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Abstract
Isospectral flows are abundant in mathematical physics; the rigid body, the the Toda
lattice, the Brockett flow, the Heisenberg spin chain, and point vortex dynamics, to
mention but a few.Their connection on the one handwith integrable systems and, on the
other, with Lie–Poisson systemsmotivates the research for optimal numerical schemes
to solve them. Several works about numerical methods to integrate isospectral flows
have produced a large varieties of solutions to this problem. However, many of these
algorithms are not intrinsically defined in the space where the equations take place
and/or rely on computationally heavy transformations. In the literature, only few exam-
ples of numerical methods avoiding these issues are known, for instance, the spherical
midpoint method on so(3). In this paper we introduce a new minimal-variable, second
order, numerical integrator for isospectral flows intrinsically defined on quadratic Lie
algebras and symmetric matrices. The algorithm is isospectral for general isospec-
tral flows and Lie–Poisson preserving when the isospectral flow is Hamiltonian. The
simplicity of the scheme, together with its structure-preserving properties, makes it a
competitive alternative to those already present in literature.
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742 M. Viviani

1 Introduction

The numerical integration of isospectral flows is a classical subject of study in
numerical analysis [7,10]. The interest in this problem is motivated by the numer-
ical simulation of integrable systems, which are deeply related to isospectral flows via
the Lax pair formulation. The quasi-periodic dynamics of integrable systems depends
on the presence of a large number of first integrals. In the Lax pair formulation, some
of these first integrals can be presented as a linear combination of the eigenvalues of
the dynamical variable. Therefore, the preservation of the spectrum of the dynamical
variable is a key feature of a numerical scheme applied to isospectral flows, in order to
expect the right qualitative behaviour of the discrete approximate solutions [7]. Fur-
thermore, as a special case, Lie–Poisson systems on the dual of reductive Lie algebras
can be seen as isospectral flows [18]. A reductive Lie algebra is defined as the direct
sum of a semisimple Lie algebra and an abelian Lie algebra. In this paper, the crucial
property of real semisimple Lie algebras is that they can be represented as matrix Lie
algbras which are closed under conjugate transpose [12, Prop. 6.28]. Moreover, any
real matrix Lie algebra which is closed under conjugate transpose is reductive [12,
Prop. 1.56].1 Because of this, Lie–Poisson systems on the dual of a reductive Lie alge-
bra can be equivalently seen as isospectral flows of the form (1.2) below. Lie–Poisson
systems originate from the Poisson reduction of canonical Hamiltonian systems on
the cotangent bundle of a Lie group [15]. Classical examples of Lie–Poisson systems
are the rigid body [21], the heavy top and the incompressible Euler equations [1].
It is known from the backward error analysis, that Lie–Poisson preserving numeri-
cal schemes are superior to standard methods when applied to Lie–Poisson systems,
especially for long-time simulations. As state-of-the-art, well established theories on
numerical methods for both isospectral and Lie–Poisson systems exist in the literature
(see for example [4,10,20]). For Lie–Poisson systems various symplectic algorithms
have been developed (see [6] for a recent survey). However, few examples of numeri-
cal schemes that are intrinsically defined in the space where the dynamics takes place
are known (e.g. [16]). This issue often causes a lack of efficiency for these schemes,
which rely on group to algebra maps (e.g. the matrix exponential or the Cayley map)
or a large number of unknowns. Before presenting our result, let us introduce the
mathematical setup used throughout the paper.

Isospectral flows are first order ODEs of the form:

Ẇ = [B(W ), W ], W ∈ V ⊂ gl(n,C)

W (0) = W0. (1.1)

Here, [·, ·] denotes the matrix commutator, V is a linear subspace of the Lie algebra
gl(n,C), and the function B : V → n(V )maps V into its gl(n,C)-normalizer algebra
n(V ).2 The most studied case in literature is when V = Sym(n,R) is the space of
symmetric realmatrices, forwhich the normalizer is theLie algebra of skew-symmetric

1 In view of [12, Sec. I.8], there is no restriction in looking at real matrix Lie algebras, since the complex
ones can be seen as real matrix Lie algebras of double dimension.
2 n(V ) is the largest Lie subalgebra of gl(n,C) such that [n(V ), V ] ⊂ V (see Definition 1 in Section 2).
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Aminimal-variable symplectic method for isospectral flows 743

real matrices n(V ) = so(n). For Lie–Poisson systems on the dual of a reductive Lie
algebra, we have that V = g∗ is the dual of a reductive Lie subalgebra of gl(n,C), for
which the gl(n,C)−normalizer is n(V ) = g0 ⊕ c(g) (see Definition 2 and Lemma 2,
in Section 2). Throughout the paper, we identify g∗ with g, via the Frobenius inner
product 〈A, B〉 = Tr(A†B), where † is the conjugate transpose.Via this identifications,
Lie–Poisson systems on the dual of a reductive Lie algebra g take the form:

Ẇ = [∇H(W )†, W ], W ∈ g ⊂ gl(n,C)

W (0) = W0, (1.2)

for H : g → C, a smooth function called Hamiltonian.
A class of numerical methods to solve (1.1)–(1.2), called Isospectral Symplectic

Runge–Kutta (IsoSyRK), has been introduced in [18]. In the case of Lie–Poisson sys-
tems these schemes are symplectic. In this paper, we focus on the IsoSyRK associated
to the implicit midpoint method, which turns out to have a specially nice structure. On
the one hand, we provide a simpler proof (avoiding the use of the B-series theory) that
for the implicit midpoint method, the respective IsoSyRK defined in [18] is isospectral
for any B = B(W ). On the other hand, we derive a simpler scheme reducing the num-
ber of unknowns up to minimality, revealing an intrinsic relation between the implicit
midpointmethod and theCayley transform. The resulting integrator, although implicit,
is second order, isospectral and symplectic when the isospectral flow is Lie–Poisson.
The scheme is also intrinsically defined on V , for a large class of isospectral flows (see
section 2 for details) and, when the isospectral flow is Lie–Poisson, it preserves the
coadjoint orbits. Furthermore, only one evaluation of B(·) and two matrix multiplica-
tions per iteration are required, making the scheme very efficient. In the last section
of this paper, we show some numerical examples of our scheme and we compare it
with the spherical midpoint method, which is another minimal-variable Lie–Poisson
integrator on R

3. Finally, we show how our scheme looks on sl(2,R), defining what
we call the hyperbolic midpoint method.

2 Main result

Let us consider an isospectral flow of the form (1.1). In order to present our result, we
need a short detour on some concepts and basic results on Lie algebras. As already
mentioned in section 1, for (1.1) to be well defined, we have to require B(·) to take
values in the gl(n,C)-normalizer algebra of V . We recall here the definition of the
normalizer Lie group and normalizer Lie algebra:

Definition 1 Let G be a Lie group and g its Lie algebra. Furthermore, let V ⊆ g be a
linear subspace. Then the two sets

N (V ) = {g ∈ G | g−1V g ⊆ V }
n(V ) = {ξ ∈ g | [ξ, V ] ⊆ V }
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744 M. Viviani

are respectively called the G-normalizer and the g-normalizer of V . Notice that N (V )

is a subgroup of G and n(V ) is a Lie subalgebra of g.

A related concept to normalizer is the centralizer Lie algebra.

Definition 2 Let g be a Lie algebra and let V ⊆ g be a linear subspace. Then the set

c(V ) = {ξ ∈ g | [ξ, V ] = 0}

is called the g-centralizer of V . Notice that c(V ) is a Lie subalgebra of g.

We now recall the definition of a J -quadratic Lie algebra.

Definition 3 A Lie subalgebra g of gl(n,C) is called J -quadratic Lie algebra if there
exists an invertible matrix J , such that

W ∈ g ⇐⇒ W † J + J W = 0. (2.1)

Lemma 1 Let g be a Lie subalgebra of gl(n,C) such that there exists a matrix J for
which

W ∈ g ⇐⇒ W † J + J W = 0.

Then g = g† implies J 2 ∈ c(g). Moreover, if J is invertible and J 2 ∈ c(g), then
g = g†.

Proof Suppose g = g†. Then, for all W ∈ g, both the following identities hold:

W † J + J W = 0,

W J + J W † = 0.

The second of these implies that W J 2+ J W † J = 0 and the first one J W † J + J 2W =
0. Subtracting these identities, we get [W , J 2] = 0. Hence J 2 ∈ c(g).

Now assume that g is J−quadratic and J 2 ∈ c(g). Then, for all W ∈ g we have
0 = J W † J + J 2W = J W † J + W J 2 and hence W J + J W † = 0, being J invertible.
Therefore g and g† are defined by the same identity and they coincide. 
�
Lemma 2 Let g be a Lie subalgebra of gl(n,C) such that g = g†. Then the
gl(n,C)−normalizer of g is n(g) = g0 ⊕ c(g), where g0 is the semisimple ideal
of g such that g = g0 ⊕ z(g), for z(g) the center of g.3

Proof Let g⊥ be the orthogonal complement of g in gl(n,C) with respect to the
Frobenius inner product. It is not hard to check that the following properties hold:

[g, g] ⊂ g, [g, g⊥] ⊂ g⊥, [g⊥, g⊥] ⊂ g.

3 Such a decomposition always exists being g reductive by [12, Prop. 1.56].
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Aminimal-variable symplectic method for isospectral flows 745

Hence, if A ∈ n(g) ∩ g⊥ it must be [g, A] = 0. Therefore, A has to be in c(g).
Moreover, we have that the following inclusions always hold z(g) ⊂ c(g) ⊂ n(g).
Therefore, n(g) = g0 ⊕ c(g), being g0 centerless. 
�

Notice that, since always n(g)† = n(g⊥), we have that n(g⊥) = g0 ⊕ c(g)†,
whenever g = g†. In conclusion, we have the following corollary:

Corollary 1 Let g be a J-quadratic Lie subalgebra of gl(n,C) such that J 2 ∈ c(g).
Then the gl(n,C)−normalizer of g and g⊥ are respectively n(g) = g0 ⊕ c(g) and
n(g⊥) = g0⊕c(g)†. In particular, under the identification ofg∗ withg via the Frobenius
inner product, any Lie–Poisson system on g∗ can be written in the form (1.2).

Notice that by [12, Prop. 1.56] any g such as in Corollary 1 is a reductive Lie algebra.
As mention in the introduction, Lie–Poisson systems on the dual of reductive Lie
algebras can be written in the form (1.2). In particular, this is true for Lie–Poisson
systems on the dual of g ⊕ Z, where Z is an Abelian Lie algebra. We can now state
the main result of this paper.

Theorem 1 Let Wk ∈ D ⊂ V , for a domain D in the linear subspace V ⊂ gl(n,C).
Assume that the normalizer splits as n(V ) = g0 ⊕ c(V ), for some Lie algebra g0,
which satisfies

N ∈ g0 ⇐⇒ N †P + P N = 0. (2.2)

for some constant matrix P. Furthermore, let B : D ⊂ gl(n,C) → n(V ) be continu-
ously differentiable. Then, for some h > 0, there exists ˜W ∈ V such that the numerical
scheme Wk → Wk+1, implicitly defined by:

Wk = (I d − h
2 B( ˜W )) ˜W (I d + h

2 B( ˜W ))

Wk+1 = (I d + h
2 B( ˜W )) ˜W (I d − h

2 B( ˜W )),
(2.3)

is a second order isospectral integrator for (1.1), for any k ≥ 0.4. Moreover, when
(1.1) is a Lie–Poisson system on gl(n,C)∗ or on the dual of some J-quadratic Lie
algebra g such that J 2 ∈ c(g) (or even on g⊕ Z, where Z is an Abelian Lie algebra),
then (2.3) is a Lie–Poisson integrator for (1.1) which preserves the coadjoint orbits in
g∗.

Remark 1 Themain contribution of Theorem 1, with respect to the results presented in
[18], is that the scheme (2.3) is aminimal-variable isospectral (Lie–Poisson) integrator.
Minimal-variablemeans here that the only unknown is ˜W , which lives in a vector space
of dimension dim(V ). Hereafter, we will refer to the scheme (2.3) as the isospectral
minimal midpoint. Moreover, the proof of the properties of (2.3), unlikely to [18,
Cor. 1], does not require any application of the B-series theory and reveals a deep
connection with the Cayley transform (see the proof of Lemma 4). The latter is a quite
interesting fact because the Cayley transform arises as a necessary consequence of the
use of the implicit midpoint scheme and not, as it has always appeared in literature, as

4 Here I d denotes the n × n identity matrix.
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746 M. Viviani

a prescribed choice to construct a certain numerical scheme. We also emphasize that
the condition (2.2) and the ones on J in Theorem 1 to get a Lie–Poisson integrator is
slightly more general than the one considered in [18, Thm. 1–2].

We will give the proof of Theorem 1 in some lemmas.

Lemma 3 Let B : D ⊂ gl(n,C) → gl(n,C) continuously differentiable in the domain
D. Then, for every Y ∈ D, there exist h > 0 such that the equation

Y =
(

I d − h

2
B(X)

)

X

(

I d + h

2
B(X)

)

(2.4)

has a solution X ∈ gl(n,C) for any 0 ≤ h < h.

Proof In order to get a solution to (2.4), we consider the function Fh(X) := Y +
h
2 [B(X), X ] + h2

4 B(X)X B(X), such that (2.4) is equal to X = Fh(X). In order to
determine h, we consider the initial value problem:

d

dh
X = ∂ Fh(X)

∂h
+ DFh(X)

[

d

dh
X

]

X(0) = Y .

Since
∂ Fh(X)

∂h
is continuous, if we prove that the operator (I d − DFh(X)) is

continuous and invertible, then the Peano existence theorem will ensure a solu-
tion X(h), for any h in some interval [0, h), for h > 0. Indeed, DFh(X) =
hG(DB(X), B(X), X , h), where G is polynomial in its variables and DB(X) is con-
tinuous by hypothesis. Hence, DFh(X) → 0, for h → 0, therefore there exist some
h > 0 such that (I d − DFh(X)) is invertible, for any 0 ≤ h < h. 
�
Lemma 4 Let B : D ⊂ gl(n,C) → gl(n,C) continuously differentiable in the domain
D and let 0 ≤ h < h as in Lemma 3. Then, for every Wk ∈ D, the numerical scheme
Wk → Wk+1 is isospectral. Moreover, if D ⊂ V , for D domain in the linear subspace
V ⊂ gl(n,C), and B : D ⊂ gl(n,C) → n(V ), where n(V ) = g0 ⊕ c(V ), for some
Lie algebra g0 which satisfies (2.2), then Wk+1 ∈ V . Furthermore, when V is a J -
quadratic Lie algebra such that J 2 ∈ c(g), then Wk+1 ∈ OWk ⊂ V , where OWk is the
coadjoint orbit of which Wk belongs.

Proof Clearly Wk+1 = (I d + h
2 B( ˜W ))(I d − h

2 B( ˜W ))−1Wk(I d − h
2 B( ˜W ))(I d +

h
2 B( ˜W ))−1 and hence Wk+1 and Wk are similar. Furthermore, we notice that (I d −
h
2 B( ˜W ))(I d + h

2 B( ˜W ))−1 = Cay( h
2 B( ˜W )), where Cay is the Cayley transform.

Therefore we have that:

Wk+1 = Cay

(

h

2
B( ˜W )

)−1

WkCay

(

h

2
B( ˜W )

)

. (2.5)

Assuming n(V ) = g0 ⊕ c(V ), for some Lie algebra g0 which satisfies (2.2), by [7,
Lemma IV.8.7], Cay

( h
2 B( ˜W )

)

is in the normalizer group N (V ) of V and therefore
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Aminimal-variable symplectic method for isospectral flows 747

Wk+1 is inV aswell.WhenV = g∗ for g a J -quadratic Lie algebra such that J 2 ∈ c(g),
the transformation (2.5) coincides with the coadjoint action of G on g∗, where G is
the respective connected component to the identity of a Lie group with Lie algebra g.
Therefore, (2.5) fixes the coadjoint orbits. 
�
Remark 2 We point out that the equation (2.5) reveals an interesting relation between
the Cayley transform and the implicit midpoint method. Indeed, the fact that the
Cayley transform appears as a consequence of the reduction of the implicit midpoint
from T ∗GL(n,C) to gl(n,C)∗ may indicate a deeper, perhaps canonical, relation
between symplectic Runge–Kutta methods and the Cayley transform. The former
are associated to conservation of quadratic first integrals of ODEs and the latter to
transforming quadratic Lie algebras in quadratic Lie groups.

Corollary 2 Let the hypotesis of Lemma 3 hold. Then, if n(V ) = g0 ⊕ c(V ) and g0 is
a compact Lie algebra, there exists h > 0 independent from k such that the scheme
(2.3) has solution.

Proof Since g0 is a compact Lie algebra, the associate connected Lie group G is
compact and therefore the orbits of the action (2.5) are compact. Hence, we can find
a minimum h > 0 in Lemma 3 independent from the iteration k ≥ 0. 
�
Lemma 5 Let B : D ⊂ gl(n,C) → gl(n,C) continuously differentiable in the domain
D and let 0 ≤ h < h as in Lemma 3. Then, for every Wk ∈ D, the numerical scheme
Wk → Wk+1 in (2.3) descends from the method defined in [18, Def. 1] associated
with the implicit midpoint method. In particular, if B = ∇H† for some function
H : D ⊂ gl(n,C)∗ → R, then the method is Lie–Poisson in gl(n,C)∗.

Proof Consider the second order method as defined in [18, Def. 1] associated with the
implicit midpoint method:

X = −h(Wk + 1
2 X)B( ˜W )

Y = h B( ˜W )(Wk + 1
2Y )

K = h
2 B( ˜W )(X + K )

˜W = Wk + 1
2 (X + Y + K )

Wk+1 = Wk + h[B( ˜W ), ˜W ],

(2.6)

for k ≥ 0 with unknowns X , Y , K ∈ gl(n,C). It is not hard to check that the following
identities hold:

Y + K = h B( ˜W ) ˜W

X = −h ˜W B( ˜W ) + h2

2
B( ˜W ) ˜W B( ˜W ).

Applying these to (2.6) we get, after some computations, the scheme (2.3). In [18,
Thm. 3], it has been proven that when B(W ) = ∇H(W )†, for some functions H :
gl(n,C)∗ → R, the method is a Lie-Poisson integrator in gl(n,C)∗. The scheme
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748 M. Viviani

Wk → Wk+1 defined in (2.3) coincides with (2.6), but with the elimination of the
intermediate variables X , Y , K . Therefore, (2.3) is a Lie–Poisson integrator. 
�
Proof. (Theorem 1) The proof simply follows from the lemmas. Lemma 3 says that the
method (2.3) has solution for h sufficiently small. Under the assumptions of Lemma 4
proves the isospectrality of the scheme and its intrinsic restriction V , when n(V ) =
g0 ⊕ c(V ), for some Lie algebra g0 which satisfies (2.2). Finally, in Lemma 5 is shown
that the scheme descends from the isospectral midpoint method defined in [18] and
therefore it is a second order Lie–Poisson integrator in gl(n,C)∗, when (1.1) is. Putting
together Lemma 4, Lemma 5 and Corollary 1, we have that when a V is the dual of a
J -quadratic Lie algebra such that J 2 ∈ c(g) (possibly plus a commutative Lie algebra)
and (1.1) is Lie–Poisson, the scheme (2.3) is a Lie–Poisson integrator on V , which
preserves the coadjoint orbits. 
�
Remark 3 We notice that the isospectral minimal midpoint (2.3) is somehow similar
to the modified implicit midpoint rule introduced in [4]. However, in their scheme, ˜W
was set to be Wk+1+Wk

2 which does not hold in general while solving the isospectral
minimal midpoint (2.3). In fact, even though the scheme in [4] is isospectral, it is not
symplectic.

Remark 4 The isospectral minimal midpoint (2.3) can be derived in a different way,
as proposed in [6]. The construction there is more general and (2.3) can be recovered
choosing as a retraction map the Cayley transform instead of the exponential map.
This surprising connection opens up a question about a geometrical description of
the methods proposed in [18, Def. 1]. Let us consider for any s = 1, 2, . . . and a
s × s real matrix, a retraction map τa : g⊕s → G×s . Then, similarly to [6], for
each i = 1, . . . , s, it is implicitly defined by the differential of the retraction map
dτa a discrete map Wk �→ ˜Wi � g. Finally, we define our integrator Ψh : Wk �→
Wk+1 as:

Wk+1 = Wk + h
s

∑

i=1

bi [B( ˜Wi ), ˜Wi ],

for some real numbers bi . The question is whether, for any s-stage symplectic Runge–
Kutta method, there exists a retraction map τa : g⊕s → G×s , such that any Lie–
Poisson integrator defined in [18] can be obtained in this way.

3 Numerical examples

In this section we present some applications of the isospectral minimal midpoint (2.3)
on isospectral flows and Lie–Poisson systems found in literature. We also compare
our method in the case of so(3) ∼= (R3,×) with the spherical midpoint method,
showing that the isospectral minimal midpoint (2.3) has the same computational
cost. Finally, we show explicitly how the isospectral minimal midpoint (2.3) looks
on sl(2,R), applying it to the the point vortex equations on the hyperbolic plane.
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Aminimal-variable symplectic method for isospectral flows 749

For the example considered in this section, we plot the variation of the first inte-
grals of (1.1). As expected, we get exact conservation (up to round-off errors) of
the Casimir functions and, when the flow is Hamiltonian, near conservation of the
Hamiltonian.

3.1 The generalized rigid body

A classical example among Hamiltonian isospectral systems is the generalized rigid
body. It represents a class of completely integrable systems on so(n), for every n ≥
1, [14]. The Hamiltonian is given by

H(W ) = 1

2
Tr((I −1W )†W ), W ∈ so(n), (3.1)

whereI : so(n) → so(n) is a symmetric positive definite inertia tensor. The equations
of motion are then

Ẇ = −[I −1W , W ]
W (0) = W0.

(3.2)

We discretize this system for n = 10. Our implementation uses Newton iterations
for the non-linear system.5 The inertia tensor is given by

(I −1W )i j =
{ Wi j

i , i = 1, . . . , 5, j = 1, . . . , 10
Wi j
11−i , i = 6, . . . , 10, j = 1, . . . , 10

(3.3)

and we use the stepsize h = 0.1. The initial conditions are given by

(W0)i j = 1/10 for i < j and W †
0 = −W0 (3.4)

As shown in Fig. 1, the Hamiltonian is nearly conserved and the Casimir functions
are conserved up to the accuracy of the Newton iterations.

3.2 The Brockett flow

In this section we specify the isospectral minimal midpoint (2.3) for the Brockett flow,
or double bracket flow:

Ẇ = [[N , W ], W ], (3.5)

where N , W are n × n self-adjoint complex matrices. In [3], Brockett shows that
for N diagonal matrix with distinct entries and W0 self-adjoint matrix with distinct
eigenvalues, for t → ∞, W (t) converges exponentially fast to a diagonal matrix with

5 Fixed-point iteration could be used as well, no numerical issues have arisen in our experiments with it.
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750 M. Viviani

Fig. 1 Casimir and Hamiltonian variation in time T = 100, for the generalized rigid body on so(10) and
time-step h = 0.1

Fig. 2 Eigenvalue variation in time T = 1000, for the isospectral minimal midpoint (2.3) applied to (3.5)
with time-step h = 0.1. Then initial value W0 is a randomly generated self-adjoint matrix of dimension
10 × 10 and N = diag(1, 2, . . . , 10)

the eigenvalues sorted accordingly to the order of the entries of N . In Fig. 2, we plot
the eigenvalue variation for a randomly generated6 self-adjoint initial matrix W0 of
dimension 10 × 10 and N = diag(1, 2, . . . , 10). The asymptotic stationarity of the
eigenvalues variation reflects the fact that W is close to a diagonal matrix.

6 Throughout the whole paper, a randomly generated matrix is understood as a matrix whose components
are defined as pseudorandom values drawn from the standard uniform distribution on the open interval
(0, 1), generated via the MATLAB function rand.
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3.3 Lie–Poisson systems on (R3,×)

On (R3,×) the isospectral minimal midpoint (2.3) can be written as:

wk = w̃ + h
2 w̃ × B(w̃) − h2

4 B(w̃)(B(w̃) · w̃)

wk+1 = w̃ − h
2 w̃ × B(w̃) − h2

4 B(w̃)(B(w̃) · w̃),
(3.6)

for w̃, wk, wk+1 ∈ R
3 and B : R3 → R

3.Wewant to compare the isospectral minimal
midpoint (3.6) with another minimal-variable symplectic integrator on R3 introduced
in [17], i.e. the spherical midpoint method:

wk+1 = wk + h
√

wk+1
√

wk(wk+1 + wk)

|wk+1 + wk | × B

(√
wk+1

√
wk(wk+1 + wk)

|wk+1 + wk |
)

.

(3.7)

Remark 5 Let B(·) be orthogonal with respect to the rays, i.e. B(w) ·w = 0, for every
w ∈ R

3. It is immediate to check that then (3.6) coincides with the classical midpoint
scheme:

wk+1 = wk + h
wk+1 + wk

2
× B

(

wk+1 + wk

2

)

. (3.8)

In [17] it is shown that also (3.7) coincides with (3.8) when B(·) = ∇H(·), for some
Hamiltonian function H : R3 → R constant on the rays (which implies B(·) to be
orthogonal to the rays). In this case, (3.8) is known to be symplectic, whereas this fails
for general Hamiltonian H . Therefore, (3.6) can be seen as the second order correction
of (3.8) to be symplectic for any Hamiltonian H .

Let us now consider the two schemes (3.6) and (3.7). Both methods are implicit and
therefore an implicit solver has to be used. Here we show that they exhibit the same
computational cost. The example we consider is the Heisenberg spin chain on R

3N .
For this one has to extend both the isospectral minimalmidpoint (3.6) and the spherical
midpoint (3.7) to direct products of R3 (see [17,18]).

The Heisenberg spin chain of micromagnetics is defined as:

ẇi = wi × (wi−1 + wi+1), (3.9)

where wi ∈ S
2, for i = 1, . . . , N and wN+1 = w1. It corresponds, up to scaling, to

spatial discretization of the Landau–Lifschitz PDE:

ẇ = w × ∂xxw, (3.10)
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Fig. 3 Average time cost per time-step in seconds, with respect to the number of spin particles, for randomly
generated initial values. The upper and the lower line are referred to, respectively, the isospectral minimal
midpoint (3.6) and the spherical midpoint (3.7)

for w : S1 → S
2 smooth. We notice that (3.9) is a Lie–Poisson system on R

3N , with
Hamiltonian:

H(w1, . . . , wN ) =
N

∑

i=1

wi · wi+1.

Clearly, to get a good approximation of (3.10), N has to be large. In Fig. 3 we show
the average time cost for time-step with respect to the number of spin particles for both
the isospectral minimal midpoint (3.6) and the spherical midpoint (3.7). We conclude
that the complexity grows similarly.

In terms of conservation properties, the two schemes exactly preserve the linear
invariants and nearly conserve the the quadratic first integrals of the form

∑

i, j w
†
i Aw j .

Moreover, the spherical midpoint has the advantage of exactly conserving all the
quadratic first integrals of the form w

†
i Awi , for some square matrix A, whereas the

isospectral minimal midpoint (3.6) exactly conserves only the quadratic invariants
w

†
i wi . In Fig. 4 we compare the isospectral minimal midpoint (3.6) and the spherical

midpoint (3.7) for the initial data given as am equispaced discretization in N = 100
points of the closed spherical curve:

w(x) = (cos(2πx2) sin(2πx3), sin(2πx2) sin(2πx3), cos(2πx3)),

for x ∈ [0, 1]. We can conclude from Fig. 4 that the spherical midpoint performs
slightly better than the isospectral minimal midpoint (3.6). However, both the schemes
show the desired conservation properties due to their symplecticity. Finally, in Fig. 5,
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Fig. 4 Hamiltonian variation |H(kh)− H(0)| in time T = 1000, for the isospectral minimal midpoint (3.6)
above and the spherical midpoint (3.7) below, for N = 100 spin particles and time-step h = 0.1
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Fig. 5 Maximum error in total time T = 1s, and time-step h, for h = 1, 0.52, . . . , 0.517, in loglog scale,
for the isospectral minimal midpoint (3.6), dot-dashed line, and the spherical midpoint (3.7), dashed line,
for N = 100 spin particles. The continuous line is h �→ h2

we present the error diagram for the isospectral minimal midpoint (3.6) and the spheri-
calmidpoint (3.7). The curves in Fig. 5 show the expected second order of the schemes,
with no significant difference.

3.4 Lie–Poisson systems on sl(2,R)∗

In this section we specify the isospectral minimal midpoint (2.3) in the case of the Lie
algebra sl(2,R), i.e. the 2 × 2 matrices with zero trace. The first observation is that
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sl(2,R) ∼= sp(2,R), which is a non-compact J -quadratic Lie algebra with respect

to J =
[

0 −1
1 0

]

. From this, it is straightforward to see that, when B : gl(2,R) →
sl(2,R) and Wk ∈ sl(2,R), ˜W in (2.3) is also in sl(2,R). We notice that this is no
longer true for sl(n,R), for n > 2. On the other hand, any element in sl(2,R) can be
written as a vector in R

3, via the vector spaces isomorphism:

[

x y + z
y − z −x

]

�→
⎡

⎣

x
y
z

⎤

⎦ , (3.11)

for any x, y, z ∈ R. In this coordinates, we can express the isospectral minimal
midpoint (2.3) for sl(2,R) as:

wk = w̃ + h

2
2L(w̃ × B(w̃)) − h2

4
M(B(w̃), w̃, B(w̃))

wk+1 = w̃ − h

2
2L(w̃ × B(w̃)) − h2

4
M(B(w̃), w̃, B(w̃)), (3.12)

for w̃, wk, wk+1 ∈ R
3 and B : R3 → R

3, where:

L :=
⎡

⎣

1 0 0
0 1 0
0 0 −1

⎤

⎦

and

M(a, b, c)

:=
⎡

⎣

c1(a1b1 + (b2 − b3)(a2 + a3)) − (c2 − c3)(b1(a2 + a3) − a1(b2 + b3))
c1(b1(a2 + a3) − a1(b2 + b3)) + (c2 + c3)(a1b1 + (b2 − b3)(a2 + a3))
c1(b1(a2 − a3) − a1(b2 − b3)) + (c2 − c3)(a1b1 + (b2 + b3)(a2 − a3))

⎤

⎦ ,

for any a, b, c ∈ R
3.

We notice that the map (3.11) is a Lie algebra isomorphism from sl(2,R) to
(R3,×L), where a ×L b = 2L(a × b), for any a, b ∈ R

3. Furthermore, the
tensor L defines also the hyperbolic inner product a ·L b = a · (Lb), for any
a, b ∈ R

3. We recall that the coadjoint orbits in sl(2,R)∗ are hyperboloids of the
form {x2 + y2 − z2 = const}. Hence, in analogy with the spherical midpoint method
in [16], we will call (3.12) the hyperbolic midpoint method.

We illustrate an application of the hyperbolic midpoint method (3.12) on the point
vortex equations on the hyperbolic plane (see for example [8,9,19]). The interest in
this equations is motivated also by the studies on ideal hydrodynamics on hyperbolic
spaces [5,11], and in particular on the Euler equations, for which the point vortices can
be seen as a finite dimensional approximation [2]. These equations are a Lie–Poisson
system on (sl(2,R)∗)N ∼= (R3,×L)N , with initial values on the coadjoint orbit deter-
mined by the equationswi ·L wi = −1, for i = 1, 2, . . . , N . The Hamiltonian is given
by:
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Fig. 6 Point vortex trajectories for the initial conditions w1
0, Γ

1 and w2
0, Γ

2, as defined above. The purple,
the blue and the yellow lines represent the point vortex trajectories. The red-dashed line is, respectively, the
equilateral triangle of the initial configurationw1

0 and the geodesic passing through the initial conditionw2
0.

The simulations have been carried with the hyperbolic midpoint method (3.12), with time-step, respectively,
h = 0.01 and h = 0.001, total time T = 10 and T = 1 and tolerance for the Newton iteration tol = 10−13

(color figure online)

H = − 1

4π

∑

i �= j

ΓiΓ j log

(

wi ·L w j + 1

wi ·L w j − 1

)

. (3.13)

The equations of motion are then:

ẋi = − 1

π

∑

i �= j

Γ j
wi ×L w j

(wi ·L w j )2 − 1
. (3.14)

Equations (3.14) constrain the vortices to move on the hyperboloid x2 + y2 − z2 =
−1. Furthermore, the SL(2,R) symmetry of (3.14) gives the conservation of the
momentum vector:

M =
N

∑

i=1

Γiwi . (3.15)
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Fig. 7 Momentum and Hamiltonian variation in time for the initial conditions w1
0, Γ

1 and w2
0, Γ

2, as
defined above. The simulations have been carried with the hyperbolic midpoint method (3.12), with time-
step, respectively, h = 0.01 and h = 0.001, total time T = 10 and T = 1 and tolerance for the Newton
iteration tol = 10−13

Equations (3.14) and their SL(2,R)-relative equilibria have been studied in [8,9,19].
In particular, for two and three vortices most of the stability issues have been worked
out in [19]. However, unlike to point vortex equations on a sphere [13], it is still
unknown a general result on the stability of a relative equilibrium of point vortices on
the hyperbolic plane.

Here we present the results of some numerical simulations of (3.14) with the hyper-
bolic midpoint method (3.12). In particular, we consider as initial values some of the
relative equilibria found in [9,19]. Let us take two different initial values in (R3)3, w1

0
and w2

0, whose columns represent the initial position of three vortices with strengths
respectively equal to Γ 1 and Γ 2, as defined here below:

w1
0 =

⎡

⎣

−0.5000 −0.5000 1.0000
0.8660 −0.8660 −0.0000
1.4142 1.4142 1.4142

⎤

⎦ , w2
0 =

⎡

⎣

2.6000 4.0000 3.0000
0.1923 0.1250 0.1667
2.7923 4.1250 3.1667

⎤

⎦ ,
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Γ 1 = [

0.5317 0.0761 1.0000
]

, Γ 2 = [

0.0990 0.8091 1.0000
]

.

The initial conditionw1
0 is an equilateral relative equilibrium,whereasw2

0 is a geodesic
relative equilibrium, as defined in [19]. The fist initial condition is known to be stable,
whereas it is not known for the second one. However, from Fig. 6 we can see that
both the initial conditions evolve in close trajectories, which proves numerically the
stability for both of them.

We conclude showing in Fig. 7 the conservation properties for the hyperbolic mid-
point method (3.12), concerning the first integrals (3.15) and (3.13).
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