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Abstract
Regenerative medicine is continuously facing new challenges and it is searching for new biocompatible, green/natural polymer
materials, possibly biodegradable and non-immunogenic. Moreover, the critical importance of the nano/microstructuring of
surfaces is overall accepted for their full biocompatibility and in vitro/in vivo performances. Chitosan is emerging as a promising
biopolymer for tissue engineering and its application can be further improved by exploiting its nano/microstructuration. Here, we
report the state of the art of chitosan films and scaffolds nano/micro-structuration.We show that it is possible to obtain, by solvent
casting, chitosan thin films with good mechanical properties and to structure them at the microscale and even nanoscale level,
with resolutions down to 100 nm.
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Introduction

Tissue engineering is an interdisciplinary field that aims to
use an implantation (i.e., scaffold) as (temporary) support to
repair, replace, or enhance the function of a particular tissue.
The ultimate aim is to develop a scaffold that can interact
with the living tissue and stimulate and support its spontane-
ous regeneration (Shafiee and Atala 2016). Scaffolds can be
optimized in chemistry, geometry, and functionalization (i.e.,
with biological factors, such as growth factors, or drugs) in
order to better interact with patient’s cells (Lee et al. 2011;
Almeida and Bártolo 2013). The scaffold acts as a temporary
extracellular matrix (ECM), thus guiding cell behavior and
tissue progression, until it is completely regrown (Ma 2004).

Typically, a scaffold is described as a three-dimensional sol-
id support made of biomaterials. An ideal biomaterial is com-
monly defined as biocompatible, biodegradable, non-cytotox-
ic/non-mutagenic with respect to its degradation products.
Accordingly, a biomaterial can promote cellular interaction,
cell adhesion, and extracellular membrane deposition, all nec-
essary steps to improve the subsequent cell proliferation on the
surface and the final tissue regeneration (Ghassemi et al. 2018;
Zhang et al. 2018). A key feature of any scaffold is its mechan-
ical stability: it should physically sustain the tissue regrowth
before biodegradation occurs (Bitar and Zakhem 2014).

Consequently, new materials, suitable for tissue engineer-
ing, are the object of continuous scientific research (Chan and
Mooney 2008). Recent trends have placed the focus on natural
biomaterials that do not have a high footprint on the environ-
ment and, at the same time, are not expensive and easy to be
molded (Jahangirian et al. 2018). Biopolymers are a wide
category of materials whose main sources are living organ-
isms, not only plants and animals but also microorganisms
(Rao et al. 2014).

One of the main reasons behind the choice of nature-
derived materials employed as scaffolds is their high biode-
gradability. In addition, their biological origin often makes
them favorable to interact with the biological systems (Le
Bao Ha et al. 2013). Natural polymers can be further classified
for their chemical composition: polysaccharides (cellulose,
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starch, chitin, and glycosaminoglycans) or proteins (keratin,
collagen, silk, elastin, and fibrin); polynucleotides are less
used in this field (Ratner et al. 2004). Natural polymers, such
as collagen or gelatin, are the first biodegradable materials
employed in human clinical practice (Nair and Laurencin
2007). Compared with synthetic materials, they tend to per-
form a greater biological interaction with cells and to have
fewer side effects, such as toxic biodegradation products
(Barua et al. 2018). For instance, collagen has a good biolog-
ical interaction with cells: being the main fibrous structural
protein in our body, it is non-immunogenic and resembles
the cell’s native environment (Dong and Lv 2016).
However, its mechanical properties and fast biodegradability
are strong limitations (Ma et al. 2003).

Chitosan as a promising material
for regenerative medicine

Chitin is one of the most abundant polymers present in nature,
second only to cellulose (Elieh-Ali-Komi and Hamblin 2016).
It is a natural homopolymer of N-acetyl-D-glucosamine wide-
ly found in the exoskeletons of arthropods and insects and in
crustacean shells as well as in fungi cell wall. From the con-
trolled deacetylation of chitin, it is possible to obtain a copol-
ymer of β(1-4)-linked N-acetyl-D-glucosamine and D-
glucosamine subunits, called chitosan (Islam et al. 2017). In
nature, the extracted chitin is usually bound to proteins and
minerals, which can be removed through processes of acidifi-
cation and alkalization (Tapan Kumar and Bijaya 2018). The
purified chitin is then converted into chitosan through con-
trolled chemical processes, with the tuning of parameters such
as concentration, ratio of chitin to alkali and temperature, in
order to obtain a precise deacetylation degree in the final
product (Sorlier et al. 2001). The degree of deacetylation im-
pacts on the biological properties of chitosan, such as cell
adhesion, healing capacity, and breakdown processes.
Another important parameter is the molecular weight that de-
pends on chitosan preparation procedures. It correlates with
viscosity and it is inversely proportional to swelling capacity
(Rodríguez-Vázquez et al. 2015).

The use of chitosan as a biomaterial is approved by the Food
and Drug Administration (FDA) for application in biomedical
devices, in particular, in drug delivery and in tissue engineer-
ing, with the final goal to restore the functionality of defective
or lost tissues. As already hinted, chitosan is a completely bio-
degradable material; through an enzymatic transformation, it is
broken down to its basic, non-toxic building blocks. In vivo,
there are several enzymes that promote its degradation: the
predominant one is lysozyme, a non-specific protease found
in all mammalian tissues (Szymańska and Winnicka 2015).
Importantly, chitosan is a hypoallergenic and bio-tolerated ma-
terial: it does not routinely stimulate inflammation when

implanted (Rodríguez-Vázquez et al. 2015). Moreover, it has
shown interesting antimicrobial and antifungal properties and,
for this reason, it is intensely studied for food packaging
(Fernandez-Saiz 2011; Gutiérrez 2017) and tissue engineering
applications (Rodríguez-Vázquez et al. 2015). The physico-
chemical properties of scaffolds based on chitosan depend
mainly on two parameters: the degree of deacetylation and
the molecular weight of the starting material. For biomedical
applications, a high degree of deacetylation is preferred, be-
cause this parameter has also an impact on the biological prop-
erties of the biomaterial, such as the degradation time in vitro
and in vivo (Wei Wang et al. 2006).

Thanks to its biodegradability, chitosan has been extensively
employed in medicine not only as scaffold material but also as a
material of choice for the synthesis of nanoparticles for non-
parenteral drug delivery of many drugs and vaccines, via sev-
eral routes of administration (Mohammed et al. 2017). In par-
ticular, the ability to open the tight junctions in the epithelia
makes it ideal for mucosal delivery, increasing the paracellular
permeation and, as a consequence, the adsorption of the nano-
particles (Sonaje et al. 2012). This polymer can be also various-
ly modified to finely tune the degradation pH and time and so
modify the pharmacokinetic profile of drug release (Yuan et al.
2013; Miladi et al. 2015; Fonseca-Santos and Chorilli 2017).

Since the main topic of this review is the use of chitosan for
regenerative medicine, we will focus on the chitosan employ-
ment for the fabrication of scaffolds for tissue engineering. In
fact, it was already shown in literature that addressed tissue
can be various (skin, bone and cartilage, nerve tissue, liver,
heart, or cornea), as in the case of applications (Dutta, Rinki,
and Dutta et al. 2011).

Chitosan has been used alone or in combination with other
materials, in order to enhance the mechanical properties and
degradation time for scaffolds. For instance, employment of
chitosan would not be useful for skin tissue repair, but it can
be an effectivemodifier for scaffoldsmade of polymers that, like
collagen, have limitations in terms of rapid biodegradation and
poor mechanical properties (Romanova et al. 2015). In order to
avoid the short-time degradability and to enhance its mechanical
properties, collagen was combined with chitosan, enhancing the
scaffold stability over time (Tangsadthakun et al. 2006).

Bone tissue engineering aims for the construction of scaf-
folds that are mechanically strong enough to sustain bone
regrowth. Usually, scaffolds for bone tissue are made of com-
binations of polymers and ceramic materials, such as calcium
phosphate (Saravanan et al. 2016). Chitosan, thanks to its
biodegradability and biocompatibility, is a good candidate
for this medical application. Chitosan has been mixed with
hydroxyapatite to create an ideal matrix for osteoblast prolif-
eration and mineral deposition (Zo et al. 2012). Another pos-
sibility is to complex chitosan with whitlockite (an unusual
form of calcium phosphate). Comparing the whitlockite/
chitosan with the hydroxyapatite/chitosan composites, the first
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composite material shows better biocompatibility and en-
hances osteoblast proliferation (Zhou et al. 2017).

Peripheral nerve regeneration is one of the research fields
in which chitosan, even when employed alone, shows the best
results in terms of regeneration performances. One of the main
options for the repair of short (below 3 cm) nerve gaps is
becoming the implantation of a nerve guidance conduit, a
tubular scaffold that connects the two ends of the injured nerve
and sustains the regeneration process (Lundborg 2000; Ijpma
et al. 2008; Sachanandani et al. 2014; Subramanian et al.
2009; Zeugolis et al. 2011). Chitosan-based nerve conduits,
alone or in combination with other biomaterials, have been
found to bridge efficiently peripheral nerve defects (Gnavi
et al. 2013). Apart from rats (Gonzalez-Perez et al. 2015;
Fregnan et al. 2016), chitosan conduits have been tested in
several animal models for nerve regeneration, such as dogs
(Tanaka et al. 2015) and goats (Muheremu et al. 2017). To
provide an example, chitosan nerve conduits having an inter-
nal longitudinal chitosan membrane were used on a 10-mm
sciatic nerve defects in adult healthy and diabetic rats and
provide an enhancement in functional and morphological
nerve regeneration (Meyer et al. 2016). In another work, chi-
tosan flat membranes, crosslinked with dibasic sodium phos-
phate, were fabricated with a solvent casting technique
(Fregnan et al. 2016). In vitro, the membranes allowed
Schwann and DRGs’ cell proliferation and in vivo promoted
nerve functional recovery, but leading only to an outcome com-
parable to median nerve repaired by autograft. Again, for the
repair of long-gap peripheral nerve injury in the rat, the results
with chitosan tubes (with varying degree of acetylation) were
significantly better compared with silicon tubes, but lower than
those with autografting (Gonzalez-Perez et al. 2015).

In fact, despite recent developments in biomaterial-based
artificial scaffolds (Daly et al. 2012), autografting (with the
related donor-site morbidity) still remains the gold standard in
the clinical practice for nerve reconstruction (Raimondo et al.
2011), in particular for large nerve gaps. Chitosan has been
already approved for clinical use in Europe. Reaxon® Nerve
Guide conduits are smooth chitosan conduits, sold with dif-
ferent diameters (from 2.1 to 6 mm) and 3 cm long, to bridge
gaps up to 26 mm. They are promoted as biocompatible, an-
tibacterial, and antiadhesive, limiting scar tissue formation
(Neubrech et al. 2016). When compared with autologous
nerve grafts, the classical gold standard treatment for nerve
injuries, Reaxon conduits gave similar results, with no statis-
tically significant difference in the healing process (Shapira
et al. 2016). The use of nerve guidance conduits for small
diameter nerves has shown promising results, with most of
the human studies describing neuronal recoveries between
74 and 100% (Braga Silva et al. 2017). However, there are
still problems in repairing large-diameter nerves and wider
gaps (Rebowe et al. 2018) and enhancing the regenerative
potential of conduits could help in facing these limitations.

Chitosan topography modifications

Nowadays, chitosan films and conduits have been mainly
modified in their chemical composition, by adding other ma-
terials (e.g., synthetic polymers, nanofillers) or cells (Gnavi
et al. 2013), with less efforts in tuning their physical features.

Cells in vivo are embedded in a complex textured environ-
ment, composed of ECM meshed nano/microfibers
(Tuzlakoglu et al. 2005; Wade and Burdick 2012; Andalib
et al. 2016). It is a 3D physical environment composed by
factors secreted by cells, mainly proteoglycans and fibrous
proteins (Frantz et al. 2010). The ECM conveys not only bio-
chemical but also physical cues to cells, triggering then an
intracellular signaling cascade: this phenomenon is called
mechanotransduction (Shih et al. 2011; Steward and Kelly
2015; Smith et al. 2017; Wolfenson et al. 2018). Hence, cells
can respond to topography, at microscale and even nanoscale
levels.

It was recently demonstrated that, by changing the surface
topography at the nano/microscale, it is possible to control and
guide the behavior and differentiation of a cell to a particular
phenotype, changing its fate (Ferrari et al. 2010a, 2010b,
Ferrari et al. 2011; Ankam et al. 2013; Franco et al. 2013).
Not only the differentiation but also other processes involved
in tissue regeneration can be regulated by substrate topogra-
phy, such as cell polarization, neurite growth, and migration.
Cell migration can be tuned by nano-microstructured surfaces
and in particular significantly directed/enhanced with aniso-
tropic topographies, such as nano/microgratings (Cecchini
et al. 2008; Ferrari et al. 2010b; Jacchetti et al. 2014;
Tonazzini et al. 2014a). These topographies (i.e., alternating
lines of ridges and grooves with (sub) micrometric dimen-
sions) have been designed and optimized in dimensions ac-
cordingly to the cell type and application (Tonazzini et al.
2014b), to promote neurite growth, cell polarization, and cell
migration in the desired direction. Human endothelial cell
migration is enhanced on gratings with a 2-μm period
(Antonini et al. 2015). It has been shown that primary rat
Schwann cells migrate faster on gratings with a 20-μm period
(period = ridge width + groove width), analyzed as single
cells, while their collective migration (i.e., in a monolayer,
simulating a tissue wound healing situation) is enhanced on
gratings with a 4-μm period (Tonazzini et al. 2015).

As already stated, chitosan is one of the major candidates as
a suitable material for regeneration applications (reviewed in
Rodríguez-Vázquez et al. 2015). Overall, chitosan, although
an environmentally friendly promising biopolymer itself for
regenerative medicine (Jahangirian et al. 2018), could be fur-
ther improved in its regeneration potential by the introduction
of topographical cues for cells, in order to direct their
migration/differentiation and speed up the healing process.

There are a few fabrication techniques that have already
been used to create nano/microstructures on chitosan films
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or scaffolds, but not all of them can be used for a precise and
directional nano/micro-topography structuration. (i)
Electrospinning is a useful manufacturing technique to obtain
micro/nanofibers and mimic the texture of the ECM (e.g.,
collagen fibers). In fact, nanofibers have been effective in
improving Schwann cells’ healing (Tonazzini et al. 2017).
Wang and coworkers successfully created a chitosan nano/
microfiber mesh tube (Wang et al. 2006). The chitosan solu-
tion (5%, in trifluoroacetic acid and methylene chloride) was
electrospun on a negatively charged steel use stainless bar,
which was intermittently compressed during chitosan deposi-
tion, compacting the fibers into a tube. Depending on the
degree of chitosan deacetylation (DAc), the obtained fibers
were 200 nm (for DAc 93%) or 400–600 nm (for DAc 78%)
in diameter, with 10.98 MPa and 5.30 MPa Young’s moduli
respectively. The chitosan tube made of 200-nm fiber mesh
(DAc 93%) performed as the best conduit for nerve regener-
ation; however, its regenerative outcome was lower or com-
parable than for the iso-grafting control group. Additionally,
3D nanofibrillar chitosan scaffolds have been developed by
electrospinning for skin regeneration and demonstrated to in-
duce a faster regeneration of both the epidermis and dermis
compartments, both in vitro and in vivo (while 3D chitosan
sponges developed by freeze-drying induced granuloma for-
mation) (Tchemtchoua et al. 2011). (ii) Nanosphere lithogra-
phy (NSL) was used to generate surfaces of chitosan that
mimic the nanostructures found on the surface of certain insect
wings (Chandran et al. 2018). In NLS, the substrate is firstly
covered with a close packed nanosphere layer and then proc-
essed by material deposition or etching. Here, chitosan, such
as chitosan/nanosilver particles, was also able to self-assemble
in a self-masking thin film, thus enabling a novel tool for the
NLS. Both with classic NLS and the self-masking techniques,
it was possible to obtain nano-cone patterns of about 250 nm
in diameter. Regrettably, this is the only type of topography
that is possible to obtain with these techniques and was not
tested further in vitro or in vivo. (iii) Freeze-drying has been
used to create three-dimensional chitosan-based–structured
scaffolds. Yin and coworkers built a chitosan nerve conduit
with highly aligned, double-layered porosity, having an over-
all control on pore size and orientation through the materials
used to shape the scaffold (Yin et al. 2018). The solution
(3.5 w/v% chitosan in 1.5 v/v% acetic acid) was injected into
a coaxial tube, having the external part in aluminum and the
internal one in brass. The systemwas frozen and subsequently
lyophilized. This resulted in the formation of two distinct
structural chitosan layers, with differently oriented and shaped
pores, due to the two opposite thermal gradients during freez-
ing generated by the two materials. The conduits were tested
for compression showed a fully recoverable behavior, with an
initial low stiffness for compression and a higher resistance
due to compaction of the wall. These conduits were evaluated
in bridging 10-mm Lewis rat sciatic nerve gap at 12 weeks

post-implantation and qualitatively showed good regenerative
efficacy.

Even though there are several reports about 2D and 3D
chitosan biomaterials, chitosan has been mainly exploited
for nanoparticles and nanocarriers and chitosan-based films
or scaffolds have beenmainly fabricated with no surface struc-
turation, into tubular forms or at most into nanofiber scaffolds
(Elieh-Ali-Komi and Hamblin 2016). There are very few stud-
ies about the precise micro/nanopatterning of chitosan films.
The above-mentioned techniques cannot transfer a defined
geometrical pattern on a chitosan membrane with micrometer
or nanometric dimensionality. At the moment, chitosan has
been patterned using only two techniques: (1) low-pressure
low-temperature nanoimprinting and (2) solvent casting.

1. Nanoimprinting is a process that enables the imprinting of
a pattern onto a thin film of a second (usually thermoplas-
tic) material (Truskett and Watts 2006). The film is
pressed on a silicon or polymeric mold with the desired
pattern, with controlled high pressure and temperature.
After the removal of the mold, the pattern is reproduced,
inversely, on the film. A modified version of the
nanoimprinting technique was used to produce chitosan
films: it is slightly different from the classical nanoimprint
process (carried at high temperatures), since it takes ad-
vantage of the relatively low temperature solidification of
chitosan (Park et al. 2007). Medium molecular weight
chitosan was dissolved in a solution of acetic acid 50%
and heated at 40 °C to form a hydrogel, without using any
additional plasticizer to lower the viscosity of the chitosan
solution. Polydimethylsiloxane (PDMS) molds with
micrometric and nanometric patterns were created as fol-
lows: microstructures consisted of microwells (3.5 μm
diameter and 220 nm depth), microposts (2.2 μm width
and 350 nm height), and checkerboards (2.2 μm width
and 280 nm height); nanostructures consisted of nano-
wires (150 nm width and 500 nm pitch) and nanodots
(150 nm width and 400 nm pitch). Molds were pressed
on drops of chitosan solution, applying moderate heating
(90 °C) and pressure (5–25 psi). Overall, the smallest
features replicated had the resolution of 150 nm in width.
This method successfully conveyed nano- and
microfeatures on chitosan films, for bionanodevice appli-
cations. However, this method required several passages,
careful control of the viscosity, and the use of a
nanoimprinter and therefore of clean room facilities.

2. Solvent casting is probably the easiest method to fabricate
plain or structured chitosan substrates. With this tech-
nique, a polymer solution is poured on a patterned mold,
previously created with lithography techniques (Siemann
2005). Then, the solvent is allowed to evaporate, leaving a
solid chitosan film that can be peeled off the mold. This
method has been recently used to structure chitosan from
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silicon molds, creating micropatterned substrates (Sung
et al. 2015). A 1% chitosan solution was poured on
micropatterned silicon molds created by photolithography
and left overnight at 60 °C. The molds had squared
(50 μm wide and 5 or 15 μm deep), line, and
hexagonal-like geometric patterns, with flat area surfaces
printed on nanotextured regions created by Ag
nanoparticle-assisted etching. Here, the solvent casting
technique achieved good results in replicating both the
micrometric features and nanotexturization. Neuro-2a
cells preferred to adhere to the flat chitosan surfaces rather
than the nanotextured areas and the hexagonal-like
micropattern provided the most suitable surface for pro-
moting neural cell network formation on these chitosan
substrates in vitro. Though promising, Sung’s work is the
only example of chitosan micropatterning with this tech-
nique, at the best of our knowledge.

Towards the nanoscale: fabrication
of nano/micropatterns on chitosan
membranes

Bio-based chitosan biopolymer scaffolds reinforced with
nanostructures are emerging therefore as an interesting, but
not yet deeply investigated, area of research. The easiest tech-
nique to obtain thin chitosan films is solvent casting. This
technique does not involve complex instrumentations, high
temperature, or harsh chemicals; it preserves the biocompati-
bility of the material and avoids its thermal degradation. We
therefore set up a protocol to develop micro- and nanostruc-
tured chitosan thin films with topographical patterns of grat-
ings (GRs; i.e., alternating lines of ridge and grooves) that can
induce directional stimuli to cells (Tonazzini et al. 2015). The
aim was to assess to which extent solvent casting was able to
replicate nanoscopic features on chitosan films.

Chitosan was purchased in three different molecular
weights, classified as low, medium, or high (Sigma-Aldrich).
A 2% w/v chitosan solution (in distilled water + acetic acid
1% v/v) was filtered with a filter paper having a 10-μm cut-off
(Superfiltro, Milano, IT) and poured on different pre-
fabricated (methods in Masciullo et al. 2018, Masciullo et al.
2017) cyclic olefin copolymer molds having GR patterns of
decreasing period: (1) a mold having 4 μm of period and
370 nm of depth (T4); (2) a mold with GRs with a 400-nm
period and 200 nm of depth (T400); (3) a mold with GRs of a
200-nm period and 90 nm of depth (T200). Chitosan solution
was baked at 37 °C until complete evaporation of the solvent.
After evaporation, thin (~ 300 μm) chitosan films were peeled
off of the molds (Fig. 1a) and evaluated by scanning electron
microscopy (SEM) with a LEO 1525 field-emission scanning
electron microscope (Zeiss).

As demonstrated by the SEM images reported in Fig. 1b,
all of the three different molecular weights (low, medium, and
high) of chitosan were able to replicate the GR features, from
T4 down to T200 with no differences in the replication effec-
tiveness. It was possible to distinguish well-defined ridges and
grooves, with the expected period imposed by the mold. Even
the smallest GR pattern (T200) was finely replicated on the
chitosan surfaces. Altogether, this solvent casting technique
allowed us to replicate nanostructured directional features on
chitosan films with an overall resolution down to 100 nm, for
the first time. This result is an important achievement: it dem-
onstrates that it is possible to obtain chitosan films with the
desired nano-GR pattern with a solvent casting technique that
does not impact on the biological andmechanical properties of
the material; it is simple (e.g., no clean room facilities need for
the process itself, while any original mold can also be easily
purchased on the market) and cost-effective (e.g., high mold
reuse). This protocol represents an easy process to create
nanostructured scaffolds for tissue engineering.

Mechanical characterization of chitosan
membranes

The regeneration process is also influenced by the mechanical
properties of the scaffold. An artificial substrate conveys to
cells’ physical signals (e.g., stiffness) that regulate many pro-
cesses in regeneration, such as cell proliferation and migra-
tion. For this reason, the mechanical compatibility of the ma-
terial is fundamental in determining the outcome of the regen-
eration process and the scaffold would rather resemble the
mechanical properties of the native tissue.

Chitosan films were mechanically characterized by uniax-
ial tensile tests at a constant cross-head speed using an Instron
5564 Testing System (Instron, Norwood, USA) equipped with
a 2-kN load cell (Puppi et al. 2016). Thesemeasurements were
performed again on the three different molecular weights of
chitosan (low, medium, and high). Thin films of chitosan were
prepared by solvent casting on silanized silicon wafers.
Chitosan scaffolds are brittle when dry (such as before implan-
tation), while their mechanical properties change when soaked
in a liquid (such as in body fluids). For this reason, the me-
chanical properties of both dry and wet films were measured,
in order to determine the different behavior of chitosan films
in the two conditions. For the preparation of wet samples, dry
chitosan films were first neutralized with NaOH 1% w/v for
30 min and then rinsed with deionized water.

Dog-bone–shaped (21.1 × 4.75 × 0.90 mm) samples were
tested at a strain rate of 10 mm/min until specimen failure. The
test was conducted at room temperature on 7 replicates for each
molecular weight and dry/wet test condition. By analyzing the
obtained stress-strain curves, the Young’s modulus (MPa) was
calculated as the slope of the initial linear region, while the stress
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(MPa) and strain (%) at break were obtained at the sample break
point. The measured values are reported in Table 1.

As expected, the Young’s modulus and stress at break of
wet films were consistently lower than those of dry films, for
all molecular weights. On the other hand, the strain at break
was significantly larger when samples were tested in wet con-
ditions. The explanation for this behavior is that water acted as
a plasticizer and enhanced the elasticity of the material.

For optimal tissue regeneration, there should be a match
between the mechanical properties of the native tissue and the
ones of the material. The stiffness of the material should be as

close as possible to the natural environment of the cells we are
trying to regenerate. For instance, the nerve Young’s modulus
is about 0.58 MPa (Borschel et al. 2003), roughly an order of
magnitude lower than medium Mw chitosan films (5 MPa)
and only one-third that of high Mw chitosan films (1.8 MPa)
tested in wet conditions.

Several factors other than material mechanical properties
need to be considered, first of all the biocompatibility, but also
the swelling due to degradation/fluid absorption, and the im-
plantation procedure/suturability (if needed). An effective com-
promise between all these parameters should be optimized.

Table 1 Mechanical properties of
low, medium, and high molecular
weights (MWs) chitosan films in
dry and wet conditions. All values
are reported as mean ± standard
deviation

Young’s modulus (MPa) Stress at break (Mpa) Strain at break (%)

Low Mw-dry 1644 ± 400 35 ± 9 18 ± 5

Medium MW-dry 2782 ± 500 56 ± 10 19 ± 4

High Mw-dry 430 ± 60 8.6 ± 1.5 15 ± 7

Low Mw-wet 2.9 ± 0.5 3.9 ± 1.5 123 ± 35

Medium Mw-wet 5 ± 1 5 ± 1 130 ± 11

High MW-wet 1.8 ± 0.4 1.6 ± 0.3 108 ± 13

Fig. 1 a Schematic representation
of the chitosan patterning process.
b SEM images of microstructured
and nanostructured films made of
chitosan with low, medium, and
high molecular weights; scale
bars = 2 μm
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Conclusions

Regenerative medicine is facing new challenges and it is con-
tinuously searching for biocompatible and green/natural poly-
meric materials that are possibly biodegradable, non-
immunogenic and having a good interaction with biological
systems. Moreover, it is overall accepted that the nano/
microstructure of (chitosan) devices deeply affects their regen-
erative performances. Chitosan is emerging as a promising
biopolymer for tissue engineering and its application can be
further improved by exploiting its nano/microstructuration,
creating topographical features in chitosan membranes and
conduits. Here, we reported the state of the art of chitosan
films and scaffolds nano/micro-structuration and showed that
it is possible to structure chitosan films at the microscale and
even nanoscale levels, with resolutions down to 100 nm.
Chitosan mechanical properties have been also characterized,
as preliminary information on the possible use of this material
in tissue regeneration. Further studies will confirm the en-
hanced regenerative potential of micro/nanostructured chito-
san as scaffolds for nerve regeneration.
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