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Abstract

We present a class of algorithms based on rational Krylov methods to
compute the action of a generalized matrix function on a vector. These
algorithms incorporate existing methods based on the Golub-Kahan bidi-
agonalization as a special case. By exploiting the quasiseparable structure
of the projected matrices, we show that the basis vectors can be updated
using a short recurrence, which can be seen as a generalization to the
rational case of the Golub-Kahan bidiagonalization. We also prove error
bounds that relate the error of these methods to uniform rational ap-
proximation. The effectiveness of the algorithms and the accuracy of the
bounds is illustrated with numerical experiments.

1 Introduction

Generalized matrix functions (GMFs) are an extension of the notion of matrix
functions based on the singular value decomposition (SVD) instead of the spec-
tral decomposition. They were introduced for the first time in [19], with the
purpose of extending the definition of matrix functions to rectangular matri-
ces. Although the introduction of GMFs dates to the Seventies [19], they have
become a more active area of research only in recent years. For instance, theoret-
ical aspects of generalized matrix functions have been investigated in [1, 6, 28],
while efficient numerical methods have been developed in [3, 4]. GMFs have
also been recently considered in the context of quantum algorithms [21]. For
applications of generalized matrix functions, we direct the reader to [1, 3, 4] and
the references therein.

In many applications that involve standard matrix functions, it is only re-
quired to compute matrix-vector products of the form f(A)b, where the matrix
A is usually large and sparse. In this case, the (expensive) computation of the
whole matrix f(A) can be bypassed by using methods that directly approxi-
mate the product f(A)b, such as Krylov methods. These methods only require
matrix-vector products and possibly the solution of shifted linear systems with
the matrix A.
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A similar situation arises when GMFs are involved: indeed, it is often re-
quired to compute the action of a generalized matrix function on a vector [2, 3],
and hence it is preferable to use a method that avoids the computation of the
whole GMF by means of an SVD.

This problem was recently investigated in [3, 4], using methods based on the
Golub-Kahan bidiagonalization in [3], and Chebyshev polynomial interpolation
in [4].

In this paper, we propose a generalization of the method proposed in [3], us-
ing the interpretation of the Golub-Kahan bidiagonalization in terms of Krylov
subspaces. Performing k steps of the Golub-Kahan bidiagonalization of a matrix
A with starting vector b is equivalent to the simultaneous computation of or-
thonormal bases of the polynomial Krylov subspaces Pk(A

TA, b) and Pk(AAT , Ab).
By replacing the polynomial Krylov subspaces with their rational counterparts,
we obtain a rational Krylov method for the computation of the action of a GMF
on a vector.

As can be expected by analogy with standard matrix functions, in the case
of non-analytic functions and functions of low regularity these rational methods
have a faster convergence than the method based on the Golub-Kahan bidiag-
onalization. However, their increased effectiveness comes at the cost of having
to solve a linear system at each iteration, while the methods discussed in [3, 4]
only require matrix-vector products.

The Golub-Kahan bidiagonalization of a matrix can be computed with a
short recurrence, which relies on the fact that the projected matrix is bidiag-
onal. This structure is unfortunately not preserved in the rational case that
we consider here. However, we are still able to construct a short recurrence
to update the rational Krylov bases and the projected matrix, using the fact
that the projected matrix is a quasiseparable matrix [15, 35]. We mention that
structured projected matrices that lead to short recurrences also appear in the
context of biorthogonal rational Krylov methods [36]. Rank structures of the
projected rational Krylov matrices were also exploited in [22, 23].

We also prove error bounds that link the error of the method from [3] based
on the Golub-Kahan bidiagonalization and the rational methods introduced
in this paper with, respectively, the error of uniform polynomial and rational
approximation of the function f . These bounds are a direct generalization
of the bounds for standard matrix functions, and they can be proved with
the same techniques. Although the connection of GMFs to standard matrix
functions is well-known, to the best of our knowledge these error bounds for the
approximation of GMFs have never appeared in previous literature.

The paper is organized as follows. In Section 2 we introduce the notation
used throughout the paper. In Section 3 we recall the definition of standard ma-
trix functions and GMFs and we present some of their properties. In Section 4
we briefly introduce the class of rational Krylov methods for standard matrix
functions. The use of polynomial and rational Krylov methods in the context
of generalized matrix functions is discussed in Section 5. Section 6 is dedicated
to the proof of the error bounds and related discussion. Some numerical ex-
periments to compare the different methods and illustrate the error bounds are
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presented in Section 7, and Section 8 contains concluding remarks.

2 Notation

We denote by Rm×n the space of m × n real matrices. We use bold letters for
vectors, e.g. v ∈ Rn. The entries of a vector v are given by v1, . . . , vn, and the
entries of a matrix A ∈ Rm×n are aij . We also use a MATLAB-like notation:
diag(d1, . . . , dn) represents an n× n diagonal matrix with entries d1, . . . , dn on
the diagonal; for i ≤ j and h ≤ k, we denote by A(i : j, h : k) the submatrix of
A corresponding to row indices from i to j and column indices from h to k.

We denote by triu(A) the upper triangular part of the matrix A, and more
generally by triu(A, k) the matrix with all zeroes below the k-th diagonal whose
other entries coincide with those of A. Diagonals above the main diagonal
are represented with a positive index, so that triu(A, 1) indicates the strictly
upper triangular part of A. Similarly, tril(A) and tril(A,−1) denote the lower
triangular and strictly lower triangular part of A, respectively. We use the same
notation also for rectangular matrices. We denote by A+ the Moore-Penrose
pseudoinverse of a matrix A.

3 Matrix functions

The goal of this section is to define generalized matrix functions (GMFs) and
introduce their main properties. We begin by recalling some basic concepts
about standard matrix functions, and then we introduce GMFs and some of
their properties.

3.1 Standard matrix functions
The concept of matrix function is a natural way to extend the evaluation of
a scalar function to square matrix arguments. For simplicity, we treat only
the case of diagonalizable matrices. The general definitions and a thorough
description of matrix functions can be found in the monograph [20].

Let A be an n×n matrix. Assume that A is diagonalizable, i.e. A = V DV −1,
where D = diag(d1, . . . , dn). Given a function f defined on the set {d1, . . . , dn}
the matrix function of f applied on A is defined as

f(A) = V f(D)V −1,

where f(D) = diag(f(d1), . . . , f(dn)).

3.2 Generalized matrix functions
Generalized matrix functions were first introduced in [19], with the purpose of
extending the definition of matrix functions to rectangular matrices. They are
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defined in a similar way with respect to standard matrix functions, but the
singular value decomposition is used instead of the diagonalization.

Let A ∈ Rm×n and let A = UΣV T be its SVD, where U ∈ Rm×m and
V ∈ Rn×n are orthogonal and Σ ∈ Rm×n is defined as

Σi,j =

{
σi if i = j ≤ r

0 otherwise,

where r ≤ min{m,n} is the rank of A and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the
nonzero singular values of A.

Given a function f defined on the set {σ1, . . . , σr} the generalized matrix
function of f applied on A is defined as

f⋄(A) = Uf⋄(Σ)V T ,

where

f⋄(Σ)i,j =

{
f(σi) if i = j ≤ r

0 otherwise.

Observe that a GMF can be expressed in terms of the compact SVD of
the matrix A, that is A = UrΣrV

T
r , where Ur ∈ Rm×r and V ∈ Rn×r have

orthonormal columns, and Σr = diag(σ1, . . . , σr) ∈ Rr×r. In such case, we have

f⋄(A) = Urf(Σr)V
T
r .

Since the definition of a GMF only depends on the values of f on the nonzero
singular values of A, we can always assume that f is an odd function, and in
particular that f(0) = 0. Note also that although we only consider real matrices
for simplicity, all of our results can be easily generalized to the complex case,
since the singular values are always nonnegative real numbers.

Remark 3.1. [4, Theorem 2.1] If p is a polynomial that interpolates f in σ1, . . . , σr

we have that f⋄(A) = p⋄(A). Moreover, since σi > 0 for i = 1, . . . , r, we can
always take p as an odd polynomial, i.e. p(z) = q(z2)z for some polynomial q.

Next, we list some properties of GMFs that will be required in the following
sections. A discussion of additional properties of generalized matrix functions
can be found in [3].

Lemma 3.2. Let S ∈ Rn×n be a symmetric matrix and let f be defined on the
singular values of S. If S is positive definite, or S is positive semidefinite and
f(0) = 0, we have

f⋄(S) = f(S).

Proposition 3.3. Let p be an odd polynomial, i.e. we can write p(z) = q(z2)z
for some polynomial q. Then, for any matrix A ∈ Rm×n the following holds:

p⋄(A) = q(AAT )A = Aq(ATA).
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For the proof of Proposition 3.3 we refer to [4, Section 2.2]. The following
corollary can be proved in practically the same way.

Corollary 3.4. Let r be a rational function with an odd numerator and an even
denominator, i.e., r(z) = q(z2)−1p(z2)z for some polynomials p and q, such that
the singular values of A ∈ Rm×n and 0 are not roots of q. Then the following
holds:

r⋄(A) = q(AAT )−1p(AAT )A = Aq(ATA)−1p(ATA).

The following proposition gives a formulation of the above results for general
functions. See also [3, Theorem 10] for an alternative formulation of the same
identity.

Proposition 3.5. Let A ∈ Rm×n and let f be a function defined on the nonzero
singular values of A. Defining g(z) = f(

√
z)√
z

, for z ̸= 0, we have

f⋄(A) = g⋄(AAT )A = Ag⋄(ATA).

Moreover, if lim
z→0

f(z)
z = 0, we can define g(0) = 0. Then g(AAT ) and g(ATA)

are well defined, and we have

f⋄(A) = g(AAT )A = Ag(ATA).

Proof. Let p(z) = q(z2)z be an odd polynomial that interpolates f in the
nonzero singular values of A. From Proposition 3.3 and Remark 3.1 we have

f⋄(A) = p⋄(A) = q(AAT )A = Aq(ATA).

Since p interpolates f in the nonzero singular values of A, q interpolates g in
the squares of the nonzero singular values of A, which are the nonzero singular
values of AAT and ATA. Hence q⋄(AAT ) = g⋄(AAT ) and q⋄(ATA) = g⋄(ATA).

If g(0) = 0, by Lemma 3.2 we also have g⋄(ATA) = g(ATA) and g⋄(AAT ) =
g(AAT ).

Remark 3.6. If AAT is positive definite, by Lemma 3.2 we have that f⋄(A) =

g(AAT )A without the assumption lim
z→0

f(z)
z = 0, and similarly if ATA is positive

definite we have f⋄(A) = Ag(ATA). Note that we could also artificially define
g(0) = 0 without any assumptions on f , since the definition of a GMF only
depends on the nonzero singular values of the matrix. However, this would
cause g to be discontinuous at 0 and it would not be very useful in practice.

The following proposition links f⋄(A) with f⋄(AT ), which will be useful
when A is rectangular. The more general statement in Proposition 3.7 can be
seen as a generalization of [3, Proposition 7(iv)] and [19, Theorem 4(d)].

Proposition 3.7. Let A ∈ Rm×n and let f be a function defined on the nonzero
singular values of A. Then

f⋄(A) = (A+)T f⋄(AT )A.
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More generally, assume that f(z) = g(z)h(z)k(z), where g, h, k are functions
defined on the nonzero singular values of A. Then

f⋄(A) = g⋄(A)h⋄(AT )k⋄(A).

Proof. We directly prove the generalized version, since the first statement simply
follows by taking g(z) = z−1, h(z) = f(z) and k(z) = z.

Let A have the singular value decomposition A = UΣV T . We have:

g⋄(A)h⋄(AT )k⋄(A) = Ug⋄(Σ)V TV h⋄(ΣT )UTUk⋄(Σ)V T

= Ug⋄(Σ)h⋄(Σ)T k⋄(Σ)V T

= Uf⋄(Σ)V T = f⋄(A),

where we used that g⋄(Σ)h⋄(Σ)T k⋄(Σ) = f⋄(Σ), which can be verified directly.

Remark 3.8. The same proof of Proposition 3.7 can be used to show that, if
f(z)g(z) = h(z)k(z), then

f⋄(AT )g⋄(A) = h⋄(AT )k⋄(A).

In particular we have AT f⋄(A) = f⋄(AT )A.

4 Rational Krylov methods

The class of Krylov methods provides an efficient way to compute approxima-
tions to expressions of the form f(A)b. The main idea behind these methods is
to construct a low dimensional subspace Sk ⊂ Rn for some integer k ≪ n using
information from A and b, and then to approximate f(A)b with an appropriate
vector from Sk.

A popular choice for the approximation subspace Sk is the polynomial Krylov
subspace

Pk(A, b) = span{b, Ab, . . . , Ak−1b} = {p(A)b : p ∈ Πk−1},

where Πk−1 denotes the set of polynomials of degree ≤ k − 1.
More generally, using a sequence of poles {ξk}k≥1 ⊆ (C ∪ {∞}) \ σ(A), one

can define the rational Krylov subspace

Qk(A, b) = qk−1(A)−1Pk(A, b) =
{
r(A)b : r(z) =

pk−1(z)

qk−1(z)
,with pk−1 ∈ Πk−1

}
,

where qk−1(z) =

k−1∏
j=1

(1 − z/ξj). In the case when all poles are located at

∞, we have qk−1(z) ≡ 1 and hence we recover the polynomial Krylov sub-
space Pk(A, b). It is easy to verify that the Krylov subspaces Qk(A, b) form
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a nested sequence, and that dimQk(A, b) = k as long as k is smaller than
the invariance index K of the sequence, i.e. the smallest integer such that
QK(A, b) = QK+1(A, b) (or, equivalently, PK(A, b) = PK+1(A, b)).

For k ≤ K, an orthonormal basis {v1, . . . ,vk} of Qk(A, b) can be computed
with the rational Arnoldi algorithm, introduced by Ruhe in [31]. In the basic
algorithm, the first basis vector is chosen as v1 = b/∥b∥2. Then, given a set of
vectors {v1, . . . ,vj} which form an orthonormal basis of Qj(A, b), the next basis
vector vj+1 is computed by orthonormalizing the vector (I− 1

ξj
A)−1Avj against

the previously computed basis vectors. To prevent the algorithm from failing,
it is required that (I − 1

ξj
A)−1Avj ∈ Qj+1(A, b) \ Qj(A, b); this property is

almost always satisfied in practice, however there are no theoretical guarantees
that it holds. A vector wj that guarantees (I − 1

ξj
A)−1wj ∈ Qj+1(A, b) \

Qj(A, b), hence ensuring that the Krylov subspace is enlarged, can be found
with the approach recently discussed in [9], using the notion of continuation
pairs (ηj/ρj , tj): in general such a vector wj is of the form (ρmA − ηmI)Vjtj ,
where Vj = [v1 . . .vj ] ∈ Cn×j . From now on, we always assume that the
dimension of the Krylov subspace actually increases at each iteration, i.e. that
vj+1 ∈ Qj+1(A, b) \ Qj(A, b) for all j < K.

Using the matrix with orthonormal columns Vk = [v1 . . .vk] ∈ Cn×k, we can
compute the following approximation to f(A)b from the subspace Qk(A, b):

ȳk = Vkf(V
T
k AVk)V

T
k b = Vkf(Ak)e1,

where Ak = V T
k AVk is the projection of A on the subspace Qk(A, b), and e1

denotes the first vector of the canonical basis of Cn. The accuracy of the ap-
proximation ȳk is largely dependent on the pole sequence {ξk}k≥1. The problem
of choosing a sequence of poles that is effective for a particular function f and a
given set containing the spectrum of A has often been discussed in the literature:
we refer, for instance, to [18] and the references therein.

Some specific sequences of poles lead to special cases of the rational Krylov
subspace Qk(A, b): if all the poles are equal to ξ ∈ C \ σ(A), then Qk(A, b) is
a Shift-and-Invert Krylov subspace,

Qk(A, b) = Pk((I −A/ξ)−1, b),

that was first investigated for the computation of matrix functions in [25, 37]. If
the poles alternate between 0 and ∞, we obtain the extended Krylov subspace,
introduced in [13], which is of the form

Q2k(A, b) = A−kP2k(A, b) = P2k(A,A−kb).

We refer to [17] for an extensive discussion on rational Krylov methods for the
computation of matrix functions.

5 Krylov methods for GMFs

The computation of f⋄(A)b by using an SVD of A can be unfeasible if the size of
A is large. A possible way to approximate the product of a generalized matrix
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function times a vector is to use two rectangular matrices with orthonormal
columns to project the matrix A onto a smaller space and then to compute
the generalized matrix function of the projected matrix: let k ≪ n and let
Uk, Vk ∈ Rn×k with orthonormal columns, Bk ∈ Rk×k such that A ≈ UkBkV

T
k ,

then
f⋄(A)b ≈ Ukf

⋄(Bk)V
T
k b, (5.1)

where the matrix f⋄(Bk) can be computed by means of the singular value de-
composition.

In this section we describe how to compute such a projected matrix using
the Golub-Kahan bidiagonalization, which is equivalent to using a polynomial
Krylov method on the matrices ATA and AAT . This strategy corresponds
to the “third approach” discussed in [3, Section 5.4]; the numerical results of
[3] indicate that (5.1) is often more effective than the other approaches they
propose, which are based on Gauss and Gauss-Radau quadrature formulas.

In Sections 5.2 and 5.3 we generalize this approach to the rational Krylov
case and we show that a short recurrence like the one of the Golub-Kahan
bidiagonalization can be obtained in the rational case too.

5.1 Golub-Kahan bidiagonalization
The first method we describe for the computation of a truncated SVD is the
Golub-Kahan bidiagonalization introduced for the first time in 1965.

Theorem 5.1. Let A ∈ Rm×n, with m > n. There exist orthogonal matrices
P ∈ Rm×m, Q ∈ Rn×n such that

PTAQ = B =



α1 β1 . . . . . . 0

0 α2 β2 . . .
...

...
. . . . . . . . .

...
... 0 αn−1 βn−1

0 . . . . . . 0 αn

0 . . . . . . . . . 0
...

...
0 . . . . . . . . . 0


.

Moreover the first column of Q can be chosen almost1 arbitrarily.

The proof of Theorem 5.1 is constructive and it is usually called Householder
bidiagonalization process. It can be found in [16, Section 5.4].

In the case of large matrices the full bidiagonalization is too expensive. The
goal of the Golub-Kahan bidiagonalization is to extract good approximations

1In order to avoid breakdowns, the first column of Q must be chosen as a unit vector q1,
such that Pn(ATA, q1) has dimension n.
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of singular values and singular vectors before the full bidiagonalization is com-
pleted.

Denote by pj and qj the columns of P and Q, respectively. By stopping the
bidiagonalization process after k steps, we obtain the matrices Pk = [p1| . . . |pk],
Qk = [q1| . . . |qk] and

Bk =



α1 β1 0 . . . 0

0 α2 β2
. . .

...
...

. . . . . . . . . 0
... 0 αk−1 βk−1

0 . . . . . . 0 αk


,

such that
AQk = PkBk,

ATPk = QkB
T
k + ske

T
k ,

where sk = ATpk − αkqk. In particular PT
k AQk = Bk. The columns of Pk, Qk

and the entries of Bk can be computed using the short recurrences

Aqj = αjpj + βj−1pj−1, j ≥ 2,

ATpj = αjqj + βjqj+1, j ≥ 1.
(5.2)

It can be shown that

span{q1, . . . , qk} = Pk(A
TA, q1),

span{p1, . . . ,pk} = Pk(AAT , Aq1),

thus the convergence of the Golub-Kahan bidiagonalization follows from the
convergence of the Lanczos method applied on ATA and AAT .

For a given k, we can approximate A with PkBkQ
T
k , and hence we can

compute an approximation of the SVD of A by computing the SVD of Bk.
For further information on the Golub-Kahan bidiagonalization we refer to [16,
Chapter 10].

The vector y = f⋄(A)b can be approximated by the expression

ȳk = Pkf
⋄(Bk)Q

T
k b = ∥b∥2Pkf

⋄(Bk)e1 ∈ Pk(AAT , Ab). (5.3)

We refer to this approximation as a polynomial Krylov method for GMFs.

5.2 Rational Krylov methods for GMFs
As we saw in the previous section, the Golub-Kahan bidiagonalization com-
putes orthonormal bases for the polynomial Krylov subspaces Pk(A

TA, b) and
Pk(AAT , Ab). By analogy with that approach, in this section we propose to
compute an approximation to f⋄(A)b using the rational Krylov subspaces

Qk(A
TA, b) and Qk(AAT , Ab),

9



where qk−1(z) =

k−1∏
j=1

(1− z/ξj), for a given pole sequence {ξj}j≥1.

Assume that we have constructed two matrices with orthonormal columns
Pk and Qk, such that span(Pk) = Qk(AAT , Ab) and span(Qk) = Qk(A

TA, b).
Then, defining Bk = PT

k AQk, by analogy with the polynomial Krylov approach
we can introduce the vector

ȳk = Pkf
⋄(Bk)Q

T
k b = Pkf

⋄(Bk)e1, (5.4)

which is an approximation to f⋄(A)b from the subspace Qk(AAT , Ab).
First of all, notice that it is sufficient to compute only one of the two rational

Krylov subspaces: indeed, since we have AQk(A
TA, b) = Qk(AAT , Ab), we

can compute an orthonormal basis of the subspace Qk(AAT , Ab) simply by
orthonormalizing the columns of AQk. This is equivalent to computing a QR
decomposition AQk = WkRk, where Wk has orthonormal columns and Rk is
upper triangular, so we can set Pk = Wk. Moreover, notice that we also have

Bk = PT
k AQk = WT

k WkRk = Rk,

i.e. with the QR decomposition we also recover the matrix Bk, without the
need to project A explicitly. The basis Qk of the subspace Qk(A

TA, b) can be
computed by applying the rational Arnoldi algorithm to the matrix ATA with
initial vector b. This procedure is summarized in Algorithm 1.

Algorithm 1: Rational Krylov approximation of f⋄(A)b

Input: A ∈ Rm×n, b ∈ Rn, f, {ξ1, . . . , ξk−1}
Output: ȳk ∈ Qk(AAT , Ab) s.t. ȳk ≈ f⋄(A)b

1 q1 = b/∥b∥2
2 for j = 1, . . . , k − 1 do
3 wj = (I −ATA/ξj)

−1ATAqj // other choices can be used
4 Compute qj+1 by orthogonalizing wj against [q1, . . . , qj ]

5 Qk = [q1, . . . , qk] // orthonormal basis of Qk(A
TA, b)

6 Compute the QR decomposition PkBk = Qk

7 Compute f⋄(Bk), e.g. via an SVD of Bk

8 ȳk = Pkf
⋄(Bk)e1

5.3 Short recurrence for rational Golub-Kahan algorithm
In the Golub-Kahan bidiagonalizazion (without reorthogonalization), we can
compute the last column of Pk, Qk and Bk just by knowing a few previous
columns of Pk and Qk, by means of the equations (5.2). This short recurrence is
possible because of the bidiagonal structure of the matrix Bk, that unfortunately
is not preserved when we perform a rational Krylov method.
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In this section we show that, if a rational Krylov method is used, the ma-
trix Bk is a quasiseparable matrix (see Definition 5.3). This structure extends
the bidiagonal form that is obtained during the Golub-Kahan bidiagonalization.
Using such structure we build a short recurrence that allows us to update the
matrix Pk and the matrix Bk avoiding the full orthogonalization related to the
computation of the QR factorization of the matrix AQk.

We note that rank structures of rational Krylov matrices have already been
investigated in the literature, see for instance [10, 15, 35].

Definition 5.2. A matrix S ∈ Rn×n is called a semiseparable matrix if all the
submatrices extracted from the lower and upper triangular part of the matrix
have rank at most 1, that is

rankS(i : n, 1 : i) ≤ 1 and rankS(1 : i, i : n) ≤ 1,

for every i = 1, . . . , n. Moreover, S is called a generator representable semisep-
arable matrix if the lower and upper triangular parts of the matrix are derived
from a rank 1 matrix, that is

tril(S) = tril(uvT ) and triu(S) = triu(pqT ),

for u,v,p, q ∈ Rn.

Definition 5.3. A matrix S is called a quasiseparable matrix if all the subma-
trices extracted from the strictly lower and strictly upper triangular part of the
matrix are of rank at most 1, that is

rankS(i+ 1 : n, 1 : i) ≤ 1 and rankS(1 : i, i+ 1 : n) ≤ 1,

for every i = 1, . . . , n.

The following theorem from [38, Section 1.5.2] gives us a complete charac-
terization of invertible semiseparable matrices.

Theorem 5.4. The inverse of an invertible tridiagonal matrix is a semisepa-
rable matrix, and vice versa. Moreover, the inverse of an invertible irreducible
tridiagonal matrix is a generator representable semiseparable matrix and vice
versa.

As it has been proved in [17, Section 5.2], if we perform a rational Krylov
algorithm on a symmetric matrix we obtain a particular equivalence called ra-
tional Arnoldi decomposition. See also [8, Section 2] and [30, eq. (2.2)].

Theorem 5.5. Given a symmetric matrix A ∈ Rn×n and a vector b ∈ Rn,
let Qk+1(A, b) be the rational Krylov space with nonzero poles {ξ1, . . . , ξk} and
assume that k is less than the invariance index of the Krylov subspace. Let
Qk+1 ∈ Rn×(k+1) be the matrix with orthonormal columns generated by the
Arnoldi algorithm, such that span(Qk+1) = Qk+1(A, b). Then the following
relation holds:

AQk+1Kk = Qk+1Hk, with Kk = Ik +DkHk, (5.5)
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where Hk ∈ R(k+1)×k is a full rank tridiagonal irreducible symmetric matrix, Ik
is the (k+ 1)× k identity matrix and Dk = diag(0, 1

ξ1
, . . . , 1

ξk−1
), where 1

∞ = 0.

Starting form (5.5), we are going to prove that the projection of the symmet-
ric matrix A on the Krylov subspace (i.e., QT

k+1AQk+1) is the sum of a diagonal
matrix and a semiseparable matrix. A similar result has been proved by Fasino,
see [15, Theorem 1].

Theorem 5.6. Let A ∈ Rn×n be a symmetric matrix and let Qk+1 ∈ Rn×(k+1)

be the matrix with orthonormal columns generated by the rational Arnoldi algo-
rithm using poles {ξ1, . . . , ξk} different from zero and infinity. Assuming that
k + 1 is less than the invariance index of the Krylov subspace, we have

Jk+1 := QT
k+1AQk+1 = S + D̃k,

where D̃k = diag(0, ξ1, . . . , ξk) and S is a symmetric generator representable
semiseparable matrix.

Proof. Using ξk+1 = ∞, from Theorem 5.5 we obtain the relation

AQk+2Kk+1 = Qk+2Hk+1, (5.6)

where Kk+1 and Hk+1 are tridiagonal, eTk+2Kk+1 = 0T and eTk+2Hk+1 is a
multiple of eTk+1. Hence, multiplying (5.6) on the left by QT

k+2 and taking the
first k + 1 columns and rows, we have

Jk+1 = Hk+1K
−1
k+1.

Let us define D̂k = diag(γ, ξ1, . . . , ξk), for γ ∈ R. Notice that, since the
first column of Qk+1 is not an eigenvector of A, the entry in position (1,2) of
Jk+1 has to be different from 0. From this it can be noticed that Jk+1− D̃k is a
symmetric generator representable semiseparable matrix if and only if Jk+1−D̂k

is so. Moreover, taking γ ̸= h1,1 and γ ̸= 0 we have that Jk+1 − D̂k is invertible
and its inverse can be computed as follows:(

Hk+1K
−1
k+1 − D̂k

)−1

=
(
−D̂k(Kk+1 − D̂−1

k Hk+1)K
−1
k+1

)−1

=

= −Kk+1(Kk+1 − D̂−1
k Hk+1)

−1D̂−1
k .

Since Kk+1 = Ik+1 +DkHk+1 where Dk = diag(0, 1
ξ1
, . . . , 1

ξk
), we have(

Hk+1K
−1
k+1 − D̂k

)−1

= −Kk+1(Ik+1 + (Dk − D̂−1
k )Hk+1)

−1D̂−1
k

= −Kk+1(Ik+1 −
1

γ
e1e

T
1 Hk+1)

−1D̂−1
k

= −Kk+1(Ik+1 +
1

γ − h1,1
e1e

T
1 Hk+1)D̂

−1
k =

= −(Kk+1 +
1

γ − h1,1
Kk+1(e1e

T
1 )Hk+1)D̂

−1
k .

12



The third equality follows from the Sherman-Morrison formula, using the fact
that γ ̸= h1,1. This also shows that the matrix Jk+1 − D̂k is indeed invertible.

The obtained matrix is an irreducible tridiagonal matrix since Kk+1 and
Hk+1 have such structure and γ ̸= 0. Hence, using Theorem 5.4, we have that
Jk+1− D̂k is a generator representable semiseparable matrix, and therefore also
Jk+1 − D̃k is so.

The following corollary generalizes the statement of Theorem 5.6 to the case
with poles at ∞. To simplify its proof we introduce a lemma.

Lemma 5.7. Let {ξ(j)i }j∈N be a sequence of real numbers outside of the convex
hull of σ(A) that tends to infinity. Assuming that k+1 is less than the invariance
index of the Krylov subspace, let Q(j)

k+1 be the orthonormal basis computed by the
Arnoldi algorithm using poles {ξ1, . . . , ξi−1, ξ

(j)
i , ξi+1, . . . , ξk} and let J

(j)
k+1 =

(Q
(j)
k+1)

TAQ
(j)
k+1 be the associated projected matrix. We have that

lim
j→∞

Q
(j)
k+1 = Qk+1 and lim

j→∞
J
(j)
k+1 = Jk+1,

where Qk+1 is the orthonormal basis computed by the Arnoldi algorithm using
poles {ξ1, . . . , ξi−1,∞, ξi+1, . . . , ξk} and Jk+1 = QT

k+1AQk+1.

Proof. Denote by qℓ and q
(j)
ℓ , 1 ≤ ℓ ≤ k + 1, the columns of Qk+1 and Q

(j)
k+1,

respectively. Since the first i columns of the matrices Q
(j)
k+1 and Qk+1 are the

same, we denote them by q1, . . . , qi. Let us prove that q(j)
i+1 converges to qi+1 as

j → ∞. To compute q
(j)
i+1 by the rational Arnoldi algorithm, we first compute

w
(j)
i = (I − A/ξ

(j)
i )−1Aqi. Note that this is a continuous operation when ξ

(j)
i

tends to infinity, indeed

lim
j→∞

(I −A/ξ
(j)
i )−1Aqi = Aqi.

Since the orthonormalization of q(j)
i+1 against q1, . . . , qi is a continuous operation,

we have that
lim
j→∞

q
(j)
i+1 = qi+1.

We can now prove by induction that lim
j→∞

q
(j)
ℓ+1 = qℓ+1 for all i+ 1 ≤ ℓ ≤ k. By

writing the orthogonalization step explicitly, we have

q
(j)
ℓ+1 = (I −Q

(j)
ℓ (Q

(j)
ℓ )T )w

(j)
ℓ , where w

(j)
ℓ = (I −A/ξℓ)

−1Aq
(j)
ℓ ,

and likewise

qℓ+1 = (I −QℓQ
T
ℓ )wℓ, where wℓ = (I −A/ξℓ)

−1Aqℓ.

By the inductive hypothesis lim
j→∞

Q
(j)
ℓ = Qℓ, so we also have lim

j→∞
w

(j)
ℓ = wℓ,

and therefore
lim
j→∞

q
(j)
ℓ+1 = qℓ+1.
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The statement for Jk+1 follows immediately from the definitions of J
(j)
k+1 and

Jk+1.

Corollary 5.8. Under the same assumptions of Theorem 5.6, but allowing some
poles to be equal to infinity, the projected matrix Jk+1 = QT

k+1AQk+1 is still a
quasiseparable matrix.

Proof. Let us prove the statement by induction on the number of poles at infin-
ity. If there are no poles equal to infinity the thesis follows from Theorem 5.6.

Assume now that the statement holds in the case of s poles equal to infinity
and assume that we are using s+1 infinite poles. Let ξi = ∞ be the last infinite
pole and let {ξ(j)i }j∈N be a sequence of real numbers outside of the convex hull
of σ(A) that converges to ξi, that is

lim
j→∞

ξ
(j)
i = ∞.

Let J
(j)
k+1 be the projected matrix obtained by using poles equal to

{ξ1, . . . , ξi−1, ξ
(j)
i , ξi+1, . . . , ξk}.

By Lemma 5.7, we have that J
(j)
k+1 converges to the projected matrix Jk+1

obtained with the poles {ξ1, . . . , ξi, . . . , ξk}, that is

lim
j→∞

J
(j)
k+1 = Jk+1.

From the inductive hypothesis we have that the matrices J
(j)
k+1 are qua-

siseparable for all j. Since the quasiseparable matrices are a closed set [38,
Section 1.4.1], we have the thesis.

Notice that, if the matrix A is symmetric positive semidefinite and k + 1
is less than the invariance index, the projected matrix Jk = QT

kAQk has to be
positive definite. Indeed, if there exists a vector x ̸= 0 such that Jkx = 0, we
have that AQkx = 0. In particular, since Qkx ∈ qk−1(A)−1Pk(A, b), where
qk−1 is as defined in Section 4, there exist α0, . . . , αj , j ≤ k − 1, with αj ̸= 0
such that

Qkx = qk−1(A)−1

j∑
i=0

αiA
ib,

and so

0 = AQkx = qk−1(A)−1

j∑
i=0

αiA
i+1b.

This implies that Aj+1b ∈ Pj(A, b), but this is impossible because k + 1 is
less than the invariance index. In particular, this implies the existence of the
Cholesky factorization of the matrix Jk if the matrix A is symmetric positive
semidefinite.
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The matrix Bk = PT
k AQk we are interested in when using rational Krylov

methods for GMFs is exactly the transpose of the Cholesky factor of the matrix
Jk = QT

k (A
TA)Qk. Indeed Bk is upper triangular and

Jk = (AQk)
TAQk = (PkBk)

T (PkBk) = BT
k Bk.

The following proposition gives us that the matrix Bk is the upper triangular
part of a rank one plus diagonal matrix, hence Bk is quasiseparable. We could
not find a reference for this fact, so we provide a brief proof sketch.

Proposition 5.9. Let A ∈ Rn×n be symmetric positive definite and let L ∈
Rn×n be its Cholesky factor (i.e., L is lower triangular and A = LLT ). If
there exist u,v ∈ Rn such that tril(A,−1) = tril(vuT ,−1), then tril(L,−1) =
tril(vxT ,−1) for x ∈ Rn.

Proof. It can be easily proved that the last row of tril(L,−1) is equal to

vn ·
[
u1 . . . un−1 0

] [L−T
n−1

1

]
,

where Ln−1 is the leading principal submatrix of L of size n−1. Using this fact
the thesis can be proved recursively.

Remark 5.10. Notice that if triu(Jk, 1) = triu(uvT , 1), the vector v cannot have
zero entries: indeed if there exists s ≤ k such that vs = 0, then, as a consequence
of the proof of Theorem 5.6, the matrix Js − diag(γ, ξ1, . . . , ξs−1) has the last
column equal to zero for all γ ∈ R, but this is impossible since for an appropriate
choice of γ this matrix has to be invertible.

Exploiting the quasiseparable structure of the matrix Bk, we can compute
the matrices Bk and Pk by only performing a few scalar products. Indeed, if we
let

Bk =



d1 β1 γ1
d2 β2 γ2 *. . . . . . . . .

0 dk−2 βk−2 γk−2

dk−1 βk−1

dk


,

and we define xk = [Pk−1 0]Bkek, we have that

Aqk = AQkek = PkBkek = dkpk + xk.

Using the fact that the submatrix of Bk that involves the last two columns and
all except for the last two rows has rank at most 1, we can compute xk with
the recursive relation

xk =
γk−2

βk−2
xk−1 + βk−1pk−1.
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Algorithm 2: k-th step of rational Golub-Kahan algorithm
Input: A, qk,pk−1,pk−2,xk−1

Output: pk, dk, βk−1, γk−2,xk

1 w = Aqk

2 βk−1 = wTpk−1

3 γk−2 = wTpk−2

4 xk = γk−2

βk−2
xk−1 + βk−1pk−1

5 w = w − xk

6 dk = ∥w∥2
7 pk = w/dk

This allows us to compute dk, βk−1, γk−2 and pk with only two scalar prod-
ucts. The k-th step of the procedure is summarized in Algorithm 2.

Notice that during the k-th step of the procedure, we do not require the first
k−1 columns of Qk. Moreover, for the computation of the projected solution ȳk

defined in (5.4), we do not need the matrix Qk. For this reason, the computation
of the matrix Qk can be performed by using a short recurrence rational Lanczos
algorithm, as the one presented in [17, Section 5.2], and we can keep in memory
only the last two columns of Qk. After the k-th step of the algorithm, the k-th
column of the matrix Bk can be computed using the newly computed quantities
and the previous column, by exploiting the rank structure of the matrix Bk.

Note that the approximation of f⋄(A)b with (5.4) still requires storing the
whole basis Pk in order to perform the product Pkf

⋄(Bk)e1. Nevertheless, the
low memory requirements of the short recurrence can be exploited in full when
the goal is the computation of the bilinear form wT f⋄(A)b for some vector w:
in this setting, the approximation wTPkf

⋄(Bk)e1 can be computed by updating
the vector wTPk while the Krylov basis is being constructed, bypassing the need
to store the whole matrix Pk.

The whole procedure for the computation of f⋄(A)b is summarized in Algo-
rithm 3. The algorithm reduces to the standard Golub-Kahan bidiagonalization
if all the poles are chosen equal to infinity.

Remark 5.11. In the algorithm it is implicitly assumed that βi ̸= 0 for each i. In
practice this hypothesis is always satisfied, however, as observed in Remark 5.10,
if k is less than the invariance index there is at least one nonzero off-diagonal
entry in the k-th column of Bk. Hence we could modify the algorithm to avoid
the issue of βi = 0.

Remark 5.12. The algorithm presented in this section also works if some of the
poles are equal to zero. However, the proof of this fact requires slightly different
tools, and hence we omitted it for brevity.
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Algorithm 3: Short recurrence rational Krylov approximation of
f⋄(A)b

Input: A ∈ Rm×n, b ∈ Rn, f, {ξ1, . . . , ξk−1}
Output: ȳk ∈ Qk(AAT , Ab) s.t. ȳk ≈ f⋄(A)b

1 q1 = b/∥b∥2
2 w1 = (I −ATA/ξ1)

−1ATAq1 // other choices can be used
3 Compute q2 by orthogonalizing w1 against q1

4 Compute the QR decomposition [p1,p2]
[
d1 β1

0 d2

]
= [q1, q2]

5 Define B2 =
[
d1 β1

0 d2

]
and x2 = β1p1

6 for j = 2, . . . , k − 1 do
7 wj = (I −ATA/ξj)

−1ATAqj // other choices can be used
8 Compute qj+1 by orthogonalizing wj against [q1, . . . , qj ]

9 Compute pj+1, dj+1, βj , γj−1,xj+1 by Algorithm 2 with k = j + 1

10 Bj+1 =
[
Bj sj+1

0 dj+1

]
, where sj+1 =

[
γj−1
βj−1

(Bj)1:j−1,j

βj

]
11 Pk = [p1, . . . ,pk]
12 Compute f⋄(Bk), e.g. via an SVD of Bk

13 ȳk = Pkf
⋄(Bk)e1

6 Error bounds

In this section we prove some error bounds for the approximation of f⋄(A)b
using the polynomial and rational Krylov methods described above. These
bounds link the approximation error with the error of polynomial and rational
approximation of f on an interval containing the singular values of A. Our
results are the analogue of the ones that hold for standard matrix functions,
and they can be proved in a similar way.

We first find an upper and lower bound for the singular values of Bk. For
convenience, given a matrix A ∈ Rm×n, throughout this section we are going to
use an extended notation for singular values, defining σj := 0 for all j such that
min{m,n} < j ≤ max{m,n}.

Lemma 6.1. Let σ1 and σn be the first and n-th singular value of A ∈ Rm×n,
respectively. Then the singular values of Bk belong to the interval [σn, σ1].

Proof. We have

BT
k Bk = QT

kA
TPkP

T
k AQk = QT

k (A
TA)Qk, (6.1)

where we used the fact that PkP
T
k AQk = AQk, since the columns of AQk span

the Krylov subspace Qk(AAT , Ab).
Therefore, by the Cauchy Interlacing Theorem the eigenvalues of BT

k Bk are
contained in the interval [σ2

n, σ
2
1 ], which containes the eigenvalues of ATA ∈
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Rn×n, and thus the singular values of Bk are contained in the interval [σn, σ1].

Observe that if A ∈ Rm×n is rectangular with n > m, we always have
σn = 0, and hence Bk may have singular values arbitrarily close to 0 even if
σmin{m,n}(A) > 0. This fact is going to affect the error bounds in Theorem 6.3
and Theorem 6.7.

As an example, consider the 1×2 matrix A =
[
1 0

]
and the vector b =

[
ϵ
1

]
,

for small ϵ > 0. For k = 1, we have Q1 = b/∥b∥2 = 1√
1+ϵ2

b, and P1 =

Ab/∥Ab∥2 = 1. So we have B1 = PT
1 AQ1 = ϵ√

1+ϵ2
∈ R1×1, and hence B1 can

have an arbitrarily small singular value even if σ1(A) = 1.

6.1 Polynomial error bounds
We first prove the error bounds in the polynomial case. Recall that a polynomial
Krylov method computes an approximation to y = f⋄(A)b from the subspace
Pk(AAT , Ab) as

ȳk = Pkf
⋄(Bk)Q

T
k b = ∥b∥2Pkf

⋄(Bk)e1, (6.2)

where Bk = PT
k AQk, and Pk and Qk are the matrices computed in the Golub-

Kahan bidiagonalization of A, satisfying span(Pk) = Pk(AAT , Ab) and span(Qk) =
Pk(A

TA, b).
A key observation for proving the bounds is the exactness of the approxima-

tion (6.2) when f is an odd polynomial, stated in the following lemma.

Lemma 6.2. Assume that f = p2k−1 is an odd polynomial of degree ≤ 2k − 1.
Then the approximation ȳk given by (6.2) is exact, i.e., we have y = ȳk.

Proof. Let p2k−1(z) = zq(z2), where deg q ≤ k − 1. Using Proposition 3.3 and
recalling (6.1), we have

ȳk = PkBkq(B
TBk)Q

T
k b

= PkP
T
k AQkq(Q

T
kA

TAQk)Q
T
k b.

Due to the exactness property of the polynomial Krylov approximation for stan-
dard matrix functions [17, Lemma 3.9], we have

Qkq(Q
T
kA

TAQk)Q
T
k b = q(ATA)b,

and hence we get

ȳk = PkP
T
k Aq(ATA)b

= Aq(ATA)b = p⋄2k−1(A)b = y,

where we used the fact that w = Aq(ATA)b ∈ Pk(AAT , Ab), and therefore we
have PkP

T
k w = w.
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Using Lemma 6.2, we can prove the following theorem.

Theorem 6.3. Let A ∈ Rm×n, and let σ1, σn and σm be the first, n-th and m-
th singular value of A, respectively. Let ȳk be the approximation to y = f⋄(A)b
given by (6.2). Then the following inequality holds:

∥f⋄(A)b− ȳk∥2 ≤ 2∥b∥2 min
p∈Πk−1

∥f(z)− p(z2)z∥∞,[σn,σ1]. (6.3)

Moreover, if A is square with σm = σn > 0, or if lim
z→0

f(z)
z = 0, we also have

∥f⋄(A)b− ȳk∥2 ≤ 2∥Ab∥2 min
p∈Πk−1

∥f(z)/z − p(z2)∥∞,[σmax{m,n},σ1]. (6.4)

Proof. Let p be a polynomial of degree ≤ k − 1. Then p2k−1(z) = p(z2)z is an
odd polynomial of degree ≤ 2k − 1, and by Lemma 6.2 we have

p⋄2k−1(A)b = Pkp
⋄
2k−1(Bk)Q

T
k b. (6.5)

By adding and subtracting the quantity in (6.5) to f⋄(A)b− ȳk, we get

f⋄(A)b− ȳk = [f⋄(A)− p⋄2k−1(A)]b− Pk[f
⋄(Bk)− p⋄2k−1(Bk)]Q

T
k b. (6.6)

By invariance of the 2-norm under unitary transformations, we have

∥f⋄(A)− p⋄2k−1(A)∥2 = ∥f − p2k−1∥∞,σsing(A) ≤ ∥f − p2k−1∥∞,[σmin{m,n},σ1],

and similarly, by Lemma 6.1,

∥f⋄(Bk)− p⋄2k−1(Bk)∥2 ≤ ∥f − p2k−1∥∞,[σn,σ1].

Combining the above inequalities with (6.6), we get

∥f⋄(A)b− ȳk∥2 ≤ 2∥b∥2∥f − p2k−1∥∞,[σn,σ1],

and by taking the minimum over p ∈ Πk−1 we obtain (6.3).
To prove (6.4), recall that if σm > 0 or lim

z→0

f(z)
z = 0, by Proposition 3.5 we

have f⋄(A) = g(AAT )A, where g(z) = f(
√
z)/

√
z, and similarly, if σn > 0 or

lim
z→0

f(z)
z = 0, then f⋄(Bk) = g(BkB

T
k )Bk. Therefore, by also using Proposi-

tion 3.3, we can rewrite (6.6) in the form

f⋄(A)b− ȳk = [g(AAT )− p(AAT )]Ab− Pk[g(BkB
T
k )− p(BkB

T
k )]BkQ

T
k b.

Given that the eigenvalues of BkB
T
k are the squares of the singular values of

Bk, with a similar argument as before we obtain

∥f⋄(A)− ȳk∥2 ≤ ∥Ab∥2
(
∥g − p∥∞,[σm,σ1] + ∥g − p∥∞,[σ2

n,σ
2
1 ]

)
≤ 2∥Ab∥2

∥∥f(z)/z − p(z2)
∥∥
∞,[σmax{m,n},σ1]

.

As before, (6.4) follows by taking the minimum over p ∈ Πk−1.
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Remark 6.4. Observe that if the matrix A is not square, we have σmax{m,n} = 0,
and hence the bound (6.4) always involves a polynomial approximation over the
whole interval [0, σ1], even when σmin{m,n} > 0. If A ∈ Rm×n is rectangular
with m < n, then the bound (6.3) also involves the whole interval [0, σ1].

A possible strategy to overcome this issue is to use Proposition 3.7 and write

y = f⋄(A)b = (A+)T f⋄(AT )Ab.

The vector w = f⋄(AT )Ab can be approximated using a Krylov method on AT ,
and then y can be recovered by solving the least squares problem

y = (A+)Tw = argmin
y

∥ATy −w∥2. (6.7)

By rewriting the problem in this form, if m < n and σm > 0 we get a bound
involving approximation on the smaller interval [σm, σ1] for the approximation
of w, which translates to a bound for the approximation of y.

The bound (6.3) can be manipulated to obtain a more explicit bound. As-
sume that σn > 0, and let I = [σn, σ1]. The polynomial p(z2)z is odd, and we
can assume that f is also odd, so we have

min
p∈Πk−1

∥f(z)− p(z2)z∥∞,I = min
p∈Πk−1

∥f(z)− p(z2)z∥∞,(−I)∪I

= min
q∈Π2k−1

∥f(z)− q(z)∥∞,(−I)∪I ,
(6.8)

where we used the fact that the polynomial of best approximation on (−I) ∪ I
for an odd function is itself odd. Bounds on the asymptotic rate of convergence
for the polynomial approximation of a function on the union of disjoint intervals
(−I) ∪ I have been developed in [11]. We remark that using [11, Theorem 1]
to bound (6.8) would lead to the same asymptotic rate of convergence as (6.9),
with a slightly larger constant.

The bound (6.3) can also be related to a polynomial approximation problem
on the interval [σ2

n, σ
2
1 ]. Indeed, we have

min
p∈Πk−1

∥f(z)− p(z2)z∥∞,[σn,σ1] = σ1 min
p∈Πk−1

∥f(z)/z − p(z2)∥∞,[σn,σ1]

≤ σ1 min
p∈Πk−1

∥f(
√
z)/

√
z − p(z)∥∞,[σ2

n,σ
2
1 ]
.

Let 1 < ρ ≤ σ1 + σn

σ1 − σn
, and denote by Eρ the ellipse with vertices at ± 1

2 (ρ+
1
ρ )

and foci at ±1, and by Ẽρ its image under the linear function that maps [−1, 1] to
the interval [σ2

n, σ
2
1 ]. The ellipse Ẽρ has vertices at 1

2 (σ
2
n+σ2

1)± 1
4 (ρ+

1
ρ )(σ

2
n−σ2

1)

and foci at σ2
n and σ2

1 . Note that for ρ =
σ1 + σn

σ1 − σn
, the ellipse Ẽρ has a vertex

at 0. We recall the following classical result from approximation theory.

Theorem 6.5. [34, Theorem 8.2] Let the function g be analytic in the interior
of the ellipse Ẽρ, and assume that max

z∈Ẽρ

|g(z)| ≤ M . Then

min
p∈Πk

∥g(z)− p(z)∥∞,[σ2
n,σ

2
1 ]
≤ 2M

ρ− 1
ρ−k.
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If the function f(
√
z/

√
z) is analytic in the interior of Ẽρ, applying Theo-

rem 6.5 to the bound (6.3) gives us

∥f⋄(A)b− ȳk∥2 ≤ 2σ1∥b∥2 min
p∈Πk−1

∥f(
√
z)/

√
z − p(z)∥∞,[σ2

n,σ
2
1 ]

≤ 4Mσ1∥b∥2
ρ

ρ− 1
ρ−k,

(6.9)

where M = max
z∈Ẽρ

|f(
√
z/

√
z)| and 1 < ρ ≤ σ1 + σn

σ1 − σn
.

Remark 6.6. Note that if the function f(
√
z)/

√
z is unbounded on Ẽρ̄ for a

certain ρ̄, Theorem 6.5 can only be used for ρ < ρ̄. In such a situation, the
bound (6.9) only makes sense for ρ < ρ̄.

6.2 Rational error bounds
Next, we prove similar error bounds for the rational approximation (5.4). We
start by stating the result analogous to Theorem 6.3.

Recall that the denominator in the rational Krylov space Qk(AAT , Ab) is

given by the polynomial qk−1(z) =

k−1∏
j=1

(1 − z/ξj), where {ξj}j≥1 is a sequence

of poles in (C ∪ {∞}) \ σ(AAT ).

Theorem 6.7. Let A ∈ Rm×n, and let σ1, σn and σm be the first, n-th and m-
th singular value of A, respectively. Let ȳk be the approximation to y = f⋄(A)b
from Qk(AAT , Ab) given by (5.4). Then the following inequality holds:

∥f⋄(A)b− ȳk∥2 ≤ 2∥b∥2 min
p∈Πk−1

∥f(z)− qk−1(z
2)−1p(z2)z∥∞,[σn,σ1]. (6.10)

Moreover, if A is square with σm = σn > 0, or if lim
z→0

f(z)
z = 0, we also have

∥f⋄(A)b− ȳk∥2 ≤ 2∥Ab∥2 min
p∈Πk−1

∥f(z)/z − qk−1(z
2)−1p(z2)∥∞,[σmax{m,n},σ1].

(6.11)

Note that the same issues discussed after Theorem 6.3 in the case of rectan-
gular matrices also arise in the rational case, and the same approach proposed
in Remark 6.4 can be used to address them.

Similarly to the polynomial case, the bound (6.10) can be rewritten by ex-
ploiting the fact that f can be assumed to be odd and hence that the best
approximant on a symmetric interval is odd, yielding

∥f⋄(A)b− ȳk∥2 ≤ 2∥b∥2 min
p∈Π2k−1

∥f(z)− qk−1(z
2)−1p(z)∥∞,(−I)∪I , (6.12)

where again I = [σn, σ1]. However, rational approximation on disjoint intervals
is a complicated problem, and hence this formulation might be less useful in
practice.
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A more practical way to rewrite the bound (6.10) is the following:

∥f⋄(A)b− ȳk∥2 ≤ 2∥b∥2 min
p∈Πk−1

∥f(z)− qk−1(z
2)−1p(z2)z∥∞,[σn,σ1]

= 2∥b∥2 min
p∈Πk−1

∥
√
z
(
f(
√
z)/

√
z − qk−1(z)

−1p(z)
)
∥∞,[σ2

n,σ
2
1 ]

≤ 2σ1∥b∥2 min
p∈Πk−1

∥
(
f(
√
z)/

√
z − qk−1(z)

−1p(z)
)
∥∞,[σ2

n,σ
2
1 ]
.

(6.13)

Although we get an additional factor σ1, this bound relates the error with a
uniform rational approximation problem on a real interval. This approximation
problem is well-studied in the literature, and it is the same that appears when
computing standard matrix functions with rational Krylov methods, so it can
be a viable tool for selecting good poles.

Similarly to the polynomial case, to prove Theorem 6.7 we require the follow-
ing auxiliary lemma, which shows the exactness of the rational approximation
on rational functions of the form f(z) = qk−1(z

2)−1p(z2)z, where p is any poly-
nomial in Πk−1.

Lemma 6.8. Assume that f is a function of the form f(z) = qk−1(z
2)−1p(z2)z,

where p ∈ Πk−1. Then the approximation ȳk from the rational Krylov subspace
Qk(AAT , Ab) given by (5.4) is exact, i.e., we have y = ȳk.

Proof. Using Corollary 3.4 and (6.1), we have

ȳk = PkBkqk−1(B
TBk)

−1p(BT
k Bk)Q

T
k b

= PkP
T
k AQkqk−1(Q

T
kA

TAQk)
−1p(QT

kA
TAQk)Q

T
k b.

Due to the exactness property of the rational Krylov approximation for standard
matrix functions [18, Lemma 3.1], we have

Qkqk−1(Q
T
kA

TAQk)p(Q
T
kA

TAQk)Q
T
k b = qk−1(A

TA)−1p(ATA)b,

and hence we get

ȳk = PkP
T
k Aqk−1(A

TA)−1p(ATA)b

= Aqk−1(A
TA)−1p(ATA)b = f⋄(A)b = y,

where we used the fact that w = Aqk−1(A
TA)−1p(ATA)b ∈ Q(AAT , Ab), and

therefore PkP
T
k w = w.

We are now ready to prove Theorem 6.7. The proof follows the same strategy
as the proof of Theorem 6.3.

Proof of Theorem 6.7. Let p be a polynomial of degree ≤ k−1. Then the ratio-
nal function r(z) = qk−1(z

2)−1p(z2)z satisfies the assumptions of Lemma 6.8,
and hence we have

r⋄(A)b = Pkr
⋄(Bk)Q

T
k b. (6.14)
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By adding and subtracting the quantity in (6.14) to f⋄(A)b− ȳk, we get

f⋄(A)b− ȳk = [f⋄(A)− r⋄(A)]b− Pk[f
⋄(Bk)− r⋄(Bk)]Q

T
k b. (6.15)

Since by Lemma 6.1 the nonzero singular values of Bk are contained in the
interval [σn, σ1], by invariance of the 2-norm under unitary transformations, we
have

∥f⋄(A)− r⋄(A)∥2 ≤ ∥f − r∥∞,[σmin{m,n},σ1],

∥f⋄(Bk)− r⋄(Bk)∥2 ≤ ∥f − r∥∞,[σn,σ1].

Combining the above inequalities with (6.15), we get

∥f⋄(A)b− ȳk∥2 ≤ 2∥b∥2∥f − r∥∞,[σn,σ1],

and by taking the minimum over p ∈ Πk−1 we obtain (6.10).
To prove (6.11), if σn = σm > 0 or lim

z→0

f(z)
z = 0, by Proposition 3.5 we can

write f⋄(A) = g(AAT )A and f⋄(Bk) = g(BkB
T
k )Bk, where g(z) = f(

√
z)/

√
z.

Thus, using also Corollary 3.4, we can rewrite (6.15) in the form

f⋄(A)b− ȳk = h(AAT )Ab− Pkh(BkB
T
k )BkQ

T
k b,

where h(z) = g(z)− qk−1(z)
−1p(z).

Given that the eigenvalues of BkB
T
k are the squares of the singular values of

Bk, using Lemma 6.1 and proceeding as above we obtain

∥f⋄(A)− ȳk∥2 ≤ ∥Ab∥2
(
∥h∥∞,[σ2

m,σ2
1 ]
+ ∥h∥∞,[σ2

n,σ
2
1 ]

)
= 2∥Ab∥2

∥∥f(z)/z − qk−1(z
2)−1p(z2)

∥∥
∞,[σmax{m,n},σ1]

.

As before, (6.11) follows by taking the minimum over p ∈ Πk−1.

We mention that the results of this section can also be obtained by ex-
ploiting the link betweeen GMFs of A and standard functions of the matrix

A =

[
0 A
AT 0

]
. Indeed, it was observed in [3] that for an odd function f we

have
f(A) =

[
0 f⋄(A)

f⋄(AT ) 0

]
.

If we define the orthogonal matrix U2k =

[
Pk 0
0 Qk

]
and the vector c =

[
0
b

]
∈ Rm+n,

we have that UT
2kAU2k =

[
0 Bk

BT
k 0

]
and

f(A)c =

[
f⋄(A)b

0

]
,

U2kf(UT
2kAU2k)UT

2kc =

[
Pkf

⋄(Bk)Q
T
k b

0

]
.
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Moreover, it can be proved that the columns of U2k are an orthonormal basis for
a rational Krylov subspace Q2k(A, c), whose poles consist of a single pole at ∞,
and ±θj , j = 1, . . . , k− 1, where θ2j = ξj for each j. This fact is straightforward
to prove in the polynomial case, where all θj are equal to ∞.

An alternative derivation of the error bounds in Theorem 6.3 and Theo-
rem 6.7 could then be obtained by combining the above fact with Lemma 6.1
and error bounds concerning rational Krylov approximation of standard matrix
functions (see, e.g., [18, Corollary 3.4]).

6.3 An optimal pole for the Shift-and-Invert method
In this section we use the error bounds in Theorem 6.7 combined with a known
result from approximation theory to find a pole that optimizes the bounds in the
case of a single repeated pole (Shift-and-Invert method) located on the negative
real line.

We consider the case of a nonsingular square matrix A ∈ Rn×n, with singular
values contained in the interval [σmin, σmax], with σmin > 0.

Note that with a change of variables the bound (6.11) can be rewritten in
the form

∥f⋄(A)b− ȳk∥2 ≤ 2∥Ab∥2 min
p∈Πk−1

∥g(z)− qk−1(z)
−1p(z)∥∞,[σ2

min,σ
2
max]

,

where the function g is defined as g(z) = f(
√
z)/

√
z.

In the case of a single repeated pole ξ < 0, we have qk−1(z) = (z − ξ)k−1

and {
(z − ξ)−k+1p(z) : p ∈ Πk−1

}
=

{
p((z − ξ)−1) : p ∈ Πk−1

}
.

By defining h(z) = g(z−1 + ξ), so that g(z) = h((z − ξ)−1), we get

min
p∈Πk−1

∥g(z)− p(z)

(z − ξ)k−1
∥∞,[σ2

min,σ
2
max]

= min
p∈Πk−1

∥h(z)− p(z)∥∞,[µmin,µmax],

(6.16)
where µmin := (σ2

max− ξ)−1 and µmax := (σ2
min− ξ)−1. Notice that for ξ < 0 we

indeed have 0 < µmin ≤ µmax ≤ (−ξ)−1.
The minimum in (6.16) can be bounded using the following result in approx-

imation theory, adapted from [26, Proposition 3.1]. Its proof relies on classical
bounds for Faber series, see [14, Corollary 2.2].

Proposition 6.9. Let ξ < 0, and assume that h(z) = g(z−1 + ξ) is analytic
in the strip 0 < Re z < (−ξ)−1 and continuous in [0, (−ξ)−1]. Then, for any
integer k ≥ 1 the following inequality holds,

min
p∈Πk−1

∥h(z)− p(z)∥∞,[µmin,µmax] ≤ 2M
ρk

1− ρ
, (6.17)

where M = ∥h(z)∥∞,[0,(−ξ)−1] and

ρ = max

{√
σ2
max − ξ −

√
σ2
min − ξ√

σ2
max − ξ +

√
σ2
min − ξ

,
σmax

√
σ2
min − ξ − σmin

√
σ2
max − ξ

σmax

√
σ2
min − ξ + σmin

√
σ2
max − ξ

}
.
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It follows from the analysis after [26, Proposition 3.1] that the bound (6.17)
is optimized by choosing ξ = −σminσmax. This choice leads to the following
bound for the Shift-and-Invert iterates:

∥y − ȳk∥2 ≤ 2∥b∥2M
√

σmax

σmin
exp

(
− 2k

√
σmin

σmax

)
. (6.18)

We remark that the original result (see [26, equation (3.4)]) exihibited an

error like exp
(
− 2k 4

√
a

b

)
for a symmetric matrix A with spectrum in [a, b] ⊂

(0,+∞), when using the Shift-and-Invert method with the optimal pole ξ =

−
√
ab. The fact that in (6.18) we have

√
σmin

σmax
instead of 4

√
σmin

σmax
is not sur-

prising, since we are essentially applying the result from [26] to the matrix ATA,
whose spectrum is contained in [σ2

min, σ
2
max ].

7 Numerical results

In this section we present some numerical experiments with the purpose of
illustrating the error bounds and comparing the different methods proposed
in the previous sections. We first test the methods on randomly generated
matrices with a prescribed distribution of singular values, obtained by taking two
random orthogonal matrices U, V ∈ Rn×n and constructing A = UΣV T , where
Σ = diag(σ1, . . . , σn) ∈ Rn×n. The random orthogonal matrices are obtained
by taking a matrix B ∈ Rn×n with entries from the normal distribution N (0, 1)
and computing the QR factorization B = QR. If the diagonal entries of R are
nonnegative, then Q is a random orthogonal matrix from the Haar distribution,
a natural uniform probability distribution on the manifold of n× n orthogonal
matrices [33]. In our last experiment we use the adjacency matrix of a directed
graph from the Sparse Matrix Collection [12]. For simplicity, we assume that
the interval of singular values [σn, σ1] is known. In a practical situation, one
would first need to compute a (rough) approximation of the extremal singular
values.

The experiments were done with MATLAB, using the rat_krylov function
from the Rational Krylov Toolbox [7] for the implementation of the rational
Arnoldi algorithm. The plots display the relative 2-norm error ∥f⋄(A)b− ȳk∥2,
where ȳk is the approximation defined in (5.3) or (5.4), depending on the Krylov
method that was used.

7.1 Error bounds
We start by illustrating in Figure 1 the sharpness of the bound (6.9) for the
polynomial Krylov method. Under the assumptions of Theorem 6.5, the rate of
convergence in the bound only depends on the interval [σn, σ1], and hence we
can expect it to be pessimistic for most functions. Indeed, for entire functions
such as sinh(z) and sin(z) (see Figure 1(b)) the convergence is much faster
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Figure 1: Convergence of the polynomial Krylov method for the approximation
of f⋄(A)b, where A is a 2000 × 2000 matrix whose singular values are Cheby-
shev points of the second kind for the interval [10−1, 10], and b is a random
vector. Left: functions with an asymptotic convergence rate predicted by the
bound (6.9). Right: entire functions with fast convergence.

than the bound (6.9); however, the bound can capture the asymptotic rate of
convergence for certain functions with lower regularity such as

√
z, for suitable

singular value distributions (see Figure 1(a)). This implies that, under the same
assumptions of Theorem 6.5, it is only possible to improve the multiplicative
constant in the bound (6.9). Note that in Figure 1 the multiplicative constant
in the bound (6.9) was ignored for better visualization.

In Figure 2 we compare the convergence of the rational Krylov methods and
we test the sharpness of the bounds (6.12) and (6.18). We use the Shift-and-
Invert method with the pole ξ = −σminσmax, the extended Krylov method [13],
that alternates poles at ∞ with poles at 0, and a general Krylov method with an
asymptotically optimal pole sequence for Laplace-Stieltjes and Cauchy-Stieltjes
functions, developed in [24]. The poles were selected using the interval [σ2

n, σ
2
1 ],

with reference to the bound (6.13). The function f(z) =
√
z log(1+

√
z) is such

that the function
f(
√
z)√
z

=
log(1 + 4

√
z)

4
√
z

is Laplace-Stieltjes, or equivalently, completely monotonic [32, Definition 1.3].
This follows from [32, Theorem 3.7] and the fact that log(1+ z)/z is completely
monotonic. An approximation from above to the bound (6.12) was evaluated
using a quasi-optimal polynomial p computed by replacing the uniform norm
with the 2-norm on a discrete set of points in I ∪ (−I). We can see in Figure 2
that the convergence of the rational Krylov method with asymptotically optimal
poles closely follows the bound (6.12), and that the convergence rate of the Shift-
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Figure 2: Convergence of different rational Krylov methods for the approxima-
tion of f⋄(A)b, where A is a 2000× 2000 matrix with logspaced singular values
in the interval [1, 10] (left) or [10−1, 10] (right), f(z) =

√
z log(1 +

√
z), and b

is a random vector.

and-Invert method is correctly predicted by the bound (6.18). The convergence
speed of the extended Krylov method is comparable to the one of the Shift-and-
Invert method. Note that, as in the polynomial case, the bound (6.18) displayed
in Figure 2 does not include the multiplicative constant.

7.2 Rectangular case
Next, we investigate the performance of the methods in the case of a rect-
angular matrix A ∈ Rm×n, and the effectiveness of the strategy proposed in
Remark 6.4 when m < n to reduce the computation of f⋄(A)b to the computa-
tion of f⋄(AT )Ab. We report in Figure 3 the convergence plots of the rational
Krylov method with asymtotically optimal poles, for the functions f(z) =

√
z

and f(z) = z log(z). We can observe that the convergence is similar for the
function z log(z) (Figure 3(b)), while there is a large benefit in using the al-
ternative expression (6.7) in the case of the function f(z) =

√
z. This is likely

due to the fact that
√
z has a large derivative close to zero, and hence roundoff

errors in the smallest computed singular values of the matrix Bk are extremely
amplified when applying the function f . Indeed, we can see in Figure 3(a) that
it is not possible to get below a relative accuracy of 10−8 if we directly approx-
imate f⋄(A)b, while we can reach a relative error of about 10−13 if we use the
connection with f⋄(AT )Ab, since in this case the projected matrix Bk has no
singular values close to zero.
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Figure 3: Convergence of the rational Krylov methods with asymptotically opti-
mal poles for the approximation of f⋄(A)b, where A is a rectangular 1000×1500
matrix whose singular values are Chebyshev points of the second kind for the
interval [10−2, 10]. The red line shows the convergence of the method described
in Remark 6.4, which computes f⋄(A)b by first computing f⋄(AT )Ab and then
solving a least squares problem.

7.3 Finite precision issues
In finite precision, one of the main practical problems of Krylov methods based
on a short recurrence (such as, for instance, the Lanczos method) is the loss of
orthogonality in the computed basis vector. This phenomenon has been studied
for the polynomial Lanczos case in [29]. A brief study of the problem for the
rational Lanczos case can be found in [30].

As can be expected, the algorithm presented in Section 5.3 also suffers from
this numerical instability. However, our experiments show that this loss of
orthogonality deteriorates only slightly the accuracy of the algorithm: if the
poles are chosen to guarantee a moderate number of iterations for convergence,
it appears that the error produced by comparing the short recurrence algorithm
with the one that uses full ortogonalization remains rather small, and it stops
growing after a few iterations (see Figure 4). The effect of finite precision
arithmetic and the subsequent loss of orthogonality in the Krylov basis have
been already studied in [27] for the approximation of the product between a
standard matrix function and a vector by means of the polynomial Lanczos
algorithm; on the other hand, a theoretical analysis of the loss of orthogonality in
the short-recurrence rational Lanczos algorithm, even in the context of standard
matrix functions, is a challenging problem: see for example [30, Section 4].
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Figure 4: Effects of the loss of orthogonality in the rational Golub-Kahan algo-
rithm for the approximation of f⋄(A)b, where f(z) =

√
z and A is a 2000×2000

matrix with logspaced singular values in the interval [10−1, 102], for the rational
Krylov method with asymptotically optimal poles. Left: loss of orthogonal-
ity and error in the projected matrix when using the short recurrence. Right:
comparison of the error in the approximation of f⋄(A)b when using the short
recurrence or full orthogonalization of the basis vectors. In yellow we reported
the norm of the difference between the two approximations.
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7.4 A practical example
Our last experiment compares the accuracy and execution times of polynomial
and rational Krylov methods in a more practical scenario. We consider the
computation of f⋄(A)b, where A is the 8490 × 8490 adjacency matrix of the
largest strongly connected component of the directed graph p2p-Gnutella30
from the Sparse Matrix Collection [12] and b is the vector of all ones. This
kind of expression arises when computing functions of the adjacency matrix
of the associated bipartite graph. We consider the functions f1(z) = sinh(z)
and f2(z) = z1/3. The function f1 is an entire function that appears in the
computation of hub and authority communicabilities of nodes in a directed
graph [3, 5], and the function f2 is such that f2(

√
z)/

√
z is Cauchy-Stieltjes, in

order to use the asymptotically optimal poles developed in [24].
In order to simulate a real situation where the exact solution is not avail-

able, we used as a simple stopping criterion the relative difference between two
consecutive approximations, i.e. we stopped the algorithm as soon as

∥ȳk − ȳk+1∥2
∥ȳk∥2

≤ tol, (7.1)

where tol is the requested error tolerance. We remark that although this kind of
stopping criterion is widely used in practice, it does not provide any guarantees
and it often underestimates the actual error ∥f⋄(A)b − ȳk∥2, especially if the
method is stagnating.

Our results are summarized in Figure 5 and Table 1. Since f1 is an entire
function, the polynomial method converges very quickly and thus outperforms
any rational Krylov method2. On the other hand, the function f2 is less regular,
and the performance of the rational Krylov method with asymptotically optimal
poles is much more competitive, both in terms of number of iterations and
execution time. We can see that the error estimate (7.1) is quite accurate
when the method converges quickly, but it stops the algorithm too early if the
convergence is slower.

8 Conclusions

In this paper we have proposed the use of rational Krylov methods in the com-
putation of the action of a generalized matrix function on a vector. We have
developed an extension of the Golub-Kahan bidiagonalization to the rational
case, that uses a short recurrence to compute the basis vectors of the rational
Krylov subspace. We have proved error bounds for the computation of GMFs
with polynomial and rational Krylov methods, that relate the error of approxi-
mating f⋄(A)b with the best uniform polynomial or rational approximation of
the function f on a real interval containing the singular values of A, and we

2We remark that the number of iterations of the rational Krylov method for f1 could be
reduced with a more careful choice of poles. However, it would still be outperformed by the
polynomial Krylov method.
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Figure 5: Comparison between polynomial and rational Krylov for the approx-
imation of f⋄(A)b, where A is the 8490× 8490 adjacency matrix of the largest
strongly connected component of the directed graph p2p-Gnutella30 and b is
the vector of all ones. We have set tol = 10−9 in the stopping criterion (7.1).
The dashed lines are the error estimates (7.1). Left: f1(z) = sinh(z). Right:
f2(z) = z1/3.

function polynomial rational
k tk Ek k tk Ek

sinh(z) 11 0.0103 1.54e-10 55 10.0469 6.41e-08

z1/3 2000 12.6563 2.48e-03 32 5.6455 1.16e-09

Table 1: Number of iterations k, execution time tk in seconds required to achieve
tolerance tol = 10−9, and actual error Ek at iteration k. The execution times
are for the short recurrence implementations, obtained as an average over 10
runs. In the case of f2(z) = z1/3, after 2000 iterations of the polynomial method
the error estimate was still 1.99e-03.
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have conducted experiments to investigate the sharpness of such bounds. The
experiments we performed also show that rational Krylov methods are particu-
larly effective compared to polynomial Krylov methods when the function f or
its derivatives have singularities close to the singular values of A.
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