.59(2) 129.85
a(C1=C2-H) 129.90(1) 129.86(1) 129.93(1) 129.84
a(C2-C3-O4) 107.78(2) 107.81(1) 107.79(2) 107.59
a(C3-O4-C5) 108.52(3) 108.51(1) 108.53(2) 108.53
a(O4-C5=O6) 122.55(4) 122.55(2) 122.61(3) 122.56
Rms resid. [MHz] - 0.0003 0.0004 -
Mean ∆e [uÅ2] −0.00057 −0.00499 −0.00779 -
pyridinem

r(C2-C3) 1.3902(4)† 1.3907(2)† 1.3907(18)† 1.3954
r(C3-C4) 1.3890(4) 1.3885(2) 1.3888(13) 1.3930
r(N-C2) 1.3362(5) 1.3356(5) 1.3358(40) 1.3391
r(C2-H) 1.0816(4) 1.0821(2) 1.0818(12) 1.0887
r(C3-H) 1.0795(4) 1.0799(2) 1.0796(11) 1.0858
r(C4-H) 1.0803(4) 1.0806(2) 1.0802(13) 1.0865
a(C6-N-C2) 116.90(4) 116.95(2) 116.93(18) 117.19
a(N-C2-C3) 123.80(4) 123.77(3) 123.79(21) 123.64
a(C2-C3-C4) 118.54(4) 118.54(1) 118.53(11) 118.50
a(C3-C4-C5) 118.42(4) 118.43(1) 118.44(10) 118.54
a(N-C2-H) 115.90(5) 115.99(4) 115.97(28) 116.00
a(C3-C2-H) 120.30(6) 120.24(2) 120.25(18) 120.36
a(C2-C3-H) 120.11(6) 120.09(2) 120.10(18) 120.22
a(C3-C4-H) 120.71(2) 120.78(1) 120.78(7) 120.73
Rms resid. [MHz] - 0.0004 0.0031 -
Mean ∆e [uÅ2] - −0.00232 0.00392 -

– ethers, aldehydes, esters and carboxylic acids –
dimethyl etherq

r(C-O) 1.40660(2)† 1.4071(1)† 1.4074(1)† 1.4139
r(C-Hplane) 1.0865(2) 1.0858(2) 1.0855(2) 1.0924
r(C-Hout) 1.09506(7) 1.0950(1) 1.0949(1) 1.1014
a(C-O-C) 111.100(3) 111.10(1) 111.06(1) 112.55
a(O-C-Hplane) 107.515(14) 107.50(1) 107.50(2) 107.34
a(O-C-Hout) 111.191(3) 111.14(1) 111.12(1) 111.40
d(C-O-C-Hout) 60.542(6) 60.52(1) 60.52(1) 60.67
Rms resid. [MHz] - 0.0004 0.0005 -
cis-formic acidr

r(C-H) 1.0976(4)† 1.0981(1)† 1.0985(3)† 1.1063
r(C=O) 1.1920(4) 1.1911(1) 1.1910(3) 1.1960
r(C-O) 1.3472(4) 1.3482(1) 1.3485(3) 1.3540
r(O-H) 0.9610(4) 0.9612(1) 0.9619(2) 0.9680
a(H-C=O) 123.26(22) 123.87(3) 124.21(18) 123.99
a(O-C=O) 122.28(1) 122.28(1) 122.30(1) 122.41
a(C-O-H) 109.28(3) 109.18(1) 109.00(2) 109.71
Rms resid. [MHz] - 0.0001 0.0003 -
Mean ∆e [uÅ2] - 0.00008 −0.00067 -
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trans-formic acidr

r(C-H) 1.0920(1)† 1.0918(2)† 1.0918(3)† 1.1000
r(C=O) 1.1980(1) 1.1976(3) 1.1973(5) 1.2026
r(C-O) 1.3406(1) 1.3411(3) 1.3417(5) 1.3469
r(O-H) 0.9662(1) 0.9660(2) 0.9656(4) 0.9729
a(H-C=O) 125.04(1) 125.14(15) 125.38(22) 125.15
a(O-C=O) 124.83(1) 124.81(1) 124.78(1) 125.05
a(C-O-H) 106.97(1) 106.81(2) 106.78(2) 107.37
Rms resid. [MHz] - 0.0004 0.0005 -
Mean ∆e [uÅ2] - 0.00005 0.00057 -
cis-methyl formates

r(Cm-O) 1.4341(5)† 1.4347(13)† 1.4358(16)† 1.4440
r(C-O) 1.3345(4) 1.3346(13) 1.3343(15) 1.3411
r(Cm-Hplane) 1.0793(10) 1.0848(25) 1.0845(30) 1.0893
r(Cm-Hout) 1.0871(3) 1.0870(7) 1.0875(8) 1.0924
r(C-H) 1.0930(5) 1.0923(15) 1.0925(18) 1.1006
r(C=O) 1.2005(5) 1.2003(14) 1.2001(17) 1.2049
a(Cm-O-C) 114.32(4) 114.30(11) 114.26(13) 115.77
a(O-Cm-Hplane) 106.05(16) 105.40(35) 105.35(42) 105.46
a(O-Cm-Hout) 110.19(2) 110.15(5) 110.07(5) 110.24
a(O-C-H) 109.96(5) 109.58(14) 109.54(17) 109.24
a(O-C=O) 125.50(5) 125.47(14) 125.50(16) 125.81
d(Hout-C-O-C) −60.28(3) −60.37(7) −60.36(8) −60.37
Rms resid. [MHz] - 0.0021 0.0025 -
glycolaldehydeq

r(C1=O) 1.2086(4)† 1.2088(3)† 1.2083(5)† 1.2115
r(C1-H) 1.1015(3) 1.1010(2) 1.1011(4) 1.1096
r(C1-C2) 1.5003(3) 1.5006(2) 1.5014(4) 1.5065
r(C2-H) 1.0969(2) 1.0964(1) 1.0964(2) 1.1033
r(C2-O) 1.3962(3) 1.3965(2) 1.3970(4) 1.4014
r(O-H) 0.9593(5) 0.9611(3) 0.9618(6) 0.9721
a(C2-C1=O) 121.65t 121.65(2) 121.68(4) 122.05
a(C2-C1-H) 116.91t 116.90(3) 116.85(5) 116.47
a(C1-C2-H) 108.11(2) 107.91(1) 107.80(3) 107.79
a(C1-C2-O) 111.75(3) 111.78(2) 111.72(3) 112.63
a(C2-O-H) 106.28(2) 106.18(2) 106.14(3) 106.53
d(H-C2-C1=O) 122.35(2) 122.34(1) 122.27(2) 122.82
Rms resid. [MHz] - 0.0003 0.0006 -
propanalq

r(C1-C2) 1.5023(6)† 1.5022(4)† 1.5037(4)† 1.5087
r(C2-C3) 1.5164(4) 1.5162(5) 1.5165(4) 1.5260
r(C3-Hplane) 1.0884(3) 1.0888(4) 1.0879(3) 1.0943
r(C3-Hout) 1.0883(2) 1.0884(2) 1.0888(2) 1.0938
r(C2-H) 1.0949(2) 1.0950(2) 1.0946(2) 1.1012
r(C1=O) 1.2074(4) 1.2075(5) 1.2075(4) 1.2099
r(C1-H) 1.1056(3) 1.1057(4) 1.1040(3) 1.1145
a(C2-C3-Hplane) 110.66(4) 110.61(6) 110.52(6) 110.62
a(C2-C3-Hout) 110.72(2) 110.72(1) 110.68(1) 111.02
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a(C1-C2-C3) 113.60(2) 113.61(4) 113.65(3) 114.84
a(C1-C2-H) 106.95(3) 106.95(3) 106.75(3) 106.63
a(C2-C1-O) 124.38(3) 124.37(4) 124.34(4) 124.98
a(C2-C1-H) 115.44(3) 115.45(5) 115.34(4) 114.91
d(O-C1-C2-H) 123.77(2) 123.79(3) 123.78(2) 124.39
d(C1-C2-C3-Hout) 59.46(2) 59.46(2) 59.42(2) 59.64
Rms resid. [MHz] - 0.0005 0.0004 -

B2PLYP and B3LYP are used in conjunction with VTZ and SNSD basis sets, respectively.
a) All fits have been performed on moments of inertia. For all structures evaluated in this work,
the uncertainties on the geometrical parameters are reported within parentheses, rounded to
1·10−4 Å for lengths and 1·10−2 degrees for angles if smaller than these values. ∆e = IC−IB−IA
is the inertial defect. † denotes the inclusion of ∆Bel

τ .
b) MP2/VTZ rSE

e from ref. [240].
c) B3LYP/6-311+G(3df,2pd) rSE

e from ref. [240].
d) MP2/V(T+d)Z rSE

e from ref. [240].
e) literature rSE

e obtained as average of different MP2 and B3LYP rSE
e , with basis sets of at least

triple-ζ quality, where the ∆Bβvib are derived coupling scaled quadratic force fields with unscaled
cubic force fields, from ref. [242].
f) MP2/VQZ rSE

e from ref. [243].
g) MP2/VTZ rSE

e from ref. [245].
h) SDQ-MBPT(4)/VTZ rSE

e from ref. [247].
i) MP2/VTZ rSE

e from ref. [252].
j) SDQ-MBPT(4)/VTZ rSE

e from ref. [248].
k) MP2(AE)/wCVTZ rSE

e from ref. [252].
l) B3LYP/6-311+G(3df,2pd) rSE

e from ref. [252].
m) B3LYP/6-311+G(3df,2pd) rSE

e from ref. [252], where the experimental ground-state rotational
constants were corrected within the predicates method.
n) MP2/VTZ rSE

e from ref. [254].
o) SE structure ED + MW + vibSP(B3LYP/6-311+G∗ force field), see ref. [255].
p) MP2/VTZ rSE

e from ref. [256].
q) MP2/VTZ rSE

e from ref. [243].
r) MP2/VTZ rSE

e from ref. [262].
s) MP2/VTZ rSE

e from ref. [263].
t) values calculated as 121.65 = 180.00 − 58.35 and 116.91 = 180.00 − 63.09, where 58.35 and
63.09 are taken from Table 6 of ref. [243].
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Table 5.5: rSEe and re geometries for peroxyformic, glyoxylic and pyruvic acids.
Distances in Å, angles in degrees.

rSE
e
a

re

B3LYP B2PLYP B3LYP B2PLYP Best theo.

peroxyformic acidb

r(C-H) 1.0900(2)† 1.0905(1)† 1.0987 1.0919 1.090
r(C=O) 1.2017(1) 1.2015(1) 1.2059 1.2042 1.205
r(C-O) 1.3379(2) 1.3368(1) 1.3432 1.3406 1.340
r(O-O) 1.4389(1) 1.4390(1) 1.4390 1.4414 1.432
r(O-H) 0.9770(2) 0.9720(3) 0.9852 0.9808 0.981
a(H-C=O) 127.01(1) 126.96(1) 127.18 127.05 127.3
a(H-C-O) 108.72(1) 108.72(1) 108.42 108.43 108.3
a(O=C-O) 124.27(2) 124.32(2) 124.40 124.52 124.4
a(C-O-O) 110.30(1) 110.31(1) 111.49 110.70 110.3
a(O-O-H) 100.51(1) 100.78(1) 101.27 100.42 100.5
Rms resid. [MHz] 0.0003 0.0002 - - -
glyoxylic acidc

r(C1-C2) 1.5211(3)† 1.5244(3)† 1.5345 1.5276 1.5256
r(C1-H) 1.0964(3) 1.0966(3) 1.1045 1.0977 1.0963
r(C1=O) 1.2067(3) 1.2054(3) 1.2080 1.2081 1.2087
r(C2=O) 1.1994(3) 1.1967(3) 1.2034 1.2011 1.1977
r(C2-O) 1.3325(3) 1.3316(4) 1.3373 1.3356 1.3317
r(O-H) 0.9692(4) 0.9697(4) 0.9764 0.9727 0.9697
a(C2-C1-H) 115.59(2) 115.48(2) 115.13 115.13 115.41
a(C2-C1=O) 120.60(3) 120.69(3) 121.03 121.01 120.66
a(C1-C2=O) 121.95(3) 121.86(3) 121.74 121.97 121.90
a(C1-C2-O) 113.70(3) 113.48(3) 113.78 113.25 113.35
a(C-O-H) 106.84(2) 107.10(2) 107.67 106.95 106.74
Rms resid. [MHz] 0.0003 0.0003 - - -
Mean ∆e [uÅ2] −0.01110 −0.01327 - - -
pyruvic acidd

r(C1-C2) 1.5356(13)† 1.5382(8)† 1.5507 1.5434 1.5387
r(C1-Cm) 1.4877(12) 1.4898(7) 1.5042 1.4916 1.4893
r(Cm-Hp) 1.0812(9) 1.0819(5) 1.0904 1.0845 1.0845
r(Cm-Ho) 1.0909(3) 1.0902(2) 1.0955 1.0895 1.0893
r(C1=O) 1.2157(9) 1.2115(5) 1.2075 1.2153 1.2114
r(C2=O) 1.2019(9) 1.1980(5) 1.2091 1.2021 1.1979
r(C2-O) 1.3289(10) 1.3311(6) 1.3401 1.3346 1.3297
r(O-H) 0.9725(6) 0.9678(4) 0.9717 0.9746 0.9706
a(C1-Cm-Hp) 110.22(7) 110.19(4) 109.39 110.06 109.88
a(C1-Cm-Ho) 109.16(4) 109.26(2) 110.07 109.51 109.35
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a(C2-C1-Cm) 117.27(12) 116.93(7) 114.95 116.98 116.91
a(C2-C1=O) 117.53(9) 117.75(5) 120.29 117.80 117.70
a(C1-C2=O) 122.71(9) 122.87(6) 122.84 123.10 122.80
a(C1-C2-O) 113.14(12) 112.81(7) 112.64 112.45 112.81
a(C2-O-H) 106.01(4) 106.39(3) 107.01 106.03 106.40
d(C2-C1-Cm-Ho) 57.77(6) 57.80(4) 58.36 58.01 58.07
Rms resid. [MHz] 0.0013 0.0008 - - -

B2PLYP and B3LYP are used in conjunction with VTZ and SNSD basis sets, respectively.
a) The uncertainties on the geometrical parameters are reported within parentheses, rounded to
1·10−4 Å for lengths and 1·10−2 degrees for angles if smaller than these values. ∆e = IC−IB−IA
is the inertial defect. † denotes the inclusion of ∆Bel

τ .
b) The fits have been performed using SE IAe , ICe moments of inertia. The best theo. re has been
optimized at the MP2/AVQZ level, from ref. [269].
c) The fits have been performed using SE IeB and IeC moments of inertia. The best theo. re has
been optimized at the CCSD(T)/VQZ level, from ref. [270].
d) The fits have been performed using SE IeA, I

e
B and IeC moments of inertia, with 3, 2 and 1

weight respectively, on CH3COC18OOH, CH3COCO18OH and CH3COCOOD and SE IeA and
IeC , with 3, 1 weight respectively, on all other isotopomers. The best theo. re has been optimized
at the CCSD(T)/CBS+CV level [271].

Figure 5.3: Sketch of the 4 molecules determined within the template approach.
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5.4 Toward larger systems: the template approach
In all cases presented above, a large number of experimental data, coupled with

a limited number of molecular parameters, permitted the complete determination
of the molecular structure. This is often not possible when the molecular size and
topological complexity increase because of the large number of isotopologues then
required.

In these cases, the strategy widely adopted in the literature consists of fixing in
the fitting procedure some parameters to the corresponding computed values [206,
208–210], or allowing some internal coordinates (called predicates) to vary from
reference values within given uncertainties [272]. Although, as shown above, ∆Bvib

τ
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and ∆Bel
τ contributions calculated at the DFT level lead to very good rSEe results,

the fixed parameters (or reference values within the predicated methodology) need
to be estimated at much higher levels of theory to achieve good accuracy. An
example is provided by the case of glycine Ip, for which the differences between
the CCSD(T)/VTZ and CCSD(T)/CBS+CV equilibrium structures are signifi-
cant [273]. Since CCSD(T)/CBS+CV calculations for large systems are computa-
tionally very expensive, they are not always feasible.

In the following, we present a new approach to deal with medium-large systems
and a series of test cases that allow us to point out its reliability. When one is
interested in the determination of the rSEe structure of a molecule for which high-
level computations are too expensive, it is possible to use a similar molecule (e.g.,
an isomer or substituted system), for which an accurate rSEe structure is available,
as a template for deriving the parameters to be fixed in the fitting procedure.
These parameters can be obtained as,

re(fixed) = re + ∆TM (5.3)

where ∆TM is defined as

∆TM = rSEe (TM)− re(TM) (5.4)

re is the geometrical parameter of interest calculated at the same level for both the
molecule under consideration and that chosen as a reference, denoted as template-
molecule (TM).

In the following, some examples of application of this new approach are given
and the reachable accuracy is addressed. Due to its low computational cost, and
showing the B3LYP/SNSD rSEe geometries accuracies comparable with those of
the B2PLYP/VTZ rSEe ones, the B3LYP/SNSD level is considered as the preferred
computational method in the next sections.

trans-1-chloro-2-fluoroethylene

The first system analyzed is trans-1-chloro-2-fluoroethylene, for which the lack
of experimental rotational constants for the 13C-containing isotopologues does not
allow the determination of the C=C bond length. As discussed above, a possible
solution is to fix this parameter at a value obtained at a very high level of theory,
as done in ref. [236]. CCSD(T)/CBS+CV equilibrium geometries are available for
both cis and trans isomers (see ref. [236] and Table 5.6) together with a complete
rSEe equilibrium structure for the cis species (see Table 5.1). As a consequence,
the cis-1-chloro-2-fluoroethylene can be used as a template for the estimation of
the ∆TM correction for r(CC) of the trans isomer. According to eq. 5.4, the dif-
ference between the SE and theoretical values of r(CC) in cis-chlorofluoroethylene
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Table 5.6: re equilibrium geometries of cis- and trans-1-chloro-2-fluoroethylene.
Distances in Å, angles in degrees.

cis-CHFCHCl trans-CHFCHCl

CBS+CVa B3LYP/SNSD CBS+CVa B3LYP/SNSD

r(C1-Cl) 1.7107 1.7404 1.7163 1.7495
r(C1-H) 1.0764 1.0818 1.0775 1.0825
r(C1=C2) 1.3249 1.3278 1.3240 1.3266
r(C2-F) 1.3310 1.3416 1.3376 1.3499
r(C2-H) 1.0787 1.0849 1.0785 1.0840
a(Cl-C1=C2) 123.10 123.74 120.63 121.11
a(H-C1-C2) 120.43 120.91 122.95 123.62
a(F-C2=C1) 122.53 123.10 120.14 120.10
a(H-C2=C1) 123.43 123.45 125.82 126.50

a) CCSD(T)/CBS+CV re equilibrium geometry from ref. [236].

Table 5.7: rSEe equilibrium geometries of trans-1-chloro-2-fluoroethylene. Distances
in Å, angles in degrees.

rSE
e
a

Fit 1b Fit 2c Fit 3d Fit 4e

r(C1-Cl) 1.7188(9) 1.7190(9) 1.7178(9) 1.7179(9)
r(C1-H) 1.0775(21) 1.0774(21) 1.0780(21) 1.0779(21)
r(C1=C2) 1.3236

√
1.3233

√
1.3257

√
1.3254

√

r(C2-F) 1.3395(20) 1.3398(20) 1.3376(20) 1.3379(20)
r(C2-H) 1.0792(27) 1.0792(27) 1.0790(27) 1.0790(27)
a(Cl-C1=C2) 120.46(6) 120.45(6) 120.54(6) 120.53(6)
a(H-C1-C2) 122.60(15) 122.62(15) 122.47(15) 122.49(15)
a(F-C2=C1) 120.17(21) 120.16(21) 120.18(21) 120.18(21)
a(H-C2=C1) 125.86(5) 125.89(5) 125.69(5) 125.71(5)
Rms resid. [MHz] 0.0011 0.0011 0.0011 0.0011
Mean ∆e [uÅ2] 0.00308 0.00308 0.00308 0.00308

a) All fits have been performed on SE IeA and IeB moments of inertia, with 20 and 1 as
weights, respectively, derived from (B0

τ )exp constants corrected by B3LYP/SNSD ∆Bvib
τ

and B3LYP/AVTZ ∆Bel
τ contributions. The digits within parentheses are the uncertainties

on the geometrical parameters, while
√

denotes the parameter kept fixed, obtained using
cis-chlorofluoroethylene as TM (see text). ∆e = IC − IB − IA is the inertial defect.
b) re(fixed) = re(CBS+CV) + ∆TM; ∆TM = rSE

e (CCSD(T)/VTZ)− re(CBS+CV).
c) re(fixed) = re(B3LYP/SNSD) + ∆TM; ∆TM = rSE

e (CCSD(T)/VTZ)− re(B3LYP/SNSD).
d) re(fixed) = re(CBS+CV) + ∆TM; ∆TM = rSE

e (B3LYP/SNSD)− re(CBS+CV).
e) re(fixed) = re(B3LYP/SNSD) + ∆TM; ∆TM = rSE

e (B3LYP/SNSD)− re(B3LYP/SNSD).
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has been employed to correct the theoretical value of the C=C bond length of
trans-chlorofluoroethylene, obtained at the same level of theory. Subsequently, the
corrected r(CC) has been kept fixed in the fits performed, with the corresponding
results being reported in Table 5.7.

In all cases, the ∆Bvib
τ terms have been calculated at the B3LYP/SNSD level,

and the B3LYP/AVTZ ∆Bel
τ contributions have also been included. The fits have

been performed on the SE IeA and IeB moments of inertia, with 20 and 1 as rel-
ative weights, since IeB is about 20 times larger than IeA. The four fits differ
for the level of theory used in the evaluation of rSEe of the template molecule
and of re: rSEe (C=C) has been taken from the SE equilibrium structure of cis-
chlorofluoroethylene calculated with either CCSD(T)/VTZ ∆Bvib

τ contributions,
fits 1 and 2, or B3LYP/SNSD ∆Bvib

τ contributions, fits 3 and 4, while the theoret-
ical re(C=C) value at the CCSD(T)/CBS+CV level has been used for fits 1 and
3, and that at the B3LYP/SNSD level for fits 2 and 4. Table 5.7 shows that the
results of fits 1 and 2 are similar to one another, and this is also the case for fits 3
and 4.

This suggests that the accuracy of the template approach is rather independent
from the chosen theoretical method used in re estimation, and only limited by
the accuracy of the template-molecule SE equilibrium structure considered. It is
noteworthy that fit 4 allowed us to obtain a SE equilibrium structure completely
independent from high-level (extremely expensive) computational results. This
is particularly appealing in the treatment of medium-large systems, for which
structural determinations at highly-correlated levels become computationally too
expensive.

pyrimidine

Analogously to the case of trans-chlorofluoroethylene, the limited number of
isotopologues experimentally investigated (7) makes the derivation of all geomet-
rical parameters of pyrimidine not possible. In particular, no deutereted species
have been studied experimentally, thus preventing the derivation of the C-H bond
lengths and of the corresponding angles.

In Table 5.8, three different fits for the SE equilibrium structure of pyrimi-
dine are reported, all obtained by correcting the experimental rotational constants
with ∆Bvib

τ contributions at the B3LYP/SNSD level and fitting on the IeA and IeC
moments of inertia, with the inclusion of ∆Bel

τ (see Table 5.8). To evaluate the
nondeterminable parameters, pyridine has been used as TM (fit 1 in Table 5.8).
The ∆TM corrections have been derived from the B3LYP/SNSD results of pyridine
(Table 5.4). In particular, the N3-C4-H angle of pyrimidine has been estimated by
using the ∆TM correction evaluated for the N-C2-H angle of pyridine; the ∆TM
corrections for r(C2-H) and r(C4-H) have been based on the values for the C2-H
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distance of pyridine (these three parameters have in common the N-C-H pattern),
while for the C5-H distance in pyrimidine the ∆TM correction has been calcu-
lated from r(C3-H) of pyridine (these two parameters share a N-CH-C-H pattern).
For the SE equilibrium structure of pyrimidine obtained following this procedure
(fit 1 in Table 5.8), we expect an accuracy similar to that of a full SE equilibrium
structure obtained with B3LYP/SNSD ∆Bvib

τ contributions.
Fits 2 and 3 in Table 5.8 show that it is possible to obtain very similar re-

sults using pyridazine (see Table 5.1) as the TM instead of pyridine. This finding
points out another interesting feature of the template approach, that is, the choice
of TM is rather flexible: it is sufficient to find a molecule in which the parame-
ter of interest, for example the C4-H bond length in pyrimidine, is present and
involved in a similar bond pattern, a N-C-H bond chain for the case under con-
sideration. The comparison of the results for fits 2 and 3 demonstrates that the
SE equilibrium structure obtained with the TM approach does not change signifi-
cantly if the rSEe (TM) parameter is taken from the best SE equilibrium structure
available (CCSD(T)/ANO0 vibrational contributions in this case) or from the
B3LYP/SNSD rSEe .

A rSEe equilibrium structure of pyrimidine has been recently determined using
a B3LYP/6-311+G(3df,2pd) cubic force field and the so-called predicate approach
based on a CCSD(T) equilibrium geometry [252]. The remarkable agreement be-
tween the “template” and the “predicate” rSEe equilibrium geometries (see Table 5.8)
gives further support to the template strategy, which has the advantage of avoiding
any expensive CCSD(T) computation.

fluoropyridines

The first determinations of the SE equilibrium structure of 2- and
3-fluoropyridine are reported in Tables 5.9 and 5.10, respectively. Fluorine sub-
stitution reduces the molecular symmetry from C2v to Cs, with the consequent
increase of the number of unique internal parameters from 10 to 18. Because of
the limited number of available experimental data, for these molecules it is not
possible to evaluate all structural parameters. Therefore, some parameters have
been fixed using the template approach.

Because of the lack of rotational data for deuterated species, only the param-
eters defining the C-C ring and the C-F bond length have been considered as free
parameters for 2-fluoropyridine. On the other hand, for 3-fluoropyridine also the
C-F bond length has been kept fixed in order to converge the fitting procedure.

Starting from the assumption that the substitution of a hydrogen atom with
fluorine does not affect significantly the structure of the ring, we used pyridine
as the TM for 2-fluoropyridine. The best results have been obtained by fitting
the SE IeA and IeC moments of inertia. In fit 1, the ∆TM corrections have been
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estimated by considering the CCSD(T)/CBS+CV level for re, while in fit 2, re
has been calculated at the B3LYP/SNSD level. Even in this case, the values in
Table 5.4 confirm that the resulting SE structures are negligibly affected by the
level of theory chosen for re.

For 3-fluoropyridine, we proceeded analogously to 2-fluoropyridine for what
concerns the C-H bonds, while, for the C-F distance and the corresponding C3-
C2-F angle, 2-fluoropyridine has been employed as the TM. This is consistent
with what was discussed above for pyrimidine, namely that the choice of the TM
molecule is quite flexible, thus allowing the simultaneous use of more than one TM
in the determination of the parameters to be fixed. As in 2-fluoropyridine, we have
used the B3LYP/SNSD rSEe of pyridine combined with both CCSD(T)/CBS+CV
(fit 1) and B3LYP/SNSD (fit 2) structures as re in the calculation of ∆TM.
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Table 5.9: re and rSEe equilibrium geometries for 2-fluoropyridine. Distances in Å,
angles in degrees.

2-fluoropyridine rSE
e
a

re

Fit 1b Fit 2c CBS+CV B3LYP/SNSD

r(N-C2) 1.3138(10) 1.3135(10) 1.3063 1.3120
r(N-C6) 1.3402(5) 1.3402(5) 1.3410 1.3438
r(C2-C3) 1.3838(14) 1.3840(14) 1.3898 1.3935
r(C3-C4) 1.3837(3) 1.3837(3) 1.3836 1.3898
r(C4-C5) 1.3949(4) 1.3948(4) 1.3933 1.3972
r(C5-C6) 1.3836(4) 1.3836(4) 1.3844 1.3909
r(C2-F) 1.3357(2) 1.3358(2) 1.3344 1.3483
r(C3-H) 1.0781

√
1.0775

√
1.0787 1.0839

r(C4-H) 1.0801
√

1.0796
√

1.0807 1.0860
r(C5-H) 1.0788

√
1.0783

√
1.0794 1.0848

r(C6-H) 1.0809
√

1.0811
√

1.0815 1.0876
a(C6-N-C2) 116.24(6) 116.24(6) 116.42 116.61
a(N-C2-C3) 126.17(7) 126.17(7) 126.17 126.08
a(C2-C3-C4) 116.73(3) 116.72(3) 116.59 116.53
a(C3-C4-C5) 119.06(1) 119.06(1) 119.09 119.21
a(C4-C5-C6) 118.37(0) 118.37(0) 118.39 118.33
a(C5-C6-N) 123.44(2) 123.44(2) 123.35 123.25
a(C3-C2-F) 118.43(12) 118.41(12) 117.87 117.98
a(C2-C3-H) 120.38

√
120.48

√
120.42 120.60

a(C3-C4-H) 120.33(1) 120.33(1) 120.34 120.10
a(C6-C5-H) 120.26

√
120.25

√
120.30 120.37

a(C5-C6-H) 120.86
√

120.86
√

120.91 120.97
Rms resid. [MHz] 0.0001 0.0001 - -
Mean ∆e [uÅ2] −0.00180 −0.00180 - -

a) The fits have been performed on the SE IeA and IeC moments of inertia. The (Bβ0 )EXP

constants have been corrected by B3LYP/SNSD ∆Bvib
τ and B3LYP/AVTZ ∆Bel

τ contributions.
The digits within parentheses are the uncertainties on the geometrical parameters, while

√

denotes the parameters kept fixed obtained using pyridine as TM, see text. ∆e = IC − IB − IA
is the inertial defect.
b) re(fixed) = re(CBS+CV) + ∆TM; ∆TM = rSE

e (B3LYP/SNSD) − re(CBS+CV).
c) re(fixed) = re(B3LYP/SNSD) + ∆TM; ∆TM = rSE

e (B3LYP/SNSD)− re(B3LYP/SNSD).
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Table 5.10: re and rSEe equilibrium geometries for 3-fluoropyridine. Distances in
Å, angles in degrees.

3-fluoropyridine rSE
e
a

re

Fit 1b Fit 2c CBS+CV B3LYP/SNSD

r(N-C2) 1.3346(9) 1.3352(9) 1.3323 1.3368
r(C2-C3) 1.3931(5) 1.3888(6) 1.3859 1.3904
r(C3-C4) 1.3714(6) 1.3757(6) 1.3786 1.3850
r(C4-C5) 1.3895(8) 1.3901(9) 1.3894 1.3933
r(C5-C6) 1.3940(5) 1.3926(5) 1.3888 1.3955
r(C6-N) 1.3314(9) 1.3326(10) 1.3337 1.3389
r(C2-H) 1.0811

√
1.0813

√
1.0817 1.0877

r(C3-F) 1.3406
√

1.3398
√

1.3393 1.3523
r(C4-H) 1.0791

√
1.0787

√
1.0797 1.0852

r(C5-H) 1.0794
√

1.0791
√

1.0800 1.0856
r(C6-H) 1.0808

√
1.0812

√
1.0814 1.0877

a(C6-N-C2) 117.68(6) 117.65(6) 117.73 117.88
a(N-C2-C3) 121.75(6) 121.85(6) 122.09 121.79
a(C2-C3-C4) 121.07(3) 121.07(3) 120.83 121.04
a(C3-C4-C5) 117.04(2) 116.94(2) 116.84 116.91
a(C4-C5-C6) 118.88(2) 118.91(2) 119.18 118.94
a(C5-C6-N) 123.58(5) 123.58(5) 123.33 123.43
a(C3-C2-H) 119.90

√
120.12

√
119.95 120.23

a(C4-C3-F) 120.59
√

120.19
√

119.14 119.76
a(C3-C4-H) 121.88(1) 121.97(1) 121.96 120.52
a(C6-C5-H) 120.24

√
120.25

√
120.28 120.37

a(C5-C6-H) 120.48
√

120.36
√

120.53 120.47
Rms resid. [MHz] 0.0004 0.0004 - -
Mean ∆e [uÅ2] −0.00180 −0.00180 - -

a) The fits have been performed on the SE IAe and IBe moments of inertia. The (Bβ0 )EXP

constants have been corrected by B3LYP/SNSD ∆Bvib
τ and B3LYP/AVTZ ∆Bel

τ contributions.
The digits within parentheses are the uncertainties on the geometrical parameters, while

√

denotes the parameters kept fixed obtained using pyridine and 2-fluoropyridine as TM, see text.
∆e = IC − IB − IA is the inertial defect.
b) re(fixed) = re(CBS+CV) + ∆TM; ∆TM = rSE

e (B3LYP/SNSD) − re(CBS+CV).
c) re(fixed) = re(B3LYP/SNSD) + ∆TM; ∆TM = rSE

e (B3LYP/SNSD)− re(B3LYP/SNSD).





Chapter 6
Vibrational energies and thermodynamics

The theoretical approach presented in the previous section has been included
in a development version of the Gaussian package [274]. The implementation
can be used with any quantum mechanical procedure for which analytical second
derivatives are available, among which HF, DFT, and MP2 [152–155]. Examples
of applications with each model will be given in the next sections, with a particular
attention to the computational strategies presented in the first part to overcome
the problem of resonances. Moreover, in order to have an excellent compromise
between accuracy and computational cost, the hybrid and reduced-dimensionality
schemes will be presented and tested.

The first scheme is based on the observation that differences between anhar-
monic frequencies computed at two different levels of theory are largely due to the
harmonic frequencies, which can be corrected by employing a higher level of theory.
Then a hybrid CCSD(T)/DFT approach can be used to carry out VPT2 calcu-
lations [197, 275–277], where the harmonic frequencies are done at the CCSD(T)
level and the anharmonic correction at the DFT level. From a practical point of
view, this means that the CCSD(T) harmonic frequencies are inserted in eq. 2.2
in place of the DFT ones. It is noteworthy that, in order to get reliable results,
the equilibrium geometries and the normal coordinates at the CCSD(T) and DFT
levels must be consistent. This check has been automated in our procedure.

The second scheme is based on the consideration that the computations of cubic
and quartic force constants is the more time demanding step when dealing with
anharmonic calculations. It can be speed up by using a reduced-dimensionality
scheme, in which the numerical differentiations are done along a subset of normal
coordinates corresponding to the modes of interest to be treated anharmonically.
In this case, the averaging done for Kijk and Kiijj is applied over the number of
elements actually calculated (1, 2 or 3 for Kijk and 1 or 2 for Kiijj). Note that, if
finite differentiation is performed along mode i, but not along modes j and k, the
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force constants Kjjj, Kkkk, Kjjk and Kjkk can not be evaluated. The anharmonic
corrections for fundamental and combination bands of ωi will still be given by
eq. 2.18 and eqs. 2.19-2.20, respectively, where χii and gii terms are unchanged,
whereas χij terms differ from the fully-dimensionality ones for the absence of the
elements (see eqs. 2.8-2.14),

KiijKjjj

λj
and

KiikKjjk

λk
(6.1)

More details on those schemes are available in refs. [199, 278], while an example
of application will be given in the next sections.

6.1 Methodology and computational details
Within DFT, the standard B3LYP functional [215–217] has been used in con-

junction with the SNSD basis set [218], that has been validated for vibrational
studies [197, 198, 219, 279]. The double-hybrid functional B2PLYP [200, 214]
and MP2 [154, 155] have been used in conjunction with the Dunning correlation-
consistent valence aug-cc-pVTZ (AVTZ) and aug-cc-pVQZ (AVQZ) basis sets [201,
280].

For ferrocene, an organometallic compound taken as an example of medium-
size systems, the B3LYP functional has been used in conjunction with the SNSD
basis set for H and C atoms and the double-ζ ECP basis set of Hay and Wadt
augmented with polarization functions (p type with exponent α = 0.1349150)
(aug-LANL2DZ) for Fe, with the LANL2DZ pseudo potential to describe core
electrons [281]. The hybrid B3PW91 functional [216] has been also employed in
conjunction with the m6-31G basis set, based on 6-31G and improved for first-
row transition metals [282]. For triphenylamine, the B3LYP functional has been
coupled with the valence double-ζ polarized basis set 6-31G* [283–286].

Frequency calculations have been systematically carried out at the equilibrium
geometry obtained at the same level of theory, using respectively tight (10−8) and
very-tight (on force: 10−6 Hartree/Bohr, estimated displacement: 4 · 10−6 Bohr)
convergence criteria for the self-consistent field (SCF) and geometry optimization
steps, respectively. For all DFT computations, an ultra-fine grid (199 radial points,
590 angular points) was used for the numerical integration of the two-electron
integrals and their derivatives.

The third and semi-diagonal fourth derivatives of the PES have been obtained
by numerical differentiation of the analytical second derivatives along the mass-
weighted normal coordinates, with the default step δQi = 0.01

√
amu Å, as [47,
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222],

Kijk =
1

3

[
Kij(+δQk)−Kij(−δQk)

2δQk

+
Kik(+δQj)−Kik(−δQj)

2δQj

+
Kjk(+δQi)−Kjk(−δQi)

2δQi

]
(6.2)

Kiijj =
1

2

[
Kii(+δQj) +Kii(−δQj)− 2Kii(Qeq)

δQ2
j

+
Kjj(+δQi) +Kjj(−δQi)− 2Kjj(Qeq)

δQ2
i

]
(6.3)

Kiijk =
Kjk(+δQi) +Kjk(−δQi)− 2Kjk(Qeq)

δQ2
i

(6.4)

To overcome the problem of 1-2 resonances in VPT2 calculations, the com-
putational strategies presented in the previous sections have been employed. For
the DVPT2 and GVPT2 approaches, a term has been identified as resonant if the
absolute frequency difference in the denominator, ∆, is smaller than 200 cm−1 and
Ξ in eq. 2.37 is larger than 1 cm−1. The default parameters previously used for
HDCPT2 (α = 1.0, β = 5.0 × 105 with ρ and ∆ in cm−1) have been used to
compute Λ for both HDCPT2 and HDSPT2, see ref. [53].

Vibrational second-order 2-2 resonances are identified by two criteria: the ab-
solute frequency difference between the two resonant states must be smaller than
10 cm−1, and the off-diagonal term greater than 20 cm−1.

For Coriolis resonances, the terms in eqs. 3.13-3.16 with an absolute frequency
difference lower than 20 cm−1 are discarded.

6.2 Fully DFT and hybrid methods
A set of linear molecules, i.e. HCN, HNC, OCS, HCP, CO2, C2H2 and C4H2,

have been selected to test the performance of full DFT and hybrid CCSD(T)/DFT
methods to calculate the anharmonic corrections to the vibrational frequencies. On
these molecules, all the schemes presented in the previous section to treat first-
order resonances have been employed, and the results for the l-doubling interaction
terms have been directly compared with the experimental data when present in
the literature.

The VPT2 anharmonic corrections for the linear systems HCN, HNC, OCS and
HCP, shown in Table 6.1, were calculated at the MP2, B3LYP and B2PLYP levels
of theory, in conjunction with AVTZ and AVQZ, as well as SNSD for B3LYP, basis
sets. In the Table, the best theoretical results, computed at the CCSD(T) level,
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and experimental data are also reported for comparison purposes. For those sys-
tems, which are not affected by resonances, the anharmonic corrections calculated
with the different methods are very close to one another. The main discrepancies
with experimental results are found to be related to the harmonic part. More
precisely, the corrections to the non-degenerate frequencies are very close to the
observed values, while the corrections to the low-degenerate wavenumber show a
greater sensitivity to the electronic methods and the size of the basis set. For HCN,
OCS and HCP, B3LYP/SNSD gives very good result, while, for HNC, the large an-
harmonic correction for the degenerate wavenumber is due to its underestimation
of the K(I)

1111 quartic force constants.
CO2 represents an interesting test to validate the DCPT2 and DSPT2 schemes

in presence of resonances. It has been one of the first molecules used in infrared
and Raman measurements and has served as a prototype for the study of res-
onances. Vibrational wavenumbers for fundamental, overtones and combination
bands obtained at the B2PLYP/AVQZ level and with the hybrid scheme, where
the CCSD(T)-F12a/AVTZ harmonic frequencies taken from ref. [287] are used in
conjunction with the B2PLYP/AVQZ force field, are shown in Table 6.2. The
states are grouped based on the polyads. The well-known type I Fermi resonance
that affects this system is due to 2ω1 ≈ ω2, with normal modes 1 and 2 of Π and
Σ symmetry, respectively. The lowest energy states | ni nj, li lj 〉 that are affected
are collected in the following four polyads: | 1112,±11 〉 with | 31,±11 〉, | 22 〉 with
|41, 01 〉 and |2112, 01 〉, |1213 〉 with |2113, 01 〉, and |21, 01 〉 with |12 〉. Note that the
states | 21,±21 〉 are not involved in the latter polyad since their interaction with
| 12 〉 is symmetry forbidden. From a numerical point of view, this is due to the
fact that only K(I)

mss is non-null for linear systems (see Tables 2.1 and A.2). The
discrepancies of the GVPT2 frequencies at the B2PLYP/AVQZ level with respect
to the experimental results are mostly due to the underestimation of the ω2 har-
monic frequency (1344 cm−1 versus 1351 cm−1), as confirmed by the improvements
obtained with the GVPT2 hybrid scheme, which leads to satisfactory agreements
(the discrepancies never exceed 5 cm−1 and are on average 1-2 cm−1).

DSPT2 and DCPT2 treatments of resonances deserve some considerations.
DSPT2 results coincide with their GVPT2 counterparts for all the states that are
not affected by resonances. Conversely, DCPT2 provides values equal to GVPT2
ones just for the states that do not contain excitations on degenerate normal modes
1 and 2 (i.e. | 13 〉 and | 23 〉), while the energies for the states | 11,±1 〉, | 22 〉 and
| 21,±21 〉, which should also be unaffected by the resonance, are underestimated.
In the perturbative treatment, these states do not involve resonant terms because
those present in the elements of χ are exactly erased by those in g when the sum-
mations in eq. 2.2 are performed. DSPT2 reproduces correctly this behavior, while
the DCPT2 results are slightly different due to a non-complete cancellation of the
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Table 6.1: Comparison of computed and experimental harmonic ω and anharmonic
fundamental VPT2 wavenumbers ν for the linear molecules HCN, HNC, OCS, HCP
(in cm−1).

MP2 B3LYP B2PLYP CCSD(T) Exp.

AVTZ AVQZ SNSD AVTZ AVQZ AVTZ AVQZ

HCNa

ω1 Π 718 721 747 759 758 745 745 729 727
ω2 Σ 2022 2034 2196 2200 2201 2125 2129 2125 2129
ω3 3467 3466 3449 3444 3440 3460 3456 3435 3442
ν(11,±11) 715 718 729 745 744 733 733 717 e714
ν(12) 1987 1999 2169 2173 2175 2094 2098 2096 e2097
ν(13) 3334 3339 3317 3312 3312 3327 3328 3309 e3312
∆1 −3 −3 −18 −14 −13 −12 −12 −12 −13
∆2 −35 −35 −27 −26 −26 −31 −30 −29 −32
∆3 −133 −127 −132 −132 −128 −133 −128 −126 −130
HNCb

ω1 Π 485 488 477 468 467 467 467 471 490
ω2 Σ 2016 2027 2097 2103 2104 2059 2063 2044 2067
ω3 3818 3824 3801 3799 3801 3815 3818 3837 3842
ν(11,±11) 505 497 355 463 463 469 470 474 477
ν(12) 1983 1993 2063 2069 2070 2023 2027 2008 2029
ν(13) 3656 3661 3631 3634 3635 3650 3652 3666 3653
∆1 +20 +9 −122 −5 −4 +2 +3 +3 −13
∆2 −33 −34 −34 −34 −34 −36 −36 −36 −36
∆3 −162 −163 −170 −165 −165 −165 −165 −171 −189
OCSc
ω1 Π 506 524 518 527 527 523 523 524 524
ω2 Σ 888 893 865 874 876 872 875 872 876
ω3 2124 2092 2116 2108 2110 2079 2083 2095 2093
ν(11,±11) 502 520 514 523 524 519 520 520 521
ν(12) 869 876 849 858 860 855 859 855 863
ν(13) 2097 2064 2084 2078 2080 2048 2052 2064 2060
∆1 −4 −4 −4 −4 −3 −4 −3 −4 −3
∆2 −19 −17 −16 −16 −16 −16 −16 −17 −13
∆3 −27 −28 −32 −31 −30 −31 −31 −31 −33
HCPd
ω1 Π 677 689 697 712 720 699 707 689 688
ω2 Σ 1245 1255 1322 1338 1342 1291 1297 1299 1298
ω3 3355 3360 3345 3349 3348 3359 3359 3345 3346
ν(11,±11) 678 680 682 700 704 689 693 675 675
ν(12) 1226 1236 1304 1319 1323 1272 1278 1281 1278
ν(13) 3231 3233 3216 3219 3219 3231 3231 3213 3217
∆1 +1 −9 −15 −13 −16 −9 −14 −14 −13
∆2 −19 −19 −18 −19 −18 −19 −19 −18 −20
∆3 −124 −128 −129 −130 −129 −128 −129 −132 −129

∆ represents the anharmonic correction.
a) CCSD(T)/AVTZ and experimental values from ref. [287];
b) CCSD(T)/ANO1 and experimental values from ref. [288];
c) CCSD(T)/CVQZ and experimental values from ref. [289];
d) CCSD(T)/CV5Z and experimental values from ref. [290];
e) experimental values from ref. [68].
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transformed resonant terms.
DSPT2 reproduces well the energies of the states involved in 2-dimensional polyads,
while the results are not satisfactory for energies involved in larger dimensionality
polyads. This is due to the approximation of treating the interactions terms by
simplified two-state interacting matrices, then losing in DSPT2 the simultaneous
interactions between more than two states. Despite this, DSPT2 can be used to es-
timate the energies for the fundamental states, since the latter are usually involved
in at most 2-dimensional polyads.

Shifting to longer chain linear systems, the results for acetylene and diacetylene
are shown in Figure 6.1 and Table 6.3, respectively. Acetylene is a well-known sys-
tem, for which fundamentals, first overtones, combination bands, and l-doublings
have been largely studied in the literature. The results for the vibrational fre-
quencies calculated at the MP2 and B2PLYP levels, with the AVTZ basis set, and
B3LYP, with the SNSD basis set, are graphically reported in Figure 6.1, together
with the results obtained with the hybrid CCSD(T)/B2PLYP scheme. For each
wavenumber value, the series of five marks corresponds, from left to right side,
to VPT2, DCPT2, HDCPT2 and DSPT2 and HDSPT2 results. In line with our
previous comments, the deviations from experimental values are mainly due to the
harmonic part. This error is strongly reduced with hybrid schemes, which yield
very good results. The perturbative correction reproduces well the partial lifting
of the zeroth-order degeneracy, as can be observed for ν(21, 01) and ν(21,±21),
as well as, for ν(22, 02) and ν(22,±22). Moreover, the inclusion of l-doubling is
necessary to lift the degeneracy between ν(1112,+11 − 12) and ν(1112,−11 + 12)
and to obtain accurate energies for the combination energies involving degener-
ate normal modes. For all electronic methods, no first-order resonances are found
with Martin’s test. Therefore, the purely perturbative VPT2 approach gives good
results, slightly improved with the DSPT2 and DCPT2 methods. This is due to
the approximate inclusion of higher-order perturbative terms in the treatment of
the possibly resonant terms.

High-resolution infrared and Raman spectra of C2H2 reported in the literature
show the presence of fairly weak couplings between vibrational levels of the same
symmetry due to second-order resonances[59, 296–299]. The 2-2 resonances be-
tween the two degenerate normal modes of acetylene were first reported by Huet
and co-workers for 12C2D2[298]. In their work, the off-diagonal interaction energies
between | 21, 01 〉 and | 22, 02 〉, and between | 21,±21 〉 and | 22,±22 〉, which involve
respectively κ(I)

12 and κ(III+)
12 , are expressed with the s0

45 and (r0
45+2g0

45)/2 (see Table
II in ref. [298]). It has been found that those resonances are particularly relevant
for the isotopomers of acetylene, whose two bending vibrations are very close in
energy. Furthermore, the need to account for these interactions appears crucial in
the study of the highly excited trans-bend levels in 12C2H2, observed by Field and
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Figure 6.1: Deviations of harmonic ω and anharmonic ν wavenumbers from ex-
perimental values (the origin of the y axis) for acetylene (in cm−1).
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Experimental values are reported in the x axis at the bottom and the corresponding assignment
at the top. The series of five values for each anharmonic frequency stands for, from left to right,
VPT2, DCPT2, HDCPT2, DSPT2 and HDSPT2 treatments for possibly resonant terms.
Computational methods: MP2 and B2PLYP with AVTZ basis set and B3LYP with SNSD.
CCSD(T)/A’CVQZ harmonic and anharmonic frequencies from Table V of ref. [295]. In the
hybrid method, the harmonic frequencies are from CCSD(T)/A’CVQZ and the anharmonic
force-field from B2PLYP/AVTZ calculations. Experimental values are taken from ref. [295]
for fundamental frequencies, and from ref. [59] for overtones and combination bands.
MAE stands for mean absolute error.
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Table 6.3: Experimental and computed harmonic ω and anharmonic ν fundamental
wavenumbers for diacetylene (in cm−1).

State Symm. B3LYPa B2PLYPb HYBRIDb Exp.

ω ν ω ν ω ν ν

| 11 〉 Σg 3466 3343 3477 3352 3463 3338 3332
| 12 〉 2278 2238 2234 2189 2243 2197 2189
| 13 〉 915 901 908 890 894 872 872
| 14 〉 Σu 3467 3344 3478 3353 3465 3339 3334
| 15 〉 2111 2078 2064 2028 2064 2027 2022
| 16,±16 〉 Πg 659 647 645 638 636 627 626
| 17,±17 〉 529 522 507 512 485 491 483
| 18,±18 〉 Πu 665 654 651 640 640 628 628
| 19,±19 〉 237 237 231 232 221 222 220

The vibrational states are indicated as | ni, li 〉.
DFT calculations were done in conjunction of the AVTZ basis set.
Within the hybrid scheme, the harmonic wavenumbers, obtained at the AE-CCSD(T)/cc-pCVQZ
level, were taken from ref. [61], and the anharmonic force-field calculated in this work at the
B2PLYP/AVTZ level. The experimental values were taken from refs. [61] and [63].
a) VPT2 values, no Fermi resonances identified with Martin’s test.
b) GVPT2 values, one weakly interaction between | 13 〉 and | 29, 09 〉 states.

Table 6.4: VPT2 second-order 2-2 interactions (Darling-Dennison) for 12C2H2 and
12C2D2 (in cm−1).

MP2a B3LYPb B2PLYPa Exp.
12C2H2

|2ω4 − 2ω5|/2 102.0 98.8 100.7 −
2κ45/16 −53.2 −50.0 −52.4 −49.0c

−52.4d

−51.5e
12C2D2

|2ω1 − 2ω2|/2 52.3 21.5 25.6 −
4κI12/16 −6.2 −14.1 −8.2 −8.0f

8κIII+12 /64 1.5 0.1 1.0 0.4g

|2ω4 − 2ω5|/2 269.9 302.8 287.7 −
2κ45/16 −25.7 −22.8 −25.0 −23.9c

Basis sets: a) AVTZ. b) SNSD.
c) κ1133/2 in ref. [296]. d) κ1133/2 in ref. [297]. e) κ1133/2 in ref. [59]. f) s045 in ref. [298].
g) (r045 + 2g045)/2 in ref. [298].



114 CHAPTER 6. VIBRATIONAL ENERGIES AND THERMODYNAMICS

co-workers using the stimulated emission pumping (SEP) technique [300]. Our re-
sults obtained at the MP2/AVTZ, B3LYP/SNSD and B2PLYP/AVTZ levels show
a very good agreement with those of Huet et al. (see Table 6.4). Another case
of interacting states, between | 24 〉 and | 25 〉, was first considered by Mills [296].
In Mills’ formalism, the interacting energy is reported in Table 1 of ref. [296] as
κ1133/2. This coupling ought to be considered in all symmetric isotopes of C2H2, in
particular for 13C2H2. Even in this case, the agreement between our computational
results and the observed values is remarkable.

Diacetylene has been extensively studied from both experimental and theo-
retical points of view, because of its prevalence in hydrocarbon combustion and
pyrolysis and is known to be present in the interstellar medium and in the atmo-
spheres of several planets and moons of our solar system[61, 63, 301]. The fun-
damental frequencies for diacetylene have been calculated at the B3LYP/AVTZ
and B2PLYP/AVTZ levels, and with the hybrid scheme, where the harmonic fre-
quencies obtained at the AE-CCSD(T)/cc-pCVQZ level [61] are coupled with the
B2PLYP/AVTZ force-field. The results are reported in Table 6.3. For this system,
Martin’s test reveals a weak interaction due to ω3 ≈ 2ω9 for B2PLYP and hybrid
calculations, which is not found for B3LYP computations. The B2PLYP result for
ν(13) (890 cm−1), calculated with the GVPT2 approach, is in better agreement
with the experimental data (872 cm−1) than the B3LYP result (901 cm−1), where
the interaction term between the | 13 〉 and | 29, 09 〉 states is treated at the pertur-
bative level (VPT2). As expected, the hybrid values show a very good agreement
with the observed ones.

6.3 From medium to large symmetric top systems
The wavenumbers calculated at the B2PLYP/AVTZ level for the fundamental,

first overtones and combination bands for cyclopropane, which is an oblate sym-
metric top belonging to the D3h symmetry point group, are reported in Table 6.5.
Also in this case, the states are ordered by polyads. Martin’s test identifies for this
system three weak Fermi resonances, related to the interaction between | 11 〉 and
|22 〉, |12 〉 and |214, 014 〉, |18,±18 〉 and |1912,±19 〉, and one tight Fermi resonance,
involving | 19,±19 〉 and | 214,±214 〉 states. GVPT2, DCPT2 and DSPT2 results
are reported in Table 6.5, together with the VPT2 values. HDCPT2 and HDSPT2
give results equal to DCPT2 and DSPT2, respectively, and are, therefore, omit-
ted. The agreement with the experimental values is good for most of the energies,
and both DCPT2 and DSPT2 show good results for the states not affected by
resonances, as well as, for the states involving resonant interaction terms. Some
discrepancies are found for | 11 〉, for which all methods slightly overestimate the
experimental value, and | 211,±211 〉, that is underestimated by the theoretical
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results with respect to the experimental one. VPT2 reproduces well the energy
of | 12 〉, but slightly overestimates | 214, 014 〉. GVPT2, which treats variationally
the interaction between the latter two states, overestimates the energy of | 12 〉,
whereas that of | 214, 014 〉 is in agreement with the experimental value. For this
case, DCPT2 and DSPT2 reproduce well the energy of |12 〉, while for |214, 014 〉 the
overestimation is similar to that of VPT2. At variance, the results are very good
for the combination states involving the excitations of the normal modes labeled
as 10 and 14.

As shown above, the hybrid method allows to reduce the computational costs
leading to satisfactory results. Table 6.6 shows the fundamental frequencies for
benzene obtained with the hybrid model. Benzene is an oblate symmetric top
(D6h symmetry), which has been widely studied in the literature by both Ra-
man and infrared spectroscopy[38, 303–306]. In the hybrid computation, the har-
monic frequencies have been calculated at the CCSD(T)/ANO4321’ level[307], and
the anharmonic force field at the B3LYP/SNSD level. In Table 6.6, the funda-
mental frequencies at the B3LYP/SNSD level are also reported. B3LYP/SNSD
calculations show a qualitatively good agreement with the experimental values
for the majority of the frequencies. Martin’s test identifies two weak type II
Fermi resonances, the first affecting |19,±19〉 and |1117,±17〉 states, the second
|118,±118〉 and |19117,±19 ± 117〉, and a slightly stronger one, involving |113〉 and
|19117,±19 ± 117〉. The latter resonance leads to wrong VPT2 results for ν(113)
(3143 cm−1), that shows a discrepancy of about 100 cm−1 with respect to the
observed value (3057 cm−1). At variance, the coupling between |19,±19〉 and
|1117,±17〉 is small, and the VPT2 result for ν(19,±19) (1604 cm−1) is closer
to the observed value (1601 cm−1) than the GVPT2 one (1588 cm−1). The re-
sult of the DSPT2 and DCPT2 treatments (1599 cm−1) is also very good. Some
discrepancies are present also for ν(118,±118); VPT2, DSPT2 and DCPT2 (≈
3070 cm−1) overestimate the reference value (3047 cm−1), while the opposite is
true for GVPT2 (3029 cm−1). This frequency is close to the experimental value in
the hybrid models, showing once again that the error is mainly due to the unsatis-
factory treatment of the harmonic part. In the hybrid method, the two vibrational
states | (113 〉 and | 118,±118 〉 are still affected by resonance, showing similar re-
sults to those obtained by full DFT calculations. On the other hand, Martin’s
test does not identify the resonance affecting the |19,±19〉 and |1117,±17〉 states
in the hybrid case, because of the differences between the CCSD(T) and DFT
harmonic frequencies. Moreover, two new weak couplings are identified, the first
involving |13 〉 and |119120,±119∓120 〉, the second |12 〉 and |29, 09 〉. Consequently,
ν(19,±19) is not variationally treated and shows coincident values for all methods
(1598 cm−1), that is in good agreement with the observed one (1601 cm−1), while
ν(12) and ν(13) are very satisfactory in all VPT2, DSPT2, DCPT2 and GVPT2
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Table 6.5: Harmonic ω, anharmonic ν wavenumbers for cyclopropane (in cm−1).

State Symm. ω νVPT2 νDCPT2 νDSPT2 νGVPT2 νExp.

| 11 〉 A′1 3163 3042 3040 3041 3046 3027
| 22 〉 3061 2993 2983 2982 2954 −

| 12 〉 A′1 1531 1502 1497 1498 1515 1499
| 214, 014 〉 1487 1471 1478 1475 1459 1461

| 13 〉 A′1 1218 1191 1191 1191 1191 1189

| 14 〉 A”
1 1162 1129 1129 1129 1129 1127

| 15 〉 A′2 1095 1072 1072 1072 1072 1067

| 16 〉 A”
2 3254 3108 3108 3108 3108 3102

| 17 〉 A”
2 863 860 860 860 860 854

| 18,±18 〉 E′ 3154 3006 3005 3005 3016 3019
| 1219,±19 〉 3016 2909 2924 2926 2907 −

| 19,±19 〉 E′ 1486 1422 1441 1441 1446 1440
| 214,±214 〉 1487 1515 1505 1495 1491 1480

| 110,±110 〉 E′ 1056 1030 1030 1030 1030 1028

| 111,±111 〉 E′ 887 854 854 854 854 868

| 112,±112 〉 E” 3233 3087 3087 3087 3087 3082

| 113,±113 〉 E” 1219 1194 1194 1194 1194 1191

| 114,±114 〉 E” 744 742 744 742 742 738

| 211, 011 〉 1775 1714 1714 1714 1714 1727

| 211,±211 〉 1775 1690 1690 1690 1690 1734

| 15110,±110 〉 2150 2097 2097 2097 2097 2090

| 15114,±114 〉 1838 1814 1817 1814 1814 1805

| 110114,±110 ± 114 〉 1799 1772 1775 1779 1772 1766
| 110114,+110 − 114 〉 1799 1771 1774 1771 1771 1767
| 110114,−110 + 114 〉 1799 1772 1775 1773 1772 −

The vibrational states are indicated as | ni nj , li lj 〉.
Computed values at the B2PLYP/AVTZ level. Observed values from ref. [302].
Note that the l-doubling between | 110114,+110 − 114 〉 and | 110114,−110 + 114 〉 has not been
taken into account in the experimental observed values.
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approaches. These considerations show that a good description of the harmonic
frequencies is also important to identify correctly the resonant terms affecting the
system. In this case as well, HDCPT2 and HDSPT2 treatment of resonances have
been omitted from Table 6.6 since they are equivalent to DCPT2 and DSPT2.

Following Amat’s rule, 〈 ns, ls | H̃40 | ns, (ls ± 4)) 〉 and 〈 nsnt, lslt | H̃40 |
nsnt, (ls ± 2)(lt ∓ 2) 〉 l-doublings are found to be non-null for benzene. The
B3LYP/SNSD results for the R and S constants are shown in Table 6.7, together
with the values calculated at the B3LYP/TZ2P level, taken as benchmark from
ref. [304]. Note that in ref. [304], R and S are reported as r = 4R and s = 4S. In
both sets of results the resonances are treated at the DVPT2 level. The agreement
between the two series of data is remarkable.
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Table 6.7: R and S l-type doublings for C6H6, (in cm−1).

Const. Modes This work Lit. Const. Modes This work Lit.

S 7 6 0.10 − S 18 8 0.60 0.64
S 8 6 0.19 0.27 S 18 9 −1.50 −1.56
R 8 7 0.18 − S 18 10 −10.09 −10.26
S 9 6 −0.11 − R 18 16 0.36 0.36
R 9 7 0.32 0.26∗ R 18 17 −0.26 −0.39
R 9 8 −0.72 −0.78 S 19 6 1.51 1.92
S 10 6 0.61 0.71 R 19 7 0.03 −0.09
R 10 7 0.04 − R 19 8 −0.60 −0.39
R 10 8 0.68 0.70 R 19 9 −0.21 −0.20
R 10 9 −1.66 −1.84 R 19 10 0.03 −
R 16 6 −0.01 − S 19 16 0.69 0.68
S 16 7 −0.13 − S 19 17 −0.33 −0.33
S 16 8 −0.53 −0.49 S 19 18 0.03 0.04
S 16 9 0.62 0.64 S 20 6 −0.71 −0.35
S 16 10 0.33 0.34 R 20 7 0.05 −
R 17 6 −0.09 − R 20 8 −0.24 −0.21
S 17 7 0.05 − R 20 9 −0.28 −0.30
S 17 8 −0.71 −0.68 R 20 10 0.75 0.85
S 17 9 0.13 0.10∗ S 20 16 0.19 0.23
S 17 10 −0.44 −0.47 S 20 17 0.04 −
R 17 16 −0.40 −0.46 S 20 18 0.77 0.80
R 18 6 0.59 0.77 R 20 19 −0.50 −1.21
S 18 7 −0.02 −

Calculation at the B3LYP/SNSD level. The resonances are treated at DVPT2 level.
The reference values are calculated at the B3LYP/TZ2P level, from Table VI of ref. [304]. Note
that in the reference the values are reported as r = 4R and s = 4S.
* indicates that the value corresponds with the one reported in parentheses in ref. [304]. For the
numbering of the normal modes see Table 6.6.
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Figure 6.2: Medium-sized symmetric top systems of interest.

triphenylamine (D3) ferrocene (D5d) ferrocene (D5h)

Table 6.8: Fundamental vibrational wavenumbers for triphenylamine (in cm−1).

Symm. B3LYP/6-31G* Scaled Exp.

ω νa νb νc

E 3182 3029 3127 3016
3043

A2 3190 3072 3135 3067
E 3190 3074 3135
E 3205 3070 3150
E 3217 3069 3159

A2 3214 3096 3158 3096
E 3214 3097 3157 3107

a) Anharmonic correction computed within the reduced dimensionality approach (see text), ap-
plying the DSPT2 method for resonances.
b) Harmonic values at the B3LYP/AVTZ level and scaled with a factor equal to 0.986,
from ref. [308].
c) Observed values taken from ref. [308].
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Moving to larger systems, the importance of taking into account the anhar-
monicity appears clearly in Tables 6.8 and 6.9.

In the first Table, both the harmonic and anharmonic computational results for
triphenylamine are compared with the observed frequencies. Triphenylamine has a
D3 three-bladed propeller structure, with a planar central NCCC moiety (see Fig-
ure 6.2), and has found applications in different fields, including for instance pho-
toconductors and semiconductors [310–313]. With 96 vibrational normal modes,
the determination of the complete anharmonic force field for this system is com-
putationally very expensive even at the DFT level. However, within the reduced-
dimensionality approach, it is possible to calculate the anharmonic corrections for
a small selection of vibrational energies of interest. If the harmonic energy of the
latter are well separated from the energies of the vibrations ignored in the an-
harmonic treatment, the cubic and quartic forces involving normal modes of both
sets can be assumed to be negligible. In Table 6.8, the anharmonic corrections
have been applied to fundamental vibrational states having harmonic wavenum-
bers larger than 3000 cm−1 which correspond to the CH stretchings region. The
calculation has been done at the B3LYP/6-31G* level, and the resonances have
been treated with the DSPT2 method. In Table 6.8, the empirical fundamental
frequencies, obtained scaling the B3LYP/AVTZ harmonic frequencies by a factor
of 0.986 (see ref. [308]), are also reported, together with the experimental results,
measured by FTIR spectroscopy of triphenylamine monomers isolated in an argon
matrix[308]. The inclusion of anharmonic effects leads to a significantly better
agreement between the theoretical and experimental results with respect to the
scaled values.

As a last example, we report the results for ferrocene, an organometallic com-
pound of great interest in bio- and nano-technologies, with important applications
of its derivatives in catalysis, molecular electronics, polymer chemistry, nonlinear
optical and solar engineering [314–319]. Its geometry has been studied by several
theoretical methods and shows a sandwich structure with the metal situated be-
tween two parallel cyclopentadienyl rings. A small energy barrier separates the
staggered D5d and eclipsed D5h rotational orientation of the two rings (see Fig-
ures 6.2), with an energy difference of 0.9 kcal mol−1 from gas phase electron
diffraction measurements [320–322]. In gas phases calculations, the eclipsed con-
former is a global minimum, whereas the staggered conformer is a saddle point
with an imaginary frequency. In a recent study, a quite good agreement was ob-
tained between the harmonic vibrational frequencies of ferrocene calculated at the
B3LYP/m6-31(d) level and the observed values [322]. A noticeable improvement in
the theoretical results is obtained by taking into account the anharmonicity. From
B3LYP calculations, with the hybrid SNSD/aug-LANL2DZ basis set as discussed
in the computational details section, the anharmonic fundamental wavenumbers
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show a quantitative agreement with the experimental ones, especially for the range
above 800 cm−1, where vibrations involving C and H atoms are excited. The lowest
wavenumbers (480 and 496 cm−1) are due to the excitations of vibrational modes
involving the metal. The latter are better described by the B3PW91 functional,
coupled with the SNSD/m6-31G basis set. It is noteworthy that B3PLYP and
B3PW91 anharmonic corrections are not significantly different, showing that the
discrepancies between the observed and B3LYP values are due again to deficitary
description of the harmonic vibrations associated to Fe.

6.4 Thermodynamics
If the fundamental, overtone and combination energies have to be handled with

care because of resonances, it has been shown in the theoretical section that the
ZPVE is not affected. Both harmonic and anharmonic ZPVEs of linear (HCN,
CO2, C2H2), and symmetric top molecules (PH3, ClCH3, FCH3) are shown in
Table 6.10.

On overall, the mean anharmonic correction with respect to the harmonic
ZPVE is about 0.4% for CO2, 1% for HCN, 1.2% for C2H2, and 1.4% for the sym-
metric top systems. It is noteworthy that for all these molecules the magnitudes
of the anharmonic corrections are little affected by the choice of the computa-
tional method and the basis set, at least in the present cases. From the ZPVE
and the anharmonic fundamental energies, a comparison with the experimental
thermodynamic data can be achieved by the SPT model [40, 53]. The calculated
and experimental absolute entropies at 298.15 K and 1 atm are also reported in
Table 6.10. Under those thermodynamic conditions, the absolute entropies calcu-
lated with all methods available to treat the resonances lead to very close results.
Compared to accurate experimental values,the inclusion of anharmonic corrections
in the calculated thermodynamic values improves the accuracy of the results by
about 0.10− 0.20 J mol−1 K−1.
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Table 6.10: Comparison of computed and experimental harmonic (H) and anhar-
monic (A) ZPVE (in KJ mol−1) and absolute entropies at 298.15 K and 1 atm (in
J mol−1 K−1), for linear and symmetric top molecules.

MP2a B3LYPb B2PLYPa Best th. Exp.

H A H A H A

HCN
ZPVE 41.42 41.05 42.70 42.25 42.31 41.90 41.55d 41.61d

∆ −0.37 −0.45 −0.41
S 201.79 201.82 201.99 202.20 203.39 201.50 - 201.83ce

CO2

ZPVE 30.18 30.08 30.49 30.36 30.24 30.12 30.28e -
∆ −0.10 −0.13 −0.12
S 213.88 213.95 213.74 213.78 213.72 213.79 - 213.69ce

C2H2

ZPVE 69.65 68.93 70.73 69.58 70.59 69.85 68.61e -
∆ −0.72 −1.15 −0.74
S 200.82 200.92 200.08 201.14 200.06 200.34 - 200.85ce

PH3

ZPVE 64.39 63.59 62.21 61.37 63.49 62.67 62.44f -
∆ −0.80 −0.84 −0.82
S 209.90 209.98 210.25 210.33 209.97 210.05 - 210.13ce

ClCH3

ZPVE 100.75 99.36 98.73 97.34 99.79 98.43 - -
∆ −1.39 −1.39 −1.36
S 233.77 233.92 234.42 234.58 233.06 234.22 - 234.26ce

FCH3

ZPVE 104.80 103.37 102.61 101.18 103.72 102.30 - -
∆ −1.43 −1.43 −1.42
S 222.52 222.62 222.75 222.85 222.59 222.69 - 222.73ce

∆’s are the anharmonic corrections. Basis sets: a) AVTZ. b) SNSD.
c) The tabulated values have been lowered by 0.11 J mol−1 K−1, to pass from the original
1 bar = 0.1 MPa values to 1 atm = 0.101325 MPa (see “reference part” in ref. [323]).
Refs.: c) [288]; d) [323]; e) [287]; f) [55].



Conclusions

The vibrational perturbation theory for roto-vibrational energies and thermo-
dynamic functions for asymmetric, symmetric and linear top systems has been
revised and fully generalized to allow for the treatment of both minima and first-
order saddle points of the PES. A particular attention has been devoted to the
treatments of off-diagonal elements of the Hamiltonian and the perturbative equa-
tions in the presence of resonances. Previous strategies for dealing with first-order
resonances (i.e. GVPT2, DCPT2 and HDCPT2) have been generalized and a new
treatment (i.e. DSPT2 and its hybrid counterpart HDSPT2), has been presented
and validated. A versatile implementation has been included in the Gaussian
package.

Several case studies ranging from triatomic to large molecular systems have
been explicitly treated by different quantum mechanical approaches to fully vali-
date the computational tool. The results show that the perturbative developments
are very effective and reasonably accurate, and can be applied easily to DFT and
CCSD(T)/DFT hybrid levels in conjunction with medium sized basis sets, and
with reduced-dimensionality schemes. The latter approximations are particular
appealing when dealing with medium- to large-molecules, allowing the inclusion
of anharmonicity also in the cases otherwise unpractical due to prohibitive com-
putational cost.

Moreover, the use of roto-vibrational corrections to rotational constants within
the semi-experimental approach for the determination of accurate equilibrium
structures has been largely discussed. 21 small molecules for which accurate SE
structures determined using CCSD(T) vibrational contributions are available have
been selected (CCse set) and used to demonstrate that the ∆Bvib

τ contributions
derived from cubic force fields at the DFT level lead to results with an accuracy
comparable to that obtainable at higher levels of theory (MP2 and, especially,
CCSD(T)). It has been shown that the B3LYP/SNSD and B2PLYP/VTZ models
represent a very good compromise between accuracy and computational cost in the
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calculation of ∆Bvib
τ contributions, thus avoiding the use of expensive CC calcula-

tions and making the accurate determination of molecular structures for medium
and large systems feasible. Within this context, new SE equilibrium structures
have been determined for a set of 27 molecules, mostly including building blocks
of biomolecules. The latter, together with the SE equilibrium structures of the
previous 21 molecules determined using B3LYP/SNSD and B2PLYP/VTZ vibra-
tional contributions provide a set of 48 accurate equilibrium structures (referred to
as the B3se and B2se sets, respectively) which can be recommended as reference
data for the investigation of molecular properties, as well as for parameterisations
and validation of QM models. Moreover, a new method, denoted template ap-
proach, has been proposed to deal with molecules for which there is a lack of
experimental data and it is thus necessary to fix some geometrical parameters in
the fitting procedure. This approach further extends the size of molecular systems
amenable to highly accurate molecular structure determinations.

Finally, new equations for the pure vibrational term of polarizability, and the
square modulus of electric dipole transition moment, have been generalized for
excitations from any vibrational quantum numbers in the specific case of asym-
metric top systems. It is noteworthy that future implementations of the latter
equations are of particular interest for the calculations of temperature-dependent
polarizabilities and IR spectra.
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Appendix A
Force constants classification

The force constants involving degenerate modes can be related to one another
based on symmetry considerations. This chapter gathers those relations for cubic
and quartic force constants, used to define the proper terms to be employed in
the vibrational Hamiltonian. The symmetry relations for the cubic and quartic
force constants involving degenerate modes are reported in Tables A.2-A.8. In
the latter, the molecular point group symmetries are labeled with the notation
presented in Table A.1.

Table A.1: Symmetry groups labels.

I Ia: CNv, DN , DNh (any N); DNd (N odd);
Ib: D(N/2)d (N/2 even);

II IIa: CN , CNh (any N); S2N (N odd);
IIb: SN (N/2 even).

I and II are non-abelian and abelian, respectively.
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Appendix B
χ0 vibrational contribution

The explicit form of χ0 term is given by,

χ0 =
1
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(B.1)

In the orientation chosen in this work for the degenerate normal modes (see Sec-
tion 1.4 and refs. [70, 71]), ζs1s2,z = 1 and ζms1,y = ζms2,x are the only Coriolis
terms that are non-null for linear molecules. For symmetric top systems, ζmn,x,
ζmn,y, ζms1,z and ζms2,z are always zero, and we have used the following relations

141
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to simplify the last terms in the above equation:{
ζms1,x

}2
=
{
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}2 (B.2){
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and, {
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Appendix C
Vibrational l-doubling constants

The off-diagonal elements 〈 φ(0)

Aa
| H̃(2) | φ(0)

Bb
〉 presented in eqs. 2.31-2.33 are

all composed by a quantum numbers dependent part and a constant one. In the
notation adopted in this paper, the explicit form of the latter is given by the
following expressions,
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∆ijk = λi
2 + λj

2 + λk
2 − 2(λiλj + λiλk + λjλk) (C.4)

where Di = 128λs/~2, Eij = 32
√
λiλj/~2.



Appendix D
Deperturbed treatment of resonances

The possibly resonant terms present in χ0, χ, g (see eqs. B.1-2.14), and U , R,
S (see eqs. C.1–C.3) equations can be found rewriting the fraction expressions as
sums of terms with minimal denominators,

1

ωiωj(4λi − λj)
=

1

4λiωj

(
1

2ωi + ωj
+

1

2ωi − ωj

)
(D.1)

1

λi(4λi − λj)
=− 1

2λiωj

(
1

2ωi + ωj
− 1

2ωi − ωj

)
(D.2)

(8λi − 3λj)

ωj(4λi − λj)
=

1

2

(
4

ωj
+

1

2ωi + ωj
− 1

2ωi − ωj

)
(D.3)

(8λi − λj)
ωj(4λi − λj)

=
1

2

(
4

ωj
− 1

2ωi + ωj
+

1

2ωi − ωj

)
(D.4)

(8λi + λj)

ωj(4λi − λj)
=

1

2

(
4

ωj
− 3

2ωi + ωj
+

3

2ωi − ωj

)
(D.5)

(λi − λj − λk)
∆ijk

=
1

4ωi

(
1

ωi + ωj + ωk
+

1

ωi + ωj − ωk
+

1

ωi − ωj + ωk
+

1

ωi − ωj − ωk

)
(D.6)
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)
(D.7)

If a resonance of the type 2ωj ≈ ωi or ωi ≈ ωj + ωk occurs, the last term in the
right-hand side of the equations presented above is discarded.

Concerning the vibrational correction to rotational constants, the possibly res-
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onant terms in αi,τ equations (eqs. 3.12-3.16) are,

3λi + λj
λi − λj

=
2ωi

ωi + ωj
− 1 +

2ωi
ωi − ωj

(D.8)

If ωi ≈ ωj, the last term in the right-hand side of the above equation is removed.



Appendix E
2-2 second-order resonances constants

The constant terms present in the off-diagonal elements 〈 φ(0)

Aa
| H̃(2) | φ(0)

Bb
〉

involved in 2-2 second-order resonances (eqs. 2.60-2.64) are given by,
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(E.5)

where Fij = ωiωj/~2, β1 = 1, βj = 1/2 (j > 1) and all the contributions are
expressed in partial fractions with ω constants to easily identify the possible first-
order resonant terms. When a first-order resonance occurs, the relative term is
removed from S (1) in eq. 1.45 and then from both the diagonal and off-diagonal
elements of H̃(2).



Appendix F
CT vs RS developments for properties

In this section we want to point out the differences between the CT and the RS
developments when dealing with the molecular properties. Generalizing to both
the transition integral (|ψAa 〉 6= |ψBb 〉) and the expectation value (|ψAa 〉 = |φBb 〉)
of a property M ,

〈M 〉AaBb =
〈 ψAa |M | ψBb 〉√

〈 ψAa | ψAa 〉〈 ψBb | ψBb 〉
(F.1)

in CT theory, φ = eiSψ (see eqs. 1.41) is applied to the previous expression with
the choice φ ≡ φ(0), where φ(0) are the eigenfunctions of H(0). Under the contact
transformation eq. F.1 becomes,
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〉 (F.2)

where M̃ = eiSMe−iS is the effective property and 〈 φ(0)

Aa
| φ(0)

Aa
〉 = 1.

On the other hand, in RS perturbation theory, eq. F.1 is developed expanding the
wavefunction in perturbation orders,

| ψAa 〉 = | φ(0)
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〉+ λ| φ(1)
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〉+ λ2| φ(2)
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〉+ . . . (F.3)

where φ(0) are again the eigenfunctions of H(0).
Up to the first perturbative order, the CT effective property is given by,
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Using hereafter the short notation XAaBb ≡ 〈φ
(0)
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〉 and EAB ≡ E(0)
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B ,
the latter term in the above equation can be written as,
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where the following relations have been used,∑
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Substituting eq. F.5 in eq. F.4,
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M (0)

CcBb
−

∗∑
D 6=B

∑
d

M (0)

AaDd

H(1)

DdBb

EDB
(F.7)

In RS theory,

RS〈M 〉(1)AaBb = 〈 φ(0)

Aa
|M (1) | φ(0)

Bb
〉+ 〈 φ(1)

Aa
|M (0) | φ(0)

Bb
〉+ 〈 φ(0)

Aa
|M (0) | φ(1)

Bb
〉

(F.8)

where,

| φ(1)

Aa
〉 = −

∗∑
B 6=A

∑
b

| φ(0)

Bb
〉
H(1)

BbAa

EBA
(F.9)

It is easy to see that the equation resulting from the replacement of eq. F.9 in
eq. F.8 is exactly eq. F.7, then CT〈M 〉(1)AaBb =RS 〈M 〉(1)AaBb .
Up to second perturbative order, the CT effective property is given by,

CT〈M 〉(2)AaBb =〈 φ(0)

Aa
| M̃ (2) | φ(0)

Bb
〉

=〈 φ(0)

Aa
|M (2) | φ(0)

Bb
〉+ i〈 φ(0)

Aa
| [S (1),M (1)] | φ(0)

Bb
〉

− 1

2
〈 φ(0)

Aa
| [S (1), [S (1),M (0)]] | φ(0)

Bb
〉+ i〈 φ(0)

Aa
| [S (2),M (0)] | φ(0)

Bb
〉

(F.10)
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The second term in the left-hand side of the last equality in the previous expression
is,

i〈 φ(0)

Aa
| [S (1),M (1)] | φ(0)

Bb
〉

= i〈 φ(0)

Aa
| S (1)M (1) −M (1)S (1) | φ(0)

Bb
〉

=
∗∑

C 6=A

∑
c

H(1)

AaCc

EAC
M (1)

CcBb
−

∗∑
D 6=B

∑
d

M (1)

AaDd

H(1)

DdBb

EDB
(F.11)

while the third one,

−1

2
〈 φ(0)

Aa
| [S (1), [S (1),M (0)]] | φ(0)

Bb
〉

= −1

2
〈 φ(0)

Aa
| S (1)S (1)M (0) +M (0)S (1)S (1) − 2S (1)M (0)S (1) | φ(0)

Bb
〉

= −1

2

∑
C,D

∑
c,d

S (1)

AaDd
S (1)

DdCc
M (0)

CcBb
− 1

2

∑
C,D

∑
c,d

M (0)

AaCc
S (1)

CcDd
S (1)

DdBb

+
∑
C,D

∑
c,d

S (1)

AaCc
M (0)

CcDd
S (1)

DdBb

=
1

2

∗∑
D 6=A

∗∑
C 6=D

∑
c,d

H(1)

AaDc

EAD

H(1)

DdCc

EDC
M (0)

CcBb
+

1

2

∗∑
D 6=B

∗∑
C 6=D

∑
c,d

M (0)

AaCc

H(1)

CcDd

ECD

H(1)

DdBb

EDB

−
∗∑

C 6=A

∗∑
D 6=B

∑
c,d

H(1)

AaCc

EAC
M (0)

CcDd

H(1)

DdBb

EDB
(F.12)

Remembering that,

S (2)

AaBb
=

(−i)
EAB

[
H(2)

AaBb
− 1

2

∗∑
C 6=A

∑
c

H(1)

AaCc
H(1)

CcBb

ECA
− 1

2

∗∑
C 6=B

∑
c

H(1)

AaCc
H(1)

CcBb

ECB

]
(F.13)
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the last term in eq. F.10 is given by,

i〈 φ(0)

Aa
| [S (2),M (0)] | φ(0)

Bb
〉

= i〈 φ(0)

Aa
| S (2)M (0) −M (0)S (2) | φ(0)

Bb
〉

= i
∑
C

∑
c

S (2)

AaCc
M (0)

CcBb
− i
∑
C

∑
c

M (0)

AaCc
S (2)

CcBb

=
∑
C 6=A

∑
c

H(2)

AaCc

EAC
M (0)

CcBb
−
∑
C 6=B

∑
c

M (0)

AaCc

H(2)

CcBb

ECB

− 1

2

∗∑
C 6=A

∗∑
D 6=A

∑
c,d

H(1)

AaDd
H(1)

DdCc

EACEDA
M (0)

CcBb
− 1

2

∗∑
C 6=A

∗∑
D 6=C

∑
c,d

H(1)

AaDd
H(1)

DdCc

EACEDC
M (0)

CcBb

+
1

2

∗∑
C 6=B

∗∑
D 6=C

∑
c,d

M (0)

AaCc

H(1)

CcDd
H(1)

DdBb

ECBEDC
+

1

2

∗∑
C 6=B

∗∑
D 6=B

∑
c,d

M (0)

AaCc

H(1)

CcDd
H(1)

DdBb

ECBEDB

(F.14)

Some simplifications can be done observing that the second term in the last equal-
ity of eq. F.12 can be rewritten as (with a similar consideration for the first one),

1

2

∗∑
D 6=B

∗∑
C 6=D

∑
c,d

M (0)

AaCc

H(1)

CcDd

ECD

H(1)

DdBb

EDB
=

1

2

∗∑
D 6=B

∗∑
C 6=D,B

∑
c,d

M (0)

AaCc

H(1)

CcDd

ECD

H(1)

DdBb

EDB

− 1

2

∗∑
C 6=B

∑
c

M (0)

AaBb

H(1)

BbCc
H(1)

CcBb

EBC
2 (F.15)

and the last two terms in eq. F.14 as (with similar considerations for the third and
fourth ones),

1

2

∗∑
C 6=B

∗∑
D 6=C

∑
c,d

M (0)

AaCc

H(1)

CcDd

ECB

H(1)

DdBb

EDC
=

1

2

∗∑
C 6=B

∗∑
D 6=B,C

∑
c,d

M (0)

AaCc

H(1)

CcDd

ECB

H(1)

DdBb

EDC

− 1

2

∗∑
C 6=B

∑
c

M (0)

AaCc

H(1)

CcBb
H(1)

BbBb

EBC
2 (F.16)

1

2

∗∑
C 6=B

∗∑
D 6=B

∑
c,d

M (0)

AaCc

H(1)

CcDd
H(1)

DdBb

ECBEDB
=

1

2

∗∑
C 6=B

∗∑
D 6=B,C

∑
c,d

M (0)

AaCc

H(1)

CcDd
H(1)

DdBb

ECBEDB

+
1

2

∗∑
C 6=B

∑
c

M (0)

AaCc

H(1)

CcCc
H(1)

CcBb

ECB
2 (F.17)
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The first terms in the right-hand side of eqs. F.15-F.17 can be summed,

1

2

∗∑
D 6=B

∗∑
C 6=D,B

∑
c,d

M (0)

AaCc

H(1)

CcDd

ECD

H(1)

DdBb

EDB
+

1

2

∗∑
C 6=B

∗∑
D 6=B,C

∑
c,d

M (0)

AaCc

H(1)

CcDd

ECB

H(1)

DdBb

EDC

+
1

2

∗∑
C 6=B

∗∑
D 6=B,C

∑
c,d

M (0)

AaCc

H(1)

CcDd
H(1)

DdBb

ECBEDB
=

∗∑
C 6=B

∗∑
D 6=B,C

∑
c,d

M (0)

AaCc

H(1)

CcDd
H(1)

DdBb

EBCEBD

(F.18)

Then collecting all terms eq. F.10 becomes,

CT〈M 〉(2)AaBb =M (2)

AaBb
+

∗∑
C 6=A

∑
c

H(1)

AaCc

EAC
M (1)

CcBb
−

∗∑
D 6=B

∑
d

M (1)

AaDd

H(1)

DdBb

EDB

+
∑
C 6=A

∑
c

H(2)

AaCc

EAC
M (0)

CcBb
−
∑
C 6=B

∑
c

M (0)

AaCc

H(2)

CcBb

ECB

−
∗∑

C 6=A

∗∑
D 6=B

∑
c,d

H(1)

AaCc

EAC
M (0)

CcDd

H(1)

DdBb

EDB

+
∗∑

C 6=A

∗∑
D 6=A,C

∑
c,d

H(1)

AaDc

EAC

H(1)

DdCc

EAD
M (0)

CcBb
+

∗∑
C 6=B

∗∑
D 6=B,C

∑
c,d

M (0)

AaCc

H(1)

CcDd

EBC

H(1)

DdBb

EBD

− 1

2

∗∑
C 6=A

∑
c

H(1)

AaCc
H(1)

CcAa

EAC
2 M (0)

AaBb
− 1

2

∗∑
C 6=B

∑
c

M (0)

AaBb

H(1)

BbCc
H(1)

CcBb

EBC
2

+
1

2

∗∑
C 6=A

∑
c

H(1)

AaCc
H(1)

CcCc

EAC
2 M (0)

CcBb
− 1

2

∗∑
C 6=B

∑
c

M (0)

AaCc

H(1)

CcBb
H(1)

BbBb

EBC
2

− 1

2

∗∑
C 6=A

∑
c

H(1)

AaAa
H(1)

AaCc

EAC
2 M (0)

CcBb
+

1

2

∗∑
C 6=B

∑
c

M (0)

AaCc

H(1)

CcCc
H(1)

CcBb

EBC
2

(F.19)

In RS theory the second-order correction to the property is given by,

RS〈M 〉(2)AaBb =〈 φ(2)

Aa
|M (0) | φ(0)

Bb
〉+ 〈 φ(0)

Aa
|M (2) | φ(0)

Bb
〉+ 〈 φ(0)

Aa
|M (0) | φ(2)

Bb
〉

+ 〈 φ(1)

Aa
|M (1) | φ(0)

Bb
〉+ 〈 φ(1)

Aa
|M (0) | φ(1)

Bb
〉+ 〈 φ(0)

Aa
|M (1) | φ(1)

Bb
〉

(F.20)



156 APPENDIX F. CT VS RS DEVELOPMENTS FOR PROPERTIES

where | φ(1)

Bb
〉 is given by eq. F.9 and,

| φ(2)

Bb
〉 =−

∗∑
C 6=B

∑
c

| φ(0)

Cc
〉
H(2)

CcBb

ECB
+

∗∑
C 6=B

∗∑
D 6=B

∑
c,d

| φ(0)

Cc
〉
H(1)

CcDd
H(1)

DdBb

EBCEBD

−
∗∑

C 6=B

∑
c

| φ(0)

Cc
〉
H(1)

CcBb
H(1)

BbBb

EBC
2 − 1

2

∗∑
C 6=B

∑
c

| φ(0)

Bb
〉
H(1)

BbCc
H(1)

CcBb

EBC
2 (F.21)

Substituting eq. F.21 in F.20 and pointing out that,
∗∑

C 6=B

∗∑
D 6=B

∑
c,d

| φ(0)

Cc
〉
H(1)

CcDd
H(1)

DdBb

EBCEBD
=

∗∑
C 6=B

∗∑
D 6=B,C

∑
c,d

| φ(0)

Cc
〉
H(1)

CcDd
H(1)

DdBb

EBCEBD

+
∗∑

C 6=B

∑
c

| φ(0)

Cc
〉
H(1)

CcCc
H(1)

CcBb

EBC
2 (F.22)

we obtain,

RS〈M 〉(2)AaBb =M (2)

AaBb
+

∗∑
C 6=A

∑
c

H(1)

AaCc

EAC
M (1)

CcBb
−

∗∑
D 6=B

∑
d

M (1)

AaDd

H(1)

DdBb

EDB

+
∑
C 6=A

∑
c

H(2)

AaCc

EAC
M (0)

CcBb
−
∑
C 6=B

∑
c

M (0)

AaCc

H(2)

CcBb

ECB

−
∗∑

C 6=A

∗∑
D 6=B

∑
c,d

H(1)

AaCc

EAC
M (0)

CcDd

H(1)

DdBb

EDB

+
∗∑

C 6=A

∗∑
D 6=A,C

∑
c,d

H(1)

AaDc

EAC

H(1)

DdCc

EAD
M (0)

CcBb
+

∗∑
C 6=B

∗∑
D 6=B,C

∑
c,d

M (0)

AaCc

H(1)

CcDd

EBC

H(1)

DdBb

EBD

− 1

2

∗∑
C 6=A

∑
c

H(1)

AaCc
H(1)

CcAa

EAC
2 M (0)

AaBb
− 1

2

∗∑
C 6=B

∑
c

M (0)

AaBb

H(1)

BbCc
H(1)

CcBb

EBC
2

+
∗∑

C 6=A

∑
c

H(1)

AaCc
H(1)

CcCc

EAC
2 M (0)

CcBb
−

∗∑
C 6=B

∑
c

M (0)

AaCc

H(1)

CcBb
H(1)

BbBb

EBC
2

−
∗∑

C 6=A

∑
c

H(1)

AaAa
H(1)

AaCc

EAC
2 M (0)

CcBb
+

∗∑
C 6=B

∑
c

M (0)

AaCc

H(1)

CcCc
H(1)

CcBb

EBC
2

(F.23)

that differs from eq. F.19 just for the factor 1/2 in the last four terms. It is
noteworthy that the last terms are all null if all diagonal elements of H(1) are null,
such as for the case H(1) = H30.
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In the calculation of vibrationally averaged properties (see section 4.1), the non
null terms in the right-hand side of eq. F.23 are the first three and the sixth, the
ninth and the tenth one, but the last three sum to zero.
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Acronyms

BO Born-Oppenheimer.

CC coupled cluster.

CT contact transformation.

DCPT2 degeneracy-corrected vibrational second-order perturbation theory.

DFT density functional theory.

DSPT2 degeneracy smeared vibrational second-order perturbation theory.

DVPT2 deperturbed vibrational second-order perturbation theory.

GVPT generalized vibrational perturbation theory.

GVPT2 generalized vibrational second-order perturbation theory.

HDCPT2 hybrid DCPT2-VPT2 scheme.

HDSPT2 hybrid DSPT2-VPT2 scheme.

HF Hartree-Fock.

MP2 second-order Møller-Plesset theory.

PES potential energy surface.

QM quantum mechanical.

RS Rayleigh-Schrödinger.
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SE semi-experimental.

TM template-molecule.

TS transition state.

VPT vibrational perturbation theory.

VPT2 vibrational second-order perturbation theory.

ZPVE zero-point vibrational energy.



Acknowledgements

My deepest gratitude to all people who were involved in this work in many
different ways. First, I thank Prof. Vincenzo Barone for the scientific support and
Julien Bloino for his suggestions and helps for the coding. My sincere thanks to
Malgorzata Biczysko for dedicating her time and providing me many useful sug-
gestions, and to Emanuele Penocchio, with whom I had many pleasing moments,
full of interesting scientific discussions.

I thank all my friends especially Danilo Calderini, Serena Manti, Daniele Licari,
Danilo Di Maio, Bala Chandramouli, Giordano Mancini, Elisa Bertolucci, Franco
Egidi, Nicola De Mitri, Ivan Carnimeo, Michele Visciarelli, Luciano Carta, Livia
Vallini, Mireia Segado, Teresa Fornaro, Marta Giani, Valentina Ruggiero, Marta
Davila and Andrea Pallottini, for their encouragements and motivations during
my years of the Ph.D., and with whom I spent many good times.

Last but not the least, my deepest gratitude to my parents and family, Manuela,
Mauro, Marco, Giacomo e Giovanni, for their intense love, support and encour-
agements.

177


	Frontespizio
	Dedica
	Preface
	Introduction
	I Theory
	General framework
	The Born-Oppenheimer approximation
	The Eckart-Sayvetz conditions
	The harmonic oscillator model
	Normal modes orientation
	Nuclear Hamiltonian and perturbation theory

	Vibrational Hamiltonian
	Vibrational energies
	Vibrational l-type doubling and l-type resonance
	Vibrational first-order resonances
	Vibrational second-order resonances
	Vibrational partition function
	Vibrational energy at non stationary points

	Rotational Hamiltonian
	Rotational constants
	Vibrational dependence of equilibrium rotational constants

	Molecular properties
	Vibrational average
	Vibrational polarizability
	Electric dipole transition moments
	Temperature effects


	II Applications
	Accurate equilibrium geometries
	Methodology and computational details
	The performance of DFT force fields
	From small to medium-large systems
	Toward larger systems: the template approach

	Vibrational energies and thermodynamics
	Methodology and computational details
	Fully DFT and hybrid methods
	From medium to large symmetric top systems
	Thermodynamics


	Conclusions
	III Appendices
	Force constants classification
	0 vibrational contribution
	Vibrational l-doubling constants
	Deperturbed treatment of resonances
	2-2 second-order resonances constants
	CT vs RS developments for properties

	Bibliography
	Acronyms
	Acknowledgements

