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ABSTRACT With the rise of the Internet of Things (IoT), social networks, and mobile devices, vast amounts
of mobility data are continuously generated. These data encompass diverse location information from
various sources, including smart vehicles, sensors, wearables, and social media platforms. By leveraging
these data, we explore the semantic enrichment of trajectory components related to moving objects and
locations, bringing the so-called multiple-aspects trajectories and relative privacy issues. Privacy risk
analysis is crucial for the earlier detection of privacy problems, particularly when dealing with semantically
enriched trajectories. In this study, we introduced the TrajectGuard privacy risk assessment framework.
TrajectGuard, an extension of PRUDEnce, achieved significant results by formulating and assessing the
privacy risk of multiple-aspects trajectories under several proposed attacks. The framework introduced a
nuanced risk evaluation using AspectGuard and conducted fair privacy assessments on anonymized datasets
using AnonimoGuard. Its adaptability and versatility makeTrajectGuard a valuable tool for preserving data
privacy with multiple-aspects.

INDEX TERMS Multiple-aspects trajectories, privacy, privacy risk, privacy risk assessment, re-
identification, trajectory, human mobility.

I. INTRODUCTION
The widespread adoption of mobile devices equipped with
location-tracking technologies such as GPS, Wi-Fi, and
3G/4G has led to an increased collection of trajectory data,
providing insights into users’ spatio-temporal evolution. In its
raw form, a trajectory is a sequence of spatiotemporal points
that reveal the object’s position at specific times. However,
trajectory data can be semantically enriched, as introduced
by Spaccapietra et al. [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Amjad Mehmood .

The rise of the Internet of Things (IoT), combined with
the popularity of social networks and mobile devices, has
generated vast amounts of data every second. These data,
originating from diverse sources such as smart vehicles,
houses, sensors, wearables, appliances, social networks (e.g.,
Facebook, Instagram, Twitter, LinkedIn), and location-based
services, can be leveraged to enhance trajectory components.
Enriched data includes information about moving objects
(e.g., heartbeat, mood, and blood pressure) or spatiotemporal
points (e.g., temperature, air quality, and noise pollution).
Integrating these diverse data with trajectories creates a
sophisticated trajectory model known as a multiple-aspects
trajectory [2], [3]. Although multiple-aspects trajectories
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provide valuable insights into human mobility, benefiting
from various fields such as security, urban planning, public
transport management, and epidemic prevention, their uti-
lization raises significant privacy concerns during collection
and publication. A recent interest in European common data
spaces1 and mobility data sharing2 creates a new landscape
in which data from different sources are combined. When
location data are involved, they tend to pose new privacy
concerns that must be investigated.

A substantial risk of privacy violations arises for the
individuals involved, as the data encompass highly sen-
sitive and personal information. This vulnerability could
lead to dangerous privacy breaches. A considerable threat
emanates from re-identification attacks, which focus on
identifying individuals or locations within trajectory datasets
and presenting a significant threat to privacy. Studies on
raw trajectory datasets underscore this risk, revealing that
merely four spatiotemporal points can re-identify 95% of
the individuals in a low-granularity trajectory dataset [4].
Notably, the top three locations in a path are sufficient to
identify over 80% of the individuals [5]. Such disclosures
raise privacy concerns, as location data can lead to intrusive
inferences about habits, social behavior, and even religious
and sexual preferences [6], heightening the risk of activities
such as stalking. The implementation of privacy-preserving
mechanisms are crucial for data publishing.

An important stage in any privacy-preserving process
involves privacy risk assessment, a process aimed at com-
prehending which individuals in the data are susceptible to
privacy violations and quantifying the associated risk. The
Lei Geral de Proteção de Dados (LGPD) in Brazil and
the General Data Protection Regulation (GDPR) in Europe
have established principles and requirements for processing
personal data. They impose responsibilities on data providers
to handle data in a manner that ensures data protection.
Hence, data providers must conduct a quantitative assessment
of privacy risks oversee. Numerous methodologies have been
proposed to evaluate the privacy risks of individuals across
various types of data [7], [8], [9], [10], [11]. Recent research,
exemplified by studies such as [12], [13], and [14], has
focused on privacy-preserving risk assessment of trajectories.
However, the state of the art reveals a gap in the trajectory
privacy research. More specifically, additional analyses are
required to address privacy risks associated with multiple-
aspect trajectories. Quantifying privacy risk is essential for
informed decision-making when selecting suitable privacy-
preserving anonymization techniques. No analysis of the
privacy risk associated with multiple-aspects trajectories or
data with several dimensions is available.

Another crucial point is that methods devised to ensure
privacy in raw and semantic trajectories may not directly
apply to multiple-aspect trajectories, given their heteroge-
neous and multi-dimensional nature. Although we have some

1https://digital-strategy.ec.europa.eu/en/policies/data-spaces
2https://digital-strategy.ec.europa.eu/en/policies/mobility-data

privacy-preserving methods with another type of aspect other
than semantic location, such as [15], [16], [17], the existing
literature lacks investigations demonstrating the viability
of adapting current privacy-preserving methods against re-
identification to this new paradigm, encompassing both
privacy-risk assessment and anonymization strategies.

Privacy risk estimation becomes notably complex when
dealing with multiple-aspect trajectories. Privacy risk esti-
mation encounters several challenges when dealing with
multiple-aspects. The varying granularity and semantics of
different components within a multiple-aspect trajectory
necessitate redesigning existing methodologies. This is
essential for both efficiency and effectively addressing the
diverse nature of the data.

For instance, consider a multiple-aspect trajectory that may
consist of a moving object’s location, time, temperature, and
age range. Extending the existingmethodologies designed for
raw trajectories, containing only space and time, and handling
multiple-aspects is not straightforward. The diverse nature of
these aspects requires redesigning methodologies to account
for their differences efficiently.

Our study addressed these challenges by providing tailored
solutions for estimating privacy risks for multiple-aspect tra-
jectories. This ensures that our approach effectively captures
the nuances of each aspect while efficiently assessing privacy
risks.

The main contribution of this study is the TrajectGuard
framework. TrajectGuard is an extension of the PRUDEnce
framework [12] that specifically focuses on evaluating
privacy risks associated with multiple-aspect trajectories.
It also introduces two new features, AspectsGuard and
AnonimoGuard, which enhance the framework’s privacy risk
assessment capabilities. The framework provides definitions
and mathematical formulations for assessing privacy risks
associated with multiple-aspect trajectories. It addresses
potential threats that could compromise individuals’ privacy
and evaluates the computation of risk and its distribution
within the three experimental datasets.
AspectsGuard and AnonimoGuard are integral compo-

nents of the TrajectGuard framework, which extends the
capabilities of the PRUDEnce framework. AspectsGuard
was introduced to evaluate the impact of single aspects or
their combinations on privacy risk by leveraging minimal
sample uniqueness on background knowledge combinations.
This assessment extends the analysis beyond single-aspect
contributions to investigate the collective risk arising from the
interaction between multiple-aspects.
AnonimoGuard offers a privacy risk assessment for

anonymized datasets by retaining initial background knowl-
edge and comparing it with the anonymized version. This
assessment aims to provide a fair and reasonable privacy risk
evaluation for anonymized datasets.

TrajectGuard, with its components AspectsGuard and
AnonimoGuard, extends the capabilities of the PRUDEnce
framework to support researchers, practitioners, and com-
panies in evaluating the privacy risk of multiple-aspects
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trajectory datasets enriched with various heterogeneous
semantic dimensions. This enables users to identify the
riskiest data by comparing the risk associated with each
individual, thus facilitating informed decision-making and
enhancing privacy protection measures.

The remainder of this paper is organized as follows.
Section II provides the data definitions of trajectories, the
state-of-the-art PRUDEnce framework [12], and a special
uniqueness detection algorithm. Section III presents the state-
of-the-art privacy risk assessment frameworks. Section IV
introduces the TrajectGuard framework. Section V presents
the experimental details, results, and final discussion. Finally,
in Section VI, we discuss our conclusions and future work.

II. BASIC CONCEPTS
In this section, we introduce the necessary background to
understand our work.

A. TRAJECTORY
A trajectory denotes the spatio-temporal evolution of a
moving object. The representation of trajectories varies
based on the level of semantic information linked to the
pure movement data. Trajectories can range from raw
trajectories, which only include spatiotemporal coordinates
and no semantics, to semantic trajectories, and further to
multiple-aspects trajectories, introducing a higher level of
semantic complexity.

B. RAW TRAJECTORIES
A trajectory, or raw trajectory, represents the pure spatiotem-
poral part of the movement and is described as a discrete
sequence of points. It is formally defined in Definition 1.
Each point is a tuple containing spatial coordinates, and a
timestamp [18], as detailed in Definition 2, which we call
trajectories features in this work. Furthermore, a segment of
the trajectory is named a sub-trajectory, with the option to
consider a sub-trajectory itself as a trajectory, as described in
Definition 3 [18].
Definition 1 (Trajectory): A trajectory T is a sequence of

spatio-temporal points, denoted as T = {p0(x0, y0, t0), . . . ,
pn(xn, yn, tn)}. Here, xi and yi (for i = 0, 1, . . . , n) are spatial
coordinates in the set of real numbers R, and ti represents the
time in the set of positive real numbers R+. The parameter n
indicates the size of the trajectory, with t0 < t1 < . . . < tn,
ensuring that the trajectory follows a chronological order.
Definition 2 (Point): A point p is a tuple (x, y, t), where x

and y are spatial coordinates representing a location, and t is
the timestamp representing the time at which the visit to that
location occurred.
Definition 3 (Sub-Trajectory): A sub-trajectory s of a

trajectory T is a sequence of points s = {pi1 , pi2 , . . . , pik },
where 0 ≤ i1 < i2 < . . . < ik ≤ n and 1 ≤ k < n. Each
point pij (for j = 1, 2, . . . , k) belongs to the trajectory T .
This means that s is an ordered subsequence of T containing
at least one point and fewer than all points of T .

In this work, we use the terms point or visit to refer to a
single element of a trajectory, while with the term location l,
we refer to the point’s spatial information. A sub-sequence of
locations (Definition 4) is an ordered list of locations.
Definition 4 (Sub-Sequence): Let L = {l1, l2, . . . , lw}

denote a set of locations. A sequence S = ⟨s1, s2, . . . , sm⟩,
where si ∈ L, is an ordered list of locations, and a location
can occur multiple times in the sequence.

A sequence T = ⟨t1, t2, . . . , tz⟩ is a sub-sequence of S
(denoted T ≼ S) if there exist integers 1 ≤ i1 < i2 < · · · <

iz ≤ m such that:

tj = sij for j = 1, 2, . . . , z.

This means that each element tj in the sub-sequence T is
equal to the element sij in the original sequence S at position
ij, ensuring that T follows the order of S.

C. SEMANTIC TRAJECTORIES
A semantic trajectory is constructed based on stops and
moves, allowing moving objects to enrich their trajectories
with semantic information relevant to their application
domain [19]. A semantic trajectory is essentially a raw
trajectory enhanced by semantic information and is often
accompanied by one or more complementary segmenta-
tions [20].
Definition 5 (Semantic Trajectory): A semantic trajectory

ST is a finite sequence I1, I2, . . . , In , where each Ik
represents either a stop or a move.
Definition 6 (Stop): A stop is a sub-trajectory that starts at

time ti and ends at time tj. For a stop, the object must remain in
a given semantic location for a minimum period 1t = tj − ti,
where tj > ti. Additionally, each stop must be distinct, such
that:

stop1 ∩ stop2 ∩ . . . ∩ stopn = ∅

Definition 7 (Move): A move is a spatio-temporal seg-
ment, movex , defined between stopa and stopb. Here, ti (the
end time of stopa) is the start time of the move, and tj (the start
time of stopb) is the end time of the move. Thus, the duration
of the move is 1t = tj − ti.
The concept of semantic trajectory based on stops and

moves was first introduced by Spaccapietra et al. [1] and
Alvares et al. [21]. Stops are crucial trajectory elements. They
are characterized by start and end times and occur when a
moving object remains at a location for a minimum duration,
as defined in Definition 6. Moves are sub-trajectories of
sampling points delineating the displacement between two
consecutive stops, as presented in Definition 7. Another
notable characteristic of semantic trajectories is their capacity
to incorporate contextual information, such as the mode of
transportation used or the names of places visited [22].

D. MULTIPLE-ASPECTS TRAJECTORIES
The foundation of our proposal lies in the concept ofmultiple-
aspects trajectories.We aim to explore the implications of this
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trajectory data on privacy, and devise appropriate methods to
evaluate the privacy risks associated with such data.

This intricate and heterogeneous trajectory, characterized
by numerous semantic dimensions, is called amultiple-aspect
trajectory. This subsection introduces the definitions of the
multiple-aspect trajectories initially proposed in [2].

The aspect, described in Definition 8, is a real-world
feature that contextualizes the trajectory. It can be a number,
range, text, geometry, or any complex object type.
Definition 8 (Aspect): An aspect A = desc represents a

relevant real-world feature described by desc.
This aspect can be classified according to durability. There

are three types of aspects:

• The volatile aspect (VA) frequently varies during object
movement. For example, places visited (or stops or POI),
heart rate, social media posts, and weather conditions.

• The long term aspect (LA) does not change during the
entire trajectory. Examples of this Aspect are the place
(e.g., city, state, county) where the trajectory occurs,
occupation, marital status, and age.

• The permanent aspect (PA) holds throughout the life
of an object; it is always related to the object, such as
birthday or birthplace.

In Section IV, we introduce attacks related to these aspects
and evaluate how these different aspects may affect privacy
risk.

Each aspect of the trajectory may encompass contextual
details, such as a restaurant, thereby expanding the dimen-
sions of the data. Furthermore, these aspects, which represent
contextual information, exhibit heterogeneity. As the number
of aspects within the trajectory increases, so does its intricacy,
enabling more in-depth analyses and inferences.

Now that we have presented the concept of aspects and
their types, first introduced by [2], we can formally define
a multiple-aspects trajectory, as shown in Definition 9.
Definition 9 (Multiple-Aspects Trajectory): A Multiple-

Aspects Trajectory MATu = ⟨PAu,MATLAu , u⟩ is composed
of a set of permanent aspects PAu = {pa1, pa2, . . . , pah}
of a moving object u with length h. The moving object u
has a trajectory and a set of long-term aspects MATLAu =

{LAT1u , . . . ,LATju}, where each LATiu = ⟨Tiu ,LAiu⟩ and Tiu
is the i-th trajectory. Each LAiu = {laiu1 , laiu2 , . . . , laiur } is a set
of long-term aspects of length r related to the i-th trajectory,
where r ≥ 0 .

Each trajectory Tiu = (p1, . . . , po) is a sequence of points
p1, . . . , po, such that pz = ⟨lz, tz,VAz⟩, where VAz is a non-
empty set of volatile aspects. The volatile aspects VAz =

{va1, va2, . . . , vao} are of size o.
Each MATu is part of a multiple-aspects trajectory dataset

D. This D is part of a mobility database denoted as D,
as described in Definitions 10 and 11.
Definition 10 (Mobility Database): Let D be a mobility

database and D ⊆ D a mobility dataset extracted from D.
A mobility database D is an organized collection of mobility
data.

Definition 11 (Mobility Dataset): A mobility dataset D is
a subset of D, where D = {T1,T2, . . . ,Tn} and Tu ≡ Du is
the trajectory data structure of a moving object u (1 ≤ u ≤ n).
In the case of multiple-aspect trajectories, we represent it as
D = {MAT1,MAT2, . . . ,MATn}.

E. PRUDEnce FRAMEWORK
The privacy risk assessment framework PRUDEnce, devel-
oped by [12], is an essential tool used to evaluate risks related
to privacy, particularly when working with trajectory data.
Its main purpose is to help data providers (DPs)—entities
that collect, manage, and share personal data—make well-
informed decisions that balance privacy with data utility.
PRUDEnce was created to ensure compliance with the
General Data Protection Regulation (GDPR) set forth by
the European Union, specifically addressing Article 25,
which mandates that privacy protection be integrated into
system design from the outset. Moreover, the framework
assists organizations in conducting data protection impact
assessments (DPIAs). Though originally designed to comply
with GDPR, PRUDEnce’s adaptable structure allows it to
be applied across various legal and regulatory environments
worldwide.

One of PRUDEnce’s core applications is assessing privacy
risks associated with data sharing, particularly when raw
personal data is transferred between a data provider (DP)
and a service developer (SD). In these scenarios, background
knowledge plays a vital role. Background knowledge refers
to any external information that attackers may already have
about individuals, which they could use to undermine privacy
protections. Understanding and evaluating this background
knowledge is crucial for determining how effective privacy
attacks might be, and thus, it is a central element of the
PRUDEnce framework.

Background knowledge refers to the specific information
an adversary may have about a particular user, denoted
as u. The PRUDEnce framework assesses privacy risks
by considering various levels of this knowledge, ranging
from minimal to extensive. This approach allows for more
accurate risk evaluation and supports informed decision-
making. It is important to define the attack models and how
much background knowledge the adversary has to balance
keeping the data useful and protecting privacy.

A background knowledge category includes different
information an attacker might possess about an individual.
In the context of mobility data, for example, these categories
could include data points such as geographic locations,
timestamps, how often a person visits specific areas, or the
likelihood of returning to a given location. The background
knowledge configuration, denoted as k , refers to the quantity
of information that the adversary holds.

For example, if an attacker knows k = 3 specific points
along a user’s movement path, this configuration reflects a
particular set of known data points. Each piece of information
the attacker has is an instance of background knowledge.
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For example, in a real-world case involving a ride-sharing
company, an attacker might know the geographic location
and timestamp of a user’s previous rides. The geographic
location and timestamp will be the background knowledge
categories. The attacker knows, for instance, that a user has
taken three rides (k = 3) between specific locations at
particular times. This is a concrete instance of background
knowledge that could be used to compromise privacy. The
background knowledge configurations would include all
possible combinations of three data points from the user’s ride
history, each consisting of a location and a timestamp.

The formal definition of these concepts, as presented
in [12], is shown below:
Definition 12 (Background Knowledge: Categories, Con-

figurations, and Instances): A background knowledge cate-
gory, B, consists of several dimensions of data an attacker
could possess. A background knowledge configuration,
represented as Bk = {b1, b2, . . . , bw}, belongs to the set of
background knowledge categories B = {B1,B2, . . . ,Bn},
where k indicates the number of known data points.
Each element b within Bk is an instance of background
knowledge.

Given a databaseD, let D represent a subset of data drawn
from D, aggregated over various dimensions, with Du being
the subset of records belonging to a specific individual u.
Definition 13 (Re-Identification Probability): To evaluate

the risk of re-identification based on a specific background
knowledge instance, we define a function matching(d, b),
which determines if a record d ∈ D corresponds to a specific
background knowledge instance b ∈ Bk . We then define
M (D, b) = {d ∈ D | matching(d, b) = True}, which
represents the set of records that match the instance b. The
probability of re-identification for a user u based on the
background knowledge instance b in dataset D is given by:

PRD(d = u | b) =
1

|M (D, b)|

This probability reflects the likelihood that a record d ∈

D corresponds to the individual u, given the adversary’s
knowledge instance b ∈ Bk .

The matching function, matching(d, b), is used to check
if a record d in the dataset D aligns with the known
background knowledge instance b. The likelihood of re-
identification depends on how much background knowledge
the attacker holds. PRUDEnce determines re-identification
risk by calculating the highest probability of re-identification
across all background knowledge instances in a given
configuration, as formalized in Definition 14.
Definition 14 (Re-Identification or Privacy Risk): The re-

identification risk for a user u concerning a background
knowledge configuration Bk is defined as the highest
probability of re-identification for all instances within Bk .
The risk is Risk(u,D) = max PRD(d = u | b), where
b ∈ Bk . The minimum risk, representing a random guess in

the dataset D, is expressed as |Du|
|D|

, and Risk(u,D) = 0 when
the individual u is not present in the dataset.

Individuals may be exposed to varying privacy risks
depending on the configuration of their background knowl-
edge used during an attack. Each attack scenario is tailored
to a particular type of background knowledge, and different
configurations {B1, . . . ,Bm} are analyzed. For every configu-
ration Bk , the re-identification probabilities for all instances b
are calculated. The highest of these probabilities determines
the privacy risk associated with the individual for that specific
configuration.

F. SUDA ALGORITHM OVERVIEW
This subsection presents the state-of-the-art Special Unique
Detection Algorithm, SUDA, proposed in [23]. SUDA is
an algorithm designed to identify unique aspect sets and
Minimal Sample Uniques (MSUs). Identifying aspect sets
at the record level sets the stage for evaluating these sets to
determine MSUs. MSUs play a crucial role in understanding
the risk associated with individual records, considering the
size and number of these unique sets.

TABLE 1. Data set example.

Table 1 illustrates an example of an MSU found in record
8: set {Employed, 1}. This set is an MSU because neither
of its subsets, {Employed} or {1}, is unique in the sample,
and the record itself is unique. This example underscores
the significance of identifying MSUs to understand the re-
identification risk associated with individual records.

Two critical considerations influence the risk associated
with records:

1) The smaller the size of the MSU within a record, the
greater is the risk of the record.

2) The larger the number of MSUs possessed by a record,
the greater the risk of that record [24].

The next section will present the related work regarding
risk assessment frameworks.

III. RELATED WORK
In this section, we explore various privacy risk assessment
methods. We thoroughly compared these methods with our
own and highlighted their distinctions and advancements.

Regarding quantitative privacy risk assessment, Song et al.
[25] proposed a modification-based anonymization approach
and evaluated the privacy risk based on the uniqueness
of the trajectory data. Achara et al. [26] investigated the
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privacy implications of a list of apps installed by users
on smartphones, emphasizing the re-identifiability issue.
Basu et al. [27] considered the cost of privacy attacks and
provided a more practical assessment of the privacy risks
of data release. The evaluation of this model involved the
use of k-anonymized data, adding a real-world dimension
to the analysis of privacy risks. In Armando et al. [28], the
proposed framework integrates runtime risk assessment into
information disclosure access control by utilizing disclosure
risk for decision-making. Other studies in the literature
explore re-identification risk as a privacy measure within
the realms of network and social media data [29], [30].
In Cecaj et al., they combined network data with mobile
phone data to achieve the re-identification of individuals [31].
Khalfoun et al. [32] presented in this paper selects the
optimal Numerous Location Privacy Protection Mechanisms
and configuration without exposing raw geo-located traces.
In Pellungrini et al. [33], they propose a study of privacy
risk for social network data, and in Mariani et al., a study
of privacy risk for psychometric profile [34]. In the study by
Silva et al. [35], the Personal Data Analyser is introduced,
employing automated data monitoring with Regular Expres-
sions, NLP, and machine learning to boost privacy and reduce
risks. In Guo et al. [36], they propose a risk-sensing approach
to vehicle location privacy based on the continuous adaptive
risk and trust assessment strategy.

In this work, we adopted the PRUDEnce framework
introduced by Pratesi et al. [12]. This framework offers
a detailed methodology for computing privacy risk in a
data-driven manner. Essentially, PRUDEnce revolves around
the foundational principle of k-anonymity, wherein privacy
risk assessment is intricately linked to the dimensions of
the k-sets associated with each individual in the dataset.
The practical effectiveness of PRUDEnce was demonstrated
using real mobility data and by exploring the presence,
trajectory, and road segment data formats. Our decision to use
PRUDEnce was based on its flexible extension and suitability
for trajectory data.

However, the computational intensity of PRUDEnce has
encouraged the exploration of machine learning approaches
that aim to predict privacy risks, circumventing the need for
computationally exhaustive processes. Pellungrini et al. [13]
presented a swift and adaptablemethod for estimating privacy
risk in human mobility data. In EXPERT framework devel-
oped by Naretto et al. [14]. This framework not only refines
PRUDEnce by introducing a machine learning methodology
proficient in directly forecasting privacy risk from sequential
data but also enhances the interpretability of these pre-
dictions. Another study proposed by Naretto et al. [37]
presents an optimization of EXPERT, the EXPHLOT. They
use distinct time series classifications, such as ROCKET
and INCEPTIONTIME, to improve risk prediction while
reducing computation time. These innovations collectively
contribute to a more streamlined and interpretable privacy
risk assessment, effectively addressing the computational
challenges inherent in traditional PRUDEnce computations.

A. CORRELATION WITH WORKS
Table 2 compares various related studies in the privacy
risk assessment field. Each row represents a different work,
whereas the columns indicate the specific characteristics or
features of the study. Each feature and its correlation with the
work are explained as follows.

• Quantitative: These works involve numerical data or
measurable factors for assessing privacy risks, as in all
works in the table.

• Raw Trajectory: Direct application to raw trajectory
data to address privacy risks. Works such as [12], [13],
[14], [25], [32], [36], and [37] fall into this category.
Unlike most approaches, our framework was designed
to evaluate trajectories with aspects.

• Individual Risk: Focuses on assessing or addressing
privacy risks at an individual level, as indicated in all
works.

• Computation Improvements: Includes works that
mention enhancing the efficiency or reducing the
computational requirements of privacy risk assessment
methodologies, as in [13], [14], and [37]. Both
approaches require an initial conventional risk analysis
to generate training data for predicting the risk of new
data.

• Re-evaluation: This refers to works that mention or
imply a continuous or iterative process of evaluating
privacy risks, as in [12]. Our work also introduces a
novel method for assessing risk after applying privacy-
preserving mechanisms. The key distinction of our
method lies in its more realistic approach to evaluating
risk in anonymized datasets.

• Machine Learning: Utilizes machine learning tech-
niques to assess or predict privacy risks. Machine
learning has been used to estimate privacy risk levels,
as in [13], [14], [32], [35], [36], and [37].

• Quality: Works that aim to improve or ensure the
quality of data or privacy protection measures as in
[12], [13], and [32].

Machine learning algorithms and quality evaluations are
beyond the scope of this work. However, our innovation
lies in incorporating aspect-level risk assessment, named
AspectGuard and introducing AnonimoGuard, a new method
for anonymity risk assessment, and developing data models
for risk assessment tailored to multiple-aspects trajectories.

IV. TRAJECTGUARD
In this section, we introduce one of the main contributions
of this work, the TrajectGuard framework.3 This frame-
work extends PRUDEnce by introducing new functionalities
specifically designed to evaluate privacy risks associated
with data containing multiple-aspects. Within this extended
framework, we present three key contributions: a comprehen-
sive data model for handling multiple-aspects and attacks,
a privacy risk assessment that considers the contribution of
these aspects, and an evaluation of the privacy risk within

3https://github.com/oliveiragomesphd/TrajectGuard/
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TABLE 2. Comparison between the related work.

anonymous datasets. Figure 1 depicts the similarities between
the components within the blue rectangle and the newly
introduced modules, contrasting them with the distinctive
contributions of TrajectGuard highlighted within the red
rectangle.

TrajectGuard, which is an extension of the PRUDEnce
framework, comprises three main modules: the Multiple-
Aspects Trajectories data model and attacks, AspectGuard,
and AnonimoGuard.

1) Multiple-Aspects Trajectories data model and attacks:
We define the multiple-aspects data model and outline
the mathematical formulation for a range of privacy
attacks on multiple-aspects trajectories by defining
and analyzing potential threats that could compromise
individuals’ privacy.

2) AspectGuard: This specifically focuses on evaluating
the impact of single aspects or their combinations on
privacy risk. Unlike the current process, in which we
assess the risk related to values, we address the risk
to the aspect itself or a combination of aspects. This
assessment leverages the minimal sample uniqueness
of background knowledge combinations. Our analysis
extends beyond single-aspect contributions to investi-
gate the collective risk emerging from the interaction
of multiple-aspects. Moreover, uniqueness emerged as
the primary factor influencing re-identification risk.
To offer an alternative perspective on evaluating re-
identification risk, we introduce a novel evaluation

metric based on the concept of Minimal Sample
Unique, which compares the risk of each user’s
multiple-aspects trajectory data with the others.

3) AnonimoGuard: A privacy risk assessment for
anonymized datasets. We retained the initial back-
ground knowledge and compared it with the
anonymized version by applying it to both the
trajectory data and the permanent aspect set.

A. DATA MODELING AND PRIVACY RISK
Our framework was designed to work the unique charac-
teristics of multiple-aspect trajectories. According to [13],
a background knowledge category represents an adversary’s
specific information regarding the particular dimensions
of an individual’s mobility data. The typical dimensions
of mobility data are space and time. However, in the
context of multiple-aspects trajectories, we have proposed
one additional dimension: amoving object. These dimensions
can be classified into three primary categories: spatial,
temporal, and personal. Furthermore, the dimensions are
classified according to their variability: volatile, long-term,
and permanent. An instance of background knowledge is
specific information possessed by an adversary. To provide
an example of instances within background knowledge
categories: location semantic (spatial volatile), year (temporal
long-term), and city of birth (personal permanent).
Definition 15 (Probability of Re-Identification in Traject-

Guard): Given an attack, function matching(D, b) indicating
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FIGURE 1. TrajectGuard framework.

whether a record d ∈ D matches the instance of
background knowledge configuration b ∈ Bk , and function
M (D, b) =

∑n
i=1matching(Di, b), we define the probability

of re-identification of an individual u in datasetD asPRD(d =

u|b) =
M (Du,b)
M (D,b) .

Different from PRUDEnce, in Definition 13, the prob-
ability of re-identification associated with this knowledge
is determined by the number of individual trajectories
containing this specific instance divided by the total number
of trajectories including the same instance. In datasets
containing multiple aspect trajectories, each individual may
have one ormore trajectories containing the same background
knowledge instance, and it is important to consider this in the
evaluation process. For example, if a background knowledge
instance is present in two trajectories, using PRUDEnce,
the probability of re-identification would be 50%. However,
in TrajectGuard, both trajectories could be from the same
individual, and the probability of re-identification would be
100%.

The same situation exists in risk evaluation. It can be
evaluated in two ways: the risk per individual’s trajectory or
the maximum risk value among the individual’s trajectories.
The choice between these approaches depends on the specific
goals of the analysis.

Let U represent the set of individuals in the dataset, and
D denote a dataset containing multiple-aspects trajectories.
Each individual u can have at least one trajectory.

1) Risk per Individual’s Trajectory: The risk per indi-
vidual’s trajectory is computed individually for each
trajectory belonging to individual u.

2) Maximum Risk Among Individual Trajectories: The
maximum risk value among individual trajectories is
determined by selecting the highest risk value among
all trajectories associated with individual u. This means
that each trajectory of the user is evaluated for its
privacy risk, and the highest risk value among all
trajectories is taken as the final privacy risk.

The next subsection introduces the proposed privacy
attacks on multiple-aspects trajectory datasets. It describes,
evaluates, and defines them in detail.

B. PRIVACY ATTACKS
This subsection introduces privacy risk attacks on multiple
aspect trajectories using previously presented definitions.
We cover aspects attacks, location attacks, and visit attacks
as well as multiple attacks.

We consider that for each individual u, we have a set
MATu = ⟨u,PAu,MATLAu⟩ containing its permanent aspects,
such as birthday and birthplace, and its trajectories with
their long-term aspects, such as occupation and age of the
individual and state or city of the trajectory as it does not
change during it. In each trajectory related to each point,
we also have volatile aspects such as location semantics and
temperature.
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1) PERMANENT ASPECT ATTACK
In this attack, the adversary knows one or more permanent
aspects of their victim. Let h be the number of permanent
aspects, denoted as PA = {pa1, pa2, . . . , pah}, known for
individual u. The Permanent Aspect Attack uses background
knowledge of k permanent aspects, where k ≤ h. The set of
possible configurations of background knowledge of length
k is defined as Bk = P(PAu)k .

Each instance b ∈ Bk is a subset of permanent aspects b ⊆

P(PAu)k of length k , where P(PAu)k represents all possible
k-combinations of permanent aspects for individual u. Given
Du = {u ∈ D | MATu} and PAu ⊆ MATu, we define the
evaluate function as:

matching(D, b) =

{
1, if b ⊆ P(PAu)k

0, otherwise
(1)

For instance, if an attacker knows that the victim was born
in France in 1950, they extract all trajectories of people with
these aspects.

2) LONG-TERM ASPECT ATTACK
In this attack, the adversary knows one or more long-term
aspects of an individual or its location from one or more
trajectories. Let j be the number of trajectories and long-
term aspects MATLAu = ⟨LAT1u , . . . ,LATju⟩ of an individual
u known by the attacker, where the sequence of long-term
trajectories is temporal, meaning the trajectories are ordered
in time such that t1 < t2 < · · · < tj, where each ti represents
the timestamp, with t1 being the time information related to
the first point and tj related to the last point. Each LATiu is
represented as (Tiu ,LAiu ), where LAiu = {lai1, la

i
2, . . . , la

i
r } is

the i-th set of long-term aspects related to the i-th trajectory.
The Long-Term Aspect Attack is performed using back-

ground knowledge Bk = {(LAiu )
k

| LATiu ∈ MATLAu},
where LT (LAiu )

k represents all possible k-combinations of
long-term aspects. Since each instance b ∈ Bk is a subset
of long-term aspects b ⊆ LT (LAiu )

k , given MATLAu ∈

MATu ∈ D of individual u, ∀LATiu ∈ MATLAu ,LAiu ∈ LATiu ,
we define the matching function as:

matching(D, b, u) =

j∑
i=1

evaluate(LAiu , b) (2)

evaluate(LAiu , b) =

{
1, if b ⊆ LT (LAiu )

k

0, otherwise
(3)

For instance, if an attacker knows that the victim is a
female nurse, they extract all trajectories of people with these
aspects.

3) VOLATILE ASPECT ATTACK
The adversary knows a set of volatile aspects related to an
individual or location for a specific timestamp. Let j be the
number of trajectories and long-term aspects MATLAu =

⟨LAT1u , . . . ,LATju⟩ of an individual u known by the attacker.
Each LATiu = (Tiu ,LAiu ) represents the i-th trajectory, where

each Tiu = (p1, . . . , pn) is a sequence of points. A point in
the z-th position pz = ⟨lz, tz,VAz⟩ is composed of location l,
timestamp t , and VAz, which is a non-empty set of volatile
aspects VAz = {va1, va2, . . . , vao} of size o.
The Volatile Aspect Attack is performed using background

knowledge Bk = {V (Tiu )
k

| LATiu ∈ MATLAu , pz ∈

Tiu}, where V (Tiu )
k represents all possible k-combinations of

volatile aspects sets from trajectory i. Each instance b ∈ Bk
is a subset of volatile aspects b ⊆ V (Tiu )

k . Given MATLAu ∈

MATu ∈ D of individual u, ∀LATiu ∈ MATLAu ,Tiu ∈ LATiu ,
and Du = {u ∈ D | MATu}, we define the matching function
as:

matching(D, b) =

j∑
i=1

evaluate(Tiu , b) (4)

evaluate(T , b) =

{
1, if b ⊆ V (Tiu )

k

0, otherwise
(5)

For instance, if the attacker knows that the victim went to
the supermarket and church at a temperature of 25◦C, they
extract all trajectories of people that contain these aspects.

For all attacks in sequence, the matching function is
calculated as follows:

matching(D, b) =

j∑
i=1

evaluate(LAiu , b)

The evaluation will change for each attack, as seen in the
following subsections.

4) LOCATION SEQUENCE ATTACK
In this attack, introduced in [13], [38], and [39], the adversary
knows a subset of the locations visited by the individual and
the temporal order of the visits.

Let j be the number of trajectories and long-term aspects
MATLAu = ⟨LAT1u , . . . ,LATju⟩ of an individual u known
by the attacker, where the sequence of long-term trajectories
is temporal. Each LATiu = (Tiu ,LAiu ) represents the i-th
trajectory, where LAiu = {lai1, la

i
2, . . . , la

i
r } is the i-th set of

long-term aspects related to the i-th trajectory with length r .
Each Tiu is a temporal sequence of points p1, . . . , pn, such
that t1 < t2 < tn and pz = ⟨lz, tz,VAz⟩, where z represents
the point position in the trajectory and lz is the location.

The Location Sequence Attack background knowledge is
a set of configurations based on k locations. We define the
set of possible configurations of background knowledge as
Bk = {LS(Tiu )

k
| Tiu}, where LS(Tiu )

k denotes the set
of all possible k-subsequences of the locations in set Tiu .
We indicate with a ≼ls b that a is a subsequence of b.
The symbol ≼ls represents a subsequence of locations. Each
instance b ∈ Bk is a subsequence of location lu ≼ls Tiu , where
lu = ⟨(l1) ⊂ p1, . . . , (lk ) ⊂ pk ⟩. GivenMATLAu ∈ MATu ∈ D
of individual u, ∀LATiu ∈ MATLAu ,Tiu ∈ LATiu , and Du =

{u ∈ D | MATu}, we define the evaluation function as:

evaluate(T , b) =

{
1, b ≼ls LS(T )k

0, otherwise
(6)
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In this attack, the attacker knows that a person went first to
a supermarket and then to work but did not know the sequence
of places.

5) VISIT ATTACK
In this attack, introduced in [6], [13], [40], [41], and [42],
an adversary knows a subset of the locations visited by the
individual and the time the individual visits these locations.

Let j be the number of trajectories and long-term aspects
MATLAu = ⟨LAT1u , . . . ,LATju⟩ of an individual u known
by the attacker, where each LATiu = (Tiu ,LAiu ) represents
the i-th trajectory. Each Tiu is a temporal sequence of points
(p1, . . . , pn), where n represents the numeric position of the
last point in the trajectory, (t1 < t2 < tn), and pn =

⟨ln, tn,VAn⟩, where ln is the location and tn is the temporal
information.

A Visit Attack is performed using background knowledge
Bk = {LV (Tiu )

k
| Tiu}, where LV (Tiu )

k denotes the set of
all possible k-subsequences of the spatio-temporal points in
set Tiu . We indicate with a ≼lv b that a is a subsequence
of b. The symbol ≼lv is used to represent a subsequence of
spatio-temporal points (or visits). Each instance b ∈ Bk is
a subsequence of spatio-temporal points b ≼lv Tiu , where
b = ⟨(l1, t1) ⊂ p11, . . . , (lk , tk ) ⊂ pk ⟩. Sub-trajectory b
positively matches a specific trajectory i if the latter supports
b in the spatial and temporal dimensions. Given MATLAu ∈

MATu ∈ D of individual u, ∀LATiu ∈ MATLAu ,Tiu ∈ LATiu ,
and Du = {u ∈ D | MATu}, we define the evaluation function
as:

evaluate(T , b) =

{
1, b ≼lv LV (T )k

0, otherwise
(7)

In this attack, the attacker knows that, for instance, a person
first went to a supermarket at 1 pm and then to work at 2 pm.
They know when a person visited and the place.

We also propose an evaluation of combined attacks,
that is, attacks where background knowledge combines two
previously defined attacks. Table 4 presents a complete list
of the attacks and their matching criteria. Table 3 presents
a comprehensive list of mathematical symbols and their
meanings.

In Figure 2, we illustrate the risk assessment process in
TrajectGuard. The input is a dataset containing multiple
aspects of trajectories. In this example, the attacker attempts
a location sequence attack with permanent aspects, which
in this case is the user’s birthplace. In the first step, all
background knowledge configurations are generated with a
knowledge size of two, meaning combinations are created
with k = 2. The second table shows the resulting background
knowledge instances. Next, each configuration’s probability
of re-identification is calculated, as shown in the third table,
where each instance has its associated risk evaluated. In the
final step, the maximum risk value for each user is identified
by getting the maximum trajectory risk value. However,
it’s also possible to determine the highest risk per user’s
individual trajectory.

TABLE 3. Multiple attacks symbols.

C. AspectGuard
In this subsection, we introduce AspectsGuard, an enhance-
ment of the PRUDEnce framework, and the contribution of
this study, a module specifically focused on evaluating the
impact of single aspects or their combinations on privacy
risk. Unlike the current process based on [12], in which
we assess the risk related to the background knowledge
configuration values, we address the risk to the aspect itself or
a combination of aspects. This assessment leverages minimal
sample uniqueness in background knowledge combinations.
Our analysis extends beyond single-aspect contributions to
scrutinize the collective risk emerging from the interaction of
multiple-aspects.

Moreover, through the comprehensive privacy risk assess-
ment conducted in Section V, we discerned that uniqueness
emerged as the primary factor influencing an individual’s
re-identification risk.

The AspectGuard Risk Assessment assesses re-
identification risk by considering the aspects of risk
contribution at and dataset levels. To enhance this evaluation,
we present a Special Uniques Detection Algorithm [43] that
measures the contribution of each aspect to re-identification.
This algorithm relies on the concept of special uniqueness
within records, where a set is considered special unique if it
is uniquely representative in the sample across all aspects and
concurrently contains at least one Minimal Sample Unique
(MSU), which is a unique attribute set without any unique
subsets [23].

1) CONTRIBUTION CALCULATION
To comprehensively assess the re-identification risk, Aspect-
Guard employs a contribution calculation. This calculation
quantifies how each aspect contributes to re-identification
by counting the number of MSUs involved in each aspect.
This approach provides valuable insights into the aspects
significantly contributing to re-identification risk.

This definition describes a dataset in the context ofmultiple
aspects of trajectories. It is crucial to emphasize that this
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TABLE 4. Multiple attacks summary.

method is not limited to trajectory data and can be applied
to any aspect.

Definition 16 represents a data structure denoted as
DSaspects containing n records (A1,A2, . . . ,An). A set of
aspects represented each record Ai in the dataset. For
example, if a dataset follows a multiple-aspects trajec-
tory data model, Ai contains the smallest granularity,
the coordinates and timestamp, and other related aspects.
In the given example, these aspects are (x, y, t,PA,LA,VA).
It is crucial to emphasize that this method is not lim-
ited to trajectory data; it can be applied to any set of
aspects.

In simpler terms, it outlines the structure of the dataset.
It consists of individual records, each characterized by a set
of aspects. The specific aspects mentioned in the example
are related to a multiple-aspects trajectory data model and
include information such as coordinates (x, y), time (t), and
attributes such as permanent aspects (PA), long-term aspect
(LA), and volatile aspects (VA).
Definition 16 (Data Structure): Consider a dataset

DSaspects comprising n records, denoted as DSaspects =

{A1,A2, . . . ,An}. A set of aspects characterizes each record
Ai in this dataset. For example, in the context of a multiple-
aspects trajectory data model, a record Ai includes the
minimum granularity aspects such as coordinates (x, y),
timestamp t , and additional attributes like permanent aspects
(PA), long-term aspects (LA), and volatile aspects (VA).
Definition 17 (Aspect Subset): An aspect subset sbi is

associated with a specific record Ai, where sbi ⊆ Ai.
In Definitions 16 and 17, Ai represents the set of aspects.

We define P(Ai) as the power set of Ai, which is the set of
all possible subsets of Ai. Each subset (sb1, sb2, . . . , sbm) ∈

P(Ai) represents an aspect set. Thus, sbx is the x-th possible
subset generated from Ai and is considered as a candidate
MSU.

Minimal Sample Unique (MSU) refers to a set of attributes
associated with a specific entity or record in a dataset that
possesses two key properties:

1) Uniqueness: The subset sbx must uniquely identify the
entity among all the other entities in the dataset. For an
attribute set Ai, a subset sbx ⊆ Ai satisfies:

∀j ̸= i, sbx ̸⊆ Aj

2) Subset Uniqueness: The subset sbx does not contain
any proper subset that uniquely identifies the entity
Ai. Formally, for all proper subsets B ⊂ sbx , it holds
that:

∃j ̸= i such that B ⊆ Aj

ensuring that every proper subset B of the subset sbx
is contained in at least one other attribute set Aj of a
different entity Rj.

In summary, an MSU set represents the minimal combi-
nation of attributes required to distinguish a specific entity
from all other entities in the dataset. It also has the additional
property that no subset of this set can uniquely identify an
entity.
Definition 18 (Contribution Calculation): Let C(a) be the

contribution of attribute a to re-identification. Calculate C(a)
as follows:

C(a) =

n∑
x=1

{
1 if a ∈ sbx and sbx is an MSU
0 otherwise

1) Identification of Aspect Sets:
• For each record Ri in the dataset Daspect, identify
all possible aspect subsets P(Ai).

2) Evaluation of MSUs:
• For each aspect set sbx , determine whether it is a
Minimal Sample Unique (MSU). A set sbx is an
MSU if:
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FIGURE 2. TrajectGuard framework data-flow.

– sbx is unique in the sample.
– None of its subsets is unique in the sample.

3) Contribution Calculation:
• The contribution of each aspect in the dataset is
calculated by counting the number of MSUs it is
part of.

Drawing parallel with privacy risk assessment, identifying
all possible aspect subsets is similar to calculating all
background knowledge configurations. Therefore, MSUs are
unique background knowledge configurations in which none
of their aspects are unique.

2) AspectGuard RISK ASSESSMENT
In the AspectGuard Risk Assessment, we evaluate the re-
identification risk by considering the risk contribution of
aspects at the dataset level. We can understand the impact of
each aspect and its relation to re-identification risk.

We explore the core contribution of AspectGuard, where
we quantify the distinct impact of each aspect or combination
of aspects on the risk of re-identification. The aspect risk
is calculated by considering the number of Minimal Sample
Uniques per aspect combination and dividing it by the total
number ofMinimal Sample Uniques. The formula for aspects
risk is as follows:

Riskaspect(a) =
C(a)

Total MSUs
, (8)

where (a) represents the aspect(s) under consideration. This
metric provides insights into the overall risks associated with
the different aspects of the dataset.

These risk assessments form a crucial part of our
approach, providing a comprehensive understanding of the
re-identification risks related to the aspects risk contribution
at both individual and dataset levels.

D. AnonimoGuard
In this subsection, we introduce the last contribution: Anon-
imoGuard, which measures the privacy risk for anonymized
datasets. AnonimoGuard Risk Assessment acknowledges the
particularities of evaluating privacy risk in anonymized
mobility datasets. The main factor is a detailed comparison
between the background knowledge configurations between
the original and anonymized datasets. Here, we use the
background knowledge instances from the original dataset as
the adversary’s knowledge, ensuring a realistic perspective of
the re-identification risk.

In simpler terms, AnonimoGuard ensures fairness by
considering the background knowledge instances from the
original and anonymized datasets as the foundation for eval-
uating re-identification risk. For instance, AnonimoGuard
could be used to assess the privacy risk of an anonymized
trajectory dataset, where multiple aspects such as location,
time, personal information, and frequency of visits are
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recorded. It assesses whether combining these aspects might
allow an attacker to re-identify individuals based on their
movement patterns. By performing this evaluation, Anoni-
moGuard ensures that the dataset is genuinely anonymized,
confirming that re-identification is impossible even when
considering multiple trajectory-related attributes.

1) PRIVACY RISK CALCULATION
In the AnonimoGuard Risk Assessment process, background
knowledge configurations are identified in both the original
dataset D and anonymized dataset D′ using Definition 12.
Find the intersection of background knowledge configura-
tions between datasets, representing the shared knowledge
available to the adversaries. The individual privacy risk is
calculated based on this intersection set, considering the
maximum ratios of matching records if the set is not empty,
and the risk is set to zero if the set is empty. Next, we describe
these steps and definitions.

1) Adversary Background Knowledge: Identify the
background knowledge configurations in the original
dataset D using Definition 12. To calculate the
background knowledge configurations in the original
dataset for each individual’s trajectory data identified in
the original datasetD, we identify the set of background
knowledge configurations Buk .

2) Background Knowledge Configurations After
Anonimization: Identify the background knowledge
configurations in the anonymized dataset D′.
Definition 19 (Background Knowledge Configura-
tions in Anonymized Dataset D′): Similarly, for each
individual’s trajectory data identified in anonymized
dataset D′, we identify the set of background
knowledge configurations Bu

′

k .
3) Background Knowledge Intersection: Find the inter-

section set between the background knowledge con-
figurations in the original and anonymized datasets
(Buk ∩ Bu

′

k ). This set represents the common knowledge
available to the adversary in both datasets, as defined
in Definition 20.
Definition 20 (Intersection of Background Knowledge
Configurations): For each u, find the intersection
set Buk ∩ Bu

′

k between the background knowledge
configurations in the original and anonymized datasets.

4) Anonymity Risk Assessment The privacy risk for
each trajectory is calculated based on the intersection
set. If the intersection set is not empty, the risk is
calculated as the maximum ratio of matching records.
If the intersection set is empty, the risk is zero,
indicating no common background knowledge and no
re-identification risk.
a) Calculate Background Knowledge Configura-

tions in Original Dataset D:
For each u in the original dataset D, identify the
background knowledge configurations Buk using
Definition 12.

b) Privacy Risk Calculation:

The anonymity risk of re-identification (or
anonymity privacy risk), as described in Def-
inition 21, for an individual, denoted as u,
is determined by considering the intersection set
of background knowledge configurations in both
the original and anonymized datasets, represented
as Buk∩B

u′

k . If this intersection set is not empty, the
risk is calculated as the maximum probability of
re-identification for each background knowledge
configuration b′ within the intersection set, i.e.,
max

(
PRD′ (d = u | b′)

)
.

However, the risk is set to zero if the intersection
set is empty, indicating no common background
knowledge between the original and anonymized
datasets.
Definition 21 (Risk of Re-Identification or Pri-
vacy Risk in AnonimoGuard): The risk of re-
identification (or privacy risk) of an individual u
given an intersection set of background knowl-
edge configurations Buk ∩ Bu

′

k is defined as the
maximum probability of re-identification:

Risk(u,D′)

=

{
max

(
PRD′ (d = u | b′)

)
, ∀b′

∈ (Buk ∩ Bu
′

k )
0, Buk ∩ Bu

′

k = ∅

V. EXPERIMENTS
This section presents the datasets and experiments conducted
using the TrajectGuard framework.4 The individual will be
named as a user due to the dataset’s characteristics. We eval-
uated the privacy risk, aspect risk (AspectGuard), and risk
after applying data protection techniques (AnonimoGuard).
Finally, each subsection concludes with a discussion of the
results.

A. MULTIPLE-ASPECTS TRAJECTORY DATASETS
This subsection introduces the datasets used in our study:
Foursquare and the U.S. Census Bureau, Breadcrumb, and
WiFi UFSC. These datasets were categorized as public,
semi-private, and private, respectively. All datasets were
preprocessed using the scikit-mobility Python library [44].

1) FOURSQUARE AND THE U.S. CENSUS BUREAU
Our Foursquare data set comprises check-ins in NYC
collected from April 12, 2012, to February 16, 2013, for
almost ten months. It contains 227,428 check-ins. Each
check-in is associated with a user’s ID, timestamp in minutes,
GPS coordinates (latitude and longitude), and semantic
meaning. Venue categories from Foursquare characterize it.
This data set was authored by [45]. The data were compressed
to a radius of 100 m. To create a multiple-aspects trajectory
data set, we included information on users using NYC U.S.
Census Bureau information. The NYC U.S. Census provides

4https://github.com/oliveiragomesphd/TrajectGuard/
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population information, such as gender and race, represented
by percentage values per census tract. The census tracts were
territorial areas established by the Bureau of the Census for
population analysis. We use the latitude and longitude from
the foursquare data set to obtain census tracts and census
tracts to obtain the Bureau of Census information.
Data Information: The aspects related to the location and

moving object, other than spatiotemporal coordinates and
time, are:

• Volatile Aspects: Semantic location (venue category)
and temperature.

• Long-term aspect: Trajectory size, weekday.
• Permanent aspect: Gender, employed, citizen, race.

2) BREADCRUMBS
The Breadcrumbs dataset [46] was created using the data
obtained during a campaign conducted in Lausanne in the
spring of 2018. Eighty participants were recruited through a
specialized Labex unit at the University of Lausanne. Access
to the dataset was granted through a secure data-sharing
license. For our analysis, we specifically utilized the GPS
data.
Data Information: The aspects related to the location and

moving object, other than spatiotemporal coordinates and
time, are:

• Volatile Aspects: Location semantic (street) and
temperature

• Long-term aspect: Weekday and trajectory size.
• Permanent aspect: Gender, age, job, family status,
nationality, and exercise.

3) WIFI
The Wi-Fi UFSC dataset is sourced from user device asso-
ciations with wireless access points within the university’s
wireless network. The devices to be connected must be within
a specified radio range to receive signals from these access
points. Each access point is associated with its geographic
coordinates, indicating its installation location. The dataset
used in the experiment captured a single three-day log of
14,360 undergraduate students.
Data Information: The aspects related to the location and

moving object, other than spatiotemporal coordinates and
time, are:

• Volatile Aspects: Semantic location and temperature
• Long-term aspect: Weekday and trajectory size.
• Permanent aspect: Age, course, and gender.
When we refer to permanent aspects, in all datasets,

we highlight the static nature of these characteristics within
the user trajectories. Although attributes such as gender, age,
job, family status, nationality, and exercise habits may not
be permanent aspects of an individual’s life, they exhibit
permanence within the trajectory records. These features
remained constant throughout the recorded trajectories,
representing stable and unchanged attributes during the
analysis.

B. PRIVACY RISK ASSESSMENT
This subsection assesses the privacy risk of our previously
defined attacks on real-life mobility datasets with multiple-
aspects, permanent, long-term, and volatile. We applied the
attacks to the three datasets introduced earlier and quantified
the privacy risk using different background knowledge. The
main goal of these experiments was to understand the impact
of the multiple-aspects of privacy risk in other datasets to
guide the data provider to interpret the risk values when using
the TrajectGuard framework.

The experiments were conducted on a machine with
16 vCPUs and 128 GB of RAM. We conducted tests on
location and time information using different formats: raw or
generalized values, with or without geographical coordinate
knowledge. The legends in the graph are abbreviated for
simplicity and are listed in Table 5. The chart legends contain
abbreviations of the aspects used in the attack; legend can be
checked in Table 6.

TABLE 5. Graphs - aspects abbreviation.

To comprehensively assess associated privacy risks,
we performed thorough testing by employing diverse attacks
on three distinct datasets. As shown in Table 7, for permanent
and long-term aspect attacks, the x-axis contains the risk
percentage, and the y-axis represents the number of users.
We evaluated the risk of volatile, location sequence, visit
aspects attacks, and their multiple aspect attack variations by
assessing the user’s data risk for each user’s trajectory. The
x-axis indicates the risk percentage, and the y-axis represents
the percentage of users.

1) WI-FI
The graph in Figure 3 presents the risk evaluation with
the Permanent Aspects Attack: Age, Course, and Gender.
Parameter k represents the number of permanent aspects the
attacker knows regarding the user’s data. The figure illustrates
a direct relationship wherein an increase in knowledge size
corresponds to an increase in risk values. When an attacker
has more knowledge of aspects related to the victim, it isn’t
easy to find many users sharing the same characteristics.
However, this behavior is expected. What was possible to
note as a characteristic of this dataset is that most users
were evaluated as having less than 50% risk. This implies
that most data are not unique, indicating that users share the
same permanent aspect values. Of the approximately 14,360
users, only approximately 600 have a maximum risk value
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TABLE 6. Graphs - aspects abbreviation.

TABLE 7. Charts axis.

with a knowledge size of two and more than a thousand with
a knowledge size of three. This is approximately 4% and
7%, respectively, which are small values. The maximum risk
value implies the user has at least one unique background
knowledge instance. The absence of this unique characteristic
in the Wi-Fi dataset suggests a certain level of data protection
for most users when only permanent aspects are analyzed.

Figure 4 presents the risk assessment for Long-Term
Aspects Attack. The long-term aspects are: Weekday, Trajec-
tory Size and Trajectory Size andWeekday. With a knowledge
size equal to one, the risk values were observed to be closer to
zero across all aspects. Notably, theWeekday aspect exhibited
lower risk values because of the dataset’s limited number
of days (only three). Consequently, many trajectories share
the same weekday, reducing the risk of re-identification.
Conversely, the Trajectory Size and Trajectory Size and
Weekday aspects tend to have risk values closer to zero, which
shows that many trajectories share the same values, reducing
the risk. In the Wi-Fi dataset, the risk values were low when
analyzing only the long-term aspects. This means that it is
difficult to re-identify users using them.

Figure 5, representing the Long-Term Aspects Attack
with knowledge size 2, illustrates a significant increase in
risk for Trajectory Size and Trajectory Size and Weekday
aspects. At the same time Weekday consistently retained
low-risk values. It indicates that the increase in knowledge
size does not bring high risk if the aspect is ‘‘Weekday.’’
However, it adds risk when the attacker knows aspects
include Trajectory Size or Trajectory Size and Weekday.
This indicates that ‘‘Size’’ has more unique values, and its
combination with ‘‘Weekday’’ makes it even more unique.

FIGURE 3. Wi-Fi - permanent aspects attack.

Approximately 15% of the users had a unique ‘‘Trajectory
Size and Weekday’’ combination.

Regarding the Volatile Aspects Attack, in the Wi-Fi
dataset, we consider Location Semantic and Temperature as
volatile aspects. We tested the attack using distinct possible
knowledge: Location Semantic and Temperature, Location
Semantic only, and Temperature only. Figure 7 shows results
for a knowledge size of one. Notably, the majority of the
values were below the 50% risk threshold. This suggests
a lower contribution to re-identification from the volatile
aspects in this specific dataset when the knowledge size
is small. We consider a small area covered by the dataset:
a small campus. Individuals are more likely to connect to
the same location in a confined space. Additionally, the
Temperature was expected to remain constant across all
locations, varying only with time.

In Figure 8, where size knowledge equals 2, the behavior
shifts, with the distribution of values for both Location
Semantic and only Temperature aspects trending towards
higher risk values. Additionally, trajectories involving both
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FIGURE 4. Wi-Fi - long-term aspects attack - k = 1.

FIGURE 5. Wi-Fi - long-term aspects attack - k = 2.

Location Semantic and Temperature aspects consistently
moved towards a risk value close to 100% for most instances.
As knowledge size increased, there was a tendency for risk
values to approach maximum risk. However, it is important to
note that in this case, the Temperature is more correlated with
time than space, as it encompasses a small area. Although
we did not observe much risk when the knowledge size was
one, when we increased the risk size, it became more difficult
to have the same knowledge of temperature values across
several trajectories, as it depended on them being present at
the same time or at a time with the same Temperature.
Concerning the Location Sequence Attacks with all

multiple-aspects variations, the observed behavior remains
consistent in Figures 8 and 9, with risk values trending
towards maximum risk as the k value increases. Additionally,
it is notable that including more aspects of the attack leads
to higher risk values. Notably, the location information has
very small maximum risk values when the knowledge size is
one. However, when more aspects are added, the risk values
increase. By comparing the types of aspects, the combination
of location and permanent aspects poses the highest risk,

FIGURE 6. Wi-Fi - volatile attack - k = 1, legend in Table 5.

FIGURE 7. Wi-Fi - volatile attack - k = 2. Legend in Table 5.

followed by location and long-term aspects, and finally,
location with volatile aspects. The same pattern was observed
for a knowledge size of two. This type of evaluation helps
the data provider to understand the dimensions that have the
greatest impact on re-identification risk, highlighting areas
requiring more attention regarding data protection.

Regarding Visit attacks, consistent results are observed in
Figures 10 and 11. All attacks exhibited very high high-
risk values, indicating that the location and time information
remained highly unique even with the introduction of
multiple-aspects. Based on the Location Sequence Attacks
charts in Figures 8 and 9, when considering only the location,
some lower risk values are still present. However, this risk
is considerably elevated when combined with time. The
uniqueness of this dataset arises from the locations repre-
senting access points where multiple individuals can connect
simultaneously. However, these behaviors are distinguished
by connections to the same access point at the same time
intervals, resulting in fewer concurrent connections.
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FIGURE 8. Wi-Fi - LS&MAT attacks - k = 1. Legend in Table 6.

FIGURE 9. Wi-Fi - LS&MAT attacks - k = 2. Legend in Table 6.

FIGURE 10. Wi-Fi - Visit&MAT attacks - k = 1. Legend in Table 6.

2) BREADCRUMBS
The graphs in Figure 12 present the risk evaluation with the
Permanent Aspects Attack used are:Gender, Age, Job, Family

FIGURE 11. Wi-Fi - Visit&MAT attacks - k = 2. Legend in Table 6.

Status, Nationality, and Exercise. The chart in Figure 12
illustrates a direct relationship wherein an increase in the
knowledge size corresponds to a rise in the risk values. Like
the Wi-Fi dataset, most of the risk values for the 78 users are
not unique until the knowledge size equals 5. This implies that
the attacker needs to have a lot of information about the user
in order to have a chance of identifying them. By analyzing
only the permanent aspects, most users have a certain level
of data protection due to the lack of uniqueness in the initial
knowledge sizes. However, as the knowledge size grows,
more users are re-identified due to the increased uniqueness.

FIGURE 12. Breadcrumbs - permanent aspects attack.

Figure 13 presents the risk assessment for the Long-
Term Aspects Attack. The long-term aspects are: Weekday,
Trajectory Size and Trajectory Size and Weekday. The
Weekday aspect is less risky than the Trajectory Size aspect.
However, when both aspects were combined, a significant
increase in the risk was observed. This highlights the impact
of multiple aspect on risk values. As the value of k increases
to two in Figure 14, we observe that the risk values approach
100%, for all aspect sets.
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FIGURE 13. Breadcrumbs - long-term attack - k = 1.

FIGURE 14. Breadcrumbs - long-term attack - k = 2.

In the Breadcrumbs dataset, where Location Semantic and
Temperature are considered volatile aspects, we conducted
attacks using distinct knowledge combinations: Location
Semantic and Temperature, only Location Semantic, and
only Temperature. Figure 15 exhibits a distinct pattern
compared to the results of the Wi-Fi Volatile Aspects Attack.
Notably, there was a significant increase in high-risk values,
with a concentration above the 50% risk threshold. This
suggests a higher contribution to re-identification from
the volatile aspects in this specific dataset. In Figure 16,
where the knowledge size is equal to two, the behavior
follows the same direction, with the distribution of values
for both, only Location Semantic or Temperature aspects
trending towards higher risk values. Additionally, trajectories
involving both semantic and temperature aspects consistently
moved towards a risk value close to the maximum value
in most instances. This means that both aspects Location
Semantic and Temperature have unique values that can
contribute to the re-identification risk. We can also see that
multiple-aspects contribute to increasing risk value.

FIGURE 15. Breadcrumbs - volatile attack - k = 1, legend in Table 5.

FIGURE 16. Breadcrumbs - volatile attack - k = 2. Legend in Table 5.

Regarding the Location Sequence Attacks andVisit Attacks,
with knowledge sizes one and two, all attacks exhibit a
maximum risk value of 100%, indicating that even with the
introduction of multiple-aspects, the location values were so
unique that their addition did not affect the risk value.

3) FOURSQUARE
The graphs in Figure 17 present the risk evaluation with the
Permanent Aspects Attack: Gender, Employed, Citizen, and
Race. Although the graph shows a similar behavior of most
values not being unique, unlike the other datasets, the unique
values are minimal, representing no more than 2% with a
knowledge size of 5. This can be explained by the fact that
permanent aspects were generated from aggregated data.

Figures 18 and 19 show the risk assessment for the
Long-Term Aspects Attack. The long-term aspects are:
Weekday, Trajectory Size and Trajectory Size and Weekday.
When analyzing the Long-Term Aspects Attack, compared
to the other two datasets, Foursquare exhibits a distinct
behavior. Trajectory Size and Weekday knowledge showed
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FIGURE 17. Foursquare - permanent aspects attack.

very low-risk values. This behavior was observed in the
Foursquare dataset because of its low density, indicating a
small number of daily check-ins and a large collection period
(from April 12, 2012, to February 16, 2013). The Trajectory
Size and Weekday combination followed a similar pattern.
As knowledge size increased, there was a trend towards
higher risk values approaching 100%. The Trajectory Size
and Weekday knowledge combination significantly increased
risk.

FIGURE 18. Foursquare - long-term attack - k = 1.

In the Foursquare dataset, where we examine Location
Semantic and Temperature as volatile aspects, our Volatile
attack evaluation involves diverse knowledge configurations:
Location Semantic and Temperature, only Location Semantic,
and only Temperature. Figure 20 reveals that the majority
of values are concentrated below the 50% risk threshold for
only the Location Semantic or Temperature knowledge. This
implies a small contribution to this dataset’s re-identification
of volatile aspects. However, when both knowledge types
were combined, we observed maximum risk for all users.

FIGURE 19. Foursquare - long-term attack - k = 2.

In Figure 21, when the knowledge size is equal to two,
the behavior shifts for Location Semantic and Temperature
knowledge when isolated. The distribution of values for only
Location Semantic trends towards higher risk values. For
Temperature, all the user data had a risk value of 100%.

FIGURE 20. Foursquare - volatile attack - k = 1. Legend in Table 5.

Concerning the Location Sequence Attacks and knowledge
size of one, the observed trend of the risk values approaching
the maximum value is shown in Figure 22. Notably, all the
attacks presented very high-risk values. Only the coordinates
were sufficient to yield high-risk values. Very few instances
exist in which the risk is not one in the Location Sequence
Attack and the Location Sequence Attack with Long-Term
Aspects. In Location Sequence Attacks with knowledge
size two, all attacks yielded the maximum risk for all user
trajectories.

Regarding Visit attacks, all attacks exhibited risk values
equal to 100%. This indicates that because the location and
time information are sufficiently unique, multiple-aspects do
not contribute significantly to the increase in risk values.
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FIGURE 21. Foursquare - volatile attack - k = 2. Legend in Table 5.

Next, we summarize and discuss the most important
findings.

4) RESULTS HIGHLIGHTS AND DISCUSSION
The experiments were conducted on three distinct datasets
using the data model and attacks delineated earlier in this
work, including Wi-Fi, Breadcrumbs, and Foursquare, each
characterized by distinct aspects such as location semantics,
trajectory size, weekdays, temperature, and moving object
aspects.

FIGURE 22. Foursquare - LS&MAT attacks - k = 1. Legend in Table 6.

The findings indicate that the coverage area, temporal
distribution, and aspect values significantly influence the
risk of re-identification. While permanent, long-term, and
volatile aspects alone may not pose a significant risk to
users in some datasets, exploring various attack scenarios
involving multiple-aspects reveals that including additional
aspects refines data filtering, increasing its uniqueness and
facilitating re-identification. However, uniqueness is the
primary factor affecting risk values. It can arise from location
data alone, a combination of location and time information,

or from the inclusion of multiple-aspects. Therefore, the
interpretation of the results closely aligns with the dataset
characteristics.

The significant impact of time and coordinate values
on risk is notable, primarily because of their inherent
uniqueness. Despite the distinctive nature of trajectory data,
it is evident that the addition of more aspects facilitates re-
identification. In particular, aspect knowledge is necessary
to enable a successful attack if an attacker lacks a unique
location or location-time knowledge source.

The study’s findings offer valuable insights for data
providers to protect trajectory data from multiple-aspects.
By uncovering how permanent, long-term, and volatile
aspects influence re-identification risks across different
datasets, this research provides practical guidance for enhanc-
ing data protection strategies in trajectory data management
and analysis.

The next subsection will present the experiments with
AspectGuard.

C. AspectGuard
In this subsection, we present the results of implementing
AspectGuard on the three distinct datasets. Our evaluation
encompasses both user and aspect risks and comprehensively
assesses the framework’s effectiveness.

1) RESULTS
We examined how different aspects affect the risk of re-
identification and exploration of the nuanced dynamics in
each dataset. Our analysis offers valuable insights into how
specific attributes impact privacy risk and how combining
multiple-aspects shapes the overall risk of re-identification.
A thorough exploration of AspectGuard’s findings provides
a nuanced understanding of privacy risk in multiple-aspects
trajectory data for data providers.

2) ASPECTS RISK
In the aspect risk evaluation, we thoroughly explored
aspects-based risks within three distinct datasets: Bread-
crumbs, Wi-Fi, and Foursquare. Each dataset presents unique
characteristics and poses different challenges regarding
re-identification risk assessment. The percentage values in
Tables 9, 8, and 10 represent the percentage of minimal
sample unique sets containing that aspect or a combination
of aspects. The frequency of occurrence of an aspect or a
combination of aspects reveals the uniqueness they bring to
the data, directly influencing the risk of re-identification. It is
important to highlight that it is not just about how unique this
attribute is but how this aspect impacts the overall uniqueness
of the background knowledge configurations.

a: Wi-Fi DATASET
Regarding the Wi-Fi dataset delineated in Table 8, a nuanced
perspective on re-identification risk has emerged, show-
casing the multifaceted interplay of various aspects in
shaping privacy vulnerabilities. While temporal factors,
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as represented by time, indeed wield significant influence,
accounting for a dominant 54.56% of the overall risk,
it is imperative to recognize the substantial contribu-
tions of other aspects beyond mere spatial and temporal
dimensions.

Indeed, the Wi-Fi dataset reveals that diverse attributes,
beyond traditional demographic factors, significantly impact
re-identification risk. Notably, the role of location semantic
attributes, denoted as location semantic made a substantial
contribution of 33.36%.

Moreover, spatial attributes, beyond mere location gran-
ularity, also exhibit a considerable influence. For instance,
the combination of location and size contributes approxi-
mately 40.95%, showing how the spatial scope or scale of
activity areas can amplify the re-identification risk. Similarly,
environmental factors, such as temperature, played a non-
trivial role, contributing 29.20% to the overall risk. This
highlights the significance of considering environmental
context, when assessing privacy vulnerabilities in multiple-
aspects of trajectory data. However, with the privacy risk
assessment, we should note that temperature did not bring
a lot of uniqueness by itself. We can see that temperature is
present in many unique sets.

In Table 8, we observe that demographic attributes such
as age and gender make considerable contributions to re-
identification risk, with age contributing 27.89% and gender
contributing 5.24% to the overall risk. These findings
underscore the significance of demographic information
in shaping privacy risks in trajectory data scenarios. This
highlights the importance of considering the contribu-
tions of other contextual aspects beyond location and
time.

These findings collectively emphasize the need for a
comprehensive privacy protection approach encompassing
diverse contextual dimensions, including temporal, spa-
tial, semantic, and environmental factors. Effective privacy
preservation strategies can be devised to mitigate the height-
ened risk posed by multifaceted re-identification attacks in
multiple-aspects of trajectory data scenarios.

TABLE 8. Wi-Fi - aspect contribution to the re-identification risk.

b: BREADCRUMBS DATASET
We present aspect contributions to overall re-identification
risk in the Breadcrumbs dataset in Table 9. Notably,
temporal information emerged as a dominant factor, with
the time aspect accounting for a substantial portion of
the risk at approximately 54.56%. This underscores the
importance of the temporal context in trajectory data, where
the timing of location visits significantly affects the risk
of re-identification. Moreover, spatial attributes such as
locationmake significant contributions, indicating the role of
geographic context in privacy risk assessment.

Interestingly, including fine-grained location details,
as represented by the location semantic aspect, also
contributed to the risk. This suggests that even variations in
location granularity can affect re-identification vulnerability.
The substantial contribution of the location semantic, temper-
ature combination underscores the importance of considering
multiple-aspects in privacy risk analysis. By recognizing
the impact of spatial and environmental attributes, privacy
protection strategies can be refined to mitigate the heightened
risks posed by such combinations. In the Breadcrumbs
dataset, demographic informationwas providedwith a certain
degree of generalization, which inherently reduces its impact
on re-identification risk compared to attributes such as time
and location.

TABLE 9. Bread - aspect contribution to the re-identification risk.

c: FOURSQUARE DATASET
We found a nuanced interplay of aspect-based risks in
the Foursquare dataset, as shown in Table 10. Here, along
with temporal and spatial attributes, we observed signifi-
cant contributions from factors such as location semantic
and environmental conditions (represented by temperature).
Including location-related information introduces a new
dimension to privacy risk assessment, highlighting the rele-
vance of contextual factors beyond traditional temporal and
spatial dimensions. Moreover, the influence of environmental
conditions emphasizes the importance of contextualizing re-
identification risk within broader environmental contexts,
where weather conditions can impact individuals’ behavioral
patterns and, subsequently, their risk of re-identification.
In the context of demographic aspects, their limited influence
on privacy risk can be attributed to their nature as derived
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from statistical aggregates. Instead, they tend to represent
more general population trends rather than providing distinct
and discriminative information at the individual level. As a
result, their contribution to re-identification risk is generally
less important compared to more granular and context-
specific attributes like location and time. This observation
highlights the importance of considering data attributes’
contextual relevance and uniqueness when assessing privacy
risks in trajectory datasets.

TABLE 10. 4square - aspect contribution to the re-identification risk.

Through these experiments, we demonstrated that aspects
beyond time information and location significantly contribute
to the re-identification risk. This finding underscores the
nuanced interplay of various contextual factors in shap-
ing privacy vulnerabilities within the trajectory datasets.
By acknowledging the considerable impact of attributes such
as age, gender, and others, we expand our understanding
of the multifaceted nature of privacy risk. This insight is
crucial for data providers to execute comprehensive risk
assessments on multiple-aspects datasets and to implement
effective mitigation strategies to safeguard individual privacy
in data-driven environments.

In the next subsection, we will present the experiments
with AnonimoGuard.

D. AnonimoGuard
This subsection presents a simulation of AnonimoGuard
behavior within the three datasets. The objective was to
illustrate the differences between the current privacy risk
anonymization analysis in PRUDEnce data flow and the use
of AnonimoGuard. We compared these in terms of the risk
evaluation results.

Since we do not have any anonymization techniques
specifically designed or proven to work with multiple-aspects
of trajectories, we applied some generalizations to certain
trajectory aspects. The purpose was to achieve a certain level
of data protection to evaluate the behavior of AnonimoGuard
with data after the anonymization process, which often
involves generalization [6], [47].

As shown in Figure 23, we applied some generalizations
when the location data had few visits. The blue line represents
the results obtained using the AnonimoGuard method, with
background knowledge configurations from the original

FIGURE 23. Wi-fi AnonimoGuard x PRUDEnce k = 1.

dataset. The orange line represents PRUDEnce, which
generates all possible combinations from the anonymized
dataset and evaluates the risk.

FIGURE 24. Wi-fi AnonimoGuard x PRUDEnce k = 1.

We observed a much lower risk with AnonimoGuard than
with PRUDEnce. This is because the altered data from the
original dataset no longer matched. When using PRUDEnce,
we assume that the attacker’s knowledge is equivalent to
anonymized data, which is inaccurate. Thus, the only real risk
exists when the anonymization method does not change the
original data.

When different attacks and aspects are used, the same
behavior can be observed across datasets. We have included
some examples, as depicted in Figure 24 with Visit and
Permanent Aspects Attack in the Wi-Fi dataset, and in
Figure 25 with Visit Attack and Breadcrumbs dataset, as well
as Visit and Volatile Attack with Foursquare 26.

As can be seen in the charts, AnonimoGuard provides
a more realistic overview of privacy risk in datasets with
applied data protection, showing a real decrease in risk and
an evaluation with real background knowledge data.
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FIGURE 25. Breadcrumbs AnonimoGuard x PRUDEnce k = 1.

FIGURE 26. Foursquare AnonimoGuard x PRUDEnce k = 1.

VI. CONCLUSION AND FUTURE WORKS
We introduced the TrajectGuard privacy risk assessment
framework as an extension of the state-of-the-art PRUDEnce
for semantically enriched trajectories, the so-called multiple-
aspects trajectories.

TrajectGuard is a valuable tool for data providers to
safeguard privacy in mobility datasets characterized by
multiple semantic aspects. It not only formulates and assesses
privacy risk for these trajectories but also introduces attacks
and nuanced risk evaluation through AspectGuard. Equitable
privacy assessments were conducted on the anonymized
datasets using AnonimoGuard.

To understand the impact of these aspects on re-
identification, we conducted several experiments involving
different and complementary semantically enriched trajec-
tory datasets: Wi-Fi, Breadcrumbs, and Foursquare.

The results show that certain aspects, such as permanent,
long-term, or volatile, might not pose a significant risk in
some datasets. When we consider various attack scenarios

involving multiple-aspects, we find that including more
aspects refines how data are refined, making it more unique
and easier to re-identify. However, the key factor influencing
the risk is uniqueness, which can arise from location data
alone, a combination of location and time details, or the
inclusion of multiple-aspects. Therefore, understanding the
results depends on the specific characteristics of the dataset.
Factors such as the size of the coverage area, how data
are spread over time, and the distribution of aspects values
significantly affect the risk of re-identifying individuals.
These insights from privacy risk analysis can be useful for
data providers to check for increasing privacy risks as they
enrich data with more semantic information.
AspectGuard’s risk evaluation model focuses on protecting

sensitive aspects andmaking informed data-sharing decisions
aligned with data minimization principles. This approach
helps data providers conduct comprehensive risk assessments
and implement effective mitigation strategies to safeguard
individual privacy in data-driven environments.
AnonimoGuard is a novel approach that ensures fairness

in privacy risk evaluation by considering background knowl-
edge from original and anonymized datasets. Due to the
lack of established anonymization methods for multi-aspect
trajectories, we simulated AnonimoGuard using simple
suppression and generalization techniques. The results show
a decrease in risk compared to using new data unfamiliar to
the attacker, demonstrating AnonimoGuard’s effectiveness in
assessing re-identification risk.

While the framework offers strong privacy evaluations,
we recognize the computational challenges posed by using
combinations to assess privacy risks across multiple dimen-
sions. This process, particularly with large datasets, can be
resource-intensive and time-consuming. To mitigate these
issues, we propose optimizations such as more efficient algo-
rithms, improved data structures, and strategies for scaling in
environments like cloud and edge computing. Parallelization
and load distribution can enhance TrajectGuard’s efficiency
in handling large datasets. In future work, we will explore
these optimizations in greater detail, focusing on enhancing
TrajectGuard’s computational efficiency and scalability to
make it more suitable for large-scale, real-world applications.

Looking ahead, there are many open questions about data
privacy for trajectories with multiple aspects that require
exploration. Specifically, there is a notable gap in research
focused on anonymizing these multi-aspect trajectories.
Developing an algorithm for this purpose would enable
us to effectively test AnonimoGuard. Methods to assess
the quality of anonymized multiple-aspects trajectories are
currently lacking and need development. Test the framework
with different, bigger, and more complex multiple-aspects
trajectories datasets. Include additional attacks, such as
those based on frequency and probability, in the framework.
Additionally, we will explore TrajectGuard’s compliance
with privacy regulations beyond GDPR and LGPD, ensuring
the framework aligns with broader global privacy standards.
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