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In this work, we investigate simulated liquid water at ambient pressure in both stable and metastable supercooled 
conditions by means of a new order parameter we recently proposed, namely the node total communicability 
(NTC), based on graph theory concepts. We show that this order parameter is able to identify the two liquid states 
differing in density, the LDL- and HDL-like states, in simulation conditions at which both states coexist. We also 
show that NTC is able to capture both the structural and dynamic differences between the two states, being 
correlated with both the local density and the mobility of water molecules within the network. In addition, we 
further investigate the high connectivity patches we previously identified as characteristic of the HDL-like state. 
We show that these extended patches are composed of molecules with an increased local density and mobility, 
packed in a highly connected network. The formation of these highly connected networks is characterized 
by a fast dynamics, with mobile molecules entering and exiting the patches. Interestingly, we observe small 
highly connected patches also at low temperatures, where the prevailing state is LDL-like. We show that the 
small-to-large patches transition is related to the Widom line crossing and we suggest that the small highly 
connected patches at low temperatures might function as initial sites for the formation of extended HDL-like 
regions characteristic of the highest temperatures.
1. Introduction

The properties of water are the subject of extensive investigation in 
many research fields such as physics, biology, and chemistry. Nonethe-
less, the microscopic structure of liquid water, even at ambient con-
ditions, is still under hot debate. As a matter of fact, different local 
molecular arrangements appear in water at ambient pressure and tem-
perature, accompanied by spatio-temporal fluctuations in the hydrogen 
bond (HB) network [1]. The scenario is even more complicated at 
the pressure and temperature conditions where water can exist as a 
metastable supercooled liquid below its equilibrium melting temper-
ature. The well known anomalies in water thermodynamics and dy-
namics are in fact amplified upon supercooling, and vast research was 
performed to gain insights into the origin of these anomalies [2]. Among 
other possible thermodynamic scenarios [2,3] (i.e., the stability-limit 
conjecture [4], the critical-point-free scenario [5,6] and the singularity-
free scenario [7,8]), the liquid–liquid critical point (LLCP) hypothesis 
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[9] is the leading conjecture to explain water anomalies. According 
to this thermodynamic scenario, the marked increase in the thermody-
namic response functions upon supercooling is due to the existence of 
a LLCP in the conventionally called “no man’s land”, i.e., the phase-
diagram region below the temperature of homogeneous nucleation 
temperature and above the crystallization line [10]. This implies the 
existence of a first order liquid-liquid phase transition (LLPT) between 
two phases: the low- (LDL) and high-density liquid (HDL). Beyond the 
LLCP, the locus of extrema of the correlation length defines the Widom 
line [3]. In this region of the phase diagram, the LDL and HDL coexist in 
a fluctuating equilibrium. Despite several experimental works support-
ing the LLCP scenario [1,11–14], a conclusive experiment proving the 
existence of a second critical point in water could not be performed yet, 
due to fast crystallization in the region where the LLCP should be lo-
cated. On the other hand, a large body of theoretical and computational 
works have been performed exploring the “no man’s land” [15–18] (see 
also Gallo et al. [2] and references therein). The structural, thermody-
Available online 29 October 2023
0167-7322/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
nc-nd/4.0/).

E-mail addresses: isabella.daidone@univaq.it (I. Daidone), laura.zanettipolzi@na

https://doi.org/10.1016/j.molliq.2023.123425
Received 4 August 2023; Received in revised form 24 September 2023; Accepted 23
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

no.cnr.it (L. Zanetti-Polzi).

 October 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/molliq
mailto:isabella.daidone@univaq.it
mailto:laura.zanettipolzi@nano.cnr.it
https://doi.org/10.1016/j.molliq.2023.123425
https://doi.org/10.1016/j.molliq.2023.123425
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molliq.2023.123425&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


C. Faccio, N. Di Fonte, I. Daidone et al.

namic and dynamic properties of supercooled and ambient conditions 
water have been widely investigated by means of molecular dynam-
ics (MD) simulations of several water models, as well as by means of 
analytic thermodynamic models. Most of the latter rely on a two-state 
description of liquid water, hypothesizing an equilibrium between LDL-
like and HDL-like local environments at the molecular level [19–26]

Besides differing in density, the LDL-like and HDL-like states also 
feature different local structures: the LDL-like structure resembles that 
of ice, with four nearest neighbors in a regular tetrahedral arrangement; 
the HDL-like structure is characterized by a distorted HB pattern with a 
fifth nearest neighbor (the so-called interstitial water molecule). Despite 
these structural differences, the unambiguous assignment of a specific 
molecule to either a state or the other is not trivial, and a number of 
structural order parameters have been developed aiming at character-
izing simulated water at different pressure and temperature conditions. 
These structural descriptors, such as the local structure index (LSI) [27], 
𝑑5 [28], 𝜁 [29], 𝑉4 [30], Ψ [31] and the node total communicability 
(NTC) we recently proposed [32], are used to infer the structural fea-
tures of liquid water in a two-state picture. It was shown, for example, 
that the HB network of LDL-like molecules is characterized by an equal 
number of pentagonal and hexagonal rings [33], that in the HDL-like 
state interstitial water molecules arise from the folding back of long HB 
rings [34], and that the HDL-like state is not homogeneous but rather 
features patches of water molecules characterized by a particularly high 
connectivity [32].

Besides the well known thermodynamic anomalies, water also shows 
dynamic anomalies, such as the counter-intuitive fact that the denser 
HDL-like molecules have a larger mobility. Upon cooling, water dynam-
ics shows a crossover from a fragile-liquid behavior at high temperature 
to a strong-liquid behavior at low temperatures [3]. This behavior has 
been also interpreted in the framework of the two-state model of water 
as a strong-to-strong transition, i.e., as the switch between two dis-
tinct Arrhenius regimes in the two distinct liquid states [23,35,36]. 
Water dynamics is also characterized by the so-called “dynamical het-
erogeneities”, i.e., the existence of regions with different mobility, with 
localized patches of molecules showing an increased mobility [37]. 
Regions with different mobility have been connected to regions with 
different structural features. For example, a higher number of near-
est neighbors is associated to an increased mobility [38], less mobile 
regions are characterized by an increased tetrahedrality [35] and the 
“defect propensity”, quantifying the tendency of a molecule to assume 
distorted configurations, correlates with its dynamic propensity [39]. 
Therefore, the dynamics of water strongly depends on the local density 
and structure. This, together with the observation that the fragile-to-
strong crossover occurs at the Widom line [2], suggests that there is 
a strong connection between the dynamic and thermodynamic anoma-
lies in supercooled water. Interestingly, a relevant role of the dynamic 
properties in driving ice nucleation has been recently proposed [40]. 
Nonetheless, the interplay between structural, thermodynamic and dy-
namic properties in affecting the behavior of supercooled water is still 
under debate.

Aiming at clarifying the link between structure and dynamics, the 
relationship between local structural ordering and dynamical hetero-
geneities was investigated in model glass forming systems [41–46]. 
Efforts have been also devoted to find order parameters with a strong 
correlation with dynamics. With an unsupervised machine learning ap-
proach, that does not use any dynamical information, a structural order 
parameter was obtained strongly correlating with dynamical hetero-
geneties in three glass forming systems [47]. In addition, Tanaka and 
coworkers found a correlation between the molecular mobility in sim-
ulated water and the coarse-grained version of the order parameter 𝜁 , 
𝜁𝐶𝐺 [23,36]. The fact that a correlation with the dynamics is observed 
only when the 𝜁 parameter is averaged on the first hydration shell, was 
explained by observing that the dynamics of a water molecule is non 
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local, and intrinsically coupled to that of its neighbors [36]. The impor-
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tance of going beyond a purely local description to properly describe 
the dynamics of supercooled liquids was further stressed later on [48].

In our recent paper [32], we proposed an order parameter inspired 
by concepts from graph theory, namely the node total communicabil-
ity, to investigate the structure of liquid water. The peculiarity of this 
order parameter is that it takes into account not only the first hy-
dration shell of the target molecule, but also medium- to long-range 
effects. By computing this order parameter on MD simulations of the 
TIP4P/2005 water model [49] along the 1950 bar isobar that crosses 
the liquid–liquid coexistence line, we showed that the NTC is able to 
properly identify the LDL-like and HDL-like water phases. In addition, 
the NTC showed in the HDL-like phase the existence of patches of water 
molecules characterized by a high connectivity and an increased num-
ber of interstitial water molecules.

In this work, we extend the investigation of liquid water with the 
NTC by analyzing several temperatures along the 1 bar isobar, that 
crosses the Widom line. We test the ability of the NTC in identifying 
the LDL- and HDL-like structures in simulation conditions at which both 
states coexist. In addition, we also investigate the correlation between 
the NTC and the dynamical properties of the system. We also further 
investigate the high-connectivity patches we previously identified, and 
their temperature dependence, in terms of i) number of molecules in 
the patches, ii) mean lifetime of the patches and iii) mobility of the 
molecules inside and outside the patches.

2. Methods

2.1. Graph theory and centrality measures

In this section, we recall some basic notions from graph theory. A 
more exhaustive description can be found in our previous works [32,50]
or in the work of Estrada [51], but we briefly report it for setting the 
notation and self-containing the paper.

A graph 𝐺 consists of a pair of finite sets (𝑉 , 𝐸), where 𝑉 is the 
set of nodes 𝑉 = {𝑣1, ⋯ , 𝑣𝑁} and 𝐸 ⊆ 𝑉 × 𝑉 is the set of the edges. 
The symbol 𝑒𝑖𝑗 = (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸 indicates that in the graph there is an edge 
from the node 𝑣𝑖 to the node 𝑣𝑗 . If all the edges in a network are without 
orientation, i.e. 𝑒𝑖𝑗 = (𝑣𝑖, 𝑣𝑗 ) = (𝑣𝑗 , 𝑣𝑖) = 𝑒𝑗𝑖 ∀𝑒𝑖𝑗 ∈ 𝐸, the graph is called 
undirected, otherwise it is a directed graph. In a graph, each edge 𝑒𝑖𝑗

can be endowed with a positive number 𝑤𝑖,𝑗 , called the weight. This 
quantity can represent, for instance, the physical distance between the 
two nodes, or the strength of their link. In this case, the graph is called 
weighted. Otherwise, if only the existence of a connection between nodes 
is taken into account, the weight of each edge is set to 1, and the graph 
is called unweighted.

The adjacency matrix associated with a graph 𝐺 is a squared matrix 𝐴
of dimension 𝑁 ×𝑁 , where 𝑁 is the number of nodes in the graph. The 
entry 𝑎𝑖𝑗 is nonzero if and only if there exists an edge from the node 𝑣𝑖 to 
the node 𝑣𝑗 , and in this case 𝑎𝑖𝑗 = 𝑤𝑖𝑗 . Clearly, if the graph is undirected, 
the associated adjacency matrix is symmetric, and if 𝐺 is unweighted, 
𝐴 is binary. In this paper, we consider only undirected, unweighted 
graphs and without self-loops, i.e. edges of the form 𝑒𝑖𝑖 = (𝑣𝑖, 𝑣𝑖).

A walk between two nodes 𝑣𝑖 and 𝑣𝑗 is a sequence of edges in 𝐺 (not 
necessarily distinct) of the form 𝑒𝑖𝑝, 𝑒𝑝𝑞, … , 𝑒𝑠𝑟, 𝑒𝑟𝑗 . If 𝑖 = 𝑗 the walk is 
closed. Given a positive integer 𝑘, the entry [𝐴𝑘]𝑖𝑗 (the entry in position 
{i j} of the 𝑘-th power of 𝐴) is equal to the number of walks of length 
𝑘 between the nodes 𝑣𝑖 and 𝑣𝑗 . A path is a walk in which each node is 
visited exactly once. A graph is connected if given a node, any other node 
in the graph can be reached by following a path in 𝐺. The degree of a 
node 𝑣𝑖 (indicated by 𝑑𝑒𝑔(𝑣𝑖)) is the number of edges that are connected 
to that node, or equivalently it is the number of vertices that are joined 
to 𝑣𝑖 by an edge.

In our previous works [32,50], we presented a new order parameter 
based on a centrality measure, the node total communicability (NTC), to 
differentiate the two forms of liquid water at high pressure. A centrality 

measure is a quantity used to identify the “most important” nodes in a 
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graph. The meaning of “important node” depends on the properties of 
the graph that we consider. In this work we examine the degree centrality

and the NTC. The degree centrality is the simplest one, and it is defined 
as the degree of the nodes, so it only looks at the adjacent nodes to each 
vertex. It is computed by multiplying the matrix 𝐴 for the vector of all 
ones 𝟏, i.e. 𝑑𝑒𝑔(𝑣𝑖) = [𝐴𝟏]𝑖. On the other hand, the NTC [52,53] does not 
only consider the first neighbors of a node, but it also takes into account 
medium-long range effects. Let 𝛽 > 0, the NTC of the node 𝑣𝑖 is defined 
as

𝑁𝑇 𝐶(𝑣𝑖) = [𝑒𝛽𝐴𝟏]𝑖 =
∞∑

𝑘=0

𝛽𝑘

𝑘!
[𝐴𝑘𝟏]𝑖 = 1 + 𝛽𝑑𝑒𝑔(𝑣𝑖) +

𝛽2

2!
[𝐴2𝟏]𝑖

+ 𝛽3

3!
[𝐴3𝟏]𝑖 +⋯ (1)

where 𝟏 is again the vector of all ones. Therefore, the NTC of a node 
𝑣𝑖 considers all the walks between 𝑣𝑖 and the other nodes in the 
graph, with the contribution of each walk of length 𝑘 (with 𝑘 = 1, 2, … ) 
weighted by the factor 𝛽𝑘

𝑘! . In this way, the longer walks are penalized 
through less weight, and the parameter 𝛽 can be used to give more or 
less weight to these longer walks. For small values of 𝛽 the obtained 
ranking of the nodes is equal to the degree centrality ranking, while for 
𝛽 →∞ this measure is equivalent to the eigenvector centrality [54]. If 
the graph is connected, the eigenvector centrality [55] of a node 𝑣𝑖 is de-
fined as the 𝑖-th entry of the eigenvector 𝐩 associates with the largest 
eigenvalue of 𝐴, denoted by 𝜌(𝐴) (by the Perron-Frobenius Theorem, 
𝜌(𝐴) is a positive and simple eigenvalue of 𝐴 and its eigenvector 𝐩 is 
unique (up to normalization) and positive). In this paper, we do not con-
sider this centrality measure because we found that it is not well-suited 
to differentiate the two phases in liquid water, see [32] for details.

For the computation of the NTC, we use 𝛽 = 1. As was shown in 
[32,50], this is a default value for the node total communicability, 
which however has proved to be useful in recognizing the two liquid 
forms of water in the supercooled region at high pressure. As previ-
ously shown [32], with this value of 𝛽 we give a non negligible weight 
to each walk of length 𝑘 ≤ 4 (each walk of length 𝑘 is weighted by 
the factor 𝛽𝑘

𝑘! ). In this way, we give more weight to the walks that in-
clude molecules within ≈ 1 nm from the target molecule, i.e. within 
the fourth hydration shell as obtained from the 𝑔𝑂𝑂(𝑟), the O⋯O-pair 
distribution function. Nonetheless, the NTC uses all the walks of length 
𝑘, with 𝑘 = 1, ..., ∞. Therefore, the cumulative contribution to the NTC 
of the walks of length 𝑘 ≥ 5 is non negligible. This allows us to in-
clude medium-long range effects in the computation of the NTC, beyond 
the fourth hydration shell. Indeed, the distance out to which there is 
(temperature-dependent) structure in the 𝑔𝑂𝑂(𝑟) was shown to extend 
up to ≈1.5-1.7 nm [56]. Moreover, both experimental [1] and simulated 
[57] data suggested a spatial extent on the order of 1 nm diameter for 
density heterogeneities in ambient water, i.e. the distance up to which 
walks have a more relevant weight in the NTC calculation.

2.2. Molecular dynamics simulations

We perform molecular dynamics (MD) simulations of water at 1 bar 
at 12 different temperatures (see Fig. 1 and Table 1 in the Support-
ing Information, SI, for details on the simulation lengths) using the 
TIP4P/2005 water model [49] that is widely used in the simulation 
of both pure water and aqueous solutions and exhibits a metastable 
liquid–liquid critical point in deeply supercooled conditions. Depend-
ing on the details of the simulation conditions, the second critical point 
for TIP4P/2005 has been located at 1600-1750 bar and 177-182 K 
[21,22,58–60], with a very recent estimate at 1860 bar and 172 K [18]. 
The simulation conditions we use here are consistent with those of Bid-
dle et al. [22], who estimated the second critical point at 1700 bar and 
182 K. All MD simulations were performed in the NPT ensemble with 
the 5.1.2 version of the GROMACS software [61] using a cubic simu-
lation box containing 710 water molecules. Temperature and pressure 
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were kept constant by using the velocity rescaling temperature coupling 
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Fig. 1. Black filled diamonds: MD simulation temperatures along the 1 bar iso-
bar. Blue filled diamonds: previously investigated temperatures along the 1950 
bar isobar [32]. Dark red: liquid-liquid coexistence line (solid), Widom line 
(dashed) and LLCP (filled circle) as estimated by the two-structure equation 
of state (TSEOS) for the TIP4P/2005 water model by Anisimov and coworkers 
[21].

[62] and the Parrinello–Rahman barostat with 2 ps relaxation times 
[63]. Periodic boundary conditions were used, long range electrostatic 
interactions were treated with the particle mesh Ewald method [64]
with a real space cutoff of 0.9 nm and for short range interactions a cut-
off radius of 0.9 nm was employed. All bonds were constrained using 
the LINCS algorithm [65] along with a 2 fs time step.

2.3. Construction of the graphs

Given a MD trajectory, to apply the tools of graph theory, we need to 
transform the information contained in the simulations into graphs. For 
this purpose, for each frame of the trajectory, we extract the coordinates 
of the atoms. In this work, we implement the same strategy proposed in 
[32,50], in order to compare the results under different pressures. The 
oxygen atoms compose the nodes of our graph, while the edges repre-
sent the interactions between the molecules. In particular, we consider 
two nodes (i.e., oxygen atoms) as connected if their distance is less than 
or equal to 0.35 nm, see [32] for details on choosing this threshold. In 
this way, we get undirected and unweighted graphs.

Since in the MD simulations periodic boundary conditions are used, 
we employ in constructing the graph the minimum image convention 
to compute the distance between two oxygen atoms.

The companion software, which is used to construct the networks 
from trajectories and to analyze them using graph theory concepts, is 
available in the GitHub repository (https://github .com /ChiaraFaccio /
WaterNetworks). The code uses the following packages/libraries: Net-
workX 2.6.3 module [66] in Python 3.7, the MDAnalysis library [67,
68], the Python package NetworkSNS [69] and the open-source pack-
ages NumPy [70], SciPy [71], and Matplotlib [72].

3. Results and discussion

In our recent work [32], we presented the use of the node total com-
municability (NTC) as a new order parameter to identify the two liquid 
phases of water differing in density. Our previous work focused on the 
high pressure region of the phase diagram where the liquid-liquid co-
existence line is crossed; in the present work we use the same order 
parameter to investigate the properties of liquid water at several tem-
peratures at ambient pressure, where the Widom line is crossed (Fig. 1). 
We use MD simulations at 12 different temperatures of the TIP4P/2005 
water model [49] along the 1 bar isobar that was previously shown to 

cross the Widom line between 230 and 235 K [21,26].

https://github.com/ChiaraFaccio/WaterNetworks
https://github.com/ChiaraFaccio/WaterNetworks
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Fig. 2. A: Pair radial distribution functions (g(r)) for the O⋯O contacts. B: 
Normalized distribution of the degree centrality (deg). Inset in B reports the 
average degree centrality as a function of the temperature.

As anticipated from the behavior of the pair radial distribution func-
tions, g(r), for the O⋯O contacts along the 1 bar isobar (Fig. 2A), the 
number of first-shell neighbors, as obtained from the degree central-
ity (Fig. 2B), increases with the temperature with an inflection point 
around the Widom line temperature and a slight decrease at the two 
highest temperatures approaching the liquid-gas phase transition (the 
boiling temperature for TIP4P/2005 is 401 K [73]). As already observed 
at 1950 bar [32], the NTC distributions (Fig. 3A) show a more marked 
variation upon raising the temperature with respect to the degree cen-
trality while maintaining the same temperature trend (inset of Fig. 3A). 
At the lowest temperatures the distributions are very sharp and peaked 
at low NTC values; by increasing the temperature the distributions are 
considerably broader and their mode is progressively shifted to higher 
NTC values (Fig. 3B).

As pointed out in our previous work [50], the graphs in the LDL 
phase in the supercooled region are close to being four-regular graphs. 
In an undirected d-regular graph, every node has the same value of 
degree centrality 𝑑𝑒𝑔(𝑣𝑖) = 𝑑, and, therefore, the same value of NTC, 
𝑁𝑇 𝐶(𝑣𝑖) = 𝑒𝛽𝑑 . In fact, as shown in Fig. 3A, the modes of the distribu-
tions at the lowest temperatures are approximately around 𝑒4 ≈ 54.60. 
The similarity between the LDL-like state connectivity and that of a 
four regular graph shows that the LDL-like state is very homogeneous 
in terms of connectivity, with an almost 4-regular structure resembling 
the tetrahedral arrangement of the parent crystal [74].

Interestingly, the distribution at the lowest temperature (180 K), at 
which TIP4P/2005 is expected in a single LDL-like state, well matches 
the distribution obtained at 1950 bar for the pure LDL-like state at 
170 K. In addition, the distribution at 300 K (with TIP4P/2005 almost 
fully HDL-like) intersects the distribution at 180 K (with TIP4P/2005 
almost fully LDL-like) at NTC=95 (Fig. 3C), i.e. the same NTC value 
at which, at 1950 bar, there is the intersection between the distribu-
tion at 170 K (pure LDL-like state) and 180 K (pure HDL-like state). 
Therefore, as previously done at 1950 bar [32], we choose the value 
NTC=95 to distinguish between LDL- and HDL-like molecules also at 1 
4

bar: for NTC≤95 a water molecule is assigned to the LDL-like state and 
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for NTC>95 to the HDL-like state. As a further test of the reliability of 
this choice, we report in Fig. 4A the probability of having NTC=95 as a 
function of the temperature. It can be observed that there is a maximum 
between 230 and 240 K, i.e., at the expected Widom line temperature 
[21,26]. As the Widom line temperature has been defined in that pre-
vious work as the temperature at which there is equal fraction of LDL-
and HDL-like molecules, the maximum in the above trend shows that 
the choice NTC=95 as a threshold properly identifies the temperature 
at which the overlap between the LDL- and HDL-like populations is 
maximum. This result also suggests that the chosen NTC threshold is 
roughly pressure-independent, allowing the usage of the NTC as an or-
der parameter along different isobars without any adjustment.

We use therefore the NTC=95 threshold to compute the LDL frac-
tion along the 1 bar isobar (Fig. 4B). It can be observed that, differently 
from the 1950 bar isobar along which, consistently with the coexistence 
line crossing, a sudden jump occurs in a small (10 K) temperature in-
terval, along the 1 bar isobar the LDL fraction continuously decreases 
by increasing the temperature, consistently with the Widom line cross-
ing. It can also be observed that the 0.5 LDL fraction is at 230 K, i.e., 
in agreement with what previously predicted for TIP4P/2005. At the 
lowest temperature (180 K) water is almost fully LDL-like (LDL frac-
tion=0.95) while it is almost fully HDL-like from 280 K (LDL fraction 
between 0.05 and 0.10). In Fig. 4B we compare the LDL fraction ob-
tained using the NTC as order parameter with that obtained using two 
different order parameters: 𝜁 and 𝜓 . Given a molecule 𝑖, to compute the 
quantity 𝜁𝑖, its closest not hydrogen-bonded neighbor 𝑗′ and its last hy-
drogen bonded neighbor 𝑗′′ are identified. Then, 𝜁𝑖 = 𝑟𝑗′𝑖 − 𝑟𝑗′′𝑖, where, 
in general, 𝑟𝑗𝑖 represents the distance between the molecules 𝑗 and 𝑖
[29]. 𝜓 is a recently introduced order parameter based on the observa-
tion that the distance between pairs of molecules separated by 4 links 
along the HB network (chemical distance D = 4) is different in the LDL-
and HDL-like states. The quantity 𝜓𝑖 of a molecule 𝑖 is defined as the 
minimal distance between molecules at chemical distance D = 4 from 𝑖
[31]. To define the LDL-like fraction using these two order parameters, 
we use as threshold to separate the two states the crossing point be-
tween the distributions obtained at the lowest and highest temperature. 
It can be observed that while the three order parameters provide sim-
ilar estimates of the temperature at which the LDL fraction is 0.5 (see 
caption of Fig. 4), both 𝜁 and 𝜓 provide a slightly lower LDL fraction 
at low temperatures and a rather higher LDL fraction at high tempera-
tures. This is particularly evident in the temperature interval between 
260 and 350 K. The origin of this difference likely arises from the differ-
ent “locality degree” of the three order parameters. As a matter of fact, 
despite both 𝜁 and 𝜓 take into account second-shell effects, they essen-
tially depend on the distance between the target molecule and its very 
first neighbors. On the contrary, the NTC takes into account medium- to 
long-range effects, accounting for the connectivity of the whole hydra-
tion shell of the target molecule [32]. At high temperatures there will 
be molecules with a local tetrahedral LDL-like arrangement that are sur-
rounded by HDL-like molecules. These molecules will be identified as 
LDL-like by 𝜁 and 𝜓 , but will be identified as HDL-like by the NTC be-
cause their overall connectivity (accounting for both their connectivity 
and that of their neighbors) will be that of HDL-like molecules. We also 
note that the inclusion of nearest neighbors effects by using the coarse 
grained version of 𝜁 was also shown to provide a steeper variation of the 
LDL fraction as a function of the temperature [23,36]. In addition, the 
temperature trend of the LDL fraction provided by the NTC is quite in 
good agreement with that provided by our recently proposed thermody-
namic model [26,75]. According to that model, the minimum number 
of water molecules necessary to define a cluster that can be found in ei-
ther the LDL-like or the HDL-like thermodynamic state is around 10 at 
1 bar, suggesting that the local tetrahedral LDL-like arrangement of a 
single molecule is not sufficient to confer to that molecule an LDL-like 
character.

The importance of taking into account the properties of the neigh-

bors of a molecule to properly define its own properties has been indeed 
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Fig. 3. Normalized distribution of the node total communicability (NTC). A: all temperatures, B: temperatures above the Widom line temperature (i.e., from 240 K 
to 400 K), C: comparison between the LDL- and HDL-like distributions at 1 bar (blue, 180 K, and orange, 300 K) and at 1950 bar (green, 170 K, and magenta, 180 
K). The black dashed lines in A and C mark the NTC=95 threshold. Inset in A reports the average NTC as a function of the temperature.
Fig. 4. A: Probability of NTC=95 as a function of the temperature. B: LDL 
fraction as a function of the temperature as obtained by defining the LDL-like 
state according to the NTC at 1 bar (black) and 1950 bar (blue), the 𝜁 order 
parameter (red) and the 𝜓 order parameter (green). At 230 K the LDL fraction 
at 1 bar provided by the three order parameters is 0.50, 0.61 and 0.55 for NTC, 
𝜁 and 𝜓 , respectively. The black dashed line marks the Widom line temperature 
as obtained by the TSEOS model of Anisimov and coworkers [21].

already pointed out. In particular, it was shown that the dynamics of a 
water molecule cannot be determined locally because it is strongly cou-
pled to that of its neighbors [23,36]. With the same procedure used by 
Shi et al. [36], we show that the NTC also reports on the dynamical 
properties of water: a higher connectivity corresponds to a higher mo-
bility. Along the MD simulation at 230 K (i.e., just below the Widom 
line temperature), we calculate the mobility of each water molecule 𝑖
as Δ𝑟𝑚𝑎𝑥,𝑖(𝜏4), i.e., the maximum distance the molecule 𝑖 travels in the 
time interval 𝜏4. We choose 𝜏4=30 ps because the translational four-
point susceptibility 𝜒𝑇

4 (𝑡) maximizes at 𝑡 = 𝜏4=30 ps (see section 2 in the 
SI). In the same time interval we also compute the average NTC value, 
NTC𝑚𝑒𝑎𝑛,𝑖(𝜏4), for the molecule 𝑖. In Fig. 5A, we report ⟨𝑁𝑇 𝐶𝑚𝑒𝑎𝑛⟩, i.e. 
the average of NTC𝑖,𝑚𝑒𝑎𝑛(𝜏4) on the water molecules belonging to differ-
ent mobility intervals Δ𝑟𝑘

𝑚𝑎𝑥
(𝜏4) ∈ (𝑘, 𝑘 + 1) Å for 𝑘 = 0, … , 6. It can be 

observed that the two quantities are correlated, showing that a higher 
NTC corresponds to a higher mobility. It has to be underlined that, by 
5

definition, the NTC also reports on the local connectivity of the node 
Fig. 5. A: Average value of NTC𝑚𝑒𝑎𝑛(𝜏) as a function of different intervals of the 
mobility Δ𝑟𝑚𝑎𝑥(𝜏4) at 230 K. B: Average value of NTC as a function of different 
values of the degree centrality at 230 K. In A and B, the error bars are obtained 
considering the standard deviation.

(being the degree the first term in its expansion, see Eq. (1)). As a mat-
ter of fact, as shown in Fig. 5B, the molecules with a higher degree 
centrality (or local density) also show on average higher NTC values. 
Therefore, the NTC value of a molecule depends on the combination 
of both its local structural properties and its medium-range dynam-
ical properties. It was previously stated that the failure of two-state 
approaches in describing water dynamics has to be attributed to the 
poor capability of order parameters to describe the dynamical anoma-
lies of water [23]. In the same work, Tanaka and coworkers show that 
while the standard “local” 𝜁 order parameter well correlates with the 
local density, only its “non-local” coarse-grained version 𝜁𝐶𝐺 correlates 
with the mobility. We therefore analyze the correlation at the single 
molecule level of the NTC with both the local density (using the degree 
centrality) and the mobility (using Δ𝑟𝑚𝑎𝑥,𝑖(𝜏4)) The correlation at the 
single molecule level between the NTC and the local density is compa-
rable with that between 𝜁 and the local density (correlation coefficient 

≈0.8 in both cases). Interestingly, the correlation at the single molecule 
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Fig. 6. A: Average number of patches containing m≥5 molecules as a function of the temperature. B: Average number of molecules in the biggest patch as a function 
of the temperature. C: Fluctuation of the dimension of the biggest patch as a function of the temperature. The fluctuation is obtained as the ratio 𝜎𝐵𝑃 /⟨𝐵𝑃 ⟩, with BP 
indicating the biggest patch dimension and average and 𝜎 calculated along the MD trajectory at each temperature. D-F: Two-dimensional plots reporting the number 
of patches as a function of the number of molecules in the patch for three different temperatures: below the Widom line temperature (200 K, panel D); around the 

e (3
Widom line temperature (240 K, panel E) and above the Widom line temperatur

level between the NTC and the mobility is comparable to that between 
𝜁𝐶𝐺 and the mobility (correlation coefficients 0.42 and -0.46, see Table 
2 in the SI). The correlation coefficient we obtain between 𝜁𝐶𝐺 and the 
mobility is slightly lower than that reported by Shi et al. [23] (≈ -0.53). 
Yet, this difference has to be ascribed to the different water model. As a 
matter of fact, the calculation we perform using TIP5P provides a value 
in line with that of Shi et al. [23], again showing that 𝜁𝐶𝐺 and the NTC 
perform similarly (see Table 2 in the SI). Therefore, as shown in Fig. 5, 
using the NTC we can catch with a single order parameter both thermo-
dynamic and dynamical anomalies.

As mentioned above and shown in our previous works [32,50], the 
graphs in the LDL-like state are connected graphs and near to being 
four-regular graphs. Accordingly, the LDL-like state is almost homoge-
neous in terms of connectivity. On the contrary, in the HDL-like state 
this regularity is partially lost: the HDL-like regime is highly heteroge-
neous, featuring nodes with a wide range of NTC values. Interestingly, 
the heterogeneity of the HDL-like regime was pointed out also using a 
modified version of the order parameter 𝑉4 that goes beyond the single 
molecule description [76]. The LDL-like state was suggested to be com-
posed by tetrahedral molecules that display a second-coordination shell 
of tetrahedral molecules (T2 molecules). The HDL-like state, instead, 
was suggested to be composed of molecules with distorted geometries 
within the first two coordination shells (D, T1 and T0 molecules).

The NTC distributions in the HDL-like regime show that there are 
HDL-like nodes featuring particularly high NTC values compared to the 
average of the HDL-like nodes at the same temperature (see Fig. 3B). 
In our previous work [32], we observed in the HDL-like regime, both 
at high pressure and at ambient conditions, the formation of extended 
patches of these nodes characterized by high NTC values. These patches 
are highly connected networks composed by nodes with an above-
average connectivity and an increased number of interstitial water 
molecules. The analysis of water networks at ambient pressure we make 
here at several temperatures, confirms that the presence of these ex-
tended patches is a distinguishing feature of the HDL-like regime. We 
also notice the presence of small patches of nodes with an increased 
6

number of interstitial water molecules even at the lowest temperatures 
00 K, panel F).

(i.e., below the Widom line temperature). In addition, the switch be-
tween the LDL- and HDL-like regimes by crossing the Widom line is 
accompanied by an abrupt change in the patches properties. To an-
alyze these highly-connected patches, we select as nodes featuring an 
increased connectivity those nodes that have a number of nearest neigh-
bors (i.e., a degree) greater than 5, as 5 is the typical number of nearest 
neighbors in the HDL-like states (i.e., one interstitial water molecule). 
Then, we define as belonging to a patch all the nodes whose degree is ≥
6 that are linked by an edge. As it can be observed in Fig. 6, at very low 
temperatures there are only a few very small patches (panels A, B and 
D). By increasing the temperature there is a steep increase in the num-
ber of these still small patches (up to ≈20 nodes at 230 K, panels A and 
B) with a maximum in the number of patches at 240 K, i.e. just above 
the Widom line temperature. At this temperature, the most frequent 
patches are of the order of 15-20 molecules, but larger patches begin 
to appear (up to ≈50 molecules, panel E). In the HDL-like regime there 
is a marked increase in the patches dimension (up to ≈ 270 molecules, 
panel F) with a subsequent decrease in the number of patches. In the 
SI, Fig. 2, the plots reported in panels D to F are shown for all the sim-
ulated temperatures. It can also be observed in panel C that around the 
Widom line temperature the fluctuation of the patches dimension has 
a maximum: the coexistence of LDL- and HDL-like regions determines 
the coexistence of regions characterized by small and large patches, re-
spectively. This confirms that the properties of these patches are highly 
related to the LDL-HDL states. Fig. 7A shows that, while these highly-
connected patches are always present (the average number of patches 
made up of five nodes is greater than 1 for all the temperatures above 
200 K, see Fig. 6A), their mean lifetime is rather small, a few ps. (De-
tails on the mean lifetime calculation are provided in the SI, section 4). 
This suggests a highly dynamical scenario, in which the molecules char-
acterized by a high connectivity are highly mobile and can easily break 
and form hydrogen bonds, entering and exiting the patches. Recalling 
that a higher connectivity is related to a higher mobility (Fig. 5A), the 
above defined patches appear as made of molecules with both an in-
creased local density (high number of interstitial water molecules by 

construction) and an increased mobility.
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Fig. 7. A: Mean lifetime of the high connectivity patches as a function of the 
temperature. B: Ratio, R, between the average MSD of the nodes inside the 
patches and the average MSD of LDL-like (black) and HDL-like (red) nodes as 
a function of the temperature for temperatures below the Widom line tempera-
ture.

In Fig. 7B, we show the ratio between the mean square displacement 
(MSD) of the nodes belonging to the patches and that of all LDL-like 
nodes (black line) and HDL-like nodes (red line) for temperatures be-
low the Widom line (more details on the calculation of the MSD are 
reported in the SI, section 5). It can be observed that the nodes belong-
ing to the small patches in this temperature range are characterized 
by an increased mobility with respect to both the LDL- and HDL-like 
nodes.

A faster dynamics was already observed in molecules with an in-
creased number of nearest neighbors [38]. Here, we show that in water 
at ambient pressure there are regions characterized by a higher con-
nectivity (or communicability in the framework of graph theory) in 
which molecules also display an above average mobility. Recalling that 
the small-to-large patches transition occurs around the Widom line, we 
suggest that the small low-temperature patches characterized by high 
connectivity and mobility might be functional to the formation of ex-
tended HDL-like regions. It was recently suggested that ice nucleation 
occurs in low mobility regions of the LDL-like liquid [40]. In addition, 
Verde et al. [39] recently suggested that glassy relaxation events can be 
predicted by linking structure and dynamics. In analogy to these results, 
we suggest that the small highly connected and mobile patches might 
function as initial sites for the formation of extended HDL regions. This 
point will be further investigated in future works.

4. Conclusions

We carried out here the investigation of liquid water at ambient 
7

pressure using the node total communicability, NTC, as an order pa-
Journal of Molecular Liquids 392 (2023) 123425

rameter. This order parameter, a centrality measure of graph theory, 
takes into account medium-range effects providing a measure of the 
connectivity of water molecules inside a network. For this investigation 
we use molecular dynamics simulations of TIP4P/2005 along the 1 bar 
isobar crossing the Widom line, going from 180 K to 400 K. Our study 
confirms the potentiality of the NTC in differentiating the molecules in 
the LDL-like state from those in the HDL-like one, and provides an esti-
mate of the Widom line temperature in agreement with that obtained by 
two-state models for TIP4P/2005. However, it provides a higher LDL-
like fraction at low temperatures and a lower one at high temperatures 
when compared to other order parameters. The origin of this differ-
ence can be ascribed to the fact that the NTC, with respect to other 
order parameters, is a “less local” measure, that takes into account the 
medium-range structural organization of the network. We also show 
that the NTC not only includes information about the structural aspects 
of the system, but is also connected to the dynamical properties of the 
network: molecules with higher NTC values exhibit an increased trans-
lational mobility.

We also investigated patches of connected molecules characterized 
by high connectivity. These structures were first identified in the HDL-
like state, but here we show that they are also present in the LDL state, 
although less extended. These high-connectivity patches are character-
ized, in general, by a small lifetime and a high mobility and their size 
enlarges as the temperature increases, showing a correlation with the 
transition from the LDL- to HDL-like state. Furthermore, the small high-
connectivity patches found in the LDL-like state could be the regions in 
which the onset of extended HDL-like regions takes place.
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