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We present and make available MedLatinEpi and MedLatinLit, two datasets of medieval Latin texts to be used in research

on computational authorship analysis. MedLatinEpi and MedLatinLit consist of 294 and 30 curated texts, respectively,

labelled by author; MedLatinEpi texts are of epistolary nature, while MedLatinLit texts consist of literary comments and

treatises about various subjects. As such, these two datasets lend themselves to supporting research in authorship analysis

tasks, such as authorship attribution, authorship verification, or same-author verification. Along with the datasets, we provide

experimental results, obtained on these datasets, for the authorship verification task, i.e., the task of predicting whether a

text of unknown authorship was written by a candidate author. We also make available the source code of the authorship

verification system we have used, thus allowing our experiments to be reproduced, and to be used as baselines, by other

researchers. We also describe the application of the above authorship verification system, using these datasets as training

data, for investigating the authorship of two medieval epistles whose authorship has been disputed by scholars.
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1 INTRODUCTION

(Computational) Authorship Analysis is the task of inferring the characteristics of the author of a text of unknown
or disputed authorship. Authorship Analysis has several subtasks of practical use; examples include gender de-
tection (i.e., predicting whether the text was written by a woman or a man [46]) or native language identification
(i.e., predicting the native language of the author of the text [53]).
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Many subtasks of authorship analysis have actually to do with the prediction of the identity of the author of
the text. The one such subtask that has the longest history is Authorship Attribution (AA) [42, 48, 58], which
consists of predicting who, among a set of k candidate authors, is the real (or the most likely) author of the text. A
task that has gained prominence more recently is Authorship Verification (AV) [47, 59], the task of predicting
if a certain candidate author is or is not the author of the text. Finally, the task that has been introduced latest
in this field is Same-Authorship Verification (SAV) [49], the task of predicting whether two texts d ′ and d ′′

are by the same author.
Nowadays, authorship analysis tasks are usually tackled as text classification tasks [36] and thus solved with

the help of machine learning algorithms: For instance, an authorship verification task is solved as a binary classi-
fication problem, i.e., as the problem of classifying the disputed text into one of the two classes {Yes, No}, where
Yes (respectively, No) indicates that the text is (respectively, is not) by the candidate author. To do so, a machine
learning algorithm trains a {Yes, No} classifier from a training set of labelled texts, where the training examples
labelled Yes are texts by the candidate author and the training examples labelled No are texts by other authors,
usually closely related to the candidate author.

Authorship analysis is useful for many applications, ranging from cybersecurity (the field that addresses the
design of techniques for preventing crimes committed via digital means) [57] to computational forensics (the field
concerned with the study of digital evidence for investigating crimes that have already occurred) [38, 50, 53, 54].
Another important application is related to philology and has to do with inferring the identity of the unknown
authors of texts of literary and historical value. In the case of modern texts, this often has to do with the attempt
to disclose the identity of authors who originally wanted to remain anonymous, or to disguise as someone else,
while in the case of ancient texts this usually has to do with texts whose authorship has become unknown, or
uncertain, in the course of history [43, 45, 56, 60, 62].

After reviewing some related work (Section 2), we here present and make available (Section 3) two datasets of
texts of the latter type, i.e., texts written in medieval Latin, mostly by Italian literates, mostly dating around the
13th and 14th century.1 We believe this to be an important contribution for at least two reasons. The first is that
the datasets bring together (in preprocessed form for use by authorship analysis researchers) a set of texts that
were not readily available to these researchers, since some of these texts were not available in digital form, while
others lay scattered across different electronic formats and different digital libraries. The second is that there
are many documents in medieval Latin from this historical period whose authorship is disputed by scholars2

and this makes an authorship analysis system trained on these datasets an important tool for philologists and
historians of language alike.

Aside from describing the two datasets, we make available the source code of MedieValla,3 a software tool
for running authorship verification experiments on medieval Latin texts, and we present (Section 4) the results of
our experiments using MedieValla on these datasets. The availability of both the datasets and the tool we have
used on them will allow other researchers to replicate our results and, hopefully, to develop and test improved
authorship verification methods for medieval Latin.

In Section 5, we present two example applications of MedieValla on MedLatinEpi and MedLatinLit. In the
first, we verify if the Epistle to Cangrande, an epistle traditionally attributed to Dante Alighieri, but which several
scholars have conjectured to be a forgery, is actually by Dante. In the second, we verify if an epistle traditionally

1Medieval Latin is different from classical Latin in a number of ways, e.g., it is more generous than classical Latin in its use of prepositions

and conjunctions, and it uses a more regular syntax.
2Examples include the Epistle to Cangrande [37], Cangrande’s Epistle to Henry VII [52], and the Quaestio de aqua et terra [61], just to mention

ones that some scholars attribute to Dante Alighieri while some others do not. The first two will be discussed more fully in Section 5.
3The name MedieValla is a combination of “medieval” and the last name of Lorenzo Valla (1407–1457), one of the first (human) authorship

verifiers recorded in history. Lorenzo Valla is well known for proving that the “Donation of Constantine” (a decree attributed to 4th-century

Roman emperor Constantine in which he supposedly conferred authority over Rome and the western part of the Roman Empire to the Pope)

was a forgery.
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attributed to Cangrande della Scala, but that has recently been conjectured to be by Dante himself, is indeed by
Dante. In both cases, our authorship verifier rejects the hypothesis that Dante may be the author and does so
with high confidence.

2 RELATED WORK

In our cultural heritage, documents of unknown or disputed authorship are rather common, especially in
centuries-old traditions, where the testimony of the true author may easily have been lost or altered. In par-
ticular, a number of recent works have tackled problems of authorship analysis for the Latin language.

Kestemont et al. [44] address an authorship attribution task characterised by two disputed documents written
in medieval Latin, and three possible authors—the well-known Christian mystic Hildegard of Bingen, her secre-
tary Guibert of Gembloux, and Bernard of Clairvaux. They employ a PCA-based approach on the frequencies of
65 function words. In a later work [45], Kestemont et al. tackle another authorship attribution task concerning
parts of the Corpus Caesarianum, including in the candidate set Caesar, his general Aulus Hirtius, and three other
unidentified authors. The methodologies they adopt is based on comparing an author’s profile (where an author’s
profile is defined as the centroid of the vectors corresponding to that author’s known texts) with the document
of disputed authorship. Two different techniques are employed in this work, namely the distance between the
vectors representing the author’s profile and the disputed document and a generic implementation of Koppel
and Winter’s “impostors method” [49]. With both techniques, the authors use word unigrams and character n-
grams as features and test their systems on the datasets from the Authorship Verification track at PAN2014 and
on a corpus of historic Latin authors. They perform experiments with various distance metrics and vector space
models for both techniques.

An approach that similarly exploits the concept of author profile can be found in Reference [62], a study
regarding the authenticity of one of Pliny the Younger’s letters. In particular, the author employs the “simplified
profile intersection,” a similarity measure that uses the size of the intersection among the profile of the unknown
document and that of the target author’s production, which is computed by counting the n-grams in common
between them. In order to find the model with the best discriminating power between Pliny’s and non-Pliny’s
writing, additional fragments of letters from Cicero and Seneca are employed.

Stover et al.’s [60] is yet another work that employs Koppel and Winter’s “impostors method” [49]. Here, a
newly found Latin document is investigated in a same-authorship verification setting, where word unigrams and
bigrams are used as features. Ultimately, the only textual pair that receives a satisfying positive score is the one
consisting of the disputed document and De Platone by Apuleius, hence strongly supporting the hypothesis that
Apuleius may be the author of the document.

Vainio et al.’s [63] is the only study, among the ones we consider here, that uses a deep-learning algorithm. In
particular, the authors train both an SVM and a CNN for an authorship verification task, consisting of recognising
Cicero’s written style against the styles of the background authors, and then use the two trained classifiers to
classify four disputed documents. They conduct various experiments with POS-grams and character 5-grams.
This dataset, which is freely downloadable, is the one with the largest number of authors among the works
discussed in this section, counting 44 authors, including anonymous and pseudo-authors; this is thanks to the
wide timeframe considered, which goes from the 1st century BC to the 5th century AD.

Kabala’s [43] is the only work that, like the present article, focuses on medieval Latin, although dating from
an earlier period than the one we consider. It performs same-authorship verification on two texts, the Translatio
s. Nicolai and the Gesta principum polonorum. In particular, through the studies on four different datasets, the
author seeks to understand whether the alleged authors of the two documents, the so-called Monk of Lido and
Gallus Anonymous, are actually the same person. The study is conducted by classifying both texts with respect to
the author classes within each dataset, using nine distance metrics and logistic regression. Each dataset counts
between 39 and 116 texts dating from the 10th to the 12th centuries, written by between 15 and 22 different
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Table 1. Main Characteristics of Published Works on Authorship Analysis for the Latin Language Reviewed in Section 2
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Forstall et al. [41] AV 7 SVM Functional n-grams (on text
and metric) and
low-probability n-grams

Transcriptions and Tesserae No

Kabala [43] SAV 15–22 Distance metrics and
Logistic regression

250 most frequent words Patrologia Latina and Latin
Library

Yes

Kestemont et al. [44] AA 3 PCA 65 function words Brepols Publishers No

Kestemont et al. [45] AA 29 (dev)
3 (test)

Distance metrics on
author’s profile and
Impostors method

Word unigrams and char
n-grams

Latin Library Yes

Stover et al. [60] SAV 36 Impostors method Word unigrams and
bigrams

Brepols Publishers and
Latin Library and
Patrologia Latina

Partially

Tuccinardi [62] AV 3 Simplified Profile
Intersection

Character n-grams [unspecified] No

Vainio et al. [63] AV 44 SVM and CNN Pos-tags, word and char
n-grams

Latin Library and
Bibliotheca Augustana

Yes

“AA” denotes authorship attribution, “AV” denotes authorship verification, while “SAV” denotes same-author verification. The works

are in alphabetical order by first author.

authors. These are the only datasets of medieval Latin texts that are freely available to the public among the
ones we have surveyed in this section.

While the above works focus on cases of uncertain paternity, such methodologies might also be applied to
documents of certain authorship, e.g., to study possible stylistic influences among authors. In Forstall et al.’s
work [41], for example, the goal is to verify a supposed influence by Catullo on the poetry of Paul the Deacon.
Forstall et al.’s idea is to train an SVM with samples of Catullo’s writings (in a typical authorship verification
setting), employing various kinds of n-grams as features. A document highly influenced by Catullo, thus bearing
many similarities to his style, will then receive a high classification score by the AV system.

In Table 1, we summarise the works discussed in this section, specifying the task being tackled, the number of
authors in the dataset, the method of analysis and the features employed, the dataset sources, and whether the
dataset is publicly available.

In general, it should be noted that the authors do not subject their datasets to a thorough cleaning from infor-
mation extraneous to the author’s production. In particular, citations of other authors (i.e., pieces of text that are
by someone other than the author of the citing text) are seldom removed (in some cases, only the most extensive
ones are); this may hamper authorship analysis, since cited text “contaminates” the citing text, at least as far as
authorship analysis is concerned. This is unlike the present article, where cited text is scrupulously removed.

3 THE DATASETS

3.1 Origin of the Datasets

Our two datasets originated in the context of an authorship verification research work [39, 40] that we carried
out to establish, using an approach based on machine learning, whether the Epistle to Cangrande, originally
attributed to Dante Alighieri, is actually a forgery, a fact that is intensely debated among philologists today [37].
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The Epistle to Cangrande is traditionally listed as the 13th of Dante’s epistles that have reached us; hereafter we
will thus refer to it as Ep13.

Ep13 is written in medieval Latin and addressed to Cangrande I, ruler of the Italian cities of Verona and Vicenza
at the beginning of the 14th century. Scholars traditionally divide it into two portions that are distinct in purpose
and, consequently, style: The first portion (paragraphs 1–13, hereafter Ep13(I)) is the dedicatory section, with
proper epistolary characteristics, while the second portion (paragraphs 14–90, hereafter Ep13(II)) contains an
exegesis (i.e., analysis) of Alighieri’s Divine Comedy, and in particular a commentary of the first few lines of
its third part, the Paradise. Scholars are not unanimous as whether Dante Alighieri is the true author of Ep13:
Some of them consider both portions authentic, some consider both portions the work of a forger, while others
consider the first part authentic and the other a forgery.

Since it is unclear whether the two portions are by the same author, we tackled our AV problem as two separate
AV sub-problems, one for Ep13(I) and one for Ep13(II). Because of the different nature of the two portions, we
built two separate training sets, one for Ep13(I) and one for Ep13(II); we will refer to them as MedLatinEpi (where
“Epi” refers to the epistolary nature of the texts contained therein) and MedLatinLit (where “Lit” stands for

literary), respectively.
In both MedLatinEpi and MedLatinLit, Dante Alighieri is, of course, the author of some of the labelled

texts. The texts attributed with certainty to Alighieri and written in Latin are few and well known; we have thus
included all of them.4 Concerning other authors, the approach we have chosen is to select literates who are as
“close” (culturally and stylistically) to Dante Alighieri as possible, i.e., authors whose production is characterised
by linguistic features similar to Alighieri’s. The reason for this choice, of course, is that, if the non-Dantean texts
used for training were very different from Dante’s training texts, then any text even vaguely similar to Dante’s
production would be recognised as Dantean, the classifier being untrained to make subtle distinctions. Instead,
one can expect better results if the classifier is trained to spot minimal differences. We have thus done a large-
scale screening of authors who have written in Latin around the same historical period of Dante’sand who have
written works of either an epistolary or literary nature; since the included authors are close to each other, in
the above-mentioned cultural-stylistic sense, the two resulting datasets are challenging ones for computational
authorship analysis systems.

While we used MedLatinEpi and MedLatinLit as training sets for our Ep13 work, of course they can be used
as datasets for medieval Latin AV research that does not necessarily involve Ep13 (we will discuss such an exam-
ple in Section 5), as datasets for other authorship analysis tasks that address medieval Latin, or as benchmarks
for general-purpose, language-agnostic authorship verification systems. This is the reason why we make them
available to the research community.

3.2 Composition and Preprocessing of the Datasets

The composition of our two datasets is described in detail in Tables 2 and 3.
MedLatinEpi is composed of texts of epistolary genre (given that this is the nature of Ep13(I)), mostly dating

back to the 13th and 14th centuries, for a total of 294 epistles; the average length of these epistles is 378 words.
Most of the texts are actually entire collections of epistles; we consider each epistle as a single training text.
Note that, concerning the epistles by Guido Faba and Pietro della Vigna (rows 4 and 5 of Table 2), we have not
used the entire collections available from References [10, 17] but only parts of them. One reason is that some
such epistles are extremely short in length (sometimes even a single sentence), and hence they would not have
conveyed much information to the training process. The second reason is that, as can be seen in Table 2, Guido

4We have not included the Quaestio de aqua et terra, a work traditionally attributed to Dante Alighieri, exactly because its authorship is

currently disputed. Other works by Alighieri, such as his masterpiece Divina Commedia, are not included, because they are written not in

Latin but in the Florentine vernacular, the language that would later form the basis of the Italian language.
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Table 2. Composition of the MedLatinEpi Dataset

Author Text (or collection thereof)
Period

#d #w Ed. F1 Acc
(approx.)

Clara Assisiensis
Epistola ad Ermentrudem 1240–1253 1 249 [23]

1.000 1.000
Epistolae ad sanctam Agnetem de Praga I, II, III 1234–1253 3 1,842 [23]

Dante Alighieri Epistles 1304–1315 12 6,061 [13] 0.857 0.990

Giovanni Boccaccio Epistles and letters 1340–1375 24 25,789 [2] 0.980 0.997

Guido Faba Epistles 1239–1241 78 7,203 [17] 0.946 0.973

Pietro della Vigna The collected epistles of Pietro della Vigna 1220–1249 146 65,004 [10] 0.986 0.986

(Various authors) Epistles from the collection of Petrus de Boateriis 1250–1315 30 5,056 [30] — —

The third column indicates the approximate historical period in which the texts were written, the fourth and fifth columns indicate the

number of texts and the number of words that the collection consists of, while the seventh and eighth columns indicate the F1 value

and the Acc (“vanilla accuracy”) value obtained in the experiments of Section 4 by the authorship verifier trained via logistic regression

for the specified author.

Table 3. Composition of the MedLatinLit Dataset; The meanings of the columns are as in Table 2

Author Text Period #w Ed. F1 Acc

Bene Florentinus Candelabrum 1238 41,078 [1] — —

Benvenuto da Imola
Comentum super Dantis Aldigherij Comoediam 1375–1380 105,096 [4]

0.800 0.967Expositio super Valerio Maximo 1380 3,419 [29]
Glose Bucolicorum Virgilii 1380 3,912 [21]

Boncompagno da Signa

Liber de obsidione Ancone 1198–1200 7,821 [15]

0.333 0.867
Palma 1198 5,022 [32]
Rota Veneris ante 1215 4,632 [14]
Ysagoge 1204 8,550 [7]

Dante Alighieri
De Vulgari Eloquentia 1304–1306 11,384 [33]

0.500 0.933
Monarchia 1313–1319 19,162 [25]

Filippo Villani Expositio seu comentum super Comedia Dantis Allegherii 1391–1405 31,503 [12] — —

Giovanni Boccaccio
De vita et moribus d. Francisci Petracchi 1342 1,884 [11]

0.800 0.967De mulieribus claris 1361–1362 49,242 [35]
De Genealogia deorum gentilium 1360–1375 198,508 [27]

Giovanni del Virgilio
Allegorie super fabulas Ovidii Methamorphoseos 1320 25,131 [8]

0.000 0.933
Ars dictaminis 1320 2,376 [20]

Graziolo Bambaglioli A Commentary on Dante’s Inferno 1324 41,104 [28] — —

Guido da Pisa Expositiones et glose. Declaratio super Comediam Dantis 1327–1328 87,822 [6] — —

Guido de Columnis Historia destructionis Troiae 1272–1287 82,753 [19] — —

Guido Faba Dictamina rhetorica 1226–1228 16,982 [18] — —

Iacobus de Varagine Chronica civitatis Ianuensis 1295–1298 53,864 [24] — —

Iohannes de Appia Constitutiones Romandiolae 1283 4,068 [3] — —

Iohannes de Plano Carpini Historia Mongalorum 1247–1252 20,145 [9] — —

Iulianus de Spira Vita Sancti Francisci 1232–1239 12,396 [23] — —

Nicola Trevet
Expositio Herculis Furentis 1315–1316 33,017 [34]

1.000 1.000
Expositio L. Annaei Senecae Agamemnonis 1315–1316 19,873 [22]

Pietro Alighieri Comentum super poema Comedie Dantis 1340–1364 186,608 [5] — —

Ryccardus de Sancto Germano Chronicon 1216–1243 36,525 [16] — —

Raimundus Lullus Ars amativa boni 1290 82,733 [26] — —

Zono de’ Magnalis Life of Virgilio 1340 2,136 [31] — —

Faba and Pietro della Vigna are the two authors for whom we have the highest number of epistles anyway, and
including the collections in their entirety would have made the dataset even more imbalanced than it already is.

MedLatinLit contains instead (given the similar nature of Ep13(II)) texts of a non-epistolary nature, especially
exegetic comments on literary works and treatises, also dating to the 13th and 14th centuries, for a total of 30
texts; the average length of these texts is 39,958 words, i.e., about 100 times longer (on average) than those of
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MedLatinEpi. Some of these texts are not included in their entirety. In these cases, the portions excluded mainly
consist of lengthy explicit citations to other authors’ works; as already mentioned in Section 2, we have removed
explicit citations, since they provide noise, rather than information, to an authorship analyser.

All of the texts included in the two datasets are such that their authorship is certain, i.e., is not currently
disputed by any scholar.5 Some of the texts were already available in .txt format, and their inclusion in the
dataset has thus posed no major problem. Some other texts were only available in .pdf format or only on paper;
in these cases, we converted the .pdf or the scanned images into .txt format via an optical character recognition
software6 and thoroughly corrected the output by hand.

We have subjected all texts to a number of preprocessing steps necessary for performing accurate authorship
analysis; these include the following:

• Removing any meta-textual information that has been inserted by the curator of the edition, such as ti-
tles, page numbers, quotation marks, square brackets, and so on; this cleans the documents from obvious
editorial intervention.
• Marking explicit citations in Latin with asterisks, and explicit citations in languages other than Latin

(mostly Florentine vernacular) with curly brackets; this is both to allow ignoring them in the computa-
tion (since they are the production of someone different than the author of the text) or to use them as a
potential authorial-related feature (i.e., the usage of citations in different languages), at the discretion of
the researcher.
• Replacing every occurrence of the character “v” with the character “u”; the reason for this lies in the

different approaches followed by the various editors of the texts included, regarding whether to consider
“u” and “v” as the same character.7

The two datasets are available for download at https://doi.org/10.5281/zenodo.4298503; a readme file is also
included that explains the structure of the archive.8

4 BASELINE AUTHORSHIP VERIFICATION RESULTS

In Reference [40], we briefly describe some authorship verification experiments that we have run on Med-
LatinEpi and MedLatinLit. For the present article we have rerun the experiments completely, revising and
correcting the experimental protocol that we had followed in Reference [40].9 As a consequence, there are slight
differences between the accuracy values reported in Reference [40] and those reported here. To ease the task
of researchers wishing to replicate and/or to outperform the results we have obtained, we make available at
https://doi.org/10.5281/zenodo.3903235 the source code of MedieValla, the authorship verification tool that we
have developed and used to obtain these results.

For these experiments, first we remove explicit citations, either in Latin or other languages, and we segment
each resulting text into shorter texts, so as to increase the overall number of labelled texts, while reducing their
average size. This is necessary, because machine learning processes require a significant number of training
examples, regardless of their length. In particular, for each text:

5Note that from Petrus de Boateriis’ collection (see last row of Table 2), we have removed the epistle allegedly written by Cangrande della

Scala to Henry VII, since it has recently been suggested (see Footnote 2 and Section 5) that it may have been written by Dante Alighieri.
6FreeOCR, available at http://www.paperfile.net/.
7In medieval written Latin there was only one grapheme, represented as a lowercase “u” and a capital “V,” instead of the two modern

graphemes “u-U” and “v-V.”
8Zenodo is an open-access repository that provides free and permanent access to the resources stored on it; see https://about.zenodo.org/.
9In Reference [40] we had performed both feature selection and parameter optimisation on the entire dataset, and we had subsequently

estimated the accuracy of the system by applying the leave-one-out protocol. This means that, when a document was used as the test

document, it had already participated both in the feature selection process and in the parameter optimisation process, which are parts of the

training process; this is not legitimate. Thanks to two anonymous reviewers for pointing this out.
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• we identify the sentences that make up the text (using the NLTK package, available at https://www.nltk.
org/); if a sentence is shorter than eight words, then we merge it with the next sentence (or the previous
sentence, if it is the last sentence of the text);
• we create sequences of three consecutive sentences (hereafter: “segments”), consider each of these se-

quences as a labelled text, and assign it the author label of the text from which it was extracted.

Following this process, we use as labelled texts both the original texts in their entirety and the segments.
Thus, the number of labelled texts has increased from 294 to 1,310 for MedLatinEpi and from 30 to 12,772 for
MedLatinLit.

For our experiments, we lowercase the entire text, remove punctuation marks, and convert each labelled text
into a vector of features. The reason why we ignore punctuation marks is that they were not inserted by the au-
thors (punctuation was absent or hardly coherent in ancient manuscripts, and such marks have been introduced
into texts by editors).

The set of features we use is subdivided into six subsets of different feature types:

(1) Character n-grams (n ∈ {3, 4, 5});
(2) Word n-grams (n ∈ {1, 2});
(3) Function words (from a list of 74 Latin function words);
(4) Verbal endings (from a list of 245 regular Latin verbal endings);
(5) Word lengths (from 1 to 23 characters);
(6) Sentence lengths (from 3 to 70 words).

and the vector space results from the union of all of these features. To deal with the high dimensionality of the
feature space, we subject the features resulting in a sparse distribution (character n-grams and word n-grams) to
a process of dimensionality reduction. First, we perform feature selection via the Chi-square function (see, e.g.,
Reference [64]), where probabilities are interpreted on the event space of documents; in other words, Pr(tk ,aj )
represents the probability that, for a random document that belongs to class aj (i.e., that was written by author
aj ), feature tk appears in the document. In our experiments we select the best 10% character n-grams and the
best 10% word n-grams. We then perform feature weighting via the tfidf function in its standard “ltc” variant
(see, e.g., Reference [55]). For MedLatinEpi the number of resulting features is 16,101, while for MedLatinLit
this number is instead 86,924.

The six subsets of features described above have very different cardinality: The numbers of features contained
in sets (1) and (2) depend on the dataset but is in general very high (in both cases it typically ranges in the tens
(or hundreds)- thousands features), while the numbers of features contained in sets (3), (4), (5), and (6) are fixed
(there are 74, 245, 23, and 68 features in each of these groups, respectively) and are much smaller than the two
previous ones. This means that the latter groups may end up being overwhelmed, in terms of their contribution
to the verification process, by the former groups. To avoid this, we individually normalise each of the six feature
subsets via L2-normalisation, so that each of the six vectors subspaces they define have unit norm.10

As the learning mechanism we use logistic regression, as implemented in the scikit-learn package.11 We train
each binary classifier by optimising hyperparameter C (the inverse of the regularisation strength) via stratified
10-fold cross-validation (10-FCV), using a grid search on the set {0.001, 0.01, . . . , 100, 1000}. We use a variant of
stratified 10-FCV called “grouped” stratified 10-FCV, which prevents different segments from the same document
(“group”) to end up in different folds; in this way, the classifier never unduly benefits from testing on segments of

10This means that the contribution of, say, a character n-gram, ends up being smaller than the contribution of, say, a word length, because

there are more character n-grams than word lengths. This does not prevent the classifier from uncovering which among the features are the

most important (these might well include some character n-grams) or least important (these might well include some word lengths), though,

since the classifier attempts to find the linear combination of feature weights that best classifies the documents.
11https://scikit-learn.org/stable/index.html.
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a document, other segments of which have been seen during training. There are two main reasons why we have
used logistic regression. One is the fact that it generates classifiers that have proven very effective across a broad
spectrum of text classification scenarios. A second reason is the fact that, together with a binary classification
decision, for each document d it returns a “confidence score” (i.e., a measure of the confidence that the classifier
has in the correctness of its own decision) in the form of a probability value (called a “posterior probability”) and
that these probability values tend to be well calibrated (i.e., reliable probability values) [51].

We also briefly report on some additional experiments for which we have used other learning algorithms,
i.e., SVMs (for which we have optimised hyperparameter C via grid search on {0.001, 0.01, . . . , 100, 1000}) and
multinomial naive Bayes (for which we have optimised parameter α = {10i } for i ∈ {−7,−6, . . . ,−1, 0}).

We subject the resulting MedieValla system to a “leave-one-out” validation test, which consists of predicting,
for each dataset D ∈ {MedLatinEpi,MedLatinLit}, for each author a in the set of authorsA represented in D,
and for each document d ∈ D, whether a is the author of d , where the prediction is issued by an “a vs. (NOT
a)” binary classifier trained on all labelled texts (i.e., segments and entire documents) from D \ {d }. This means
that all labelled texts from documents in D \ {d } originating from author a are used as positive training examples
while all labelled texts from documents in D \ {d } originating from authors other than a are used as negative
training examples. Note that

• To faithfully reproduce the operating conditions of an authorship verifier, as test examples we use only
entire documents, i.e., we use segments and entire documents for training purposes but only entire docu-
ments for testing purposes.
• To avoid any overlap between training examples and test examples, when document d is used as a test

document we exclude from the training set all the segments derived from d .
• To avoid any overlap between the training phase and the test phase, both the feature selection step and

the parameter optimisation step are performed not on the entire dataset D but on D \ {d }. This means
that the entire cycle (feature selection + parameter optimisation + classifier training) is repeated for each
document d ∈ D, for both MedLatinEpi and MedLatinLit.
• We have not generated classifiers for authors for which we have only one text in D, since this would entail

experiments in which the author is not present both in the training and in the test set12; as a result, the texts
of these authors are used only as negative examples in experiments centred on other authors. Ultimately,
this means that we have trained binary classifiers for five authors of MedLatinEpi (all authors except
those from the collection of Petrus de Boateriis, since this collection is a miscellanea of authors) and six
authors for MedLatinLit; this leads to 5 × 294 = 1470 predictions for MedLatinEpi and 6 × 30 = 180
predictions for MedLatinLit, where each prediction is the result of a different cycle consisting of feature
selection + parameter optimisation + classifier training.13

To evaluate the performance of a binary AV system we use, as customary, the F1 function, defined as

F1 =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

2TP

2TP + FP + FN
if TP + FP + FN > 0

1 if TP = FP = FN = 0

, (1)

12For the very same reason, we bypass the parameter optimisation phase in cases in which we only have two positive documents and one of

them is acting as the held-out document. This causes the training set to have only one positive document (plus fragments), and this eventually

forces one of the trainings (as generated via 10-fold cross-validation) to be devoid of any positive example (since in the “grouped” variant of

stratified 10-FCV the fragments of a document are always within the same fold as the full document, for reasons already discussed). In those

(few) cases, we resort to a logistic regressor that is moderately regularised (we set C = 0.1) to avoid overfitting the one and only positive

document; likewise, for SVMs we also set C = 0.1 and for multinomial naive Bayes we set α = 0.001.
13Since we use 10-fold cross validation for parameter optimisation and explore a grid of seven parameters, or experimentation consists of

roughly 115,000 trainings per learner (we report experiments for three learners).
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Table 4. Summary Results of Our AV Experiments on the
MedLatinEpi and MedLatinLit Datasets

MedLatinEpi MedLatinLit

Learner FM
1 F

μ
1 Acc FM

1 F
μ
1 Acc

LR 0.954 0.969 0.989 0.572 0.615 0.944
SVM 0.944 0.969 0.989 0.383 0.435 0.928
MNB 0.760 0.933 0.976 0.310 0.357 0.900

where TP, FP, and FN represent the numbers of true positives, false positives, and false negatives generated by
the binary AV system. F1 ranges between 0 (worst) and 1 (best). To compute F1 across an entire dataset, for which
several binary AV systems need to be deployed (five for MedLatinEpi and six for MedLatinLit), we compute
its macroaveraged variant (denoted by FM

1 ) and its microaveraged variant (denoted by F
μ
1 ). FM

1 is obtained by first

computing values of F1 for all aj ∈ A and then averaging them. F
μ
1 is obtained by (a) computing the author-

specific values TPj , FPj , FNj for all aj ∈ A; (b) obtaining TP as the sum of the TPj ’s (same for FP and FN); and
then (c) applying Equation (1). For completeness, we also report effectiveness results in terms of the “vanilla
accuracy” measure, defined as

Acc =
TP + TN

TP + FP + FN + TN
, (2)

i.e., as the ratio between the number of correct predictions and the number of predictions. To computeAcc across
different binary AV systems, either the microaveraged or the macroaveraged version of Acc can be computed,
along the same lines as for F1. Unlike for F1, though, the microaveraged and the macroaveraged versions of Acc
are demonstrably the same measure, which we will thus simply indicate as Acc , without μ or M superscripts.

Our experimental results are reported in Table 4.14 The last columns of Tables 2 and 3 report the F1 and Acc
values we have obtained for the individual authors for which we have generated binary AV systems; from these,
it is easy to compute the FM

1 values and average Acc values of Table 4 by simply averaging them.
Note that, as evident from the F1 and Acc columns of Tables 2 and 3, there is a lot of variability in the scores

(especially for F1) across different authors for the same dataset. There are at least three possible explanations for
this, which are presented as follows:

• For some authors there are more (positive) training data than for other authors. Since authorship verifica-
tion consists of a different binary classification task for each author, this means that it will be easier (other
things being equal) to conduct authorship verification for the former authors than for the latter.
• Some large differences in F1 values are due to the idiosyncrasies of the F1 measure. For instance, the au-

thorship verifier for Giovanni del Virgilio (see Table 3), when asked to verify the 30 texts in MedLatinLit,
returns 2 false negatives and 28 true negatives. Despite having correctly predicted 28 of 30 times (the
“vanilla accuracy” result is Acc = 28/30 = 0.933), the verifier obtains an F1 value of 0, because (see Equa-
tion (1)) there are no true positives, i.e., none of the two texts actually by Giovanni del Virgilio were
correctly predicted as by him.

14Two further reasons why these results slightly differ from the ones reported in Reference [40] are that (a) some scikit-learn libraries

that we use are now available in updated versions, different from the ones we had used in Reference [40]; (b) the stratified 10-fold cross-

validation that we use for optimizing hyperparameter C splits the data into 10 folds randomly, and this random component can introduce

small fluctuations in the final results. Overall, these fluctuations are noticeable but not substantial from a qualitative point of view. The

results we report in this article should be exactly reproducible (barring changes in scikit-learn libraries) by anyone who downloads

the code and the datasets, also thanks to the fact that we have now “seeded” the stratified 10-fold cross-validation process, thus eliminating

the above-mentioned random component.

ACM Journal on Computing and Cultural Heritage, Vol. 15, No. 3, Article 57. Publication date: September 2022.



Two Datasets for the Computational Authorship Analysis of Medieval Latin Texts • 57:11

Table 5. Results of the Application of the Two Authorship Verifiers
“Dante vs. Not Dante” to the Two Portions of the Epistle to Cangrande

Binary decision Posterior probability F1 Acc
Ep13(I) No 0.367 0.857 0.990
Ep13(II) No 0.022 0.500 0.933

Columns 4 and 5 recall (from Tables 2 and 3) the F1 and Acc values that the “Dante

vs. Not Dante” verifiers have obtained in the experiments of Section 4.

• Even if we had the same quantity of training data for each author, we might obtain different accuracy
results for different authors, because some authors may inherently be more difficult to identify, from a
stylistic point of view, than others.

At https://doi.org/10.5281/zenodo.4298503, we provide, in spreadsheet form, the list of all 〈author, document〉
classification decisions as taken by MedieValla, as well as the F

μ
1 results that are also reported in Table 4 and

the author-specific F1 values also reported in Tables 2 and 3.
Interestingly enough, an analysis of these individual classification decisions shows that there are no systematic

mistakes, but just a few, scattered individual ones. More in particular, it never happens that there are two or
more incorrectly classified documents with the same true author A1 and with the same predicted author A2,
withA1 � A2; in other words, there are no systematic mistakes that would indicate an extreme similarity in style
between two authors A1 and A2. One of the reasons for this is that the mistakes made by our verifiers are very
few, i.e., only 26 of 1650 verification decisions (16 of 1470 for the MedLatinEpi experiments and 10 of 180 for
the MedLatinLit experiments) are incorrect.

5 TWO DISPUTED EPISTLES

5.1 The Epistle to Cangrande

In Section 3.1, we mentioned that the original reason for developing these two datasets was the attempt to solve
the puzzle of the Epistle to Cangrande, i.e., verifying if the letter addressed to Cangrande della Scala was indeed
written by Dante Alighieri. After running the experiments described in Section 4, for each of the two datasets
we have retrained the authorship verifier for author Dante Alighieri (i.e., the one that whose Yes label indicates
authorship by Dante and whose No label indicates authorship by someone other than Dante), rerunning the
entire cycle “feature selection + parameter optimisation + classifier training” on the entire dataset; we have then
applied the classifier derived from MedLatinEpi to the first portion of the epistle (Ep13(I)) and the classifier
derived from MedLatinLit to the second portion (Ep13(II)).

The results of the application of the two classifiers are reported in Table 5. These results show that out
authorship verifiers believe that both portions of the Epistle to Cangrande are the work of a malicious
forger.

Once applied to Ep13(I), the “Dante vs. Not Dante” verifier trained on MedLatinEpi returns a posterior prob-
ability of 0.367: This means that the verifier believes that Ep13(I) is not by Dante (since this probability is <0.500)
and is moderately confident about this fact (its “degree of confidence” being (1− 0.367) = 0.633). As from
Table 2, this verifier has also proved very accurate (F1 = 0.857, Acc = 0.990) once tested on MedLatinEpi
via leave-one-out. These two facts, altogether, make a fairly convincing case for the non-Dantean authorship of
Ep13(I).

Concerning Ep13(II), instead, once applied to it, the “Dante vs. Not Dante” verifier trained on MedLatinLit
returns a posterior probability of 0.022: This means that the verifier believes that Ep13(II) is also not by Dante
(since this probability is <0.500) and is extremely confident about this fact (its degree of confidence being (1−
0.022) = 0.978). As from Table 3, this verifier has proved reasonably accurate (F1 = 0.500, Acc = 0.933) once
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Table 6. Result of the Application of the Authorship Verifier
“Dante vs. Not Dante” to the Epistle to Henry VII

Binary decision Posterior probability F1 Acc
EpHenryVII No 0.026 0.857 0.990

Column 4 recalls (from Table 2) the F1 value that the “Dante vs. Not Dante” verifier has

obtained in the experiments of Section 4.

tested on MedLatinLit via leave-one-out. These two facts support the hypothesis that also Ep13(I) is not by
Dante.15

5.2 The Epistle to Henry VII

While we were carrying out our research on Ep13 that led to the creation of MedLatinEpi and MedLatinLit, a
paper appeared [52] whose object was an epistle addressed to emperor Henry VII and signed by Cangrande della
Scala. The author of Reference [52], based on an analysis of the contents of the epistle, conjectured that its author
could be Dante Alighieri himself. Since we had already trained a “Dante vs. not Dante” authorship verifier on
MedLatinEpi, and since the texts contained in MedLatinEpi have also an epistular nature, it seemed natural to
preprocess the epistle to Henry VII in the same way as described in Section 4 and apply to it the verifier trained
on MedLatinEpi. The results of the application are described in Table 6.

Our authorship verifier rejects the hypothesis that the epistle to Henry VII may have been written by Dante
and is extremely confident in its own prediction (i.e., it believes that the epistle is by someone other than Dante
with probability (1−0.026) = 0.974). Together with the fact that this verifier has shown very high accuracy
(F1 = 0.857, Acc = 0.990) in the experiments of Section 4, this makes us decidedly lean toward the hypothesis
that the epistle is not the work of Dante.

6 CONCLUSION

We have described MedLatinEpi and MedLatinLit, two new datasets of cultural heritage texts written in me-
dieval Latin by 13th- and 14th-century (mostly Italian) literates and labelled by author, that we make publicly
available to researchers working on computational authorship analysis. These datasets can be valuable tools
for researchers investigating techniques for authorship attribution, authorship verification, or same-authorship
verification, especially for texts written in Latin or medieval Latin.

We also make available the source code of MedieValla, an authorship verification tool that we have built
to work on an important case study, i.e., the real paternity of the “Epistle to Cangrande, ”allegedly written by
Dante Alighieri but believed by some to be a forgery. We also describe in detail experiments (corrected versions
of the ones that we had reported in Reference [40]) in which we have applied MedieValla to MedLatinEpi and
MedLatinLit. We hope that the availability of the datasets (and of our authorship verification tool) will allow
researchers interested in authorship verification to replicate our results and possibly to outperform them via
improved AV techniques.
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