HFLAV τ branching fractions fit and measurements of $|V_{us}|$ with τ lepton data

Alberto Lusiani^{1*}

1 Scuola Normale Superiore and INFN sezione di Pisa, Italy

★ alberto.lusiani@pi.infn.it

Proceedings for the 15th International Workshop on Tau Lepton Physics, Amsterdam, The Netherlands, 24-28 September 2018 doi:10.21468/SciPostPhysProc.1

Abstract

We report the status of the Heavy Flavour Averaging Group (HFLAV) averages of the τ lepton measurements We then update the latest published HFLAV global fit of the τ lepton branching fractions (Spring 2017) with recent results by BABAR. We use the fit results to update the Cabibbo-Kobayashi-Maskawa (CKM) matrix element $|V_{us}|$ measurements with the τ branching fractions. We combine the direct τ branching fraction measurements with indirect predictions using kaon branching fractions measurements to improve the determination of $|V_{us}|$ using τ branching fractions. The $|V_{us}|$ determinations based on the inclusive branching fraction of τ to strange final states are about 3σ lower than the $|V_{us}|$ determination from the CKM matrix unitarity.

© O Copyright A. Lusiani. This work is licensed under the Creative Commons Attribution 4.0 International License. Published by the SciPost Foundation.

Received 16-11-2018 Accepted 17-01-2019 Published 18-02-2019 doi:10.21468/SciPostPhysProc.1.001

1 Introduction

The τ subgroup of the Heavy Flavour Averaging Group (HFLAV) provides a global fit of the τ branching fractions, the lepton universality tests and the $|V_{us}|$ determination based on τ measurements. The latest published report for the τ lepton is labelled "Spring 2017" [1]. A version of the HFLAV τ branching fractions fit with unitarity constraint is published on the Review of Particle Physics [2] (RPP). There are additional minor differences between the two fits [1,3]. The fit results are used to test lepton universality and to compute $|V_{ijk}|$ [1].

The HFLAV-Tau group collects and combines also a list of upper limits set by searches of lepton-flavour-violating τ decays [1].

In the following, we update the HFLAV-Tau global fit inputs with two BABAR measurements that became public in 2018 [4, 5] and we update the $|V_{us}|$ determinations based on τ data. The new results have a negligible effect on the lepton universality tests.

Finally, we add to the fit input measurements of three τ branching fractions that are indirectly determined using measurements of kaon branching fractions [6], in order to improve the precision on $|V_{us}|$.

2 New τ branching fraction measurements

Since the last HFLAV report, BABAR published [4] a measurement of

$$B(\tau^{-} \rightarrow K^{-}K^{0}\nu_{\tau}) = (14.78 \pm 0.22 \pm 0.40)10^{-4}$$

and presented [5] preliminary measurements of

$$\begin{split} B(\tau^- \to K^- \nu_\tau) &= (7.174 \pm 0.033 \pm 0.213)10^{-3} ,\\ B(\tau^- \to K^- \pi^0 \nu_\tau) &= (5.054 \pm 0.021 \pm 0.148)10^{-3} ,\\ B(\tau^- \to K^- 2\pi^0 \nu_\tau (ex.K^0)) &= (6.151 \pm 0.117 \pm 0.338)10^{-4} ,\\ B(\tau^- \to K^- 3\pi^0 \nu_\tau (ex.K^0, \eta)) &= (1.246 \pm 0.164 \pm 0.238)10^{-4} ,\\ B(\tau^- \to K^- 3\pi^0 \nu_\tau (ex.K^0, \eta)) &= (1.168 \pm 0.006 \pm 0.038)10^{-2} ,\\ B(\tau^- \to K^- 4\pi^0 \nu_\tau (ex.K^0, \eta)) &= (9.020 \pm 0.400 \pm 0.652)10^{-4} .\end{split}$$

3 $|V_{us}|$ determination including the 2018 BABAR results

We add the measurements listed in the previous section to the HFLAV-Tau global fit, removing a former *BABAR* measurement of $B(\tau^- \rightarrow K^- \pi^0 \nu_\tau)$ [7] that has been superseded [5]. The new measurements of the branching fractions τ decaying to a kaon and 0, 1, 2, 3 π^0 's improve the experimental resolution on several modes that most contribute to the uncertainty on $|V_{us}|$.

We compute $|V_{us}|_{\tau s}$ using the total branching fraction of the τ to strange final states following Ref. [8]:

$$|V_{us}|_{\tau s} = \sqrt{R_s / \left[\frac{R_{VA}}{|V_{ud}|^2} - \delta R_{\text{theory}}\right]} = 0.2195 \pm 0.0019 ,$$

where $|V_{ud}| = 0.97420 \pm 0.00021$ [9], R_s and R_{VA} are the τ hadronic partial widths to strange and to non-strange hadronic final states (Γ_s and Γ_{had}) divided by the universality-improved branching fraction $B(\tau \rightarrow e \nu \bar{\nu}) = B_e^{\text{uni}} = (17.814 \pm 0.022)\%$ [1, 3], and the SU(3)-breaking term $\delta R_{\text{theory}} = 0.242 \pm 0.033$ is computed using inputs from Ref. [8] and $m_s = (95.00 \pm 6.70) \text{ MeV}$ [2] (the uncertainties on m_s have been symmetrized).

We compute also

$$|V_{us}|_{\tau K/\pi} = |V_{ud}| \frac{f_{\pi\pm}}{f_{K\pm}} \frac{m_{\tau}^2 - m_{\pi}^2}{m_{\tau}^2 - m_{K}^2} \sqrt{\frac{B(\tau^- \to K^- \nu_{\tau})}{B(\tau \to \pi^- \nu_{\tau})}} \frac{R_{\tau/\pi}}{R_{\tau/K}} \frac{1}{R_{\tau K/\tau \pi}} = 0.2236 \pm 0.0016 \,,$$

where $f_{K\pm}/f_{\pi\pm} = 1.193\pm0.003$ from the FLAG 2016 Lattice averages with $N_f = 2+1+1$ [10–13] (the same value persists in the FLAG 2017 web update). The radiative correction terms are $R_{\tau/K} = 1 + (0.90\pm0.22)\%$, $R_{\tau/\pi} = 1 + (0.16\pm0.14)\%$ [14–17], $R_{\tau K/\tau\pi} = 1 + (-0.69\pm0.17)\%$ [18–20]. The third value differs from the one quoted in the Spring 2017 HFLAV-Tau report [1], which incorrectly included a strong isospin-breaking correction that is not needed when using $f_{K\pm}/f_{\pi\pm}$ rather than its isospin-limit variant. The other parameters are taken from the Review of Particle Physics (RPP) 2018 [2].

Averaging the two above $|V_{us}|$ determinations, we obtain $|V_{us}|_{\tau} = 0.2220 \pm 0.0014$.

Table 1: Deviations of $|V_{us}|$ computed with τ data with respect to $|V_{us}|$ obtained with CKM unitarity. The second and third row use the $|V_{us}|$ determinations performed above.

	$\Delta V_{us} _{\tau s}$	$\Delta V_{us} _{\tau K/\pi}$	$\Delta V_{us} _{\tau}$
	$[\sigma]$	$[\sigma]$	$[\sigma]$
HFLAV Spring 2017	-3.0	-1.0	-2.3
HFLAV + BABAR 2018	-2.9	-1.1	-2.3
HFLAV + BABAR + kaon predictions	-2.7	-0.1	-0.9

4 τ branching fraction predictions from kaon measurements

Assuming the validity of the Standard Model (SM), three τ branching fractions have been computed using the precisely measured $K_{\ell 2}$ and $K_{\ell 3}$ branching fractions and the measured $\tau^- \rightarrow (K\pi)^- \nu_{\tau}$ spectra [6]:

$$B(\tau^- \to K^- \nu_\tau) = (0.713 \pm 0.003)\%,$$

$$B(\tau^- \to K^- \pi^0 \nu_\tau) = (0.471 \pm 0.018)\%,$$

$$B(\tau^- \to K^0 \pi^- \nu_\tau) = (0.857 \pm 0.030)\%.$$

The uncertainties on the last two results are fully correlated. It has been observed [6,18] that all the above indirect values are higher than the corresponding directly measured τ branching fractions. If the indirect values replace the direct ones, $|V_{us}| = 0.2207 \pm 0.027$ [6].

We add the kaon-indirect determinations of the three above τ branching fractions to the data set used in the previous section in order to obtain improved calculations of $|V_{us}|_{\tau s} = 0.2202 \pm 0.0018$, $|V_{us}|_{\tau K/\pi} = 0.22546 \pm 0.00097$, $|V_{us}|_{\tau} = 0.22439 \pm 0.00088$.

5 Consistency of $|V_{us}|$ with the CKM matrix unitarity

Assuming the CKM matrix unitarity,

$$|V_{us}|_{uni} = \sqrt{1 - |V_{ud}|^2 - |V_{ub}|^2} = 0.22565 \pm 0.00089$$
,

using $|V_{ud}| = 0.97420 \pm 0.00021$ [9] and $|V_{ub}| = (0.3940 \pm 0.0360)10^{-2}$ [2]. Table 1 summarizes the residuals, expressed as numbers of standard deviations, of the above mentioned $|V_{us}|$ determinations with respect to the $|V_{us}|$ computation from the CKM matrix unitarity. $|V_{us}|$ computed with the τ -inclusive method is significantly lower, but the significance of the discrepancy is mildly reduced alongside a mild progress in the experimental resolution.

6 Conclusions

Figure 1 reports the $|V_{us}|_{\tau s}$ determinations described above, a determination of $|V_{us}|_{\tau s}$ obtained replacing some τ branching fractions measurements with the indirect predictions based on kaon branching fractions [6], and other more complex determinations that use the τ spectral functions [21] and Lattice QCD techniques [22]. Updates on the last two determinations have been presented at the Tau 2018 workshop [23]. The last four determinations use an older and in some cases partial set of experimental τ branching fractions measurements.

Figure 1: $|V_{us}|_{\tau s}$ determinations obtained in this document, from the top: $|V_{us}|_{uni}$, $|V_{us}|_{\tau s}$ with the HFLAV Spring 2017 fit, after adding the *BABAR* 2018 data, after adding both the *BABAR* 2018 and the kaon indirect predictions, from Ref. [6], from Ref. [21], and two determinations from Ref. [22].

Figure 2: Results of a $|V_{ud}|$ - $|V_{us}|$ simultaneous fit. The bands describe the constraints corresponding to the $|V_{ud}|$ measurement, the $|V_{us}|_{\tau s}$ and the $|V_{us}|_{\tau K/\pi}$ determinations that use the τ measurements. The oblique line corresponds to the CKM matrix unitarity constraint. The ellipse corresponds to 1σ uncertainty on the $|V_{ud}|$ and $|V_{us}|$ fit results.

The τ based $|V_{us}|$ determinations use the $|V_{ud}|$ measurements as input. The dependence on $|V_{ud}|$ is however very small, and there is in first approximation negligible correlation between $|V_{us}|$ and $|V_{ud}|$ when doing a simultaneous fit. Figure 2 shows the results of a $|V_{ud}|$ - $|V_{us}|$ simultaneous fit on the τ measurements corresponding to the HFLAV Spring 2017 fit and the *BABA*R 2018 results. The fit results are:

> $|V_{ud}| = 0.97420 \pm 0.00021,$ $|V_{us}| = 0.2223 \pm 0.0014,$ $|V_{ud}| \cdot |V_{us}|$ correlation = 0.035.

Tables 2 and 3 report the contributions to the $|V_{us}|_{\tau s}$ uncertainty before and after the *BABA*R 2018 results. The largest contributions come from the τ branching fractions to strange final states and from the theory. The *BABA*R 2018 measurements reduced significantly several large contributions. High multiplicity τ decays to strange final states dominate the $|V_{us}|_{\tau s}$ uncertainty. The Belle II super flavour factory will offer the opportunity to improve the experimental precision on the τ strange branching fractions. More precise τ branching fractions and spectral function measurements will help improving also the theory uncertainty.

Table 2: Contributions to the $|V_{us}|_{\tau s}$ uncertainty in percent before the *BABA*R 2018 results.

 $\pi^{-}\bar{K}^{0}\pi^{0}\pi^{0}\nu_{\tau}$ (ex. K^{0}) 0.3963 $K^{-}2\pi^{0}\nu_{\tau}$ (ex. K^{0}) 0.3789 $K^{-}3\pi^{0}\nu_{\tau}$ (ex. K^{0},η) 0.3714 $\bar{K}^0 h^- h^- h^+ \nu_{\tau}$ 0.3478 $K^-\pi^0 \nu_{\tau}$ 0.2561 $\pi^{-}\pi^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0}, ω, η) 0.2456 $\pi^- \bar{K}^0 \nu_{\tau}$ 0.2424 $\pi^- \bar{K}^0 \pi^0 \nu_\tau$ 0.2219 $K^- v_{\tau}$ 0.1646 0.1585 $K^-\omega v_{\tau}$ $K^-\pi^-\pi^+\nu_{\tau}$ (ex. K^0, ω) 0.1157 $\pi^- \bar{K}^0 \eta \nu_\tau$ 0.0256 $K^-\pi^0\eta\nu_{\tau}$ 0.0200 $K^-\eta v_{\tau}$ 0.0138 $K^-\phi \nu_{\tau} (\phi \to K^+K^-)$ 0.0138 $\begin{array}{l} K^-\phi\,\nu_\tau\,(\phi\to K^0_S K^0_L)\\ K^-2\pi^-2\pi^+\,\nu_\tau\,(\mathrm{ex.}\ K^0) \end{array}$ 0.0096 0.0021 $K^{-}2\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0}) 0.0010 $\tau \rightarrow \text{non-strange}$ 0.0896 $B^{\rm univ}$ 0.0045 theory 0.4861

Table 3: Contributions to the $|V_{us}|_{\tau s}$ uncertainty in percent after the BABAR 2018 results.

References

- [1] Y. Amhis et al., Averages of b-hadron, c-hadron, and τ -lepton properties as of summer 2016, Eur. Phys. J. C 77, 895 (2017), doi:10.1140/epjc/s10052-017-5058-4.
- [2] M. Tanabashi et al., Review of particle physics, Phys. Rev. D 98, 030001 (2018), doi:10.1103/PhysRevD.98.030001.
- [3] A. Lusiani, *HFAG 2016 and PDG 2016* τ lepton averages and $|V_{us}|$ determination from τ data, Nucl. Part. Phys. Proc. **287-288**, 29 (2017), doi:10.1016/j.nuclphysbps.2017.03.038.
- [4] J. P. Lees et al., Measurement of the spectral function for the $\tau^- \rightarrow K^- K_S \nu_{\tau}$ decay, Phys. Rev. D 98, 032010 (2018), doi:10.1103/PhysRevD.98.032010.
- [5] T. Lueck, *Recent results on* τ *-lepton decays with the BABAR detector*, Talk given at the 'XXXIX International Conference On High Energy Physics, Seoul, South Korea', (2018).
- [6] M. Antonelli, V. Cirigliano, A. Lusiani and E. Passemar, *Predicting the* τ *strange branching ratios and implications for* V_{us} , J. High Energ. Phys. **10**, 070 (2013), doi:10.1007/JHEP10(2013)070.
- [7] B. Aubert et al., *Measurement of the* $\tau^- \rightarrow K^- \pi^0 \nu_{\tau}$ *branching fraction*, Phys. Rev. D **76**, 051104 (2007), doi:10.1103/PhysRevD.76.051104.
- [8] E. Gámiz, M. Jamin, A. Pich, J. Prades and F. Schwab, $|V_{us}|$ and m_s from hadronic tau decays, Nucl. Phys. B Proc. Suppl. **169**, 85 (2007), doi:10.1016/j.nuclphysbps.2007.02.053.
- [9] J. Hardy and I. S. Towner, |V_{ud}| from nuclear β decays, Proc. Sci. 291-CKM2016, 028 (2016), doi:10.22323/1.291.0028.

- [10] S. Aoki et al., *Review of lattice results concerning low-energy particle physics*, Eur. Phys. J. C 77, 112 (2017), doi:10.1140/epjc/s10052-016-4509-7.
- [11] A. Bazavov et al., Charmed and light pseudoscalar meson decay constants from fourflavor lattice QCD with physical light quarks, Phys. Rev. D 90, 074509 (2014), doi:10.1103/PhysRevD.90.074509.
- [12] R. J. Dowdall, C. T. H. Davies, G. P. Lepage and C. McNeile, V_{us} from π and K decay constants in full lattice QCD with physical u, d, s, and c quarks, Phys. Rev. D 88, 074504 (2013), doi:10.1103/PhysRevD.88.074504.
- [13] N. Carrasco et al., Leptonic decay constants f_K , f_D , and f_{D_s} with $N_f = 2+1+1$ twisted-mass lattice QCD, Phys. Rev. D **91**, 054507 (2015), doi:10.1103/PhysRevD.91.054507.
- [14] W. J. Marciano and A. Sirlin, *Radiative corrections to* $\pi_{\ell 2}$ *decays*, Phys. Rev. Lett. **71**, 3629 (1993), doi:10.1103/PhysRevLett.71.3629.
- [15] R. Decker and M. Finkemeier, *Radiative corrections to the decay* $\tau \rightarrow \pi(K)\nu_{\tau}$, Phys. Lett. B **334**, 199 (1994), doi:10.1016/0370-2693(94)90611-4.
- [16] R. Decker and M. Finkemeier, *Short and long distance effects in the decay* $\tau \rightarrow \pi \nu_{\tau}(\gamma)$, Nucl. Phys. B **438**, 17 (1995), doi:10.1016/0550-3213(95)00597-L.
- [17] R. Decker and M. Finkemeier, *Radiative corrections to the decay* $\tau \rightarrow \pi \nu_{\tau}$, Nucl. Phys. B Proc. Suppl. **40**, 453 (1995), doi:10.1016/0920-5632(95)00170-E.
- [18] A. Pich, Precision tau physics, Prog. Part. Nucl. Phys. 75, 41 (2014), doi:10.1016/j.ppnp.2013.11.002.
- [19] V. Cirigliano and H. Neufeld, *A note on isospin violation in* $P_{l2(\gamma)}$ *decays*, Phys. Lett. B **700**, 7 (2011), doi:10.1016/j.physletb.2011.04.038.
- [20] W. J. Marciano, Precise determination of |V_{us}| from lattice calculations of pseudoscalar decay constants, Phys. Rev. Lett. 93, 231803 (2004), doi:10.1103/PhysRevLett.93.231803.
- [21] R. J. Hudspith, R. Lewis, K. Maltman and J. Zanotti, A resolution of the inclusive flavor-breaking τ $|V_{us}|$ puzzle, Phys. Lett. B **781**, 206 (2018), doi:10.1016/j.physletb.2018.03.074.
- [22] P. Boyle et al., |V_{us}| determination from inclusive strange tau decay and lattice HVP, EPJ Web Conf. 175, 13011 (2018), doi:10.1051/epjconf/201817513011.
- [23] K. Maltman, *The status of the inclusive tau determination of Vus*, Talk given at the '15th International Workshop on Tau Lepton Physics, Amsterdam, The Netherlands' (2018).