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Abstract

We consider the problem of prescribing conformally the scalar curvature on compact manifolds of

positive Yamabe class in dimension n ≥ 5. We prove new existence results using Morse theory and

some analysis on blowing-up solutions, under suitable pinching conditions on the curvature function.

We also provide new non-existence results showing the sharpness of some of our assumptions, both

in terms of the dimension and of the Morse structure of the prescribed function.
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1 Introduction

We deal here with the classical problem of prescribing the scalar curvature of closed manifolds, whose
study initiated systematically with the papers [42], [43], [44]. We will consider in particular conformal
changes of metric. On (Mn, g0), n ≥ 3 and for a smooth positive function u on M we denote by

g = gu = u
4

n−2 g0

a metric g conformal to g0. Then the scalar curvature transforms according to

Rguu
n+2
n−2 = Lg0u := −cn∆g0u+Rg0u, cn =

4(n− 1)

(n− 2)
, (1.1)
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see [4], Chapter 5, §1, where ∆g0 is the Laplace-Beltrami operator of g0. The elliptic operator Lg0 is
known as the conformal Laplacian and obeys the covariance law

Lgu(φ) = u−
n+2
n−2Lg0(uφ) for φ ∈ C∞(M). (1.2)

If under a conformal change of metric one wishes to prescribe the scalar curvature ofM as a given function
K :M −→ R, by (1.1) one would then need to find positive solutions of the nonlinear elliptic problem

Lg0u = Ku
n+2
n−2 on (M, g0). (1.3)

The above equation is variational and of critical type, and it presents a lack of compactness. When K
is zero or negative, in which case (M, g0) has to be of zero or negative Yamabe class respectively, the
nonlinear term in the equation makes the Euler-Lagrange energy for (1.3) coercive and solutions always
exist, as proved in [44] via the method of sub- and super solutions. In the same paper though Kazdan
and Warner showed that for K positive there are obstructions to existence. Indeed, if f : Sn −→ R is the
restriction to the sphere of a coordinate function in R

n+1, then
∫

Sn

〈∇K,∇f〉gSnu
2n

n−2 dµgSn = 0, (1.4)

for all solutions u to (1.3). This forbids for example the prescription of affine functions or generally of
functions K on Sn that are monotone in one Euclidean direction. More examples are given in [14].

Existence of solutions for K positive on manifolds of positive Yamabe class were found some years
later. In the spirit of a result by Moser in [56], where antipodally symmetric curvatures were prescribed
on S2, in [33] the authors showed solvability of (1.3) on Sn, when K is invariant under a group of
isometries without fixed points and satisfies suitable flatness assumptions depending on the dimension.
Other results with symmetries were also found in [35], [36].

Another theorem, regarding more general functions K, was proved in [6] and [8] for the case of S3

assuming that K : S3 −→ R+ is a Morse function satisfying the generic condition

{∇K = 0} ∩ {∆K = 0} = ∅ (1.5)

together with the index formula

∑

{x∈M : ∇K(x)=0,∆K(x)<0}

(−1)m(K,x) 6= (−1)n, (1.6)

where m(K,x) denotes the Morse index of K at x, cf. [19], [21], [22], [61].
To put our work into context, it is useful to briefly describe the strategy to prove the latter result. A

useful tool for studying (1.3) in the spirit of [59] is its subcritical approximation

Lg0u = Ku
n+2
n−2−τ , 0 < τ ≪ 1, (1.7)

which up to rescaling u is the Euler-Lagrange equation for the functional

Jτ (u) =

∫

M

(

cn|∇u|2g0 +Rg0u
2
)

dµg0

(
∫

M
Kup+1dµg0)

2
p+1

, p =
n+ 2

n− 2
− τ. (1.8)

By its scaling-invariance and the sign-preservation of its gradient flow, we assume Jτ to be defined on

X = {u ∈ W 1,2(M, g0) | u ≥ 0 ∧ ‖u‖ = 1}, (1.9)

where the norm ‖ · ‖ is defined by (2.1) in case of a positive Yamabe class. The advantage of (1.7) is
that with a sub-critical exponent the problem is now compact and solutions can be easily found. On
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the other hand one might expect solutions to blow-up as τ −→ 0. However, as for the above mentioned
result, sometimes it is possible to completely classify blowing-up solutions and to show by degree- or
Morse-theoretical arguments, that there must be solutions to (1.7), which do not blow-up and hence
converge to solutions of (1.3).

When blow-up occurs, there is a formation of bubbles, namely profiles that after a suitable dilation
solve (1.3) on Sn with K ≡ 1, cf. [3], [15], [64]. In three dimensions due to a slow decay, which implies
that mutual interactions among bubbles are stronger than the interactions of each bubble with K, it is
possible to show that only one bubble can form at a time. Such bubbles develop necessarily at critical
points of K with negative Laplacian and their total contribution to the Leray-Schauder degree of (1.7) is
precisely the summand in (1.6), just taken with the opposite sign. Then by compactness of the equation
and the Poincaré-Hopf theorem the total degree of (1.7) is 1, contradicting inequality (1.6). In [39], [40]
this result was extended to Sn under suitable flatness conditions on K, which are similar to those in [33],
cf. [40], [9] for K Morse with a formula different from (1.6) on S4, where only finitely-many blow-ups
may occur, but only at restricted locations. Results of different kind were also proven in [29] for n = 2
and in [11], [10], [12], cf. Chapter 6 in [4].

In higher dimensions the analysis of blowing-up solutions to (1.7) for τ −→ 0 is more difficult. Some
results are available in [24]-[27], showing that in general blow-ups with infinite energy may occur. For
K Morse on Sn and still satisfying (1.5) and (1.6) some results in general dimensions were proven under
suitable pinching conditions, cf. [1], [5], [23], [20], [28] and [47].

In our first theorem we extend the result in [28] to Einstein manifolds of positive Yamabe class under
the pinching condition

Kmax

Kmin
≤ 2

1
n−2 , (P1)

where with obvious notation

Kmax = max
Sn

K and Kmin = min
Sn

K.

If K is Morse, it must have a non-degenerate maximum and hence (1.6) requires the existence of at least
a second critical point of K with negative Laplacian. We also show that the existence of two such critical
points is sufficient for existence under a more stringent pinching requirement, namely

Kmax

Kmin
≤

(

3

2

)
1

n−2

. (P2)

Theorem 1. Suppose (Mn, g0) is an Einstein manifold of positive Yamabe class with n ≥ 5, and that K
is a positive Morse function on M verifying (1.5). Assume we are in one of the following two situations:

(i) K satisfies (P1) and (1.6);

(ii) K satisfies (P2) and has at least two critical points with negative Laplacian.

Then (1.3) has a positive solution. 1

The pinching conditions we require can indeed be relaxed, even though they become more technical
to state, see Theorem 4 for details.

1In the case of Sn the curvature pinching assumptions of Theorem 1 (i) are stronger than those of Thoerem 1.2 in [28],
but we cannot completely follow the proof there. We refer in particular to the continuity of T1 before formula (7.6) in [28].
Its definition depends on the quantity ‖v−1‖, which tends to zero for every initial datum u0 as an evolution time t tends to
infinity. However, since the quantity ‖v − 1‖ may not be globally monotone in time, we are unable to verify the continuity
of T1.
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Remark 1.1. (i) We would like to emphasize [7] as the first work to analyse with a high degree of
generality the lack of compactness of the conformally prescribed Morse scalar curvature problem on
higher dimensional spheres and the first one to provide non trivial existence results, which are based
on a topological invariant introduced by A. Bahri in the same work. This invariant might prove
useful in relaxing or even removing the pinching assumptions in Theorem 1.

(ii) Also in higher dimensions, but considering only the zero weak limit scenario, we also refer to our
previous work [49] and [53] in the subcritical and critical case respectively for a comprehensive
discussion of the aforementioned lack of compactness.

(iii) To our knowledge condition (ii) is of new type and the restriction on the dimension is optimal.
Building on some non-existence result in [63] for the Nirenberg problem on S2, it is possible to
manufacture curvature functions on S3 and on S4 such that under condition (ii), even under arbi-
trary pinching problem (1.3) has no solution, cf. Remark 4.1.

Such curvatures can be obtained perturbing affine functions, forbidden by the Kazdan-Warner ob-
struction, and deforming their non-degenerate maximum into two nearby maxima and a saddle
point. In low dimension candidate solutions are ruled out via blow-up analysis, as they could form
at most one bubble. A contradiction to existence is then obtained by a quantitative version of (1.4),
showing that even if the integrand changes sign, the total integral does not vanish. In dimension
n ≥ 5 the contradiction argument breaks down, since multi-bubbling occurs, as shown in [38] for
n = 6, 7, 8, 9, cf. [17].

We are going to describe next our strategy for proving Theorem 1, which relies on the subcritical
approximation (1.7). We considered in [48] a special class of solutions to the latter equation, namely
solutions with uniformly bounded energy and zero weak limit. Even though in high dimension general
blow-ups, as described before, can have a complicated behaviour, we proved that this class of solutions
can only develop isolated simple ones, i.e. at most one bubble per blow-up point, cf. Subsection 2.3 for
precise definitions. These occur at critical points of K with negative Laplacian with no further restriction
on their location, as shown in [49], see also [53] and [54] for the relation with a dynamic approach to
(1.3).

The outcome of these results, summarized in Theorem 3, is that if (1.3) is not solvable and (uτn)n is
a sequence of solutions to (1.7) with uniformly bounded energy as τn −→ 0, then they are in one-to-one
correspondence with the finite sets

{x1, . . . , xq} ⊆ {∇K = 0} ∩ {∆K < 0}, q ≥ 1.

Such solutions uτ,x1,...,xq are also non-degenerate for the functional Jτ on X , cf. (1.8), (1.9), and
their Morse index and asymptotic energy can be explicitly computed, depending on (K(xi))i and on
(m(K,xi))i. This allows then to deduce existence results via variational or Morse-theoretical arguments.

The stronger the pinching of K is, the more the above solutions uτ,x1,...,xq tend to quantize in energy,
depending on the number of blow-up points. Energy sublevels of Jτ within these strata can then be
deformed to sublevels of the reference subcritical Yamabe energy J̄τ defined on X as

J̄τ (u) =

∫

M

(

cn|∇u|2g0 +Rg0u
2
)

dµg0

(
∫

M up+1dµg0 )
2

p+1

.

It turns out that on Einstein manifolds the only critical points of J̄τ are constant functions, cf. Theorem
6.1 in [13], and therefore all sublevels of J̄τ are contractible. The pinching condition allows to show
that suitable sublevels of Jτ are also contractible. As a consequence the total degree of single-bubbling
solutions is equal to one, while the total degree of doubly-bubbling solutions, which must occur at couples
of distinct points in {∇K = 0}∩ {∆K < 0}, is equal to zero. By direct computation we can then deduce
existence of solutions under both conditions (i) and (ii) in Theorem 1.
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One may wonder whether stronger pinching assumptions might induce existence under weaker con-
ditions than the second one in (ii). In view of the Kazdan-Warner obstruction and of Remark 1.1, it is
tempting to think that when n ≥ 5 and K : Sn −→ R+ has more than just one local maximum and
minimum, solutions may always exist. We show that this is not the case, and that critical points of K
with positive Laplacian are less relevant. For K Morse on Sn we define

Mj(K) = ♯ {x ∈ Sn : ∇K(x) = 0 ∧ m(K,x) = j} . (1.10)

We then have the following result.

Theorem 2. For n ≥ 3 and any Morse function K̃ : Sn −→ R+ with only one local maximum point,
there exists a Morse function K : Sn −→ R such that

(i) Mj(K) = Mj(K̃) for all j;

(ii) the Laplacian at all critical points of K with the exception of its local maximum is positive;

(iii) there is no conformal metric on Sn with scalar curvature K.

K can be also chosen so that Kmax

Kmin
is arbitrarily close to 1.

Remark 1.2. In comparison to the latter result we note, that the non-existence examples in [14] for S2

are not pinched and imply the existence of one or more local maxima.

Theorem 2 is proved by composing curvature functions as those discussed in Remark 1.1 (iii) with a
reflection with respect to the last Euclidean coordinate. We construct a suitable sequence of curvatures
Km as in Theorem 2 converging to a monotone function in the last Euclidean variable of R

n+1 ⊇ Sn

with a non-degenerate maximum at the north pole and all other critical points, with positive Laplacian,
accumulating near the south pole of Sn.

Assuming by contradiction that (1.3) has solutions um with K = Km, by a result in [24], [30] such
solutions would stay uniformly bounded away from both poles. As we noticed before, blow-ups in high
dimensions might have diverging energy. However, near the south pole both the mutual interactions
among bubbles and that of each bubble with Km would tend to deconcentrate highly-peaked solutions.
Via some Pohozaev type identities, this can be made rigorous showing first that blow-ups at the south
pole are isolated simple and then that they indeed do not occur. The delicate part in this step is that
the critical point structure of (Km)m is degenerating, and we still need uniform controls on solutions.

The analysis near the north pole is harder, since the two interactions just described have competing
effects. We need then to rule out different limiting scenarios for sequences of candidate solutions, namely
regular limits, singular limits and zero limits locally away from the north pole. The latter case is the
most delicate: we show that a regular bubble must form at a slowest possible blow-up rate and via Kelvin
inversions, decay estimates and integral identities, that blow-up cannot occur.

Our strategy also allows to improve some existing results in the literature with assumptions that are
localized in the range of K, as for example in [11], cf.[21], [22] and [63] for n = 2. The general idea is to use
min-max schemes, e.g. the mountain pass, and to use competing paths whose maximal energy lies below
that of every possible blowing-up solution for (1.7) with bounded energy, via the pinching conditions.
The fact that such blow-ups are isolated simple reduces the number of diverging competitors, permitting
us to relax previous pinching constraints in the literature. We can also use Morse-theoretical arguments,
in particular relative Morse inequalities, to prove existence by counting the number of min-max paths
and of diverging competitors, cf. Subsection 3.3.

The plan of the paper is the following: in Section 2 we collect some preliminary material on the
variational structure of the problem, on singular solutions to the Yamabe equation and on blow-up
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analysis. In Section 3 we prove existence results via index counting or min-max theory, exploiting the
pinching conditions. In Section 4 we then prove non-existence results by constructing suitable curvature
functions with prescribed Morse structure and using blow-up analysis to find contradiction to existence.
We finally collect the proofs of some technical results in an appendix.

2 Preliminaries

In this section we gather some background and preliminary material concerning the variational structure
of the problem, with a description of subcritical bubbling with finite energy. We also collect some integral
identities, the notion of simple blow-up and some of its consequences, as well as some properties of singular
Yamabe metrics.

2.1 Variational structure

We consider a closed Riemannian manifold M = (Mn, g0) with induced volume measure µg0 and scalar
curvature Rg0 . For X as in (1.9) the Yamabe invariant is

Y (M, g0) = inf
u∈X

∫ (

cn|∇u|
2
g0 +Rg0u

2
)

dµg0

(
∫

u
2n

n−2 dµg0)
n−2
n

, cn = 4
n− 1

n− 2
,

which due to (1.1) depends only on the conformal class of g0. We will restrict ourselves to manifolds of
positive Yamabe class, namely those for which the Yamabe invariant is positive. In this case the conformal
Laplacian Lg0 = −cn∆g0 +Rg0 is a positive and self-adjoint operator and admits a Green’s function

Gg0 :M ×M \∆ −→ R+,

where ∆ is the diagonal of M ×M . For a conformal metric

g = gu = u
4

n−2 g0

there holds

dµgu = u
2n

n−2 dµg0 and R = Rgu = u−
n+2
n−2 (−cn∆g0u+Rg0u) = u−

n+2
n−2Lg0u,

and by the positivity of Lg0 there exist constants c, C > 0 such that

c‖u‖2W 1,2(M,g0)
≤

∫

uLg0u dµg0 =

∫

(

cn|∇u|
2
g0 +Rg0u

2
)

dµg0 ≤ C‖u‖2W 1,2(M,g0)
.

Therefore the square root of

‖u‖2 = ‖u‖2Lg0
=

∫

uLg0u dµg0 (2.1)

can be used as an equivalent norm on W 1,2(M, g0). Setting

R = Ru for g = gu = u
4

n−2 g0

we have

r = ru =

∫

Rdµgu =

∫

uLg0udµg0 (2.2)

and hence from (1.8)

Jτ (u) =
r

k
2

p+1
τ

with kτ =

∫

Kup+1dµg0 . (2.3)
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The first- and second-order derivatives of the functional Jτ are given by

∂Jτ (u)v =
2

k
2

p+1
τ

[

∫

Lg0uvdµg0 −
r

kτ

∫

Kupvdµg0

]

, (2.4)

and

∂2Jτ (u)vw =
2

k
2

p+1
τ

[

∫

Lg0vwdµg0 − p
r

kτ

∫

Kup−1vwdµg0

]

−
4

k
2

p+1+1
τ

[

∫

Lg0uvdµg0

∫

Kupwdµg0

+

∫

Lg0uwdµg0

∫

Kupvdµg0

]

+
2(p+ 3)r

k
2

p+1+2
τ

∫

Kupvdµg0

∫

Kupwdµg0 .

(2.5)

Note that Jτ is scaling-invariant in u, whence we may restrict our attention to X , see (1.9). Jτ is of class
C2,α

loc
and its critical points, suitably scaled, give rise to solutions of (1.7). Furthermore its Lg0- gradient

flow preserves the condition | · | = 1 as well as non-negativity of initial data, in particular the set X .

2.2 Finite-energy bubbling

Bubbles denote concentrated solutions of (1.3) or (1.7) with the profile of conformal factors of Yamabe
metrics on Sn. We follow our notation from [48], [49].

Let us recall the construction of conformal normal coordinates from [37]. Given a ∈ M , these are
geodesic normal coordinates for a suitable conformal metric ga ∈ [g0]. If ra is the geodesic distance from
a with respect to the metric ga, the expansion of the Green’s function for the conformal Laplacian Lga

with pole at a ∈M , denoted by Ga = Gga(a, ·), simplifies considerably. From Section 6 of [37]

Ga =
1

4n(n− 1)ωn
(r2−n

a +Ha), ra = dga(a, ·), Ha = Hr,a +Hs,a (2.6)

for ga = u
4

n−2
a g0. Here Hr,a ∈ C2,α

loc
is a regular part, while the singular one is of type

Hs,a = O





ra for n = 5
ln ra for n = 6
r6−n
a for n ≥ 7



 .

For λ > 0 large let us define

ϕa,λ = ua

(

λ

1 + λ2γnG
2

2−n
a

)
n−2
2

, Ga = Gga(a, ·), γn = (4n(n− 1)ωn)
2

2−n . (2.7)

The constant γn is chosen in order to have

γnG
2

2−n
a (x) = d2ga (a, x) + o(d2ga(a, x)) as x −→ a.

Rescaled by a suitable factor depending on K(a), for large values of λ the functions ϕa,λ are approximate
solutions of (1.3); moreover for λ−2 ≃ τ they are also approximate solutions to (1.7) since in this regime
λ−τ −→ 1 as τ −→ 0, cf. Theorem 3 below. Up a scaling constant their profile is given by the function

U0(x) = (1 + |x|2)
2−n
2 for x ∈ R

n, (2.8)
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cf. Section 5 in [48], which realizes the best constant in the Sobolev inequality, i.e.

ĉ0 = cn inf
06≡u∈C∞

c (Rn)

∫

Rn |∇u|2dx
(∫

Rn |u|2∗dx
)

2
2∗

= cn

(

Γ(n)/Γ
(

n
2

))2/n

π(n− 2)n
, 2∗ =

2n

n− 2
. (2.9)

Notation. For a finite set of points (xi)i in M and

K :M −→ R

a Morse function we will use the short notation

Ki = K(xi) and mi = m(K,xi). (2.10)

Combining the main results in [48] and [49] one has the following theorem.

Theorem 3. ([48], [49]) Let (M, g) be a closed manifold of dimension n ≥ 5 of positive Yamabe class
and K :M −→ R be a positive Morse function satisfying (1.5). Let x1, . . . , xq be distinct critical points of
K with negative Laplacian. Then, as τ −→ 0, there exists a unique solution uτ,x1,...,xq developing exactly
one bubble at each point xi and converging weakly to zero in W 1,2(M, g) as τ −→ 0.

Precisely there exist λ1,τ , . . . , λq,τ ≃ τ−
1
2 and points ai,τ −→ xi for all i such that

∥

∥

∥

∥

∥

uτ,x1,...,xq −

q
∑

i=1

K
2−n
4

i ϕai,τ ,λi,τ

∥

∥

∥

∥

∥

−→ 0 and Jτ (uτ,x1,...,xq) −→ ĉ0

(

q
∑

i=1

K
2−n
2

i

)
2
n

as τ −→ 0. Up to scaling uτ,x1,...,xq is non-degenerate for Jτ and

m(Jτ , uτ,x1,...,xq ) = (q − 1) +

q
∑

i=1

(n−mi).

Conversely all blow-ups of (1.7) with uniformly bounded energy and zero weak limit are as above.

In [48], [49] we proved much more precise asymptotics on the solutions provided above, which are
not needed here, but were useful to show non-degeneracy. Recall also that the above statement is false
for n ≤ 4 since in three dimensions there could be at most one blow-up (in fact, no blow-up at all if
(M, g0) is not conformally equivalent to (S3, gS3) by the results in [41]), while in four dimensions there
are constraints on blow-up configurations depending on K and on the Green’s function of Lg0 , cf. [9] and
[40].

2.3 Integral identities and isolated simple blow-ups

For finite-energy blow-ups of (1.3) one can prove a decomposition of solutions into finitely-many bubbles
in the spirit of [62], see Section 3 in [48]. In Section 4 we will deal instead with general solutions, and
some tools and definitions will be useful in this respect.

Recall Pohozaev’s identity in a Euclidean ball Br = Br(0) ⊆ R
n for solutions to

− cn∆u = Ku
n+2
n−2 in Br. (2.11)

If ν is the outer unit normal to ∂Br, solutions of this equation satisfy

1

2∗

∫

Br

∑

i

xi
∂K

∂xi
u2

∗

dx =
1

2∗

∮

∂Br

〈x, ν〉Ku2
∗

dσ + cn

∮

∂Br

B(r, x, u,∇u) dσ, (2.12)
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where

B(r, x, u,∇u) =
n− 2

2
u
∂u

∂ν
−

1

2
〈x, ν〉|∇u|2 +

∂u

∂ν
〈∇u, x〉. (2.13)

This well-known identity is derived multiplying the equation by xi
∂u
∂xi

and integrating by parts, cf.

Corollary 1.1 in [39]. We describe next a translational version of it. Multiply (2.11) by ∂u
∂xi

to get

−cn

∫

Br

∂u

∂xi
∆u dx =

1

2∗

∫

Br

K(u2
∗

)xidx.

By the Gauss-Green theorem this becomes

−cn

∮

∂Br

∂u

∂xj
〈ν, ej〉

∂u

∂xi
dσ +

1

2
cn

∫

Br

(|∇u|2)xidx

=
1

2∗

∮

∂Br

Ku2
∗

〈ν, ei〉dσ −
1

2∗

∫

Br

u2
∗ ∂K

∂xi
dx,

where ej denotes the j-th standard basis vector of R
n.

Lemma 2.1. Let u solve (2.11) in Br with K ∈ C1(Br). Then for all i = 1, . . . , n

−cn

∮

∂Br

∂u

∂xj
〈ν, ej〉

∂u

∂xi
dσ +

1

2
cn

∮

∂Br

|∇u|2〈ν, ei〉dσ

=
1

2∗

∮

∂Br

Ku2
∗

〈ν, ei〉dσ −
1

2∗

∫

Br

u2
∗ ∂K

∂xi
dx.

(2.14)

Consider now a sequence (um)m of solutions to

− cn∆um = Km(x)u
n+2
n−2
m in Br, with um(xm) −→ ∞. (2.15)

If xm −→ x̄ ∈M , the point x̄ is called a blow-up point for (um)m. For r > 0 let

um(r) =

∫

∂Br(xm)

umdσ

denote the radial average and we define

wm(r) = r
n−2

2 um(r). (2.16)

Following standard terminology, we define convenient classes of blow-ups.

Definition 2.1. Let ξm be a local maximum for um. A blow-up point ξ̄ = limm ξm for um is said to be
isolated if there exist (fixed) constants ρ > 0 and C > 0 such that for all m large

um(x) ≤
C

|x− ξm|
n−2
2

for |x− ξm| ≤ ρ. (2.17)

The blow-up point is said to be isolated simple if there exists ρ ∈ (0,∞] (fixed) such that for all m large
wm(r) has precisely one critical point in (0, ρ).

The above definitions are useful to characterize bubble towers and single bubbles respectively, yielding
convergence after dilation and further estimates. If (Km)m is a sequence of positive functions uniformly
bounded in C1(Br) and bounded away from zero, we have the next result on isolated simple blow-ups,
which is a consequence of Proposition 2.3 in [39].
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Lemma 2.2. Suppose that um solves (2.15) with

C−1 ≤ Km ≤ C and |∇Km| ≤ C, C > 0

and that 0 ∈ Br is an isolated simple blow-up. Then there exists C > 0 such that

um(x) ≤ C um(ξm)−1|x− ξm|2−n in Br/2(ξm). (2.18)

Moreover in a fixed neighbourhood U of zero one has

um(ξm)um(x) −→ z(x) = a|x|2−n + h(x) in C2
loc

(U \ {0}),

where z > 0 is singular harmonic on U \ {0}, a > 0 constant and h smooth and harmonic at x = 0.

We first remark that after a suitable blow-down procedure U can possibly coincide with all of R
n, in

which case h has to be identically constant and non-negative. Secondly, the same holds true if U coincides
with R

n minus a discrete set S of points including the origin and

z(x) =
∑

pi∈S

ai|x− pi|
2−n + h̃(x),

in which case h̃ is constant. We can then apply (2) of Proposition 1.1 in [39] to conclude that for r > 0
small, if 0 is an isolated simple blow-up, then

∮

∂Br

B(r, x, um,∇um)dσ = −
(n− 2)2

2

h(0)ωn

rn−2um(ξm)2
(1 + om(1) + or(1)), (2.19)

where ωn = |Sn−1|, h is as in Lemma 2.2 and om(1)
m→∞
−−−−→ 0, or(1)

r→0
−−−→ 0.

We next recall the following well-known result which can be found in [60] and stated in Section 8 of
[45]. It follows by iteratively extracting bubbles from solutions large in L∞-norm.

Proposition 2.1. Consider on Sn a function K : Sn −→ R+ satisfying for

C−1
0 ≤ K ≤ C0 and ‖K‖C2(Sn) ≤ C0

some C0 ≥ 1. Given δ > 0 small and R > 0 large, there exists C = C(δ, R,C0) > 0 such that, if u solves
(1.3) with such K and maxSn u ≥ C, then there exist local maxima ξ1, . . . , ξN ∈ Sn, N = N(u) ≥ 1 of u
such that

(i) the balls (Bri(ξi))
N
i=1 with ri = Ru(ξi)

− 2
n−2 are disjoint;

(ii) in normal coordinates x at ξi one has

∥

∥

∥

∥

u(ξi)
−1u(u(ξi)

− 2
n−2 y)−

(

1 + ki|y|
2
)

2−n
2

∥

∥

∥

∥

C2(BR(0))

< δ,

where ki =
1

n(n−2)cn
K(ξi) and y = u(ξi)

2
n−2x;

(iii) u(x) ≤ CdSn(x, {ξ1, . . . , ξN})−
n−2
2 for all x ∈ S2;

(iv) dSn(ξi, ξj)
n−2
2 u(ξj) ≥ C−1 for all i 6= j.
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2.4 Singular solutions and conservation laws

We recall next some properties of radial singular solutions (at x = 0) of the critical equation

−∆u = κu
n+2
n−2 in R

n \ {0} with κ > 0.

Such solutions are of interest as they could arise as limits of regular solutions, see Theorem 1.4 in [25]. By
Theorem 8.1 in [15] all the singular solutions of the above equation are radial, cf. [55] for other properties.
If we look for solutions in the form

u(x) = |x|
2−n
2 v(log |x|),

then by direct computation v satisfies

−v′′(t) = κv
n+2
n−2 (t)−

(

n− 2

2

)2

v(t).

The latter is a Newton equation of the form v′′(t) = −V ′(v(t)), with potential

V (v) = κ
n− 2

2n
v

2n
n−2 −

1

2

(

n− 2

2

)2

v2.

This implies the conservation of the Hamiltonian energy

1

2
(v′)2 + κ

n− 2

2n
v

2n
n−2 −

1

2

(

n− 2

2

)2

v2 =: H.

The value

v0 ≡

[

(

n− 2

2

)2

κ−1

]
n−2
4

with Hamiltonian H0 = −
1

n
κ

[

(

n− 2

2

)2

κ−1

]
n
2

is the only critical point of V on the positive v-axis and for every value H ∈ (H0, 0) there is a unique
positive periodic solution vH , called Fowler’s solution, with period increasing in H and tending to infinity
as H −→ 0. In fact, as H −→ 0, vH converges on the compact sets of R to a homoclinic solution v0
tending to zero for t −→ ±∞, where v0 corresponds to a regular solution to the above Yamabe equation.

Lemma 2.3. For H ∈ (H0, 0) let uH(x) = |x|
2−n
2 vH(log |x|). Then

1

2∗

∮

∂Br

〈x, ν〉κu2
∗

H dσ +

∮

∂Br

B(r, x, uH ,∇uH) dσ = ωnH,

where ωn = |Sn−1| and B is as in (2.13).

Proof. In terms of uH , u
′
H , after some cancellation the boundary integrand becomes

1

2
r(u′H)2 +

1

n
(n− 2)/2κru

2n
n−2

H +
n− 2

2
uHu

′
H .

We have clearly that

∇uH(x) =
2− n

2|x|
uH(|x|) + |x|

2−n
2 −1v′H(log |x|).

Substituting for vH , the boundary integrand transforms into

r1−n

(

(

4n(v′H)2 − (n− 2)2nv2H
)

+ 4(n− 2)κv
2n

n−2

H

)

= 8nr1−nH.

Integrating on ∂Br, the conclusion immediately follows.
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3 Existence results

In this section we prove Theorem 1 and other existence results, using pinching assumptions on K and
Morse-theoretical arguments.

3.1 Pinching and topology of sublevels

Here we show that a suitable pinching condition implies contractibility in X of some sublevels of Jτ for
(M, g0) Einstein. Such conditions will be made more explicit in the next subsection, depending on the
critical points of K. Recall that p = n+2

n−2 − τ and K :M −→ R+ is strictly positive and let

A =

(

Kmax

Kmin

)
2

p+1

A for any A > 0.

Proposition 3.1. Let (Mn, g0) be an Einstein manifold of positive Yamabe class and τ > 0. If

{∂Jτ = 0} ∩ {A ≤ Jτ ≤ A} = ∅

for some A > 0, then for every c ∈ [A,A] the sublevel {Jτ ≤ c} is contractible.

Proof. For u ∈ X we clearly have

K
− 2

p+1
max J̄τ (u) ≤ Jτ (u) ≤ K

− 2
p+1

min J̄τ (u),

whence for A,B > 0

Jτ (u) ≤ A =⇒ J̄τ (u) ≤ K
2

p+1
maxA and J̄τ (u) ≤ B =⇒ Jτ (u) ≤ K

− 2
p+1

min B.

Therefore we have the for A > 0 inclusions

{Jτ ≤ A} ⊆ {J̄τ ≤ K
2

p+1
maxA} ⊆ {Jτ ≤ A}.

As ∂Jτ is uniformly bounded on sublevels and of class C1,α there, cf. (2.4), (2.5), the negative gradient
flow φ for Jτ with respect to the scalar product induced by Lg0 is globally well defined on X , see (1.9), and
in time and φ(t, u) depends continuously on the initial condition u. Note that φ preserves the Lg0-norm,
see (2.1), as well as non-negativity of initial data and hence the set X , cf. Section 4 in [53].

Since
{∂Jτ = 0} ∩ {A ≤ Jτ ≤ A} = ∅

and Jτ satisfies the Palais-Smale condition, as τ > 0, by the deformation lemma, cf. Section 7.4 in [2]
and transversality for any u ∈ [A ≤ Jτ ≤ A] there exists a first time Tu ≥ 0, which is continuous in u,
such that

φ(Tu, u) ∈ {Jτ ≤ A} .

Recalling that {J̄τ ≤ K
2

p+1
maxA} ⊆ {Jτ ≤ A}, consider then the homotopy

F : [0, 1]× ({J̄τ ≤ K
2

p+1
maxA}) −→ X : (s, u) 7−→ φ(s Tu, u).

If u belongs to the sublevel {Jτ ≤ A}, then Tu = 0 and hence

F (s, u) = u for all s ∈ [0, 1].
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Jτ

Jτ = Ā

J̄τ = S

Jτ = A

∂tu = −∇J̄τ

∂tu = −∇Jτ

Figure 1: (τ )-Yamabe and prescribed scalar curvature flows combined

Therefore F deforms {J̄τ ≤ K
2

p+1
maxA} into {Jτ ≤ A}, but not necessarily within

{J̄τ ≤ K
2

p+1
maxA}.

This can be achieved composing φ on the left with a suitable Yamabe-type flow. Recall that, if (Mn, g0)
is Einstein and of positive Yamabe class, by Theorem 6.1 in [13] the equation

Lg0u = up, p =
n+ 2

n− 2
− τ

has only constant solutions. Hence the infimum of J̄τ is attained and equal to Rg0V olg0(M)1−
2

p+1 . Since
the Palais-Smale condition holds also for J̄τ , the gradient flow φ̄(t, u) of J̄τ evolves all initial data u to
a constant function, intersecting transversally every level set of J̄τ higher than its infimum. Similarly to
the previous reasoning there exists for any u ∈ X a first time Tu ≥ 0, continuous in u, such that

φ(Tu, u) ∈

{

J̄τ ≤ K
2

p+1
maxA

}

.

Defining
F̃ (s, u) = φ(TF (s,u), F (s, u)),

we deduce that F̃ (s, u) is a deformation retract of {J̄τ ≤ K
2

p+1
maxA} onto {Jτ ≤ A} and therefore realizes

a homotopy equivalence, cf. Chapter II in [51].
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On the other hand every non-empty sublevel {J̄τ ≤ B}, in particular {J̄τ ≤ K
2

p+1
maxA}, is via the deforma-

tion lemma and Palais-Smale’s condition for J̄τ homotopically equivalent to a point. Hence we deduce
the same property for {Jτ ≤ A}. Still by the deformation lemma and the Palais-Smale condition, this is
true also for {Jτ ≤ c} with c ∈ [A,A]. This concludes the proof.

For the above proof to work, it is indeed sufficient to assume that the functional Jτ for τ = 0 has no
critical points in a restricted energy range.

3.2 Pinching and degree counting

If problem (1.3) has no solutions, using Theorem 3 we will show that Proposition 3.1 applies, provided
suitable pinching conditions on K hold true. Arguing by contradiction, we will then derive existence
results of which Theorem 1 is a particular case. To that end we first order the set

{x1, . . . , xl} = {∇K = 0} ∩ {∆K < 0}

so that
K1 = K(x1) ≥ . . . ≥ Kl = K(xl).

Recalling our notation in (2.9) and (2.10), for m ∈ {1, . . . , l} we then define

Em = ĉ0

(

m
∑

i=1

K
2−n
2

i

)
2
n

and Em = ĉ0

(

l
∑

i=l−m+1

K
2−n
2

i

)

2
n

. (3.1)

As we will see, these numbers represent the minimal and maximal limit energies for solutions developing
m bubbles and weakly converging to zero as τ −→ 0. We then have the following result.

Proposition 3.2. Suppose that (1.3) has no solutions, and assume that

(

Kmax

Kmin

)
n−2
2

<
Em+1

Em

(P̃m)

for some m ∈ {1, . . . , l − 1}. Then there exists 0 < ε≪ 1 such that

{

∂Jτ = 0
}

∩
{

(1 + ε)Em ≤ Jτ ≤

(

Kmax

Kmin

)
2

p+1

(1 + ε)Em

}

= ∅

for all τ > 0 sufficiently small.

Proof. Suppose (1.3) has no positive solutions. Then, as τ ց 0, all positive solutions of (1.7) with
uniformly bounded energy must have zero weak limit. These are then described by Theorem 3 and of
the form uτ,xi1 ,...,xiq

with xi1 , . . . , xiq distinct points of {x1, . . . , xl} and energies

Jτ (uτ,xi1 ,...,xiq
) −→ ĉ0





q
∑

j=1

K
2−n
2

ij





2
n

as τ −→ 0.

By the way we ordered the points (xi)i, we clearly have that

ĉ0





q
∑

j=1

K
2−n
2

ij





2
n

≤ Em for q ≤ m
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and

ĉ0





q
∑

j=1

K
2−n
2

ij





2
n

≥ Em+1 for q ≥ m+ 1

Then the statement immediately follows.

Remark 3.1. Let us consider the pinching condition

Kmax

Kmin
<

(

m+ 1

m

)
1

n−2

. (Pm)

We then have
(Pm+1) =⇒ (Pm) and (Pm) =⇒ (P̃m) for all m ≥ 1. (3.2)

Indeed, while the first implication is obvious, for the second we find from (Pm)

m+1
∑

i=1

K
2−n
2

i ≥
m+ 1

K
n−2
2

max

> (
Kmax

Kmin
)

n−2
2

m

K
n−2
2

min

≥ (
Kmax

Kmin
)

n−2
2

l
∑

i=l−m+1

K
2−n
2

i ,

which implies (P̃m) by the definitions in (3.1). Finally we observe that also

(P̃m1) =⇒ (P̃m2) for all m1 ≥ m2. (3.3)

Indeed we may argue inductively and see that (P̃m1) for m1 = m2 + 1 implies

m2+1
∑

i=1

K
2−n
2

i =

m1+1
∑

i=1

K
2−n
2

i −K
2−n
2

m1+1 > (
Kmax

Kmin
)

n−2
2

l
∑

i=l−m1+1

K
2−n
2

i −K
2−n
2

m1+1

=(
Kmax

Kmin
)

n−2
2

l
∑

i=l−m2+1

K
2−n
2

i + (
Kmax

Kmin
)

n−2
2 K

2−n
2

l−m1+1 −K
2−n
2

m1+1,

and

(
Kmax

Kmin
)

n−2
2 K

2−n
2

l−m1+1 −K
2−n
2

m1+1 = K
2−n
2

l−m1+1

(

(
Kmax

Kmin
)

n−2
2 − (

Kl−m1+1

Km1+1
)

n−2
2

)

≥ 0.

We therefore obtain (3.3) as desired.

We prove next the following result, which by (3.2) in the previous remark extends Theorem 1.

Theorem 4. Suppose (Mn, g0) is an Einstein manifold of positive Yamabe class with n ≥ 5 and K is a
positive Morse function on M satisfying (1.5). Assume we are in one of the following two situations:

(j) K satisfies (P̃1) and (1.6);

(jj) K satisfies (P̃2) and has at least two critical points with negative Laplacian.

Then (1.3) has a positive solution.

Proof. The proof will be carried out by contradiction, assuming that the functional J0 does not have any
critical point, so we have the conclusion of Proposition 3.2 and thus the conclusion of Proposition 3.1.

Suppose (j) holds: recalling (3.1), we deduce that for ε > 0 small the sublevel {Jτ ≤ (1 + ε)E1} is
contractible and that Jτ has no critical points at level (1 + ε)E1. By Theorem 3, all critical points of Jτ
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at lower levels are single-bubbling solutions uτ,xi, which totally contribute to the Leray-Schauder degree
of (1.7) by the amount

∑

xj∈{∇K=0}∩{∆K<0}

(−1)n−mj ,

see (2.10). By the Poincaré-Hopf theorem this total sum must be equal to the Euler characteristic
χ({Jτ ≤ (1 + ε)E1}) = 1, which contradicts the assumption.

Suppose now that (jj) holds true, and let us again assume that J0 has no critical points. As (P̃2)
implies (P̃1), see Remark 3.1, we thus have a contradiction from case (j), provided (1.6) holds. Hence we
may assume that (P̃2) holds and

∑

xi∈{∇K=0}∩{∆K<0}

(−1)mi = (−1)n. (3.4)

With the same reasoning as above we obtain that for ε > 0 small the sublevel {Jτ ≤ (1 + ε)E2} is
contractible and that Jτ has no critical points at level (1 + ε)E2.

By our assumptions solutions of (1.7) with limiting energies less or equal to (1 + ε)E2 are either
single- or doubly-bubbling solutions. By (3.4) the contribution of the former to the degree is 1, while the
contribution of the latter must be zero.

By Theorem 3 doubly-bubbling solutions blow-up at distinct critical points of K with negative Lapla-
cian, whence by the characterization of their Morse index necessarily

0 =
∑

xi 6=xj,xi,xj∈{∇K=0}∩{∆K<0}

(−1)n−mi+n−mj .

Combining the last formula with (3.4), we compute

0 =
∑

xi 6=xj,xi,xj∈{∇K=0}∩{∆K<0}

(−1)n−mi+n−mj

=
∑

xi∈{∇K=0}∩{∆K<0}

(−1)n−mi

∑

xj 6=xi,xj∈{∇K=0}∩{∆K<0}

(−1)n−mj

=
∑

xi∈{∇K=0}∩{∆K<0}

(−1)n−mi [−(−1)n−mi +
∑

xj∈{∇K=0}∩{∆K<0}

(−1)n−mj ].

Using (3.4) for the latter sum, we get

0 =
∑

xi∈{∇K=0}∩{∆K<0}

(−1)n−mi [−(−1)n−mi + 1]

=−
∑

xi∈{∇K=0}∩{∆K<0}

(−1)2(n−mi) +
∑

xi∈{∇K=0}∩{∆K<0}

(−1)n−mi .

Again we know that the latter sum equals 1, consequently

0 =−
∑

xi∈{∇K=0}∩{∆K<0}

(−1)2(n−mi) + 1 = −♯ ({∇K = 0} ∩ {∆K < 0}) + 1,

where ♯ denotes the cardinality. Hence we reach a contradiction once more.

Remark 3.2. 1) The restriction on the dimension for condition (jj) is sharp, cf. Remark 4.1 for
details. Our proof indeed relies on Theorem 3, which only holds in dimension n ≥ 5.
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2) One could replace the degree-counting argument by Morse’s inequalities. This was done in [61] in
three dimensions and in [28] in arbitrary dimension under suitable pinching conditions.

3) Formula (1.6) arises from computing the contribution to the degree of all single-bubbling solutions.
Considering the blowing-up solutions in Theorem 3 and the Morse-index formula there, it can be
easily seen that the total degree of multi-bubbling solutions is 1. If (1.3) is not solvable, Proposition
3.1 could then be applied for large values of A, since Jτ would have only finitely-many solutions
with bounded energy, but we would derive no useful information from the Poincaré-Hopf theorem.

4) Condition (j) (resp., (jj)) is used to find sublevels of J̄τ that contain every blowing-up solution of
(1.7) forming one bubble (resp., two bubbles) but not containing any solution forming two (resp.,
three) bubbles or more. Further pinching restrictions does not seem to lead to different existence
results, in view of Theorem 2.

5) The argument of the proof allows to also show that the solution provided by the above theorem is a
critical point of Jτ for τ = 0 below a given energy value, see the comment after Proposition 3.1. This
value can be any number exceeding the limiting energy of doubly-bubbling or triply-bubbling solutions
as in Theorem 3. The existence result is also stable under small perturbations of the Einstein metric
and might extend to conformal classes of metrics with a unique Yamabe representative, cf. [31].

3.3 Pinching and min-max theory

Here we show how Theorem 3 can be used to improve results in the literature that rely on min-max theory,
cf. [29], [22] and [63] in two dimensions or [11]. Also with this approach and under some circumstances
the pinching assumption in Theorem 1 can be relaxed. We have first the following general result, which
will be later specialized to simpler situations or variants.

Theorem 5. Let (Mn, g), n ≥ 5 be a closed Riemannian manifold of positive Yamabe class and K be
a positive Morse function on M satisfying (1.5). Assume that there is a set Ξ ⊆ M with C components
that contains p local maxima x1, . . . , xp of K and such that

max
Ξ

(K
2−n
2 ) < min

{

(

K(xi)
2−n
2 +K(xj)

2−n
2

)
2
n

: xi 6= xj local maxima of K

}

.

Assume also that K has q ≥ 0 critical points of index 1 in the range

[min
Ξ
K, max

i∈{1,...,p}
K(xi)).

Then (1.3) has a solution provided that q < p− C.

Remark 3.3. Following our proof, the above result and thence the other ones in this subsection can
be extended to S3 without any pinching requirement due to single-bubbling. Note that from [41] problem
(1.3) is always solvable on other three-manifolds. In four dimensions one can relax the pinching condition
using constraints on multi-bubbling solutions as found in [9] and [40].

Before proving Theorem 5 we need some preliminaries. First we specify more precisely the asymptotic
profile of the single-bubbling solutions uτ,xi as in Theorem 3. If ϕa,λ is as in (2.7), then there exists

ai,τ −→ xi ∈ {∇K = 0} ∩ {∆K < 0} and λ2i,τ = −(1 + oτ (1))c2
∆K(xi)

K(xi)τ

as τ −→ 0, where c2 = c2(n) > 0, see Section 3 in [49], such that
∥

∥uτ,xi − ϕai,τ ,λi,τ

∥

∥ = oτ (1). (3.5)
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We then map Ξ ⊆ M as in Theorem 5 into the variational space X ⊆W 1,2, cf.(1.9), in such a way that
each point xi is mapped to uτ,xi, and derive an upper bound on Jτ under the image of this an embedding.
Precisely consider for r0 > 0 smooth

λ̃ :M −→ R+ and ã : M −→M

satisfying with ai,τ and λi,τ as in (3.5)











λ̃ = τ−1/2 in M \ ∪p
i=1B4r0(xi);

λ̃ = λi,τ in B2r0(xi)

cτ−1/2 ≤ λ̃ ≤ Cτ−1/2 in M

and










ã(x) = x in M \ ∪p
i=1B4r0(xi);

ã(x) = ai,τ in B2r0(xi);

ã ∈ B4r0(xi) in B4r0(xi)

for some fixed constants 0 < c < C. Finally let for x ∈ Ξ

ϕ̃x,τ =

{

ϕã(x),λ̃(x) in M \ ∪p
i=1B2r0(xi);

(1− d(x,xi)
2r0

)uτ,xi +
d(x,xi)
2r0

ϕai,τ ,λi,τ in B2r0(xi).
(3.6)

We then have the following result.

Lemma 3.1. If ϕ̃x,τ is as in (3.6) and if ĉ0 is given in (2.9), one has that

sup
x∈Ξ

Jτ (ϕ̃x,τ/‖ϕ̃x,τ‖) ≤ ĉ0 max
Ξ

(K
2−n
2 ) + oτ (1) + or0(1),

where oτ (1) −→ 0 as τ ց 0 and or0(1)
r0→0
−−−→ 0.

Proof. Since Jτ is uniformly Lipschitz on finite energy sublevels and is scaling invariant, by (3.5) we are
reduced to prove that

Jτ (ϕx,λ̃(x)) ≤ ĉ0K(x)
2−n
n + oτ (1) as τ ց 0.

To show this, note that ϕx,λ̃(x) is bounded from above and below by powers of

λ̃(x) ≃ τ−1/2,

and that λ̃(x)τ −→ 1 as τ −→ 0, whence

Jτ (ϕx,λ̃(x)) =

∫

M

(

cn|∇ϕx,λ̃(x)|
2
g0 +Rg0ϕ

2
x,λ̃(x)

)

dµg0

(
∫

M
Kϕ2∗

x,λ̃(x)
dµg0)

2
2∗

+ oτ (1), 2∗ =
2n

n− 2
.

Using a change of variables, it is easy to see that

∫

M

(

cn|∇ϕx,λ̃(x)|
2
g0 +Rg0ϕ

2
x,λ̃(x)

)

dµg0

(
∫

M Kϕ2∗

x,λ̃(x)
dµg0)

2
2∗

=cnK(x)
2−n
n

∫

Rn |∇U0|2dx
(∫

Rn |U0|2
∗dx
)

2
2∗

+ oτ (1)

=ĉ0K(x)
2−n
n + oτ (1),

where U0 is given by (2.8). This concludes the proof.
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Proof. of Theorem 5. Arguing by contradiction, assume that (1.3) has no solutions. Then, as noticed in
the previous subsection, all solutions of (1.7) with uniformly bounded energy must have zero weak limit.
Fix ε > 0 small: we know by Theorem 3 that Jτ has at least p local minima of the form uτ,x1, . . . , uτ,xp

such that for τ small there holds

Jτ (uτ,xj) < ĉ0( min
i∈{1,...,p}

K(xi))
2−n
n + ε

and such that, for all sufficiently small values of τ , Jτ has no critical point at level

ĉ0( min
i∈{1,...,p}

K(xi))
2−n
n + ε.

We can assume that for τ small there is no critical point of Jτ at level

ĉ0 max
Ξ

(K
2−n
2 ) + ε

and we can modify Jτ near all its local minima at level less or equal to

ĉ0 max
Ξ

(K
2−n
2 ) + ε,

which are non-degenerate by Theorem 3, in order to still have the Palais-Smale condition, to not generate
new critical points and so that the modified minima are at level zero. Call J̃τ the resulting functional,
which we can take of class C2,α as the original one, see Figure 2. It will also possess at least p critical
points at level zero.

J̃τ

X

A

B

Ξ1
Ξ2

Figure 2: The modified functional J̃τ and its sublevels.

We then use relative Morse inequalities for J̃τ , cf. Theorem 4.3 in [18], between the levels

A = ε and B = ĉ0 max
Ξ

(K
2−n
2 ) + ε.
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By construction J̃τ has C0 = 0 critical points of index zero and C1 = q critical points in the range [A,B].
Since J̃τ has no local minima in the range [A,B] and the Palais-Smale condition holds true, every point
of {J̃τ ≤ B} can be joined to {J̃τ ≤ A}. As a consequence

β0 := rankH0({J̃τ ≤ B}, {J̃τ ≤ A}) = 0,

see e.g. [34], Chapter 2, Exercise 16, page 130. On the other hand consider

β1 := rankH1({J̃τ ≤ B}, {J̃τ ≤ A}).

Recall that

H1({J̃τ ≤ B}, {J̃τ ≤ A}) = Z1({J̃τ ≤ B}, {J̃τ ≤ A})/B1({J̃τ ≤ B}, {J̃τ ≤ A}),

where Z1 and B1 denote kernel and image of the boundary operators in one and two homological dimen-
sions respectively, cf. [51], Chapter VII, §6. We claim next

β1 ≥ p− C. (3.7)

To prove this, let Ξ1, . . . ,ΞC denote the connected components of Ξ. As our assumptions improve or stay
invariant if we remove components containing none or only one point among x1, . . . , xp, we can assume
that each component of Ξ contains at least two among the points x1, . . . , xp.

Given Ξj let
Xj = {xi1 , . . . xiCj

}

denote the local maxima of K belonging to Ξj . Considering a curve

γj,l : [0, 1] −→M with γ(0) = xi1 and γ(1) = xil for l = 2, . . . , iCj

its image is a one-chain in Z1({J̃τ ≤ B}, {J̃τ ≤ A}) with boundary

xil − xi1 ∈ C0({J̃τ ≤ A}).

It turns out that

γj,2, . . . , γj,Cj generate Cj − 1 elements of H1({J̃τ ≤ B}, {J̃τ ≤ A}), (3.8)

which are linearly independent. To prove (3.7) we show that any

∑

2≤h≤Cj

nhγj,h

with not all nh = 0 cannot be written as

∑

2≤h≤Cj

nhγj,h = ∂2c2 + c1 (3.9)

with c2 ∈ C2({J̃τ ≤ B}, {J̃τ ≤ A}) and c1 ∈ C1({J̃τ ≤ A}).

In fact let us apply the boundary operator ∂1 to both sides of the latter equation. As not all nh are
zero, ∂1 (

∑

h nhγj,h) is non-trivial in C0({J̃τ ≤ A}). Clearly ∂1 ◦ ∂2 = 0, so to achieve (3.9) we would

need ∂1c1 to be in C0({J̃τ ≤ A}) a non-trivial linear combination of the points xi1 , . . . , xil . However,
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since xi1 , . . . , xil lie in different components of {J̃τ ≤ A}, there is no chain c1 ∈ C1({J̃τ ≤ A}) with this
property. This shows (3.8). Repeating this reasoning for every component of Ξ we obtain

β1 ≥
C
∑

j=1

(Cj − 1) = p− C,

since
∑C

j=1 Cj = p. This shows (3.7). Now the relative Morse inequalities imply

q = C1 = C1 − C0 ≥ β1 − β0 ≥ p− C,

contradicting our assumptions.

In some particular cases we obtain the following corollary, cf. Theorem 1 (ii).

Corollary 3.1. Suppose that K satisfies Kmax

Kmin
≤ 2

2
n−2 , that it has p local maxima and q critical points

of index n− 1 with negative Laplacian. Then (1.3) admits a positive solution provided q < p− 1.

Proof. In the theorem choose the connected set Ξ = Sn, see (3.1), (3.2).

We next state a related result, proved with similar techniques.

Theorem 6. Let (M, g) be as in Theorem 5. Suppose K has a local maximum point z, and that there
exists a curve a(t) joining z to another point y with

K(y) ≥ K(z)

such that both the following two properties hold

(i) for all xi 6= xj local maxima of K

max
t
K(a(t))

2−n
n <

(

K(xi)
2−n
2 +K(xj)

2−n
2

)
2
n

};

(ii) critical points of index n− 1 in the range

[min
t
K(a(t)),K(z)]

have positive Laplacian.

Then (1.3) has a positive solution.

Proof. We can construct a curve ã(t) joining y to another maximum point z̃ of K and such that
mintK(ã(t)) = K(y). Consider then the composition â := a ∗ ã, and the test functions ϕ̃x,τ as in
(3.6) for x in the image of the curve â. By Lemma 3.1 and construction of â, we have that the image of
this curve in X connects two strict local minima uτ,z, uτ,z̃ of Jτ , and the supremum of Jτ on the image
is bounded above by

ĉ0( min
t∈[0,1]

K(a(t)))
2−n
n + oτ (1) + or0(1).

Consider a mountain-pass path between the strict local minima uτ,z, uτ,z̃ of Jτ . Assuming that
(1.3) has no solutions, by the Palais-Smale condition for Jτ and by the fact that all critical points with
uniformly bounded energy of Jτ as described in Theorem 3 are non-degenerate, Jτ must possess a critical
point of index one at a level less or equal to

ĉ0( min
t∈[0,1]

K(a(t)))
2−n
n + oτ (1) + or0(1).
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Still by Theorem 3 and condition (i) this critical point must have a simple blow-up at a critical point p
of K of index n− 1 with

K(p) ∈ [min
t
K(a(t)),K(z)],

which is excluded by assumption (ii).

Remark 3.4. The latter result improves the pinching condition of Theorem 2 in [11] (if compactified
from R

n to Sn) for K Morse and satisfying (1.5), namely

(j) Kmax < 2
2

n−2 mintK(x(t));

(jj) critical points in the range [mintK(x(t)),K(z)) are local maxima or have positive Laplacian.

While the strategy in [11] might be possibly used to relax condition (jj), an improvement of (j) requires a
more careful analysis of the loss of compactness, as done in [48] and [53].

4 Non-existence results

In this section we prove non-existence results on Sn for arbitrarily pinched curvature candidates of
prescribed Morse type and with only one critical point with negative Laplacian. We show that the
assumptions of Theorem 1 are sharp both in terms of Morse structure and dimension, cf. Remark 4.1.

We construct a sequence of functions (Km)m on Sn with only one local maximum, while all other
critical points have positive Laplacian and converge to the south pole. We build the (Km)m in order to
preserve a given Morse structure and to maintain uniform C3 bounds.
We denote by yi for i = 1, . . . , n+ 1 the Euclidean coordinate functions on R

n+1 restricted to Sn and by
N, S the north and south poles respectively, i.e.

N = Sn ∩ {yn+1 = 1} and S = Sn ∩ {yn+1 = −1}.

Finally we let
πN : S

n \ {N} −→ R
n and πS : S

n \ {S} −→ R
n

denote the stereographic projections from the N, S, whose inverse π−
N
, π−

S
induce coordinate systems on

Sn \ {N}, Sn \ {S}, to which we will refer as πN and πS coordinates respectively.

Recalling our notation in (1.10) we have the next result, proved in the Appendix.

Proposition 4.1. For every Morse function K̃ : Sn −→ R with only one local maximum point there
exists a sequence of positive functions (Km)m such that

a) Mj(Km) = Mj(K̃) for all j = 0, . . . , n and Km has only one local maximum point at N, while all
other critical points of Km converge to S;

b) there exists a neighbourhood U ⊆ Sn of S and c > 0 such that

∆Km ≥ c on U ;

c) Km −→ K0 in C3(Sn), where K0 is a positive monotone non-decreasing function in yn+1, affine
and non-constant in yn+1 outside of a small neighbourhood of S.
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4.1 Uniform bounds away from the poles

We consider the sequence (Km)m given by Proposition 4.1 and a sequence of positive solutions to

LgSnum = Kmu
n+2
n−2
m on (Sn, gSn). (4.1)

Even without assuming uniform energy bounds as in Theorem 3, we aim to prove that (um)m stays
uniformly bounded on compact sets of Sn \ {N}.

By construction, see the first and final steps in the proof of Proposition 4.1, the only critical points of
K0 are N and a compact set KU ⊆ U , where the Laplacian is positive and bounded away from zero. By
Corollary 1.4 in [24] or Theorem 2 in [30] the sequence (um)m is uniformly bounded in L∞ on compact
sets of

Sn \ {N ∪KU},

since |∇Km| is bounded away from zero here, hence we only need to focus on KU .
For doing this, we cannot directly use known results in the literature due to the degenerating behaviour

of (Km)m. However, the proof can be obtained combining the preliminary results in Subsection 2.3. It
will be harder to understand the blow-up behaviour near the north pole N. Before proceeding recall
Definition 2.1.

Lemma 4.1. Suppose (um)m solves (4.1). Then the blow-up points in U are isolated simple.

Proof. The proof uses also some argument in Section 8 of [45], but we have here variable curvature. For
0 < δ ≪ 0 and R≫ 1 let ξ1,m, . . . ξN(um),m be the points given by Proposition 2.1. As (um)m is uniformly
bounded away from {N} ∪KU , all ξi,m will lie in a neighbourhood of {N} ∪KU . Let us denote by

ξ1,m, . . . , ξNm,m with Nm ≤ N(um)

the points contained in a neighbourhood of KU .

We may assume that with cn as in (1.1) and in πN coordinates um solves

− cn∆um = Kmu
n+2
n−2
m in B1(0), (4.2)

where and we identify Km with Km ◦ π−
N

. For any m we choose i 6= j such that

|ξi,m − ξj,m| = min{|ξk,m − ξl,m| : k, l ∈ {1, . . .Nm}, k 6= l}. (4.3)

We let ξm = ξi,m, sm = 1
2 |ξi,m − ξj,m| and consider

ζm(x) = s
n−2
2

m um (smx+ ξm) . (4.4)

By definition of sm and (iii) in Proposition 2.1 the sequence (ζm)m has an isolated blow-up at zero. We
will prove next that this blow-up is indeed also isolated simple.

First, using the classification result in [15], it is standard to show that there exists Rm −→ ∞
sufficiently slowly such that

∥

∥

∥

∥

ζm(0)−1ζm

(

ζm(0)−
2

n−2 ·
)

−
(

1 + km| · |2
)

2−n
2

∥

∥

∥

∥

C2(BRm (ξm))

−→ 0, (4.5)

where km = 1
n(n−2)cn

Km(ξm), cf. Proposition 2.1 in [39].
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Assuming by contradiction that the blow-up of ζm at 0 is not isolated simple, let wm be as in (2.16)

replacing um by ζm. By (4.5) then wm has a first critical point for r of order ζm(0)−
2

n−2 and, if the
blow-up of ζm is not isolated simple,

s̃m = inf{s > Rmζm(0)−
2

n−2 : w′
m(s) = 0}

is well defined and s̃m ≪ 1. If we let ζ̃m(x) = s̃
n−2
2

m ζm (s̃mx), then ζ̃m satisfies

− cn∆ζ̃m = K̃m(x)ζ̃
n+2
n−2
m ; K̃m(x) = Km(ξm + ŝmx), ŝm = sms̃m, (4.6)

and has an isolated blow-up at zero. From Lemma 2.2 we deduce

ζ̃m(0)ζ̃m(x) −→ a|x|2−n + h(x) ≥ 0 in C2
loc(R

n \ {0}),

where h is harmonic on R
n and a > 0. By the first observation after Lemma 2.2 the function h must be

constant, and passing to the limit for the condition w′
m(s̃m) = 0 one finds that h ≡ a > 0, as for (3.4) in

[39].
From Lemma 2.2 and, since ζ̃m has an isolated simple blow-up, it follows that

ζ̃m(x) ≤ Cζ̃m(0)−1|x|2−n for |x| ∈ [Rmζ̃m(0)−
2

n−2 , 1]. (4.7)

For δ > 0 fixed, we now let Bδ := Bδ(0), and for all i = 1, . . . , n we clearly have

1

2∗

∫

Bδ

∂K̃m

∂xi
ζ̃2

∗

m dx =
1

2∗

∫

Bδ

∂K̃m

∂xi
(0)ζ̃2

∗

m dx

+
1

2∗

∫

Bδ

(

∂K̃m

∂xi
−
∂K̃m

∂xi
(0)

)

ζ̃2
∗

m dx.

(4.8)

By the uniform C3-bounds on (Km), see Proposition 4.1, the convergence in (4.5), the upper bound in
(4.7), a cancellation by oddness and a change of variables we find that the last term in (4.8) is of order

o(ŝmζ̃m(0)−
2

n−2 ), so

1

2∗

∫

Bδ

∂K̃m

∂xi
(0)ζ̃2

∗

m dx =
1

2∗

∫

Bδ

∂K̃m

∂xi
ζ̃2

∗

m dx + o(ŝmζ̃m(0)−
2

n−2 ).

By elliptic regularity theory the upper bound (4.7) implies

|∇ζ̃m(x)| ≤ Cζ̃m(0)−1 on ∂Bδ.

Therefore, from (2.14) we deduce

1

2∗

∫

Bδ

∂K̃m

∂xi
ζ̃2

∗

m dx =

∮

∂Bδ

O(ζ̃2
∗

m + |∇ζ̃m|2)dσ = Oδ(ζ̃m(0)−2).

It follows from the last two formulas that

∂K̃m

∂xi
(0) = Oδ(ζ̃m(0)−2) + o(ŝmζ̃m(0)−

2
n−2 ). (4.9)

We next rewrite (2.12) for ζ̃m as

1

2∗

∫

Bδ

∑

i

xi
∂K̃m

∂xi
(0)ζ̃2

∗

m dx+
1

2∗

∫

Bδ

∑

i

xi

(

∂K̃m

∂xi
−
∂K̃m

∂xi
(0)

)

ζ̃2
∗

m dx

−
1

2 · 2∗

∮

∂Bδ

K̃mζ̃
2∗

m dσ = cn

∮

∂Bδ

B(1/2, x, ζ̃m,∇ζ̃m)dσ.

(4.10)
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Using the same reasoning as after (4.8), one finds that
∫

Bδ

xiζ̃
2∗

m dx = o(ζ̃m(0)−
2

n−2 ).

From these formulas and (4.9) we then deduce that

∫

Bδ

∑

i

xi
∂K̃m

∂xi
(0)ζ̃2

∗

m dx = oδ(ζ̃m(0)−
2(n−1)
n−2 ) + o(ŝmζ̃m(0)−

4
n−2 ). (4.11)

Still using the uniform C3-bounds on (Km), the convergence in (4.5), the upper bound in (4.8) and a
change of variables we find that with some ln > 0

∫

Bδ

∑

i

xi

(

∂K̃m

∂xi
−
∂K̃m

∂xi
(0)

)

ζ̃2
∗

m dx = lnŝm(∆Km(ξm) + om(1))ζ̃m(0)−
4

n−2 . (4.12)

Moreover, since ζ̃m(x) ≤ Cζ̃m(0)−1|x|2−n on ∂Bδ, we have

1

2 · 2∗

∮

∂Bδ

K̃mζ̃
2∗

m dσ = Oδ(ζ̃m(0)−2∗),

so recalling (2.19) we get from (4.10) and the latter estimates that, for δ small

ln
2∗
ŝm(∆Km(ξm) + om(1))ζ̃m(0)−

4
n−2

+
(n− 2)2

2
h(0)ωn

cn + om(1)

ζ̃m(0)2
= oδ(ζ̃m(0)−

2(n−1)
n−2 ),

a contradiction to h(0) = a > 0 and the fact that ∆Km(ξm) is positively bounded away from zero. We
hence proved that ζm has an isolated simple blow-up at zero.

The exactly same strategy, but using the second observation after Lemma 2.2, then shows

2sm = |ξi,m − ξj,m| 6→ 0 as m −→ ∞, (4.13)

as for Section 8 in [45], proving that the blow-ups of um in U are isolated. Repeating once more the
argument used above for ζ̃m shows that the blow-ups of um in U are indeed also isolated simple, which
is the desired result.

Proposition 4.2. For (Km)m given by Proposition 4.1 let um solve (4.1) with n ≥ 5. Then (um)m is
uniformly bounded on the compact sets of Sn \ {N}.

Proof. Using the notation in the previous proof, it is sufficient to prove that no blow-up occurs at points
in KU . We know by Lemma 4.1 that such blow-ups would be isolated simple and therefore they could be
at most finitely-many. Let ξm −→ ξU be a blow-up point in KU . Then by Lemma 2.2 and the Harnack
inequality we find that in πN coordinates

um(ξm)um(x+ ξm) −→ a|x|2−n + h(x) in C2
loc(R

n \ S),

where S is a finite set, a > 0 and h harmonic near 0 ∈ S. Moreover h(0) ≥ 0, see the comments after
Lemma 2.2. By Lemma 2.2 there exists some fixed r > 0 so that the upper bound (2.18) holds on
∂Br/2(0). Hence and by (2.19) we obtain

r

2

∮

∂Br/2(ξm)

Kmu
2∗

m dσ =
O(1)

um(ξm)2∗
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and
∮

∂Br/2(ξm)

B(r/2, x, um,∇um)dσ ≤
om(1)

um(ξm)2
.

Moreover, reasoning as for (4.11) and (4.12), but on a ball of fixed radius, we find that for some ln > 0

∫

Br/2(ξm)

∑

i

xi
∂Km

∂xi
u2

∗

m dx =
ln∆Km(ξm) + om(1)

um(ξm)
4

n−2

,

which immediately leads to a contradiction to (2.12), since n ≥ 5 and

∆Km(ξm) ≥ c/2 > 0.

This concludes the proof.

4.2 Conclusion

Here we prove our non-existence result, Theorem 2, showing that sequences of solutions to (4.1) can
neither have a non-zero limit nor develop blow-ups, which is impossible.

Lemma 4.2. Let K0 be a monotone function as in Proposition 4.1. Then neither

LgSnu = K0u
n+2
n−2 on Sn, (4.14)

nor
LgSnu = K0u

n+2
n−2 on Sn \ {N} (4.15)

admits positive solutions.

Proof. Non existence for (4.14) simply follows from the Kazdan-Warner obstruction. Arguing by con-
tradiction for (4.15), we obtain in πS coordinates and by conformal invariance of the equation a positive
solution u of the problem

− cn∆u = K0u
n+2
n−2 in R

n \ {0}, (4.16)

where we are identifying K0 with K0 ◦ π−1
S

, which is radially non-increasing and somewhere strictly
decreasing. Since the solution of (4.15) is smooth near S, the solution u of (4.16) satisfies

u(x) ≤ C|x|2−n and |∇u(x)| ≤ C|x|1−n for |x| −→ ∞ (4.17)

for some positive and fixed constant C. Let us write the Pohozaev identity in the complement of a ball,
i.e. on

Aε := R
n \Bε(0).

By (4.17) no boundary terms at infinity are involved, whence

1

2∗

∫

Aε

u2
∗
∑

i

xi
∂K0

∂xi
dx =

1

2∗

∮

∂Aε

〈x, ν〉K0u
2∗dσ + cn

∮

∂Aε

B(ε, x, u,∇u) dσ, (4.18)

see (2.12) and the subsequent formula. By Theorem 1.1 in [67]

∃ C > 0 : u(x) ≤ C|x|
2−n
2 as 0 6= x −→ 0. (4.19)

We now consider two cases.

Case 1. There exists C > 0 such that

C−1|x|
2−n
2 ≤ u(x) as 0 6= x −→ 0.
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In this case there exists by Theorem 1 in [65] a singular, radial Fowler’s solution

−∆u0 = κu
n+2
n−2

0 in R
n \ {0} with κ = c−1

n K0(N)

with negative Hamiltonian energy, cf. Subsection 2.4, such that

u(x) = (1 +O(|x|2))u0(x).

Since the unit normal to Aε points toward the origin, the right-hand side of (4.18) is by Lemma 2.3
positive for ε sufficiently small. On the other hand the left-hand side of (4.18) is negative by radial
monotonicity of K0 ◦ π−1 and positivity of u, so we reach a contradiction.

Case 2. Suppose there exists xm −→ 0 such that

u(xm) = om(1)|xm|
2−n
2 . (4.20)

The upper bound in (4.19) yields a Harnack inequality for u on annuli of the type B2s(0) \ Bs/2(0), cf.
the proof of Lemma 2.1 in [39]. Thus by elliptic regularity theory there exists εm ց 0 such that for
x ∈ B2εm(0) \Bεm/2(0)

u(x) = om(1)|εm|
2−n
2 and |∇u(x)| = om(1)|εm|−

n
2 .

This and (2.12) imply that for such an (εm)m

1

2∗

∮

∂Aεm

〈x, ν〉K0(x)u
2∗dσ + cn

∮

∂Aεm

B(εm, x, u,∇u) dσ −→ 0,

contradicting (4.18) as in the previous case.

As an immediate consequence of Proposition 4.2 and Lemma 4.2 we obtain the following result.

Proposition 4.3. For (Km)m as in Proposition 4.1 let um > 0 solve (4.1) with n ≥ 5. Then (um)m
converges to zero in C2

loc
(Sn \ {N}).

We next analyse also the case of zero-limit in C2
loc

(Sn \{N}), showing that a non-zero one can be obtained
after a proper dilation.

Lemma 4.3. Let (um)m be as in Proposition 4.3. Then, writing (4.1) in πS coordinates, i.e.

−∆um = Kmu
n+2
n−2
m in R

n, (4.21)

there is near the north pole N a blow-down (vm)m of (um)m of the form

vm(x) = µ
n−2
2

m um(µmx) with µm −→ 0, (4.22)

such that up to a subsequence (vm)m has a non zero limit in C2
loc

(Rn \ {0}).

Proof. We blow-up the metric gSn conformally near N in order to obtain a metric

g̃ = ũ
4

n−2 gSn with ũ ≃ |x|
2−n
2 near x = 0

in the above coordinates and with a cylindrical end and bounded geometry. If

ũm = ũ−1um,
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then by (1.2) ũm satisfies

Lg̃ũm = Kmũ
n+2
n−2
m on (Sn \ {N}, g̃).

By (1.7) in [25] we have um(x) ≤ C|x|
2−n

2 , whence (ũm)m is uniformly bounded. Note that the dilation in

(4.22) corresponds to a translation along the cylindrical end in the metric g̃ and yields vm(x) ≤ C|x|
2−n

2 .
Using the assumption on the zero-limit in C2

loc
of um on Sn \ {N}, elliptic regularity theory and the

uniform bound on ũm, and arguing by contradiction

vm −→ 0 in C2
loc(R

n \ {0}) for every choice of µm ց 0

would imply ũm −→ 0 uniformly on Sn \ {N}. We then use elliptic estimates for

−4
n− 1

n− 2
∆g̃ũm +Rg̃ũm = Kmũ

n+2
n−2
m on (Sn \ {N}, g̃)

to show, that for x in the cylindrical end of (Sn \ {N}, g̃), where Rg̃ is positive,

‖ũm‖L∞(B1(x)) ≤ C‖ũm‖
n+2
n−2

L∞(B1(x))
.

Here the metric ball around x is taken with respect to g̃. Since the latter norm tends to zero for m −→ ∞,
ũm must be identically zero for m large near the cylindrical end, contradicting the positivity of um.

We next perform a blow-down as in Lemma 4.3 at slowest possible rate, i.e. working in πS coordinates
we can choose, e.g. with a concentration-compactness argument, µ̄m ց 0 with the properties

1. v̄m(x) = µ̄
n−2
2

m um(µ̄mx) converges in C2
loc

(Rn \ {0}) to a non-zero limit;

2. if µ̂m

µ̄m
−→ 0, then µ̂

n−2
2

m um(µ̂mx) converges to zero in C2
loc

(Rn \ {0}).

Lemma 4.4. Up to a subsequence (v̄m)m converges in C2
loc

(Rn \ {0}) to a regular bubble.

Proof. If v0 is the limit of v̄m in C2
loc

(Rn \ {0}), it satisfies

−∆v0 = κ v
n+2
n−2

0 in R
n \ {0}, where κ = c−1

n K0(N).

Due to the classification result in Corollary 8.2 of [15] we need to prove that v0 has a removable singularity
near zero. Assume by contradiction that v0 is singular there. Then v0 must be radially symmetric by
Theorem 8.1 in [15]. Singular radial solutions are classified as described in Subsection 2.4 as Fowler’s
solutions and by positivity of vH for any such solution there exists c > 0 such that

v0 ≥
c

|x|
n−2

2

.

Hence we proved that in case of a singular limit v0,

v̄m −→ v0 in C2
loc(R

n \ {0}) and v0(x) ≥
c

|x|
n−2
2

,

which would violate the above condition (ii) on µ̄m. This concludes the proof.

Lemma 4.5. If (v̄m)m is as above, then there exists C > 0 such that

um(x) ≤ Cµ̄
n−2
2

m dSn(x, N)2−n for dSn(x, N) ≥ µ̄m.
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The lemma is proved in the appendix. We next consider a Kelvin inversion around a sphere of radius
µ̌m −→ 0 with µ̌m

µ̄m
−→ 0. In πS stereographic coordinates this corresponds to the map

x 7→
µ̌2
mx

|x|2
.

Letting

ǔm(x) =
µ̌n−2
m

|x|n−2
um

(

µ̌2
mx

|x|2

)

, (4.23)

we obtain from (4.21) a sequence of functions ǔm satisfying

− cn∆ǔm = Ǩmǔ
n+2
n−2
m in B1(0), where Ǩm(x) = Km

(

µ̌2
mx

|x|2

)

. (4.24)

As the functions Ǩm are highly oscillating near x = 0, we lose uniform Lipschitz bounds compared
to (Km)m. More precisely, let K̊m denote the functions Km reflected with respect to the hyperplane
{yn+1 = 0} in R

n+1. By direct calculation Ǩm(x) = K̊m(µ̌−2
m x) for x ∈ B1(0), where we are indentifying

K̊m with K̊m ◦ π−
S

as before. This implies

|∇Ǩm(x)| ≤
C

µ̌2
m

for x ∈ B1(0). (4.25)

However, since
K0(x) = κ− (κ0 + om(1))|x|2 +O(|x|3) for |x| ≤ δ

and some κ0 > 0 by (c) of Proposition 4.1, we have

Ǩm(x) = κ− κ0(1 + om(1))
µ̌4
m

|x|2
+O(µ̌6

m|x|−3) for |x| ≥
µ̌2
m

δ
. (4.26)

Let U0 be as in (2.8) and define

Ua,λ(x) = λ
n−2

2 U0(λ(x − a))

for a ∈ R
n and λ > 0. By Lemma 4.4 then um is on a proper annulus centred at x = 0 close in W 1,2 to

a multiple, which depends on K0(N), of Uam,λm with λm ≃ µ̄−1
m . As

um(x) ≤ C|x|
2−n
2

by (1.7) in [25], we find that λm|am| is uniformly bounded. By direct computation the inversion in (4.23)
sends Uam,λm into Uǎm,λ̌m

, where

ǎm = λ2mµ̌
2
m

am
1 + λ2m|am|2

and λ̌m =
1 + λ2m|am|2

λmµ̌2
m

.

Note, that λ̌m|ǎm| is uniformly bounded, as λm|am| is. Hence

∃ ym −→ 0 : ǔm(ym) ≃

(

µ̌2
m

µ̄m

)

2−n
2

−→ ∞

and ǔm develops a bubble at a scale
µ̌2
m

µ̄m
−→ 0.
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Since the Kelvin inversion and the above bound on um yield the condition

ǔm(x) ≤ C|x|
2−n

2 ,

x = 0 is the only blow-up point for (ǔm)m. Moreover by Lemma 4.5 we also deduce

max ǔm ≃

(

µ̌2
m

µ̄m

)

2−n
2

.

Note that from the regular bubbling profile, cf. Lemma 4.4, the radial average

¯̌wm(r) = r
n−2

2

∫

∂Br(xm)

ǔmdσ

has a unique critical point for r of order
µ̌2
m

µ̄m
, see (2.16). If there is another critical point at some řm −→ 0,

it must be řm ≫ µ̌2
m

µ̄m
. Therefore we can choose µ̌m so that ¯̌wm has a unique critical point in

[

µ̌2
m

µ̄m
, 1
]

.

Despite the oscillations of the Ǩm’s we have the following result, also proven in the appendix.

Lemma 4.6. Suppose that µ̌m ≪ µ̄m is chosen so that ¯̌wm has a unique critical point in
[

µ̌2
m

µ̄m
, 1
]

. Then

the same conclusions of Lemma 2.2 hold true.

We can finally prove our non-existence result, yielding also Theorem 2.

Theorem 7. Suppose that (Km)m is as in Proposition 4.1. Then for m large problem (4.1) has no
positive solutions.

Proof. Assume by contradiction that (4.1) possesses positive solutions for all m. We saw in Proposition
4.2 that (um)m is uniformly bounded on Sn \ {N}, so up to a subsequence we have that

um −→ u0 in C2
loc

(Sn \ {N}),

where u0 solves

LgSnu0 = K0 u
n+2
n−2

0 on Sn \ {N} with K0 = lim
m
Km.

By Lemma 4.2, u0 can be neither a regular nor a positive singular solution. Therefore we must have
u0 ≡ 0 and can hence apply Lemmas 4.3 and 4.4, letting µ̄m as in Lemma 4.4.

Working in πS coordinates and choosing µ̌m properly, ǔm defined in (4.23) satisfies the assumptions
of Lemma 4.6. Therefore we have for (ǔm)m the conclusion of Lemma 2.2. Let as before ym be a global
maximum of ǔm. As remarked after Lemma 2.2, we have that

ǔm(ym)ǔm −→ a|x|2−n + h(y) in C2
loc

(Rn \ {0}),

where a > 0 and h ≥ 0 is identically constant. From this and (2.19) we find

∮

∂B1

Ǩmǔ
2∗

m dσ = o

(

µ̌2
m

µ̄m

)2

and

∮

∂B1

B(ρ, x, ǔm,∇ǔm)dσ = o

(

µ̌2
m

µ̄m

)2

. (4.27)

Letting now δ as in (4.26), from Lemma 4.5 we find

ǔm ≤ C

(

µ̌2
m

µ̄m

)

2−n
2

for |x| ≤
µ̌2
m

δ
.
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Hence by (4.25), (4.26) and, as µ̌m develops a bubble at scale
µ̌2
m

µ̄m
,

∫

B µ̌2
m
δ

∑

i

xi
∂Ǩm

∂xi
ǔ2

∗

m dx = O(µ̄n
m) and

∫

B1\B µ̌2
m
δ

∑

i

xi
∂Ǩm

∂xi
ǔ2

∗

mdx ≥ cµ̄2
m,

where c > 0, cf. the discussion after (4.26). From this we deduce

∫

B1

∑

i

xi
∂Ǩm

∂xi
ǔ2

∗

mdx ≥ cµ̄2
m,

yielding a contradiction together with (2.12), (4.27) and µ̌m

µ̄m
−→ 0.

Remark 4.1. In [63] a non-existence result was proved on S2 for curvature functions that are not
monotone with respect to any Euclidean coordinate in R

3 restricted to the unit sphere. Such functions have
two maxima and one saddle point close to the north pole and in addition one non-degenerate minimum
near the south pole, hence they are reversed compared to the ones considered in this section.

The proof of the above result in [63] relies on showing that solutions would be close to a single bubble: in
this way the left-hand side in (1.4) can be made quantitatively non-zero (depending on the concentration
rate of the bubble), even if the integrand changes sign.

Consider now a sequence K̆m of curvatures that converge in C3 to a forbidden function on S3 or on
S4, monotone and non-decreasing in the last Euclidean variable. One could then use the analysis in [19]
and in [40] in dimensions three and four respectively to show that blow-ups are isolated and simple near
the north pole, reaching then a contradiction to existence via the identity (2.12).

Applying this reasoning to arbitrarily pinched functions as in [63] having more than one critical point
with negative Laplacian, one sees that the dimensional assumption in (ii) of Theorem 1 is indeed sharp.

5 Appendix

Here we collect the proofs of a proposition and two technical lemmas from the previous sections.

Proof of Proposition 4.1. We illustrate the construction dividing it into seven steps.

Step 1. Near the south pole S we can use πN coordinates {y1, . . . , yn}, i.e. coordinates induced by the
stereographic projection from the north pole N mapping S to 0 ∈ R

n. For δ0 > 0 and ε0 > 0 small consider
a function K satisfying











K = ε0
8n4 y

2
n for yn+1 ≤ −1 + δ0;

K = ε0(1 + yn+1) for yn+1 ≥ −1 + 2δ0;

〈∇K,∇yn+1〉 ≥ 0 on Sn \ {N, S}.

We can also assume that

{∇K = 0} ∩ {yn+1 ≤ −1 + 2δ0} ⊆ {yn+1 ≤ −1 + δ0}.

The above function can be chosen so that its Laplacian with respect to the y-coordinates is bounded
away from zero in the set

{yn+1 ≥ −1 + 2δ0}.

If ϕπN
is the conformal factor of t πN , i.e. gSn = ϕπdy

2, then

∆gSnK = ϕ−1
π ∆gRnK +O(|∇ϕπ | |∇K|).
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As a consequence K satisfies

∆gSnK ≥ c > 0 on U := {yn+1 < −1 + 2δ0}.

Step 2. We consider next a Morse function K̃ with prescribed numbers of critical points with fixed
indices and only one local maximum, which we can assume to coincide with N. We compose K̃ on the
right with a Möbius map Φ preserving N so that all other critical points {p1, . . . , pl} of K̃ ◦ Φ lie in the
set {yn+1 ≤ −1 + 1

4δ0}, where δ0 is as in the previous step. The composition with the map Φ does not

affect the Morse structure of the function K̃.

Step 3. For δ0 small the coordinates of the points pi, which we still denote by pi, are of the form

pi = (p′i, p
n
i ) with p′i ∈ R

n−1, pni ∈ R and (p′i, p
n
i ) ∈ B

δ
1
4
0

(0) ⊆ R
n.

By a proper rotation around 0 ∈ R
n we may assume that p′i 6= p′j ∈ R

n−1 for i 6= j.

Step 4. Since K̃ ◦ Φ is Morse, there exists a rotation Ri ∈ SO(n) and a diagonal non-singular matrix
Ai such that near pi

(K̃ ◦ Φ)(y) = 〈Ri(y − pi), AiRi(y − pi)〉+O(|y − pi|
3).

Without affecting the Morse structure of K̃ we can modify it so that one has exactly

(K̃ ◦ Φ)(y) = 〈Ri[y − pi], AiRi[y − pi]〉 for |y − pi| ≤ δ1

for some δ1 ≪ δ0. Since no pi is a local maximum, we can also assume that the last diagonal entry of Ai

is positive.

Step 5. We next consider a smooth curve γi : [0, 1] −→ SO(n) such that

γi(0) = Idn and γi(1) = Ri,

and then introduce the new function

Θi(y) := 〈γi(f(|y − pi|
2))[y − pi], Ai γi(f(|y − pi|

2))[y − pi]〉 for |y − pi| ≤ δ1,

where f is zero in a neighbourhood of zero and equal to 1 in a neighbourhood of δ21 . We claim that pi is
the only critical point of this function in Bδ1(pi). In fact consider a curve in R

n of the type

Yt := pi + t(γi(f(t
2)))−1Y with Y ∈ R

n, |Y | = 1 and for t ∈ [0, δ1].

Then clearly Θi(Yt) = t2〈Y,AY 〉, so whenever 〈Y,AY 〉 6= 0 the gradient of Θi is non-zero for t 6= 0. If
instead 〈Y,AY 〉 = 0, one can always consider a trajectory Ys in the unit sphere such that

d

ds
⌊s=0〈Ys, A Ys〉 6= 0.

If Yt is as in the previous formula, consider the curve Yt(s) replacing Y with Y (s). Then its s-derivative
is a non-critical direction for Θi. In this way we have proved

∃ 0 < δ2 ≪ δ1 : Θi(y) = 〈y − pi, Ai [y − pi]〉 for |y − pi| ≤ δ2

with diagonal Ai and (Ai)nn > 0. Replacing K̃ ◦ Φ with Θi near each pi, no further critical point is
created and the Morse structure preserved.
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Step 6. Recall that we rotated the coordinates so that the first n− 1 components of the points pi, i.e.
p′1, . . . , p

′
l ∈ R

n−1 are all distinct. There exists then

∃ 0 < δ3 ≪ δ2 ∀ i 6= j : |p′i − p′j | ≥ 4δ3

We choose next a cut-off function G such that
{

G = pni in Bδ3(pi)

G = 0 in R
n−1 \ ∪l

i=1B2δ3(pi).

Calling Θ the function obtained from replacing K̃ ◦ Φ by Θi near pi, we let

Θ̃(y′, yn) = Θ(y′, yn + G(y′)).

Then the only critical points of Θ̃ are precisely (p′1, 0), . . . , (p
′
l, 0). In fact these are critical points by

construction and moreover
{

∇y′Θ̃(y′, yn) = ∇y′Θ(y′, yn + G(y′))− ∂ynΘ(y′, yn + G(y′))∇y′G(y′);

∂ynΘ̃(y′, yn) = ∂ynΘ(y′, yn + G(y′)).

This implies that ∇Θ̃(y′, yn) = 0 if and only if ∇Θ(y′, yn + G(y′)) = 0, which is the desired claim.

Final step. Let us call K̂ the function obtained from K̃ following the previous steps and consider a
sequence of Möbius maps Φm fixing N and and sending every other point to S as m −→ ∞. Given a
Morse function K̃ as in the statement of the proposition, we apply the previous steps 3-6. For ε0 small
and fixed and εm ց 0 we then consider a function Km of the form (K̂ = K̂m)

Km = 1 + ε0K + εmK̂m.

Using the fact that K ≡ 0 for yn = 0 and |y| small, one can check that all critical points of Km are either
at N as the global maximum or converge to S with

Mj(Km) = Mj(K̃) for all j

If εm ց 0 sufficiently fast, then Km satisfies the desired properties with

K0 = 1 + ε0K.

Proof of Lemma 4.5. We are going to prove the statement using comparison principles on a suitable subset
of the sphere. First let GN denote the Green’s function of LgSn with pole at N ( GN(x) ≃ dSn(x, N)2−n

near N ), let α ∈ (0, 1) and δ > 0. By direct computation we have that

(LgSn − δdSn(x, N)−2)(GN)
α =

[

(1− α)RgSn − δdSn(x, N)−2
]

(GN)
α

+ cnα(1 − α)(GN)
α−2|∇GN|

2.
(5.1)

Fixing first α ∈ (0, 1) and then δ > 0 sufficiently small, the right-hand side of (5.1) is positive. Moreover
by definition of µ̄m and, since (Km)m is uniformly bounded,

∃ C = Cδ > 0 : Km(x)um(x)
4

n−2 ≤ δdSn(x, N)−2 for dSn(x, N) ≥ Cµ̄m. (5.2)
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In fact, if this inequality were false, from the convergence of v̄m and the upper bound in (4.19) we could
obtain a non-zero limit in C2

loc
(Rn \ {0}) for a sequence of the form

µ̂
n−2
2

m um (̄̂µmx) with µ̂m ≪ µ̄m,

violating property (ii) before Lemma 4.4. Hence (5.2) is proved, whence from (4.1)

{

(LgSn − δdSn(x, N)−2)um ≤ 0 in {dSn(x, N) ≥ Cµ̄m};

um ≤ δ(Cµ̄m)
2−n
2 on {dSn(x, N) = Cµ̄m},

while GN by (5.1) is a super-solution of the latter problem on {dSn(x, N) ≥ Cµ̄m}. By Hardy-Sobolev’s
inequality [16] and domain monotonicity the quadratic form

∫

dSn(x,N)≥Cµ̄m

v(LgSn v − δdSn(x, N)−2v)dµgSn

is for δ small uniformly positive definite on functions vanishing at the boundary of the corresponding
spherical cap. As a consequence we have a positive first Dirichlet eigenvalue of

LgSn − δdSn(x, N)−2 on {dSn(x, N) ≥ Cµ̄m}

and this operator satisfies the maximum principle, cf. [57], §5.2, Theorem 10. Thus

um ≤ (Cµ̄m)
2−n
2

(

GN⌊∂BCµ̄m (N)

)−α
Gα

N
≤ (Cµ̄m)

2−n
2

(

µ̄m

dSn(x, N)

)α(n−2)

on
{dSn(x, N) ≥ Cµ̄m}.

Note that GN is axially symmetric around N, i.e. GN⌊∂BCµ̄m (N). Hence from (4.1)







LgSnum ≤ Cµ̄
2−n
2

m

(

µ̄m

dSn(x,N)

)α(n+2)

in {dSn(x, N) ≥ Cµ̄m};

um ≤ δ(Cµ̄m)
2−n
2 on {dSn(x, N) = Cµ̄m}.

(5.3)

We set ψ(GN) = Λ + β(GN)
γ with Λ, β > 0 and γ > 1. By direct computation we find

LgSn (ψ(GN)) = ΛRgSn + β(γ − 1)Gγ
N

[

cnγ
|∇GN|2

G2
N

−RgSn

]

. (5.4)

For α < 1 but close to 1, we choose γ to satisfy

(n− 2)γ = α(n+ 2)− 2.

Near N then

Gγ
N

|∇GN|
2

G2
N

∼ dSn(x, N)−α(n+2),

as is the right-hand side of the first inequality in (5.3), while Gγ
N
RgSn is of lower order. Choosing β to

satisfy

βµ̄−α(n+2)
m = C̄µ̄

2−n
2

m with C̄ ≫ C large fixed,

near N the right-hand side in (5.4) dominates the one in (5.3). Choosing in addition

β ≪ Λ ≪ µ
n−2
2 ,
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which is possible by the above choice of β, then we obtain the properties











Λ + β(GN)
γ ≤ Cµ̄

n−2
2

m dSn(x, N)2−n in {dSn(x, N) ≥ Cµ̄m};

LgSn (Λ + β(GN)
γ) ≥ LgSnum in {dSn(x, N) ≥ Cµ̄m};

um ≤ Λ + β(GN)
γ on {dSn(x, N) = Cµ̄m}.

Then the conclusion follows from the maximum principle.

Proof of Lemma 4.6. We follow the proof of Proposition 2.3 in [39], which relies on Proposition 2.1,
Lemma 2.1, Lemma 2.3 and Lemma 2.3 there. The crucial point here is that uniform gradient bounds on
Ǩm fail, so we cannot directly extract a bubble from the maximum point of ǔm. We can however exploit
the estimate in Lemma 4.5 instead. Apart from some modifications that we will describe in detail, the
arguments there can be carried out even without gradient bounds.

Similarly to [39] consider a maximum point ym of ǔm, a unit vector e ∈ R
n and

v̌m(y) = ǔm(ym + e)−1ǔm(y).

As in there we prove that v̌m converges in C2
loc

(B1 \ {0}) to a singular function

v̌(y) = a|y|2−n + h(y)

with a > 0 and h smooth and harmonic. The next step consists in showing that

ǔm(ym + e) ≤ Cǔm(ym)−1 (5.5)

for some fixed C > 0. If this is not true, then we have

lim sup
m

ǔm(ym)ǔm(ym + e) −→ ∞. (5.6)

Multiplying (4.24) by ǔm(ym + e)−1 one finds after integration

−

∮

∂B1

∂

∂ν
v̌mdσ =− ǔm(ym + e)−1

∫

B1

∆ǔmdx

=
1

cn
ǔm(ym + e)−1

∫

B1

Ǩmǔ
n+2
n−2
m dx.

From the fact that h is harmonic and that a > 0 we get that

lim
m

∮

∂B1

∂

∂ν
v̌mdσ =

∮

∂B1

∂

∂ν

(

a|y|2−n + h(y)
)

dσ < 0.

For Rm −→ ∞ sufficiently slowly set

rm = Rmǔm(ym)−
2

n−2 .

Then by Lemma 4.5 and a change of variables

∫

|y−ym|≤rm

Ǩmǔ
n+2
n−2
m dx ≤ Cǔm(ym)−1.

As for Lemma 2.2 in [39], which is based on local estimates in the annulus

rm ≤ |y − ym| ≤ 1
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only, it is possible to prove that

ǔm(y) ≤ Cǔm(ym)−λ̌m |y − ym|2−n+δm for rm ≤ |y − ym| ≤ 1,

where δm = O(R
−2+om(1)
m ) and λ̌m = 2(n−2−δm)

n−2 − 1. This implies

∫

rm≤|y−ym|≤1

Ǩmǔ
n+2
n−2
m dx ≤ CR

n− n+2
n−2 (n−2−δm)

m ǔm(ym)−1 = o(1)ǔm(ym)−1.

The latter formulas would then give a contradiction to (5.6). Hence (5.5) is established and the rest of
the proof of Proposition 2.3 in [39] goes through in our case too.
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