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Quantum advantage in charging cavity and spin batteries by repeated interactions
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Recently, an unconditional advantage has been demonstrated for the process of charging of a quantum
battery in a collisional model [Seah et al., Phys. Rev. Lett. 127, 100601 (2021)]. Motivated by the question
of whether such an advantage could be observed experimentally, we consider a model where the battery is
described by a quantum harmonic oscillator or a large spin, charged via repeated interactions with a stream of
qubit units. For both setups, we show that a quantum protocol can significantly outperform the most general
adaptive classical schemes, leading to 90 and 38% higher charging power for the cavity and large spin batteries,
respectively. Toward an experimental realization, we also characterize the robustness of this quantum advantage
to imperfections (noise and decoherence) considering implementations with state-of-the-art micromasers and
hybrid superconducting devices.
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I. INTRODUCTION

One central aim of the field of quantum thermodynamics
is to improve and fuel thermodynamic processes via quantum
resources [1–4]. Promising results include enhancements in
cooling [5–12] as well as in the power [13–18], efficiency
[19–24], and reliability [25–31] of quantum engines compared
with their classical counterparts. However, it is often debated
if the potential gains outweigh the cost of preparing the
quantum resources and whether the same output can be simu-
lated by classical means [32–35]. One approach to overcome
these criticisms is to devise quantum protocols that overcome
arbitrary classical strategies given some thermodynamically
relevant figure of merit (and a finite set of available resources,
like time or energy) in analogy with quantum advantages de-
veloped in quantum metrology [36] or quantum computation
[37].

A well-known setup to investigate quantum advantages
in thermodynamics consists of quantum batteries, i.e., small
quantum systems that store and provide energy [38,39]. Fol-
lowing pioneering works [40–42], it has been rigorously
proven that entangling operations enable faster battery charg-
ing given a collection of quantum batteries [43–45]. In such
collective processes, the roles of dissipation [46–52], many-
body interactions [44,53–63], energy fluctuations [64–71],
and coherence [72–76] have also been investigated. In par-
allel, various types of quantum systems have been considered
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quantum batteries, ranging from qubit ensembles [42,69,77–
83] and ladder models [67,84–90] to oscillators and flywheels
[50,91–94]. One of the prime candidates for experimental
proofs of principle is the Dicke model battery [77–79,95–97],
in which an ensemble of qubits is charged by a collectively
coupled oscillator mode (see also related proposals in waveg-
uide quantum electrodynamics (QED) setups [73,98]). Recent
efforts in cavity and circuit QED have brought about the first
results [99,100].

In a recent article, some of us investigated quantum advan-
tages in battery charging which are not of collective nature
[87]. We considered a collisional model where a stream of
qubit units sequentially interacts with an energy ladder, which
stores the energy, thus playing the role of the battery. In that
model, we showed that quantum-coherent processes (where
the qubits contain quantum coherence in the energy basis)
can outperform arbitrary classical incoherent processes in
terms of charging power. However, the interaction between
the qubit units and the energy ladder considered in Ref. [87]
was chosen such that the transition rates from one battery
level to the next were uniform across the whole ladder. In
this paper, we extend these promising results to realistic
physical setups. For that, we replace the ideal energy ladder
of Ref. [87] by two different physical models of quantum
batteries: (i) a quantum harmonic oscillator and (ii) a large
spin system. These two models can be realized with state-
of-the-art experimental platforms, including (i) a micromaser
(i.e., a cavity QED charged by an atomic ensemble [101])
and a circuit QED setup [102] and (ii) hybrid circuit QED-
magnetic systems [103,104]. For both models, we show that
a suitably chosen coherent charging protocol can outperform
the best incoherent adaptive charging protocol in terms of
power. For the micromaser cavity model, we argue that this
advantage can be observed even in the presence of state-
of-the-art experimental values of environmental damping or
decoherence.
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FIG. 1. Sketch of a micromaser as a quantum battery: Collisional
charging of a harmonic oscillator battery (e.g., a cavity mode) by a
sequence of identically prepared qubits. Each qubit carrying energy
charge in its quantum state ρQ is allowed to exchange resonant
excitations of energy E with the battery state ρB via the Hamiltonian
Ĥ . In adaptive protocols, the interaction times tk can vary with the
qubit number k.

The paper is organized as follows. In Sec. II, we describe
the collisional model and relevant quantities. In Sec. III, we
analyze the case of a harmonic oscillator battery. We derive
an upper bound on the charging power for any adaptive inco-
herent protocol and demonstrate how to beat it with coherent
protocols. We discuss possible realizations in cavity-QED
and circuit-QED setups and show that the coherent quantum
advantage can withstand weak damping due to photon loss.
In Sec. IV, we present similar results for a large spin battery,
which could be realized with hybrid circuits involving a su-
perconducting qubit that would sequentially interact with a
magnon [104]. Finally, we conclude in Sec. V.

II. FRAMEWORK

We first present some generic considerations for the
sequential charging of the quantum battery by identical qubits,
which serves as the basis for our treatment of oscillator
and spin batteries. Let us consider the battery Hamiltonian
ĤB = E

∑
n n|n〉〈n| = EN̂ describing a uniform, bounded or

unbounded, energy ladder in steps of E > 0. Starting in the
ground state of empty charge, ρB(0) = |0〉〈0|, the battery
shall be charged by a sequence of resonant qubits with ĤQ =
E |e〉〈e|, as sketched in Fig. 1. Each qubit is prepared in a state:

ρQ = q|g〉〈g| + (1 − q)|e〉〈e| + c
√

q(1 − q)(e−iα|g〉
× 〈e| + eiα|e〉〈g|), (1)

where q ∈ [0, 1] is the ground-state population, c ∈ [0, 1]
is the amount of coherence in the state, and α ∈ [0, 2π ] is
a phase. Along this work, we make a distinction between
quantum coherent protocols (where c �= 0) and incoherent or
classical protocols (c = 0).

In the kth step of the battery charging process, a qubit unit
and the battery interact for a time tk via the resonant exchange
Hamiltonian:

Ĥ = �(Â ⊗ |e〉〈g| + Â† ⊗ |g〉〈e|), (2)

at a fixed Rabi frequency �. Here, Â represents a model-
dependent ladder operator satisfying 〈m|Â|n〉 ∝ δm,n−1. In our

previous work [87], we considered an ideal arithmetic energy
ladder with Â = ∑

k=1 |k − 1〉 〈k|, which, although shown to
be experimentally feasible [105,106], is not among the most
readily available interactions in a laboratory, whereas here, we
will focus on the following two physically relevant scenarios:

(i) a quantum harmonic oscillator, with Â a bosonic anni-
hilation operator, Â = â = ∑

k=1

√
k |k − 1〉 〈k|, and

(ii) large spin with Â = Ĵ−, the exact definition being in-
troduced in Sec. IV.

Note that the total energy is preserved during the interac-
tion process, [Ĥ, ĤB + ĤQ] = 0, so that no additional work
must be consumed in this process.

In the interaction picture with respect to ĤB + ĤQ, the state
ρB of the battery evolves at the kth charging step as

ρB(k + 1) = trQ{exp(−itkĤ )ρB(k) ⊗ ρQ exp(itkĤ )}, (3)

Such interaction processes are applied for a total available
time τ , i.e.,

τ =
K∑

k=1

tk, (4)

where K is the total number of qubits. We regard the charging
time τ as the limiting resource, whereas K and {t1, ..., tK } can
be freely chosen with the only constraint of Eq. (4). In what
follows, it will be convenient to introduce the dimensionless
interaction times (swap angles):

θk = �tk . (5)

Our goal is to maximize the final average energy of the
quantum battery, Ē (K ) = tr{ρB(K )ĤB}, under the time con-
straint τ . In other words, we wish to maximize the charging
power:

P̄ = Ē (K )

τ
. (6)

We will consider this optimization for both classical (c = 0)
and quantum (c �= 0) protocols. For convenience, we also
introduce the transient charging power of the kth step:

P (k) = Ē (k) − Ē (k − 1)

tk
. (7)

Although Eq. (6) is the central figure of merit of this
work, we note that not all energy in ρB(K ) can be ex-
tracted as useful work. Some fraction of Ē (K ) will be passive
energy in the form of heat since the battery state has in
general nonzero entropy. This motivates us to also compute
the ergotropy E (K ), which quantifies the amount of work
that can be extracted from ρB(K ) in a cyclic Hamiltonian
process [1,107]. Given a quantum state ρ with Hamiltonian
Ĥ , the ergotropy E is defined by E = trρĤ − trρpassiveĤ ,
where ρpassive = ∑

n rn|n〉〈n| with [ρpassive, Ĥ ] = 0 and {rn}
the eigenvalues of the initial state in descending order. Hence,
the useful battery charge is always upper-bounded by the
average energy, EB � ĒB, and equality only holds for pure
battery states in our case.

Before moving forward, we also note that the evolution of
the battery in Eq. (3) can be effectively described by a master
equation model. While this approach is not strictly required
to derive the main results presented in this paper, it is both
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FIG. 2. Energy distribution of an oscillator battery at various
charging times τ , comparing an exemplary coherent charging pro-
tocol (blue) to an adaptive incoherent protocol (black). The vertical
lines mark the average energies. The former assumes qubits in a
uniform superposition (q = 1

2 ) and a constant interaction time θ =
0.01π , whereas the latter operates with fully excited qubits (q = 0)
and optimizes the charging time for maximum transient power in
each step. The incoherent protocol beats deterministic charging via
full swaps (dashed vertical line) but does not reach the incoherent
power bound (gray shade boundary).

physically insightful and technically useful (e.g., for assessing
the quantum-coherent evolution of the battery). We present it
in detail in Appendix A for the interested reader.

III. HARMONIC OSCILLATOR BATTERY

We first consider the battery to be a quantum har-
monic oscillator with Hamiltonian ĤB = Eâ†â and interacting
Hamiltonian:

Ĥ = �(â ⊗ |e〉〈g| + â† ⊗ |g〉〈e|). (8)

For this micromaser model, Fig. 2 displays snapshots of
the collisional battery charging. Indeed, it displays the bat-
tery energy distribution at increasing times during exemplary
charging protocols. We compare coherent charging (blue) by
weakly interacting qubits in the |+〉 state (θ = 0.01π , q =
1
2 ) to an adaptive protocol (black) with fully excited qubits
(q = 0), in which we optimize the interaction time θk in each
step for maximum transient power. This latter protocol out-
performs a deterministic protocol of full excitation swap from
each qubit (dashed vertical line), defined by q = 0 and θk =
π/2 ∀k. However, it cannot reach the coherent performance,
as it must obey an incoherent bound on the charging power
(gray shade boundary) that we will work out in the following.
Finally, we also observe that the quantum randomlike behav-
ior described in Ref. [87] (see Fig. 2 of [87]) is lost due to the
different nature of the interaction.

A. Bound on the incoherent charging power

We first focus on incoherent charging strategies where c =
0 in Eq. (1). Let us expand ĤB = E

∑
n n|n〉〈n| and recall that,

initially, the battery starts in the ground state, ρB(0) = |0〉〈0|.
The state ρB(k) remains energy-diagonal under the evolu-
tion in Eq. (3). The evolution of the populations p(n, k) =
〈n| ρB(k) |n〉 can be described by the rate equation:

p(n, k + 1) = P0(n, k)p(n, k) + P−(n + 1, k)p(n + 1, k)

+ P+(n − 1, k)p(n − 1, k), (9)

where P−(n, k) = q sin2(
√

nθk ), P+(n, k) = (1 −
q) sin2(

√
n + 1θk ), and P0(n, k) = 1 − P−(n, k) − P+(n, k).

Consider the mean energy gain of the battery at the kth
incoherent charge step:

	Ē (k) = Ē (k) − Ē (k − 1)

= E
∞∑

n=0

[P+(n, k) − P−(n, k)]p(n, k − 1)

� E
∞∑

n=0

sin2(
√

n + 1θk )p(n, k − 1). (10)

Naturally, this gain is optimal if we consider fully excited
charge units (q = 0), as stated in the last line. Note that we
assume that the swap angle θk can be adapted over the course
of the sequence by changing the coupling time.

We now consider the transient charging power:

P (k)

E�
= 	Ē (k)

Eθk
�

∞∑
n=0

sin2(
√

n + 1θk )

θk
p(n, k − 1). (11)

It can be upper bounded by optimizing the level-dependent
excitation rates over the swap angle (see also Ref. [93]):

max
θ

sin2
(√

n + 1θ
)

θ
= R0

√
n + 1, (12)

with R0 ≈ 0.725 at θ ≈ 0.742 π/(2
√

n + 1). Inserting this
result into Eq. (11) and making use of Jensen’s inequality
[108], we arrive at a nontight bound:

P (k)

E�
�R0

∞∑
n=0

√
n + 1p(n, k − 1)

�R0

√√√√ ∞∑
n=0

(n + 1)p(n, k − 1)

= R0

√
Ē (k − 1)

E
+ 1. (13)

Let us now define a continuous function Ē (�τ ) of time that
interpolates linearly between the values of the mean energy at
successive charge steps. Following the derivation of Eq. (13),
this function must satisfy

dĒ (�τ )

dτ
� �ER0

√
Ē (�τ )

E
+ 1, (14)
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FIG. 3. Collisional charging of a truncated harmonic oscillator
battery with 250 levels, using coherent qubits in the |+〉 state (q =
0.5). Blue solid lines of darker shades show the mean battery energy
Ē as a function of charging time �τ = Kθ for increasing swap an-
gles θ , while the blue dotted line represents the driving limit θ → 0.
For comparison, the black dashed line marks the upper bound for
adaptive incoherent charging strategies, closely approximated by a
greedy protocol (black solid line) that optimizes the cumulatively av-
eraged power at every charge step using excited qubits (q = 0). The
dash-dotted line shows the deterministic full-swap protocol (q = 0,
ϑk = π/2

√
k) in which the battery remains in a pure charge state at

all times.

which can be integrated by separation of variables. Given the
initial condition Ē (0) = 0, we arrive at the inequality:

E (�τ ) � Ē (�τ ) � ER0�τ

(
1 + R0�τ

4

)
. (15)

It gives an upper bound for the gain in mean energy (and thus
ergotropy) after the charging time τ . Accordingly, it bounds
the average charging power in Eq. (6) as

P̄ � E�R0

(
1 + R0�τ

4

)
. (16)

This bound is shown in Figs. 2–4, where it defines the gray
region potentially accessible by classical charging protocols.
We discuss the saturability of this upper bound by classical
protocols in the next section.

B. Classical strategies

A natural candidate for an optimal classical strategy is a
full-swap protocol: One decreases the interaction time in each
charge step k according to ϑk = π/2

√
k, such that the battery

remains in a pure charge state, p(n, k) = δnk , with the mean
energy and ergotropy climbing up in steps of E . The corre-
sponding transient power at the kth step is given by P (k) =
�	Ē (k)/ϑk = 2

√
k�E/π . Assuming further that there is no

waiting time between subsequent charge steps, the cumulative
charging time is

�τ =
K∑

j=1

ϑ j = π

2

K∑
j=1

1√
j

= π
√

K − ζ1/2 + O

{
1√
K

}
,

(17)

FIG. 4. Collisional charging of a truncated harmonic oscillator
with 250 levels, using coherent qubits with q = 0.5 and a swap angle
θ = 0.01π , and with a damping of γ = 10−3.

with the Riemann zeta value ζ1/2 ≈ 1.46. Hence, the cumu-
latively averaged charging power becomes P̄ = Ē (K )/τ =
KE/τ ≈ P (K )/2 for K  1. Using Eq. (17), this can be
expressed in terms of the total time as

P̄ ≈ E�2τ

π2
. (18)

For large τ , it reaches 0.77 of the upper bound in Eq. (16)
(noting that both expressions grow linearly with τ ).

By numerically optimizing over the interaction time, it is
possible to find strategies that weakly outperform the full
swap in terms of power. The example shown in Figs. 2 and 3
is the greedy incoherent protocol, i.e., the one that maximizes
at each step the cumulative averaged power. We conclude that,
while the bound in Eq. (16) is not tight, classical strategies can
perform close to it. In what follows, we show that quantum
strategies can outperform the classical bound.

C. Coherent charging

One can beat the incoherent bound in Eq. (15) in a non-
adaptive protocol using pure coherent charge qubits and small
swap angles θ . Specifically, for transient charging of an empty
battery up to the N th level, a coherent advantage can be
achieved in the short time limit

√
N + 1θ � 1, where the

charging process approximates a coherent driving term (see
details in Appendix A). The best performance is obtained for
equal superposition states with q = 1

2 and c = 1 in Eq. (1),
which yield the strongest driving amplitude.

In Fig. 3, we show the charging of an oscillator battery
with such qubit states (at α = 0) as a function of charging
time �τ = Kθ , for various θ values and up to at most N =
249. The incoherent bound (dashed line) and the full-swap
protocol (dash-dotted) are clearly beaten for θ � 1/

√
250 ≈

0.02π , whereas larger swap angles perform worse eventually.
Ideal performance is reached asymptotically in the short

time limit θ → 0 (and K → ∞), in which the battery state
remains a pure displaced vacuum state at all times:

ρB(K )
θ→0−−−→

K→∞
D̂

(
�τ

2

)
|0〉〈0|D̂

(
−�τ

2

)
, (19)
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with D̂(ξ ) the displacement operator. This follows from the
small-θ expansion in Eq. (A13) of the coherent charging
generator, which we perform in Appendix A for generic
ladder batteries. The corresponding battery charge (dot-
ted line) grows quadratically with time, E (�τ ) = Ē (�τ ) =
E (�τ )2/4, resulting in the average charging power:

P̄ = E �2τ

4
. (20)

It outperforms the upper classical bound in Eq. (16) by a
factor R−2

0 ≈ 1.90—corresponding to a 90% quantum advan-
tage. We stress that this is a theoretical limit in which each
qubit unit transfers only infinitesimal amounts of energy (and
thus wastes most of its useful energy) and the state of the
battery remains pure. Nevertheless, in the next section, we
show that the quantum advantage prevails in state-of-the-art
experimental platforms with decoherence and a finite number
of qubit units.

D. Photon loss and suitable experimental platforms

Several experimental platforms can correspond to a quan-
tum battery modeled as a quantum harmonic oscillator, for
instance, cold atoms and circuit QED setups. With these
experimental platforms, it is important to assess the nega-
tive impact of photon loss on the coherent charging process,
specifically the critical loss rate at which the quantum ad-
vantage disappears. To capture the effect of photon loss, we
consider that subsequent charging steps are separated by a
finite waiting time t0 during which a fraction of the battery
charge is lost. In realistic experimental implementations of
this charging scheme, the waiting time typically will be much
greater than the timescale of the collision (see the discussion
below). Therefore, we only consider the photon loss that the
cavity undergoes between consecutive collisions and neglect
the dissipation that happens during each collision.

Employing the standard bosonic damping channel with rate
κ , the battery state transforms in between subsequent charge
steps according to the master equation ∂tρ = κD[â]ρ, where
D[M̂]ρ = M̂ρM̂† − {M̂†M̂, ρ}/2. This results in the CPTP
map [109]:

�0ρB = exp(κt0D[â])ρB =
∞∑

n=0

[exp(κt0) − 1]n

n!
K̂nρBK̂†

n ,

K̂n = ân exp

(
−κt0

2
â†â

)
. (21)

In the following, we employ the commonly used damping
parameter γ = 1 − exp(−κt0), which approximates γ ≈ κt0
when small.

Given this model of photon loss, we evaluate the cumula-
tive charging power P̄ in Eq. (6) taking for τ the total time of
the charging steps in which the qubit and battery interact (i.e.,
the preparation time of the qubit units is not accounted for
in the charging power). The damping effect results in a
correction of the incoherent charging limit in Eq. (15), see
Appendix C for a derivation. Figure 5 plots the numeri-
cally evaluated point in time at which the coherent advantage
first appears (i.e., the charging power exceeds the incoherent
bound) as a function of θ for various γ values. It quickly

FIG. 5. Time τad at which the energy of a cavity charged through
collisions with constant interaction time θ and coherent qubits with
q = 0.5 firstly overcomes the incoherent bound in Eq. (15) for dif-
ferent values of the intercollisional loss γ .

diverges with growing θ , and as γ reaches a critical value
�2 × 10−3, above which the advantage is no longer there.
For intermediate γ values, there is an optimal θ value for
achieving the earliest coherent speedup in the protocol. We
also observe that, as the best coherent charging protocols
require small qubit-battery collision times θ , they are also vul-
nerable to small losses γ . For example, choosing θ = 0.01π ,
a transient coherent advantage can be observed over a finite
window of charging times for γ = 10−3, as shown in Fig. 4.

The required loss value of the order of 10−3 can be
achieved in state-of-the-art experiments. In the field of cold
atoms, a setup like Ref. [101] could work. In this experiment,
a high-quality microwave cavity would play the role of the
battery, through which a sequence of individual atoms would
be sent (the charging units). The state of individual atoms can
be controlled via unitary operations, allowing for incoherent
and coherent charging processes by tuning the parameter c as
introduced in Eq. (1). Resonant interaction between the units
and cavity could be implemented by choosing adequately the
cavity mode. Moreover, projective energy measurements of
the cavity and the charging atoms have been successfully
implemented [101] and could be used to monitor the charging
process. In the experimental setup of Ref. [101], a cavity
with an inverse photon loss rate 1/κ ≈ 65 ms was made to
collide with Rydberg atoms at intervals of t0 = 82 µs. This
corresponds to a damping factor of γ ≈ 1.3 × 10−3 between
consecutive collisions, which is sufficiently low to support an
observable quantum advantage in our model.

The Rabi frequency � = �(t ) varies with time, as it de-
pends on the local intracavity field strength experienced by the
atom. However, since we are assuming a resonant interaction,
the Hamiltonian in Eq. (8) at different times commutes with
itself, so that the coupling between the cavity and the atom
will be given by an effective swap angle θ given by the time
integral of the Rabi frequency over the atom trajectory, θ =∫

dt �(t ). In Ref. [101], the velocity of the Rydberg atoms
was selected to be v = 250 m/s, and the cavity had a waist of
w � 6 mm [110], which corresponds to an interaction time of
the order of 10−5 s. The maximum Rabi frequency at the cen-
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ter of the cavity was �max � 50 kHz [110], which allowed for
large swap angles θmax � �maxv/w > π/2. The much smaller
values of θ required for observing a charging advantage can
be implemented by adjusting the impact parameter b of the
atom trajectory with respect to the center of the cavity, which
suppresses the local cavity field and thus the swap angle by a
factor exp(−b2/w2) [111].

Superconducting platforms are also promising for demon-
strating this quantum advantage. There, a microwave res-
onator would play the role of the battery, whereas a
superconducting qubit repeatedly reinitialized in a coherent or
incoherent state would play the role of the charging units. The
resonant interaction between resonator and superconducting
does correspond to flipflop-type interaction in the dispersive
limit. As an example, we can cite a recent experiment [102],
where a cavity with coherence time 100 µs is coupled to a su-
perconducting qubit. The cavity coherence time does include
the cavity dissipation rate κ/2π ∼ 0.5 MHz. Initialization and
interaction times are estimated to be of the order of 10−1 µs.
This leads to a rate γ exceeding the value for which we predict
a quantum advantage, but technological advances in this field
are promising. The coherence time of 100 µs would allow for
simulating ∼100 charging units.

IV. LARGE SPIN BATTERY

We will now discuss coherent and incoherent charging
of a large spin battery. Following the previous section on
suitable experimental platforms, in this case, we bring the
attention of the reader to recent hybrid experiments manip-
ulating magnons, either within a cavity-QED setup [103] or
within circuit-QED circuits [104]. Magnons are quanta of col-
lective spin excitations considering ordered magnetic phases.
In Ref. [104], they manipulate a yttrium iron garnet (YIG)
crystal magnetized by a uniform magnetic field. This leads to
uniform magnetostatic mode (Kittel mode), which is coupled
coherently with a superconducting transmon-type qubit. This
constitutes the basic ingredients necessary for the charging
protocol we propose, which we discuss in detail in what
follows.

We assume a large spin battery, with half-integer or in-
teger quantum number j and dimension 2 j + 1. Its free
Hamiltonian is given by the axial spin operator ĤB = EĴz =
E

∑ j
m=− j m| j, m〉, with eigenvectors | j, m〉. As before, the

battery starts in the ground state | j,−m〉 and gets charged by
a sequence of resonant qubits with ĤQ = E |e〉〈e|, prepared in
the state in Eq. (1). In each collision, the qubit and the battery
interact for a time tk through the energy-preserving exchange
interaction Hamiltonian:

Ĥ = �(Ĵ− ⊗ |e〉〈g| + Ĵ+ ⊗ |g〉〈e|), (22)

where the ladder angular momentum operators are defined by

Ĵ± | j, m〉 = f±( j, m) | j, m ± 1〉 ,

f±( j, m) =
√

j( j + 1) − m(m ± 1). (23)

We follow along the lines of Sec. III and first derive a nontight
upper bound for adaptive incoherent charging protocols, we
introduce the deterministic full-swap protocol, and finally, we
show the coherent advantage.

A. Bound on the incoherent charging power

Starting from the ground state, ρB(0) = | j,−m〉〈 j,−m|,
the state of the battery remains diagonal in the energy basis
when charged by qubits without coherence. In full analogy
with the rate equation in Eq. (9) for the oscillator case, and
calling θk = �tk , we can write the rates for jumping one step
up and down the spin ladder as

P−(m, k) = q sin2[ f−(m, k)θk],

P+(m, k) = (1 − q) sin2[ f+(m, k)θk],

P0(m, k) = 1 − P−(m, k) − P+(m, k). (24)

Consequently, the mean energy gain of the battery in the kth
incoherent charge step reads as

	Ē (k) = E
j∑

m=− j

[P+(m, k) − P−(m, k)]p(m, k − 1), (25)

which is once again optimized by taking q = 0 such that
P−(m, k) = 0. Thus, in a completely analogous way as in
Eq. (13), we can bound the transient charging rate of the spin
battery by

P (k)

E�
= 	Ē (k)

Eθk
� R0

j∑
m=− j

p(m, k − 1) f+( j, m)

� R0

√√√√ j( j + 1) −
j∑

m=− j

p(m, k − 1)m(m + 1)

� R0

√
j( j + 1) − tr

{(
Ĵ2

z − Ĵz
)
ρB(k − 1)

}
� R0

√
j( j + 1) − 〈Jz(k − 1)〉2 − 〈Jz(k − 1)〉, (26)

with 〈Jz(k)〉 = tr{ĴzρB(k)} = Ē (k)/E . Interpolating this ex-
pectation value linearly between successive steps, we arrive
at the differential inequality:

d〈Jz(�τ )〉
dτ

� R0�
√

j( j + 1) − 〈Jz(�τ )〉(〈Jz(�τ )〉 + 1).

(27)
Given the initial condition 〈Jz(0)〉 = − j, we can integrate
Eq. (27) and obtain the inequality:

arctan

{
2〈Jz(�τ )〉 + 1

2 f+[ j, 〈Jz(�τ )〉]
}

− arctan
1 − 2 j

2
� R0�τ. (28)

The incoherent bound on the average charging power follows
by setting both sides equal and solving for 〈Jz(�τ )〉, such that
P̄ � E [〈Jz(�τ )〉 + j]/τ .

From Eq. (28), we can also estimate the time τ ∗ it takes
to fully charge a large spin battery from 〈Jz(0)〉 = − j to
〈Jz(τ ∗)〉 = j with an incoherent protocol:

τ ∗ � 1

R0�

(
arctan

2 j + 1

2
− arctan

1 − 2 j

2

)
j→∞−−−→ arctan(∞) − arctan(−∞)

R0�

= π

R0�
. (29)
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FIG. 6. Mean battery energy Ē as a function of charging time
�τ = kθ , for a spin- 99

2 battery with 100 levels charged by a sequence
of qubits. Blue solid lines of darker shades correspond to coherent
qubits at q = 0.5 using increasing swap angles θ , and the blue dotted
line corresponds to the driving limit θ → 0. The black dashed line
marks the upper bound for adaptive incoherent charging strategies
with excited qubits (q = 0), which is almost reached by a greedy pro-
tocol (black solid line) optimizing the cumulatively averaged power
at every charge step. The dash-dotted line shows the less performant
deterministic full-swap protocol. Inset: Zoom on the time interval
where the coherent protocol for the charging process becomes better
than the incoherent bound.

Hence, for a full charge at j  1, the minimal time no longer
depends on the number of battery levels due to the j scaling
of the level-dependent coupling term in Eq. (23). Accordingly,
the average power for a full incoherent charge of the battery
does not exceed P̄∗ � 2E j�R0/π .

B. Classical strategies

As in the oscillator case, we can consider a full-swap
strategy in which we adapt the coupling times according to
ϑk = π/2 f+( j, k), such that the battery is always in a pure
charge state | j, k − j〉. The energy and ergotropy are equal
and increase in steps of E . To completely charge the battery,
2 j such swaps must be performed, which requires the total
time:

τ ∗ = 1

�

j−1∑
k=− j

π

2 f+( j, k)
j→∞−−−→ π2

2�
. (30)

At j  1, the overall charging power P̄ = 2E j/τ ∗ is then
2/R0π � 0.88 times lower than the incoherent upper bound
deduced from Eq. (29).

A slightly better performance is obtained by the greedy in-
coherent protocol (shown in Fig. 6), which selects as the swap
angle θk in each step the local maximum of the cumulative
average charging power.

C. Coherent charging

The minimum full-charge time in Eq. (29) and the associ-
ated power bound hold for all incoherent protocols, but they
can be overcome with coherent qubits. As for the oscillator

battery, the optimal performance is obtained with the choice
q = 1

2 and c = 1, regardless of the phase angle α. As an
example, we compare coherent and incoherent charging pro-
tocols for a spin battery of dimension d = 2 j + 1 = 100 in
Fig. 6. We plot the average energy relative to the ground state
Ē (K ) + E j as a function of the charging time �τ = ∑K

k=1 θk .
The blue solid curves from light to dark correspond to non-
adaptive coherent charging protocols (q = 1

2 , c = 1, and α =
0) at growing values of the fixed swap angle θk = θ ; they beat
the incoherent bound (black dashed) when θ � 0.004π . The
optimized greedy incoherent protocol (black solid) gets close
to the bound and clearly outperforms the full-swap protocol
(dash-dotted).

The blue dotted line represents the asymptotic coherent
driving limit θ → 0 in which the battery state remains pure
and evolves according to

ρB(K )
θ→0−−−→

K→∞
D̂(τ )| j,− j〉〈 j,− j|D̂†(τ ). (31)

Here, the unitary describes a coherent spin rotation by the an-
gle �τ about the x direction on the generalized Bloch sphere:

D̂(τ ) = exp

[
�τ

2
(Ĵ+ + Ĵ−)

]
. (32)

A complete charge of the battery corresponds to a π ro-
tation, which requires the time τ � = π/� and is therefore
R−1

0 � 1.38 times faster than the incoherent bound in Eq. (29),
corresponding to a 38% quantum advantage.

V. CONCLUSIONS

Despite immense progress on our understanding of thermo-
dynamics processes in the quantum regime [1–4], identifying
quantum advantages in thermodynamics remains a challeng-
ing task. Quantum batteries offer a natural framework to
explore this question and previous efforts focused on quan-
tum advantages of a collective nature based on entanglement
[38–45]. Building upon our previous work [87], here, we have
shown that such quantum advantages can also appear at the
level of a single battery: Given a collisional model of charg-
ing, we have proven that quantum coherent charging processes
can outperform arbitrary classical charging strategies. More
precisely, we have considered a set of qubit units that interact
sequentially with a quantum battery, given by either a quan-
tum harmonic oscillator (thus realizing a micromaser) or a
large spin system. A quantum advantage arises in both setups,
with 90 and 38% higher charging power through quantum
resources for the micromaser and the spin batteries, respec-
tively. We have characterized the robustness of the quantum
advantage to decoherence and photon loss and discussed its
feasibility in a cavity QED setup [101]. We also highlighted
the possible implementation on a hybrid superconducting
platform [103,104]. An experimental demonstration of these
results is an exciting possibility that we hope can be achieved
in the near future.

Note added. Upon finalizing this work, Ref. [112] ap-
peared, which is also concerned with charging an oscillator
battery with a sequence of coherent qubits in a micromaser
setup. Complementary to our results, the authors focus on
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the regime of ultrastrong cavity-qubit coupling and include
counterrotating interaction terms in their model.
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APPENDIX A: MASTER EQUATION MODEL
FOR SEQUENTIAL BATTERY CHARGING

Here, we present a generic master equation model for the
sequential charging of a ladder battery by identical qubits as
described in the framework, Sec. II.

1. State change per charging step

Each charging step is represented by a unitary opera-
tion Û acting on the combined Hilbert space of battery and
qubit, which results in an effective quantum channel ρB �→
�ρB, repeatedly applied to the reduced battery state. After
k steps, we have ρB(k) = �kρB(0) = (1 + L)kρB(0). Given a
Kraus representation of the channel, �ρB = ∑

i M̂iρBM̂†
i with∑

i M̂†
i M̂i = 1, we can express the incremental change of state

L as a sum of Lindblad dissipators:

LρB := �ρB − ρB =
∑

i

D[M̂i]ρB, (A1)

using the abbreviation D[M̂]ρ = M̂ρM̂† − {M̂†M̂, ρ}/2.
Here, one obtains a valid set of Kraus operators from the

eigenbasis of the qubit state ρQ = ∑1
n=0 qn|ψn〉〈ψn| and an

auxiliary orthonormal basis {|χ0〉, |χ1〉}:

�ρB = tr{ÛρB ⊗ ρQÛ †} =
1∑

m,n=0

M̂m,nρBM̂†
m,n,

M̂m,n = √
qn〈χm|Û |ψn〉. (A2)

One can easily check that
∑

m,n M̂†
m,nM̂m,n = 1, given q0 +

q1 = 1. This determines the master equations for incoherent
and coherent charging, as expressed by the Lindblad genera-
tors Linc and Lcoh.

For the incoherent case, the qubits are prepared in a mixed
state ρ

(inc)
Q of a given ground-state probability q, i.e., |ψ0〉 =

|g〉, |ψ1〉 = |e〉, and q0 = q. Using the same auxiliary basis,
we are left with

LincρB = q(D[〈g|Û |g〉] + D[〈e|Û |g〉])ρB

+ (1 − q)(D[〈g|Û |e〉] + D[〈e|Û |e〉])ρB. (A3)

The amount of useful energy each qubit can at most transfer
to the battery is specified by the ergotropy EQ = max{0, 1 −
2q}E � 0. It is lower than the mean energy (1 − q)E and
finite only for population-inverted states (q < 1

2 ).
For the coherent case of the same mean energy, the qubits

are in a pure superposition state ρ
(coh)
Q = |ψ0〉〈ψ0|, with

|ψ0〉 = √
q|g〉 + √

1 − qeiα|e〉 and q0 = 1. The ergotropy

equals the mean energy EQ = (1 − q)E and is nonzero also
for q > 1

2 . To obtain the generator, we could construct an
orthogonal complement to the qubit state |ψ1〉 = √

1 − q|g〉 −√
qeiα|e〉, so that LcohρB = D[〈0|Û |0〉]ρB + D[〈1|Û |0〉]ρB.

However, it turns out to be more pertinent to use the energy
states as the auxiliary basis and write

LcohρB = D[〈g|Û |0〉]ρB + D[〈e|Û |0〉]ρB. (A4)

This form ensures that, for the energy-preserving exchange
interactions discussed next, the first dissipator can only con-
tain excitations of the battery state, while the second dissipator
can contain de-excitations only. Depending on the interaction
model Û , one might be able to single out an explicit coherent
driving term in the form of a Hamiltonian contribution to the
master equation, with help of the identity:

D[B̂ + α1]ρ = D[B̂]ρ +
[
α∗B̂ − αB̂†

2
, ρ

]
. (A5)

Partially coherent qubit states of a given ground-state pop-
ulation q can always be written as a convex combination of
the corresponding mixed and pure states ρQ = cρ (coh)

Q + (1 −
c)cρ (inc)

Q , with c ∈ [0, 1]. This implies the same convex com-
bination for the charging generator L = cLcoh + (1 − c)Linc.
Ergotropy is then provided in the form of both coherence
(c > 0) and population inversion (q < 1

2 ) since EQ = E [1 −
2q +

√
(1 − 2q)2 + 4c2q(1 − q)]/2.

2. Energy-preserving resonant exchange

In our charging model, we demand that the battery charge
be sourced exclusively by the charging qubits and that no
additional work be consumed in the process. Hence, the inter-
action must be energy preserving, [Û , ĤB + ĤQ] = 0, and the
associated quantum channel � a so-called thermal operation
[113,114].

Specifically, we restrict our view to the resonant exchange
of single excitations, as described by partial swap opera-
tions between the qubit and neighboring battery levels Û =
exp(−iĤθ ) generated by a Hermitian coupling Hamiltonian
of the form:

Ĥ = Â ⊗ |e〉〈g| + Â† ⊗ |g〉〈e|, 〈m|Â|n〉 ∝ δm,n−1. (A6)

Here, Â represents a model-dependent ladder operator moving
downward on the battery, while the parameter θ characterizes
the level-dependent swap angle (including the coupling fre-
quency �). For the studied cases of an oscillator and a spin
battery in Secs. III and IV, we used Â = â and Â = Ĵ−, respec-
tively. Note that the most general energy-preserving Ĥ could
also contain phase-rotation terms of the form

∑
n |n〉〈n| ⊗

(vn,e|e〉〈e| + vn,g|g〉〈g|). Such terms would complicate the
charging dynamics and are not considered here.

The unitary charging operation can be expanded as

Û = e−iĤθ = cos(|Ĥ |θ ) − iθsinc(|Ĥ |θ )Ĥ, (A7)

introducing the absolute value operator:

|Ĥ | :=
√

Ĥ2 =
√

ÂÂ† ⊗ |e〉〈e| + Â†Â ⊗ |g〉〈g|. (A8)

It satisfies [Ĥ , |Ĥ |] = 0, and it is also diagonal in the product
basis of battery and qubit energy states because Â†Â and ÂÂ†
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are diagonal in the basis of battery levels |n〉 by construction.
However, |Ĥ | will not be full rank for (semi-)finite batteries
with empty and fully charged states at n = 0 and n = N (or
n → ∞) since |0, g〉 and |N, e〉 are not affected by Ĥ .

From the matrix elements of the unitary, we can iden-
tify Lindblad operators L̂− and L̂+ = L̂†

− associated to jumps
down and up the battery ladder with level-dependent jump
probabilities, as well as Lindblad operators L̂e,g = L̂†

e,g asso-
ciated to dephasing between energy levels:

L̂g =〈g|Û |g〉 = cos(
√

Â†Âθ ),

L̂e =〈e|Û |e〉 = (
√

ÂÂ†θ ),

L̂− = i〈e|Û |g〉 = θsinc(
√

ÂÂ†θ )Â = θ Âsinc(
√

Â†Âθ ),

L̂+ = i〈g|Û |e〉 = L̂†
−. (A9)

In the third line, we make use of the fact that (ÂÂ†)kÂ =
Â(Â†Â)k for k ∈ N due to associativity. The generators for
incoherent and coherent charging become

LincρB = q(D[L̂g] + D[L̂−])ρB + (1 − q)(D[L̂e]

+ D[L̂+])ρB, (A10)

LcohρB =D[
√

qL̂− + i
√

1 − qeiαL̂e]ρB + D[
√

1 − qL̂+

+ i
√

qe−iαL̂g]ρB. (A11)

For incoherent charging, the dephasing terms L̂e,g can be ig-
nored if there are no energy coherences in the battery state to
begin with. The coherent process, on the other hand, will build
up such coherences.

For small θ , we can expand the generators to second order
in θ . By virtue of the identity in Eq. (A5), we arrive at

LincρB ≈ qθ2D[Â]ρB + (1 − q)θ2D[Â†]ρB, (A12)

LcohρB ≈ LincρB − i
√

q(1 − q)θ [e−iαÂ + eiαÂ†, ρB].
(A13)

That is to say, in the limit of short or weak interactions,
the incoherent charging process is always of second order
in θ , whereas the coherent process adds an effective driving
Hamiltonian V̂ = √

q(1 − q)θe−iαÂ + H.c. The driving term
is of first order in θ , and so it dominates whenever q �= 0, 1. It
preserves the purity of the battery state and is responsible for
the coherent advantages we have discussed for oscillator and
spin batteries.

In Appendix B, we derive explicit Lindblad operators for a
uniform ladder battery and recover the random-walk charging
process studied in Ref. [87]. There, we can make use of
Eq. (A5) to single out a Hamiltonian driving term for the
coherent case.

APPENDIX B: RANDOM-WALK BATTERY

Let us use our generic results and check consistency with
the random-walk battery we have studied before in Ref. [87].
The uniform ladder operator is Â = ∑N

n=1 |n − 1〉〈n|, and we
can quickly convince ourselves that

Â†Â = 1 − |0〉〈0| =
√

Â†Â, ÂÂ† = 1 − |N〉〈N | =
√

ÂÂ†.

(B1)
These projectors imply that f (ÂÂ†)Â = f (1)Â and
f (Â†Â)Â† = f (1)Â†. Hence, we get for the incoherent
model:

LincρB = q sin2 θD[Â]ρB + (1 − q) sin2 θD[Â†]ρB + qD[|0〉〈0| + (1 − |0〉〈0|) cos θ ]ρB + (1 − q)D[|N〉〈N |
+ (1 − |N〉〈N |) cos θ ]ρB = sin2 θ (qD[Â] + (1 − q)D[Â†])ρB + (1 − cos θ )2{qD[|0〉〈0|] + (1 − q)D[|N〉〈N |]}ρB,

(B2)

where, for the last line, we made use of Eq. (A5). The result is exactly what we got in Ref. [87]. The dephasing only affects the
two boundary levels directly.

For the coherent model, we similarly get

LcohρB =D{√q sin θ Â + i
√

1 − qeiα[cos θ1 + (1 − cos θ )|0〉〈0|]}ρB + D{
√

1 − q sin θ Â† + ie−iα√
q[cos θ1

+ (1 − cos θ )|N〉〈N |]}ρB = −i
√

q(1 − q) sin θ cos θ [e−iαÂ + eiαÂ†, ρB] + D[
√

q sin θ Â

+ i
√

1 − qeiα (1 − cos θ )|0〉〈0|]ρB + D[
√

1 − q sin θ Â† + ie−iα√
q(1 − cos θ )|N〉〈N |]ρB. (B3)

Using again Eq. (A5) for the identity term inside the dissipa-
tors has lead us to our old result. However, we see that the
appearance of an explicit driving Hamiltonian is due to the
simple projectors in Eq. (B1), which cannot be expected for
other models.

APPENDIX C: INCOHERENT CHARGING
BOUND WITH DISSIPATION

Here, we derive an upper bound for the incoherent charging
of an oscillator battery in the presence of damping. Our model

in Sec. III D assumes that the charging events are short and
separated by a waiting time τ0 during which the oscillator is
subject to a (quantum-limited) attenuation channel in Eq. (21)
with a damping constant γ .

We can restrict our view to excited qubits (q = 0) so that, in
the charge step (ch), the battery either gains one charge unit
E with probability P+(n) = sin2(

√
n + 1θ ) or remains at its

current level n with P0(n) = 1 − P+(n). During the damping
period that follows, the battery can only lose charge. Start-
ing from the nth level, the energy loss due to damping is
	E (da)(n) = E tr[â†â�0(|n〉〈n|)] − En = −γ En. Hence, like
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Eq. (10), the combined mean energy change over the kth charging step with swap angle θk and the subsequent damping can be
written as

	Ē (k) = E
∞∑

n=0

p(n, k − 1){P+(n, k)[1 − γ (n + 1)] − P0(n, k)γ n} = E
∞∑

n=0

p(n, k − 1)[(1 − γ ) sin2(
√

n + 1θk ) − γ n]. (C1)

In full analogy to Sec. III, we can now construct an upper bound on the transient charging power P (k) = �	Ē (k)/θk by
maximizing and upper bounding each n summand individually:

max
θ∈[0, π

2 ]

(1 − γ ) sin2(
√

n + 1θ ) − γ n

θ
� (1 − γ ) max

θ∈[0, π
2 ]

sin2(
√

n + 1θ )

θ
− γ min

θ∈[0, π
2 ]

n

θ
= (1 − γ )

√
n + 1R0 − 2γ n

π
. (C2)

Note that, for the sake of clarity, we are only counting the charging time and omitting the damping time t0 here. Otherwise, the
overall charging time would be offset by Kt0. Then Eq. (13) has to be modified to

	Ē (k)

Eθk
� R0(1 − γ )

√
Ē (k − 1)

E
+ 1 − 2

π
γ Ē (k − 1), (C3)

and therefore (assuming a growing Ē ),

dĒ (�τ )

dτ
� �ER0(1 − γ )

√
Ē (�τ )

E
+ 1 − 2�

π
γ 〈E (�τ )〉. (C4)

The solution of Eq. (C4) gives a bound for the incoherent charging in the presence of dissipation; it does not differ appreciably
from Eq. (15) in the considered weak-damping regime γ � 1.
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