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Abstract
We prove that skew systems with a sufficiently expand-
ing base have approximate exponential decay of corre-
lations, meaning that the exponential rate is observed
modulo an error. The fiber maps are only assumed to
be Lipschitz regular and to depend on the base in a way
that guarantees diffusive behaviour on the vertical com-
ponent. The assumptions do not imply an hyperbolic
picture and one cannot rely on the spectral properties of
the transfer operators involved. The approximate nature
of the result is the inevitable price one pays for having
so mild assumptions on the dynamics on the vertical
component. However, the error in the approximation
goes to zero when the expansion of the base tends to
infinity. The result can be applied beyond the original
setup when combined with acceleration or conjugation
arguments, as our examples show.
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1 INTRODUCTION

One of the main questions of modern dynamical systems theory is: to which extent a deterministic
chaotic system resembles a random process? This question has been addressed in various contexts
from different point of views (see [53] for a review). Here we study it in relation to forcing, and in
particular we investigate the similarities between random and (sufficiently chaotic) deterministic
forcing focusing on the statistical properties of the forced system.
A forced system is a system whose intrinsic dynamics is affected by an external influence typ-

ically coming from the interaction with another system or the surrounding environment. The
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forcing can be modelled to be random, for example, obtained by adding to the dynamics a noise
term independent in time, or deterministic, that is, dependent on a variable that evolves in time
following a deterministic law†.
In the random case, classical results from the theory of Markov chains show that if there is

enough diffusion, for example, if the forcing adds smooth unbounded noise to the dynamics, then
the forced system has a stationary measure that describes its asymptotic statistical behaviour, and
exhibits memory loss and annealed exponential decay of correlations (among others [4, 21]). In
contrast, if the forcing is deterministic, it is well known that even just to prove existence of a phys-
ically relevant invariant measure one needs to impose strong assumptions both on the intrinsic
dynamic and on the forcing, often leading to some degree of hyperbolicity of the system and/or a
good spectral picture of the operators involved (see literature below).
In this paper we prove that, if the forcing has a “diffusive effect” and is generated by a uniformly

expandingmapwith high expansion, then the deterministic systemhas an approximate stationary
measure and exhibits approximate decay of correlations.We postpone rigorous definitions to later
sections. Loosely speaking, an approximate stationarymeasure describes the asymptotic statistical
properties of the system modulo a controlled error, and by an approximate exponential decay of
correlations wemean that measurements of observables along orbits exhibit exponential decay of
correlations also modulo an error. Most importantly, these errors go to zero when the expansion
of the map generating the forcing goes to infinity. In other words we could say that, when the
expansion of the map generating the forcing goes to infinity, the deterministic forcing becomes
indistinguishable from random forcing with respect to the statistical properties we analyze.
It is important to remark that our requirements do not ensure global hyperbolic properties or

a good spectral picture, and even the existence of a physically relevant invariant measure cannot
be deduced from the assumptions. The price that we pay is the approximate nature of the result.
Its relevance, however, is clear when having an eye to applications; here decorrelation estimates
come from observations of real-world systems and are intrinsically affected by a measurement
error: if this error is larger than the approximation error in the decorrelation estimate, exact and
approximate decay of correlations are indistinguishable.
Our approach is quite flexible and we expect it to be adaptable to a variety of situations

beyond the current working assumptions, for example in situations with lower regularity, or in
combination with various conjugations arguments (see Section 5 for some generalizations).

1.1 Literature review

In mathematical terms, a forced system in discrete time can be described by a skew-product
transformation which is a map 𝐹 ∶ Ω × 𝑋 → Ω× 𝑋 such that

𝐹(𝜔, 𝑥) = (g(𝜔), 𝑓(𝜔, 𝑥)) (1.1)

where g ∶ Ω → Ω and 𝑓 ∶ Ω × 𝑋 → 𝑋. The set Ω is called the base of the skew-product, while 𝑋
is referred to as the vertical fiber. The main characteristic of a skew-product is that the evolution
on the base Ω does not depend on the vertical fiber 𝑋.
The literature on skew-products is vast to the extent that there are entire research trends study-

ing particular aspects of these systems (e.g., iterated function systems, randomdynamical systems,

† For precise definitions and a comparison between deterministic and random forcing see Section A.3 in Appendix.
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smoothness of invariant graphs over skew-products, etc.). Here we focus on those works deal-
ing with statistical properties of skew products that have a “deterministic” base, such as [6–8, 11,
22–26, 28, 29, 34, 38, 41, 44, 47, 51] and references therein. These works usually only require g to
be a measure preserving ergodic transformation or, at most, to exhibit some uniform hyperbolic-
ity. However, they restrict the fiber map 𝑓 to one of some particular classes to ensure contraction
or hyperbolic properties (exact or averaged) of the vertical fiber. Skew-products with nonuniform
hyperbolicity can still be studied but in a more qualitative sense [5, 12]. In contrast, our results
make only mild regularity assumptions on 𝑓, but require that g is uniformly expanding with large
minimal expansion.
As a consequence of our requirements, the map 𝐹 is likely to have a dominated splitting of

the tangent space and be partially hyperbolic (see, e.g., [32, 40]) with an expanding direction
roughly aligned with the base dominating the other invariant directions. To put our work under
this perspective, let us remind that available results on existence of physical measures and decay
of correlations for partially hyperbolic systems often assume low dimensional geometry either of
the phase space or of some invariant directions, and/or nonvanishing Lyapunov exponents [1, 2,
15, 18, 19, 46, 48] which, in general, are not granted in our setup. More recent results give suf-
ficient conditions for partially hyperbolic systems to have exponential decay of correlations by
turning qualitative topological conditions such as accessibility [10], into quantitative properties
of the operators involved [13, 27]. The systems we consider do not fit in these results due to lack
of smoothness, but it is even unclear if these results can be applied to those systems in our setup
that have the required regularity.
As the base map is much more chaotic than the vertical fibers, our setup is reminiscent of

fast-slow systems (see [13, 14, 17, 33, 35] among many others). However, the dynamic of our
skew-products does not present separation of time-scales since at each time step it can produce
displacements of the same order both in the base system and in the vertical fibers.

1.2 Organization of the paper

In Section 2 we present the setting, the results, some examples, and a sketch of the proof. In Sec-
tion 3 we prove our result in the simpler situation where the map in the base has no distortion
and the phase space is 2D. In Section 4 we prove our main theorem in full generality. In Section 5
we discuss some generalizations and limits of our approach. In the appendices we gather some
background material and results on Markov chains (in Appendix A), disintegration of measures
(in Appendix B), and some computations involving the Kantorovich–Wasserstein distance that
are used throughout the proofs (in Appendix C).

2 SETTING AND RESULTS

2.1 Setting

Let’s consider a map 𝐹 as in (1.1) where we set Ω = 𝕋𝑚1 and 𝑋 = 𝕋𝑚2 , here 𝕋 = ℝ∕ℤ is the 1D
torus and 𝑚1,𝑚2 two positive integers. In the following we will denote by |𝑝1 − 𝑝2| the dis-
tance between 𝑝1, 𝑝2 ∈ 𝕋𝑁 regardless of the specific 𝑁 ∈ ℕ. For 𝐼 ⊆ 𝕋𝑚, we denote by Op(𝐼) its
open part.
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2.1.1 The base map g

Consider g ∶ 𝕋𝑚1 → 𝕋𝑚1 a 𝐶2 local diffeomorphism. In particular, there is 𝑑 ∈ ℕ and  = {𝐼𝑖}𝑑𝑖=1
a partition of 𝕋𝑚1 such that: Op(𝐼𝑖) = 𝐼𝑖 mod 0, {g𝑖 ∶= g|𝐼𝑖 }𝑑𝑖=1 with g𝑖 ∶ 𝐼𝑖 → 𝕋𝑚1 are invertible
branches of g , and g𝑖|Op(𝐼𝑖) is 𝐶2. Call {ℎ𝑖 ∶= g−1

𝑖
}𝑑
𝑖=1

the corresponding inverses.
We assume that g satisfies the following assumptions:

∃𝜎 > 1 s.t. ‖Dg𝜔𝑣‖ ⩾ 𝜎‖𝑣‖ ∀𝜔 ∈ 𝕋𝑚1, 𝑣 ∈ ℝ𝑚1, (H0.1)

where ‖ ⋅ ‖ is the Euclidean norm on ℝ𝑚1 , and

∃𝐷 ⩾ 0 s.t.
|Dgℎ𝑖(𝜔1)||Dgℎ𝑖(𝜔2)| ⩽ 𝑒𝐷|𝜔1−𝜔2| ∀𝜔1, 𝜔2 ∈ 𝕋

𝑚1 and ∀𝑖 (H0.2)

where |Dgℎ𝑖(𝜔1)| denotes the determinant of Dgℎ𝑖(𝜔1). Condition (H0.1) states that the differential
of g expands vectors in tangent space of a factor at least 𝜎 > 1, while (H0.2) imposes a uniform
bound on the distortion. It is well known that g has a unique absolutely continuous invariant
probability (a.c.i.p.) measure (see [9],[49] and references therein). We call 𝜈g this measure and
𝜌g ∶=

𝑑𝜈g

𝑑 Leb𝕋𝑚1
its density, where Leb𝕋𝑚1 is the Lebesgue measure on 𝕋𝑚1 .

2.1.2 The vertical fiber maps 𝑓

We assume 𝑓 ∶ 𝕋𝑚1 × 𝕋𝑚2 → 𝕋𝑚2 to be at least Lipschitz, and denote by 𝐿 ⩾ 0 the Lipschitz
constant, namely

𝐿 ∶= inf
(𝜔1,𝑥1)≠(𝜔2,𝑥2)

|𝑓(𝜔1, 𝑥1) − 𝑓(𝜔2, 𝑥2)||(𝜔1, 𝑥1) − (𝜔2, 𝑥2)| . (H0.3)

Let {𝑓𝜔}𝜔∈𝕋𝑚1 be the collection of maps 𝑓𝜔 ∶ 𝕋𝑚2 → 𝕋𝑚2 , that is, 𝑓𝜔(⋅) ∶= 𝑓(𝜔, ⋅). We write
𝑓(⋅, 𝑥) for the maps 𝑓(⋅, 𝑥) ∶ 𝕋𝑚1 → 𝕋𝑚2 obtained by fixing 𝑥 ∈ 𝕋𝑚2 and letting 𝜔 ∈ 𝕋𝑚1 vary.
We let 𝜋1 ∶ 𝕋𝑚1 × 𝕋𝑚2 → 𝕋𝑚1 be the projection onto the horizontal 𝕋𝑚1 -coordinate and, given a
measure 𝜇 on 𝕋𝑚1 × 𝕋𝑚2 , we refer to 𝜋1∗𝜇 as the horizontal marginal of 𝜇. We also denote by
𝜋2 ∶ 𝕋

𝑚1 × 𝕋𝑚2 → 𝕋𝑚2 the projection onto the vertical 𝕋𝑚2 -coordinate and refer to Π𝜇 ∶= 𝜋2∗𝜇
as the vertical marginal of the measure 𝜇.

2.1.3  , the random counterpart of 𝐹

In the following,1(𝑌) denotes the space of Borel probability measures on the compact metric
space 𝑌.
For𝜇 ∈1(𝕋

𝑚2), define the push-forward𝑓𝜔∗𝜇(𝐴) = 𝜇(𝑓−1𝜔 (𝐴)) for anymeasurable𝐴 ⊆ 𝕋
𝑚2 ,

and define the operator  ∶1(𝕋
𝑚2) →1(𝕋

𝑚2)

𝜇 ∶= ∫𝕋𝑚1 𝑑𝜈g (𝜔)𝑓𝜔∗𝜇 = ∫𝕋𝑚1 𝑑𝜔𝜌g (𝜔)𝑓𝜔∗𝜇. (2.1)
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Notice that  is the generator for a discrete time stationary Markov processwith transition kernel

𝑃(𝑥, 𝐴) ∶= ∫𝕋𝑚1 𝑑𝜔𝛿𝑓𝜔(𝑥)(𝐴)𝜌g (𝜔).

where 𝛿𝑓𝜔(𝑥) denotes the Dirac mass at 𝑓𝜔(𝑥). These operators are well studied in the literature
and sufficient conditions underwhich has a spectral gap in various functional spaces are known
(see, e.g., [30, 42, 45] and Appendix A).
It is important to notice that if at each time step one was to apply a map {𝑓𝜔}𝜔∈𝕋𝑚1 sampled

independentlywith respect to 𝜈g , then the operator  would describe the evolution of the vertical
marginal. In other terms, one can think of the Markov chain generated by  as the “random
counterpart” of the deterministic evolution given by 𝐹 which instead selects the map 𝑓𝜔 at each
time-step according to the deterministic process 𝜔, g(𝜔), g2(𝜔), … generated by g .

2.2 Main assumption

AssumptionH below requires that theMarkov chain generated by is geometrically ergodic with
respect to the Total Variation (TV) distance 𝑑𝑇𝑉 (see Appendix A for definitions).

Assumption H. There are 𝐶 > 0 and 𝜆 ∈ (0, 1) such that

𝑑𝑇𝑉(𝑛𝜇,𝑛𝜈) ⩽ 𝐶𝜆𝑛𝑑𝑇𝑉(𝜇, 𝜈),
for all 𝜇, 𝜈 ∈1(𝕋

𝑚2).

By a standard Krylov–Bogolyubov argument, it follows that there is a unique 𝜂0 ∈1(𝕋
𝑚2)

invariant under , that is, such that𝜂0 = 𝜂0, which is called a stationarymeasure for theMarkov
chain generated by . Also notice that AssumptionH is a condition on , and therefore it depends
on 𝑓 ∶ 𝕋𝑚1 × 𝕋𝑚2 → 𝕋𝑚2 and 𝜈g only.

2.3 Main results

For a randomly forced system whose evolution is given by geometrically ergodic Markov chain,
any initial measure evolves exponentially fast towards the stationary measure of the Markov
chain. Our first result shows that something similar happens also for the deterministic skew-
product 𝐹, modulo a controlled approximation error. Loosely speaking, under Assumption H,
we show that there is a probability measure 𝜂 ∈1(𝕋

𝑚2) such that, under iteration of the
push-forward 𝐹∗, the vertical marginal of any sufficiently regular initial measure enters a small
neighbourhood of 𝜂 (w.r.t. 𝑑𝑊) at exponential speed. The size of the neighbourhood can be made
arbitrarily small increasing the minimal expansion of g . To rigorously states the result we need
two definitions given below.
Recall that the Kantorovich–Wasserstein distance between two probability measures 𝜇1, 𝜇2 on

𝕋𝑚2 is defined as

𝑑𝑊(𝜇1, 𝜇2) ∶= inf
𝛾∈(𝜇1,𝜇2)∫𝕋𝑚2×𝕋𝑚2 |𝑥 − 𝑦|𝑑𝛾(𝑥, 𝑦) (2.2)
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where (𝜇1, 𝜇2) is the set of couplings of 𝜇1 and 𝜇2, that is, the set of all probability measures on
𝕋𝑚2 × 𝕋𝑚2 with marginals 𝜇1 and 𝜇2 respectively on the first and second factor.

Definition 2.1. Given 𝜇 ∈1(𝕋
𝑚1 × 𝕋𝑚2), we say that 𝜇 has Lipschitz disintegration along ver-

tical fibres, or simply Lipschitz disintegration, if there is a disintegration {𝜇𝜔}𝜔∈𝕋𝑚1 of 𝜇, with
respect to the measurable partition {{𝜔} × 𝕋𝑚2}𝜔∈𝕋𝑚1 , such that the map 𝜔 ↦ 𝜇𝜔 from (𝕋𝑚1, | ⋅ |)
to (1(𝕋

𝑚2), 𝑑𝑊) is Lipschitz. Let

Lip(𝜇) ∶= inf
𝜔1≠𝜔2

𝑑𝑊(𝜇𝜔1 , 𝜇𝜔2)|𝜔1 − 𝜔2|
the Lispchitz constant of 𝜔 ↦ 𝜇𝜔.†

The class of probability measures with Lipschitz disintegration plays a central role in this
paper. In Appendix B we gather statements about disintegration of measures that will be used
throughout. We are now ready to state our first result.

Theorem 2.1. Let 𝐹 satisfy assumptions (H0.1)-(H0.3) and Assumption (H) with datum𝑚1,𝑚2 ∈
ℕ, 𝐷, 𝐿, 𝐶 > 0, 𝜎 > 1, 𝜆 ∈ (0, 1). Then there is a probability measure 𝜂 ∈1(𝕋

𝑚2) and constants
𝜆 ∈ (0, 1),𝐶 > 0, 𝓁0 > 0 satisfying: for every 𝜀 > 0, there is 𝜎0 > 0 (depending on 𝜀 and all the datum
but 𝜎) such that if 𝜎 > 𝜎0,

𝑑𝑊
(
Π𝐹𝑛∗𝜇, 𝜂

)
⩽ 𝐶𝜆𝑛 + 𝜀

for all 𝑛 ∈ ℕ and any 𝜇 ∈1(𝕋
𝑚1 × 𝕋𝑚2) with horizontal marginal equal to Leb𝕋𝑚1 , Lipschitz

disintegration, and Lip(𝜇) ⩽ 𝓁0.

The measure 𝜂 plays a role analogous to that of the stationary measure of an ergodic Markov
chain, however is neither the vertical marginal of some invariant measure for 𝐹∗ nor is an exact
limit for Π𝐹𝑛∗𝜇. For these reasons, we call it an approximate stationary measure. In the case with
no distortion, for example, g(𝜔) = 𝜎𝜔mod 1 with 𝜎 ⩾ 2, 𝜂 can be taken equal to 𝜂0, the stationary
measure of the Markov chain  , and 𝐶 and 𝜆 equal 𝐶 and 𝜆 from Assumption (H) (see Section 3).
As shown in Section 4.3, when g has nonzero distortion, 𝜂 can be different from 𝜂0 and is related
to the fixed point of another operator, called , introduced in Section 4.2.

Remark 2.1. In Theorem 2.1, the assumption that 𝜇 has horizontal marginal equal to the Lebesgue
measure can be relaxed and one can consider 𝜇 with horizontal marginal absolutely continu-
ous with respect to Lebesgue and with sufficiently regular density (see Proposition 4.5). For what
concerns 𝓁0, an explicit expression is given in (4.3).

From Theorem 2.1 one can deduce information on the statistical properties of the dynamics
defined by 𝐹. When describing the statistical properties of a skew-product such as 𝐹, we adopt
the annealed point of view, that is, we assume to have access to observations of measurable func-
tions 𝜑 ∶ 𝕋𝑚2 → ℝ along the orbits of the system. Picking as reference measure on 𝕋𝑚1 × 𝕋𝑚2 the

† It is easy to check that if 𝜇 admits a Lipschitz disintegration, this is the only Lipschitz disintegration admitted by 𝜇,
therefore Lip(𝜇) is well defined
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Lebesgue measure, Leb𝕋𝑚1×𝕋𝑚2 , gives rise to the sequence of dependent random variables

{𝜑 ◦𝜋2 ◦𝐹
𝑛}
+∞
𝑛=1

on (𝕋𝑚1 × 𝕋𝑚2, Leb𝕋𝑚1×𝕋𝑚2 ).
For 𝜑, 𝜓 ∶ 𝕋𝑚2 → ℝ in suitable functional spaces, we ask if there are constants 𝐴 ∈ ℝ and 𝜆 ∈

(0, 1) such that ||||∫𝕋𝑚1×𝕋𝑚2 𝜑(𝜋2𝐹𝑛(𝜔, 𝑥))𝜓(𝑥) 𝑑𝜔𝑑𝑥 − 𝐴|||| = (𝜆𝑛) (2.3)

When (2.3) is satisfied, the system is said to have exponential annealed decay of correlations. The
term annealed refers to the fact that the observables 𝜑, 𝜓 depend on the vertical 𝕋𝑚2 -coordinate
only, and therefore the correlations are averaged with respect to the horizontal 𝕋𝑚1 -coordinate.
As already argued in the introduction, our systems have little hope to satisfy (2.3), but the fol-

lowing theorem shows that 𝐹 exhibits exponential annealed decay of correlations, up to a given
precision that depends on the expansion of the base system.

Theorem 2.2. Under the assumptions of Theorem 2.1, for 𝜆, 𝐶, 𝜂 given there, it holds

||||∫𝕋𝑚1×𝕋𝑚2 𝜑(𝜋2𝐹𝑛(𝜔, 𝑥))𝜓(𝑥) 𝑑𝜔𝑑𝑥 − ∫𝕋𝑚2 𝜑(𝑥)𝑑𝜂(𝑥)∫𝕋𝑚2 𝜓(𝑥)𝑑𝑥
|||| ⩽ 𝐶𝜑,𝜓(𝐶𝜆𝑛 + 𝜀)

for all 𝜓 ∈ 𝐿1(𝕋𝑚2; ℝ) and 𝜑 ∈ Lip(𝕋𝑚2; ℝ) where 𝐶𝜑,𝜓 > 0 depends on 𝜑, 𝜓 but not from 𝑛, 𝜀.

Remark 2.2.

- Given 𝐷 and 𝐿, one might need a large minimal expansion 𝜎0 to ensure that 𝜀 > 0 in the the-
orems above is small. Examples of base maps g with given distortion, and arbitrarily large
minimal expansions 𝜎0 can be constructed easily by fixing any map g0 ∶ 𝕋𝑚1 → 𝕋𝑚1 satisfying
(H0.1)-(H0.2), and considering g ∶= g𝑛

0
with high 𝑛 ∈ ℕ. With this definition, g has mini-

mal expansion equal to the minimal expansion of g raised to the power 𝑛 ∈ ℕ, and distortion
uniformly bounded with respect to 𝑛.

- In the simpler case g(𝜔) = 𝜎𝜔 mod 1, one gets that 𝜀 can be chosen of the order of 𝜎−𝛾 with 𝛾
depending on 𝐶, 𝐿, and 𝜆 (see also Remark 3.1).

- Existence of an invariant measure which is physical or with some smoothness such as an SRB
measure (see [52] for definitions) has little hope in general. One reason is the low regularity of
𝐹 which is only Lipschitz. However, imposing higher regularity, for example, 𝐹 globally 𝐶1+𝛼,
would not be enough: The domination that (possibly) results from the high expansion in the
base, even if it can lead to existence of positive Lyapunov exponents, cannot ensure existence
of an SRB or physical measure by itself – all the more reasons not to expect exact exponential
decay of correlations for the dynamical system 𝐹.

- We can give an explicit bound for the constant 𝐶𝜑,𝜓. Letting 𝜓 − ∫
𝕋𝑚2

𝜓 = 𝜓1 − 𝜓2 with 𝜓1, 𝜓2 ⩾
0 being the positive and negative components of 𝜓 − ∫

𝕋𝑚2
𝜓,

𝐶𝜑,𝜓 ⩽ 2‖𝜓‖𝐿1(Lip(𝜑) + 1).
- As mentioned in the introduction, whenever one has additional information on the fiber maps
{𝑓𝜔}𝜔∈𝕋, other approaches could lead to more precise statements.
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2.4 Examples

Oneway to ensure thatAssumptionHholds is by imposing twomain regularity requirements on𝑓
with respect to the horizontal variable𝜔, that is, with respect to the forcing: 1)Regularity condition:
𝑓 is𝐶𝑘 in the variable𝜔 for a sufficiently large 𝑘. 2)Non-degeneracy condition: the differential of 𝑓
with respect to 𝜔 is invertible which, for every 𝑥 ∈ 𝕋𝑚2 , makes the function 𝑓(⋅, 𝑥) ∶ 𝕋𝑚1 → 𝕋𝑚2

a local diffeomorphism on its range (notice that for this requirement to hold 𝑚1 has to be equal
to𝑚2).

Example 2.1. Let’s consider 𝑚1 = 𝑚2 = 𝑚, and assume that for any 𝑥 ∈ 𝕋𝑚 𝑓(⋅, 𝑥) ∶ 𝕋𝑚 → 𝕋𝑚

is a 𝐶2 local diffeomorphism or, equivalently, {𝑓𝜔}𝜔∈𝕋𝑚 is a family of maps with 𝐶2 dependence
on the parameter 𝜔 such that the differential (D𝑓(⋅, 𝑥))𝜔 is bijective for every 𝑥, 𝜔 ∈ 𝕋𝑚.
From Equation (2.1) one can deduce that

𝛿𝑥 = 𝑓(⋅, 𝑥)∗𝜈g
and since 𝑓(⋅, 𝑥) is a non-singular transformation, the expression of its Perron-Frobenius operator
gives

𝑑𝛿𝑥
𝑑 Leb𝕋𝑚

(𝑦) =
∑
𝑘

𝜌g (𝑦𝑘)|D𝑓(⋅, 𝑥)𝑦𝑘 |
where the sum is over all the preimages 𝑦𝑘 of 𝑦 under the map 𝑓(⋅, 𝑥).

𝑑𝛿𝑥
𝑑 Leb𝕋𝑚

is in 𝐶1 since|D𝑓(⋅, 𝑥)| and 𝜌g are 𝐶1 functions. It is also uniformly bounded away from zero, as there is
𝑐1 > 0 such that 𝜌g > 𝑐1 (see, e.g., [49]), and there is 𝐾1 > 0 such that |D𝑓(⋅, 𝑥)𝜔| ⩽ 𝐾1 for every
𝜔, 𝑥 ∈ 𝕋𝑚. This implies that for every 𝑥 ∈ 𝕋𝑚, 𝑑𝛿𝑥

𝑑 Leb𝕋𝑚
(𝑦) > 𝑐𝐾1, that is, the densities of the tran-

sition probabilities are all uniformly bounded away from zero. It is well known that the Markov
chain generated by  is geometrically ergodic, that is, satisfies Assumption (H) (see Theorem A.1
in the Appendix).

The following example is a subcase of the example above and shows one of the simplest
nontrivial setups.

Example 2.2 (System with additive deterministic noise). 𝑓(𝜔, 𝑥) = 𝑇(𝑥) + ℎ(𝜔), where
𝑇 ∶ 𝕋𝑚 → 𝕋𝑚 is any Lipschitz map, and ℎ ∶ 𝕋𝑚 → 𝕋𝑚 is a local 𝐶2 diffeomorphism.

Let us stress that these sufficient conditions for Assumption H: 1) are by no means necessary;
2) give no control on a single fiber map 𝑓𝜔 beyond the requirement that it is Lipschitz regular; 3)
do not imply good spectral properties for 𝐹∗.

2.5 Sketch of the proof

ToproveTheorem2.1 andTheorem2.2,we are going to study the evolution of probabilitymeasures
on 𝕋𝑚1 × 𝕋𝑚2 that have a Lipschitz disintegration with a focus on the evolution of their vertical
marginals. To do so we follow the steps below.
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1) First of all we show that under the assumptions of the main theorem, if 𝜇 ∈1(𝕋
𝑚1 × 𝕋𝑚2)

has Lipschitz disintegration, so does 𝐹𝑛∗𝜇 for any 𝑛 ∈ ℕ, and Lip(𝐹
𝑛
∗𝜇) is bounded uniformly

in 𝑛 ∈ ℕ (see Proposition 4.2). This is a consequence of the uniform (high) expansion of the
map g . This result shows the existence of an invariant class of measures whose disintegra-
tion is smooth along the 𝕋𝑚1 -coordinate, and is proved by using an explicit expression for a
disintegration of 𝐹∗𝜇 in terms of a disintegration of 𝜇 (see Proposition 4.1).

2) Next, we use the above fact to show that the vertical marginal of 𝐹𝑛∗𝜇 can be approximated
by looking at the action of an auxiliary operator, , that acts on a suitable decomposition of 𝜇
and that, unlike 𝐹∗, has good contraction properties (see (4.6) for the definition of , Propo-
sition 4.3, and Proposition 4.4). The contraction properties of  are inherited from those of 
and imply a nice spectral picture (see Remark 4.5). Loosely speaking, when g(𝜔) = 𝜎𝜔mod 1,
 can be taken to be equal to  , see Section 3.

3) The above approximation allows to show that under application of 𝐹∗, the system exhibits
approximate exponential memory loss† on its vertical marginal. By this we mean that given
any two probability measures 𝜇1, 𝜇2 ∈1(𝕋

𝑚1 × 𝕋𝑚2) with Lipschitz disintegration, the
Kantorovich–Wasserstein distance between vertical marginals Π𝐹𝑛∗𝜇1 and Π𝐹

𝑛
∗𝜇2 shrinks

exponentially fast modulo an approximation error (see Proposition 4.5).
4) Finally, we use the above approximate memory loss to prove the existence of an approximate

stationary measure and of approximate decay of correlations.

Remark 2.3. Picking a metric on 1(𝕋
𝑚2) as weak as the Wasserstein metric 𝑑𝑊 is crucial to

our arguments. Measures having Lipschitz disintegration with respect to other stronger metrics
– for example the TV distance – may not be invariant under 𝐹∗ without further assumptions on
{𝑓𝜔}𝜔∈Ω.

In Section 3, we give a proof of Theorem 2.1 and Theorem 2.2 in the simpler case where:𝑚1 =
𝑚2 = 1; the dynamics in the base is smooth and has no distortion, that is, 𝐷 = 0. Under these
assumptions g ∶ 𝕋 → 𝕋 can be written as

g(𝜔) = 𝜎𝜔 mod 1, 𝜎 ∈ ℕ∖{1}. (H0+)

This is for the sake of presentation since in this case the treatment of points 2) and 3) does not
require the introduction of the auxiliary operator , and Π𝐹𝑛∗ can be approximated directly, in
some sense made precise below, with  . This makes the proof much easier than in the general
case with 𝐷 > 0 and it allows for explicit bounds for 𝜀 w.r.t 𝜎.

3 CASEWITHOUT DISTORTION

In this sectionwework under AssumptionH0+ andAssumptionH. Namely we consider g ∶ 𝕋 →
𝕋 defined as g(𝜔) = 𝜎𝜔 mod 1, where 𝜎 ∈ ℕ∖{1}. Recall that under these assumptions 𝜈g = Leb𝕋
and 𝜌g is constant equal to one. Take 𝜇 ∈1(𝕋 × 𝕋) having horizontal marginal Leb𝕋. We study
the evolution of 𝜇 under applications of 𝐹∗.
First of all notice that as a consequence of the skew-product structure of 𝐹 and invariance of

Leb𝕋 under g , also 𝐹∗𝜇 has horizontal marginal equal to Leb𝕋. Secondly, the evolution of the
disintegration along vertical fibres, is given by the following proposition.

† For a definition and an example of exactmemory loss see, for example, [39].
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Proposition 3.1. Let 𝜇 be a probability measure on 𝕋 × 𝕋 with horizontal marginal equal to Leb𝕋.
Let {𝜇𝜔}𝜔∈𝕋 be a disintegration of 𝜇 along vertical fibres, then a disintegration of 𝐹∗𝜇 along vertical
fibres is given by {(𝐹∗𝜇)𝜔}𝜔∈𝕋 with

(𝐹∗𝜇)𝜔 =
1

𝜎

𝜎−1∑
𝑖=0

𝑓𝜔+𝑖
𝜎
∗
𝜇𝜔+𝑖

𝜎

. (3.1)

This statement is a particular case of Proposition 4.1 below, therefore we omit the proof. It is
sufficient to say that, in this setting one has

(𝐹∗𝜇)𝜔(𝐼) = lim
𝛿→0

(𝐹∗𝜇)([𝜔 − 𝛿, 𝜔 + 𝛿] × 𝐼)

2𝛿

for any interval 𝐼, where the numerator can be easily controlled.
Next, recall Definition 2.1. In the proposition belowwe use (3.1) to deduce that if 𝜇 has Lipschitz

disintegration, then so do all its iterates 𝐹𝑛∗𝜇, and if 𝜎 is sufficiently large, then their Lipschitz
constants are all uniformly bounded and small when 𝜎 → ∞.
Before moving to the next proposition we recall for the reader’s convenience a property of the

Kantorovich–Wasserstein distance (see, e.g., [50] for details). Given a Borel signed measure 𝜉 on
𝕋 with 𝜉(𝕋) = 0, consider the Wasserstein norm

‖𝜉‖𝑊 ∶= sup
𝜑∈Lip1(𝕋)

∫𝕋 𝜑 𝑑𝜉.

Recall that we denoted by Lip1(𝕋) ∶= {𝜑 ∶ 𝕋 → ℝ ∶ Lip(𝜑) ⩽ 1} the Lipschitz functions on (𝕋, | ⋅|) with Lipschitz constant less or equal to one (we write Lip1 when there is no risk of confusion).
The Kantorovich–Wasserstein distance defined in (2.2) can be rewritten as

𝑑𝑊(𝜇, 𝜈) = ‖𝜇 − 𝜈‖𝑊 = sup
𝜑∈Lip1

∫𝕋 𝜑(𝑥) 𝑑(𝜇 − 𝜈)(𝑥).

This characterization will simplify the notation later in the proofs.†

Proposition 3.2. Let 𝜇 be a probability measure on 𝕋 × 𝕋with horizontal marginal Leb𝕋 and Lips-
chitz disintegration {𝜇𝜔}𝜔∈𝕋. Then the disintegration of𝐹∗𝜇 defined inEquation (3.1) is also Lipschitz
and

Lip (𝐹∗𝜇) ⩽ 𝐿𝜎
−1 Lip(𝜇) + 𝐿𝜎−1

Proof. For 𝜔,𝜔′ ∈ 𝕋

𝑑𝑊((𝐹∗𝜇)𝜔, (𝐹∗𝜇)𝜔′) = sup
𝜑∈Lip1

∫𝕋 𝜑 𝑑
(
1

𝜎

𝜎−1∑
𝑖=0

𝑓𝜔+𝑖
𝜎
∗
𝜇𝜔+𝑖

𝜎

−
1

𝜎

𝜎−1∑
𝑖=0

𝑓𝜔′+𝑖
𝜎
∗
𝜇𝜔′+𝑖

𝜎

)

⩽
1

𝜎

𝜎−1∑
𝑖=0

sup
𝜑∈Lip1

∫𝕋 𝜑𝑑
(
𝑓𝜔+𝑖

𝜎
∗
𝜇𝜔+𝑖

𝜎

− 𝑓𝜔′+𝑖
𝜎
∗
𝜇𝜔′+𝑖

𝜎

)

† In this section, the absence of distortion keeps the proofs of the next propositions rather classical and expert readers
could skip to the general case. However, we included the details here to highlight and estimate the dependence of 𝜀 on 𝜎.
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Calling 𝜔𝑖 ∶=
𝜔+𝑖

𝜎
, and 𝜔′

𝑖
∶= 𝜔′+𝑖

𝜎
for brevity, we have

sup
𝜑∈Lip1

∫𝕋 𝜑𝑑
(
𝑓𝜔𝑖∗𝜇𝜔𝑖 − 𝑓𝜔′𝑖 ∗

𝜇𝜔′
𝑖

)
= 𝑑𝑊(𝑓𝜔𝑖∗𝜇𝜔𝑖 , 𝑓𝜔′𝑖 ∗

𝜇𝜔′
𝑖
)

⩽ 𝑑𝑊(𝑓𝜔𝑖∗𝜇𝜔𝑖 , 𝑓𝜔′𝑖 ∗
𝜇𝜔𝑖 ) + 𝑑𝑊(𝑓𝜔′𝑖 ∗

𝜇𝜔𝑖 , 𝑓𝜔′𝑖 ∗
𝜇𝜔′

𝑖
).

For the first term above, notice that for any 𝜉 ∈1(𝕋) and 𝜑 ∈ Lip1

∫𝕋 𝜑𝑑(𝑓𝜔𝑖∗𝜉 − 𝑓𝜔′𝑖 ∗𝜉) = ∫𝕋(𝜑 ◦𝑓𝜔𝑖 (𝑥) − 𝜑 ◦𝑓𝜔′𝑖 (𝑥))𝑑𝜉(𝑥) ⩽ 𝐿𝜎
−1|𝜔 − 𝜔′|,

where 𝐿 is the Lipschitz constant of 𝑓, implying

𝑑𝑊(𝑓𝜔𝑖∗𝜇𝜔𝑖 , 𝑓𝜔′𝑖 ∗
𝜇𝜔𝑖 ) ⩽ 𝐿𝜎

−1|𝜔 − 𝜔′|.
The second term can be bounded using an analogous computation

𝑑𝑊(𝑓𝜔′
𝑖
∗𝜇𝜔𝑖 , 𝑓𝜔′𝑖 ∗

𝜇𝜔′
𝑖
) ⩽ 𝐿𝑑𝑊(𝜇𝜔𝑖 , 𝜇𝜔′𝑖

) ⩽ 𝐿 Lip(𝜇)𝜎−1|𝜔 − 𝜔′|.
where we used that the Lipschitz constant of 𝑓𝜔∗ is equal to the Lipschitz constant of 𝑓𝜔 (see
Lemma C.1 in the Appendix) which is upper bounded by 𝐿 as in (H0.3).
Putting all the estimates back together we obtain

𝑑𝑊((𝐹∗𝜇)𝜔, (𝐹∗𝜇)𝜔′) ⩽ 𝐿𝜎
−1[1 + Lip(𝜇)] |𝜔 − 𝜔′|. □

As a corollary to the previous proposition, for 𝜎 sufficiently large, we obtain the existence of
an invariant class of measures whose disintegration has Lipschitz dependence on the variable
𝜔 ∈ 𝕋, and whose Lipschitz constant goes to zero as 𝜎 → ∞. More precisely, let us define the set
1,Leb𝕋

(𝕋 × 𝕋) of probability measures on 𝕋 × 𝕋 with horizontal marginal Leb𝕋. Let’s call Γ𝓁 ⊂1,Leb𝕋
the set of those probability measures that have Lipschitz disintegration with Lipschitz

constant at most 𝓁:

Γ𝓁 ∶=
{
𝜇 ∈1,Leb𝕋

∶ Lip(𝜇) ⩽ 𝓁
}
.

Corollary 3.1. If 𝜎 > 𝐿, then the set Γ𝓁 is invariant under the push-forward 𝐹∗ for every 𝓁 ⩾ 𝓁0
with

𝓁0 ∶=
𝐿𝜎−1

1 − 𝐿𝜎−1
.

Actually one can show more: For 𝓁 > 𝓁0, Γ𝓁 is mapped by 𝐹∗ into Γ𝓁′ with 𝓁′ < 𝓁 and so 𝐹∗
“regularizes” the Lipschitz constant of the disintegration.
The following proposition controls the evolution of vertical marginals for two probability mea-

sures in Γ𝓁0 under application of 𝐹∗. In the statements below, the constants 𝐶 and 𝜆 are the same
as those in Assumption (H).
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Proposition 3.3 (Approximate Memory Loss). For every 𝜀 > 0 there is 𝜎0(𝜀) > 𝐿 such that if 𝜎 >
𝜎0(𝜀) then

i) 𝑑𝑊(Π𝐹
𝑛
∗𝜇1, Π𝐹

𝑛
∗𝜇2) ⩽ 𝐶𝜆

𝑛 + 𝜀, ∀𝜇1, 𝜇2 ∈ Γ𝓁0 ;

ii) 𝑑𝑊(Π𝐹
𝑛
∗𝜇, 𝜂0) ⩽ 𝐶𝜆

𝑛 + 𝜀, ∀𝜇 ∈ Γ𝓁0 ;

where 𝜂0 is the stationary measure for  .
Proof. Let 𝜇 ∶= 𝜇1 − 𝜇2 and recall that Π𝜇 = ∫

𝕋
𝜇𝜔 𝑑𝜔 is the vertical marginal of 𝜇. Since

𝑑𝑊(𝜇𝜔, 𝜇𝜔′) ⩽ 𝓁0|𝜔 − 𝜔′| ⩽ 𝓁0

then 𝑑𝑊(𝜇𝜔,Π𝜇) ⩽ 𝓁0 (see Lemma C.2 in the Appendix). Therefore,

Π𝐹∗𝜇 = ∫𝕋 𝑑𝜔𝑓𝜔∗𝜇𝜔 = (Π𝜇) + ∫𝕋 𝑑𝜔𝑓𝜔∗(𝜇𝜔 − Π𝜇),

where  is defined in Equation (2.1) and, by Lemma C.1,

‖‖‖‖∫𝕋 𝑑𝜔𝑓𝜔∗(𝜇𝜔 − Π𝜇)‖‖‖‖𝑊 ⩽ 𝐿𝓁0.

For higher iterates, one gets the telescopic sum

Π𝐹𝑛∗𝜇 = ∫𝕋 𝑑𝜔𝑛−1𝑓𝜔𝑛−1∗((𝐹
𝑛−1
∗ 𝜇)𝜔𝑛−1 − Π𝐹

𝑛−1
∗ 𝜇) + ∫𝕋 𝑑𝜔𝑛−1𝑓𝜔𝑛−1∗(Π𝐹

𝑛−1
∗ 𝜇)

= 𝑛(Π𝜇) +
𝑛−1∑
𝑖=0

∫𝕋 𝑑𝜔𝑛−1𝑓𝜔𝑛−1∗ …∫𝕋 𝑑𝜔𝑖𝑓𝜔𝑖∗((𝐹
𝑖
∗𝜇)𝜔𝑖 − Π𝐹

𝑖
∗𝜇) (3.2)

and by triangle inequality

‖Π𝐹𝑛∗𝜇‖𝑊 ⩽ ‖𝑛Π𝜇‖𝑊 +

‖‖‖‖‖‖
𝑛−1∑
𝑖=0

∫𝕋 𝑑𝜔𝑛−1𝑓𝜔𝑛−1∗ …∫𝕋 𝑑𝜔𝑖𝑓𝜔𝑖∗((𝐹
𝑖
∗𝜇)𝜔𝑖 − Π𝐹

𝑖
∗𝜇)

‖‖‖‖‖‖𝑊. (3.3)

For the first term in the above inequality,

‖𝑛(Π𝜇)‖𝑊 ⩽ 𝐶𝜆𝑛

since 𝑑𝑊 ⩽ 𝑑𝑇𝑉 (see Lemma C.3) together with Assumption H. For the second term, each
summand can be treated as follows

‖‖‖‖∫𝕋 𝑑𝜔𝑛−1𝑓𝜔𝑛−1∗ …∫𝕋 𝑑𝜔𝑖𝑓𝜔𝑖∗
[
(𝐹𝑖∗𝜇1)𝜔𝑖 − (𝐹

𝑖
∗𝜇2)𝜔𝑖 − Π𝐹

𝑖
∗𝜇1 + Π𝐹

𝑖
∗𝜇2

]‖‖‖‖𝑊 ⩽

⩽ sup
𝜔
Lip(𝑓𝜔∗)

𝑛−1−𝑖 sup
𝜔

‖‖‖(𝐹𝑖∗𝜇1)𝜔𝑖 − (𝐹𝑖∗𝜇2)𝜔𝑖 − Π𝐹𝑖∗𝜇1 + Π𝐹𝑖∗𝜇2‖‖‖𝑊
⩽ 2𝐿𝑛−1−𝑖 𝓁0. (3.4)
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Now, one can pick 𝑛0 ∈ ℕ such that 𝐶𝜆𝑛0 ⩽ 𝜀∕2, and 𝜎0 > 0 so that

𝐿𝜎−1
0

1 − 𝐿𝜎−1
0

𝑛0−1∑
𝑖=0

𝐿𝑛0−1−𝑖 = 𝓁0

𝑛0−1∑
𝑖=0

𝐿𝑛0−1−𝑖 ⩽ 𝜀∕2.

This way, if 𝑛 ⩽ 𝑛0

‖Π𝐹𝑛∗𝜇‖𝑊 ⩽ 𝐶𝜆𝑛 + 2𝓁0

𝑛−1∑
𝑖=0

𝐿𝑛−1−𝑖 ⩽ 𝐶𝜆𝑛 + 𝜀∕2

and if 𝑛 ⩾ 𝑛0,

𝑑𝑊(Π𝐹
𝑛
∗𝜇1, Π𝐹

𝑛
∗𝜇2) = 𝑑𝑊(Π𝐹

𝑛0
∗ 𝐹

𝑛−𝑛0
∗ 𝜇1, Π𝐹

𝑛0
∗ 𝐹

𝑛−𝑛0
∗ 𝜇2) ⩽ 𝐶𝜆

𝑛0 + 𝜀∕2 ⩽ 𝐶𝜆𝑛 + 𝜀,

since 𝐹𝑛−𝑛0∗ 𝜇1 and 𝐹
𝑛−𝑛0
∗ 𝜇2 both belong to Γ𝓁0 which proves point i).

For point ii), going back to (3.2) and picking 𝑛0 and 𝜎0 as above, for any 𝜇 ∈ Γ𝓁0 and 𝑛 ⩽ 𝑛0

𝑑𝑊(Π𝐹
𝑛
∗𝜇, 𝜂0) ⩽ 𝑑𝑊(Π𝐹

𝑛
∗𝜇,𝑛Π𝜇) + 𝑑𝑊(𝑛Π𝜇, 𝜂0) ⩽ 𝐶𝜆𝑛 + 𝜀∕2

while for 𝑛 ⩾ 𝑛0 we use an analogous computation and get

𝑑𝑊(Π𝐹
𝑛
∗𝜇, 𝜂0) ⩽ 𝐶𝜆

𝑛 + 𝜀 □

We can now proceed with the proof of the main theorems in the case without distortion.

Proof of Theorem 2.1. under condition (H0+). The statement of the theorem is an immediate
corollary of point ii) of the proposition above. □

Proof of Theorem 2.2.under condition (H0+). Assume that ∫ 𝜓(𝑥)𝑑𝑥 = 0. Then𝜓 = 𝜓1 − 𝜓2where
𝜓1, 𝜓2 ⩾ 0 are the positive and negative parts of 𝜓 and ∫ 𝜓1 = ∫ 𝜓2 =∶ 𝑀. Take 𝜇 the measure on
𝕋 × 𝕋 defined as

𝑑𝜇(𝜔, 𝑥) = 𝑀−1(𝜓1(𝑥) − 𝜓2(𝑥))𝑑𝜔𝑑𝑥. (3.5)

It follows that 𝜇 = 𝜇1 − 𝜇2 where 𝜇1, 𝜇2 are probability measures having constant disintegrations
𝜇1,𝜔 = 𝑀

−1𝜓1(𝑥)𝑑𝑥 and 𝜇2,𝜔 = 𝑀−1𝜓2(𝑥)𝑑𝑥. In particular, 𝜇1, 𝜇2 ∈ Γ𝓁0 .
Now, picking 𝜎0 as in Proposition 3.3, if 𝜎 > 𝜎0,

||||∫𝕋×𝕋 𝜑 ◦𝐹𝑛(𝜔, 𝑥)𝜓(𝑥)𝑑𝑥𝑑𝜔|||| = 𝑀||||∫𝕋 𝜑(𝑥)𝑑(Π𝐹𝑛∗𝜇)(𝑥)||||
⩽ 𝑀 Lip(𝜑)(𝐶𝜆𝑛 + 𝜀) (3.6)

where we used that 𝜑 does not depend on 𝜔 ∈ 𝕋, and Proposition 3.3.
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If ∫ 𝜓 ≠ 0 consider 𝜓 ∶= 𝜓 − ∫ 𝜓.

∫𝕋×𝕋 𝜑 ◦𝐹
𝑛(𝜔, 𝑥)𝜓(𝑥)𝑑𝑥𝑑𝜔 = ∫𝕋×𝕋 𝜑 ◦𝐹

𝑛(𝜔, 𝑥)𝜓(𝑥)𝑑𝑥𝑑𝜔

+

(
∫𝕋×𝕋 𝜑 ◦𝐹

𝑛(𝜔, 𝑥)𝑑𝜔𝑑𝑥 − ∫𝕋 𝜑(𝑥)𝑑𝜂0(𝑥)
)(

∫𝕋 𝜓(𝑥)𝑑𝑥
)

+

(
∫ 𝜑(𝑥)𝑑𝜂0(𝑥)

)(
∫𝕋 𝜓(𝑥)𝑑𝑥

)
.

For the first term, we use (3.6); for the second term||||∫𝕋×𝕋 𝜑 ◦𝐹𝑛(𝜔, 𝑥)𝑑𝜔𝑑𝑥 − ∫𝕋 𝜑(𝑥)𝑑𝜂0(𝑥)
|||| = ||||∫𝕋 𝜑(𝑥)𝑑(Π𝐹𝑛∗ Leb𝕋×𝕋 −𝜂0)(𝑥)||||
⩽ Lip(𝜑)𝑑𝑊(Π𝐹

𝑛
∗ Leb𝕋×𝕋, 𝜂0)

and from point ii) of Proposition 3.3 the above is less than Lip(𝜑)[𝐶𝜆𝑛 + 𝜀]. By triangle inequality|||||∫𝕋×𝕋 𝜑 ◦𝐹𝑛(𝜔, 𝑥)𝜓(𝑥)𝑑𝑥𝑑𝜔 −
(
∫𝕋 𝜑(𝑥)𝑑𝜂0(𝑥)

)(
∫𝕋 𝜓(𝑥)𝑑𝑥

)||||| ⩽ 𝐶𝜑,𝜓(𝐶𝜆𝑛 + 𝜀)
where 𝐶𝜑,𝜓 ⩽

3

2
‖𝜓‖𝐿1(Lip(𝜑) + 1). □

Remark 3.1. As a remark, note that if one tries to estimate the quantifier 𝜀 in Theorem 2.2 for
a given datum, by inspecting the proof of this simpler case, one realizes that a bound for 𝜀 is
proportional to the smallest number one gets from the sequence {max{𝐶𝜆𝑛, 2𝜎−1𝐿𝑛}}𝑛∈ℕ. Since
the first sequence is decreasing, while the second is increasing, the optimal trade off is achieved
when they are of about the same size. Imposing𝐶𝜆𝑛 = 2𝜎−1𝐿𝑛 gives the estimate 𝜀 ≲ 𝜎−𝛾 for some
𝛾 > 0 which depends on 𝐶, 𝜆, and 𝐿.

4 GENERAL CASE: PROOF OF THEOREM 2.2

4.1 Control on the disintegration along vertical fibres

Below we assume that 𝐹 satisfies assumptions (H0.1)-(H0.3) and Assumption (H).
Take a measure 𝜇0 on 𝕋𝑚1 × 𝕋𝑚2 with horizontal marginal equal to 𝜈0 ∈1(𝕋

𝑚1) which is
absolutely continuous with respect to Lebesgue, and let 𝜇1 ∶= 𝐹∗𝜇0. It follows from the skew-
product structure of 𝐹 that the horizontal marginal of 𝜇1 equals 𝜈1 ∶= g∗𝜈0. We will denote by
𝜌1 the density of 𝜈1†. Recall from Section 2 that g is a local diffeomorphism, g𝑖 are its invertible
branches, and ℎ𝑖 their inverses. Then an explicit expression of 𝜌1 in terms of 𝜌0 is given by

𝜌1(𝜔) =

𝑑∑
𝑖=1

𝜌0(𝜔𝑖)|Dg𝜔𝑖 | ∀𝜔 ∈ 𝕋𝑚1

where we denote by 𝜔𝑖 = ℎ𝑖𝜔 the preimages of 𝜔 and |Dg𝜔𝑖 | .
† Since g is a local diffeomorphism is in particular nonsingular, its push-forward sends absolutely continuous measures to
absolutely continuous measures.
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For 𝑘 ∈ {0, 1}, let {𝜇𝑘,𝜔}𝜔∈𝕋𝑚1 be a disintegration of 𝜇𝑘 w.r.t. the measurable partition {{𝜔} ×
𝕋𝑚2}𝜔∈𝕋𝑚1 . For a definition and some results on disintegrations see Appendix B.

Proposition 4.1. A disintegration {𝜇1,𝜔}𝜔∈𝕋𝑚1 of 𝜇1 is given by

𝜇1,𝜔 =
1

𝜌1(𝜔)

𝑑∑
𝑖=1

𝜌0(𝜔𝑖)|Dg𝜔𝑖 |𝑓𝜔𝑖∗𝜇0,𝜔𝑖 . (4.1)

Proof. Let 𝐵𝛿(𝜔) ⊂ 𝕋𝑚1 be the Euclidean ball centered at 𝜔 of radius 𝛿. By Theorem B.1 in
Appendix B, for Leb𝕋𝑚1 -a.e. 𝜔

𝜇1,𝜔 = lim
𝛿→0

∫𝐵𝛿(𝜔) 𝑑𝑠𝜌1(𝑠)𝜇1,𝑠
∫𝐵𝛿(𝜔) 𝑑𝑠𝜌1(𝑠)

, (4.2)

where the limit is with respect to the weak∗ topology. Using the definition of disintegration and
that 𝜇1(𝐵𝛿(𝜔) × 𝐼) = 𝜇0(𝐹−1(𝐵𝛿(𝜔) × 𝐼)), for every measurable set 𝐼 on 𝕋𝑚2 and 𝛿 > 0 sufficiently
small, one gets

∫𝐵𝛿(𝜔) 𝑑𝑠𝜌1(𝑠)𝜇1,𝑠 =
𝑑∑
𝑖=1

∫ℎ𝑖(𝐵𝛿(𝜔)) 𝑑𝑠𝜌0(𝑠)𝑓𝑠∗𝜇0,𝑠.

By changing variables, 𝑠 = ℎ𝑖(𝑠′), and multiplying and dividing by 𝜌1(𝑠), the above equals

∫𝐵𝛿(𝜔) 𝑑𝑠
′𝜌1(𝑠

′)

[
1

𝜌1(𝑠
′)

𝑑∑
𝑖=1

𝜌0(𝑠
′
𝑖
)|Dg𝑠′
𝑖
|𝑓𝑠′𝑖 ∗𝜇0,𝑠′𝑖

]
,

where we denoted 𝑠′
𝑖
= ℎ𝑖(𝑠

′). Applying Lebesgue’s differentiation theorem, Equation (4.2)
becomes

𝜇1,𝜔 =
1

𝜌1(𝜔)

𝑑∑
𝑖=1

𝜌0(𝜔𝑖)|Dg𝜔𝑖 |𝑓𝜔𝑖∗𝜇0,𝜔𝑖 . □

The formula for the evolution of disintegrations in (4.1) depends on 𝜈0 and 𝜈1, the horizontal
marginals of the measures 𝜇0 and 𝜇1. Thanks to assumptions on g , the evolution of the horizontal
can be controlled (see Lemma 4.1 below).
Consider for 𝑎 ⩾ 0, the cone of log-Lipschitz functions,

𝑎 ∶=
{
𝜑 ∶ 𝕋𝑚1 → ℝ+ ∶

𝜑(𝜔)

𝜑(𝜔′)
⩽ 𝑒𝑎|𝜔−𝜔′|}.

The following lemma gathers some standard facts about uniformly expandingmapswith bounded
distortion, such as g .

Lemma 4.1. Let g ∶ 𝕋𝑚1 → 𝕋𝑚1 be a 𝐶2 local diffeomorphism satisfying (H0.1)-(H0.2), and let 𝜌0
and 𝜌1 be as above.
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i) If 𝜌0 ∈ 𝑎, then 𝜌1 ∈ 𝜎−1𝑎+𝐷 . In particular, if 𝑎 ⩾ 𝑎0 ∶= 𝐷

1−𝜎−1
, then 𝜌1 ∈ 𝑎;

ii) If 𝜌0 ∈ 𝑎0 , calling 𝜌𝑛 the density of 𝜈𝑛 ∶= g𝑛∗ 𝜈0, there are 𝐶g > 0 and 𝜆g ∈ (0, 1) such that‖𝜌𝑛 − 𝜌g‖∞ ∶= sup
𝜔∈𝕋𝑚1

|𝜌𝑛(𝜔) − 𝜌g (𝜔)| ⩽ 𝐶g𝜆
𝑛
g .

Proof. See, for example, [36], [49]. □

Remark 4.1. In point ii) of Lemma 4.1, one can choose 𝐶g ∶= 𝐶g (𝐷, 𝜎) and 𝜆g ∶= 𝜆g (𝐷, 𝜎). More-
over, fixed 𝐷, 𝐶g and 𝜆g can be chosen to be decreasing with respect to 𝜎. This implies that fixed
𝐷 > 0 and 𝜎0 > 1, there are constants 𝐶 and 𝜆 ∈ (0, 1) such that 𝐶g < 𝐶 and 𝜆g < 𝜆 for any g
satisfying (H0.1)-(H0.2) with 𝜎 ⩾ 𝜎0.

From now on we will restrict our analysis to probability measures on 𝕋𝑚1 × 𝕋𝑚2 whose
horizontal marginals belong to 𝑎 for some 𝑎 > 0.
Proposition 4.2. Assume 𝜌0 ∈ 𝑎 for some 𝑎 ⩾ 𝑎0 and that 𝜇0 has Lipschitz disintegration. Then
the disintegration of 𝜇1 given in (4.1) is Lipschitz and

Lip (𝜇1) ⩽ 𝜎
−1𝐿 Lip (𝜇0) +

[
𝐶𝑎 + 𝜎

−1𝐿
]

where 𝐶𝑎 ∶= 𝑒(𝑎+𝜎
−1𝑎+𝐷)𝐶1 and 𝐶1 is the diameter of 𝕋𝑚1 .

Proof. The proof is analogous to that of Proposition 3.2, although one has toworkwith (4.1), rather
then the simpler formula (3.1). For 𝜔,𝜔′ ∈ 𝕋𝑚1 ,

𝑑𝑊(𝜇1,𝜔, 𝜇1,𝜔′ ) = sup
𝜑∈Lip1

∫ 𝜑𝑑

(
𝑑∑
𝑖=1

1

𝜌1(𝜔)

𝜌0(𝜔𝑖)|Dg𝜔𝑖 |𝑓𝜔𝑖∗𝜇0,𝜔𝑖 − 1

𝜌1(𝜔
′)

𝜌0(𝜔
′
𝑖
)|Dg𝜔′
𝑖
|𝑓𝜔′𝑖 ∗𝜇0,𝜔′𝑖

)

⩽ sup
𝜑∈Lip1

∫ 𝜑𝑑

(
𝑑∑
𝑖=1

1

𝜌1(𝜔)

𝜌0(𝜔𝑖)|Dg𝜔𝑖 |𝑓𝜔𝑖∗𝜇0,𝜔𝑖 − 1

𝜌1(𝜔
′)

𝜌0(𝜔
′
𝑖
)|Dg𝜔′
𝑖
|𝑓𝜔𝑖∗𝜇0,𝜔𝑖

)
+

+ sup
𝜑∈Lip1

𝑑∑
𝑖=1

∫ 𝜑𝑑

(
1

𝜌1(𝜔
′)

𝜌0(𝜔
′
𝑖
)|Dg𝜔′
𝑖
|𝑓𝜔𝑖∗𝜇0,𝜔𝑖 − 1

𝜌1(𝜔
′)

𝜌0(𝜔
′
𝑖
)|Dg𝜔′
𝑖
|𝑓𝜔′𝑖 ∗𝜇0,𝜔′𝑖

)
=∶ 𝐴 + 𝐵,

where to get the inequality we added and subtracted the same quantity and distributed the sup.
Upper bound for 𝐴. To bound the first term

𝐴 = sup
𝜑∈Lip1

𝑑∑
𝑖=1

1

𝜌1(𝜔)

𝜌0(𝜔𝑖)|Dg𝜔𝑖 |
⎛⎜⎜⎜⎜⎝
1 −

1

𝜌1(𝜔
′)

𝜌0(𝜔
′
𝑖
)|Dg𝜔′
𝑖
|

1

𝜌1(𝜔)

𝜌0(𝜔𝑖)|Dg𝜔𝑖
|
⎞⎟⎟⎟⎟⎠∫

𝜑𝑑(𝑓𝜔𝑖 ∗𝜇0,𝜔𝑖 )

⩽
1

𝜌1(𝜔)

𝑑∑
𝑖=1

𝜌0(𝜔𝑖)|Dg𝜔𝑖 | |||1 − 𝑒[𝑎+𝜎−1𝑎+𝐷]|𝜔−𝜔′||||
⩽ 𝑒[𝑎+𝜎

−1𝑎+𝐷]𝐶1 |𝜔 − 𝜔′|,
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where 𝐶1 > 0 is the diameter of 𝕋𝑚1 . To estimate the ratio in parenthesis, we used that: 𝜌0 ∈ 𝑎
with 𝑎 ⩾ 𝑎0 implies 𝜌1 ∈ 𝑎, |𝜑| ⩽ 1, and (H0.2).
Upper bound for 𝐵. The second term can be bounded by

𝑑𝑊

(
𝑑∑
𝑖=1

1

𝜌1(𝜔
′)

𝜌0(𝜔
′
𝑖
)|Dg𝜔′
𝑖
|𝑓𝜔𝑖∗𝜇0,𝜔𝑖 , 𝑑∑

𝑖=1

1

𝜌1(𝜔
′)

𝜌0(𝜔
′
𝑖
)|Dg𝜔′
𝑖
|𝑓𝜔′𝑖 ∗𝜇0,𝜔′𝑖

)
⩽ max

𝑖
𝑑𝑊(𝑓𝜔𝑖∗𝜇0,𝜔𝑖 , 𝑓𝜔′𝑖 ∗

𝜇0,𝜔′
𝑖
),

where we used that
∑𝑑
𝑖=1

1

𝜌1(𝜔
′)

𝜌0(𝜔
′
𝑖
)|Dg𝜔′
𝑖
| = 1, and Lemma C.4 on the Wasserstein distance between

convex combinations of measures. The distance 𝑑𝑊(𝑓𝜔𝑖∗𝜇0,𝜔𝑖 , 𝑓𝜔′𝑖 ∗𝜇0,𝜔′𝑖 ) can be estimated as in
the proof of Proposition 3.2 and gives

𝐵 ⩽ 𝜎−1𝐿[1 + Lip(𝜇0)] |𝜔 − 𝜔′|.
Putting together the estimates for 𝐴 and 𝐵

Lip (𝜇1) ⩽ 𝜎
−1𝐿 Lip (𝜇0) +

[
𝐶𝑎 + 𝜎

−1𝐿
]
. □

As a corollary to the previous proposition we obtain the existence of an invariant class of mea-
sures, Γ𝓁,𝑎, that have a Lipschitz disintegration with constant at most 𝓁 and horizontal marginal
with density in 𝑎:

Γ𝓁,𝑎 ∶=

{
𝜇 ∈1(𝕋

𝑚1 × 𝕋𝑚2) ∶ Lip (𝜇) ⩽ 𝓁 and
𝑑𝜋1∗𝜇

𝑑 Leb𝕋𝑚1
∈ 𝑎

}
.

Corollary 4.1.

i) If 𝜌 ∈ 𝑎 with 𝑎 ⩽ 𝑎0 ∶= 𝐷

1−𝜎−1
and 𝜎 > 𝐿, then 𝐹∗(Γ𝓁,𝑎) ⊂ Γ𝓁,𝑎0 for every 𝓁 ⩾ 𝓁0 with

𝓁0 ∶=
𝜎−1𝐿 + 𝐶𝑎0(1 + 𝐷)(

1 − 𝜎−1𝐿
) . (4.3)

ii) If there are 𝑎 > 0 and 𝓁 > 0 such that 𝜇 ∈ Γ𝓁,𝑎, then for every 𝛿 > 0 there is𝑁 ∈ ℕ such that

Lip(𝐹𝑛∗𝜇) ⩽ 𝓁0 + 𝛿

for all 𝑛 > 𝑁.

Proof. To prove i), recall that the horizontal marginal of 𝐹∗𝜇 is the push-forward under g of the
horizontal marginal of 𝜇. Since the horizontal marginal of 𝜇 has density in 𝑎0 , by the inclusion𝑎 ⊂ 𝑎0 and Lemma 4.1, the horizontal marginal of 𝐹∗𝜇 belongs to 𝑎0 . By Proposition 4.2 and
the choice of 𝓁0, it follows that if Lip(𝜇) ⩽ 𝓁0 then also Lip(𝐹∗𝜇) ⩽ 𝓁0.
For point ii) notice that 𝐹𝑛∗𝜇 belongs to Γ𝓁𝑛,𝑎𝑛 for some 𝑎𝑛 and 𝓁𝑛 such that 𝑎𝑛 → 𝑎0 as 𝑛 → ∞

by Lemma 4.1, and 𝓁𝑛 → 𝓁0 as 𝑛 → ∞ by Proposition 4.2. The claim follows easily. □
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4.2 Tracking the evolution of the vertical marginal

Let’s consider1,𝜈g
(𝕋𝑚1 × 𝕋𝑚2) the set of Borel probability measures on 𝕋𝑚1 × 𝕋𝑚2 having hori-

zontalmarginal equal to 𝜈g , the invariantmeasure for g , and recall that for𝜇 ∈1,𝜈g
(𝕋𝑚1 × 𝕋𝑚2),

the vertical marginal is given by

Π𝜇 = ∫𝕋𝑚2 𝑑𝜔𝜌g (𝜔)𝜇𝜔.

For every 𝑖 = 1, … , 𝑑, call

𝜌𝑖 ∶= 𝜈g (𝐼𝑖) = ∫𝐼𝑖 𝑑𝜔𝜌g (𝜔)

the measure of 𝐼𝑖 with respect to the invariant measure of g . Define the map 𝚫 ∶1,𝜈g
(𝕋𝑚1 ×

𝕋𝑚2) → (1(𝕋
𝑚2))𝑑 in the following way

(𝚫𝜇)𝑖 ∶= 𝜌
−1
𝑖 ∫𝐼𝑖 𝑑𝜔𝜌g (𝜔)𝜇𝜔,

that is, (𝚫𝜇)𝑖 is the average of the disintegration {𝜇𝜔}𝜔∈𝕋𝑚1 on 𝐼𝑖 with respect to the invariant
measure of g . The map 𝚫 gives a decomposition of 𝜇 which can be viewed as a coarse-graining of
the disintegration of {𝜇𝜔}𝜔∈𝕋𝑚1 . Moreover, for any 𝜇 ∈1,𝜈g

(𝕋𝑚1 × 𝕋𝑚2)

Π𝜇 =

𝑑∑
𝑖=1

𝜌𝑖(𝚫𝜇)𝑖,

therefore, by keeping track of 𝚫(𝐹𝑛∗𝜇), we can keep track of Π𝐹
𝑛
∗𝜇.

Consider also

𝑖 ∶= 𝜌𝑖−1 ∫𝐼𝑖 𝑑𝜔𝜌g (𝜔)𝑓𝜔∗, (4.4)

which is the average of the operators {𝑓𝜔∗}𝜔∈𝕋𝑚1 on 𝐼𝑖 w.r.t. 𝜈g restricted to 𝐼𝑖 and normalized. A
lemma below shows that 𝑖 is an approximation of 𝑓𝜔∗ for 𝜔 ∈ 𝐼𝑖 . The smaller is the size of 𝐼𝑖 , i.e.
the larger is 𝜎 > 0, the better is the approximation.
For every 1 ⩽ 𝑖, 𝑗 ⩽ 𝑑, define the operators

𝑖𝑗 ∶= 𝜌𝑖−1
(
∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 |
)
𝑗; (4.5)

and consider the operator  ∶ (1(𝕋
𝑚2))𝑑 → (1(𝕋

𝑚2))𝑑

(𝝁)𝑖 =

𝑑∑
𝑗=1

𝑖𝑗(𝝁)𝑗. (4.6)
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Remark 4.2. Before moving on, let us stress why the above mappings 𝚫 and  are important:
𝚫(𝐹∗𝜇) and (𝚫𝜇) are very close when the expansion of g is very large†. This will let us prove
that for fixed 𝑛, we can approximate 𝚫(𝐹𝑛∗𝜇)with 

𝑛(𝚫𝜇)when the expansion of g is sufficiently
large, with the advantage that  has good contraction properties (thanks to its relation with  ,
see Remark 4.5).

Remark 4.3. Notice that both operators 𝚫 and  depend on 𝑑, the number of branches of g , and
therefore on 𝜎. Since we ultimately want to let 𝜎 be large in order for the RHS of (4.7) to be small,
we will have to keep 𝜎 and 𝑑 explicit in all our estimates.

The remarks above is formalized in the following proposition. For 𝝁1, 𝝁2 ∈ (1(𝕋
𝑚2))𝑑 we

define

𝑑𝑊(𝝁1, 𝝁2) = max
𝑖=1,…,𝑑

𝑑𝑊((𝝁1)𝑖, (𝝁2)𝑖).

Proposition 4.3. If 𝜇 ∈ Γ𝓁0,𝑎0 , with 𝓁0 and 𝑎0 as in Corollary 4.1, then there is a constant 𝐾# > 0
uniform in 𝜎, and there is 𝐶3 ∶ (1, +∞) → ℝ+ decreasing such that

𝑑𝑊(𝚫(𝐹
𝑛
∗𝜇),

𝑛(𝚫𝜇)) < 𝐾#
𝐿𝑛+1 − 𝐿

𝐿 − 1

(
𝓁0𝜎

−1 + 𝐶3(𝜎)‖𝜌0 − 𝜌g‖∞ )
, (4.7)

where 𝜌0 is the density of the horizontal marginal of 𝜇.

Proof. Let’s call 𝜈0 the horizontal marginal of 𝜇, and 𝜌0 ∈ 𝑎0 its density. Let’s denote by 𝜈𝑛 ∶=
𝐹𝑛∗𝜈0 and by 𝜌𝑛 ∶=

𝑑𝜈𝑛
𝑑 Leb

. By Lemma 4.1, 𝜌𝑛 ∈ 𝑎0 for every 𝑛 ∈ ℕ0.
First, let’s prove (4.7) for 𝑛 = 1. Recalling the disintegration (4.1),

(𝚫(𝐹∗𝜇))𝑖 = 𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔𝜌g (𝜔)(𝐹∗𝜇)𝜔

= 𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔)

𝜌1(𝜔)

𝑑∑
𝑗=1

𝜌0(𝜔𝑗)|Dg𝜔𝑗 |𝑓𝜔𝑗∗𝜇𝜔𝑗
= 𝜌𝑖

−1 ∫𝐼𝑖 𝑑𝜔
(
𝜌g (𝜔)

𝜌1(𝜔)
− 1

) 𝑑∑
𝑗=1

𝜌0(𝜔𝑗)|Dg𝜔𝑗 |𝑓𝜔𝑗∗𝜇𝜔𝑗 (4.8)

+ 𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝑑∑
𝑗=1

𝜌0(𝜔𝑗) − 𝜌g (𝜔𝑗)|Dg𝜔𝑗 | 𝑓𝜔𝑗∗𝜇𝜔𝑗 (4.9)

+ 𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝑑∑
𝑗=1

𝜌g (𝜔𝑗)|Dg𝜔𝑗 |𝑓𝜔𝑗∗𝜇𝜔𝑗 , (4.10)

where in the last equality we added and subtracted the same terms. We denote by 𝐴 the term in
(4.8) and by 𝐵 the term in (4.9). Call Lip10(𝕋

𝑚2; ℝ), Lip10 for brevity, the set of Lipschitz functions

†One can think of as an approximation for the action of𝐹∗ onmeasures𝜇 having constant disintegration on the intervals
𝐼𝑖 .
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from 𝕋𝑚2 toℝwith zero integral. When computing ‖ ⋅ ‖𝑊 , taking the supremum over Lip1 or Lip10
the same, as the integrals of 𝜑 and that of 𝜑 − ∫ 𝜑 are the same. This has the advantage that for
𝜑 ∈ Lip10, |𝜑| ⩽ 𝐶2, where 𝐶2 is the diameter of 𝕋𝑚2 .

𝑑𝑊((𝚫(𝐹∗𝜇))𝑖, (𝚫𝜇)𝑖) = sup
𝜑∈Lip10

∫ 𝜑𝑑

(
𝐴 + 𝐵 +

𝑑∑
𝑗=1

𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 | (𝑓𝜔𝑗∗ − 𝑗)𝜇𝜔𝑗

+

𝑑∑
𝑗=1

𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 |𝑗
(
𝜇𝜔𝑗 − (𝚫𝜇)𝑗

))
. (4.11)

Let us call

𝛿𝑛 ∶= ‖𝜌𝑛 − 𝜌g‖∞ = sup
𝜔∈𝕋𝑚1

|𝜌𝑛(𝜔) − 𝜌g (𝜔)|.
Since 𝜌1 ∈ 𝑎, |𝜌1| ⩾ 𝑒−𝐶1𝐷 where 𝐶1 > 0 is the diameter of 𝕋𝑚1 . Therefore|||||1 −

𝜌g (𝜔)

𝜌1(𝜔)

||||| ⩽ 1

𝜌1(𝜔)
|𝜌g (𝜔) − 𝜌1(𝜔)| ⩽ 𝑒𝐶1𝐷𝛿1.

Now we distribute the sup among the four terms on the RHS of (4.11), and estimate each of them
separately.

sup
𝜑∈Lip10

∫𝕋𝑚2 𝜑𝑑𝐴 ⩽ 𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝑑∑
𝑗=1

𝜌0(𝜔𝑗)|Dg𝜔𝑗 | sup
𝜑∈Lip10

|||||∫𝕋𝑚2 𝜑(𝑥)𝑑
[(
𝜌g (𝜔)

𝜌1(𝜔)
− 1

)
𝑓𝜔𝑗∗𝜇𝜔𝑗

]
(𝑥)

|||||
⩽ 𝜌𝑖

−1 ∫𝐼𝑖 𝑑𝜔
𝑑∑
𝑗=1

𝜌0(𝜔𝑗)|Dg𝜔𝑗 |𝐶2𝑒𝐶1𝐷𝛿1
= 𝐶2𝑒

𝐶1𝐷𝛿1𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔𝜌1(𝜔)

= 𝐶2𝑒
𝐶1𝐷𝛿1

𝜈1(𝐼𝑖)

𝜈g (𝐼𝑖)

⩽ 𝐶2𝑒
3𝐶1𝐷𝛿1.

sup
𝜑∈Lip10

∫ 𝜑𝑑𝐵 = sup
𝜑∈Lip10

∫𝕋𝑚2 𝜑(𝑥)𝑑
[
𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝑑∑
𝑗=1

𝜌0(𝜔𝑗) − 𝜌g (𝜔𝑗)|Dg𝜔𝑗 | 𝑓𝜔𝑗∗𝜇𝜔𝑗

]
(𝑥)

⩽ 𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝑑∑
𝑗=1

1|Dg𝜔𝑗 | sup
𝜑∈Lip10

||||∫ 𝜑(𝑥)(𝜌0(𝜔𝑗) − 𝜌g (𝜔𝑗))𝑑𝑓𝜔𝑗∗𝜇𝜔𝑗 (𝑥)
||||

⩽ 𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝑑∑
𝑗=1

1|Dg𝜔𝑗 |𝐶2𝛿0
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=
g∗ Leb𝕋𝑚1 (𝐼𝑖)

𝜈g (𝐼𝑖)
𝐶2𝛿0

⩽ 𝑒2𝐶1𝐷𝐶2𝛿0

For the third term in the big parenthesis of Equation (4.11), using the definition of 𝑗
||||||∫ 𝜑(𝑥)

𝑑∑
𝑗=1

𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 | 𝑑(𝑓𝜔𝑗∗ − 𝑗)𝜇𝜔𝑗 (𝑥)
||||||

=

||||||
𝑑∑
𝑗=1

∫𝐼𝑗 𝑑𝜔
′𝜌g (𝜔

′)𝜌𝑗
−1
𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 | ∫ 𝜑(𝑥)𝑑(𝑓𝜔𝑗∗ − 𝑓𝜔′∗)𝜇𝜔𝑗 (𝑥)

||||||
=

||||||
𝑑∑
𝑗=1

∫𝐼𝑗 𝑑𝜔
′𝜌g (𝜔

′)𝜌𝑗
−1
𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 | ∫ (𝜑 ◦𝑓𝜔𝑗 (𝑥) − 𝜑 ◦𝑓𝜔′(𝑥))𝑑𝜇𝜔𝑗 (𝑥)
||||||

⩽

𝑑∑
𝑗=1

∫𝐼𝑗 𝑑𝜔
′𝜌g (𝜔

′)𝜌𝑗
−1
𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 | ∫ |𝜑 ◦𝑓𝜔𝑗 (𝑥) − 𝜑 ◦𝑓𝜔′(𝑥)|𝑑𝜇𝜔𝑗 (𝑥)
⩽

𝑑∑
𝑗=1

∫𝐼𝑗 𝑑𝜔
′𝜌g (𝜔

′)𝜌𝑗
−1
𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 | 𝐿 diam(𝐼𝑗)
⩽ 𝐿𝜎−1𝐶1

𝑑∑
𝑗=1

𝜌𝑗
−1
𝜈g (𝐼𝑗)𝜌𝑖

−1 ∫𝐼𝑖 𝑑𝜔
𝜌g (𝜔𝑗)|Dg𝜔𝑗 |

⩽ 𝐿𝜎−1𝐶1

𝑑∑
𝑗=1

𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 |
⩽ 𝐿𝜎−1𝐶1,

where we used that 𝜌𝑗 = 𝜈g (𝐼𝑗); that

|𝜑 ◦𝑓𝜔𝑗 (𝑥) − 𝜑 ◦𝑓𝜔′(𝑥)| ⩽ |𝑓𝜔𝑗 (𝑥) − 𝑓𝜔′(𝑥)| ⩽ 𝐿|𝜔𝑗 − 𝜔′| ⩽ 𝐿 diam(𝐼𝑗) ⩽ 𝐿𝜎−1𝐶1,
recall that 𝐿 is the Lipschitz constant of 𝑓 and 𝐶1 = diam(𝕋𝑚1); and that

𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝑑∑
𝑗=1

𝜌g (𝜔𝑗)|Dg𝜔𝑗 | = 𝜌𝑖−1 ∫𝐼𝑖 𝑑𝜔𝜌g (𝜔) = 1. (4.12)

For the last term on the RHS of Equation (4.11),

∫ 𝜑(𝑥)𝑑

(
𝑑∑
𝑗=1

𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 |𝑗(𝜇𝜔𝑗 − (𝚫𝜇)𝑗)
)
(𝑥)
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=

𝑑∑
𝑗=1

𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 | ∫ 𝜑(𝑥)𝑑𝑗(𝜇𝜔𝑗 − (𝚫𝜇)𝑗)(𝑥)

⩽

𝑑∑
𝑗=1

𝜌𝑖
−1 ∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 | Lip(𝑗)𝑑𝑊(𝜇𝜔𝑗 , (𝚫𝜇)𝑗) (4.13)

⩽ 𝐿𝓁0𝜎
−1𝐶1, (4.14)

where in the last step we used that Lip(𝑗) ⩽ sup𝜔 Lip(𝑓𝜔∗) ⩽ 𝐿 and that
𝑑𝑊(𝜇𝜔𝑗 , (𝚫𝜇)𝑗) ⩽ 𝓁0 diam(𝐼𝑗) ⩽ 𝓁0𝜎

−1𝐶1.

Putting all of the above together we conclude that there is 𝐾# > 0 (independent of 𝜎 > 0) such
that

𝑑𝑊((𝚫(𝐹∗𝜇))𝑖, (𝚫𝜇)𝑖) ⩽ 𝐾#(𝜎
−1 + 𝛿0 + 𝛿1).

Now, since for every 𝑘 ∈ ℕ, 𝐹𝑘∗𝜇 ∈1,𝜈𝑘
(𝕋𝑚1 × 𝕋𝑚1) ∩ Γ𝓁0 , by repeated applications of the

triangle inequality

𝑑𝑊(𝚫𝐹
𝑛
∗𝜇,

𝑛𝚫𝜇) ⩽

𝑛−1∑
𝑘=0

𝑑𝑊(
𝑛−𝑘−1𝚫(𝐹∗𝐹

𝑘
∗𝜇),

𝑛−𝑘𝚫(𝐹𝑘∗𝜇))

⩽

𝑛−1∑
𝑘=0

(
sup
𝜔
Lip(𝑓𝜔∗)

)𝑛−𝑘−1
𝑑𝑊(𝚫(𝐹∗𝐹

𝑘
∗𝜇),𝚫(𝐹

𝑘
∗𝜇))

⩽ 𝐾#

𝑛−1∑
𝑘=0

𝐿𝑛−𝑘
[
𝓁0𝜎

−1 + 𝛿𝑘 + 𝛿𝑘+1
]

⩽ 𝐾#

[
𝓁0𝜎

−1 +

𝑛−1∑
𝑘=0

𝛿𝑘 + 𝛿𝑘+1

]
𝑛−1∑
𝑘=0

𝐿𝑛−𝑘

⩽ 𝐾#(𝓁0𝜎
−1 + 𝐶3𝛿0)

𝑛−1∑
𝑘=0

𝐿𝑛−𝑘,

where we used that by Lemma 4.1, 𝛿𝑘 ⩽ 𝐶g𝜆
𝑘
g
𝛿0, and 𝐶3 ∶=

2𝐶g

1−𝜆g
. □

The operator has good spectral properties. To prove it, we are going to need the lemma below.

Lemma 4.2. For every 𝑖, 𝑗 = 1, … , 𝑑,

𝜌𝑖
−1
𝜌𝑗
−1 ∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 | > 𝑝,
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with

𝑝 ∶= 𝑒
−𝐶1𝐷

[
3

1−𝜎−1
+1

]
∈ (0, 1),

where 𝐷 is the bound on the distortion of the map g , and 𝐶1 is the diameter of 𝕋𝑚1 .

Proof. Recall that 𝜔𝑗 is shorthand notation for ℎ𝑗(𝜔). Since

∫𝕋𝑚1 𝑑𝜔
1|Dg𝜔𝑗 | = Leb𝕋𝑚1 (𝐼𝑗) =∶ |𝐼𝑗|,

and |Dg ◦ℎ𝑗| is continuous, there is 𝜔0 such that
1|Dgℎ𝑗(𝜔0)| = |𝐼𝑗|.

Recalling the notation 𝜔𝑗 = ℎ𝑗(𝜔), the bound on the distortion (H0.2) gives

|𝐼𝑗|−1|Dg𝜔𝑗 |−1 = |Dgℎ𝑗(𝜔0)||Dgℎ𝑗(𝜔)| ⩾ 𝑒−𝐷|𝜔−𝜔0| ⩾ 𝑒−𝐷𝐶1 ,
where 𝐶1 equals the diameter of 𝕋𝑚1 w.r.t. the Euclidean distance.
Also, recall that 𝜌g ∈ 𝑎0 with 𝑎0 = 𝐷

1−𝜎−1
, therefore 𝑒−𝐶1𝑎0 ⩽ 𝜌g ⩽ 𝑒𝐶1𝑎0 and 𝜌𝑖 ⩽ 𝑒𝐶1𝑎0 |𝐼𝑖|.

Putting the above considerations together

𝜌𝑖
−1
𝜌𝑗
−1 ∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 | ⩾ 𝑒−𝐶1𝑎0 |𝐼𝑗|−1𝑒−𝐶1𝑎0 |𝐼𝑖|−1 ∫𝐼𝑖 𝑑𝜔 𝑒
−𝐶1𝑎0|Dg𝜔𝑗 |

⩾ 𝑒−3𝐶1𝑎0 |𝐼𝑖|−1 ∫𝐼𝑖 𝑑𝜔𝑒−𝐷𝐶1
⩾ 𝑒−3𝐶1𝑎0−𝐷𝐶1 . □

Remark 4.4. Notice that 𝑝 depends on 𝜎, but for 𝐷 fixed, 𝑝 increases with 𝜎 > 1. In particular,
assuming that 𝜎 ⩾ 𝜎0 > 1, we get the bound

𝑝 ⩾ 𝑒
−𝐶1𝐷

[
1+ 3

1−𝜎−1
0

]
,

which is independent of 𝜎.

Lemma 4.2 implies that  can be decomposed in the following way: there are 𝑝𝑖𝑗 ⩾ 0 such that

()𝑖𝑗 = 𝑖𝑗 = 𝑝 ∫𝐼𝑗 𝑑𝜔𝜌g (𝜔)𝑓𝜔∗ + 𝑝𝑖𝑗𝑗. (4.15)
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Define 1 ∶ (1(𝕋
𝑚2))𝑑 → (1(𝕋

𝑚2))𝑑 as

(1)𝑖𝑗 = ∫𝐼𝑗 𝑑𝜔𝜌g (𝜔)𝑓𝜔∗,

and 2 ∶ (1(𝕋
𝑚2))𝑑 → (1(𝕋

𝑚2))𝑑 as

(2)𝑖𝑗 ∶= 𝑝𝑖𝑗𝑗,
so that  = 𝑝1 + 2.

Remark 4.5. Notice that (𝟏)𝑖𝑗 does not depend on 𝑖, and summing over 𝑗∑
𝑗

(𝟏)𝑖𝑗 =  .

When  acts on a vector of measures 𝝂 = 𝜈(1, … , 1) having all identical entries, one has

(𝝂)𝑖 = 𝑝𝜈 +
∑
𝑗

(2)𝑖𝑗𝜈.

The spectral properties of  and the lower bound on 𝑝 found in Lemma 4.2, will be used in a
coupling argument, Proposition 4.4 below, that ultimately yields the spectral properties of .

In a proposition belowwe show that the operatorhas good contracting propertieswith respect
to 𝑑𝑇𝑉 . First we state a couple of lemmas.

Lemma 4.3. For every 𝝁1, 𝝁2 ∈ (1(𝕋))
𝑑

𝑑𝑇𝑉(𝝁1,𝝁2) ⩽ 𝑑𝑇𝑉(𝝁1, 𝝁2). (4.16)

Proof. By definition of Total Variation distance, transfer operators are weak contractions with
respect to 𝑑𝑇𝑉 ; in particular, for any 𝜂1, 𝜂2 ∈1(𝕋) and any 𝜔 ∈ 𝕋𝑚1

𝑑𝑇𝑉(𝑓𝜔∗𝜂1, 𝑓𝜔∗𝜂2) ⩽ 𝑑𝑇𝑉(𝜂1, 𝜂2),

and therefore

𝑑𝑇𝑉(𝑗𝜂1,𝑗𝜂2) ⩽ 𝑑𝑇𝑉(𝜂1, 𝜂2) (4.17)

for any 𝑗.
By formula 4.12 one gets that for every 𝑖

𝑑𝑇𝑉((𝝁1)𝑖, (𝝁2)𝑖)

= 𝑑𝑇𝑉

(∑
𝑗

𝜌𝑖
−1

(
∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 |
)
𝑗(𝝁1)𝑗,

∑
𝑗

𝜌𝑖
−1

(
∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 |
)
𝑗(𝝁2)𝑗

)
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⩽
∑
𝑗

𝜌𝑖
−1

(
∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 |
)
𝑑𝑇𝑉(𝑗(𝝁1)𝑗,𝑗(𝝁2)𝑗)

⩽
∑
𝑗

𝜌𝑖
−1

(
∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 |
)
𝑑𝑇𝑉((𝝁1)𝑗, (𝝁2)𝑗)

⩽ 𝑑𝑇𝑉(𝝁1, 𝝁2). □

Lemma 4.4. For every 𝑛 ∈ ℕ, the following decomposition holds


𝑛𝝁 ∶= 𝑝𝑛𝑛1𝝁 + (1 − 𝑝

𝑛)𝑹𝑛𝝁.

where 𝑹𝑛 ∶ (1(𝕋
𝑚2))𝑑 → (1(𝕋

𝑚2))𝑑 is such that

𝑑𝑇𝑉(𝑹𝑛𝝁1, 𝑹𝑛𝝁2) ⩽ 𝑑𝑇𝑉(𝝁1, 𝝁2),

for all 𝝁1, 𝝁2 ∈ (1(𝕋
𝑚2))𝑑 .

Proof. Let’s start noticing that, by definition,
∑
𝑗 𝑝𝑖𝑗 = (1 − 𝑝) for every 𝑖, in fact comparing

equations (4.15) and (4.5) follows that

𝑝𝜌𝑖 + 𝑝𝑖𝑗 = 𝜌𝑗
−1

(
∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 |
)
,

and

∑
𝑗

(𝑝𝜌𝑗 + 𝑝𝑖𝑗) = 𝑝 +
∑
𝑗

𝑝𝑖𝑗 =
∑
𝑗

𝜌𝑖
−1

(
∫𝐼𝑖 𝑑𝜔

𝜌g (𝜔𝑗)|Dg𝜔𝑗 |
)
= 1.

Nowwe prove the statement of the lemma by induction on 𝑛 ∈ ℕ. For 𝑛 = 1,𝑹1 = (1 − 𝑝)−1𝟐
and recalling (4.17)

𝑑𝑇𝑉((1 − 𝑝)
−1
𝟐𝝁1, (1 − 𝑝)

−1
𝟐𝝁2)

= max
𝑖
𝑑𝑇𝑉

(∑
𝑗

(1 − 𝑝)−1𝑝𝑖𝑗𝑗(𝝁1)𝑗,
∑
𝑗

(1 − 𝑝)−1𝑝𝑖𝑗𝑗(𝝁2)𝑗
)

⩽ max
𝑖

∑
𝑗

(1 − 𝑝)−1𝑝𝑖𝑗𝑑𝑇𝑉((𝝁1)𝑗, (𝝁2)𝑗)

⩽ 𝑑𝑇𝑉(𝝁1, 𝝁2).

Now assume that the statement is true for 𝑛 − 1.


𝑛 = 

𝑛−1 = 𝑝𝑛1
𝑛 + 𝑝𝑛−1(1 − 𝑝)𝑹11

𝑛−1 + (1 − 𝑝𝑛−1)𝑹𝑛−1.
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Define

𝑹𝑛 ∶=
(1 − 𝑝)𝑝𝑛−1𝑹11

𝑛−1 + (1 − 𝑝𝑛−1)𝑹𝑛−1
1 − 𝑝𝑛

and by Lemma 4.3 applied to  and 𝟏, by the inductive step – (1 − 𝑝)𝑝𝑛−1 + (1 − 𝑝𝑛−1) = 1 −
𝑝𝑛– and by Lemma C.4

𝑑𝑇𝑉(𝑹𝑛𝝁1, 𝑹𝑛𝝁2) ⩽ 𝑑𝑇𝑉(𝝁1, 𝝁2). □

We are now ready to show that  has good contraction properties with respect to the Total
Variation distance. The proof uses a coupling argument.

Proposition 4.4. There are 𝐶 > 0 and 𝜆 ∈ (0, 1) such that for any 𝝁1, 𝝁2 ∈ (1(𝕋
𝑚2))𝑑

𝑑𝑇𝑉(
𝑛𝝁1,

𝑛𝝁2) ⩽ 𝐶𝜆
𝑛

𝑑𝑇𝑉(𝝁1, 𝝁2). (4.18)

Proof. Notice that all the rows of the operator 1 are equal, therefore, for any 𝝁 ∈ (1(𝕋
𝑚2))𝑑,

also all the components of1𝝁 are equal, that is, there is 𝜇′ ∈1(𝕋
𝑚2) such that (1𝝁)𝑖 = 𝜇′. By

definition of 1 follows that

(21𝝁)𝑖 =

𝑑∑
𝑗=1

(1)𝑖𝑗𝜇
′ =

𝑑∑
𝑗=1

∫𝐼𝑗 𝑑𝜔𝜌𝑗(𝜔)𝑓𝜔∗𝜇
′ = 𝜇′,

and by induction

(𝑛1𝝁)𝑖 = 𝑛−1𝜇′, (4.19)

for every 𝑖 and 𝑛 > 1.
Pick 𝑛0 > 1 such that 𝐶𝜆𝑛0−1 ⩽

1

2
. Then it follows from (4.19) and Assumption (H) that for all

𝑛 > 1

𝑑𝑇𝑉(
𝑛
1𝝁1,

𝑛
1𝝁2) ⩽

1

2
𝑑𝑇𝑉(𝝁1, 𝝁2).

which implies

𝑑𝑇𝑉(
𝑛0𝝁1,

𝑛0𝝁2) ⩽ 𝑝
𝑛0𝑑𝑇𝑉(

𝑛0
1
𝝁1,

𝑛0
1
𝝁2) + (1 − 𝑝

𝑛0)𝑑𝑇𝑉(𝑅𝑛0𝝁1, 𝑅𝑛0𝝁2)

⩽
(
1 −

1

2
𝑝𝑛0

)
𝑑𝑇𝑉(𝝁1, 𝝁2).

Define 𝜆 ∶= (1 −
1

2
𝑝𝑛0)

1
𝑛0 and 𝐶 ∶= 𝜆

−𝑛0


. For every 𝑛 ∈ ℕ there are 𝑘 ∈ ℕ and 0 ⩽ 𝑟 < 𝑛0
such that 𝑛 = 𝑘𝑛0 + 𝑟, and by Lemma 4.3

𝑑𝑇𝑉(
𝑛𝝁1,

𝑛𝝁2) = 𝑑𝑇𝑉(
𝑟𝑘𝑛0𝝁1,𝑟𝑘𝑛0𝝁2)

⩽ 𝑑𝑇𝑉(
𝑘𝑛0𝝁1,

𝑘𝑛0𝝁2)
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⩽ 𝜆
𝑛0𝑘


𝑑𝑇𝑉(𝝁1, 𝝁2)

⩽ 𝐶𝜆
𝑛

𝑑𝑇𝑉(𝝁1, 𝝁2). □

The contraction properties of , (4.18), and the weak*-compactness of (1(𝕋
𝑚2))𝑑 imply the

existence of 𝜼0 ∈ (1(𝕋
𝑚2))𝑑 such that 𝜼0 = 𝜼0.

The following proposition is the analogous of Proposition 3.3 in the case without distortion and
proves approximated memory loss for the vertical marginals under application of 𝐹∗. In this case,
there is an extra difficulty as, in order to prove Theorem 2.2, the class of probability measures we
start from should include those having horizontal marginal equal to Leb𝕋𝑚1 which in general can
be different from the invariant measure 𝜈g .

Proposition 4.5 (Approximate Memory Loss). Fix 𝐷, 𝐿 > 0. There is 𝐶′′

> 0 such that given any

𝜀 > 0, there is 𝜎0 > 𝐿 such that for any 𝜎 > 𝜎0, and any 𝐹 satisfying (H0.1)-(H0.3) and Assumption
(H)

i)

𝑑𝑊(Π𝐹
𝑡
∗𝜇1, Π𝐹

𝑡
∗𝜇2) ⩽ 𝐶

′′

𝜆𝑡

+ 𝜀, ∀𝑡 ∈ ℕ

for any 𝜇1, 𝜇2 ∈ Γ𝓁0,𝑎0 , 𝓁0 defined in (4.3);
ii)

𝑑𝑊

(
Π𝐹𝑡∗𝜇,

𝑑∑
𝑖=1

𝜌𝑖(𝜼0)𝑖

)
⩽ 𝐶′′


𝜆𝑡

+ 𝜀, ∀𝑡 ∈ ℕ

for any 𝜇 ∈ Γ𝑎0,𝓁0 , 𝓁0 defined in (4.3).

Proof. Pick any two probability measures 𝜇1, 𝜇2 ∈ Γ𝓁0 . Then for 𝑛,𝑚 ∈ ℕ

𝑑𝑊(𝚫𝐹
𝑛
∗ (𝐹

𝑚
∗ 𝜇1), 𝚫𝐹

𝑛
∗ (𝐹

𝑚
∗ 𝜇2)) ⩽ 𝑑𝑊(

𝑛𝚫𝐹𝑚∗ 𝜇1,
𝑛𝚫𝐹𝑚∗ 𝜇2)+

+ 𝑑𝑊(
𝑛𝚫𝐹𝑚∗ 𝜇1, 𝚫𝐹

𝑛
∗𝐹

𝑚
∗ 𝜇1)+

+ 𝑑𝑊(
𝑛𝚫𝐹𝑚∗ 𝜇2, 𝚫𝐹

𝑛
∗𝐹

𝑚
∗ 𝜇2)

⩽ 𝐶2𝑑𝑇𝑉(
𝑛𝚫𝐹𝑚∗ 𝜇1,

𝑛𝚫𝐹𝑚∗ 𝜇2)+

+ 2𝐾#𝐿
𝑛+1(𝜎−1 + 𝐶3(𝜎)‖𝜌𝑚 − 𝜌g‖∞)

⩽ 𝐶2𝐶𝜆
𝑛

+ 2𝐾#𝐿

𝑛+1(𝜎−1 + 𝐶3(𝜎)‖𝜌𝑚 − 𝜌g‖∞).
where we used triangle inequality, Lemma C.3 (recall that 𝐶2 is the diameter of 𝕋𝑚2), and
Proposition 4.3.
For every 𝜀 > 0, pick 𝑛0 ∈ ℕ,𝑚0 ∈ ℕ, and 𝜎0 large enough so that 𝐶2𝐶𝜆

𝑛0

⩽ 𝜀∕2, and

2𝐾#𝐿
𝑛+1(𝜎−1 + 𝐶3(𝜎)‖𝜌𝑚0 − 𝜌g‖∞) ⩽ 𝜀

2
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Notice that 𝑚0 is a transient one waits for the horizontal marginal to get sufficiently close to 𝜈g
while 𝑛0 is the time one waits for  to contract by the desired amount.
Calling 𝐶′


∶= 𝐶2𝐶𝜆

−𝑚0


𝑑𝑊(𝚫𝐹
𝑛+𝑚0
∗ 𝜇1, 𝚫𝐹

𝑛+𝑚0
∗ 𝜇2) ⩽ 𝐶2𝐶𝜆

𝑛0

+ 𝜀∕2 ⩽ 𝐶′


𝜆
𝑛+𝑚0


+ 𝜀.

for every 𝑛, in fact if 𝑛 ⩽ 𝑛0

𝑑𝑊(𝚫𝐹
𝑛+𝑚0
∗ 𝜇1, 𝚫𝐹

𝑛+𝑚0
∗ 𝜇2) ⩽ 𝐶

′

𝜆𝑛

+ 𝜀∕2

and if 𝑛 ⩾ 𝑛0

𝑑𝑊(𝚫𝐹
𝑛+𝑚0
∗ 𝜇1, 𝚫𝐹

𝑛+𝑚0
∗ 𝜇2) ⩽ 𝐶

′

𝜆
𝑛0

+ 𝜀∕2 ⩽ 𝐶′


𝜆𝑛

+ 𝜀.

Recall that

Π𝐹
𝑛+𝑚0
∗ 𝜇𝑗 =

𝑑∑
𝑖=1

𝜌𝑖(𝚫𝐹
𝑛+𝑚0
∗ 𝜇𝑗)𝑖

and since the above is a convex combination, using Lemma C.4

𝑑𝑊(Π𝐹
𝑛+𝑚0
∗ 𝜇1, Π𝐹

𝑛+𝑚0
∗ 𝜇2) ⩽ 𝑑𝑊(𝚫𝐹

𝑛+𝑚0
∗ 𝜇1, 𝚫𝐹

𝑛+𝑚0
∗ 𝜇2) ⩽ 𝐶

′

𝜆
𝑛+𝑚0


+ 𝜀

which proves point i) with 𝑡 ⩾ 𝑚0. If 𝑡 ⩽ 𝑚0, by the definition of 𝑑𝑊

𝑑𝑊(Π𝐹
𝑚
∗ 𝜇1,Π𝐹

𝑚
∗ 𝜇2) ⩽ 𝐶2

the diameter of 𝕋𝑚2 . Therefore, picking

𝐶′′

∶= max

{
𝐶′

, 𝐶2𝜆

−𝑚0


}
we get

𝑑𝑊(Π𝐹
𝑡
∗𝜇1, Π𝐹

𝑡
∗𝜇2) ⩽ 𝐶

′′

𝜆𝑡

+ 𝜀

for all 𝑡 ∈ ℕ which concludes the proof of point i).
To prove point ii), recall that 𝜼0 ∈ (1(𝕋

𝑚2))𝑑 is fixed by . Now

𝑑𝑊(𝚫𝐹
𝑛+𝑚0
∗ 𝜇, 𝜼0) ⩽ 𝑑𝑊(𝚫𝐹

𝑛+𝑚0
∗ 𝜇,𝑛𝚫𝐹

𝑚0
∗ 𝜇) + 𝑑𝑊(

𝑛𝚫𝐹
𝑚0
∗ 𝜇,𝑛𝜼0)

⩽ 𝑑𝑊(𝚫𝐹
𝑛+𝑚0
∗ 𝜇,𝑛𝚫𝐹

𝑚0
∗ 𝜇) + 𝐶2𝑑𝑇𝑉(

𝑛𝚫𝐹
𝑚0
∗ 𝜇,𝑛𝜼0)

⩽ 𝐾#𝐿
𝑛+1(𝜎−1 + 𝐶3(𝜎)‖𝜌𝑚 − 𝜌g‖∞) + 𝐶2𝐶𝜆

𝑛

.

In a way completely analogous to the proof of point i) one can show that for every 𝜀 > 0 there are
𝜎0 sufficiently large and 𝐶′′ > 0 such that for 𝜎 > 𝜎0

𝑑𝑊(𝚫𝐹
𝑡
∗𝜇, 𝜼0) ⩽ 𝐶

′′

𝜆𝑡

+ 𝜀.
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By definition of 𝑑𝑊 , the above means that 𝑑𝑊((𝚫𝐹𝑡∗𝜇)𝑖, (𝜼0)𝑖) ⩽ 𝐶
′′

𝜆𝑡

+ 𝜀 for all 𝑖, which implies

that

𝑑𝑊

(∑
𝑖

𝜌𝑖 (𝚫𝐹
𝑡
∗𝜇)𝑖,

∑
𝑖

𝜌𝑖 (𝜼0)𝑖

)
⩽ 𝐶′′


𝜆𝑡

+ 𝜀.

Since Π𝐹𝑛∗𝜇 =
∑
𝑖 𝜌𝑖 (𝚫𝐹

𝑛
∗𝜇)𝑖 , the statement follows. □

Proof of Theorem 2.1. The statement of the theorem is the content of point ii) of the proposition
above. □

Proof of Theorem 2.2. With all the work above done, the proof of the theorem is almost iden-
tical to the case without distortion. The only difference is that instead of 𝜂0 in the proof of the
case without distortion, one has to substitute

∑
𝑖 𝜌𝑖 (𝜼0)𝑖 , and apply Proposition 4.5 in place of

Proposition 3.3. □

4.3 Fixed point for  and fixed point for 

Point ii) of Proposition 4.5 shows that if 𝜎 is sufficiently large, then the vertical marginal of
𝐹𝑛∗𝜇 becomes close to 𝜂 =

∑𝑑
𝑖=1 𝜌𝑖(𝜼0)𝑖 . The purpose of this section is to remark that, in gen-

eral, 𝜂 is different (and possibly quite far) from 𝜂0, the stationary measure of  . We prove
this fact in an indirect way by showing that the unique fixed point of  ∶= ∫

𝕋
𝑑𝜔𝜌g (𝜔)𝑓𝜔∗,

𝜂0, and the unique fixed point of  ′ ∶= ∫
𝕋
𝑑𝜔𝜌g𝑘−1(𝜔)(𝑓g𝑘−1(𝜔) ◦ … ◦𝑓𝜔)∗, that we will call 𝜂′0,

can be in general very different for some 𝑘 > 1. If this is the case, Π𝐹𝑛𝑘∗ Leb
𝕋𝑚1×𝕋

𝑚2 cannot
become close to both 𝜂0 and 𝜂′0, and since  ′ is the random counterpart of 𝐹𝑘, it implies that∑𝑑
𝑖=1 𝜌𝑖(𝜼0)𝑖 can be far from the fixed points of  or/and  ′. At the end of the section we

also give numerical evidence that 𝜂 can be different from 𝜂0 when the map g has nonzero
distortion.
For simplicity of exposition,we are going to present an example that does not satisfy the smooth-

ness requirements of Theorem 2.2. However, with a small modification on a set of arbitrarily small
measure, the system can be made as smooth as one likes and all the considerations below carry
over to the smoothed version.
First of all, we define the map g ∶= g𝑀,𝜅 ∶ 𝕋 → 𝕋 where 𝑀 ∈ ℕ and 𝜅 ∈ (0, 1) are param-

eters. We identify 𝕋 with [0,1] in the usual way and divide [0,1] into 2𝑀 intervals of equal
length

𝐼𝑗 ∶=

[
𝑗 − 1

2𝑀
,
𝑗

2𝑀

]
.

Let 𝜅′ = 1 − 𝜅. Define for 0 ⩽ 𝑗 ⩽ 𝑀 − 1

g𝑀,𝜅(𝜔) ∶=

{𝑀

𝜅
𝜔 −

𝑗

2𝜅
𝜔 ∈ [𝑗∕2𝑀, (𝑗 + 𝜅)∕2𝑀]

𝑀

𝜅′
𝜔 −

𝑗+𝜅−𝜅′

2𝜅′
𝜔 ∈ [(𝑗 + 𝜅)∕2𝑀, (𝑗 + 1)∕2𝑀]

(4.20)
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F IGURE 1 Graph of g5,0.99

and for𝑀 ⩽ 𝑗 ⩽ 2𝑀 − 1

g𝑀,𝜅(𝜔) ∶=

{𝑀

𝜅′
𝜔 −

𝑗

2𝜅′
𝜔 ∈ [𝑗∕2𝑀, (𝑗 + 𝜅′)∕2𝑀]

𝑀

𝜅
𝜔 −

𝑗+𝜅′−𝜅

2𝜅
𝜔 ∈ [(𝑗 + 𝜅′)∕2𝑀, (𝑗 + 1)∕2𝑀]

(4.21)

The graph of g5,0.99 is presented in Figure 1.
It is easy to verify that g𝑀,𝜅 is piecewise affine, uniformly expanding, and keeps the Lebesgue

measure invariant. Also, the minimal expansion of g𝑀,𝜅 can be made arbitrarily large by letting
𝑀 →∞.
Notice that for 1 ⩽ 𝑗 ⩽ 𝑀,

g𝑀,𝜅([𝑗∕2𝑀, (𝑗 + 𝜅)∕2𝑀]) = [0, 1∕2] and g𝑀,𝜅([(𝑗 + 𝜅)∕2𝑀, (𝑗 + 1)∕2𝑀]) = [1∕2, 1]

while for𝑀 + 1 ⩽ 𝑗 ⩽ 2𝑀

g𝑀,𝜅([𝑗∕2𝑀, (𝑗 + 𝜅
′)∕2𝑀]) = [0, 1∕2] and g𝑀,𝜅([(𝑗 + 𝜅

′)∕2𝑀, (𝑗 + 1)∕2𝑀]) = [1∕2, 1].

Picking 𝜅 ≈ 1, most of the points in the interval [0, 1∕2] are mapped back to [0, 1∕2], and also
most of the points of [1∕2, 1] are mapped back to [1∕2, 1]. More precisely, defining𝑉1 ∶= [0, 1∕2],
𝑉2 ∶= [1∕2, 1] and

𝑉𝑖,𝑛 ∶= {𝜔 ∈ 𝑉𝑖 ∶ g𝑘𝑀,𝜅(𝜔) ∈ 𝑉𝑖 for 0 ⩽ 𝑘 ⩽ 𝑛 − 1};
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𝑉𝑖,𝑛 ⊂ 𝑉𝑖 is such that, for any 𝑛 ∈ ℕ,

|𝑉𝑖,𝑛|→ 1∕2 as 𝜅 → 1. (4.22)

Fix 𝜀 > 0 a small number. Pick 𝜑 ∶ 𝕋 → 𝕋 a 𝑁 − 𝑆 diffeomorphism such that |𝜑(𝑥) − 𝑥| ⩽ 𝜀†,
and define

𝑓𝜔(𝑥) =

{
2𝜔 𝜔 ∈ 𝐼1

𝜑 + 𝑎𝜔 𝜔 ∈ 𝐼2.
(4.23)

One can check that  ∶= ∫
𝕋
𝑑𝜔𝑓𝜔∗ maps a small closed ball around Leb𝕋 into itself, with the

diameter of the ball going to zero (in Total Variation distance) when 𝑎 → 0. This implies that the
unique fixed point of  is close to Leb𝕋.
To ease the notation, from now on we write g in place of g𝑀,𝜅. Let’s look at 𝑓𝑛−1𝜔 ∶=

𝑓g𝑛−1(𝜔) ◦ … ◦𝑓𝜔 and study  ′ ∶= ∫
𝕋
𝑑𝜔(𝑓𝑛−1𝜔 )∗. Fix Δ > 0 small. For any 𝑥0 ∈ 𝕋 and (𝜔𝑘)𝑛−1𝑘=0

with 𝜔𝑘 ∈ 𝑉2, consider (𝑥𝑘)𝑛−1𝑘=0
with 𝑥𝑘+1 = 𝜑(𝑥𝑘) + 𝑎𝜔𝑘. Pick 𝑛 ∈ ℕ large and 𝑎 > 0 small so

that for any 𝑥0 ∈ [𝑁 − Δ,𝑁 + Δ]𝑐 and (𝜔𝑘)𝑛−1𝑘=0
as above, 𝑥𝑛−1 ∈ [𝑆 − Δ, 𝑆 + Δ]. One can find 𝜅

close enough to one so that |𝑉1,𝑛| = |𝑉2,𝑛| = 0.49, which implies
 ′𝜂 = ∫𝑉1,𝑛 𝑑𝜔(𝑓

𝑛−1
𝜔 )∗𝜂 + ∫𝑉2,𝑛 𝑑𝜔(𝑓

𝑛−1
𝜔 )∗𝜂 + ∫(𝑉1,𝑛∪𝑉2,𝑛)𝑐 𝑑𝜔(𝑓

𝑛−1
𝜔 )∗𝜂

= 0.49 Leb𝕋 +∫𝑉2,𝑛 𝑑𝜔(𝑓
𝑛−1
𝜔 )∗𝜂 + ∫(𝑉1,𝑛∪𝑉2,𝑛)𝑐 𝑑𝜔(𝑓

𝑛−1
𝜔 )∗𝜂.

Given the expression of  ′, if 𝜂′
0
is such that  ′𝜂′

0
= 𝜂′

0
then, 𝜂′

0
= 0.49 Leb+0.51𝜂1, where 𝜂1 is

some probability measure. This implies that

 ′𝜂0([𝑆 − Δ, 𝑆 + Δ]) = (0.49 ′ Leb+0.51 ′𝜂1)([𝑆 − Δ, 𝑆 + Δ])
= 0.49∫𝑉2,𝑛 𝑑𝜔(𝑓

𝑛−1
𝜔 )∗ Leb([𝑆 − Δ, 𝑆 + Δ])

+ (1 − 0.492)𝜂2([𝑆 − Δ, 𝑆 + Δ])

> 0.492(1 − 2Δ)

where 𝜂2 above is some probability measure. Since Δ > 0 is arbitrary, 𝜂′0([𝑆 − Δ, 𝑆 + Δ]) ≈ 1∕4
while 𝜂0([𝑆 − Δ, 𝑆 + Δ]) ≈ 2Δwhich makes 𝜂0 and 𝜂′0 two very far apart measures with respect to
most metrics (e.g., 𝑑𝑇𝑉 , 𝑑𝑊 ,...).
In Figure 2 belowwe compare numerical simulations of the distribution of mass on the vertical

marginal after several iterations of skew-products 𝐹 with different base maps g . For each such
map, we consider several initial conditions sampled randomly and uniformly on [0, 1] × [0, 1], let
𝐹 act for awhile on these points, then take their vertical coordinates, and plot themon ahistogram.

†A North-South (NS) diffeomorphism is a diffeomorphism with exactly two fixed points: one attracting, the South Pole
(S), and one repelling, the North Pole (N), such that for any 𝑥 ≠ 𝑁, 𝜑𝑛(𝑥) → 𝑆. Furthermore, 𝜑′(𝑁) > 1 and 𝜑′(𝑆) < 1 so
that the two fixed points are hyperbolic.
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F IGURE 2 For different base maps g , we consider 104 initial conditions {(𝜔𝑘, 𝑥𝑘)}10
4

𝑘=1
sampled randomly and

uniformly on [0, 1] × [0, 1], let 𝐹(𝜔, 𝑥) = (g(𝜔), 𝑓(𝜔, 𝑥)) act for 100 time steps to obtain {𝐹100(𝜔𝑘, 𝑥𝑘)}10
4

𝑘=1
, take the

vertical 𝑥-coordinates of these points, and plot them on a histogram. The different g maps used are indicated
above the histograms. The fiber maps are the same throughout and as in (4.23) with 𝜑(𝑥) = 𝑥 − 0.01 sin(2𝜋𝑥) and
𝑎 = 0.001. The last panel shows a numerical approximation for 𝜂0 obtained as in the deterministic case by
applying 𝐹 to {(𝜔𝑘, 𝑥𝑘)}10

4

𝑘=1
but where, instead of having g in the base, we sampled the 𝜔-coordinate at random

independently (both w.r.t. time and initial conditions) and uniformly on [0,1] using the random number
generator built in the programming language
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When the expansion in the base is large, we expect the distribution given by the histogram to be
close to 𝜂. We compare the case of base maps with no distortion, g(𝜔) = 𝜎𝜔 mod 1, against base
maps g𝑀,𝜅 defined above. We also simulate numerically 𝜂0, the stationary measure for (as given
by the random number generator of the programme). The fiber maps 𝑓𝜔 are of the kind described
in (4.23).
In the case without distortion, when the minimal expansion in the base increases, we can see

that the simulated 𝜂 becomes very close to 𝜂0 (as per Propostion 3.3 point ii)), while in the case
with distortion, 𝜂 and 𝜂0 are different.

5 GENERALIZATIONS AND LIMITATIONS

In this section we discuss a few generalizations of the results and the techniques presented above,
and also some of the limitations. Before proceeding with the generalizations, we would like to
stress that the goal of this paperwas not to give a result in its greatest generality possible, but rather
to present some techniques that we believe can be applied (with different levels of additional
effort) to various setups.

5.1 Assumptions on the base

The regularity assumptions on the map g can be revised to fit other situations. For example, Ω
could be a compact manifold with boundary such as Ω = [0, 1]𝑚1 with g piecewise 𝐶2 with onto
branches. By this we mean that there are open sets {𝐼𝑖}𝑑𝑖=1 partitioning Ω modulo sets of mea-
sure zero, and such that g|𝐼𝑖 ∶ 𝐼𝑖 → (0, 1)𝑚1 is a 𝐶2 uniformly expanding diffeomorphism with
bounded distortion.
For the system in Section 3, that is, when𝑚1 = 1 and no distortion, this corresponds to consid-

ering maps g ∶ [0, 1] → [0, 1] for which there are 𝑛 ∈ ℕ and 0 =∶ 𝑎0 < 𝑎1 < … < 𝑎𝑛 < 𝑎𝑛+1 ∶= 1
such that g|(𝑎𝑖 ,𝑎𝑖+1) is 𝐶2 and onto (0,1). It is easy to check that all the proof of statements in
Section 3 hold,mutatis mutandis, for maps g satisfying these assumptions.
Also the assumption that g must be𝐶2 (or piecewise𝐶2) is not necessary, and can be substituted

by g being 𝐶1+𝛼 (or piecewise 𝐶1+𝛼), meaning that g is once differentiable and with 𝛼−Hölder
differential (or same property, but piecewise).
In fact, we expect that our results hold for more general bases. What is needed is g ∶ Ω → Ω

where Ω is a compact Riemannian manifold (with or without boundary), and g is a piecewise
uniformly expanding map with bounded distortion admitting a Markov partition and a unique
absolutely continuous invariant manifold.

5.2 Robustness under conjugacy

Consider a map ĝ ∶ Ω → Ω and assume that there is an invertible map ℎ ∶ Ω → 𝕋𝑚1 which is
measurable and with measurable inverse, such that ĝ ∶= ℎ−1 ◦ g ◦ℎ for a map g ∶ 𝕋𝑚1 → 𝕋𝑚1 .
Consider 𝑓 ∶ Ω × 𝕋𝑚2 → 𝕋𝑚2 and the skew-product system �̂� ∶ Ω × 𝕋𝑚2 → Ω× 𝕋𝑚2

�̂�(𝜔, 𝑥) = (ĝ(𝜔), 𝑓(𝜔, 𝑥)).
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Then, if one can show that the skew-system 𝐹 ∶ 𝕋𝑚1 × 𝕋𝑚2 → 𝕋𝑚1 × 𝕋𝑚2

𝐹(𝜔, 𝑥) = (g(𝜔), 𝑓(𝜔, 𝑥))

with 𝑓(𝜔, 𝑥) ∶= 𝑓(ℎ−1𝜔, 𝑥), satisfies an approximate decay of correlations (as in Theorem 2.2),
then so does �̂�. This is made precise in the following proposition.

Proposition 5.1. Suppose �̂� ∶ Ω × 𝕋𝑚2 → Ω× 𝕋𝑚2 and𝐹 ∶ 𝕋𝑚1 × 𝕋𝑚2 → 𝕋𝑚1 × 𝕋𝑚2 are as above,
and assume that for some 𝜀 > 0, 𝜂 a probability measure, 𝐶 > 0 and 𝜆 ∈ (0, 1) the conclusion of
Theorem 2.2 holds for 𝐹. Then, defining 𝜈 ∶= (ℎ−1)∗ Leb𝕋𝑚1

||||∫Ω×𝕋𝑚2 𝜑(𝜋2�̂�𝑛(𝜔, 𝑥))𝜓(𝑥)𝑑𝑥𝑑𝜈(𝜔) − ∫𝕋𝑚2 𝜑(𝑥)𝑑𝜂(𝑥)∫𝕋𝑚2 𝜓(𝑥)𝑑𝑥
|||| ⩽ 𝐶𝜑,𝜓(𝐶𝜆𝑛 + 𝜀)

for all 𝜓 ∈ 𝐿1(𝕋𝑚2; ℝ) and 𝜑 ∈ Lip(𝕋𝑚2; ℝ).

Proof. Take 𝜓 ∈ 𝐿1(𝕋𝑚2; ℝ) and 𝜑 ∈ Lip(𝕋𝑚2; ℝ). Define 𝜈 = (ℎ−1)∗ Leb𝕋𝑚1 a probability measure
on Ω. Let’s call𝐻 ∶= ℎ × id which is invertible with inverse𝐻−1 = ℎ−1 × id.

∫Ω×𝕋𝑚2 𝜓 𝜑 ◦𝜋2 ◦ �̂�
𝑛𝑑𝜈 ⊗ Leb = ∫Ω×𝕋𝑚2 𝜓 ◦𝜋2 ◦𝐻

−1 𝜑 ◦𝜋2 ◦ �̂�
𝑛 ◦𝐻−1𝑑𝐻∗(𝜈 ⊗ Leb)

= ∫Ω×𝕋𝑚2 𝜓 𝜑 ◦𝜋2𝐻 ◦ �̂�𝑛 ◦𝐻−1𝑑 Leb

= ∫Ω×𝕋𝑚2 𝜓 𝜑 ◦𝜋2 ◦𝐹
𝑛𝑑 Leb .

Therefore, from the assumptions, there is 𝐶𝜑,𝜓 > 0 such that

||||∫Ω×𝕋𝑚2 𝜓 𝜑 ◦𝜋2 ◦ �̂�𝑛𝑑𝜈 ⊗ Leb−∫𝕋𝑚2 𝜑(𝑥)𝑑𝜂(𝑥)∫𝕋𝑚2 𝜓(𝑥)𝑑𝑥
|||| ⩽ 𝐶𝜑,𝜓(𝐶𝜆𝑛 + 𝜀). □

As an example, one can use Theorem 2.2 to prove approximate decay of correlation in case the
forcing is driven by a power of the logistic map ĝ0(𝑥) = 4𝑥(1 − 𝑥). In fact, it is well known ĝ0 is
conjugate to the tent map

g0 =

{
2𝑥 𝑥 ∈ [0, 1∕2)

1 − 2𝑥 𝑥 ∈ [1∕2, 1]
,

via a 𝐶1 map ℎ ∶ [0, 1] → [0, 1]. Analogously, for any 𝑛 ∈ ℕ, also ĝ ∶= ĝ𝑛
0
is conjugate to g ∶= g𝑛

0
via ℎ, and g is in the class of maps admitted by the generalization in Section 5.1 for which one can
apply Theorem 2.2.

5.3 Fiber generalization

We expect that the choice 𝑋 = 𝕋𝑚2 for the vertical fiber can be relaxed. As long as an analogue of
Proposition 4.1 holds, one can study 𝐹 ∶ 𝕋𝑚1 × 𝑋 → 𝕋𝑚1 × 𝑋 where 𝑋 is a compact metric space.
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What is needed is that topological conditional measures on vertical fibers {𝜔} × 𝑋 give a disinte-
gration w.r.t the vertical foliation. From the results in [43], a sufficient condition is for 𝑋 to be a
compact Riemanninan manifold or a compact separable ultrametric space.

5.4 More or less regular disintegrations

In Definition 2.1 we have given the definition of Lipschitz disintegration {𝜇𝜔}𝜔∈Ω and later we
have shown how, under the hypotheses of Theorem 2.2, certain classes of measures with Lipschitz
disintegration were kept invariant by the dynamics. Measures having Hölder disintegration can
be defined in a completely analogous way, and they can be used to define classes of invariant
measures for example in the case where 𝑓 ∶ Ω × 𝑋 → 𝑋 is only Hölder and not Lipschitz.
Analogously, one could think of defining measures having disintegrations of higher regular-

ity, for example, differentiable for a suitable notion of differentiability for curves in1(𝑋), and
exploit these classes.

5.5 Limitations of the approach

A more substantial and also natural step forward from Theorem 2.2, would be considering g an
invertible uniformly hyperbolic map, like an Anosov diffeomorphism or a map with an Axiom
A attractor. Unfortunately it seems hard to extend the techniques in this paper to this case. The
main reason is that one needs the contraction properties of the inverse branches of g : for invertible
uniformly hyperbolic systems, instead, some directions are contracted when taking preimages,
but others are expanded and this spoils the arguments.
For the same reason our approach is evidently ill-suited to treat skew-products with quasi-

periodic base (see, e.g., [20]).

APPENDIX A: MARKOV CHAINS AND RANDOMDYNAMICS

In this section we report some classical results about geometric ergodicity of Markov chains
[16, 21 31, 37], and we relate this to random dynamical systems in discrete time.

A.1 Markov chains and geometric ergodicity

Definition A.1. Given a Polish space 𝑆, the state space, endowed with a countably generated
𝜎−field (𝑆), a discrete time Markov process is a sequence of random variables {𝑋𝑡}𝑡∈ℕ0 defined
on a probability space (Ω, Σ, ℙ) such that for all 𝑛 ∈ ℕ

𝔼ℙ[𝑋𝑛|𝑋𝑛−1, … , 𝑋0] = 𝔼ℙ[𝑋𝑛|𝑋𝑛−1].
The Markov process is called stationary if 𝔼ℙ[𝑋𝑛|𝑋𝑛−1] does not depend on 𝑛, and 𝑃 ∶ 𝑆 ×(𝑆) → ℝ+ is the associated transition kernel satisfying

ℙ
(
𝑋𝑛+1 ∈ 𝐴|𝑋𝑛 = 𝑥) = 𝑃(𝑥,𝐴).

For every 𝑥 ∈ 𝑆, 𝑃(𝑥, ⋅) defines a probability measure with the following meaning: 𝑃(𝑥, 𝐴) is
the probability that 𝑋𝑛+1 ∈ 𝐴 given that at time 𝑛 one has observed 𝑋𝑛 = 𝑥.
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Given a stationary Markov process and 𝑛 ∈ ℕ, one can extend the notion of kernel to higher
iterates: Define 𝑃𝑚 ∶ 𝑆 × (𝑆) → ℝ+

𝑃𝑚(𝑥,𝐴) = ℙ
(
𝑋𝑛+𝑚 ∈ 𝐴|𝑋𝑛 = 𝑥).

For any 𝑛 ∈ ℕ, 𝑃𝑛 generates an action on the set of measures on (𝑆,(𝑆)) in the following way.
Given 𝜇 a measure on 𝑆, define

𝜇(𝐴) ∶= ∫𝑆 𝑃(𝑥, 𝐴)𝑑𝜇(𝑥),
and

𝑛𝜇(𝐴) ∶= ∫𝑆 𝑃
𝑛(𝑥, 𝐴)𝑑𝜇(𝑥).

Using the properties of transition kernels one can prove that, {𝑛} satisfies the semi-group
property

𝑛 ◦𝑚 = 𝑛+𝑚

making  the generator of a semi-group action on probability measures on (𝑆,(𝑆)).
Definition A.2. A stationary Markov chain is said to be geometrically ergodic if there are 𝐶 > 0
and 𝜆 ∈ (0, 1) such that

𝑑𝑇𝑉(𝑃
𝑛(𝑥1, ⋅), 𝑃

𝑛(𝑥2, ⋅)) ⩽ 𝐶𝜆
𝑛, ∀𝑥1, 𝑥2 ∈ 𝑆.

For a definition of the Total Variation distance 𝑑𝑇𝑉 see the beginning of Sec. C. From Defini-
tion A.2 follows that if a Markov chain is geometrically ergodic, then there is a probability measure
𝜂0 such that, for every probability measure 𝜇 on (𝑆,(𝑆)),

𝑑𝑇𝑉(𝑛𝜇, 𝜂0) ⩽ 𝐶𝜆𝑛.
The measure 𝜂0 satisfies (𝜂0) = 𝜂0 and is also called a stationary distribution or stationary
measure.

A.2 Sufficient conditions for geometric ergodicity

In this subsection we give a sufficient condition that ensures geometric ergodicity of a stationary
Markov chain. Weaker conditions working in more general setups are available and involve petite
sets [21] or Lyapunov functions [31].

Theorem A.1 [37]. Let {𝑋𝑛}𝑛∈ℕ0 be a stationary Markov chain on (𝑆,(𝑆)) with transition kernel
𝑃 ∶ 𝑆 × (𝑆) → ℝ+. Assume there is 𝜈 a probability measure, 𝜀 > 0 and 𝑛0 ∈ ℕ such that

𝑃𝑛0(𝑥, ⋅) ⩾ 𝜀𝜈(⋅), ∀𝑥 ∈ 𝑆.

Then the Markov chain is geometrically ergodic.
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A.3 Randomly forced systems andMarkov chains

In this section we discuss the difference, in terms of mathematical definitions, between random
and deterministic forcing.
By random forcing, we mean that given a probability space (Ω, 𝜈) and 𝑓 ∶ Ω × 𝑋 → 𝑋, at the

𝑛−th iteration we apply the map 𝑓𝜁𝑛 ∶= 𝑓(𝜁𝑛, ⋅) ∶ 𝑋 → 𝑋, where {𝜁𝑛}𝑛∈ℕ is an i.i.d sequence
of random variables defined on some probability space (Ξ, ℙ) with values in Ω and distributed
according to 𝜈. Fixed 𝑤 ∈ Ξ, the forward orbits of the system are given by

𝑂(𝑥) ∶=
{
𝑓𝜁𝑛(𝑤) ◦ … ◦𝑓𝜁1(𝑤) ◦𝑓𝜁0(𝑤)(𝑥) ∶ 𝑛 ∈ ℕ0

}
, ∀𝑥 ∈ 𝑋.

An important example of random forcing is given by additive i.i.d. noise: Consider 𝑋 = 𝕋𝑚,
or any other set with an additive structure, a map 𝑇 ∶ 𝑋 → 𝑋 and {𝜁𝑛}𝑛∈ℕ0 an i.i.d. sequence of
random variables with values in 𝑋 and distributed according to 𝜈, then taking Ω = 𝑋 define 𝑓 ∶
Ω × 𝑋 → 𝑋 as

𝑓(𝜔, 𝑥) ∶= 𝑇(𝑥) + 𝜔.

Composing at time 𝑛 ∈ ℕ by 𝑓𝜁𝑛 corresponds to considering the recursive equation

𝑛+1 = 𝑇(𝑛) + 𝜁𝑛, ∀𝑛 ∈ ℕ0,

where 𝑛 is the state of the system at time 𝑛. What the above means is that, calling (Ξ, ℙ)
the underlying probability space where {𝜁𝑛}𝑛∈ℕ0 are defined, {𝑛}𝑛∈ℕ0 are random variables
satisfying

ℙ
(𝑛+1 ∈ 𝐴|𝑛 = 𝑥𝑛) = ℙ(𝜉𝑛 ∈ (𝐴 − 𝑇(𝑥𝑛))),

and thus {𝑛}𝑛∈ℕ0 is a Markov chain. In the above, 𝑇 denotes the intrinsic dynamics, that is, the
dynamics the system would have if it did not receive any forcing, while 𝜉𝑛 is the random forcing
noise term.
Deterministic forcing is also represented as application at time 𝑛 ∈ ℕ of the map 𝑓(𝜁𝑛, ⋅) ∶ 𝑋 →

𝑋. However, in this case the sequence {𝜁𝑛}𝑛∈ℕ is not required to be independent, but it should
satisfy 𝜁𝑛+1 = g(𝜁𝑛) for some transformation g ∶ Ω → Ω that preserves the measure 𝜈. This cor-
responds also to the general definition of random dynamical system usually given in the literature
(see [3]).
The difference between random and deterministic forcing is not a stark one. In fact one can

show that random forcing is a particular case of deterministic forcing where g is an appropriate
shift map: Given 𝑓 ∶ Ω × 𝑋 → 𝑋 and {𝜁𝑛}𝑛∈ℕ0 an i.i.d sequence with values inΩ distributed as 𝜈,
we can construct the probability space (Ω′, 𝜈′) with Ω′ ∶= Ωℕ0 and 𝜈′ ∶= 𝜈⊗ℕ0 . Now define the
sequence of identically distributed random variables {𝜻 𝑘}𝑘∈ℕ0 in Ω

′ with 𝜻 𝑘 ∶= {𝜁𝑛+𝑘}𝑛∈ℕ0 , and
𝑓′ ∶ Ω′ × 𝑋 → 𝑋

𝑓′(𝜻 , 𝑥) ∶= 𝑓((𝜻 )0, 𝑥),

where (𝜻 )0 denotes the first term of the sequence 𝜻 ∈ Ω′. With this definition we also have

𝜻 𝑘+1 = 𝜎
𝑘+1({𝜁𝑛}𝑛∈ℕ0) = 𝜎(𝜻 𝑘−1)

where 𝜎 ∶ Ω′ → Ω′ is the left shift which is easy to check that keeps the measure 𝜈′ invariant.
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APPENDIX B: DISINTEGRATION OFMEASURE AND ROHLIN’S THEOREM

The following definitions and results are taken from [43], adapted to the level of generality needed
in this paper.

Definition B.1. Let (𝑋, 𝜇) be a topological probability space, 𝑌 a metric space and 𝜋 ∶ 𝑋 → 𝑌

a measurable function. Call �̂� ∶= 𝜋∗𝜇. A system of conditional measures of 𝜇 with respect to
(𝑋, 𝜋, 𝑌) is a collection of measures {𝜇𝑦}𝑦∈𝑌 such that

1) For �̂�−almost every 𝑦 ∈ 𝑌, 𝜇𝑦 is a probability measure on 𝜋−1(𝑦).
2) For every measurable subset 𝐵 ⊂ 𝑋, 𝑦 ↦ 𝜇𝑦(𝐵) is measurable and

𝜇(𝐵) = ∫ 𝜇𝜋−1(𝑦)(𝐵)𝑑�̂�(𝑦).

When 𝑌 in the above definition is a measurable partition of 𝑋 and 𝜋(𝑥) is the unique element
of the partition to which 𝑥 belongs, then we also call {𝜇𝑦}𝑦∈𝑌 a disintegration of 𝜇.

Definition B.2. In the same setup of Definition B.1, the topological conditional measure of 𝜇
with respect to (𝑋, 𝜋, 𝑦, 𝑌) is the weak∗ limit (if it exists)

𝜇𝑦 ∶= lim
𝜀→0+

𝜇𝜋−1(𝐵(𝑦,𝜀))

where 𝐵(𝑦, 𝜀) is the ball centered at 𝑦 with radius 𝜀 with respect to the metric on 𝑌 and

𝜇𝜋−1(𝐵(𝑦,𝜀))(𝐼) =
𝜇(𝜋−1(𝐵(𝑦, 𝜀)) ∩ 𝐼)

𝜇(𝜋−1(𝐵(𝑦, 𝜀))
.

Theorem B.1 (Theorem 2.2 [43]). Let (𝑋, 𝜇) be a compact metric probability space, let 𝑌 be a sep-
arable Riemannian manifold. Let 𝜋 ∶ 𝑋 → 𝑌 be measurable.Then for �̂�−almost every 𝑦 ∈ 𝑌, the
topological conditional measure of 𝜇 with respect to (𝑋, 𝜋, 𝑦, 𝑌) exists as in Definition B.2. Further-
more the collection of measures {𝜇𝑦}𝑦∈𝑌 is a system of conditional measures as in Definition B.1. (If
𝜇𝑦 does not exist, set 𝜇𝑦 = 0).

APPENDIX C: WASSERSTEIN DISTANCE: SOME COMPUTATIONS

Consider a compact metric space (𝑌, 𝑑). Then the Kantorovich–Wasserstein between 𝜇1, 𝜇2 ∈1(𝑌) is defined as

𝑑𝑊(𝜇1, 𝜇2) ∶= sup
𝛾∈(𝜇1,𝜇2)∫𝑌×𝑌 𝑑(𝑠, 𝑠

′)𝑑𝛾(𝑠, 𝑠′)

where (𝜇1, 𝜇2) is the set of all couplings between 𝜇1 and 𝜇2. If we consider instead of the metric
𝑑 the discrete metric 𝑑𝑑𝑖𝑠 defined as

𝑑𝑑𝑖𝑠(𝑠, 𝑠
′) =

{
1 𝑠 = 𝑠′

0 𝑠 ≠ 𝑠′
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We have that

𝑑𝑇𝑉(𝜇1, 𝜇2) ∶= sup
𝛾∈(𝜇1,𝜇2)∫𝑌×𝑌 𝑑𝑑𝑖𝑠(𝑠, 𝑠

′)𝑑𝛾(𝑠, 𝑠′).

Lemma C.1. Let (𝑌, 𝑑) be a metric space, 𝑇 ∶ 𝑌 → 𝑌 a Lipschitz transformation with Lipschitz
constant Lip(𝑇). Then for any 𝜉1, 𝜉2 ∈1(𝕋)

𝑑𝑊(𝑇∗𝜉1, 𝑇∗𝜉2) ⩽ Lip(𝑇)𝑑𝑊(𝜉1, 𝜉2).

Proof.

𝑑𝑊(𝑇∗𝜉1, 𝑇∗𝜉2) = sup
𝜑∈Lip1(𝑌)

∫𝑌 𝜑(𝑦)𝑑(𝑇∗𝜉1 − 𝑇
∗𝜉2)(𝑦)

= sup
𝜑∈Lip1(𝑌)

∫𝑌 𝜑 ◦𝑇𝑑(𝜉1 − 𝜉2)(𝑦)

⩽ sup
𝜑∈Lip1(𝑌)

Lip(𝜑 ◦𝑇)𝑑𝑊(𝜉1, 𝜉2)

and Lip(𝜑 ◦𝑇) ⩽ Lip(𝜑) Lip(𝑇). □

RemarkC.1. The above lemma can be read in the followingway: If𝑇 ∶ (𝑌, 𝑑) → (𝑌, 𝑑) is Lipschitz,
then 𝑇∗ ∶ (1(𝑌), 𝑑𝑊) → (1(𝑌), 𝑑𝑊) is Lipschitz with Lip(𝑇∗) = Lip(𝑇).

Lemma C.2. Consider (𝑆, 𝜈) a measurable space with 𝜈 a probability measure, and 𝑌 a compact
metric space. Assume that {𝜇𝑠}𝑠∈𝑆 is a family of measures belonging to1(𝑌) and that ∃𝓁 > 0 s.t.
𝑑𝑊(𝜇𝑠, 𝜇𝑠′ ) ⩽ 𝓁 for for every 𝑠, 𝑠′ ∈ 𝑆. Then the measure 𝜇 ∈1(𝑌) defined as

𝜇(𝐴) ∶= ∫𝑆 𝑑𝜈(𝑠)𝜇𝑠(𝐴)

is such that 𝑑𝑊(𝜇, 𝜇𝑠) ⩽ 𝓁 for all 𝑠 ∈ 𝑆.

Proof. Pick 𝑠 ∈ 𝑆

𝑑𝑊(𝜇, 𝜇𝑠) = sup
𝜑∈Lip1(𝑌)

∫𝑌 𝜑(𝑦)𝑑(𝜇 − 𝜇𝑠)(𝑦)

= sup
𝜑∈Lip1(𝑌)

∫𝑌 ∫𝑆 𝑑𝜈(𝑠
′)𝜑(𝑦)𝑑(𝜇𝑠′ − 𝜇𝑠)(𝑦)

⩽ ∫𝑆 𝑑𝜈(𝑠
′) sup
𝜑∈Lip1(𝑌)

∫𝑌 𝜑(𝑦)𝑑(𝜇𝑠′ − 𝜇𝑠)(𝑦)

⩽ ∫𝑆 𝑑𝜈(𝑠
′)𝑑𝑊(𝜇𝑠, 𝜇𝑠′ )

⩽ 𝓁. □



40 GIULIETTI et al.

Lemma C.3. Let (𝑌, 𝑑) be a bounded metric space and call diam(𝑌) its diameter. Then

𝑑𝑊(𝜇1, 𝜇2) ⩽ diam(𝑌)𝑑𝑇𝑉(𝜇1, 𝜇2).

Proof.

𝑑𝑊(𝜇1, 𝜇2) = sup
𝛾∈(𝜇1,𝜇2)∫𝑌×𝑌 𝑑(𝑠, 𝑠

′)𝑑𝛾(𝑠, 𝑠′)

⩽ sup
𝛾∈(𝜇1,𝜇2)∫𝑌×𝑌 diam(𝑌)𝑑𝑑𝑖𝑠(𝑠, 𝑠

′)𝑑𝛾(𝑠, 𝑠′)

= diam(𝑌)𝑑𝑇𝑉(𝜇1, 𝜇2). □

Lemma C.4. Assume {𝜇𝑖}𝑛𝑖=1 and {𝜇
′
𝑖
}𝑛
𝑖=1

are probability measures in 1(𝑌) and {𝑏𝑖}𝑛𝑖=1, 𝑏𝑖 > 0,
are weights with

∑𝑛
𝑖=1 𝑏𝑖 = 1. Then

𝑑𝑊

(
𝑛∑
𝑖=1

𝑏𝑖𝜇𝑖,

𝑛∑
𝑖=1

𝑏𝑖𝜇
′
𝑖

)
⩽ max

𝑖
𝑑𝑊(𝜇𝑖, 𝜇

′
𝑖 ).

Proof.

𝑑𝑊(

𝑛∑
𝑖=1

𝑏𝑖𝜇𝑖,

𝑛∑
𝑖=1

𝑏𝑖𝜇
′
𝑖 ) ⩽ sup

𝜑∈Lip1
∫𝑌 𝜑𝑑

(
𝑛∑
𝑖=1

𝑏𝑖𝜇𝑖 −

𝑛∑
𝑖=1

𝑏𝑖𝜇
′
𝑖

)

⩽

𝑛∑
𝑖=1

𝑏𝑖 sup
𝜑∈Lip1

∫𝑌 𝜑𝑑(𝜇𝑖 − 𝜇
′
𝑖 )

⩽

𝑛∑
𝑖=1

𝑏𝑖𝑑𝑊(𝜇𝑖, 𝜇
′
𝑖 )

⩽ max
𝑖
𝑑𝑊(𝜇𝑖, 𝜇

′
𝑖 ). □
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