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Abstract

We explore the Mode I fracture toughness of a polymer gel containing a semi-infinite, growing crack. First,
an expression is derived for the energy release rate within the linearized, small-strain setting. This expression
reveals a crack tip velocity-independent toughening that stems from the poroelastic nature of polymer gels.
Then, we establish a poroelastic cohesive zone model that allows us to describe the micromechanics of
fracture in gels by identifying the role of solvent pressure in promoting poroelastic toughening. We evaluate
the enhancement in the effective fracture toughness through asymptotic analysis. We confirm our theoretical
findings by means of numerical simulations concerning the case of a steadily propagating crack. In broad
terms, our results explain the role of poroelasticity and of the processes occurring in the fracturing region
in promoting toughening of polymer gels.
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1. Introduction

Soft biological tissues, such as cartilage, epithelium and muscles, can sustain relatively high levels of
strain, while maintaining their integrity, despite the low intrinsic toughness of the polymeric base materials
(Simha et al., 2004). Since failure to withstand such loads by fracture may lead to loss of functionality and
to the development of clinically adverse conditions, there is a strong biomedical interest in studying the
fracture toughness of such tissues. Hydrogels are commonly considered as proxies for soft biological tissues
and are thus the subject of intense theoretical and experimental investigations. Moreover, hydrogel-based
technological applications in soft electronics (Suo, 2012), shape morphing (Kempaiah and Nie, 2014; Geryak
and Tsukruk, 2014), microfluidics (Harmon et al., 2003; Kim and Beebe, 2007), and in tissue engineering
(Langer, 2006; Khademhosseini and Langer, 2007) further motivate the interest in fundamental studies on the
flaw-tolerance of hydrogels and in seeking toughening mechanisms to improve their mechanical performance.

In synthetic chemical gels, fracture occurs by scission of covalent cross-linking bonds and, as is typical
of brittle materials, it usually proceeds dynamically (Bonn et al., 1998; Livne et al., 2005, 2010). However,
the unstable character of brittle fracture may be radically altered when a brittle, impermeable hydrogel
is hydraulically coupled with a tougher, poroelastic solid (Casares et al., 2015; Lucantonio et al., 2015).
In such a situation, the hydraulic coupling allows for quasi-static crack propagation in the brittle solid
and increases the macroscopic toughness of the composite by promoting multiple cracking (Noselli et al.,
2013). More generally, toughening of hydrogels typically relies on energy dissipation in process zones around
crack tips (Zhao, 2014). Much research currently focuses on the development of experimental protocols for
the synthesis of high-toughness hydrogels, where dissipation mechanisms, such as fracture of a secondary
polymer network (Gong et al., 2003), or ‘unzipping’ of reversible cross-links (Sun et al., 2012), are introduced
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at the material scale. Likewise, a theoretical effort is needed in modeling diverse fracture modes and sources
of toughening in soft materials, starting with the basic, classical fracture mechanics problems.

In this spirit, here we study the propagation of a semi-infinite, parent crack in an infinite polymer gel
that is loaded in Mode I conditions and immersed in a solvent. Previous theoretical works on related
problems have considered stationary (Wang and Hong, 2012; Hui et al., 2013; Bouklas et al., 2015) or
steadily-growing (Atkinson and Craster, 1991; Radi et al., 2002) cracks, without discussing either fracture
propagation criteria, or the effect of poroelastic processes in the near-tip region on the toughness of the
system. Moreover, previous experimental data (Tanaka et al., 2000; Lefranc and Bouchaud, 2014; Zhang
et al., 2015) on fracture of gels have been interpreted by invoking several dissipation sources, such as
viscoelasticity, which have been quantified through phenomenological models.

In this study, we present a detailed energy analysis that reveals the existence of a velocity-independent
toughening, which is innate in the poroelastic nature of polymer gels. We provide an analytical estimate
of such toughening, based on asymptotic solutions of the governing equations for the crack propagation
problem. As a further major result, we establish a poroelastic cohesive zone model that provides a framework
to describe the micromechanics of fracture processes in polymer gels. Finally, we perform a numerical study
of steady-state crack propagation, for which we explore the influence of the cohesive zone material parameters
on the macroscopic toughness of the system.

2. Governing equations for crack propagation in a polymer gel; asymptotic solutions

In this section, we introduce the governing equations for Mode I crack propagation in a polymer gel, and
study the asymptotic behavior of the solution near and far away from the crack tip. Specifically, we consider
a gel consisting of an infinite polymer network immersed in a liquid solvent at chemical potential μo = Ω po,
where Ω and po are the solvent molar volume and its pressure, respectively. The gel is initially swollen with
an amount of solvent that is related to the homogeneous, isotropic swelling stretch λo from the dry state.
Mechanical and chemical equilibrium conditions for the gel in its initial state imply that λo is uniform and
determined by the following equation (Lucantonio et al., 2013; Hong et al., 2008)
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)
+
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λo
= 0 , (1)

where R is the universal gas constant, T is the absolute temperature, Gd is the dry shear modulus of the
polymer network and χ is the dimensionless solvent-polymer mixing parameter. We take a plane domain
B ⊂ R

2 encompassing the swollen gel to be the reference configuration for all deformation of the gel network.
A point in B is identified by the Cartesian coordinates (x1, x2). Latin indices denote components of vectors
and tensors with respect to the basis {ei}, i = 1, 2.

The problem to be tackled is that of a semi-infinite crack that propagates in the gel subject to applied
loads capable of sustaining such crack growth. The applied loads are such that the crack tends to open
with tension on the plane ahead of the crack tip and zero shear stress. The crack is thus in Mode I in the
terminology of fracture mechanics. Deformations from the reference state are confined to plane-strain in
conjunction with the growth of the crack.

As presented in a previous report (Lucantonio and Nardinocchi, 2012), the plane-strain/plane-diffusion
balance equations for the linearized poroelastic model of a polymer gel read

divT = 0 , ε̇ = −Ωdivh , (2)

where T and h are the in-plane components of the increments of stress and solvent flux, respectively, from
the reference configuration, and ε = I ·E is the trace of the small-strain tensor E. Recall that deformations
are measured from the reference state, and thus ε is the incremental volume strain relative to that state. It
is thus proportional to the solvent concentration c, i.e. ε = Ωc, where c defines the change of concentration
relative to its value in the reference configuration, and is thus measured in moles per unit reference volume.
We note that Eq. (2)1 provides the balance of forces in the quasi-static limit and in the absence of body
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forces. As is usual in crack propagation problems, it is convenient to recast the governing equations in
a moving frame (x̂1, x̂2) centered at the crack tip, with (r,θ) the associated polar coordinates. Spatial
derivatives in the fixed and the moving frames are trivially equal and thus we use the same notation for
such differential operators in both frames. In contrast, the following relation holds between the time rates
of ε in the moving and fixed frames

ε′ = ε̇+ v
∂ε

∂x̂1
, (3)

where a prime denotes the time derivative holding (x̂1, x̂2) fixed and v is the crack tip velocity along e1.
Relationships similar to eq. (3) hold for additional fields such as displacement.

The governing equations include constitutive laws. First, for the relationship between the solvent flux
and the driving force for solvent migration, i.e. the gradient of chemical potential μ, we choose Darcy’s
law: h = −M∇μ, where M is the solvent mobility and μ is the incremental chemical potential added to
μo. Then, for the stress-strain relationships we prescribe the following plane strain poroelasticity equations,
valid for a homogeneous, isotropic polymer gel,

T = 2G devE+
(
κε− μ

Ω

)
I , devE = E− ε

3
I , (4)

with the following definitions of the poroelastic moduli (Lucantonio and Nardinocchi, 2012)

G =
Gd

λo
, κ = −G

3
+

RT

Ω

2χ+ (1− 2χ)λ3
o

λ6
o(λ

3
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. (5)

We observe that μ/Ω is the pressure in the solvent and thus the terms in Eq. (4) other than that is the
stress sustained by the polymer network. We also notice that, apart from the definitions Eq. (5), the
governing equations of the linearized model for swelling polymer gels are the same as those of the Biot
theory of poroelasticity (Biot, 1941; Rice and Cleary, 1976) in the presence of incompressible solid and fluid
constituents.

To complete the set of governing equations, we specify the boundary conditions by assuming that the
crack faces are traction-free (Tn = 0, with n the outwards unit normal to the faces) and in chemical
equilibrium with the initial/reference state of the solvent (μ = 0). At infinity, the Mode I stress field is
applied, such that

Tij(r, θ) =
KI√
2πr

cos
θ

2
fij(θ) , (6)

where the stress intensity factor has the value K∞
v and

f11 = 1− sin
θ

2
sin

3θ

2
, f12 = sin

θ

2
cos

3θ

2
, f22 = 1 + sin

θ

2
sin

3θ

2
. (7)

The applied stress intensity factor K∞
v depends, in general, on crack tip velocity and is determined by the

crack propagation criterion, as discussed later in Section 3. Moreover, at infinity the material responds as
an incompressible elastic solid, under the assumption that fluid flow is confined to a small zone surrounding
the crack tip. We call this condition the small-scale process zone hypothesis. Note that for a finite-size gel
specimen, this hypothesis holds as long as the characteristic size of the process zone is much smaller than
the size of the specimen. Since the local volume change, upon taking the trace of Eq. (4), is

ε =
1

κ+G/3

(
1

2
I ·T+

μ

Ω

)
, (8)

the incompressibility assumption ε = 0 for r →∞ implies that the far-field pressure is given by

μ

Ω
(r, θ) = −1

2
I ·T = − K∞

v√
2πr

cos
θ

2
. (9)
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The problem may be formulated using stresses as the primary unknowns; to this aim, we introduce the
Airy stress function φ such that

T11 =
∂2φ

∂x̂2
2

, T22 =
∂2φ

∂x̂2
1

, T12 = − ∂2φ

∂x̂1∂x̂2
, (10)

satisfying the balance of forces Eq. (2)1 identically. In order to be able to find the displacement field by
integration of the strains we impose the plane strain compatibility condition

∂2E11

∂x̂2
2

+
∂2E22

∂x̂2
1

= 2
∂2E12

∂x̂1∂x̂2
, (11)

written in terms of stresses by using Eq. (4) as

ΔΔφ+
6G

4G+ 3κ

Δμ

Ω
= 0 , (12)

with Δ() = ∂2()/∂x̂2
1 + ∂2()/∂x̂2

2, ΔΔ() = ∂4()/∂x̂4
1 + 2∂4()/∂x̂2

1∂x̂
2
2 + ∂4()/∂x̂4

2.
With this, the governing equations of the problem in terms of φ and μ, written in the reference frame

convected with the crack tip, are

ΔΔφ+
6G

4G+ 3κ

Δμ

Ω
= 0 , ε′ − v

∂ε

∂x̂1
= MΩΔμ , (13)

where ε is given by Eq. (8). By expressing Δμ as a function of Δε through Eqs. (13)1 and (8), we may
recast Eq. (13)2 in the form of an advection-diffusion equation

ε′ − v
∂ε

∂x̂1
= DcΔε , (14)

with Dc = MΩ2(4G/3+κ) the cooperative diffusion coefficient (Hui et al., 2013). This equation involves two
length scales:

√
Dct and l = Dc/v. Both lengths characterize, in different regimes and under the small scale

process zone hypothesis, the extent of the process zone, where significant volume changes occur. Specifically,
the length scale

√
Dct is relevant at short times for a stationary crack, whereas l becomes relevant during

crack propagation.

2.1. Asymptotic solutions

The formulation of the governing equations as in (13) and (14) enables insights from asymptotic analysis.
At the crack faces, the solvent pressure must be zero to satisfy the boundary condition on chemical potential.
For r → 0, the stress may freely develop a singularity, whereas we assume a non-singular pressure profile.
The instantaneous relaxation of pore pressure at the crack tip motivates our assumption (Hui et al., 2013),
which is confirmed by numerical results. Thus, the leading order form of the balance equations (13) is

ΔΔφ = 0 , ε′ − v
∂ε

∂x̂1
= MΩΔμ , (15)

where ε is given by the leading order form of Eq. (8)

ε =
1

κ+G/3

1

2
Δφ . (16)

The problem becomes one-way coupled, since we can solve Eq. (15)1 for φ (subject to the traction boundary
conditions on the crack faces), and then recover μ from Eq. (15)2, once ε is known from the stresses through
Eq. (16). First, the asymptotic solution of the compatibility equation (15)1 for r → 0 is the Mode I stress
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field Eq. (6), with KI = Ktip, the stress intensity factor at the crack tip, to be determined by the crack
propagation criterion. Then, from Eq. (16)

ε =
1

κ+G/3

Ktip√
2πr

cos
θ

2
, (17)

so that the rate of change of the dilatational strain is

ε′ − v
∂ε

∂x̂1
=

1

κ+G/3

(
∂Ktip

∂t
+

vKtip

2r

)
1√
2πr

cos
θ

2
. (18)

Inserting this expression into Eq. (15)2 and solving the corresponding problem (Atkinson and Craster, 1991)
for μ, while retaining only the most singular contribution, we have at leading order

μ

Ω
=

(
− v

4MΩ2(κ+G/3)

Ktip√
2π

cos
3θ

2
+K2 cos

θ

2

)√
r , (19)

where K2 depends on the applied stress intensity factor K∞
v at infinity. We note that this result still holds

for a stationary crack, for which the first term in the parenthesis of Eq. (18) must be considered. In a
previous work (Hui et al., 2013), the stationary crack problem has been studied in detail.

10−2 10−1 100 101 102 103 104 105
10−3

10−2

10−1

100

r̃

−p̃

Figure 1: Dimensionless solvent negative pressure −p̃ = −μ√l/(ΩK∞
v ) along the line θ = 0 as a function of the dimensionless

distance r̃ = r/l from the crack tip. Numerical results (solid red curve) obtained with the energy release rate approach (see
Sections 3 and 5 for the derivation of the energy release rate and the details about the numerical solution). The dashed grey
line is the asymptotic behavior ∼ √r predicted theoretically by Eq. (19) near the crack tip. The continuous grey line is the
inverse square-root behavior given by Eq. (9), far away from the crack tip.

For r � l, the gradient of the volume change is negligible, which implies, for the conditions at infinity,
that the response of the material is undrained, i.e. ε = 0. Hence, from Eq. (8),

μ

Ω
= −1

2
Δφ , (20)

so that Eq. (12) reduces to ΔΔφ = 0. Again, the solution of the compatibility equation is the Mode I stress
field Eq. (6), with KI = K∞

v to satisfy the conditions at infinity, from which, by Eq. (20), μ is harmonic
and given explicitly by Eq. (9).

We observe thatK2 in Eq. (19) is such that the term in parenthesis is negative, in order for the asymptotic
solution to match the far-field solution of Eq. (9). With this, by computing the gradient of the solvent
chemical potential from Eq. (19), it may be verified that these terms will induce a circulating flow in which
solvent is pumped from the crack surfaces, injected round towards the region ahead of the crack tip and
dumped into the crack tip (Wang and Hong, 2012). This circulating flow is convected through the gel by
the growth of the crack.
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We confirm this asymptotic analysis by carrying out numerical simulations for the steady-state case of
constant crack tip velocity v, as described later in Section 5. As depicted in Fig. 1, the solvent pressure
decreases as

√
r according to Eq. (19) ahead of the crack tip, reaches a minimum at r ≈ Dc/v = l, and then

increases again, following the scaling law Eq. (9). The minimum of p̃ approximately marks the boundary
between the drained and the undrained regions, both for a propagating and for a stationary (Hui et al.,
2013) crack.

3. Energetics of crack propagation in polymer gels

In the following, we derive and elaborate on the energy release rate for a polymer gel, a fundamental
quantity for establishing crack propagation criteria. Although the technical aspects of the derivation are
rather standard in fracture mechanics, some special aspects must be considered that stem from the poroe-
lastic nature of gels. In particular, energy dissipation due to solvent transport gives rise to an area integral
in the expression of the energy release rate, in addition to the classical contour integral, which critically con-
tributes to the fracture toughness of the gel. In general, we find it useful to dwell on some key intermediate
steps of the derivation to comment on their physical significance.

Let us consider a material domain R ⊂ B including the crack tip and enclosed by the contour C that
joins the crack faces and includes the two segments C+ and C− along the crack faces, see Fig. 2. In an
isothermal setting, we consider power balances per unit thickness of the body.

B

R

n

n

v

x1

x2

C�

C

C+

C−

Figure 2: Sketch for the computation of the energy release rate. The material domain R ⊂ B includes the crack tip and is
enclosed by the contour C joining the crack faces and including the two segments C+ and C− along them.

The external power consists of Pm, the rate at which the applied tractions do work on ∂R = C∪C+∪C−,
and of Pch, the rate at which solvent transport convects energy across ∂R:

Pm(∂R) =

∫
∂R

Tn · u̇ dS , Pch(∂R) = −
∫
∂R

μh · n dS , (21)

where n is the outward unit normal to ∂R and u̇ is the velocity of the gel. These representations are
appropriate when the polymer gel is viewed as a homogenized continuum, where no distinction is made
between polymer and solvent. However, we recognize that there is a clear connection with mixture theory,
as the solvent flux h is proportional to the relative velocity of the solvent with respect to the polymer and
the total stress T is the sum of the network stress Tn and a hydrostatic contribution −(μ/Ω)I equal to
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the solvent pressure. As can be deduced from Eqs. (4) and (5), the network stress comprises an elastic
component, which expresses the elasticity of the cross-linked polymers, and an osmotic component, which
arises from the mixing of solvent and polymers and is present even without cross-links (Sekimoto and Rabin,
1994). In particular, the network traction Tnn is work-conjugate to the network velocity u̇, while the solvent
pressure μ/Ω does work on the solvent velocity vs = u̇+Ωh. Thus, we may alternatively represent the total
external power as

∫
∂R

(
Tnn · u̇− μ

Ω
n · vs

)
dS . (22)

This result makes it clear that Eq. (21)2 is the rate at which the tractions do work on the fluid velocity in
excess of the network velocity. The external power contributes to the change of the free energy E stored in
R and to the dissipation D due to solvent transport:

Ė(R) =
d

dt

∫
R
ψ dA , D(R) = −

∫
R
h · ∇μ dA ; (23)

the remainder, denoted by Φ, is directed into the crack tip and is the driver for crack propagation. Here,
the free energy density ψ is defined as

ψ(E) = G devE · devE+
1

2
κε2 , (24)

so that

Tn =
∂ψ

∂E
. (25)

With the aforementioned definitions of the power contributions, we write the balance of energy for R as

Pm(∂R) + Pch(∂R) = Ė(R) +D(R) + Φ . (26)

Consistent with the hypothesis of quasi-static crack propagation, we have neglected the kinetic energy in
the energy balance.

Manipulations of the general balance statement Eq. (26) lead to the definition of the energy release rate.
First, we recall the following transport theorem (Gurtin and Podio-Guidugli, 1996)

Ė(R) =

∫
R
ψ′ dA−

∫
∂R

ψvn1 dS , (27)

where n1 = n · e1. With this, we can compute the power Φ dissipated at the crack tip from Eq. (26) as

Φ =

∫
C
(ψvn1 +Tn · u̇− μh · n) dS −

∫
R
(−h · ∇μ+ ψ′)dA , (28)

where we have taken into account the fact that the boundary conditions on the crack faces imply no exchange
of either mechanical or chemical power. Clearly, Eq. (28) shows that only part of the energy flux across
C is directed towards the tip, since part is dissipated in solvent transport, and part is spent in transient
processes that vary the free energy stored in R.

On applying the divergence theorem (Gurtin and Podio-Guidugli, 1996) to the chemical power contribu-
tion in Eq. (28) we obtain

−
∫
C
μh · n dS = −

∮
tip

μh · n dS +

∫
R

(μ

Ω
ε̇− h · ∇μ

)
dA , (29)

where the first term at the right hand side is the limit of the integral over a circular contour that is shrunk
to the crack tip. This term vanishes because the asymptotic solution Eq. (19) makes it the integral of a

7



bounded quantity on a vanishingly small contour: μ ∼ √r and h ∼ 1/
√
r. Furthermore, upon noting that

ψ′ = Tn ·E′ = Tn · ∇u′, we see that the last term on the right hand side of Eq. (28) becomes

∫
R
ψ′ dA = −

∮
tip

Tn · u′ dS +

∫
C
Tn · u′ dS +

∫
R

μ

Ω
ε′ dA , (30)

where we have used the divergence theorem and the balance of forces. Note that the tip integral vanishes
for the Mode I stress field at the crack tip. Then, from Eqs. (29)-(30) and the transformation rule Eq. (3)
applied to u̇ and ε̇, Eq. (28) simplifies to

G =
Φ

v
=

∫
C

(
ψn1 −Tn · ∂u

∂x̂1

)
dS −

∫
R

μ

Ω

∂ε

∂x̂1
dA , (31)

where we have defined the energy release rate G. This expression is consistent with that obtained in Bouklas
et al. (2015) following a different derivation and in the finite deformation context. Notice that Φ is path-
independent since the choice of the path C enclosing R is arbitrary. In particular, we may choose a contour
that is shrunk to the crack tip, such that the area integral vanishes due to an argument similar to that used
in the discussion of the tip integral in Eq. (29). Thus, we may rewrite Eq. (31) as

G =

∮
tip

(
ψn1 −Tnn · ∂u

∂x̂1

)
dS . (32)

This representation for the energy release rate shows that an infinitesimal contour surrounding the crack
tip is needed to exclude the contribution of the solvent pressure in the computation of G. Thus, only the
work performed by the network stress and the energy stored by the network are involved in the energy
balance at the crack tip. Upon using the asymptotic stress field of Eq. (6) for r → 0 with KI = Ktip and
the corresponding strain field, we compute the energy release rate explicitly from Eq. (32) as

G =
K2

tip

Ē
, (33)

with Ē = E/(1−ν2) the drained plane strain modulus of the gel, defined as a function of the drained elastic
moduli

E =
9κG

3κ+G
, ν =

3κ− 2G

2(3κ+G)
. (34)

As a simple fracture criterion, we may assume that the energy G absorbed into the crack tip is spent in the
breaking of polymer chains lying across the crack plane. This behavior can be characterized by a material-
dependent fracture energy Γ per unit area, and thus the fracture criterion is G = Γ, i.e. Ktip =

√
ΓĒ = K∞

o .
Here, K∞

o is the critical stress intensity factor needed to commence the propagation of a stationary crack
in the absence of solvent pressure. Since the area density of the polymer chains is a function of the degree
of swelling of the gel, the fracture energy depends on the swelling stretch λo (Zhao, 2014).

As we have seen in the previous section, during crack propagation solvent flow is confined to a small
region near the crack tip. Outside this region, the incompressible Mode I stress field holds, with the solvent
pressure given by Eq. (9). As a consequence, the first term in Eq. (31), when evaluated on a contour C∞
outside the process zone, gives the usual relation G∞

v = (K∞
v )2/Ēu, where G∞

v is the applied energy release
rate and Ēu = 4E/3 = 4G is the undrained plane strain modulus. Then, from the comparison of Eq. (31)
and Eq. (33), we deduce that the energy release rate computed in the far field may be expressed as

G∞
v = Γ +

∫
R∞

μ

Ω

∂ε

∂x̂1
dA . (35)

This is a central result of our work that applies to both a stationary and a propagating crack, as long as the
small-scale process zone hypothesis holds true. The area integral in Eq. (35), extending over the domain
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r̃

−5

7

g̃p

Figure 3: Close-up view of the crack tip region with arrows indicating the solvent flux field h. Color code represents the
dimensionless power density g̃p = (μl∂ε/∂x̂1)/GΩ, as computed from numerical simulations (see Section 5), for κ/G = 10 and
Γ/Gl ≈ 60. The magenta contour r̃ = γ, with γ ≈ 3.4, is an estimate for the boundary of the process zone, where γ has
been tuned to match the value of K∞

v computed from Eq. (37) with the corresponding value obtained numerically. Outside
the black contour, which is the level set ε = 0.1, volume changes are less than 10%, and the material response approaches the
undrained one.

R∞ encircled by C∞, effectively involves only the process zone of characteristic size γl, with γ a positive
constant. We confirm this observation by plotting the dimensionless power density g̃p = (μl∂ε/∂x̂1)/GΩ.
This is reported in Fig. 3 as computed from numerical simulations, see Section 5 for additional details. Thus,
using the asymptotic fields Eqs. (17)-(19), we may estimate the area integral in Eq. (35) as

∫ 2π

0

∫ γl

0

μ

Ω

∂ε

∂x̂1
r drdθ =

3

16
γ

4G+ 3κ

(G+ 3κ)2
K2

tip , (36)

and solve Eq. (35) for K∞
v to obtain

K∞
v = K∞

o

√
4

3
(1− ν2)

[
1 +

γ

4
(1− 2ν)

]
. (37)

Interestingly, Eq. (37) shows that the stress intensity factor K∞
v needed to sustain crack growth, that is,

the effective fracture toughness of the system, is independent of crack tip velocity and is solely a function
of the Poisson’s ratio ν. We have confirmed this result by means of numerical simulations that also allowed
the estimation of the constant γ. Physically, this toughening effect may be explained as follows. The stress
concentration ahead of the crack tip causes the material to expand. Since expansion requires an increase in
solvent volume fraction, a reduction of solvent pressure develops in the process zone to draw solvent towards
the crack tip. This solvent flow implies viscous dissipation. In fact, energy must be supplied to the system to
compensate for the work performed on solvent pressure, which resists volume expansion within the process
zone, as quantified by the area integral in Eq. (35).

Notice that the degree of toughening K∞
v /K∞

o is a function of the initial swelling stretch λo through the
poroelastic moduli, see Eq. (5). As may be expected, the toughening contribution in Eq. (37) vanishes for
an incompressible material, i.e. a dry polymer gel. This fact is consistent with the physical interpretation
of the toughening as a dilatational effect, since volume changes in the process zone will be hampered by
incompressibility.

In passing, we observe that a related result was previously obtained by Hui et al. (2013) for the case
of a Mode I stationary crack in a polymer gel. Consistent with our findings, the enhancement in fracture
toughness as predicted by these authors vanishes at ν = 1/2.
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3.1. Domain integral method

To accurately compute the energy release rate G in numerical simulations, we adopt the domain integral
method (Li et al., 1985). We consider a closed path comprising the contours C� and C encircling the crack
tip, and the two segments along the crack faces joining them, see Fig. 2. Moreover, we define q to be a
smooth function of position such that q = 0 on C and q = 1 on C�. With these definitions, we rewrite
Eq. (32) as

G = − lim
C�→0

∫
C∪C�

q

(
ψn1 −Tn · ∂u

∂x̂1

)
dS = −e1 ·

∫
R
div(qE) dA , (38)

where E = ψI−(∇Tu)T is the Eshelby tensor (Gurtin, 1979) and the divergence theorem has been applied in
the last equality. Using the constitutive equations and the balance of forces (2)1 we have divE = (μ/Ω)∇ε,
so that

G = −
∫
R

(
E∇q · e1 + q

μ

Ω

∂ε

∂x̂1

)
dA . (39)

4. Poroelastic cohesive zone model

In this section, we establish a poroelastic cohesive zone model that takes both deformation of the polymer
network and solvent transport into account. This micromechanical approach allows us to distinguish among
several failure mechanisms that otherwise cannot be accounted for by a fracture criterion based solely on
the crack tip toughness.

In the cohesive zone adjacent to the crack tip the polymer network fails by progressive rupture of its
chains. This process is accompanied by two phenomena, one of which is dissipation due to friction and
sliding to untangle the ruptured polymer chains; this phenomenon means that the work to rupture the
network of cross-linked polymer is much higher than the energy required to simply break its bonds. The
second phenomenon is the flow of solvent to fill the space created by the rupturing of the cohesive zone,
whose opening is zero where rupture begins and rises to a maximum where the polymer network finally fails.
The flow of solvent involves viscous drag and therefore introduces further dissipation that will depend on
the rate at which the crack propagates.

x̂1

σ

h−
2

μo
hc

μc

fractured hydrogel

Figure 4: A sketch of the poroelastic cohesive zone adjacent to the crack tip. Note that the cohesive model takes both the
deformation of the polymer network and the transport of solvent into account. Here, σ is the cohesive traction, hc is the
tangential flux of solvent within the cohesive zone, whereas h−

2 and h+
2 are the fluxes exchanged with the surrounding gel.

In a precise and complete treatment of the problem, it would be possible to extend the general features
of flow in the gel as treated in Section 2 to encompass the phenomenon of flow into the rupturing cohesive
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zone. Instead of doing so, we prefer to treat flow in the cohesive zone as a separate feature that is in
equilibrium and compatible with the surrounding gel. By treating flow in this manner, we will be able
to obtain additional insights into its contribution to the toughness of the gel. Specifically, the work done
on the cohesive zone, which is required to rupture the polymer network and to force the solvent into the
space created by the failure process, is additional to the elastic deformation of the polymer network and the
associated dissipation due to solvent flow.

We now state the governing equations for the cohesive zone. We notice that, due to the planar nature
of the present setting, the cohesive zone coincides with the interval 0 ≤ x̂1 ≤ Rv, where Rv is its length,
generally depending on v. The balance of forces prescribes that the stresses T+

22 and T−
22 exerted by the

cohesive zone on the gel along the planes x̂2 = 0+ and x̂2 = 0−, respectively, must equal the traction σ
within the cohesive zone. We have assumed that the tractions exchanged between the gel and the cohesive
zone only have the component along e2, consistent with a Mode I crack.

To enable analysis of the solvent pressure in the cohesive zone, we develop a transport model for the
solvent within it. We assume that the cohesive zone permits solvent flux hc (measured in mol/m · s) along it
and stores ζ moles of solvent per unit length per unit thickness. The solvent flux hc thus characterizes flow
that carries fluid from the crack to fill the newly forming fracture within the cohesive zone. The solvent flux
must satisfy a mass conservation law in the form

ζ̇ = −∂hc

∂x̂1
− (h+

2 − h−
2 ) , (40)

where h+
2 = h+ · e2 and h−

2 = h− · e2 are the fluxes of solvent exchanged with the cohesive zone through
the planes x̂2 = 0+ and x̂2 = 0−, respectively. Given the symmetry of the Mode I fracture problem studied
here, h+

2 = −h−
2 .

Similarly to the swelling constraint for the gel, which prescribes a link between the volume change and
the change in solvent concentration, we relate the opening δ = u+

2 − u−
2 = 2u+

2 of the cohesive zone to the
increment in solvent concentration ζ through the constraint δ = Ωζ. With this, we may eliminate ζ from
the formulation of the problem and rewrite Eq. (40) as

δ̇ +Ω
∂hc

∂x̂1
+ 2Ωh+

2 = 0 . (41)

As concerns the constitutive laws, we begin by prescribing the following relation for the cohesive traction

σ = σn(δ)− μc

Ω
, σn(δ) =

⎧⎨
⎩

σc

δf
δ , 0 ≤ δ ≤ δf ,

0 , δ > δf ,
(42)

where σc is the cohesive strength of the polymer network, δf is the crack opening displacement at which
the polymer network fails, whereas μc is the chemical potential of the solvent within the cohesive zone. We
enforce chemical equilibrium between the solvent in the cohesive zone and that in the gel, i.e. μc = μ+ = μ−.
Moreover, we relate σc and δf to the fracture energy Γ of the polymer network by requiring the work
performed by σn until failure to equal Γ, such that

Γ =
1

2
σcδf . (43)

The choice of a linear traction-separation law for σn as in Eq. (42) implies a theoretically infinite cohesive
length. Nevertheless, we can give an operational definition of Rv as the length across which crack opening
varies from δf to δf/100. As is clear from this definition, Rv is determined by the solution of the problem.

Finally, for the tangential flux hc we enforce Darcy’s law such that

hc = −Mc
∂μc

∂x̂1
, (44)
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with Mc the solvent mobility within the cohesive zone. Given the absence of experimental evidence of how
flow takes place relative to a polymer network that is tearing apart, we choose a linear model as the simplest
possibility, such that Mc = δfM .

We proceed now with our treatment by exploring the energetic aspects of fracture in the presence of the
poroelastic cohesive zone. First, the flux of energy Φ in Eq. (26) must be replaced by the power exchanged
between the bulk gel and the cohesive zone, which may be evaluated as

Φ =

∫ Rv

0

(σδ̇ − 2μch
+
2 )dx̂1. (45)

Then, to relate this to the energy release rate G∞
v in the far field, we retrace the steps that led us to Eq. (35)

by making use of Eqs. (29)-(30), where the (vanishing) tip integrals must now be replaced by the following
terms

−
∫ Rv

0

2μch
+
2 dx̂1 , −

∫ Rv

0

σδ′ dx̂1 , (46)

respectively. By doing so, after some calculations we obtain

G∞
v = Γ−

∫ 0

δf

μc

Ω
dδ +

∫
R∞

μ

Ω

∂ε

∂x̂1
dA . (47)

We observe that μc/Ω will be negative in the cohesive zone due to the pressure gradient required to draw
solvent into it. Therefore, we conclude that the second term on the right hand side of Eq. (47) contributes
a positive increment to the toughness of the gel, in addition to the contribution provided by the third term
on the right hand side. We note that Eq. (47) is valid for crack growth in general and is not confined solely
to the case of steady state propagation, which will be the focus of the next section.

5. Steady-state crack propagation: numerical results and discussion

In this section, we investigate numerically the problem of steady-state crack propagation to quantify
possible sources of toughening. As we have seen in Section 2.1, this analysis will also provide leading-order
results for transient crack propagation. In particular, we explore the effect of crack tip velocity and material
parameters on the degree of toughening K∞

v /K∞
o , and compare the results obtained with and without the

poroelastic cohesive zone model. To this aim, we carry out numerical simulations using the finite element
method. Given the assumption of steady-state crack growth, we take a time-independent domain centered
at the crack tip as the computational domain, with characteristic size L� l for the small-scale process zone
hypothesis to hold. This requirement implies, in general, large values of the local (mesh-dependent) Peclét
numbers, and thus demands a numerical stabilization technique (Johnson, 1987) for the advection-diffusion
equation (13)2 with ε′ = 0, to avoid excessively fine meshes. Here, for the sake of simplicity, we adopt artificial
diffusion stabilization by replacing the solvent flux h in the mass balance with h̄ = (1 + ηhv)h1e1 + h2e2,
where h is the local mesh size and η is a small tuning parameter. For the symmetry of the problem at hand,
we restrict the computations to the rectangular domain B in the half-plane x̂2 ≥ 0, with −L/2 ≤ x̂1 ≤ L/2
and 0 ≤ x̂2 ≤ L/2.

As standard in finite element procedures, we first recast the balance equations (2) in weak form:

∫
B
T · ∇ũ dA =

∫
∂B

t · ũ dS ,

∫
B
ht · ∇μ̃ dA = 0 , (48)

where t = Tn is the traction corresponding to the Mode I stress field Eq. (6) evaluated at the far-field
boundary of B, ht = Ωh̄−vεe1 is the total solvent flux, whereas ũ and μ̃ are the virtual fields corresponding
to the unknowns u and μ of the problem, respectively. Since the traction is zero on crack faces, ∂B includes
only the far-field boundary of the computational domain. The system (48) is solved together with the
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Figure 5: Toughness ratio K̃∞
v as a function of the dimensionless crack tip velocity ṽ. Numerical results (solid lines) for

a steadily propagating crack and analytical estimates (dashed lines) from Eq. (37), obtained using the energy release rate
approach (no cohesive zone), with the fracture criterion G = Γ. From top to bottom, lines correspond to increasing values of
κ/G = 1 (red), 2 (blue), 10 (green), 50 (purple).

essential boundary conditions Eq. (9) and μ = 0 on the crack face (−L/2 ≤ x̂1 ≤ 0, x̂2 = 0), and the
symmetry condition u2 = 0 on (0 ≤ x̂1 ≤ L/2, x̂2 = 0). As usual, we assume that the virtual fields vanish
on the boundaries where Dirichlet conditions are prescribed. The stress T and the flux h are expressed as
a function of ∇u and ∇μ, respectively, through the constitutive law of Eq. (4) and Darcy’s law.

For the computations involving the poroelastic cohesive zone model, the virtual work of the cohesive
tractions

−
∫ L/2

0

σũ2 dx̂1 , (49)

with σ given by Eq. (42), is added to the right hand side of Eq. (48)1 and replaces the symmetry condition
on u2, while

− Ω

∫ L/2

0

h2μ̃ dx̂1 = −1

2

∫ L/2

0

hct
∂μ̃

∂x̂1
dx̂1 (50)

contributes to the right hand side of Eq. (48)2, with hct = Ωhc − 2vu2. The latter equation is the steady-
state, weak form of the balance of solvent mass (41), where the solvent flux follows Eq. (44) with μc = μ.
To avoid dealing with the unknown cohesive length Rv, we have extended the integrals in Eqs. (49)-(50) all
along the semi-axis x̂1 ≥ 0. We have verified a posteriori that this modification does not significantly alter
the solution in Rv ≤ x̂1 ≤ L/2, where δ ≈ hc ≈ h2 ≈ 0.

In the energy release rate approach, i.e. without the cohesive zone model, we enforce the crack propagation
criterion G = Γ using an optimization procedure. Specifically, for each crack tip velocity v, this procedure
solves for the applied stress intensity factor K∞

v by minimizing the squared difference (G − Γ)2, where G is
computed from Eq. (39). We evaluate numerically the toughness ratio K̃∞

v = K∞
v /K∞

o , which, as dictated
by dimensional analysis, is a function of two dimensionless groups κ/G and ṽ = vΓ/(DcG):

K̃∞
v = f

( κ

G
, ṽ
)
. (51)

The results from our computation are reported in Fig. 5 and confirm the existence of a velocity independent
toughening. These results closely agree with the estimate of K̃∞

v given by Eq. (37), where γ ≈ 3.4 has been
fitted to the numerical simulation for κ/G = 50 and then kept constant as κ/G varies.

We employ now the poroelastic cohesive zone model as described in Section 4. In this case, K∞
v is

found by a numerical optimization procedure that minimizes the squared difference (δ/δf − 1)2, where δ is
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evaluated at x̂1 = 0. Keeping the ratio of Mc/(δfM) fixed, we deduce that the toughness ratio depends now
on the additional dimensionless group σc/G:

K̃∞
v = g

( κ

G
, ṽ,

σc

G

)
. (52)

For the accuracy of the numerical simulations, it is important to ensure that all the relevant fields are
appropriately resolved. We have verified numerically that the cohesive length Rv significantly decreases with
both crack tip velocity and the ratio σc/G, see Fig. 6. Thus, we have checked that in all computations at
least 10 finite elements span the cohesive length. In the same spirit, we have also chosen the size L of the
computational domain to be large with respect to Rv.

0 200 400 600 800 1000
10−3

10−2

10−1

100

ṽ

R̃v

Figure 6: Dimensionless cohesive length R̃v = RvG/Γ as a function of the dimensionless crack tip velocity ṽ for κ/G = 10.
From top to bottom, lines correspond to increasing values of σc/G = 100 (red), 200 (blue), 1000 (green).

The results for the toughness ratio based on the cohesive zone model are shown in Fig. 7 for a fixed value of
κ/G and for several values of σc/G. In sharp contrast to the fracture criterion based on crack tip toughness,
recall Fig. 5, now the effective toughness of the gel increases with crack tip velocity. We have already
anticipated that the solvent pressure within the cohesive zone provides a toughening contribution that was
not captured by the energy release rate approach, recall Eq. (47). The dependence of this contribution on
crack tip velocity may be explained by considering the concurrent evolution of solvent pressure profile and
cohesive length. As depicted in Fig. 8, an increase in crack tip velocity results in increased solvent pressure
magnitude within the cohesive zone. As a consequence, the second term in Eq. (47) increases with ṽ and
thus determines the observed trend of K̃∞

v .
Proceeding to consider the dependence of toughening on the ratio σc/G, we observe that, as the size of

the cohesive zone vanishes, the solution obtained with the cohesive zone model recovers that obtained with
the energy release rate approach (compare the corresponding lines in Fig. 6 and in Fig. 7). Finally, for a
given value of ṽ, the toughening increases with cohesive length Rv by virtue of the increased extent of the
region where work must be done on solvent pressure.

6. Conclusions and outlook

In this study, the Mode I fracture toughness has been explored for a polymer gel specimen containing
a semi-infinite, propagating crack. First, by adopting a fracture criterion that relies on crack tip toughness
only, we have demonstrated the existence of a crack tip velocity-independent enhancement in the resistance
to fracture of the gel. Physically, this toughening arises from the work performed by the solvent pressure
against volume expansion within the process zone. The increase in effective toughness of the system, as
quantified by the increase of the remotely applied stress intensity factor, has been evaluated through both
asymptotic analyses and refined numerical simulations.
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Figure 7: Toughness ratio K̃∞
v as a function of the dimensionless crack tip velocity ṽ. Numerical results for a steadily

propagating crack, obtained using the cohesive zone model described in Section 4 with κ/G = 10. From top to bottom, lines
correspond to increasing value of σc/G = 100 (red), 200 (blue), 1000 (green).
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Figure 8: Dimensionless negative solvent pressure −p̃ = −μ/(ΩG) ahead of the crack tip as a function of the dimensionless
coordinate r̃ = r/Rv , with κ/G = 10 and σc/G = 200. From bottom to top, lines correspond to increasing values of the
dimensionless velocity ṽ = 0.6 (red), 6 (blue), 60 (green).

Then, we have introduced a poroelastic cohesive zone model, which opens the way to the future study
of the micromechanics of diverse fracture processes in polymer gels and to future numerical simulations of
transient crack propagation. In contrast to the first approach, we have shown that, in the presence of a
cohesive zone, the applied stress intensity factor needed to sustain crack growth increases with crack tip
velocity. This behaviour is determined by an additional contribution to the fracture toughness that arises
from the resistance to crack opening offered by the negative solvent pressure within the cohesive zone.

Our results highlight the importance of poroelasticity and, more generally, of the accurate description of
the processes occurring in the fracturing region in quantifying possible toughening mechanisms in polymer
gels. Besides their relevance in fracture of these synthetic materials, our findings may have a biological reach
because many soft biological materials, for example brain tissue (Franceschini et al., 2006), have been shown
to follow poroelasticity. Experiments should be carried out to confirm the outcomes of the present study
and to provide further insight to improve the cohesive zone modeling here presented. Future work will also
include the extension of our results to finite deformation poroelasticity.
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