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Abstract

We present and investigate the collision-coalescence process of particles in the presence
of a fluid velocity field, examining the relationship between flow properties and enhanced
coagulation. Our research focuses on two main aspects. Firstly, we propose a novel mod-
eling approach for turbulent fluid at small scales, employing a Gaussian random field with
non-trivial spatial covariance. Secondly, we derive rigorous partial differential equations
(PDEs) and stochastic partial differential equations (SPDEs) from this model, capturing
the physical characteristics of particles suspended in the fluid.

From an Eulerian perspective, we analyze a kinetic particle system subjected to envi-
ronmental transport noise. Specifically, we rigorously study a modified version of Smolu-
chowski’s coagulation equation, which incorporates velocity dependence akin to the Boltz-
mann equation. By utilizing techniques rooted in unbounded elliptic semigroup theory and
weighted Sobolev space inequalities, we establish the existence and uniqueness of clas-
sical solutions for the case of a spatially homogeneous initial distribution.

Moreover, from a Lagrangian viewpoint, we employ this particle system to gain in-
sights into the collision rate at a steady state for particles uniformly distributed within a
medium. Considering a particle-fluid model, we perform two scaling limits. The first limit,
involving the number of particles, yields a stochastic Smoluchowski-type system, with the
turbulent velocity field still governed by a noise stochastic process. The second scaling
limit pertains to the parameters of the noise, specifically targeting the direction associated
with small-scale turbulence. This limit leads to a deterministic equation with eddy dissi-
pation in the velocity variable. We conduct numerical simulations of this equation system
and demonstrate the influence of turbulence on rain formation. Our qualitative findings
reveal a steady increase in coagulation efficiency with escalating turbulent kinetic energy
of the fluid. Additionally, we observe a power-law decay over time and in relation to the
turbulence parameter. Furthermore, we recover fundamental laws governing the collision
rate and relative velocity of moving particles in the high Stokes number regime.
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Introduction

Coagulation processes permeate the natural world, spanning from cellular motion to atmo-
spheric phenomena. Yet, comprehending them experimentally and mathematically poses
a substantial challenge. Motivated by the key problem of clouds formation and rain pre-
cipitation, this thesis embarks on a quest to address and describe fundamental inquiries:
Does a turbulent velocity field within the atmosphere amplify the coagulation of minuscule
rain droplets, thereby promoting rainfall? Furthermore, if such enhancement occurs, how
can we precisely quantify it, accounting for both Eulerian and Lagrangian dynamics of the
fluid and particles?

Cloud formation and precipitation development are intricately intertwined processes
influenced by both macro-scale and micro-scale phenomena. On the macro-scale, the fluid
motion of air in relation to clouds plays a significant role, while on the micro-scale, pro-
cesses such as condensation, stochastic coalescence, and evaporation of water droplets
come into play. Hence, it can be inferred that cloud formation and precipitation develop-
ment represent quintessential examples of multiscale-multiphysics phenomena.

Extensive literature in the field of physics has addressed this topic, with notable con-
tributions dating back as early as the work of Saffman-Turner in the 1950s [78]. Additional
studies by researchers such as [29, 75, 80], to name a few, have also provided substan-
tial evidence supporting both the notion of coagulation enhancement and the selection of
crucial quantities to measure the phenomena.

As shown in [88] and from seminal works of [52] and [80], we can boil down to three
main contributions of a turbulent flow in the collision-coalescence process of droplets in
a cloud. First, in localized regions of the flow where air streamlines experience significant
curvature and change (e.g. areas with high vorticity), the distribution of droplets becomes
nonuniform due to their finite inertia [25, 75]. Second, the unstable velocity field influences
the relative velocity between colliding droplets, typically exceeding the terminal velocity
due to gravitation observed in still air [1, 78]. Consequently, this nonuniform density and
enhanced velocity difference may result in notably higher collision rates on average [64,
75, 90]. Lastly, turbulence also alters the hydrodynamic interactions and thus the collision
efficiencies between droplets at a local level. This follows from the changes in both the
relative distance between droplets and their distribution, influenced by the turbulent flow
characteristics across different ranges of length and time scales, more so exceeding the
one represented by the droplets themselves, see [88] and references therein.
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4 Introduction

Outline of the dissertation

The thesis will mostly concern the collision rate of coagulating particles and related statis-
tics, as we investigate the impact of these flow fields on the relative velocity of inertial par-
ticles within an airflow. The study will rigorously examine their effect in the limiting regime
of motion, while also providing heuristic insights for future advancements towards an ex-
tended unified theory. Additionally, we will explore the phenomenon of mass dislocation
during the time evolution of the Eulerian system. Furthermore, we will assess the theoret-
ical well-posedness of the derived equation governing the particles’ density.

Chapter 1 serves as a preliminary to the dissertation, where we delve into the funda-
mental concept of collision rate and explore various modeling approaches known in the
literature from both Lagrangian and Eulerian perspectives. We examine the behavior of
particles in a flow, distinguishing between tracers and inertial particles. A novel modeling
of fluid velocity is proposed, leading to a mean field equation for tracer particles akin to
the classical Smoluchowski equation. One possible construction is explained in detail in
Appendix A. However, we discover numerically that while this construction exhibits the
anticipated enhancement diffusion and coagulation at the Lagrangian level with a hard
sphere collision kernel, such effects are absent when transitioning to the density function
of droplets. Consequently, without the use of averaged reasoning on the collision rate
completely detached from the density equations, we realize the need for a change in per-
spective and employ a rigorous approach to derive the equation for particle density. To
achieve this, as shown in Chapters 2 and 4, we shift our focus to inertial particles, which
naturally capture these phenomena, and employ a heuristic construction of a scaling limit
that yields a new Smoluchowski equation with velocity components featuring eddy diffu-
sivity.

Building upon this reasoning, Chapter 2 details the development of a set of equa-
tions for particle density based on the aforementioned scaling limit. Within this system,
we successfully recover the relative velocity of inertial particles in a turbulent fluid and
the collision rate, assuming a uniform distribution of particles. Additionally, we conduct
numerical investigations into the mass displacement during the temporal evolution, pro-
viding derivations for the steady state density, total system mass, and their dependence
on the turbulent kinetic energy of the fluid.

In Chapter 3, we explore the potential for modifying our model to overcome limitations
associated with the Stokes number regime of our particles, focusing on two-point motion
statistics. This chapter presents preliminary results and conjectures regarding an effec-
tive formulation for the relative velocity and collision rate of inertial particles. Our aim is
to develop an approach that not only satisfies the known limiting regime but also allows
for the expression of dependence on the selected fluid model. Further exploration of this
topic is expected in future works.

Lastly, in Chapter 4, we rigorously study the one-point motion system derived in Chap-
ters 2 and 3, which specifically involves a homogeneous in space Smoluchowski equa-
tion with velocity components. However, it is important to note that while this equation
bears resemblance to a multi-species Boltzmann equation, it lacks the same symmetry,
boundedness, and conserved quantities. Consequently, the problem of establishing the
existence and uniqueness of classical solutions becomes more complex. To address this
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challenge, we employ a range of techniques from unbounded elliptic semigroup theory,
ad hoc mollification and cancellation techniques in the uniqueness theorem and weighted
Sobolev space inequality. These tools enable us to recover classical solutions for the
equation and resolve the aforementioned issues.

Key quantities: two kind of particles

Rainfall is a vital component of the Earth’s hydrological cycle, and understanding the pro-
cesses that lead to the formation and growth of raindrops is of great importance in me-
teorology and atmospheric science. In the atmosphere, raindrops originate from tiny sus-
pended particles called cloud droplets, which undergo a complex series of interactions
and transformations to become precipitation. One key process involved in this transforma-
tion is coagulation, which refers to the collision and subsequent merging of cloud droplets
to form larger raindrops. Coagulation plays a crucial role in the growth of raindrops within
clouds. Understanding the coagulation rate, or the rate at which cloud droplets coalesce,
is essential for predicting the growth and intensity of rainfall events, as well as for improv-
ing weather forecasting models.

Understanding the mechanisms by which turbulence enhances collision rates has made
significant progress in recent years [25, 26, 64, 75, 90], yet a foundational construction of
the quantities at play remains an open question.

In this chapter, we discuss mathematical concepts related to the formation and growth
of raindrops, specifically focusing on the coagulation rate and the time of raindrop forma-
tion.

We start introducing two points of view that will be intertwined: a Lagrangian and a
Eulerian modeling. Starting from a particle system approach we derive the construction of
fundamental quantities and, from a new model for the continuum density a way to compute
them and compare them, in a later Chapter, with classical results in the literature.

We start with defining an equation of motion for suspended particles in a flow, ideal-
ized as a spherical object with a density satisfying ϕp >> ϕf , where ϕp and ϕf are the
densities of the particles and fluid respectively. In this regime, The Stokes Law describes
the motion and we have

Ẋ(t) = V (t), V̇ (t) =
1

τp
(u(t,X(t))− V (t)) (0.0.1)

where

τp =
2r2ϕp
9νϕf

,

is the particle relaxation time andX andV represent position and velocity of the particles.
From this system, we derive the dimensionless parameter

St := τp/τU ,

called Stokes number, where τU is the Kolmogorov response of the fluid, that completely
characterizes the inertia of particles. We note that 0.0.1 reduces to a passive scalar model
when St→ 0.



6 Introduction

In principle, defining the concept of collision rate appears as a straightforward exer-
cise in gas-kinetic theory, but in reality, it is a complex problem concerning the number of
active variables and the complex dynamic of the system.

Imagining the particle as sphere-like objects, we describe the rate of collection for
droplets moving in a flow, as in [25], by its fundamental unit: the collection kernel of two
colliding particles

Γ = 4πR2|vr1 − vr2 |E(r1, r2),

where R is the sum of the droplets radii of the colliding pair r1 and r2, vr1 and vr2 are
the velocity of each droplet, and E is the collection efficiency, which is the product of the
collision efficiencies and the two-point correlation function. This general formulation is
deduced considering the rate at which the separation line between the center of mass of
the two particles crosses a disk of radius R, making the kernel proportional to the area
of the spherical surface swept in a unit of time, hence the proportionality on the relative
velocity of the particles.

In the classical theory, [87], reducing the active variable only to the mass m of the
particles, we expect the collision rate R to be a function of just m, with a dimension of
[R] = T−1, to be dependent on the collision kernel of two single droplets, where the
relative velocity of the pair |vr1 − vr2 | is approximated as a function of the radii, and
proportional to the number density fm of particles in the suspension.

In the discrete setting of masses being indexed by N, we then obtain the classical rate
of collision

Rm :=
∞∑
n=1

Γ(m,n)fn (0.0.2)

where fn is obtained as the mean field solution from the particle system 1.1.1, and is the
classical solution of the Smoluchowski equation [83] with kernel Γ

∂

∂t
fm =

m−1∑
n=1

Γ(n,m− n)fnfm−n − 2

∞∑
n=1

Γ(m,n)fmfn, m ∈ N

In this setting, usually, Γ is obtained a priori with direct numerical simulation on particles
moving into fluid, or with physical reasoning of dimensional analysis, in order to reduce
the kernel to be a function of mass only. See [2, 81] and references therein for further
details.

However, the classical Smoluchowski approach, [83], has limitations, especially when
particles undergo runaway growth, such as in raindrop formation. To address this issue,
alternative approaches have been developed, including direct numerical simulation (DNS)
[81, 61] and the analysis of the Lyapunov exponent of the particle system’s dynamics [89,
90]. From these results, the collision rate is expected to be composed of two indepen-
dent components: collisions that occur when particles follow similar trajectories due to
shearing motion in the flow, and collisions between particles that deviate from the fluid
path lines and are influenced by small-scale turbulence. These mechanisms contribute
differently and can be combined additively.

The focus of this work is on the latter, and the construction of an effective and rigor-
ous theory for the collision rate in the presence of turbulence, where the folding of flow
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lines and particle inertia play significant roles. Thus, under the hypothesis of a turbulent
velocity field, in Section 1.4 and .1 we construct a time evolution for the density of particles
fm(ξ) where ξ represents the active variables of the system, maintaining both position
and velocity, instead of mass alone as in 0.0.2. Hence, defining our key quantity

Rturb =
∞∑
m=1

ˆ
Γ(ξ, ξ)fm(ξ) dξ,

explained in detail in Section 1.4, for which we prove in Chapters 2 and 3 the derivation
of the typical coagulation rate as in [1, 64]. More so, we study in Section 1.2 the time of
formation of a raindrop, which declined as a loss of total mass in the truncated density
evolution of particles with massesm = 1, ...,M , representing the typical raindrop mass.

τ(f·) := inf{t ≥ 0 |
M∑
i=1

ˆ
fi(t, ξ)dξ ≤ M0},

where M0 is a reference threshold and ξ are the set of active variables for the particles’
density proposing a prime example of dependence between the turbulence parameter of
the fluid and the rain shower initialization. Under the assumption of a turbulent velocity
field, a time evolution for the particle density is constructed, and the coagulation rate is
expressed as an integral involving the collection kernel and the particle density.

To derive this construction, we first consider a system of N tracer particles in a tur-
bulent fluid, i.e. ϕp ≡ ϕf .

Ẋ(t) = U(t) (0.0.3)

Where, at the particles level, motivated by works of Boussinesq [15] and Majda [63], the
large-scale turbulent flow U is modelled through its small scales as a common environ-
mental transport noise:

U̇(t, x) =
∑
k∈K

σk(x)Ẇ
k
t (0.0.4)

i.e. a white noise in time with non trivial spatial covariance where {σk(x)}k∈K countable
divergence-free smooth vector fields, {W k

t }k∈K independent 1-d Brownian motions. We
define the covariance matrix Q(x, x) :=

∑
k∈K σk(x) ⊗ σk(x) derived by easy compu-

tation on the transport-type noise.
Under suitable and natural choice {σk}k∈K , i.e Kraichnan type covariance [33, 58], we

have Q(x, x) ≡ κId, for enhanced diffusion coefficient κ > 0 (see Chapter 2, and [35]
with reference therein). These particles may coalesce in an instantaneous way as soon
as they get in contact with each other and We investigate numerically the behavior of the
discrete equivalent of first formation time of a raindrop in cloud, i.e.

τf := inf{t ≥ 0|∃i ∈ Nt, R
i
t >= Rrd}, (0.0.5)

whereRit is the radius of the i− th particle at time t andRrd := 4 · 10−4 is the radius of
the typical raindrop in our simulation. While Nt are the surviving particles at time t, with
Nt ≤ N .
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In Section 1.2.4, calling κ the parameters of the turbulent flow, we derive an explicit
dependence for τf := τf (κ) and we are able to argue a decay of the form

E [τf (κ)] ∼ p(κ)−1

where p is a polynomial of degree at most 2. The limiting case of deq(p) = 2 is obtained
in the case of pure Brownian particles as shown in Section 1.2.2.

This toy numerical example has a natural downside: the setting of instantaneous co-
alescence presents a unique challenge in studying the probability density function (PDF)
of the particles. Since the objective of the thesis is to produce a theoretical framework
for the coagulating process of particles in a fluid, we had to approximate our process and
pass to a probabilistic rate in the coagulating dynamics.

A such, following the work of [37] and given the difficulty associated with analyzing
the PDF in such cases, we directed our focus towards a scaling limit approach. In this
direction, one of the main results was provided by Hammond and his collaborator [46, 48,
47], extending rigorously the Smoluchowski equation to a PDE with space variable, as a
scaling limit of a particle system undergoing pairwise coagulation (with an apriori rate,
dependent only on the masses).

In particular, they provided a model of time evolution probability distribution {fm(t, x)}∞m=1

of diffusing particles of different sizes m ∈ N. Particles undergo pairwise coagulation
with coagulation rate α(m,n), and their resulting equation could be read as follows

∂tfm(t, x) =κ∆fm(t, x) +
m−1∑
n=1

α(n,m− n)fn(t, x)fm−n(t, x)

−2
∞∑
n=1

α(m,n)fm(t, x)fn(t, x), t > 0, x ∈ Td, m ∈ N.

In this setting, particles are moved independently and subjected to Brownian motions. In-
deed, this is not enough to understand the behavior of particles moving into a fluid velocity
flow.

This approach allows us to gain a deeper insight into the behavior of particles and their
interactions, shedding light on the underlying mechanisms that govern coagulation pro-
cesses, more so, finding what does not work in the standard modelling of tracer particles
and how to pass to the kinetic system.

For this reason, as an analogous of the discrete formation time τf (0.0.5), defined in
Section 1.2 equation 1.2.1, we define τκ which represent the first time the total density has
put enough mass on effective raindrops:

τκ(f·) := inf{t ≥ 0 |
M∑
i=1

ˆ
fi(t, x)dx ≤ M0}, (0.0.6)

with M0 a positive constant.
We know that Eτf → 0 as κ−2, when κ → ∞ in the discrete system with instanta-

neous collision. So the question we ask is: does τκ(f·) has a behavior akin to the one
displayed by the tracer particles system?
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Unfortunately, the numerical results produced for the quantity 0.0.6 in Section 1.3
show an increase for τκ(f·). Specifically:

τκ(f·) ↗ T, while τf (κ) ↘ 0

as κ→ ∞ in the time frame [0, T ], completely going against intuition, the toy model, and
physical results from experiments.

The thesis aims to verify whether enhancing diffusion leads to coagulation enhance-
ment, specifically the increase in probability densities for large masses and a rigorous
construction of the key factor explaining the dynamics underneath the coagulating pro-
cess. However, the first enrichment of the model used in the program results inadequate
and unable to confirm coagulation enhancement through numerical simulations.

To overcome this challenge, it is necessary to consider all relevant factors from the be-
ginning, even if it complicates the computational process. The coagulation kernel, which
describes the probabilistic interaction of moving particles, should theoretically depend
on the difference in velocity between particles. However, the current approximation of the
kernel, based only on masses, neglects the complexities of kinetic evolution due to turbu-
lence, hence making difficult to use the density evolution equation to derive meaningful
result [65, 75]. This omission hinders the construction of a rigorous theory, particularly
regarding the final density.

There are two mathematical models for the rate of coalescence between particles:
deterministic and probability rates. In the deterministic model, two particles meeting re-
sult in the creation of a new particle with a mass equal to the sum of their masses and
momentum conserved. In the probability rates model, particles within a certain distance
from each other have a probability per unit of time to merge.

Deterministic models demonstrate that coalescence consistently occurs at a specific
distance, regardless of the time spent in close proximity. However, when considering mod-
els based on probability rates, there is a limitation in connecting them to turbulence. Coa-
lescence happens probabilistically over time, and as the duration of interaction decreases,
the probability of coalescence diminishes.

This poses a contradiction: models based on probability rates in the space-mass
framework favors coalescence with slow-moving particles, contradicting the practical un-
derstanding of turbulence. To resolve this issue, it is crucial to avoid bias toward slow
motion in the modeling process.

As we have already pointed out, in the field of atmospheric physics [25], the coagu-
lation of cloud particles is commonly analyzed using a rate proportional to the relative
velocity between particles. However, this factor is usually studied separately and then
applied to a Spatial Smoluchowski equation, making it impossible to derive accurate co-
agulation dynamics directly from the density. Additionally, this factor, when multiplied
by the time spent in close proximity, remains relatively constant on average, ensuring a
consistent probability of coalescence.

To address these limitations and incorporate both position and velocity variables, a
new system of inertial particles is introduced in Sections 1.4 and .1.

From 0.0.1, we construct a particle system, indexed by the number of particlesN ∈ N.
For each N ∈ N, T ∈ (0,∞) and m ∈ {1, ..,M}, we denote the process of empirical
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measure on position and velocity of mass-m particles in the system by

µN,mt (dx, dv) :=
1

N

∑
i∈N (t)

δxNi (t)(dx)δvNi (t)(dv)1{mN
i (t)=m} ∈ M1,+(T

d × Rd)

where M1,+ := M1,+(Td×Rd) denotes the space of sub probability measures on Td×
Rd equipped with weak topology while xi and vi denote position and velocity respectively
of the ith particle.

Heuristically we show that the laws of the collection of DT (M1,+)
M -valued random

variables {µN,mt : t ∈ [0, T ]}Mm=1, N ∈ N, is tight hence weakly relatively compact.
Consider any weak subsequential limit

{µNℓ,m
t : t ∈ [0, T ]}Mm=1

ℓ→∞→ {µmt : t ∈ [0, T ]}Mm=1. (0.0.7)

Where µmt solvers in the weak formulation the SPDE system

dfm(t, x, v) =
(
−v · ∇x + c(m)divv (v·) + κc(m)2∆v

)
fm(t, x, v)dt

−c(m)
∑

k∈K σk(x) · ∇vfm(t, x, v)dW
k
t

+
∑m−1

n=1

´
{nw′+(m−n)w=mv} s(n,m− n)|w′ − w|
×fn(t, x, w′)fm−n(t, x, w)dwdw

′dt

−2
∑M

n=1

´
s(n,m)|v − w|fm(t, x, v)fn(t, x, w)dwdt

fm(·, x, v)|t=0 = f0m, m = 1, ...,M.

(0.0.8)

From this, in Chapter 2, we derive the deterministic Smoluchowski coagulation equation
with both velocity and position as active variable. Now the enhanced diffusion due to
the small scale turbulence of the fluid act on the coagulation process, giving a rigours
construction, at least in the mono-disperse case, for the coagulation rate. In fact, limiting
for clarity on mass of type 1, we get at the level of particles

ˆ t0+∆t

t0

∑
i ̸=j

λ
(
Xi
t , X

j
t , V

i
t , V

j
t

)
1{mi

t=1}1{mj
t=1}ϕ(X

i
t , X

j
t )ds (0.0.9)

this is the number of collision of particle of mass m = 1, in the volume Q (i.e. taking
ϕ = 1Q) in the unit time ∆t.

That reads out, for the density function as

Rturb ∼ N1(t0)

ˆ t0+∆t

t0

¨ ¨
λ(x, y, v, w)ϕ(x, y)ft(x, v, y, w) dxdv dydw dt,

(0.0.10)

where the quantity N1(t0) is the number density of type 1.
This framework is the baseline to construct a rigorous theory that, from simple math-

ematical equation can naturally give rise to all the fundamental quantity of rain coales-
cence. As such, this will be the main system analyzed throughout the following Chapters.
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Turbulence enhancement of coagulation

Following the discussion of Chapter 1, we have substantial clue to conclude that turbu-
lence increases the relative velocity of particles suspended into a fluid, favours their col-
lision and thus increases the collision rate. Motivated by the last result of the previous
chapter, we investigate inertial particles and their density evolution under the action of an
environmental noise capturing the turbulent kinetic energy of the fluid.

To this end, an identified key factor of the collision rate, precluded in the tracer mod-
elling, is the average relative velocity between particles of mass m1 and m2:

Rm1,m2 = ⟨|v1 − v2|⟩ . (0.0.11)

This quantity is of major importance since it relates the properties of particles and fluid
to the intensity of the aggregation and thus it has been extensively investigated in several
works, based on various arguments and models of turbulence, see for instance [1, 7, 19,
20, 25, 26, 45, 64, 73, 75, 76, 78, 81, 84, 88, 90, 93].

We propose a new modeling approach here. Many ingredients are classical, like the
fact that we use an inertial model for particle motion (instead of a model when particles
are transported). In particular, droplets in clouds or dust particles in gasses near young
star have densities, ϕp, which are larger than the density of the fluid ϕf .

As such, in this thesis we analyze setting in which ϕp/ϕf >> 1. This way, the inertia
of the particles is usually large enough to help them from not following exactly the flow’
lines. In this regime [24], the dominant force acting on small particles is due to viscous
drag, which causes the particle velocity to slow the motion in the same direction of the
fluid velocity. Thus, the equations of motion for each of the small particles follow the
Stokes’ law

dx

dt
= v,

dv

dt
= γ (U (t,x)− v) (0.0.12)

(here γ is the damping coefficient and U (t,x) is the fluid velocity).
We note here that in setting in which concentration of particle is too close to the fluid

density, i.e. ϕp/ϕf ∼ 1, we need to consider the history of the particles’ motion, modifying
the acting forces on the system and we postpone this analysis to future studies.

At the level of the density for different masses, following the reasoning on the scaling
limit of the particle system showed in Chapter 1, we obtain a Smoluchowski equation with a
kernel depending on the relative velocity |v − v′| to describe macroscopically the system.
The novelty is that we introduce a Boussinesq hypothesis, namely the fact that a small-
scale turbulence acts on particles as a dissipation. And the key feature is that it acts as
a dissipation in the velocity component, namely it spreads the distribution of particles in
velocity (not or not only in space). This spread increases in a quantifiable way the value
of Rm1,m2 and thus the collision rate.

In order to describe the equations we use and the results, let us recall a few quanti-
ties associated to the particles and to the fluid. The damping coefficient γ appearing in
equation (0.0.12) is given by Stokes’ law 6πrµ

m where r,m are the particle radius and mass
and µ is the dynamic viscosity of the fluid. If we denote by τP and τU the relaxation times
of the particle and of the fluid respectively, we have γ = τ−1

P and we define the Stokes
number as St = τP /τU = 1/ (γτU). When we want to stress the dependence of the
damping coefficient γ from the massm, we write γm; and similarly for Stm. Two relevant
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quantities of the fluid for our study are the turbulence kinetic energy kT = 1
2

∣∣U∣∣2 and
the turbulent viscosity νT = τUkT . Our model, inspired by Kraichnan fundamental work
[58], is based on the idealization that the turbulent small-scale fluid is white noise in time,
space-homogeneous, with intensity σ (precisely, as a vector field, its space-covariance
matrix C (x) is assumed to have the auto-covariance C (0) equal to σ2Id, with d dimen-
sion of the spatial domain and Id the identity matrix). As explained in all details in the
Appendix .2, the link between these fluid quantities is

σ2

2
=

2

d
τUkT =

2

d
νT . (0.0.13)

Indeed, in [1] the energy dissipation rate is expressed as ε ∼ kT /τU, clear from the en-
ergy balance of Navier-Stokes equation, and since all three quantities correspond to the
turbulent fluid:

∂

∂t

(
1

2
|U|2

)
= −ε+ lower order terms,

from which is possible to derive the link with our spatial covariance matrix.
The first main result of our work is that we derive the following Smoluchowski-type

system for the particle densities of masses m = 1, 2, ...

∂fm (t,x,v)

∂t
+ v · ∇xfm (t,x,v)− γm divv (vfm (t,x,v)) (0.0.14)

− γ2mσ
2

2
∆vfm (t,x,v) =

(
Q+
m −Q−

m

)
(f , f)(t,x,v)

where f := (f1, f2, ...), x ∈ Td (the d-dimensional torus),v ∈ Rd and the collision
kernels are given by

Q+
m(f , f)(t,x,v) :=

m−1∑
n=1

¨
{nv′+(m−n)v′′=mv}

sn,m−n (0.0.15)

·|v′ − v′′|fn(t,x,v′)fm−n(t,x,v
′′)dv′dv′′,

Q−
m(f , f)(t,x,v) := 2fm (t,x,v)

∞∑
n=1

ˆ
sn,m

· |v − v′|fn
(
t,x,v′) dv′ (0.0.16)

with sn,m defined in (2.2.1) below.
This equation proposes a change of viewpoint. In previous works, the central problem

was determining the correct collision kernel which takes into account the fact that the fluid
is turbulent. Here we use the original collision kernel depending on the relative velocity
|v − v′|, without modifying its coefficients, but incorporate the presence of a small-scale
turbulent background by adding the dissipative operator in the velocity variable. Collision
and aggregation is not due to a stronger collision kernel, in this model, but to the spread-
in-v of densities, produced by the additional diffusion term.

The derivation of this Smoluchowski-type system is explained in Sections 2.4 and 2.5
of this chapter, as well as in Chapter 1. This derivation is heuristic but reasonable in anal-
ogy with rigorous results proved recently for other models [35, 33, 42]. From the viewpoint
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of the Physical validity of the result, let us stress that the rigorous proof would require
very small τU, with γm having a finite limit. Therefore St must be large.

We analyze this new model both using approximate analytical computations and nu-
merically. In Section 2.6 we prove, up to some approximation, the formula

Rm1,m2 =
2√
π

√
γm1 + γm2σ =

4√
3π

√
kT
Stm1

+
kT
Stm2

, (0.0.17)

in the physical dimension d = 3. In the large St regime, which is the regime of validity
of our results, this formula confirms known results (see the discussion in [90]) and it is
known as the gas-kinetic model, after [1]. Let us notice that it is obtained without any
use of dimensional analysis; it is derived from basic equations, except for the stochastic
model of the turbulent fluid.

In order to approximate analytically the average value ⟨|v1 − v2|⟩ of the relative veloc-
ity (0.0.11), we adopt the mean field viewpoint of Smoluchowski equations, where particles
are independent. Therefore, if pm (v) is the normalized density fm (v) /

´
fm (w) dw of

velocity of mass m, solution of Smoluchowski equation, we have

Rm1,m2 =

¨
|v1 − v2| pm1 (v1) pm2 (v2) dv1dv2. (0.0.18)

However, to avoid a dependence on the initial conditions, we consider, in the Smoluchowski
system, the linear terms

γm divv (vfm (v)) +
γ2mσ

2

2
∆vfm (v)

associated with the transient phase that moves the initial distribution towards a certain
limit shape. In this regime, the nonlinear terms (0.0.15) shift mass from lower to higher
levels, but their impact on the modification of shape is minor.
Therefore we take, fm (v) /

´
fm (w) dw as the invariant distribution of the linear part,

which is a centered Gaussian with covariance matrix 1
2γmσ

2Id (Id is the identity matrix),
which lead us to the fundamental formula (0.0.17). This founding are also supported with
numerical result on the steady state solution of the Smoluchowski system, as shown in
2.7.

We stress here that it is not immediately clear if we may modify our approach to incor-
porate the concentration effects related to singularities described in [25, 64, 90] directly
in the relative velocity (0.0.11), or if this effect must be study in relation to the particle
density and, as such, the full collection kernel.

In Section 2.7, finally, we investigate numerically the Smoluchowski equations, quan-
tifying in various ways the efficiency of aggregation of the turbulence model.

To this end, we define

Mσ
1 (t) :=

M∑
m=1

m

ˆ
fm(t,v) dv , (0.0.19)

which we also call “total mass” for simplicity.
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Figure 1: Decay of Mσ
1 (t) for t ∈ [0, 1], with M = 3, initial density f1(0,v) for m = 1

concentrated on the set v ∈ [−1/2, 1/2]. Parameter σ2 ranges in the set 0.05 to 10
(around 30 points). A visible increase in coagulation is present at the increase of σ2.

This function represents the total mass present in the system, at a given time t, respect
to a thresholdM > 0 representing the mass level in which particles leave the system, i.e.
fall out of the cloud as rain. Indeed, analyzing the non linearity of our PDE, we notice that

M∑
m=1

ˆ
m(Q+

m −Q−
m) dv ≤ 0, ∀t (0.0.20)

implying that dMσ
1 (t)/dt ≤ 0 and so (0.0.19) is non-increasing in time. Notice that for

the infinite system M = ∞, equality is achieved in (0.0.20), hence the mass deficiency
in the finite system is not lost at all and it is simply sent to higher order of mass-type
densities that are not analyzed in the closed system and thus can be interpreted as rain
precipitation.

With a semi implicit method we solve numerically equation (0.0.14). Thanks to re-
sults on fast decay at infinity, showed in Chapter 4, we compute the total mass showing
enhancement coagulation in Figure 1.

The second quantity we consider is closely linked to the enhanced coagulation due to
turbulence that we will establish with the “total mass” and gives more quantitative infor-
mation. Specifically, let

mT
0 := inf

t∈[0,T ]
M0

1(t)
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and define a sequence of “barrier exit times” (τσ)σ≥0

τσ := inf
{
t ≥ 0, Mσ

1 (t) ≤ mT
0

}
∧ T. (0.0.21)

Since t 7→ M0
1(t) is decreasing, we have that τ0 = T . This exit time represents the first

moment in which the total massMσ
1 (t) drops below a certain level respect the turbulence

parameter σ. Since Mσ
1 (t) is expected to decay faster as σ increases, σ 7→ τσ should be

decreasing, as shown in Figure 2.

Figure 2: M = 1; A plot of the barrier exit time τσ with respect to the turbulence pa-
rameter σ, and the corresponding log-log regression in the time window [0, 2], taking into
consideration only those exit times in the interval [1, 2], yields τσ ∝ σ−1.

We conjecture that the function (0.0.19) can be expressed as (for t suitably large, say
t > 1 in our simulations)

Mσ
1 (t) ∼

1

Ad(σ)t+Mσ
1 (0)

−1 , (0.0.22)

for some function Ad that depends on dimension d, and that A1(σ) ∝ σ, the turbulent
kinetic energy of the fluid.

A rough explanation of the numerical findings exploring differentM and initial condi-
tions, is the following one. When M = 1, the density f (t,v) of the unique level m = 1
satisfies the identity

d

dt

ˆ
f (t,v) dv = −

¨ ∣∣v − v′∣∣ f (t,v) f (t,v′) dvdv′

because the differential terms cancel by integration by parts. Up to a small approximation,
near the steady state of the linear operator,

f (t,v) ∼ α (t) f0 (v)

namely the decay of f (t,v) is self-similar [23]. Then α′ = −σ0α2 where

σ0 =

¨ ∣∣w −w′∣∣ f0 (w) f0
(
w′) dwdw′
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is an average variation of velocity under f0, namely

α (t) ∼ 1

σ0t+ C

after an initial transient period. Moreover, under this hypothesis the standard deviation
of f0 near the steady state is σ (since the dispersion produced by the linear differential
operator is proportional to σ), we expect that σ0 increases linearly with σ, the turbulent
kinetic energy. As for the behavior in time, since this computation can be carried out for
every d > 1, we believe that the decay in time is dimension-independent.

Future directions: a unified theory

In Chapter 2 a Smoluchowski-type equation is derived to study the collision rate of inertial
particles in a high Stokes number regime under the effect of a turbulent fluid.

While this regime is of interest in the astrophysical context, it has less impact on
atmospheric physics, in which particles have, usually, low to moderate St numbers. In
particular, the regime we have recovered is the same as Abrahamson [1], which is a limiting
behavior of coagulating particles akin to gas-kinetic theory.

Motivated by this, we are trying to study heavy (with respect to fluid density) inertial
particles in a turbulent environment with a two-point statistic approach. This way, depen-
dence on radius and relative distance of particles are still present in the computation of
the PDF and, hopefully, all ranges of St could be investigated.

This problem will be formalized in the following chapter, leaving different comments,
heuristics and proofs, more so open questions to be answered.

Main achievement of the chapter is the complete formulation for the average relative
velocity of two particles advected by a turbulent fluid, i.e.

⟨v⟩ ∼
√

⟨v2⟩ ∼
√
kT
St

√
1− q

(
vpSt√
2kT

)
.

where St is the Stokes number, kT the turbulent kinetic energy and q is a function that
helps modelling the fluctuating structure of the fluid.

We discuss the consequences of this formula depending on the choice of the mod-
elling of U(x, t) fluid velocity and its link with others given in the literature.

In a similar fashion to Chapters 1 and 2 and stochastic modelling via transport noise,
we are considering the noise to be turbulent and fluctuating, i.e.

U (x) = σ
∑
k

ek (x)W
′
k (t) .

As shown in .2, we can still give meaning to the quantity σ as the product of the turbulent
kinetic energy, kT , and relaxation time of the fluid, τf .

With the same reasoning, we obtain at the level of the SPDE for the joint density of the
two-point motion: ft(x1,x2,v1,v2), i.e.

∂tf + divx1 (v1f) + divx2 (v2f)−
1

τp
divv1 (v1f)−

1

τp
divv2 (v2f) =
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=
σ

τp

∑
k

ek (x1) · ∇v1f ◦ dWk (t) +
σ

τp

∑
k

ek (x2) · ∇v2f ◦ dWk (t) (0.0.23)

Writing the Ito-Stratonovich corrector in (0.0.23) we obtain a second order elliptic op-
erator that depends on the covariance matrix of the noise. Call Q such matrix we have:

Q(xi, xl) = σ2
∑
k

ek (xi)⊗ ek (xl) .

and computing the Ito formula and the corrector, we get mixed derivatives in thev = (v1,v2)
variables, giving the following second order operator (we assume for simplicityQ(x1,x2) =
Q(x2,x1)):

Df =
σ2

2τ2p
divv1(Q(x1,x1)∇v1f) +

σ2

2τ2p
divv2(Q(x2,x2)∇v2f)

+
σ2

τ2p
divv1 (Q(x1,x2)∇v2f) .

Under suitable conditions, we show the proximity of such an equation with the tran-
sient PDE or Galeati limit. In particular, we estimate the difference between the two solu-
tions:

E
[〈
f − f, ϕ

〉2] ≤ C ∥Q∥L2→L2 ∥f0∥L2 ,

refining this estimate as much as possible, and as such supporting the fact that we tran-
sition from the SPDE to the PDE, due to their proximity. For f we obtain the PDE for the
density of the two-point statistics.

∂tf + divx1
(
v1f
)
+ divx2

(
v2f
)
− 1

τp
divv1

(
v1f
)
− 1

τp
divv2

(
v2f
)
= Df

(0.0.24)

Note that under the same assumption of Chapter 2, we recover the equation for the single-
particle density, hence showing that this is indeed a consistent extension of the developed
theory. Indeed, this can be done by integrating in the desired variable and using the diver-
gence theorem and the symmetry of the covariance matrix, then Q is basically indepen-
dent on the position and the only contribution is given by σ2 ∼ kT .
Here, instead, the position is essential and changes the behavior of the relative velocity.

To compute the mean velocity we need to investigate the density function of the two-
point motion. Since we are interested in obtaining an average value that is independent
from the initial condition, we focus on the steady-state solution of the PDE (0.0.24). Fol-
lowing similar ideas from [10, 75, 90, 89] and others, we note that is the distance of the
two particles the meaningful quantity. We search solution of the form:

f (x1,x2,v1,v2) = f̃ (x1 − x2,v1,v2)

Call r := x1 − x2, the function f̃ = f̃ (r,v1,v2) satisfy the PDE:

− 1

τp
divv1

(
v1f̃
)
− 1

τp
divv2

(
v2f̃
)
= Df̃
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Df̃ =
σ2

2τ2p

(
∆v1 f̃ +∆v2 f̃

)
+
σ2

τ2p
divv1

(
Q(r)∇v2 f̃

)
(0.0.25)

this equation is the adiabatic formulation, i.e. constant in space, of the steady state equa-
tion of (0.0.24), where we impose:

divx1

(
v1f̃ (x1 − x2, v1, v2)

)
+ divx2

(
v2f̃ (x1 − x2, v1, v2)

)
= 0. (0.0.26)

We show, in Section 3.7, through numerical simulations that solution of such equations are
close, respect to the problem of finding the relative velocity of particles, to steady-state
solutions of Equation (0.0.24).

This makes the task of finding a solution for (0.0.25) feasible: given any r, we can find
solution pdf θr (v1,v2) which satisfies equation (0.0.25). We have, for each fixed r,

ˆ ˆ
θx (v1, v2) dv1dv2 = 1, f (r,v1,v2) := θr (v1,v2) (0.0.27)

up to constant depending on the space domain we are working on.
The important consequence is that, following from classical theory of both stochastic

processes and elliptic equation, we have

θr (·) ∼ N (0, Cr)

with a known Cr which will depend on our choice of Q(r) covariance of our noisy fluid
modelling.

The structure function that we want to compute is the average relative velocity be-
tween two particles considering all the inertial range of the particles in the fluid, i.e.

E [|V1 −V2|]

this is the average difference of velocities between particles in the portion of space that
has a length scale of the order of the Kolmogorov length ℓk.

Using the equilibrium probability density (0.0.25) of pairs of particles and calling
∥r∥ ∼ ℓp the typical length scale of colliding particles, in the unitary torus, we have:

E [|V1 −V2|] =
´ ´

|v1 − v2| f (ℓp,v1,v2) dv1dv2´ ´
f (ℓp,v1,v2) dv1dv2

=

ˆ ˆ
|v1 − v2| θℓp (v1,v2) dv1dv2

∼
√
C11
ℓp

+ C22
ℓp

− 2C12
ℓp
.

Hence, the main objective of the following section is to give fair assumptions on Q(r) to
compute Cr from which we’ll derive: C11

ℓp
, C22

ℓp
, C12

ℓp
and as such the relative velocity.

For this reason, consider a scalar function q(r) dependent on the magnitude of the
relative distance. {

Q (x,y) = Q (x− y) = σq
(
x−y
ℓf

)
Id

q (0) = 1
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(Note that we can always assume q (0) = 1 since we can always modify σ with a dimen-
sionless constant dependent only on the domain).

Thus the matrixCr is linked to q
(
r
ℓf

)
. From the elliptic equation we obtain with usual

computation on invariant measure the covariance matrix

Cr =
σ2

τp

 Id q
(
r
ℓf

)
Id

q
(
r
ℓf

)
Id Id


Using the results of previous section and the computation on Cr , we can obtain for the
structure function the following closed form:

E [|V1 −V2|] ∼
σ

√
τp

√
1− q

(
ℓp
ℓf

)
.

Different covariance models from Gaussian decay to Kraichnan and Kolmogorov scaling
are proposed and studied. Hence, recovering the known limiting regime for the relative
velocity as in [1, 14, 72].

Concerning the collision rate R, we propose in the chapter some explanation on how
to connect our result with the literature and what is still missing to complete the puzzle
and have a closed formulation and a unified theory for particle colliding in fluid flow. In the
physics community, there is now a general consensus [90, 89, 75, 10, 11, 26, 25] that the
coagulation rate, introduced in Chapter 1, has a natural splitting in two main components

R = Radv +Rtur.

These two uncorrelated main components are: Radv , the coagulation due to advection,
and Rtur , due to the turbulent flow.

The advecting part Radv is estimated for low Stokes regime with a uniform density of
almost tracer particles in [78], that read as

Ra :=

√
8π

15
n0 (2r)

2 τf
−1,

where n0 is the density and r the radius of the particles. This last term RT is obtained
independently from two different computations both from Falkovich [26, 25] and Mehlig
[90, 89], while it is being considered in the works of Bec [11, 10] and Pumir [75]. This is
called the sling effect or caustic effect, which proposes a correction due to the fluid turbu-
lence that creates singularity on the gradient of the particles’ velocity and then modifies
their density.

Both of these effects are obtained considering the usual collision kernel when turbu-
lent flow is involved,

Rkin ∼ ⟨|v1 − v2|⟩ ,

is mostly dependent on the relative velocity of the particles. They propose a correction
due to the fluid turbulence that creates singularity on the gradient of the particles’ velocity
and then modify their density.
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For this reason, if we have a statistically uniform spatial distribution of particles, call
such density n0, then we have the relation between the turbulent collision rate, Rtur , and
the relative velocity, i.e.

Rtur ∼ n0 ⟨|v1 − v2|⟩ .
Unfortunately, under this hypothesis, we fail to capture in fullness the turbulent part of
the turbulent coagulation rate described by the Sling Effect. It can be argued, considering
the derivation of the relative velocity and the heuristics proposed in Chapter 1, Section 1.4,
and seminal paper such as [12, 41, 25], that the assumption of statistically uniform spatial
distribution in the limit for St → 0 is not what we are really working with. In particular,
all of our assumption in the computation of the structure function needs to work in the
steady state regime, as such, also the density must be taken at is steady limit after the
turbulence of the fluid has taken effect on the trajectories of the particles. More so, since
in our equation velocity is an active variable, this must be carried on, as a Maxwellian-like
average for the particle and to be computed in a domain as big as two colliding particles.
The first reasonable guess, e.g. [59], is to consider the collision rate in the following form:

R ∼ n0g(r,v) ⟨|v1(r)− v2(r)|⟩

where g(r,v) is somewhat analogous to a radial density function of the particles, but now
depending on the relative distance, radius and velocities of the particles.

In analogy with Maxwell-Boltzmann-Arrhenius density, we expect to multiply the rela-
tive velocity ⟨|v|⟩ with the number density of particles able to collide at a certain length
distance with their related averaged velocity vp obtained from the Maxwellian, derived
from the single point statistics in Section 2.5, representing the activation kinetic energy
due to the particles respect to the fluid kT. If we call h this new factor, then:

h := exp

(
−1

2
mp

〈
|v|2

〉
kT

)
∼ exp

(
−1

2
mp

v2
pτp

σ2

)
This is closely related to Maxwell distribution in which we have

h ∼ exp

(
−E
T

)
whereE is the energy and T is the temperature and, in our case, the turbulent intensity of
the fluid, given by σ2/τp. In particular, we can argue that this h is not an artificial factor,
but nothing more than the steady state solution of the modified Smoluchowski, which is
a type of Vlasov-Fokker-Plank equation.

Under this assumption and our Gaussian covariance hypothesis we get:

Rtur(mp) ∼ n0 exp

(
−mp

2

ℓ2p

ℓf
2

1

St

)√
kT

St

√√√√1− exp

(
−
(

vp√
2kT

St

)2
)
.

This leaves us with a final formulation that agrees with Falkovich’s [26, 25] and Mehlig’s
[64] analytic formula. This factor well represents the activation aspect of the turbulent
energy with respect to the fluid trajectories and the fast decay as St → 0, but, albeit
essential, it is formulated with a reasoning due to kinetic theory and energy balance. For
this reason, it is still fundamental to understand how can we capture this from the particle
system at play, as shown in Sections 1.4 and 1.5, and, in a rigorous way, from the limiting
equation 3.2.2. This would be the primary work for future development of this theory.
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Smoluchowski equation with velocity

In previous chapters we took a kinetic viewpoint to obtain our equations for the density of
particles in a turbulent fluid, obtaining numerical and rigorous theoretical results on the
effect of such field on the coagulation process both for tracer and inertial particles.

In Chapter 4 we undertake the complex task of study rigorously such variant of Smolu-
chowski’s coagulation equation with velocity dependence that is akin to Boltzmann equa-
tion. As explained, it arises as the scaling limit of a system of second-order (microscopic)
coagulating particles, modelling the interactions of rain droplets in the clouds, which are
subjected to a common noise of transport type. Such a noise, constructed in recent math-
ematical works [42, 35], possesses several characteristics of real turbulence, such as it
enhances diffusion of passive scalars. We focus on the existence, uniqueness and regu-
larity of this new PDE, after briefly introducing its origin.

Smoluchowski’s classical equation [83] provides a first model for the time evolution
of the probability distribution {fm(t, x)}∞m=1 of diffusing particles of different sizes (or
masses) m ∈ N, say in Td := (R/Z)d, when they undergo pairwise coagulation with
certain coagulation rate α(m,n):

∂tfm(t, x) = ∆fm(t, x)+
m−1∑
n=1

α(n,m− n)fn(t, x)fm−n(t, x)

−2

∞∑
n=1

α(m,n)fm(t, x)fn(t, x), t > 0, x ∈ Td, m ∈ N.

The non linearity has two parts, a gain term and a loss term. Such a system of equa-
tions has been derived from scaling limits of Brownian particle systems by Hammond-
Rezakhanlou [48, 46]. To model the influence of a large-scale turbulent flow, it is natural
to introduce a common noise. If we adopt a transport noise of the type in [35]

Ẇ(t, x) =
∑
k∈K

σk(x)Ẇ
k
t

where {σk(x)}k∈K is a countable collection of divergence-free smooth vector fields and
{W k

t }k∈K independent one-dimensional Brownian motions, then we get a stochastic ver-
sion of Smoluchowski’s equation (an SPDE)

dfm(t, x) =∆fm(t, x)dt+
m−1∑
n=1

α(n,m− n)fn(t, x)fm−n(t, x)dt

−2

∞∑
n=1

α(m,n)fm(t, x)fn(t, x)dt−
∑
k∈K

∇fm(t, x) · σk(x) dW k
t

+ div (Q(x, x)∇fm(t, x)) , m ∈ N

(0.0.28)

where Q(x, x) :=
∑

k∈K σk(x) ⊗ σk(x) coming from the transport-type noise. Under
specific choice of {σk}k∈K , we can have that Q(x, x) ≡ κId, for an enhanced diffusion
coefficient κ > 0, the so-called “eddy diffusion” [15]. This picture, in its special case of
finitely many mass levels m = 1, 2, ...,M and unit coagulation rate α(m,n) ≡ 1, has
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been derived from particle systems in [30]. Another version of the SPDE with continuous
mass variablesm ∈ R has also been derived from particle systems with mean-field inter-
actions in [73].

However, conceptually and mathematically, the most difficult step in this program is
to verify that diffusion enhancement leads to coagulation enhancement, namely, the fast
increase of probability densities fm for m ≫ 1 (large masses) for large diffusion coeffi-
cient case. In fact, the model (0.0.28) turns out to be too crude, and even numerically we
cannot verify a coagulation enhancement.

The problem lies in the fact that quick diffusion of masses may not lead to enhanced
collision unless the coagulation rate depends on the velocity variable. Otherwise, the
masses merely move around. We introduce a new system with both position and velocity
variables. In the atmospheric physics literature, e.g. [25, 75, 80, 45], it is also common to
consider cloud particles coagulate with a rate that is proportional to (when d = 3)

α(m1,m2) := |v1 − v2|(r1 + r2)
2

where vi, i = 1, 2 are the velocities of two colliding rain droplets and ri := m
1/3
i , i =

1, 2 their respective radius. Under certain simplifications, it leads to the following kinetic
version of Smoluchowski’s equation (cf. Chapter 1, Section 1.5)∂tfm(t, x, v) = −v · ∇xfm + c(m)divv (vfm) + κc(m)2∆vfm +Qm(f, f)

fm|t=0 = f0m(x, v), m = 1, ...,M,

(0.0.29)

where (t, x, v) ∈ [0, T ]× Td × Rd, and

Qm(f, f)(t, x, v) :=

=
m−1∑
n=1

¨
{nw′+(m−n)w=mv}

s(n,m− n)fn(t, x, w
′)fm−n(t, x, w)|w − w′|dwdw′

− 2
M∑
n=1

ˆ
s(n,m)fm(t, x, v)fn(t, x, w)|v − w|dw,

(0.0.30)
where

c(m) := αm(1−d)/d, s(n,m) := (n1/d +m1/d)d−1. (0.0.31)

In Chapter 1, Section 1.5, we sketched the proof of the scaling limit from a coagulating mi-
croscopic particle system subjected to a common noise, to an SPDE that eventually gives
rise to this PDE. Although it is not fully rigorous, it should justify the interest of this equa-
tion. Here again, turbulence contributes to large κ versus small κ when no turbulence.
The eddy diffusion occurs now in the velocity variable.

The aim of our research is two-fold. Theoretically, we are interested in proving the
well-posedness of the PDE and associated SPDE cf. (0.0.8), as well as the passage from
the one to the other. Then, both theoretically and numerically we aim to demonstrate that
the larger the κ, i.e. the more intense is the turbulence, the faster masses coagulate. See
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[31] and Chapter 2 and 3 for a first theoretical and numerical study in this direction. In the
present article, we focus on the PDE system (0.0.29) in the spatially-homogeneous case,
i.e. by considering the initial conditions fm0 constant in x for every m, we can reduce
(0.0.29) to∂tfm(t, v) = c(m)divv (vfm(t, v)) + κc(m)2∆vfm(t, v) +Qm(f, f)(t, v)

fm|t=0 = f0m(v), m = 1, ...,M,

(0.0.32)

where (t, v) ∈ [0, T ]× Rd and Qm(f, f) is as in (0.0.30) but without the x-dependence,
and we prove existence, uniqueness and regularity of the solutions of (0.0.32), for every
fixed κ > 0.

Denote a weighted Lp space

Lpk(R
d) :=

{
f : Rd → R s.t. f ⟨v⟩k ∈ Lp(Rd)

}
, p ∈ [1,∞], k ∈ N, (0.0.33)

where
⟨v⟩ :=

√
1 + |v|2

and a weighted Sobolev space

Hn
k (R

d) :=
{
f ∈ L2

k s.t. ∇ℓf ∈ L2
k(R

d), ∀1 ≤ ℓ ≤ n
}
. (0.0.34)

The main result of this article is as follows.

Theorem 0.0.1. Fix any finite T and κ > 0. Suppose that initial conditions f0m(v) ∈
(L2 ∩ L1

2)(R
d) and nonnegative, for every m = 1, ...,M , then there exists at least one

nonnegative solution in the class L∞ ([0, T ];L1
2(R

d)
)⊗M .

If the initial conditions f0m(v) ∈ (H1
1 ∩ L1

2)(R
d) and nonnegative, then there exists a

unique nonnegative solution, and in this case fm(t) ∈ C∞
b (Rd) for any t > 0.

The most difficult part in our opinion is uniqueness, due mainly to the presence of
|w−w′| in the nonlinear term, and the fact that the velocity variable v ∈ Rd is unbounded,
hence in the presence of Laplacian, fm(t, v) is never compactly supported even if starting
with so. These together with the fact that we have a system rather than just one equation,
cause a severe difficulty in closing a Gronwall inequality for uniqueness. As far as we are
able, the weighted L1 space is the only one in which a Gronwall argument can work, even
if one is willing to assume that solutions are Schwartz functions. (The problem is related
to integrability rather than smoothness.) Indeed, with weighted L1 we can find certain
cancellations that remove those terms with higher weights brought by the kernel, and this
seems not achievable with other spaces such as weighted L2. Equally essential to this
cancellation is considering the sum over the norms of all the densities fm, m = 1, ..,M ,
rather than treating them individually. Indeed, this is already essential to derive various
apriori estimates.

Consider for this the set of equation solved byhm(t, v) := fm(t, v)−gm(t, v), ∀m =
1, ...,M and call Hm(t, v) := fm(t, v) + gm(t, v), where fm, gm are two solution with



24 Introduction

the same initial condition. Then:∂thm(t, v) = ∆hm + div(vhm) + 1
2 (Qm(h,H) +Qm(H,h))

hm|t=0 = 0
(0.0.35)

where we denote

Qm(h,H) :=

m−1∑
n=1

ˆ (m
n

)2
hn(φ(v, w))Hm−n(w)|v − w|dw

− 2

M∑
m=1

hm(v)

ˆ
Hn(w)|v − w|dw,

Qm(H,h) :=

m−1∑
n=1

ˆ (m
n

)2
Hn(φ(v, w))hm−n(w)|v − w|dw

− 2
M∑
m=1

Hm(v)

ˆ
hn(w)|v − w|dw.

We consider now the function ψε(x) an approximation of the function sgn(x) such that

ψε(x) :=


−1, x ≤ −ε
x/ε, −ε < x < ε

1, x ≥ ε

We consider the weight ⟨v⟩2 := 1+|v|2 and thus the functionΨε(hm, v) := ψε(hm) ⟨v⟩2,
multiplying it to the equations (4.2.2) solved by hm,∀m and integrating by part. Defining
also

χε(x) :=

{
1, if |x| < ε

0, otherwise,

we obtain:

∂t

ˆ
hmψε(hm) ⟨v⟩2 dv =

ˆ
(∂thm)ψε(hm) ⟨v⟩2 dv +

1

ε

ˆ
(∂thm)χε(hm)hm ⟨v⟩2 dv

(0.0.36)

This two term can now be computed independently using both the regularity of the solution
and the cancellation property of the sgn function that make possible to discharge the
weight of the non linearity Qm to the function Hm sum of the two solutions, leaving hm,
the difference, untouched, hence, closing the Gronwall lemma and proving uniqueness.

On the other hand, existence is proved by constructing a family of approximating equa-
tions each corresponding to a truncation of the kernel |w−w′| in the nonlinearity. These
approximating problems are more amenable to study since the difficulty related to the
kernel is no longer severe, for each fixed truncation parameter.

When f0m ≥ 0, ∀ m = 1, ..,M , the solution of (4.3.1) is nonnegative and regular
enough and has a fast decay at infinity, then we have for the nonlinear term:

χR(v)

ˆ
fn

(
t, φ(v, w)

)
fm−n(t, w)|v − w|χR(w)dw
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≤
ˆ
fn

(
t, φ(v, w)

)
fm−n(t, w)|v − w|dw

And thus we can recover the same a priori estimate in both the full and approximated
system. Luckily, we can define a map Γ from XT → XT , given by

Γ(f) := P·f
0 +

ˆ ·

0
P·−s(df −QR(f, f))ds, f ∈ XT .

whereXT = C([0, T ],L2) is a suitable functional space in which a semigroup associated
to the following unbounded operator on function defined on Rd:

Lf := ∆f + v · ∇f,

guarantees adequate gain in regularity for the truncated solution, [66]. This, joint with
suitably weighted embedding in Sobolev space, gives us the desired solutions.

There is an unexpected connection to the vast area of Boltzmann equations [86]. Our
(0.0.29) may be viewed as a Boltzmann-type equation with perfectly inelastic collision,
rather than the classical elastic collision. Indeed, it is derived from particles undergoing
pairwise coagulation, hence two particles merge into one based on the principle of con-
servation of momentum (and not energy). It is also local in nature in that the nonlinearity
acts on the velocity variable, per (t, x). The closest works in the Boltzmann literature
seem to be the ones on excited granular media, see [43] and references therein, and on
multi-species Boltzmann equations, see [17] and references therein. In a sense our equa-
tion combines the features of both of them. From a technical point of view, the afore-
mentioned difficulties with uniqueness are also present in [67, 43] and some references
therein, and we have learned from these sources. On the other hand, there are various
differences that set our model apart from these references. Since M < ∞, we do not
have the conservation of mass and momentum, and we do not expect nontrivial stationary
solutions – indeed all fm(t) should decay to zero as t → ∞ (i.e. eventually all masses
are transferred out of the system). In general, our nonlinearity Qm(f, f) does not enjoy
any particular kind of symmetry. Our derivation of the apriori estimates is also quite dif-
ferent, in particular, we need not invoke entropy estimates and Povzner-type inequalities,
as are standard in the Boltzmann literature.
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Chapter 1

Key quantities: two kind of particles

Although clouds play a crucial role in atmospheric phenomena, the effect of turbulence in
cloud formation is not well established up to the present.

Two processes mutually affecting each other characterize the cloud formation and
precipitation development: macro-scale processes such as the fluid motion of air asso-
ciated with clouds and the micro-scale processes such as condensation, stochastic coa-
lescence, and evaporation of water droplets. Thus we can say that cloud formation and
precipitation development are typical multiscale-multiphysics phenomena.

Motivated by the numerical studies for Lagrangian particles, [81], in which the au-
thors propose a novel algorithm to compute the stochastic coalescence of large number
of droplet; and [61], in which the problem of the role of turbulence in the cloud droplet
growth is treated with simulation of density equations in the spirit of Fokker-Planck and
Smoluchowski; we investigate the time of first formation of a raindrop, the rate of colli-
sion and the displacement of mass through time, for the space, time and velocity density
of particles with different masses in a cloud during rain formation, under different turbu-
lent settings and inertial regime, to explore the role of turbulent flow in the aggregation of
small droplets in clouds.

1.1 Introduction

Objective and main interest of this thesis is in the study of transported particles in fluid
flow and the property of collision and mixing of such particles when the flow itself is in a
turbulent regime.

The presence of suspended particles, such as dust, droplets, or ice crystals in natural
fluids like the atmosphere and the sea, affects their behavior. For example, the interaction
of water droplets in clouds, through the absorption of solar and terrestrial radiation, play a
role in the planet’s energy forecast and atmospheric dynamics. Understanding the distri-
bution of particle sizes in suspensions is essential for comprehending these processes.

More so, the stability of suspended particles in large fluid bodies is also significant.
Raindrop formation from the coalescence of microscopic water droplets in clouds is a
central question in cloud microphysics. The formation of planets is similarly dependent
on the collision and coalescence of dust grains in the atmosphere around young stars.
Explaining weather phenomena and the habitability of our planet relies on understanding

27
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the behavior of aerosol suspensions and their susceptibility to collisions.
However, developing a quantitative theory for rain initiation and planet formation en-

counters difficulties. The collision rates of atmospheric aerosol particles, caused by dif-
ferential settling rates or Brownian motion, mostly relies on direct numerical simulations
and appear inadequate to explain the rapid onset of rain or planet formation. Turbulence
offers a possible solution to these problems.

Turbulent motion is a prevalent phenomenon in fluid dynamics, and it is known that
small particles disperse much faster in turbulent environments compared to molecular
diffusion. This suggests that turbulence could significantly enhance collision rates and
play a crucial role in particle coagulation.

Understanding the mechanisms by which turbulence enhances collision rates has made
significant progress in recent years [25, 26, 64, 75, 90], yet a foundational construction of
the quantities at play remains an open question.

1.1.1 Two points of view

To do so we’ll consider two, interconnected, points of view: a Lagrangian and Eulerian
vision of such systems. The first one deal with the understanding of trajectories X(t) of
particles given the velocity field u(t,X(t)) of the flow in which they are embedded. While
the second tries to understand the property of the field, or density, of such particles, as a
continuous function ft(x), given the same velocity field u(t, x).

This two theory can answer different questions: one, in a sense, is more local in nature,
while the other one is more akin to a mean field description and as such are the property
that can be retrieved. Even so, the two methods of study are linked together and one
usually can be derived from the other. A standard example, in this direction, is the motion
of passive scalar in a velocity field subjected to a random noise, i.e.

d

dt
X(t) = u(t,X(t)) +

√
2D0Ẇ (t)

where D0 ∈ R and Ẇ (t) is a white noise. This equation for particles has a natural
counterpart, when considering the mean field limit of such particle system, as an evolution
equation for the continuous field f(t, x), i.e.

∂tf + u · ∇f = D0∆f

More so we have that the law of the particle is indeed a solution of such a system. While
this link is classical and detail can be found in [54], we have presented it here to show how
studying particle trajectories is thus relevant also to understand the transport of fields.

While this example is fundamental in understanding our idea of moving back and forth
between a mean field and a particles description to understand our problem of mixing and
collision, we first need to add some richness in our particles and describe two main regime
of motion, one of which will be the center of this dissertation.

Call ϕp the density of the particles and ϕf the density of the fluid, then we can distin-
guish to behavior:

• ϕp = ϕf : the particles can be approximated as point-like object and move with the
same velocity of the fluid. In this case they are essentially like fluid elements and
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we call them tracer particles. Their equation of motion usually looks like

Ẋ(t) = u(t,X(t)) (:= V (t));

• ϕp ̸= ϕf : the particles are now finite size object and are subjected to inertia and
other external forces that can change the velocity of the particles drastically and
making it no more adherent to the fluid streamline. In this case, kinetic equation
are more suited to describe this inertial particles motion and we have:

Ẋ(t) = V (t), V̇ = F (V (t), u(t,X(t), ϕp, ϕf , ...).

Note that in either case we’ll focus on passive particles, i.e. the velocity field is not modi-
fied by their presence. Since we are interested in coagulating processes, we attach to each
one of them a quantity that represent the massm, which we link to the radius r under the
assumption of each particles to be spherical.

Even with this settled framework, describing the motion of particles in simple flow
configurations is a difficult task. For this reason, the equation of motion are determined
by the simple Stokes’ formula

Ẋ(t) = V (t), V̇ =
1

τp
(u(t,X(t))− V (t)) + g. (1.1.1)

where

τp =
2r2ϕp
9νϕf

,

is the particle relaxation time. This constant is usually determined from the Stokes’ formal
for the drag on a moving sphere. ν is the kinematic viscosity, g is the gravity.

More so, compering the Kolmogorov time τf of the fluid and the typical time of the
particle τp, we obtain a way to quantify the effect of inertia. As such, we define

St :=
τf
τp

the Stokes number for a particle of massmp, where τf is the typical fluid relaxation time,
dependent on its kinetic viscosity an density.

For St << 1 the fluid advect the particles and most of the phenomena are the results
of shear of relative motion. While for St >> 1 the particles are allowed to move freely
relatively to the fluid motion, but still be affected by its velocity, leading to entirely different
phenomena.

Thus, the Stokes number could be regarded as the unique dimensionless parameter
necessary to understand the different physical regime of collision and growth. For this
reason, this quantity would be central in measuring both the inertia and understanding the
collision behavior of suspended particles.

Note that this equations are valid only in the limit when the suspended particles are
small and dense, i.e. ϕp/ϕf >> 1. When the opposite happens the history forces became
important and the model must be changed. For this reason we focus on framework in
which the reduce model of Stokes’ formula holds.
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1.1.2 Effect of turbulence: key quantities

Now that we have the ideas on how to model particles motion and densities evolution, to
understand the processes that lead to the formation and growth of raindrops, we need to
discuss few mathematical objects that can characterize such dynamics: the coagulation
rate and the time of raindrop formation.

In the atmosphere, raindrops originate from tiny suspended particles called cloud
droplets, which undergo a complex series of interactions and transformations to become
precipitation. One key process involved in this transformation is coagulation, which refers
to the collision and subsequent merging of cloud droplets to form larger raindrops. As
cloud droplets collide and coalesce, they combine their volumes and increase in size, even-
tually reaching a critical threshold at which they become large enough to overcome the air
resistance and fall as rain.

Understanding the coagulation rate, or the rate at which cloud droplets coalesce and
the time of formation of particles, is essential for predicting the growth and intensity of
rainfall events, as well as for improving weather forecasting models.

Coagulation rate

In principle, defining the concept of collision rate appears as a straightforward exercise
in gas-kinetic theory, but in reality it is a complex problem concerning the number active
variables and the complex dynamic of the system.

Imagining the particle as sphere-like objects, we can describe the rate of collection
for droplets moving in a flow, as in [25], by the collection kernel of two colliding particles

Γ = 4πR2|vr1 − vr2 |E(r1, r2),

where R is the sum of the droplets radii of the colliding pair r1 and r2 , vr1 and vr2 are
the velocity of each droplet, and E is the collection efficiency, which is the product of
the collision efficiencies and two-point correlation function. This general formulation is
deduced considering the rate at which the separation line between the center of mass of
the two particles cross a disk of radiusR, making the kernel proportional to the area of the
spherical surface swept in a unit of time, hence the proportionality on the relative velocity
of the particles.

In the classical theory, [87], reducing the active variable only to the mass m of the
particles, we expect the collision rate R to be a function of just m, with a dimension
of [R] = T−1, to be dependent on the collision kernel of two single droplet, where the
relative velocity of the pair |vr1 − vr2 | is approximated as a function of the radii, and
proportional to the number density fm of particles in the suspension.

In the discrete setting of masses being indexed by N, we then obtain the classical rate
of collision

Rm :=

∞∑
n=1

Γ(m,n)fn (1.1.2)

where fn is obtain again as the mean field solution from the particle system 1.1.1, and is
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the classical solution of the Smoluchowski equation [83] with kernel Γ

∂

∂t
fm =

m−1∑
n=1

Γ(n,m− n)fnfm−n − 2
∞∑
n=1

Γ(m,n)fmfn, m ∈ N

In this setting, usually, Γ is obtained a priori with direct numerical simulation on particles
moving into fluid, or with physical reasoning of dimensional analysis, in order to reduce
the kernel to be a function of mass only. See [2, 81] and references therein for further
details. In analogy to the passive scalar example, this equation is obtained with different
degree of idealization, for this reason the Smoluchowski ODE framework, which employs
a mean-field approximation, has several limitations.

When particles grow in size, such as droplets in a cloud, the collision rate escalates
rapidly, leading to runaway growth observed in raindrop formation, known as gelation in
polymer physics. Surprisingly, modeling gelation with the Smoluchowski equation sug-
gests an instantaneous transition with zero time required, which is physically unrealis-
tic. Consequently, this mean-field descriptions based on the classical Smoluchowski ap-
proach is not enough to obtain a rigorous construction of the collision rate [75].

To solve this issue, extensive physical literature has been produced [90, 89, 75, 10,
11, 26, 25], in which derivations of coagulation rate, analogous to 1.1.2, are obtained via
direct numerical simulation (DNS) or thorough the analysis of Lyapunov exponent of the
dynamical system of particles [65].

From Saffman and Turner [78], to Falkovich [26], the main concept is that the colli-
sion rate can be divided into two independent components in first approximation. Some
collisions occur when particles follow similar trajectories for an extended period and even-
tually come into contact due to shearing motion in the flow. This mechanism is dominant
at low Stokes numbers, or more generally for tracer trajectories, when particles precisely
follow the flow. The collision rate resulting from this mechanism depends on the local
shear rate and the local particle concentration. On the other hand, collisions between par-
ticles that deviate from the fluid path lines and the turbulence at small scale, contribute
differently, contributing not only as a ”rate of strain”. A significant difference between the
two contributions lies in their dependence on the typical time of a the particle τp and the
relation with the Kolmogorov response τf . These mechanisms operate independently, and
their contributions can be combined additively.

For this reason, we focus our work on the construction of an effective and rigorous
theory for Rturb, when the folding of the flow line and the inertia of the particles became
meaningful in the interplay of the collision process. In doing so, under the hypothesis of
a turbulent velocity field, we construct a time evolution for the density of particles fm(ξ)
where ξ represent the active variables of the system, containing both position and velocity.
Hence, defining our key quantity

Rturb =
∞∑
m=1

ˆ
Γ(ξ, ξ)fm(ξ) dξ,

explained in detail in Section 1.4, for which we prove in Chapter 2 and 3 the derivation of
the typical coagulation rate as in [1, 64].
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Time to rainfall

Rainfall often starts suddenly from cumulus clouds, which form when the atmosphere is
convecting. In contrast, rainfall from stratiform clouds in a stable atmosphere has a much
slower onset. Interestingly, this can occur even when none of the cloud’s parts are below
freezing point. The disparity between convecting and stable clouds is believed to stem
from the fact that convection generates small-scale turbulent motion. This turbulence
facilitates the merging of microscopic water droplets (referred to as ”visible moisture”)
into raindrops.

The concept of convective clouds aiding in raindrop formation has a long history, with
[78] being a significant contribution that includes references to earlier works. However, a
comprehensive theory explaining this phenomenon has proven elusive, making it a subject
of extensive ongoing research as recently reviewed in [80].

In this direction we study in Section 1.2 and Chapter 2 the time of formation of rain
drop, declined as a loss of total mass in the truncated density evolution of particles with
masses m = 1, ...,M , representing the typical raindrop mass.

τ(f·) := inf{t ≥ 0 |
M∑
i=1

ˆ
fi(t, ξ)dξ ≤ M0},

where M0 is a reference threshold and ξ are the set of active variables for the particles’
density. The relation to the small scale turbulence, derived in Chapter 2, propose a prime
example of dependence between the turbulence parameter of the fluid and the rain shower
initialization.

1.2 Tracer particles: a simple numerical study

Even though our goal is to understand the theoretical formulation of collision rate for iner-
tial particles in a turbulent fluid, from particle system to a PDE formulation of the problem,
we start our journey a little far back.

We first consider a system of tracer particles in a turbulent fluid, i.e. ϕp ≡ ϕf . For this
system theoretical results on the limiting equation of the density and the structure of the
collision rate due to the advection of the fluid, in the case of probabilistic rate of collision,
are derived in [37] and Appendix A.

In this section we propose, as a motivating example, a small numerical study on the
time of coagulation of tracer particles subjected to two different velocity field modelling
a fluid in which they are embedded.

In the first case we suppose that the field act independently on each particle akin to a
Brownian motion, while in the second case we propose a modelling of the fluid in which the
particles are embedded motivated by works of Majda [63], Flandoli and his collaborator
[32, 34, 33].

The reason for such experiments is to understand the effect of turbulence on the co-
agulation of particles in the simplified context of tracer particles with a hard sphere col-
lision, i.e. collision happens as soon as there is a contact between particles, motivating
the study of a rigours theoretical definition, via density function, of the coagulation rate,
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other meaningful quantities or, alternatively, the direction in which a suitable system can
be constructed to investigate the aformationed properties.

1.2.1 Numerical Simulation: First Time Rain Generation

We focus our study on the behavior of the first formation time of a raindrop in cloud, i.e.

τf := inf{t ≥ 0|∃i ∈ Nt, R
i
t >= Rrd}, (1.2.1)

whereRit is the radius of the i− th particle at time t andRrd := 4 · 10−4 is the radius of
the typical raindrop in our simulation. While Nt are the surviving particles at time t, with
Nt ≤ N .

Main result of this computation is the production of decay estimates, numerical and
theoretical, in the formation time of droplet respect to the different turbulence parameter
identified in the modelling of the fluid.

The complete setting we are going to consider for our tracer particles is the following

dXi
t = εrf

∑
k∈K

σk(X
i
t)ξ

k
t dt+ εbmσdB

i
t, (1.2.2)

for i = 1, ...,Nt, N0 = N ∈ N, σ ∈ R, simulated with an Euler-Maruyama scheme.
The parameter εbm, εrf ∈ {0, 1} select the setting in which we investigate the for-

mation time τf : a pure Brownian case or a random field driving the particles.
The domain in which we have done our simulation is the due dimensional torus T2 =

[−2, 2]2/ ∼, adimensional, with periodic condition on the border. The intuition is to rep-
resent a zoom in inside the cloud and we assume that as the particles move they are
replaced with probability one with particles of almost the same size.

Concerning the random velocity field in which the particles moves, it is defined as the
stochastic process U (t, x) with the following form

U (t, x) =
∑
k∈K

σk (x) ξ
k
t (1.2.3)

σk (x) =
1

2π

(x− xk)
⊥

|x− xk|2
, (a, b)⊥ = (b,−a)

where points xk are fixed and selected with a uniform distribution over the considered
domain. This choice represent small vortex patch akin to the vorticity of the turbulent
flow in which the droplet are submerged, [33]. We regularize the field with the following:
σk(xk) = 0.

The real-valued stochastic processes ξkt are Ornstein-Uhlenbech that satisfy:

dξkt = −λξkt dt+ λdBk
t , ξk0 = 0, k = 1, ...,K.

which we have also simulated with an Eulero-Murayama scheme and used the result to
compute 1.2.2.

To every particle Xi we associate a volume and, assuming as usual the raindrops to
be spherical, we represent the radius and the volume in a bijection, i.e.

∀i = 1, ..., N, V i
t ∼ 4

3
π(Rit)

3.



34 CHAPTER 1. KEY QUANTITIES: TWO KIND OF PARTICLES

The initial condition of the particle, Xi
0, are sampled from a uniform distribution over the

domain, while the initial volumes V i
0 > 0 are selected uniformly in the range of large

droplet ∼ [10−5, 10−4].

On the rule of collision

Two real-droplets may collide and coalesce completely into one big real-droplet and this
process is responsible for precipitation development.

Even though the coalescence process can be described in a probabilistic way, here we
simplify our model and we put ourself in a setting of deterministic hard sphere: what we
expect is that our V i,N

t , of the i − th particle, changes not in a continuous way, but with
jumps proportional to the particle that i interact with.

Meaning that, when two particle interact with each other, they merge into one single
particle. So that the volume of a particle increase only when collide with other rain droplets
in a linear way. To state it clearly this is how our coalescence works:

1. Let xi, i = 1, ..., N the particles of the system, and denote Ri their radius;

2. For every couple (i, j) such that |xi − xj | ≤ Ri +Rj the coalescence happens in
the following way:

• If V i,N
t ≥ V j,N

t then

– V i,N
t = V i,N

t + V j,N
t ;

– V j,N
t = 0 and the particle j is removed from the system.

• Vice versa if V j,N
t > V i,N

t .

At last, concerning the number of particles, we performed our simulation with N =
103. Finding the right time step was challenging, since the position of the particle is dis-
crete and as such we could lose interaction between particle in the motion of the rain
droplets, causing numerical error and inconsistency in the behaviour of the formation
time. After few trials we set our parameter ∆t = 10−4 to have a second order error
and a control on the collision.

1.2.2 Pure Brownian Movement

In this small section we analyze the particle system under the action of independent Brow-
nian motion attached to the droplets. We set εrf = 0, εbm = 1 in 1.2.2 and we reduce
the model to the motion equation given by:

dXi
t = σdBi

t,

where Xi
0 are drawn from a uniform distribution over T2 and σ ∈ R.

The radius of the particles are selected in such a way that a raindrop is created as
soon as the value it the threshold

Rit ∼ 4 · 10−4,
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and the radius Ri0 of the starting volume of the rain droplets are drawn from a uniform
distribution between values 10−5 and 10−4 smaller than a real raindrop.

We wan to analyze the formation time τf dependent on the intensity σ of the indepen-
dent Brownian motions. To do so, for each parameter, we have simulated 200 times the
particle system, collecting the time formation in a time series from which we extract the
mean time. In detail we have, calling Nr the number of repetition, T if the formation time
of the i− th simulation, the following:

Nr = 200, Tmean = E[Tf ] ∼
1

Nr

Nr∑
i=1

T if ,∀σ ∈ Σ.

Where Σ := {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, is a partition of the reasonable
interval, [0, 1], for the intensity of a realistic Brownian motion.

We selected dt ∼ 10−4 through the simulations.

A simplified theoretical reasoning

Before showing the numerical result, we show a theoretical reasoning on a simplified
model that can explain the expected result in such a model.
Let us consider two particles moving subjected to independent Brownian motion with dif-
ferent initial condition: σW 1

t + x1, σW 2
t + x2 on the unitary Torus.

Call x0 = x1 − x2 and define the random time

τσ,x0 := inf{t ≥ 0 : |σW 1
t − σW 2

t + x0| ≤ ε}

which is linked to our formation time, since coalescence happens when two raindrops are
near depending on a set threshold.
Then we ask the question: how σ impact the collision time of particles?
This quantity cannot be independent from σ, indeed call Bt = W 1

t −W 2
t , this is a new

Brownian motion, with intensity dependent from the dimension (but fixed), so without loss
of generality we fixed it at 1.
Thus we consider the quantity τσ,x0 :

τσ,x0 : = inf{t ≥ 0 : |σBt + x0| ≤ ε}
= inf{t ≥ 0 : |σBσ2t/σ2 + x0| ≤ ε}
= inf{t ≥ 0 : |Wσ2t + x0| ≤ ε}
= τ1,x0/σ

2.

Here we have used the auto-similarity of the Brownian motion.
What we recover is that there is an inverse quadratic dependence of the formation time
with the intensity of the Brownian motion moving the particles. That we can express in a
compact form as

E [τσ,x0 ] ∼ σ−2.
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Results on Regression

Let’s start showing the result table 1.1 of the mean formation time and the standard de-
viation, in dependence of Brownian intensity σ ∈ Σ, of the simulated system. Note that
we express the result in iteration, to obtain the simulation’s time we need to multiply the
epoch with the time step ∆t.

Following the theoretical background, not only we expect that at the increase of the
fluctuation our formation time decrease, but we also expect to find a quadratic inverse
dependence with the intensity of the diffusion, i.e.

E [τf (σ)] ∼ σ−2,

where we have highlighted the dependence on σ for τf .
As we can see from the table, there is a significance decay in the mean time as the

intensity grows, and, as expected, the standard deviation became smaller.

Brownian intensity Mean time (×∆t) Standard Deviation (×∆t)
1 636 114.9043

0.9 641.4 119.8025
0.8 691.5 93.29014
0.7 734.9 170.0514
0.6 808 165.7607
0.5 917.6 234.5115
0.4 1086.9 312.3816
0.3 1569.8 260.9294
0.2 2896.5 387.9338;
0.1 4567 434.2

Table 1.1: Brownian diffusion coefficient and the respective mean time of formation

In fact, as σ grows the initial condition of the system became less and less important
for the mean formation time, as we can see as the standard deviation decrease as σ
increases.

To understand the decay we proceed our analysis with a quadratic and logarithmic
regression on the model. In Figure 1.1 we can see plotted, (a), the decay of mean formation
time that shows the time decay in dependence with the increase in σ, intensity of the
Brownian motions. We can appreciate the stabilization of the randomness in the standard
deviation, plotted as black bar in figure.

First, we performed a quadratic regression, for which we show the results in Figure
1.1 (b) as a Lin-Log plot respect τ−1

f . We can already notice how the behavior of the
numerical data, interpolated in red, fit the regression line in blue and the most significant
error are in the very small regime of σ ∼ 0.1, since the particle are almost still in their
motion and the dependence from the randomly generated data is stronger. The regression
show a residual plot without any particular structure, with a residual standard error equal
to 0.5232, the explained variance, or R-square, equal to 0.992 and a summary that agrees
with our conjecture on the quadratic decreasing of time respect to the intensity of the
noise with a p-value < 10−8.
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Figure 1.1: On the x-axis the Brownian intensity σ2, on the yaxis τ−1
f . From top to bottom:

(a) Plot of Brownian Intensity/Formation time that shows the time decay in dependence
with increase in σ, intensity; (b) Linear-log plot: quadratic regression, in red the interpo-
lated numerical data and in blue the regression curve;(c) log-log plot: logarithmic regres-
sion, in red the interpolated numerical data and in blue the regression curve with slope 1.
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To validate our results, we concluded the analysis with a logarithmic regression to
capture lower order power and fluctuation in the intensity dependence of the exit time.
The results in Figure 1.1 (c) confirm how the behavior of the numerical data, interpolated
in red, fit the regression line, in blue, in accordance to the quadratic regression. Small
fluctuations around the regression line can be appreciated, showing lower order depen-
dencies on the intensity, but the residual plot showing no structures with a standard error
of 0.1, an R-squared equal to 0.979 and a p-value < 10−8, agrees with the hypothesis

E[τσf ] ∼ σ−2.

Thus, at the level of tracer particles with an hard collision rule of coagulation, we observe
a decrease in the time needed to obtain formation of larger particles quadratically propor-
tional to the parameter of the noise driving the particles.

Even though this first simple example is not in itself fundamental, is a primer example
of the phenomenon we are trying to understand in this work: an increase in turbulence or
temperature can, in principle, increase the coagulation of particles moving in a field.

1.2.3 Random Field Movement

Motivated by the reasonable result of the previous section, and expecting that the mod-
elling of the velocity field U(t, x) defined in 1.2.3, as shown in [35, 33], is close to a Brow-
nian motion with a precise variance acting on the particles.

A such, in this section we are going to analyze the particle system under the action of
this velocity random field to see if a scaling on the parameters of this noisy fluid velocity
can be found. We considered the system 1.2.2, with εbm = 0, εrf = 1, for the position
of the particles

dXi
t =

∑
k∈K

σk(X
i
t)ξ

k
t dt

where Xi
0 are drawn from a uniform distribution over T2 and K ∈ R.

We recall that the velocity random field in which the particles moves, it is defined as
the stochastic process U (t, x)

U (t, x) =
∑
k∈K

σk (x) ξ
k
t

σk (x) =
1

2π

(x− xk)
⊥

|x− xk|2
, (a, b)⊥ = (b,−a)

where points xk are fixed and selected with a uniform distribution over the considered
domain. The real-valued stochastic processes ξkt are Ornstein-Uhlenbeck that satisfy:

dξkt = −λξkt dt+ λdBk
t , ξk0 = 0, k = 1, ...,K.

with λ ∈ R that represents, withK , the two investigated parameters for the turbulent fluid
velocity.
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A theoretical conjecture

Before moving to the numerical results, we briefly illustrate a theoretical conjecture on
what we expect to find in the next section when we are assuming a hard collision regime
on the particles. Following the idea from [35, 34, 33] in which a fluid dynamical equations
with a transport noise of the form 1.2.3 converges to deterministic viscous equations such
that the viscosity is enhanced by the turbulent random field.

For this reason, since the instantaneous hard collision does not have a direct interpre-
tation as a rate in the Smoluchowski, we approximate the density of our particle system
withe the associated Fokker-Planck equation (see Appendix A)

∂tρt +
∑
k∈K

(σk(x, v) · ∇xρt) ξt = 0

Under suitable assumption we apply the Galeati limit and the solution of such coagulation
PDE is close to the solution of the linear Fokker-Plank associated to the Brownian system,
i.e.

∂tρt +
κ2

2
∆ρt = 0

where κ := κ(K,λ) depends on the parameters of the system in study.
We expect that, albeit less impactful than independent Brownian motion attach to each

particles, the first exit time depends on the random field parameters again as an inverse
power

E [τf (κ)] ∼ p(κ)−1

where p(κ) is a polynomial at most of degree 2.

Figure 1.2: Snapshot of particle system dynamics: we can observe the cluster formation
obtained from the presence of the vortex. We expect that such cluster, and the random-
ness of the Ornstein–Uhlenbeck process, are the reason for the decrease in time of rain
formation.
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1.2.4 Random Field Analysis: Non-Linear Regression

We divide the analysis in two main parts. We start fixing the intensity of the Ornstein-
Uhlembeck processes and varying the number of vortex in the cloud; later we fix the vortex
number and move the intensity of the environmental stochastic processes.

Following the previous reasoning we expect that our formation time depend with at
most a square inverse power with the number of vortex and intensity of the random pro-
cesses

E [τf (|K|, λ)] ∼ p(|K|, λ)−1,

where we have highlighted the dependence on the parameter, where for |K| we intend the
cardinality of K.

From the theoretical conjecture in the previous subsection, we expect that as vortex
increase, so does linearly the covariance matrix of the noise, resulting in a square decay
for the exit time τf . While λ model the temporal structure of the phenomena, thus we
expect that the effect is smaller on the vector fields σk with a inverse decay trend ∼

√
λ.

Fixed intensity λ

We analyze here the case in which the intensity of the noise is fixed, to a high value, and
the number of vortex in the field changes. We’ll see, as claimed at the start of the section
that the decay is visible when we increase the number of vortex patches σj interacting
with the particles. We show here regression that support the conjecture of a polynomial
decay of order 2 respect the variable |K|.

Figure 1.3: Left: table of time decay as vortex number increase and as such the number of
vortex in the system grows. Mean time and Standard deviation decays accordingly to the
growth of |K|, number of vortex patches; Right: The black line represent the mean time
varying the number of vortex, while the red strip are the upper bound and lower bound of
the standard deviation.

We note that the initial condition produce a very fluctuating system when the vortex
number is small and the particles moves very slowly. This is expected, since the collision
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are reduced and the random initial condition became dominant in the system. This is
shown in the high variance that decreases as soon as the vortex number increase.

In the simulations we fixed λ = 1500, the reason is twofold: first, using the formula-
tion of the Ornstein-Uhlembeck process ξλt , at the increase of the intensity we converge
closely to a Wong-Zakai type of result, hence recovering a fluctuating white noise with
correlation in space due to the vortex patches σk, k ∈ K. Second, this guaranties us
that the particles moves with sufficient high enough speed, making sure that collisions
of droplet can be observed outside of the first time iteration in which the initial condition
dominates.

In Figure 1.3 we see the decay in the exit time τf at the increase of the vortex patches
|K|, suggesting as expected from theory. We performed a quadratic regression from
which the residual plot showed no sign of structure. The analysis show a great adher-
ence of the data to the regression, with an explained variance of ∼ 0.98, a residual error
of 0.1 and a global p-value ∼ 10−7 that suggest that our hypothesis on the decay is valid.

To conclude and validate further our conjecture, in Figure 1.4 (Right), we perform
a logarithmic regression. The analysis is consistent with the quadratic regression per-
formed and showed a good R-squared value of 0.98. No significant structures were found
in the residual plot and the value of the regression supported our hypothesis of a quadratic
decay in the time, with small fluctuation due to the randomness of the initial condition that
stabilize at higher vortex number.

Figure 1.4: On the x-axis the number of vortex at intensity λ = 1500, on the y-axis τ−1
f

and τf respectively. Left: Lin-Log plot of quadratic regression with fixed intensity and
varying vortex number; Right: Log-Log plot for Logarithmic regression with fixed intensity
and varying vortex number with slope ∼ −1.

Fixed Vortex patches |K|

We analyze, now, the case in which the number of vortex patches is fixed, while the inten-
sity of the Ornstein-Uhlembeck, defining the temporal structure of the random field, can
change freely. Performing statistical analysis, even with few sample, We’ll see as expected
due to the less effect of the time structure, that tend to delay the coagulation, a decay in
the exit time τf respect to λ, but with a degree less than 2.
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Figure 1.5: On the x-axis λ at fixed vortex number 200, on the y-axis τf and τ−1
f respec-

tively. Left: numerical plot of mean time with standard deviation. It is shown a decay in
time when the intensity increase, with also a decrease in the standard deviation; Right:
Lin-Log plot quadratic regression of mean time with varying λ, fixed vortex number, show-
ing a different behavior.

We fix the number of vortex patches |K| = 200, the choice is made arbitrary after few
trial, to obtain a fast coagulating system for the required simulation to be made even with
very slow random field intensity. More so, the selected number of vortex patches already
showed a nice decay in time, as seen in previous section.

In Figure 1.5 right, we performed a quadratic regression, showed in lin-log plot. The
residual error was higher, of order 2.7 and the explained variance was overall less than
0.83, even with high intensity parameter that should make coagulation faster. Even though,
as showed in Figure 1.5 left, that the decay in time is present at the increase of λ, the
regression suggested as expected from the intuition, that the influence of the intensity in
the time structure is less strong than the number of vortex-like structures in the random
field in producing coagulation.

The analysis show a less degree of understanding of the data, and while R-squared
is still relatively high, we expect that power of lower order describe the decay curves in
a more robust way. To see if a regression with lower power of the parameters can ex-
plains better the decay of time formation we performed a logarithmic regression, plotted
in Figure 1.6. From the analysis we see that more structure is captured when this type of
dependence is conjectured. In fact no bound on the decay exponent is present and as such
the analysis is more flexible. In particular the explained variance is around 0.91, while the
error is reasonable of order 0.1 and intercept ∼ 1, suggesting that a non linear regression
of the form ∼ a/(1 + b · λ) is the right expected decay for the time as a function of the
intensity parameter.

Lastly, to pursue this idea and get a more precise estimation on the behaviour of the
first formation time τf (λ), with fixed number of vortex patches, we performed a non linear
regression on a more refined sample of intensity. We iterate the system for intensity λ ∈
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Figure 1.6: On the x-axis λ at fixed vortex number 200, on the y-axis τf . Logarithmic
Regression: Log-Log plot regression mean time with varying λ, fixed vortex number.

[100, 1100] with a step of order 10.
After the logarithmic regression, we expect a dependence on the parameter of the

form ∼ a
(1+bλ) . For this reason we set ain = 0.08, bin = 0.048 starting parameter,

selected from the value at λ0 = 100 and the logarithmic regression, and we perform a
hyperbolic non linear regression shown in Figure 1.7 left.

We arrive at convergence with value a = 0.06, b = 0.001. with residual error equal
to 0.0029 and a correlation with the numerical data equal to 0.79. More so the achieved
tolerance of convergence is of order 10−6. As we see in Figure 1.7 right, no structure is
present in the residual plot and the decay is captured by the regression curve.

In conclusion, all this analysis suggest that when the intensity of the process ξλt in-
crease we have a decay in the exit time τf , but since the noise interact only in the time
structure the decay has lower degree, slowing the global behavior of τf respect to the
classical brownian case.

1.2.5 Conclusion and expected results

In conclusion, our numerical toy experiments, performed on a particle system subjected
to two random field approximating a fluid flow, have provided us valuable insights into the
relationship between coagulation dynamic and turbulence of the velocity field. Through
our investigation, we have discovered that turbulence plays a significant role in influencing
the coagulation process, ultimately accelerating the collision time necessary to obtain
larger particles.

The downside of this approach, other then not being perfectly comparable with phys-
ical data, is that the setting of instantaneous coalescence present a unique challenge in
studying the probability density function (PDF) of the particles. Since objective of the the-
sis is to produce a theoretical framework for the coagulating process of particle in fluid,
we had to approximate our process and pass to a probabilistic rate in the coagulating
dynamics.

A such, in the next section, given the difficulty associated with analyzing the PDF in
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Figure 1.7: Left:Non-linear Regression for moving λ and fixed vortex. Expected decay as
∼ λ−1; Right: Residual plot. There is no presence of structure in the residual.

such cases, we directed our focus towards a scaling limit approach. By recovering the
standard Smoluchowski diffusion equation, we could test, numerically, on the solution of
our continuous density a more comprehensive understanding of coagulation dynamics.
This approach allows us to gain a deeper insight into the behavior of particles and their
interactions, shedding light on the underlying mechanisms that govern coagulation pro-
cesses, more so, finding what does not work in the standard modelling of tracer particles
and how to pass to kinetic system.

1.3 A negative result and a new paradigm

In this section, we present a significant finding that challenges the applicability of the PDF
framework for tracer particles in turbulent fluid.

Specifically, we demonstrate numerically that the turbulent fluid does not contribute to
an improved coagulation process at the level of the spatial-volumetric density, even when
the numeric in the hard collision framework show otherwise. The reason must be traced
back to the derivation of the coagulation rate in the classical Smoluchowski equation: in
fact, without prior modifications based on physical reasoning, it remains unaltered in the
limiting Fokker Plank equation, thus going against intuition and experiments that turbulent
fluid helps in the realization of an enhanced coagulation.

1.3.1 Smoluchowski equation with diffusion

Starting from the seminal work of Smoluchowski [83] and Aldous [2] a lot of interest has
been posed to the description of density function in coagulating processes.

In this direction, one of the main results was provided by Hammond and his collab-
orator [46, 48, 47], extending rigorously the Smoluchowski equation to a PDE with space
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variable, as a scaling limit of a particle system undergoing pairwise coagulation (with an
apriori rate, dependent only on the masses).

In particular, they provided a model of time evolution probability distribution {fm(t, x)}∞m=1

of diffusing particles of different sizes m ∈ N. Particles undergo pairwise coagulation
with coagulation rate α(m,n), and their resulting equation could be read as follows

∂tfm(t, x) =κ∆fm(t, x) +
m−1∑
n=1

α(n,m− n)fn(t, x)fm−n(t, x)

−2

∞∑
n=1

α(m,n)fm(t, x)fn(t, x), t > 0, x ∈ Td, m ∈ N.

In this setting, particle are moved independently subjected to Brownian motions. Indeed,
this is not enough to understand the behavior of particle moving into a fluid velocity flow.

In [30], Flandoli and Huang, proposed a new model in which particles advected by
fluids may coagulate upon spending time near each other. At particle level, motivated
from works of Boussinesq [15] and Majda [63], the influence of a large-scale turbulent
flow is modelled as a common transport noise:

Ẇ(t, x) =
∑
k∈K

σk(x)Ẇ
k
t (1.3.1)

a white noise in time with non trivial spatial covariance where {σk(x)}k∈K countable
divergence-free smooth vector fields, {W k

t }k∈K independent 1-d Brownian motions. We
define the covariance matrix Q(x, x) :=

∑
k∈K σk(x) ⊗ σk(x) derived by easy compu-

tation on the transport-type noise.
Under suitable and natural choice {σk}k∈K , i.e Kraichanan type covariance [33, 58],

we have Q(x, x) ≡ κId, for enhanced diffusion coefficient κ > 0 (see Chapter 2, and
[35] with reference therein).

Remark 1.3.1. As a remark, we note that this noise is akin to the one studied in Section
1.2. In fact, consider k ∈ K and ξkλt Ornstein Ulhembeck satisfying the SDE

dξk,λt = −λξk,λt dt+ λdBk
t , t ≥ 0, λ > 0,

withBk
t one dimensional Brownian motion defined on a probability space in the usual way.

We define a correlated in time and space environmental noise∑
k

σk (x,m) ξkt dt

Then in the limit for high λ, the two environmental noise, the one defined in 1.3.1 and in
Section 1.2, are close thanks to Wang-Zakai’ theorem, implying that

ξk,λt →λ→∞ W k
t ,

with W k
t one dimensional Brownian motion.
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Using technique from [48], Ito-Stratonovich corrector and the Tanaka trick, from parti-
cle system interacting as in Appendix A, a limiting SPDE form of Smoluchowski equation
is obtained

dfm(t, x) =∆fm(t, x)dt+

m−1∑
n=1

α(n,m− n)fn(t, x)fm−n(t, x)dt (1.3.2)

−2
∞∑
n=1

α(m,n)fm(t, x)fn(t, x)dt−
∑
k∈K

∇fm(t, x) · σk(x) dW k
t

+ div (Q(x, x)∇fm(t, x)) , m ∈ N

Considering a suitable formulation of the environmental noise and performing a Galeati
limit, a Smoluchowski diffusion equation, akin to the one proposed in [48, 46] is obtained,
but the effect of the turbulent fluid has produced a turbulent enhancement represented by
the second order elliptic operator preserved in the limit, i.e.

dfm(t, x) =∆fm(t, x)dt+
m−1∑
n=1

α(n,m− n)fn(t, x)fm−n(t, x)dt (1.3.3)

−2

∞∑
n=1

α(m,n)fm(t, x)fn(t, x)dt+ div (Q(x, x)∇fm(t, x)) , m ∈ N

This is the main object of study of this section. We use this equation, with a con-
stant rate of coagulation, to see if improvement in the mass displacement is obtained in
dependence of the turbulence operator

div (Q(x, x)∇fm(t, x))

that we reduce to the form κ∆fm(t, x), when Q is of Kraichnan type.

A digression on the theoretical selection of the noise

As a remark, before stating the results, in the same spirit as [31, 32, 39], we explore more
in detail some property of the environmental noise that we use to rpoduce the limiting
equation.

Following the works on modeling of passive scalars [58], when considering the scaling
limit of 1.3.2 to the Smoluchowski equation with diffusion 1.3.3, we consider a model of
noise in the fluid which is delta-correlated in time, namely a white noise with a precise
space dependence.

W (t,x) dt =
∑
k∈K

σk (x) dB
k
t (1.3.4)

where (σk (x))k is a family of smooth divergence free vector fields on the domain of the
equation, and Bk

t are independent one-dimensional Brownian motions; K is, usually, a
finite index set, but with suitable assumption we could consider also the case of countable
family of smooth fields.
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In this case, the term W (t,x) · ∇fm (t,x) obtained in the convergence result of the
particle system empirical measure, must be interpreted as a Stratonovich integral∑

k∈K
σk (x) · ∇fm (t,x) ◦ dW k

t . (1.3.5)

Assume that the solution is sufficiently smooth so that the Stratonovich integral makes
sense, then this is given by an Itô-Stratonovich corrector plus an Itô integral; precisely, is
given by:

−1

2

∑
k∈K

σk (x) · ∇ (σk (x) · ∇fm (t,x)) dt+ dM (t,x)

where M (t,x) is a (local) martingale. Follows that the Itô-Stratonovich corrector takes
the form of an elliptic operator:

−1

2
div (Q (x,x)∇fm (t,x)) dt

where Q (x,y) is the space-covariance function of the noise

Q (x,y) =
∑
k∈K

σk (x)⊗ σk (y) .

As an example, we take the noise [58], which is relevant to numerical investigation, e.g. in
the choice of the divergence-free field in the point vortex model for fluid [40]. For simplicity,
assume the domain to be R2, but modifications on T2 are possible, see for example [35,
33].

Its covariance function is space-homogeneous, i.e. Q (x,y) = Q (x− y), with the
form

Q (z) = νkζ0

ˆ
k0≤|k|<k1

1

|k|d+ζ
eik·z

(
I − k⊗ k

|k|2

)
dk.

The famous Kolmogorov 41 case follows if we take ζ = 4/3. Taking k1 = +∞, then
Q (0) = Kσ2 where the constant K is given by

K =

ˆ
1≤|k|<∞

1

|k|d+ζ

(
I − k⊗ k

|k|2

)
dk .

We consider small-scale turbulent velocity fields depending on a scaling parameter and
taking the scaling limit in 1.3.2, as in [33, 42]. In the case of [58] we have

k0 = kN0 → ∞

The result Q (0) = Kν is independent of N , so that the Itô-Stratonovich corrector be-
comes equal to

ν∆fm,t (x) ,

and simultaneously, we may have that the Itô term goes to zero, hence recovering 1.3.3.
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Let us sketch the argument which explains why the Itô term may go to zero, in spite
of the convergence to a finite non-zero limit of the Itô-Stratonovich corrector. Let ϕ be a
smooth test function. One has

E

(∑
k∈K

ˆ T

0
⟨σk · ∇fm,t, ϕ⟩L2 dB

k
t

)2
 = E

[∑
k∈K

ˆ T

0
⟨σk · ∇fm,t, ϕ⟩2L2 dt

]

by the isometry formula of Itô integrals,

= E

[∑
k∈K

ˆ T

0
⟨fm,t, σk · ∇ϕ⟩2L2 dt

]

since div σk = 0,

= E

[ˆ T

0

ˆ ˆ ∑
k∈K

σk (x) · ∇ϕ (x)σk (y) · ∇ϕ (y) fm (t, x) fm (t, y) dxdydt

]

= E

[ˆ T

0

ˆ ˆ
∇ϕ (y)T · Q (x, y) · ∇ϕ (x) fm (t, x) fm (t, y) dxdydt

]
= E
ˆ T

0
⟨Qθt, θt⟩L2 dt

where is the linear operator on vector fields with kernelQ (x, y) and θt (x) = ∇ϕ (x) fm (t, x),

≤ ∥Q∥L2→L2 E
ˆ T

0
∥θt∥2L2 dt.

Now, one can prove uniform bounds on E
´ T
0 ∥θt∥2L2 dt with respect to the scaling of

the noise and one can choose a noise such that ∥Q∥L2→L2 goes to zero. Notice that
in the Itô-Stratonovich corrector only the diagonal Q (x, x) counts, while the smallness of
∥C∥L2→L2 is related to the smallness of C (x, y) when x ̸= y.

1.3.2 A one dimensional counterexample

In the previous section we have derived a partial differential equation 1.3.3, akin to both
Fokker-Plank and Smoluchowski, representing a coagulating system of tracer particles
under the effect of a turbulent flow.

In this section we show, with few numerical counterexamples, how this system results
to be too crude to investigate both the coagulation rate and mass displacement of the
density trough time, and how to overcome this rigidity.

In the framework of tracer particles, the selection of the kernel α(m,n) in 1.3.3 is
crucial and must be made beforehand, taking into account the fluid’s characteristics to
effectively incorporate its impact on the coagulation dynamics. The eddy diffusion’s influ-
ence, obtained through Galeati’s limit, represented by the operator κ∆x, manifests as a
diffusion of masses, hastening their movement and reducing the time they spend in close
proximity. Consequently, the likelihood of coagulation within a given time unit diminishes.
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To show this, we first identifies few objects and quantities, that in Chapter 2 will be
studied in great details for a system of inertial particles, to understand the behavior of the
space-mass system 1.3.3.

We recall that objective of this research is to find a link between turbulence parame-
ters and decay of (random) mixing time, mass displacement and the computation of the
coagulation rate between particles.

For the convenience of numerical simulations, we consider from now on only finitely
many mass levels. That is, we close the set of equations into a finite system of PDE-s
whose solution is (f1, f2, ..., fM ), for some integer M > 0.

dfm(t, x) =∆fm(t, x)dt+

m−1∑
n=1

fn(t, x)fm−n(t, x)dt (1.3.6)

−2

M∑
n=1

fm(t, x)fn(t, x)dt+ div (Q(x, x)∇fm(t, x)) , m ∈ N,

This amounts to replacing the
∑∞

n=1 in the loss term by
∑M

n=1, with everything else
unchanged. This correspond, in the particle system (Appendix A), to the fact that each
particle’s mass is restricted to mi ∈ {1, 2, ...,M}.

The interpretation is that when the mass of a rain droplet exceeds the threshold M ,
it falls down (as rain) and hence exits the system. More so, it is natural to assume
α(n,m) ≡ 1 and using the Kraichnan covariance div (Q(x, x)∇fm(t, x)) ≡ κ∆xfm(t, x).

Evolution of densities

Let us consider the system of equation in a slightly simple setting, yet amenable. Fix
dimension d = 1 and the spatial doamin be the one-dimensional torus T1. We fix M = 2
and define the system as follow. Call f1 = u, f2 = v, then:{

∂tu = ν∆u− u2

∂tv = ν∆v + u2
(1.3.7)

u0 = h(x), v0 = g(x), x ∈ T1, t ≥ 0.

where h, g are two positive probability functions. Mass of type 1 and type 2 can coag-
ulate and does not interact in other way and this system represent a prototype in which
tracer particles with enhanced spatial diffusion interact, without prior modification to the
collision rate and the kernel of the Smoluchowski equation.

We simulate this system of equations with a finite difference method on the time inter-
val t ∈ [0, 1] with a partition of equally distributed points in time {tj}Nj=0. The space vari-
able is identified as x ∈ [0, 1] with the boundary identified and partition of point {xk}Kk=0.

We do the simulation with κ that satisfied the FCL stability, i.e.

ν
∆t

(∆x)2
< 1/2.

First, we consider an initial condition constant in space of the form u0 ≡ 1, v0 ≡ 0. We
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see that in this case the solution is in fact the one of the system od ODE:{
u̇ = −u2

v̇ = u2
(1.3.8)

with same initial condition and periodic boundary.
In Figure 1.8, we simulate two solutions with constant initial condition and 2 different

diffusion rate. This choice of the initial conditions show that there is no real dependence
on the turbulence parameter. Without considering a coagulation rate directly dependent
on the fluid velocity, which cannot be recovered from 1.3.3 in the tracer setting, no growth
in dependence of the parameter ν is visible. The density of type 2 mass v(t, x) increase
independently in space.

As a second example, we consider an initial condition in which a space dependence
is present, i.e. u0 = f(x), v0 ≡ 0, with f(x) sinusoidal function, with periodic boundary

Figure 1.8: Side by side comparison of growth in time of v, mass type 2 solution for the
system with different diffusion, respectively from left to right, ν = 0.45, 0.05 and same
constant initial solution u0 ≡ 1, v0 ≡ 0.
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Figure 1.9: Side by side comparison of growth in time of v, mass type 2 solution for the
system with different diffusion, respectively from left to right, ν = 0.45, 0.05 and non
constant initial condition u0 ≡ f(x), v0 ≡ 0.

condition. As before, we simulate the system with 2 different diffusion.
In Figure 1.9, we show two solution at different diffusion rate, with the initial condition

u0 that depends on the space domain. As a difference from system 1.3.8, we see a clear
dependence on the diffusion rate, but there is no clear sign of a coagulation enhancement.
In particular, considering the average over the space domain, no sign of improved coag-
ulation or mass displacement is shown in the system. Suggesting that the the diffusion
parameter κ in the crude space-mass Smoluchowski system works against the coagula-
tion process.

Formation time

For this reason, as an analogous of the discrete formation time τf , defined in Section 1.2
equation 1.2.1, we define τκ which represent the first time the total density has put enough
mass on effective rain drops:

τη(f·) := inf{t ≥ 0 |
M∑
i=1

ˆ
fi(t, x)dx ≤ M0}, (1.3.9)

with M0 a positive constant.
We know that Eτf → 0 as κ−2, when κ → ∞ in the discrete system with instanta-

neous collision. So the question we ask is: does τκ(f·) has a behavior akin to the one
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Figure 1.10: Plot of the decay of M1(t) showing no enhancement in decay of the total
mass with initial condition f1(0, x) = 1[− 1

2
, 1
2
](x).

displayed by the tracer particles system?

To understand the effect of the turbulent velocity field on coagulation and drown con-
clusion on 1.3.9, we reverse the idea of the formation time and identify and build on a key
quantity, Mκ

1(t) below, which is essentially the total mass left in the system at time t.
Since M <∞ this quantity measure the efficiency of coagulation by looking at how fast
the mass decays in time, with respect to different values of κ.

To this end, we give a name to the Total Mass appearing in 1.3.9:

Mκ
1(t) :=

M∑
m=1

m

ˆ
fm(t, x) dx. (1.3.10)

We simulate the system of equation 1.3.6 on the one dimensional torus, limiting ourself
to the study of Mκ

1 with M = 1.

We set our initial condition as f1(0, x) = 1[− 1
2
, 1
2
](x), producing solution with a finite

difference scheme and a trapezoidal rule for the computation of the integral M. We se-
lected a range of parameter for κ ≡ D ∈ [0, 4], satisfying the FCL condition. The result
is shown in Figure 1.10: as expected from the analysis of the density realization, we don’t
see an enhanced coagulation, more so a decrease in such phenomena. In red the curve
for κ = 0.005 and blue the curve for κ = 4.5, showing the decrease in effectiveness of
mass movement trough level, hence increasing the time needed to form fully fleshed rain
drop.
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1.3.3 How to overcome: probabilistic coagulation rate

Drawing conclusion from the previous simulations, we notice how conceptually and math-
ematically, the most difficult step in the program partaken in this thesis is to verify that
diffusion enhancement leads to coagulation enhancement, namely, the fast increase of
probability densities fm for m >> 1 (large masses) for large diffusion coefficient. In
fact, the model 1.3.6 turns out to be too crude, and numerically we cannot verify a coagu-
lation enhancement.

we notice how to overcome this obstacle we already have all the ingredients, but we
need to consider them at the beginning of the conceptualization of the model, even if this
make computation more cumbersome. Here we propose this change of point of view that
will be analyzed throughout the thesis.

We already know from Section 1.1 that the coagulation kernel, describing the proba-
bilistic interaction of moving particles must depend theoretically from the difference of
velocity of particles. This assumption, in the context of tracer particles was bypassed
with an already approximated kernel, dependent only on the masses, that does not take
into account all the nuances of the kinetic evolution due to turbulence at the level of the
particle system, more so on the final density, making impossible to construct a rigours
theory.

To be more precise, considering the rate of Coalescence of particles, we can think of
two two typical mathematical models:

• Deterministic: two particles meet, they become a new particle with mass given by
the sum of the masses and momentum given by conservation of momentum;

• Probability rates: two particles below a certain distance one from the other have a
probability per unit of time to merge in one.

The Kernels in the Smoluchowski equations are the macroscopic footprint of such proba-
bilistic rates.

In the realm of deterministic models, it is evident that coalescence invariably occurs
at a specific distance, irrespective of the duration spent in close proximity.

However, when considering models based on rates in the space-mass system, there
arises a limitation concerning their connection to turbulence. Coalescence transpires due
to a probability per unit of time, which diminishes as the time spent by neighboring parti-
cles decreases.

This presents a stark contrast: models based on rates in the space-mass framework
facilitate coalescence through slow moving particles. Regrettably, this contradicts the
practical understanding of turbulence. To resolve this predicament, it is imperative to
avoid favoring slow motion in the modeling process.

In the field of atmospheric physics [25, 26], it is commonplace to analyze the coagu-
lation of cloud particles by employing a rate that is directly proportional to their relative
velocity ∼ |v1 − v2| where vi, i = 1, 2 are the velocities of two particles.

This factor is usually studied apriori with conceptual reasoning and then applied to
a Spatial Smoluchowski equation, hence making impossible to derive the right coagula-
tion dynamics directly from the density. More so, this factor, when multiplied by the time
spent in close proximity, remains relatively constant on average, thereby ensuring a con-
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sistent probability of coalescence. To solve this problem and incorporate both position
and velocity variables, a new system of inertial particles is introduced.

1.4 Fundamental aggregation model: Inertial particles

Motivated by the negative results of Section 1.3.8 and the reasoning on how to overcome
such obstacles, we go back to the foundation and propose an approach for particles that
take into account their velocity, hence their inertia.

Here we’ll describe the ideas both for the particle system and for the definition of
coagulation rate, leaving the rigours computation to Section .1 and Chapter 2.

The model is composed of N moving particles, with position-velocity
(
Xi
t , V

i
t

)
, i =

1, ..., N , embedded into a fluid with velocity U (t, x). To each particle, we associate a
mass mi(t) and radius ri(t), and we let these particles the possibility of coalesce. The
motion of the particles before coalescence follows the Stokes’ law and is given by

dXi
t

dt
= V i

t

dV i
t

dt
= − 1

τp

(
V i
t − U

(
t,Xi

t

))
Note that this regime is valid when droplets have a density, ϕp, which is larger than the
density of the fluid ϕf . As such, in this thesis we analyze setting in which ϕp/ϕf >> 1.

The fluid is idealized as the solution of

dU (t, x) = − 1

τf
(U (t, x) dt− dW (t, x))

W (t, x) =
∑
k

σk (x)W
k
t .

When two particles, with position Xi
t , X

j
t and masses mi

t,m
j
t , are at distance∣∣∣Xi

t −Xj
t

∣∣∣ ≤ |ri(t) + rj(t)|,

they may aggregate, forming a new particle with mass m = mi
t + mj

t , while velocity
agrees with the conservation of momentum.

To do so, they have a rate of coalescence, a probability to aggregate by unit of time,
given by a function λ

(
V i
t , V

j
t

)
that, following the logic explained in the remarks below,

Section 1.1 and atmospheric literature [25, 26, 90],with some idealizations, we take as

λ
(
V i
t , V

j
t

)
∼
∣∣∣V i
t − V j

t

∣∣∣ /2a.
Remark 1.4.1. At the beginning of our studies, illustrated in Section 1.3.8, it seemed natural
to us, for simplicity, to assume this rate to be constant, that is, independent of V i

t , V
j
t .

Later, we understood that this assumption distorted reality because, during a ”collision”
between particles (collision = an event where they are in proximity for a short interval of
time under the condition

∣∣∣Xi
t −Xj

t

∣∣∣ ≤ 2a), since the rate λ was constant, the probability
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of coalescence was λ∆t, where ∆t was the duration of the collision. This was intuitively
absurd: we wanted each collision to result in coalescence, or in a more realistic physics,
coalescence with a certain fixed probability θ (later, θ = 1 for simplicity).

Hence, Following the literature as in [25] and taking

λ
(
V i
t , V

j
t

)
=
∣∣∣V i
t − V j

t

∣∣∣ /2a,
since we have

∆t = 2a/
∣∣∣V i
t − V j

t

∣∣∣
from this we get

λ∆t = 1

making the probability rate of collision meaningful as the speed of particle changes, re-
garding the time spent together, losing the erroneous bias toward slow motion.

Then, given λ, the average aggregation rate will be〈∣∣∣V i
t − V j

t

∣∣∣〉 /2a
where the term ”average” means the following: we consider all the collisions that occur
and take the average of the values

∣∣∣V i
t − V j

t

∣∣∣.
So, we need to take two generic particles at a distance |∆X| ≤ 2a and evaluate

|∆V |. Let’s call them
(
X1
t , V

1
t

)
,
(
X2
t , V

2
t

)
without loss of generality, and consider the

two-point motion:

dXi
t

dt
= V i

t

dV i
t

dt
= − 1

τp

(
V i
t − U

(
t,Xi

t

))
i = 1, 2.

We consider the steady-state regime because if we impose fixed initial conditions,
they would influence the result. In the steady-state regime, whenever

∣∣X1
t −X2

t

∣∣ ≤ 2a,
we calculate

∣∣V 1
t − V 2

t

∣∣ and then take the average. In other words, in an ergodic sense,
we compute

lim
T→∞

´ T
0

∣∣V 1
t − V 2

t

∣∣ 1{|X1
t −X2

t |≤2a}dt´ T
0 1{|X1

t −X2
t |≤2a}dt

.

Assuming the validity of an ergodic theorem, by multiplying and dividing by T , we obtain

=
E
[∣∣V 1 − V 2

∣∣ 1{|X1−X2|≤2a}
]

P (|X1 −X2| ≤ 2a)

where the random variables
(
X1, X2, V 1, V 2

)
are distributed according to the invariant

measure of the system that defines the 2-point motion.

Let us focus on a system consisting of only one mass type that can coagulate, let us
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call this mi = 1 for the i − th particle at time t before having a collission. We are inter-
ested to define the number of aggregation of particle of this type, i.e. understanding the
density of particles m = 2, in a unitary time ∆t and a unitary volume Q.

Consider the non normalized empirical measure µ̃N,2t associated to particles of mass
of typem = 2, which are the one generated when two particle of unitary mass collide, i.e.

µ̃N,2t :=
∑
i∈N (t)

1{mi
t=2}

Applying Dynkin formula with an observable ϕ on the particle empirical measure, we get

⟨ϕ, µN,2T ⟩ =⟨ϕ, µN,20 ⟩+
ˆ T

0
(velocity field operator and Brownian semigroup) ds

+

ˆ T

0

∑
i,j∈N (t),
i ̸=j

λ
(
Xi
t , X

j
t , V

i
t , V

j
t

)

· ϕ

(
xNi (t),

nvNi (t) + (m− n)vNj (t)

m

)
1{mN

i (t)=1,mN
j (t)=1}dt

+MN,J
T

So, the quantity we are looking for is
ˆ t0+∆t

t0

∑
i ̸=j

λ
(
Xi
t , X

j
t , V

i
t , V

j
t

)
1{mi

t=1}1{mj
t=1}ϕ(X

i
t , X

j
t )ds (1.4.1)

this is the number of collision of particle of mass m = 1, in the volume Q (i.e. take
ϕ = 1Q) in the unit time ∆t.
Remark 1.4.2. Note that in principle there is a martingale term and this is already an ap-
proximation. If we take ϕ to be not infinitesimal concentrated, then the martingale term is
of order smaller than N, does vanishing in the limit.

So, the quantity we are looking for is (1.4.1), and we can exploit two possible way to
compute it. First, if we suppose a mean field convergence, as we’ll propose in Section .1
and Chapter 2 for particles with high inertia (i.e. St >> 1), we obtain from 1.4.1 the final
coagulation rate

N2

ˆ t0+∆t

t0

¨ ¨
λ(x, y, v, w)f1(x, v)f1(y, w)ϕ(x, y) dxdv dydw (1.4.2)

This, multiplied by the uniform density of particles, give use a description of the collision
rate in the asymptotic of large St.

The second approach, explored in Chapter 3, is to consider a firs approximation of
(1.4.1) when ∆t is infinitesimal, since we want an instantaneous rate. In this regime, we
can approximate the integral as∑

i ̸=j, i,j∈N (t0)

(
1{mi

t0
=1}1{mj

t0
=1}

)
×
ˆ t0+∆t

t0

λ
(
Xi
t , X

j
t , V

i
t , V

j
t

)
ϕ(Xi

t , X
j
t )ds

(1.4.3)
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Computing this quantity is too complex; since the time step is infinitesimal, we can argue
that an approximated computation of (1.4.3) could be done with an averaged reasoning,
i.e.

(1.4.3) ∼ ⟨N1(t0)
2⟩

〈 ∑
i ̸=j, i,j∈N (t0)

ˆ t0+∆t

t0

λ
(
Xi
t , X

j
t , V

i
t , V

j
t

)
ϕ(Xi

t , X
j
t )ds

〉
︸ ︷︷ ︸

(A)

To compute (A) we have to use again a mean field reasoning, even though this time we
need to consider the two-point motion of moving particles. As such we have

(A) ∼
ˆ t0+∆t

t0

¨ ¨
λ(x, y, v, w)ϕ(x, y)ft(x, v, y, w) dxdv dydw dt, (1.4.4)

where ft is the joint density of the two-point motion of particles of mass M = 1. Note
that, as of now, ft as no restriction on the position, but this is the role due to ϕ(x, y). In
fact we’ll see that, selecting an infinitesimal volume of length scale ℓf , in Chapter 3 we
can recover a close form for (A).

Since we don’t want a dependence on the initial condition, we again pass to the invari-
ant density of the two-point motion f∞(x, y, v, w) and we obtain the following:
In an infinitesimal time interval ∆t, in a volume of Kolmogorv lenght scaleQ(ℓf ), the aver-
age number of collision of particle of mass 1 is approximated by

∆tN1(∞)

¨ ¨
λ(x, y, v, w)1Q(x, y)f∞(x, v, y, w) dxdv dydw,

where N1(∞) is the stationary fraction of particles of mass 1 able to collide.
Remark 1.4.3. Note that also in this second proposed computation, in the gas kinetic
regime of decoupled particles, i.e. f∞ = f(x, v)f(y, w), we retrieve the result of Chapter
2 and Abrhamson [1].

We’ll show, in following Chapters, how this formulation is the right framework to re-
trieve a complete description of the relative velocity, main factor contributing to the coag-
ulation rate of particles.

Since we are working with normalizing densities, we have to multiply the averaged
velocity with

Concerning now the quantity N1(t0), we consider the Dynkin formula for µN,1t . Op-
posite to µN,2t we obtain the same result but with a menus in the coagulation operator,
representing the particle coagulating to form the one of mass m = 2.

We can argue, considering N1(t0) = ⟨1, µN,1t ⟩ and using 1.4.1, the following estima-
tion:

E[N1(t0 +∆t)] =

= E[N1(t0)]−
ˆ t0+∆t

t0

∑
i,j∈N (t),
i ̸=j

λ
(
Xi
t , X

j
t , V

i
t , V

j
t

)
ϕ
(
xNi (t), v

N
i (t) + vNj (t)

)
1{mN

i (t)=1,mN
j (t)=1}dt

≲ E[N1(t0)] + ∆tE[N1(t0 +∆t)] ⟨(A)⟩ .
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Hence, we can argue that the behavior of the density of particles is

E[N1(t0 +∆t)] ∼ E[N1(t0)]e
−∆t⟨A⟩,

where ⟨A⟩ is the averaged velocity difference.
So, as we’ll see in Chapter 3, under the hypothesis of a steady state distribution, i.e.

particle marge but are replaced with new particles since we are looking at infinitesimal
volume, we expect a gas-kinetic boltzmann like distribution for the portion of particle col-
liding, i.e. N1(∞) ∼ N1(0)e

−⟨A⟩.
This framework is the baseline to construct a rigorous theory that, from simple math-

ematical equation can naturally give rise to all the fundamental quantity of rain coales-
cence.

1.5 Inertial particles: scaling limit

In this section, summarizing the results of previous sections, we provide our original moti-
vation that gives rise naturally to the PDE system we study in this thesis and for which we’ll
derive in Chapter 2 and 3 rigorous estimate for the coagulation rate. The Smoluchowski
type SPDE system we study is conjectured to be the scaling limit of the empirical measure
of a system of diffusion particles (idealized rain droplets in the atmosphere) undergoing
locally in space coagulation, while subject to an idealized form of turbulence, cf. [31] for
a discussion. More precisely, for any d ≥ 1 and N ∈ N, consider a second-order parti-
cle system with space variable xNi (t) in Td, velocity variable vNi (t) in Rd, mass variable
mN
i (t) in a finite set {1, ...,M}, and initial cardinality N(0) = N . Between coagulation

events, the motion of an active particle obeys

dxNi (t) = vNi (t)dt, i ∈ N (t)

mN
i (t)dv

N
i (t) = α(mN

i (t))
1/d

[√
2µdBi(t) +

∑
k∈K

σk(x
N
i (t)) ◦ dW k

t − vNi (t)dt

]
,

(1.5.1)
(whereas after each coagulation, the velocity will be reset according to the conservation
of momentum, to be precised below), where

• N (t) denotes the set of indices of active particles in the system at time t, whose
cardinality |N (t)| ≤ N ,

• {Bi(t)}∞i=1 is a given, countable collection of independent standard Brownian mo-
tions in Rd

• molecular diffusivity µ > 0

• σk(x) : Td → Rd, k ∈ K is a given, finite (or more generally countable, subject to
additional assumptions) collection of divergence free vector fields

• {W k
t }k∈K is a given, finite (or countable) collection of standard Brownian motions

in R

• ◦ denotes Stratonovich integration.
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The velocity component of the dynamics obeys Stokes’ law with random force (that de-
pends linearly on the radius rNi = (mN

i )
1/d) given by an intrinsic noise for each particle,

plus a common noise of transport type

Ẇ(t, x) :=
∑
k∈K

σk(x)Ẇ
k
t

that acts simultaneously on all particles, and as such is seen as an idealized form of
turbulent flow in the atmosphere. We denote the d×d spatial covariance matrix ofW(t, x)
by

Q(x, y) :=
∑
k∈K

σk(x)⊗ σk(y).

Moreover, for any fixed x ∈ Td we denote the uniformly elliptic second-order divergence
form operator, acting on suitable functions on Rd

(LQ,x
v f)(v) :=

(
µI +

1

2
Q(x, x)

)
∆vf(v).

Note that Q(x, x) is nonnegative definite for any x. For simplicity, in the sequel we con-
sider the case that

LQ,x
v ≡ κ∆v, (1.5.2)

for some constant κ ≥ µ and all x ∈ Td. In view of diffusion enhancement, we have in
mind that κ≫ µ.

Each particle i ∈ N (t) has a mass mN
i (t) ∈ {1, 2, ..,M} which changes over time

according a stochastic coagulation rule to be described below. The initial mass mi(0),
i = 1, ..., N , are chosen i.i.d. from {1, 2, ..,M} according to a probability distribution
so that P(m1(0) = m) = r(m) with

∑M
m=1 r(m) = 1. We are also given deterministic

probability density functions gm(x, v) : Td×Rd → R+,m = 1, 2, ...,M , satisfying addi-
tional assumptions, 1 such that ifmi(0) = m then the initial distribution of (xi(0), vi(0))
is chosen with probability density gm(x, v), independently across i. We denote

f0m(x, v) = r(m)gm(x, v), (x, v) ∈ Td × Rd, m = 1, ..,M,

which satisfy the same assumptions as those imposed on {gm(x, v)}Mm=1.
The rule of coagulation between pairs of particles is as follows. Let θ(x) : Rd →

R+ be a given, C∞-smooth, symmetric probability density function in Rd with compact
support in B(0, 1) (the unit ball around the origin in Rd) and θ(0) = 0. Then, for any
ε ∈ (0, 1), denote θε(x) : Td → R+ by

θε(x) := ε−dθ(ε−1x), x ∈ Td.

Suppose the current configuration of the particle system is

η = (x1, v1,m1, x2, v2,m2, ..., xN , vN ,mN ) ∈ (Td ∪ ∅)N × (Rd ∪ ∅)N × {1, ...,M, ∅}N

1those we impose on the initial condition of the PDE system
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where (xi, vi,mi) denotes the position, velocity and mass of particle i, by convention if
particle i0 is no longer active in the system, we set xi0 = vi0 = mi0 = ∅. Independently
for each pair (i, j) of particles, where i ̸= j each running over the index set of active
particles in η, with a rate

s(mN
i ,m

N
j )

|vi − vj |
N

θε(xi − xj) (1.5.3)

we remove (xi, vi,mi, xj , vj ,mj) from the configuration η, and then add(
xi,

mivi +mjvj
mi +mj

,mi +mj , ∅, ∅, ∅
)

with probability mi
mi+mj

, and instead add(
∅, ∅, ∅, xj ,

mivi +mjvj
mi +mj

,mi +mj

)
with probability mj

mi+mj
. We call the new configuration obtained this way by S1

ijη and S2
ijη

respectively. In words, if (i, j) coagulate, we decide randomly which of xi and xj is the
new position of the mass-combined particle. If the position chosen is xi, then we consider
j as being eliminated (no longer active) and the new particle has index i, whereas if the
position chosen is xj , then we consider i as being eliminated and the new particle has
index j. On the other hand, the velocity of the mass-combined particle is obtained by the
conservation of momentum as in perfectly inelastic collisions.

Note that the form of the coagulation rate (1.5.3) is such that (i, j) can coagulate only
if |xi − xj | ≤ ε, that is, their spatial positions have to be ε-close. We are interested in
the case when ε = ε(N) → 0 as N → ∞, so that the interaction is not of mean-field
type, but rather local, see the statement of our conjectured result below. In particular, if
ε = O(N−1/d) then each particle typically interacts with a bounded number of others at
any given time. The essential feature of our coagulation rate, that of the appearance of
|vi−vj |, is inspired by the coagulation kernels used in the physics literature for describing
cloud particles (which in general can depend also onmi,mj and other physically relevant
quantities), and we believe it is key to demonstrating coagulation enhancement.

For eachN ∈ N, T ∈ (0,∞) andm ∈ {1, ..,M}, we denote the process of empirical
measure on position and velocity of mass-m particles in the system by

µN,mt (dx, dv) :=
1

N

∑
i∈N (t)

δxNi (t)(dx)δvNi (t)(dv)1{mN
i (t)=m} ∈ M1,+(T

d × Rd)

where M1,+ := M1,+(Td × Rd) denotes the space of subprobability measures on
Td × Rd equipped with weak topology. The choice of the initial conditions for our sys-
tem implies that P-a.s.

µN0 (dx, dv) → f0(x, v)dxdv, as N → ∞

where the limit is absolutely continuous. We conjecture that, under the assumption of
local interaction, i.e.

lim
N→∞

ε(N) = 0, lim sup
N→∞

ε(N)−d

N
<∞.
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for every finite T , the collection of empirical measures {µNt (dx, dv) : t ∈ [0, T ]}Mm=1

converges in probability, as N → ∞, in D([0, T ],M1,+)
M the space of càdlàg paths

taking values in M1,+, equipped with the Skorohod topology, towards an absolutely con-
tinuous limit, which is the pathwise unique weak solution {fm(t, x, v) : t ∈ [0, T ]}Mm=1

of a Smoluchowski-type SPDE system, see (1.5.6). The latter SPDE degenerates to the PDE

system we study in this thesis, Chapter 4 equation (4.1.2), when the Itô term is switched
off. While we do not provide a rigorous proof here, we sketch below a heuristic argument
and postpone the rigorous derivation of the SPDE from the particle system to a future work.
We think that this heuristic argument is sufficient to justify our interest in studying our PDE
system. In fact, in the literature there exists specific limiting procedures cf. [42, 35] that
allow, in principle, to obtain the PDE from the SPDE by carefully choosing the vector fields
σk(x).

Let ϕ(x, v) be any function of class C∞
c (Td × Rd), for any m we apply Itô’s formula

to the process

⟨ϕ, µN,mt ⟩ := 1

N

∑
i∈N (t)

ϕ(xNi (t), v
N
i (t))1{mN

i (t)=m}

and we get

⟨ϕ, µN,mT ⟩ = ⟨ϕ, µN,m0 ⟩+
ˆ T

0

1

N

∑
i∈N (t)

vNi (t) · ∇xϕ(x
N
i (t), v

N
i (t))1{mN

i (t)=m}dt

− c(m)

ˆ T

0

1

N

∑
i∈N (t)

vNi (t) · ∇vϕ(x
N
i (t), v

N
i (t))1{mN

i (t)=m}dt

+ c(m)

ˆ T

0

1

N

∑
i∈N (t)

∇vϕ(x
N
i (t), v

N
i (t))1{mN

i (t)=m} · dBi(t)

+ µc(m)2
ˆ T

0

1

N

∑
i∈N (t)

∆vϕ(x
N
i (t), v

N
i (t))1{mN

i (t)=m}dt

+
1

2
c(m)2

ˆ T

0

1

N

∑
i∈N (t)

Q(xNi (t), x
N
i (t))∆vϕ(x

N
i (t), v

N
i (t))1{mN

i (t)=m}dt

+ c(m)

ˆ T

0

1

N

∑
i∈N (t)

∑
k∈K

σk(x
N
i (t)) · ∇vϕ(x

N
i (t), v

N
i (t))1{mN

i (t)=m}dW
k
t

+

ˆ T

0

1

N2

m−1∑
n=1

∑
i,j∈N (t),
i ̸=j

s(n,m− n)|vNi (t)− vNj (t)|θε(xNi (t)− xNj (t))

· ϕ

(
xNi (t),

nvNi (t) + (m− n)vNj (t)

m

)
n

m
1{mN

i (t)=n,mN
j (t)=m−n}dt

+

ˆ T

0

1

N2

m−1∑
n=1

∑
i,j∈N (t),
i ̸=j

s(n,m− n)|vNi (t)− vNj (t)|θε(xNi (t)− xNj (t))
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· ϕ

(
xNj (t),

nvNi (t) + (m− n)vNj (t)

m

)
m− n

m
1{mN

i (t)=n,mN
j (t)=m−n}dt

−
ˆ T

0

2

N2

M∑
n=1

∑
i,j∈N (t), i ̸=j

s(n,m)|vNi (t)− vNj (t)|θε(xNi (t)− xNj (t))

· ϕ(xNi (t), vNi (t))1{mN
i (t)=m,mN

j (t)=n}dt

+MN,J
T

where {MN,J
t }t≥0 is a martingale associated with coagulation (or jumps) that we do not

write explicitly. We can rewrite, using the simplification (1.5.2), the previous identity more
compactly as

⟨ϕ, µN,mT ⟩ = ⟨ϕ, µN,m0 ⟩+
ˆ T

0

〈
v · ∇xϕ− c(m)v · ∇v + c(m)2κ∆v, µ

N,m
t

〉
dt

+ c(m)

ˆ T

0

1

N

∑
i∈N (t)

∇vϕ(x
N
i (t), v

N
i (t))1{mN

i (t)=m} · dBi(t)

+ c(m)

ˆ T

0

∑
k∈K

〈
σk(x) · ∇vϕ, µ

N,m
t

〉
dW k

t +MN,J
T

+

ˆ T

0

m−1∑
n=1

n

m

〈
s(n,m− n)|v − w|θε(x− y)ϕ

(
x,
nv + (m− n)w

m

)
, µN,nt (dx, dv)µN,m−n

t (dy, dw)
〉
dt

+

ˆ T

0

m−1∑
n=1

m− n

m

〈
s(n,m− n)|v − w|θε(x− y)ϕ

(
y,
nv + (m− n)w

m

)
, µN,nt (dx, dv)µN,m−n

t (dy, dw)
〉
dt

−
ˆ T

0
2
M∑
n=1

〈
s(n,m)|v − w|θε(x− y)ϕ(x, v), µN,mt (dx, dv)µN,nt (dy, dw)

〉
dt.

(1.5.4)

We expect that MN,J
T and the stochastic integrals in dBi(t) vanish in limit as N → ∞

inL2(P), whereas the martingale associated with the common noise persists in the limit.
Further, suppose that we have proved that the laws of the collection of DT (M1,+)

M -
valued random variables {µN,mt : t ∈ [0, T ]}Mm=1,N ∈ N, is tight hence weakly relatively
compact. Consider any weak subsequential limit

{µNℓ,m
t : t ∈ [0, T ]}Mm=1

ℓ→∞→ {µmt : t ∈ [0, T ]}Mm=1. (1.5.5)

For the sake of arguments, apply Skorohod’s representation theorem and there exists
some auxiliary probability space and on which a sequence of random variables having
the same laws as the ones in (1.5.5) so that the above convergence holds almost surely.
By an abuse of notation, below we use the same letters for the variables on the auxil-
iary space. Assume that we can prove that µmt has a density fm(t, x, v) with respect to
Lebesgue measure for everym and t. Then, with minor work the linear part of the identity
(1.5.4) converges as ℓ→ ∞, i.e.

⟨ϕ, µNℓ,m
T ⟩ → ⟨ϕ, fm(T, x, v)⟩,
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⟨ϕ, µNℓ,m
0 ⟩ → ⟨ϕ, f0m(x, v)⟩,ˆ T

0

〈
v · ∇xϕ− c(m)v · ∇v + κc(m)2∆v, µ

Nℓ,m
t

〉
dt

→
ˆ T

0

〈
v · ∇xϕ− c(m)v · ∇v + κc(m)2∆v, fm(t, x, v)

〉
dt,

ˆ T

0

∑
k∈K

〈
σk(x) · ∇vϕ, µ

Nℓ,m
t

〉
dW k

t →
ˆ T

0

∑
k∈K

⟨σk(x) · ∇vϕ, fm(t, x, v)⟩ dW k
t .

The proof that the nonlinear terms also converge to the corresponding limits is more diffi-
cult, hence here we content ourselves with a very heuristic “two-step argument”. Consider
each summand of the last term of (1.5.4) :
ˆ T

0

〈
s(n,m)|v − w|θε(x− y)ϕ(x, v), µNℓ,m

t (dx, dv)µNℓ,n
t (dy, dw)

〉
dt, 1 ≤ m,n ≤M.

Assume we take ℓ→ ∞ first, keeping ε fixed, we get
ˆ T

0

〈
s(n,m)|v − w|θε(x− y)ϕ(x, v), µNℓ,m

t (dx, dv)µNℓ,n
t (dy, dw)

〉
dt

ℓ→∞→
ˆ T

0

ˆ
s(n,m)|v − w|θε(x− y)ϕ(x, v)fm(t, x, v)fn(t, y, v)dxdydvdwdt ;

then we take ε→ 0, and since θε(·) approximates the delta-Dirac δ0, we get
ˆ T

0

ˆ
s(n,m)|v − w|θε(x− y)ϕ(x, v)fm(t, x, v)fn(t, y, v)dxdydvdwdt

ε→0→
ˆ T

0

ˆ
s(n,m)|v − w|ϕ(x, v)fm(t, x, v)fn(t, x, w)dxdvdwdt.

Similarly, each summand of the second and third terms from the bottom in (1.5.4) also
converge under the two-step argument (using also n/m+ (m− n)/m = 1)
ˆ T

0

n

m

〈
s(n,m− n)|v − w|θε(x− y)ϕ

(
x,
nv + (m− n)w

m

)
, µNℓ,n

t (dx, dv)µNℓ,m−n
t (dy, dw)

〉
dt

+

ˆ T

0

m− n

m

〈
s(n,m− n)|v − w|θε(x− y)ϕ

(
y,
nv + (m− n)w

m

)
, µNℓ,n

t (dx, dv)µNℓ,m−n
t (dy, dw)

〉
dt

→
ˆ T

0

ˆ
s(n,m− n)|v − w|ϕ

(
x,
nv + (m− n)w

m

)
fn(t, x, v)fm(t, x, w)dvdwdt.

Hence, we have (at least under Skorohod’s representation) the limit identity satisfied by
{fm(t, x, v)}:

⟨ϕ, fm(T )⟩ =⟨ϕ, f0m⟩+
ˆ T

0

〈
v · ∇xϕ− c(m)v · ∇v + κc(m)2∆v, fm(t, x, v)

〉
dt

+

m−1∑
n=1

ˆ T

0

ˆ
s(n,m− n)|v − w|ϕ

(
x,
nv + (m− n)w

m

)
fn(t, x, v)fm−n(t, x, w)dxdvdwdt
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− 2

M∑
n=1

ˆ T

0

ˆ
s(n,m)|v − w|ϕ(x, v)fm(t, x, v)fn(t, x, w)dxdvdwdt

+ c(m)

ˆ T

0

∑
k∈K

⟨σk(x) · ∇vϕ, fm(t, x, v)⟩ dW k
t , m = 1, ...,M,

which is the weak formulation of the SPDE system



dfm(t, x, v) =
(
−v · ∇x + c(m)divv (v·) + κc(m)2∆v

)
fm(t, x, v)dt

−c(m)
∑

k∈K σk(x) · ∇vfm(t, x, v)dW
k
t

+
∑m−1

n=1

´
{nw′+(m−n)w=mv} s(n,m− n)|w′ − w|fn(t, x, w′)fm−n(t, x, w)dwdw

′dt

−2
∑M

n=1

´
s(n,m)|v − w|fm(t, x, v)fn(t, x, w)dwdt

fm(·, x, v)|t=0 = f0m, m = 1, ...,M.

(1.5.6)

Rewriting the Itô integral as a Stratonovich integral plus a corrector, we equivalently have
that

dfm(t, x, v) =
(
−v · ∇x + c(m)divv (v·) + µc(m)2∆v

)
fm(t, x, v)dt

− c(m)
∑
k∈K

σk(x) · ∇vfm(t, x, v) ◦ dW k
t

+

m−1∑
n=1

ˆ
{nw′+(m−n)w=mv}

s(n,m− n)|w′ − w|fn(t, x, w′)fm−n(t, x, w)dwdw
′dt

− 2

M∑
n=1

ˆ
s(n,m)|v − w|fm(t, x, v)fn(t, x, w)dwdt.

Thus, we see that the same Stratonovich transport-type noise that acts on the particle
system (1.5.1) also acts on the SPDE.

Lastly, at the rigorous level, we need to prove that the solution of this SPDE system
(1.5.6) is pathwise unique, which allows to conclude (via nontrivial arguments) that the
full sequence of empirical measure converges. More so, Under certain simplifications,
it leads to the following kinetic version of Smoluchowski’s equation (see [35, 33, 39] for
similar studies)

∂tfm(t, x, v) = −v · ∇xfm + c(m)divv (vfm) + κc(m)2∆vfm +Qm(f, f)

fm|t=0 = f0m(x, v), m = 1, ...,M,

(1.5.7)
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where (t, x, v) ∈ [0, T ]× Td × Rd, and

Qm(f, f)(t, x, v)

:=
m−1∑
n=1

¨
{nw′+(m−n)w=mv}

s(n,m− n)fn(t, x, w
′)fm−n(t, x, w)|w − w′|dwdw′

− 2
M∑
n=1

ˆ
s(n,m)fm(t, x, v)fn(t, x, w)|v − w|dw,

(1.5.8)
where

c(m) := αm(1−d)/d, s(n,m) := (n1/d +m1/d)d−1. (1.5.9)

We have sketched here the proof of the scaling limit from inertial coagulating microscopic
particle system subjected to a common noise, to an SPDE that eventually gives rise to this
PDE. Although it is not fully rigorous, it is enough to justify the interest of this equation.
Here again, turbulence contributes to large κ versus small κ when no turbulence.

The eddy diffusion occurs now in the velocity variable and this will be the key to under-
stand rigorously the coagulating property of colliding particles directly from the limiting
equation for their density. As such, this will be the main system analyzed throughout the
thesis.
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Chapter 2

Turbulence enhancement of
coagulation: inertial particles

2.1 Introduction

Turbulence increases the relative velocity of particles suspended into a fluid, favours their
collision and thus increases the collision rate. A key factor of the collision rate is the
average relative velocity between particles of mass m1 and m2:

Rm1,m2 = ⟨|v1 − v2|⟩ . (2.1.1)

This quantity is of major importance since it relates the properties of particles and fluid
to the intensity of the aggregation and thus it has been extensively investigated in several
works, based on various arguments and models of turbulence, see for instance [1, 7, 19,
20, 25, 26, 45, 64, 73, 75, 76, 78, 81, 84, 88, 90, 93]. We shall add more specific comments
below on some of these results in connection with our own.

We propose a new modeling approach here. Many ingredients are classical, like the
fact that we use an inertial model for particle motion (instead of a model when particles
are transported) where each particle moves following Stokes’ law

dx

dt
= v,

dv

dt
= γ (U (t,x)− v) (2.1.2)

(here γ is the the damping coefficient andU (t,x) is the fluid velocity), and Smoluchowski
equations with a kernel depending on the relative velocity |v − v′| to describe macroscop-
ically the system. The novelty is that we introduce a Boussinesq hypothesis, namely the
fact that a small-scale turbulence acts on particles as a dissipation. And the key feature is
that it acts as a dissipation in the velocity component, namely it spreads the distribution of
particles in velocity (not or not only in space). This spread increases the value ofRm1,m2

and thus the collision rate.
In order to describe the equations we use and the results, let us recall a few quanti-

ties associated to the particles and to the fluid. The damping coefficient γ appearing in
equation (2.1.2) is given by Stokes’ law 6πrµ

m where r,m are the particle radius and mass
and µ is the dynamic viscosity of the fluid. If we denote by τP and τU the relaxation times
of the particle and of the fluid respectively, we have γ = τ−1

P and we define the Stokes

67



68 CHAPTER 2. TURBULENCE ENHANCEMENT OF COAGULATION

number as St = τP /τU = 1/ (γτU). When we want to stress the dependence of the
damping coefficient γ from the mass m, we write γm; and similarly for Stm. Two rele-
vant quantities of the fluid for our study are the turbulence kinetic energy kT = 1

2

∣∣U∣∣2
and the turbulent viscosity νT = τUkT . Our model is based on the idealization that the
turbulent small-scale fluid is white noise in time, space-homogeneous, with intensity σ
(precisely, as a vector field, its space-covariance matrix C (x) is assumed to have the
auto-covariance C (0) equal to σ2Id). As explained in the Appendix .2, the link between
these fluid quantities is

σ2

2
=

2

d
τUkT =

2

d
νT . (2.1.3)

The first main result of our work is that we derive the following Smoluchowski-type
system for the particle densities of masses m = 1, 2, ...

∂fm (t,x,v)

∂t
+ v · ∇xfm (t,x,v)− γm divv (vfm (t,x,v)) (2.1.4)

− γ2mσ
2

2
∆vfm (t,x,v) =

(
Q+
m −Q−

m

)
(f , f)(t,x,v)

where f := (f1, f2, ...), x ∈ Td (the d-dimensional torus),v ∈ Rd and the collision
kernels are given by

Q+
m(f , f)(t,x,v) :=

m−1∑
n=1

¨
{nv′+(m−n)v′′=mv}

sn,m−n (2.1.5)

·|v′ − v′′|fn(t,x,v′)fm−n(t,x,v
′′)dv′dv′′,

Q−
m(f , f)(t,x,v) := 2fm (t,x,v)

∞∑
n=1

ˆ
sn,m

· |v − v′|fn
(
t,x,v′) dv′ (2.1.6)

with sn,m defined in (2.2.1) below.
This equation proposes a change of viewpoint. In previous works, the central problem

was determining the correct collision kernel which takes into account the fact that the fluid
is turbulent. Here we use the original collision kernel depending on the relative velocity
|v − v′|, without modifying its coefficients, but incorporate the presence of a small-scale
turbulent background by adding the dissipative operator in the velocity variable. Collision
and aggregation is not due to a stronger collision kernel, in this model, but to the spread-
in-v of densities, produced by the additional diffusion term.

We explain the derivation of this Smoluchowski-type system in Sections 2.4 and 2.5
and in the Appendix .1. This derivation is heuristic but reasonable in analogy with rigorous
results proved recently for other models [35, 33, 42]. From the viewpoint of the Physical
validity of the result, let us stress that the rigorous proof would require very small τU, with
γm having a finite limit. Therefore St must be large.

We analyze this new model both using approximate analytical computations and nu-
merically. In Section 2.6 we prove, up to some approximation, the formula

Rm1,m2 =
2√
π

√
γm1 + γm2σ =

4√
3π

√
kT
Stm1

+
kT
Stm2

, (2.1.7)
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in the physical dimension d = 3. In the large St regime, which is the regime of validity
of our results, this formula confirms known results (see the discussion in [90]) and it is
known as the gas-kinetic model, after [1]. Let us notice that it is obtained without any use of
dimensional analysis; it is derived from basic equations, except for the stochastic model
of the turbulent fluid. It is not immediately clear, however, if we may modify our approach
to incorporate the concentration effects related to singularities described in [25, 64, 90].

In Section 2.7, finally, we investigate numerically the Smoluchowski equations, quan-
tifying in various ways the efficiency of aggregation of the turbulence model.

2.2 The microscopic model

The model used below will be of Smoluchowski type with random transport. However, the
description of its microscopic origin may help. Call D ⊂ Rd, d = 1, 2, 3, the space do-
main of the system, occupied by the fluid and by small rain droplets. The number N (t)
of droplets changes in time due to coalescence. Droplet motion is described in a Newto-
nian way by position and velocity

(
xi (t) ,vi (t)

)
, i = 1, ...,N (t). Droplets have masses

mi (t) taking values in the positive integers {1, 2, ...}. During the intertime between a
collision and the next one, the motion is given by

dxi

dt
= vi,

dvi

dt
= γmi

(
U
(
t,xi

)
− vi

)
where U (t,x) is the fluid velocity; we adopt a Stokes law for the particle-fluid interaction
and denote by

γmi = α(mi)(1−d)/d

the damping rate, α a positive constant (including the dynamic viscosity coefficient of the
fluid), and the term

(
mi
)1/d playing the role of the radius of the particle.

The rule of coalescence is crucial, see [20, 25, 45, 75, 78]. There are two typical mathe-
matical models: one is based on deterministic coalescence, the other on probability rates.
The first one is easier to describe: when two particles meet, they become a new single par-
ticle with mass given by the sum of the masses and momentum given by conservation of
momentum. For mathematical investigation of the macroscopic limit, this scheme is usu-
ally more difficult. Easier is thinking in terms or rate of coalescence: when two particles
are below a certain small distance one from the other, they have a certain probability per
unit of time to become a new single particle, with the mass and momentum law as above.
The kernels in Smoluchowski equations are the macroscopic footprint of rates.

The model based on rates has a flaw precisely in connection with the turbulence back-
ground we want to investigate here. Since coalescence happens due to a probability per
unit of time, if the time spent by two particles, at the prescribed distance of potential co-
alescence, is small, the probability that their encounter leads to coalescence is smaller.
This is in sharp contrast with the deterministic model where coalescence always happens,
at a certain distance, independently of the time spent nearby. In other words, in the model
based on rates, without employing an approximating strategy to compute terminal veloc-
ity, coalescence is facilitated by slow motion, which is false in practice and goes in the
opposite direction of understanding whether turbulence enhances coalescence.
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To avoid this bias towards slow motion, of say particles i and j, and leave velocity as
a studied attribute of the system, we maintain in their coalescence rate the factor |vi −
vj |. This factor multiplied by the time spent nearby is constant, on average, hence the
probability of coalescence is roughly constant.

Finally, since the probability of coalescence should depend on the particle surface,
main factor involved in the collision, we multiple the rate by the surface factor

smi,mj =
((
mi
)1/d

+
(
mj
)1/d)d−1

. (2.2.1)

Hence, summarising, in our work the adopted point of view is consistent with the case of
hydrodynamic motion, as in e.g. [25, 64], where the coagulation kernel is

E(i, j)smi,mj |vi − vj |, (2.2.2)

and the scalar E(i, j) can be regarded as collision efficiency between real droplets i and
j. For simplicity, we set E(i, j) = 1 in our phenomenological study.

2.3 The Smoluchowski-type model

A rigorous study of the link between the microscopic model and the macroscopic one
is under investigation, following [37, 36, 48, 73] where similar models have been already
treated. However, following the mean field paradigm we may safely choose the following
macroscopic model as a good one for the density evolution.

Denote by fm (t,x,v), m = 1, 2, ..., the density of droplets of mass m at position
x ∈ D having velocity v ∈Rd . Then (dropping the time variable) the density satisfies

∂fm (x,v)

∂t
+ divx (vfm (x,v))

+ γm divv ((U (t,x)− v) fm (x,v)) = Q+
m −Q−

m (2.3.1)

where γm = αm(1−d)/d, and Q+
m and Q−

m are the two collision terms as given in (2.1.5).
Crucial is the kernel |v′ − v′′|, as described above. The first collision term describes
the amount of new particles of mass m created by collision of smaller ones, with the
momentum conservation rule

nv′ + (m− n)v′′ = mv. (2.3.2)

The second collision term gives us the percentage of the density fm (x,v) of particles of
mass m which disappears by coalescence into larger particles.

In the next section, we explain how this model can be studied using techniques from
passive scalars, thus obtaining in (2.1.4) a simplified coagulation equation in which the
velocity of the particles is still a driving component of the coalescence process. We
postpone to the Appendix .1 (see also [31]) for a more rigourous heuristic of the scal-
ing limit from a coagulating microscopic particle system subjected to a common noise, to
a stochastic partial differential equation (SPDE), that eventually gives rise to the PDE (2.1.4).
Although it is not yet fully rigorous, we believe that it justifies the interest of this equation.
The eddy diffusion now occurs in the velocity variable.
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2.4 Stochastic model of turbulent velocity field

Similarly to a large body of simplified modeling of passive scalars, we consider a model
of velocity fluid which is delta-correlated in time, namely a white noise with suitable space
dependence. We may write

U (t,x) dt =
∑
k∈K

σk (x) dW
k
t (2.4.1)

where σk (x) are smooth divergence free deterministic vector fields on D and W k
t are

independent one-dimensional Brownian motions;K is a finite index set (or countable, with
some care on summability assumptions). In this case the term γmU (t,x) ·∇vfm (x,v)
must be interpreted as a Stratonovich integral (still written here in differential form for
sake of clarity)

γm
∑
k∈K

σk (x) · ∇vfm (x,v) ◦ dW k
t .

By the rules of stochastic calculus, it is given by an Itô-Stratonovich corrector plus an Itô
integral; precisely, the previous term is given by

−γ
2
m

2

∑
k∈K

σk (x) · ∇v (σk (x) · ∇vfm (x,v)) dt+ dL (t,x,v)

whereL (t,x,v) is a (local) martingale, the Itô term. The Itô-Stratonovich corrector takes
also the form

−γ
2
m

2
divv (C (x,x)∇vfm (x,v)) dt

where C (x,y) is the matrix-valued function given by the space-covariance function of
the noise

C (x,y) =
∑
k∈K

σk (x)⊗ σk (y) . (2.4.2)

Summarizing, the stochastic model, in Itô form, is

dfm (x,v) + (v · ∇xfm (x,v)− γm divv (vfm (x,v))) dt

− γ2m
2

divv (C (x,x)∇vfm (x,v)) dt

=
(
Q+
m −Q−

m

)
dt− dL (t,x,v) . (2.4.3)

Also for later reference, let us mention an example of noise, introduced by R. Kraichnan
[56, 57], relevant to our analysis. For the sake of simplicity of exposition, assume we are in
full space Rd, but modifications in other geometries are possible. Its covariance function
is space-homogeneous, C (x,y) = C (x− y), with the form

C (z) = σ2kζ0

ˆ
k0≤|k|<k1

1

|k|d+ζ
eik·z

(
I − k⊗ k

|k|2

)
dk. (2.4.4)
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The case ζ > 0 includes Kolmogorov 41 case ζ = 4/3. In this case, take k1 = +∞.
Then

C (0) = Aσ2

where the constant A is given by

ˆ
1≤|k|<∞

1

|k|d+ζ

(
I − k⊗ k

|k|2

)
dk.

2.5 The deterministic scaling limit

Following [35, 33, 42], we may consider small-scale turbulent velocity fields depending on
a scaling parameter and take their scaling limit. In the case of Kraichnan model above,
choose

k0 = kN0 → ∞

The result C (0) = Aσ2Id is independent of N , so that the Itô-Stratonovich corrector
becomes equal to (without loss of generality we set A = 1)

1

2
γ2mσ

2∆vfm (x,v) ;

and simultaneously we may have that the Itô term goes to zero. The final equation is
deterministic, and precisely given by

∂fm (x,v)

∂t
+ v · ∇xfm (x,v)− γm divv (vfm (x,v))

− γ2mσ
2

2
∆vfm (x,v) = Q+

m −Q−
m.

Now, for sake of numerical simplicity, we assume that all densities are uniform in x.
Then we have

∂fm (v)

∂t
−γm divv (vfm (v))− γ2mσ

2

2
∆vfm (v)

= (Q+
m −Q−

m)(f , f)(v)

(2.5.1)

where now the collision term Q+
m − Q−

m includes only functions of v. This is our final
equation for the density of droplets. It is parametrized by σ2, the intensity of noise covari-
ance which, in the approximation of this white noise model, corresponds to the concept of
turbulence kinetic energy, cf. [22]. Even though (2.5.1) is of variable v only, it is fundamen-
tally different from a Smoluchowski equation with only x variable, due to the presence of
velocity difference |v−v′| in the nonlinearity. This term is the source that turns diffusion
enhancement into coagulation enhancement.
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2.6 Formula for the average relative velocity

In order to approximate analytically the average value ⟨|v1 − v2|⟩ we adopt the mean
field viewpoint of Smoluchowski equations, where particles are independent. Therefore,
if pm (v) is the probability density of velocity of mass m, we have

Rm1,m2 =

¨
|v1 − v2| pm1 (v1) pm2 (v2) dv1dv2. (2.6.1)

The natural choice of pm (v) is the normalized density fm (v) /
´
fm (w) dwwhere fm (v)

is a solution of Smoluchowski equation. However, we have to avoid a dependence on the
initial conditions. We make the following heuristic argument. In the Smoluchowski sys-
tem, the linear terms

γm divv (vfm (v)) +
γ2mσ

2

2
∆vfm (v)

are associated with the transient phase which moves the initial distribution towards a
certain limit shape. Simultaneously and afterwards, the nonlinear terms shift mass from
lower to higher levels, but their impact on the modification of shape is minor. Therefore we
take, as pm (v) the invariant distribution of the linear part, which is a centered Gaussian
with covariance matrix 1

2γmσ
2Id (Id is the identity matrix):

pm ∼ N

(
0,

1

2
γmσ

2Id

)
.

The difference of two independent centered Gaussians, with covariances 1
2γm1σ

2Id and
1
2γm2σ

2Id is a centered Gaussian with covariance 1
2 (γm1 + γm2)σ

2Id. Therefore the
random quantity v1 − v2 has this law. By properties of Gaussians,

v1 − v2
(d)
=

√
1

2
(γm1 + γm2)σZ

where Z is distributed as N(0, Id), and

⟨|Z|⟩ =
√
2
Γ(d+1

2 )

Γ(d2)

since |Z| has a Chi distribition with parameter d. Thus we have

Rm1,m2 = ⟨|v1 − v2|⟩ =
Γ(d+1

2 )

Γ(d2)

√
γm1 + γm2σ.

By (2.1.3), σ2 = 4
dτUkT and taking d = 3, Γ(2) = 1, Γ(32) =

√
π
2 , we arrive at

Rm1,m2 =

√
4

3

2√
π

√
(γm1τU + γm2τU)kT

=
4√
3π

√
kT
Stm1

+
kT
Stm2

,
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as announced in (2.1.7).
Up to the multiplicative constant, this also agrees with the formula obtained by Abra-

hamson [1]. Indeed, in [1] the energy dissipation rate ε ∼ kT /τU, clear from the energy
balance of Navier-Stokes equation since all three quantities correspond to the turbulent
fluid:

∂

∂t

(
1

2
|U|2

)
= −ε+ other terms.

2.7 Numerical results

For the convenience of numerical simulations, we consider from now on only finitely many
mass levels. That is, we truncate (2.5.1) into a finite system of PDE-s whose solution is
(f1, f2, ..., fM ), for some integerM . This amounts to replacing the

∑∞
n=1 in the loss term

Q−
m (2.1.5) by

∑M
n=1, with everything else unchanged. Correspondingly, in the particle

system (2.1.2), each particle’s mass is restricted tomi ∈ {1, 2, ...,M}. The interpretation
is that when the mass of a rain droplet exceeds the threshold M , it falls down and hence
exits the system.

To understand the effect of the turbulent velocity field on coagulation, we identify and
build on a key quantity, Mσ

1 (t) below, which is essentially the first moment of the mass in
the system at time t. Since M < ∞ in the truncated model, eventually all masses leave
the system, hence we measure the efficiency of coagulation by looking at how fast this
first moment decays in time, with respect to different values of σ. In the last part of this
section, using results on the total mass, we will build a procedure to estimate the mean
Collision Rate (see section 2.6), validating our theoretical results in simple settings.

Total mass

To this end, we define

Mσ
1 (t) :=

M∑
m=1

m

ˆ
fm(t,v) dv , (2.7.1)

which we also call “total mass” for simplicity. Analyzing the nonlinearity of our PDE, we
notice that

M∑
m=1

ˆ
m(Q+

m −Q−
m) dv ≤ 0, ∀t (2.7.2)

implying that dMσ
1 (t)/dt ≤ 0, that is, the function (2.7.1) is non-increasing in time. More-

over, for the infinite systemM = ∞, equality is achieved in (2.7.2), hence we see that the
mass deficiency in the finite system is not lost at all and it is simply sent to higher order
(> M ) of mass-type densities.

Indeed, in view of the form of the negative part of coagulation operator Q−
m, every

coagulation at the level of fm, fn, with m + n > M , represents a decrease in mass
that, ideally, increases the density fm+n that is outside of our system. In particular, fixing
M <∞, in the framework of rain formations, is equivalent to saying that such a threshold
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represents the largest droplets that are falling outside of the cloud and do not interact any
more with the system. As such M = ∞ is just the precise abstract setting in which
no rainfall is present and serves as a limiting behavior for the single masse m ∈ N,
and as a right derivation of the conserved mass in the system as all: both for the falling
particles and the ones remaining in the cloud. Hence, the more and faster the quantity
Mσ

1 (t) decreases over time, the faster and richer the coagulation to higher mass-type is
achieved.

Faster barrier exit time

The second quantity we consider is closely linked to the enhanced coagulation due to
turbulence that we will establish with the “total mass” and gives more quantitative infor-
mation. We will consider the same numerical setting as we will do above, and estimate a
decay law that links the first time that the total mass Mσ

1 (t) drops below a certain level
to the turbulence parameter σ. Specifically, let

mT
0 := inf

t∈[0,T ]
M0

1(t)

and define a sequence of “barrier exit times” (τσ)σ≥0

τσ := inf
{
t ≥ 0, Mσ

1 (t) ≤ mT
0

}
∧ T. (2.7.3)

Since t 7→ M0
1(t) is decreasing, we have that τ0 = T . Since Mσ

1 (t) is expected to decay
faster as σ increases, σ 7→ τσ should be decreasing.

Figure 2.1: M = 1; Decay of Mσ
1 (t) for t ∈ [0, 1], with maximal mass level M = 1,

initial density f1(0,v) of mass m = 1 concentrated on the set v ∈ [−1/2, 1/2]. The
parameter σ2 ranges from a sample in the set 0.05 to 10 (around 30 points). A visible
increase in coagulation is present at the increase of σ2.
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2.7.1 On a limiting behavior: M = 1

Figure 2.2: M = 1; On the left, a plot of log (Mσ
1 (t)) versus log(t) in the time window

[0, 2] at fixed σ2 = 6, and on the right a close-up in the time window [1, 2], suggest that
t 7→ Mσ

1 (t) is of inverse power 1. However, for small time, the dependence is different
and could represent a transient behavior.

Figure 2.3: M = 1; A plot of the barrier exit time τσ with respect to the turbulence
parameter σ, and the corresponding log-log regression in the time window [0, 1] yields
τσ ∝ σ−2/3.

We perform a numerical simulation of the system (2.5.1) for dimension d = 1, max-
imal mass level M = 1 and time window [0, 2], with a semi-implicit method to compute
its solutions, with time step dt ∼ 10−4 and spatial step dv ∼ 10−2. Thanks to the fast
decay to zero as |v| → ∞ of the solution [31], we truncate the velocity variable in the
range v ∈ [−20, 20] both for the numerical integration of the nonlinearity and for the
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Figure 2.4: M = 1; A plot of the barrier exit time τσ with respect to the turbulence pa-
rameter σ, and the corresponding log-log regression in the time window [0, 2], taking into
consideration only those exit times in the interval [1, 2], yields τσ ∝ σ−1.

total mass (2.7.1).
In Figure 2.1, we plot the function (2.7.1) for different values of the turbulence pa-

rameter σ2 that range from 0.05, that we refer to as the non-turbulent case, to 10, which
represents an intense eddy diffusivity. It shows a faster decay correlated to the increase
of turbulence, and a speedup coagulation process.

For fixed σ2 = 6 we performed a log-log plot in time window [0, 2] as shown in Figure
2.2 that shows t 7→ Mσ

1 (t) is of inverse power 1, after a transient time period.
We see from Figures 2.3 and 2.4 that the expected behavior on the barrier time is

obtained, and the curve exhibits a power like decay, with an asymptotic limit to zero. In
Figure 2.3, we performed a log-log plot and regression taking T = 1 and it yields τσ ∝
σ−2/3 (here and in the sequel ∝ denotes proportional to), whereas the same analysis in
Figure 2.4 taking T = 2 and considering only those exit times that are in the interval [1, 2]
yields τσ ∝ σ−1.

We conjecture that the function (2.7.1) can be expressed as (for t suitably large, say
t > 1 in our simulations)

Mσ
1 (t) ∼

1

Ad(σ)t+Mσ
1 (0)

−1 , (2.7.4)

for some functionAd that depends on dimension d, and thatA1(σ) ∝ σ. Here and in the
sequel, ∼ denotes asymptotically for large t.

A rough explanation of the numerical findings may be the following one, that will be
explored more closely in a future work, since - as shown below - our understanding is still
incomplete. When M = 1, the density f (t,v) of the unique level m = 1 satisfies the
identity

d

dt

ˆ
f (t,v) dv = −

¨ ∣∣v − v′∣∣ f (t,v) f (t,v′) dvdv′
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because the differential terms cancel by integration by parts. Assume that, at least after
a transient time (confirmed by Figure 2.2), up to a small approximation,

f (t,v) ∼ α (t) f0 (v)

namely the decay of f (t,v) is self-similar [23]. Then (up to approximation) α′ = −σ0α2

where
σ0 =

¨ ∣∣w −w′∣∣ f0 (w) f0
(
w′) dwdw′

is an average variation of velocity under f0, namely

α (t) ∼ 1

σ0t+ C

after an initial transient period. Moreover, speculating that the standard deviation of f0
should be of order σ (since the dispersion produced by the linear differential operator is
proportional to σ), we expect that σ0 increases linearly with σ. The numerical results of
Figures 2.3 and 2.4 show that this looks the trend for sufficiently large time but for a short
time another power, σ2/3, emerges, that should be understood. As for the behavior in time,
since this computation can be carried out for every d > 1, when M = 1, we believe that
the decay in time is dimension-independent.

Figure 2.5: M = 3; Decay of Mσ
1 (t) for t ∈ [0, 2], with maximal mass levelM = 3, initial

density f1(0,v) of mass m = 1 concentrated on the set v ∈ [−1/2, 1/2], fj(0,v) =
0, j ̸= 1. The parameter σ2 ranges from a sample in the set 0.05 to 10 (around 30 points).
A visible increase in coagulation is present at the increase of σ2.

2.7.2 Localized mass concentration: M > 1

When considering M > 1, we can expect two natural settings to investigate: the one
where initially all the mass is concentrated on the first level, i.e. m = 1, and the one
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Figure 2.6: M = 3; On the left, a plot of log (Mσ
1 (t)) versus log(t) in the time window

[0, 2] at fixed σ2 = 10, and on the right a close-up in the time window [1, 2], suggests that
t 7→ Mσ

1 (t) is of inverse power 0.8. However, for small time, the dependence is different
and could represent a transient behavior.

that follows the theoretical assumptions of [48, 31, 36]. Concerning the first setting, we
perform a numerical simulation of the system (2.5.1) for dimension d = 1, maximal mass
level M = 3 and time window [0, 2].

In Figure 2.5, we plot the function (2.7.1) for different values of the turbulence param-
eter σ2 that ranges from 0.05, that we refer to as the non-turbulent case, to 10, which
represents an intense eddy diffusivity. As in the case of M = 1, it shows a faster decay
correlated to the increase of turbulence, and a speedup coagulation process.

For fixed σ2 = 10, we perform a log-log plot in time window [0, 2] as shown in Figure
2.6 that shows t 7→ Mσ

1 (t) is of inverse power approximately of 0.8, after a transient time
period. Thus, we see a difference in the behavior of the “total mass” when M increases:
this is not unexpected when all the initial mass is concentrated in the first layer m = 1.
In fact, analyzing the coagulation operator (2.1.5), we see that Q+

m is responsable for the
generation of bigger particles in higher mass-levels and it is dominant when all the mass
of the system is selected as a single type. Therefore, for a transient period, we see an
increase in mass for m ̸= 1 and as such a slower decay of Mσ

1 (t), the total mass.
For this reason, as shown in Figure 2.7, we study the decay of the single mass m ∈

{1, 2, 3}, where analogous to (2.7.1), the single mass at level m = k is defined as

Mσ
1 (t)|m=k := k

ˆ
fk(t,v) dv. (2.7.5)

The figure shows the regression curves plotted with dashed lines. As in Figure 2.2, for
m = 1we maintain a relation of inverse power in time, approximately of 1, after a transient
time period. As a further exploration, we see from Figure 2.8 that the same behavior is
present, and the curve exhibits a power like decay, with an asymptotic limit to zero.

Concerning the behavior of the barrier time, we see from Figures 2.9 and 2.10 that the
curve exhibits a power like decay, with an asymptotic limit to zero.
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Figure 2.7: M = 3; Decay of Mσ
1 (t) for the total mass, and the single behavior

Mσ
1 (t)|m=k of each lever k ∈ {1, 2, 3} in the case σ2 = 10. With the dashed lines,

one can see the expected limiting behaviors of each curve and their relative power. This
suggest a log-logistic behavior of the full system with M <∞.

In Figure 2.9, we perform a log-log plot and regression taking T = 1 and it yields
τσ ∝ σ−2/3, whereas the same analysis in Figure 2.10 taking T = 2 and considering only
those exit times that are in the interval [1, 2] yields τσ ∝ σ−1.

Figure 2.8: M = 3, m = 1; On the left, a plot of log (Mσ
1 (t)|m=1) versus log(t) in the

time window [0, 2] at fixed σ2 = 10, and on the right a close-up in the time window [1, 2],
suggest that t 7→ Mσ

1 (t)|m=1 is of inverse power 1. This is consistent with the case
M = 1.
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Figure 2.9: M = 3; A plot of the barrier exit time τσ with respect to the turbulence
parameter σ, and the corresponding log-log regression in the time window [0, 1] yields
τσ ∝ σ−2/3.

Figure 2.10: M = 3; A plot of the barrier exit time τσ with respect to the turbulence
parameter σ, and the corresponding log-log regression in the time window [0, 2], taking
into consideration only those exit times in the interval [1, 2], yields τσ ∝ σ−1.

Thus, when M > 1, and the initial mass is located on a single level, we lose the
conjectured behavior of Subsection 2.7.1, and we can only expect that the function (2.7.1)
has the same asymptotic limit as

Mσ
1 (t) ≳

1

Ad(σ)t+Mσ
1 (0)

−1 ,

for some function Ad that depends on dimension d, and that A1(σ) ∝ σ. A rough expla-
nation of this numerical finding may be the following one: when M > 1 and the density
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f (0,v) is in the unique level m = 1, from (2.1.5) we see that the poisitive part Q+
m is

greater than the negative part Q−
m for a transient period of time in which, form > 1 mass

should increase before decay, suggesting a delay, and as such a reported slower decay,
of the “total mass”. Also supporting this idea are the numerical simulations performed on
the rapidity of decay for levelm = 1. Here Q+

1 = 0, and we see the same behavior as the
limiting case in which only one type of mass is considered.

Figure 2.11: M = 3; Decay of Mσ
1 (t), t ∈ [0, 2]. Initial density fj(0,v), j = 1, 2, 3

concentrated on v ∈ [−1/2, 1/2], following [48]. The parameter σ2 ranges in the set
0.05 to 10. A visible increase in coagulation is present. Dashed lines are the single mass
for m = 1, Mσ

1 (t)|m=1.

2.7.3 Diffused mass concentration: M > 1

Here we propose a first analysis of the aformentioned second setting: the one that follows
the theoretical assumptions as in [48, 31, 36]. In detail, the initial mass is not concen-
trated only in one layer, but is generated according to two probability distributions so that
P(m1(0) = m) = r(m) with

∑M
m=1 r(m) = 1, and deterministic probability densities

functions gm(v), m = 1, 2, ...,M , satisfying suitable regularity and decay assumptions,
such that

f0m(v) = r(m)gm(v), ∀m. (2.7.6)

As such, we select initial conditions compactly supported in a small range of velocity, i.e.
[−1/2, 1/2], to better look at the behavior of the mass decay through time. We note here
that this is the natural setting that generalizes the case ofM = 1. We perform a numerical
simulation of the system (2.5.1) for dimension d = 1, maximal mass level M = 3 and
time window [0, 2].
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In Figure 2.11, we plot the function (2.7.1) for different values of the turbulence pa-
rameter σ2 that ranges from 0.05, that we refer to as the non-turbulent case, to 10, which
represents an intense eddy diffusivity. As in the case of M = 1, it shows a faster decay
correlated with the increase of turbulence, and a speedup coagulation process. Plotted
with dotted lines we show the decay of mass m = 1. This behavior is analogous for
m = 1, 2, 3.

For fixed σ2 = 10 we perform a log-log plot in time window [0, 2] as presented in
Figure 2.13. It shows that t 7→ Mσ

1 (t) is of inverse power approximatly 1, after a transient
time period dependent on the finiteness of the initial condition. As conjectured in the case
M = 1, we see a consistency in the behavior of the “total mass” when M increase: the
initial condition is active everywhere, maintaining the structure of a probability density,
thus making the results not unexpected. In fact, analyzing the coagulation operator (2.1.5),
we see that Q+ is not dominant when all the masses of the system are spread over all
the analyzed layers. Therefore, we see an immediate decrease in mass for m ̸= 1 and as
such a maintained global decay of Mσ

1 (t), the total mass.

Figure 2.12: M = 3; Mσ
1 (t) for the total mass and the single levels Mσ

1 (t)|m=k , k ∈
{1, 2, 3} for σ2 = 10. In dashed lines we see the expected limiting behaviors and the
relative power of order ≈ 1, suggesting consistent log-logistic behaviors as conjectured
for system with M <∞.

For this reason, as shown in Figure 2.12, we study the decay of the single mass m ∈
{1, 2, 3}. The figure shows the regression curves plotted with dashed lines. As in Figure
2.2, we maintain a relation of inverse power in time, approximately of 1, after a transient
time period. As a further exploration, we see that the same behavior is present, and the
curve exhibits a power like decay, with an asymptotic limit to zero.

Concerning the behavior of the barrier exit time, we see from Figures 2.14 and 2.15 that
the curve exhibits a power like decay, with an asymptotic limit to zero. In Figure 2.14, we
perform a log-log plot and regression taking T = 1 and it yields τσ ∝ σ−2/3, whereas the
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Figure 2.13: M = 3; On the left, a plot of log (Mσ
1 (t)) versus log(t) in the time window

[0, 2] at fixed σ2 = 10, and on the right a close-up in the time window [1, 2], suggest that
t 7→ Mσ

1 (t) is of inverse power ≈ 1. A transient behavior is present due to the finite
initial condition.

Figure 2.14: M = 3; A plot of the barrier exit time τσ with respect to the turbulence
parameter σ, and the corresponding log-log regression in the time window [0, 1] yields
τσ ∝ σ−2/3.

same analysis in Figure 2.15 taking T = 2 and considering only those exit times that are
in the interval [1, 2] yields τσ ∝ σ−1. Thus, when M > 1, and the initial mass is spread
over all the mass levels, we are close to the conjectured behavior of previous section, and
we can expect that the function (2.7.1) has the same asymptotic limit as

Mσ
1 (t) ∼

1

Ad(σ)t+Mσ
1 (0)

−1 , (2.7.7)
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Figure 2.15: M = 3; A plot of the barrier exit time τσ with respect to the turbulence
parameter σ, and the corresponding log-log regression in the time window [0, 2], taking
into consideration only those exit times in the interval [1, 2], yields τσ ∝ σ−1.

Mσ
1 (t)|m=1 ∼

1

A1
d(σ)t+Mσ

1 (0)|
−1
m=1

, (2.7.8)

for some function Ad that depends on dimension d, and that A1(σ) ∝ σ. A rough expla-
nation of this numerical finding may be the following one: when M > 1 and the density
f (t,v) is spread over all levels m = 1, ...,M , from (2.1.5) we see that the positive part
Q+
m is already negligible with respect to that of Q−

m, for all m. In particular, the masses
are drawn immediately to masses > M , that we interpret as falling rain outside of our
system. Supporting this we see in Figure 2.12 no transient period of time in which, for
m > 1, mass increases before decaying, suggesting no delay, and as such the decay of
the “total mass” is maintained. Note that Q+

1 = 0 and, as expected, we see the same
behavior as the limiting case in which only one type of mass is condidered.

We summarize in Table 2.1 the precise fitting obtained through non-linear regression
for all the analyzed quantities. The table shows accordance with our proposed decay
behavior and suggests a future analysis for different initial conditions and higher dimen-
sions.

M = 1 M = 3 localized M = 3 diffused
τσ[0,1] -0.66 -0.69 -0.68
τσ[1,2] -0.94 -0.92 -0.91

Mσ
1 (σ

2 = 10) -0.96 -0.81 -0.94

Table 2.1: Table showing precise fitting parameters, on a log-log scale, for the decay in
time of Mσ

1 (t) and for the exit barrier τσ.
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2.7.4 Mean Collision Rate

Finally, in this segment we propose numerical simulations that validate the theoretical
behavior proposed in Section 2.6.

In particular, we have analyzed the same setting as in 2.7.1, which either M = 1 or
M = 3. Computed with the procedure that we will explain below, all the case agree with
equation 2.6.1 and the theory proposed in 2.6. As such, for visual clarity, here we illustrate
results in the simpler caseM = 1, withm = 1, and compute the behavior ofR1,1 and its
law respect to the fluctuation parameter of the velocity, σ.

The same simulations, with M = 3, focusing on different mass level m ∈ {1, 2, 3}
and different initial conditions are briefly discussed in Appendix .3, Figure 19. There, com-
puted limiting value Rm1,m2 show accordance with the simulations with M = 1.

From here on, we fix γ = 1 since objective of the paper is the understanding of the
dependence on the turbulent kinetic energy of collision rateRm,m. However, we note that
this parameter is important to the complete understanding of the behavior of this kind of
systems, thanks to is relation with Stokes Number, and as such would be subject of future
studies.

We know from 2.6.1 that a candidate estimation for Rm1,m2 is obtain throughout the
steady state density of the system. For this reason, concerning the simulation, indepen-
dently on M , we selected a concentrated initial condition with moderate velocity and we
let the system evolve in the time frame t ∈ [0, 4], producing solution (fσm(t, v))m.

Since no mass conservation is present for the finite system M < ∞, and density is
moved to higher levels not preserving the starting probability, we normalize at each time
step the density fσ(t,v), solution of our Smoluchowski equation, i.e. we consider

ξσ1 (t,v) := fσ1 (t,v)

(ˆ
fσ1 (t,v)dv

)−1

and, with this, the product probability ξ1(v)dv⊗ξ1(w)dw. We are able to compute a time
dependent, mean in velocity, collision rate:

Rg(t, σ) :=

¨
|v −w|ξσ1 (t,v)ξσ1 (t,w)dvdw

In Figure 2.16, is shown the result for M = 1, m = 1 and this re-normalize colli-
sion rate. Each of the curves Rξg(σ) as an inverse behavior of a log-logistic function with
exponent 1 in σ, suggesting a plateau in time. A such, this time dependent probability
distribution on the product space of the velocity domains as a limiting density and we can
argue that

Rg(t, σ) = Em,m[|v −w|] →t→∞ RM1,1.

In fact, as shown in Appendix .3, Figure 20, the computed quantity ξ(T,v) approxi-
mate the theoretical limiting density p1(v) ∼ N (0, σ2), for this reason we initialize the
evolving system with the proposed steady state condition f10 (t,v) := ξ(T,v), for differ-
ent σ.

This means that we expect ξ(T, v, σ) to be closer to the steady state distribution af-
ter a small time and the computed Rg(t, σ) will be ∝ Rmi,mj . As such, we restart the
system with this new initial condition. To take into account that the velocity is spread,
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Figure 2.16: M=1; concentrated initial ccondition f0(v). The re-normalized time depen-
dent collision rate Rg(t, σ)|[0,2] obtained with the new probability density ξσ1 ⊗ ξσ1 .

with value greater than one, and the total density near this high value is not negligible in
comparison with the concentrated initial condition that we used throughout our experi-
ment, we enlarged the velocity domain and the time domain to produce stable results on
the decay of the masses and also on the mean rate Rg(t, σ).

In Figure 2.17 we show result on the re-started system, conferming the asymptotic limit
of the collision rate and an increase in σ, the turbulent parameter of the system. We see a
small flactuating period in which the rate is not increasing and than a fast stabilization that
is linked to the velocity displacement of the steady state solution. In fact the new initial
density condition produce, as expected, the same decay in the mass (since this depends
only on σ and integral of the initial condition), but for a transient period the interaction
kernel Qm(f) is much stronger that the speed in which diffusion of the Laplacian act,
since the new initial condition is not negligible for high value of velocity. As such the
plateau, which agrees with Figure 2.16, is reached after a small period of activation of the
diffusion parameter.

Concluding, in Figure 2.18 we see that a linear relation with σ is present with angular
coefficinet near 1, validating the expected behavior ofR1,1 with theoretical equation 2.6.1.
This is expected and in line with the previuos reasoning and also with the small transient
initialization.

2.8 Conclusion

In this article, we presented a new kinetic model of a modified Smoluchowski PDE system
with discrete and finite mass levels, that takes advantage of small scale turbulence and
eddy diffusion in the velocity variable to enhance coagulation. We presented the derivation
of the PDE system from a particle-fluid model subjected to a transport-type noise, and we
analyzed numerically the behavior of its solutions. We showed that coagulation efficiency
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Figure 2.17: M=1; Initial condition f0(v) = ξ(T, v) approximation of stationary den-
sity. The re-normalized time dependent collision rateRg(t, σ) show stationary behavior.
Darker line corresponds to higher sigma in the set [0.05, 10].

Figure 2.18: M=1; Initial condition f0(v) = ξ(T, v) re-normalized ending point of the sim-
ulation. Plotted limit in time Rg(t, σ) show increase with σ. A linear regression in σ is
performed with mean error 0.001.

increases steadily with the increase of turbulence and, moreover, a power-law decay in
time and in the turbulence parameter is present.

Conluding, we have presented analytic and numerical presentation to understand the
key factor of the collision rate as the average relative velocity between particles.
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.1 Derivation of (2.1.4) from particle-fluid interaction

We present the sketch of the scaling limit to an SPDE from particle-fluid interaction for the
truncated model (at threshold M ).

For any d ≥ 1 and N,M ∈ N, consider an interacting particle system with space
variable xNi (t) in Td, velocity variable vNi (t) in Rd, mass variable mN

i (t) in a finite set
{1, ...,M}, and initial cardinalityN(0) = N . Between coagulation events, the motion of
an individual active particle obeys (recall (2.1.2))

dxNi (t) = vNi (t)dt,

dvNi (t)

=
α

(mN
i (t))

1−1/d

[∑
k∈K

σk(x
N
i (t)) ◦ dW k

t − vNi (t)dt

]
, i ∈ N (t), (.1.1)

where

• σk(x) : Td → Rd, k ∈ K is a given (at most countably infinite) collection of
smooth, deterministic, divergence-free vector fields.

• {W k
t }k∈K is a given collection of standard Brownian motions in R.

• ◦ denotes Stratonovich integration, according to Wong-Zakai principle [91].

• α is a positive constant that appears in Stokes’ law, that includes the dynamic vis-
cosity coefficient of the fluid.

• N (t) ⊂ {1, 2, ..., N} is the set of indices of particles that are still active at time t,
with N (0) = {1, 2, .., N}.

After each coagulation, the index set N (t) will change (decrease), and the velocity of
a still-active particle i will be reset according to the conservation of momentum, to be
described a few paragraphs below.

We note again that the velocity component of the dynamics (.1.1) obeys Stokes’ law
for the frictional force exerted on a spherical particle immersed in a fluid, cf. [64, 90],
with the fluid velocity idealized by the white noise velocity field U(t,x) (2.4.1) (that acts
simultaneously on all particles). This goes in the spririt of Kraichnan’s model [58, 53].

We denote the d× d spatial covariance matrix of U(t,x) by

C(x,y) :=
∑
k∈K

σk(x)⊗ σk(y).

Moreover, for any fixed x ∈ Td we denote the second-order divergence form elliptic oper-
ator, acting on suitable functions on Rd

(LC,xv f)(v) :=
1

2
divv (C(x,x)∇vf(v)) .
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With suitable choice of {σk}k∈K , see [42, 35, 32], we can have that

LC,xv ≡ σ2

2
∆v, ∀x. (.1.2)

Each particle i ∈ N (t) has a mass mN
i (t) ∈ {1, 2, ..,M} which changes over

time according a stochastic coagulation rule to be described below. The initial mass
mi(0), i = 1, ..., N , are chosen i.i.d. (independent and identically distributed) from
{1, 2, ..,M} according to a probability distribution so that P(m1(0) = m) = r(m)
with

∑M
m=1 r(m) = 1. We are also given deterministic probability density functions

gm(x,v) : Td × Rd → R+, m = 1, 2, ...,M , satisfying suitable regularity and decay as-
sumptions, such that ifmi(0) = m then the initial distribution of (xi(0),vi(0)) is chosen
with probability density gm(x,v), independently across i. We denote

f0m(x,v) := r(m)gm(x,v), ∀m. (.1.3)

The rule of coagulation between pairs of particles is as follows. Let θ(x) : Rd → R+

be a given smooth symmetric probability density function in Rd, that is,
´
θdx = 1, with

compact support in B(0, 1) (the unit ball around the origin in Rd) and θ(0) = 0. Then, for
any ε ∈ (0, 1), denote θε(x) : Td → R+ by

θε(x) := ε−dθ(ε−1x), x ∈ Td.

Suppose the current configuration of the particle system is

η = (x1,v1,m1,x2,v2,m2, ...,xN ,vN ,mN )

∈ (Td ∪ ∅)N × (Rd ∪ ∅)N × {1, ...,M, ∅}N

where (xi,vi,mi) denotes the position, velocity and mass of particle i, by convention if
particle i0 is no longer active in the system, we set xi0 = vi0 = mi0 = ∅ (a cemetery
state). Independently for each pair (i, j) of particles, where i ̸= j run over the index set
of active particles in η, with a rate (derived from the collision kernel as in [25], compare
with (2.2.2))

smN
i ,m

N
j

|vi − vj |
N

θε(xi − xj) (.1.4)

we remove (xi,vi,mi,xj ,vj ,mj) from the configuration η, and then in casemi+mj ≤
M , we add (

xi,
mivi +mjvj
mi +mj

,mi +mj , ∅, ∅, ∅
)

with probability mi
mi+mj

, and instead add(
∅, ∅, ∅,xj ,

mivi +mjvj
mi +mj

,mi +mj

)
with probability mj

mi+mj
. We call the new configuration obtained this way by S1

ijη and
S2
ijη respectively. On the other hand, in case mi + mj > M , then after removing

(xi,vi,mi,xj ,vj ,mj) from η we do not add a new element.
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In words, if (i, j) coagulate, we decide randomly which ofxi andxj is the new position
of the mass-combined particle, provided that the combined mass does not exceed the
threshold M . If the position chosen is xi, then we consider j as being eliminated (no
longer active) and the new particle has index i; whereas if the position chosen is xj , then
we consider i as being eliminated and the new particle has index j. On the other hand, the
velocity of the mass-combined particle is obtained by the conservation of momentum as
in perfectly inelastic collisions.

Note that the form of the coagulation rate (.1.4) is such that a pair (i, j) can coagulate
only if |xi−xj | ≤ ε, that is, their spatial positions have to be ε -close. We are interested in
the case when ε = ε(N) → 0 asN → ∞, so that the interaction is not of mean-field type,
but local. Correspondingly, the final equation we get (see (.1.7)) is local in the x variable.
In particular, choosing ε = O(N−1/d) ensures that each particle typically interacts with
a bounded number of others at any given time, which is the analogue in our continuum
context, of nearest-neighbor or bounded-range interactions common in interacting particle
systems defined on lattices, see [54] and references therein.

The essential feature of our coagulation rate is the presence of |vi−vj |, which results
in the same velocity difference appearing in the limit PDE (2.1.4). Although such rates are
widely accepted in the physics literature on rain formations, our approach views v as an
active variable; we do not approximate it by a constant that depends on other physical
parameters. Diffusion enhancement feeds back on coagulation enhancement through the
presence of this velocity difference. As such, our Smoluchowski equation is new with
respect to existing literature.

For eachN ∈ N, T ∈ (0,∞) andm ∈ {1, ..,M}, we denote the process of empirical
measure on position and velocity of mass-m particles in the system by

µN,mt (dx, dv) : =
1

N

∑
i∈N (t)

δ(xN
i (t),vN

i (t))(dx, dv)1{mN
i (t)=m}

∈ M1,+(T
d × Rd) (.1.5)

where M1,+ := M1,+(Td × Rd) denotes the space of subprobability measures on
Td × Rd equipped with weak topology. The choice of the initial conditions for our sys-
tem implies that P-a.s.

µN,m0 (dx, dv) ⇒ f0m(x,v)dxdv, as N → ∞

form = 1, ...,M , where ⇒ indicates weak convergence of probability measures, and the
limit f0m (.1.3) is absolutely continuous. We conjecture that, under the assumption of local
interaction, i.e.

lim
N→∞

ε(N) = 0, lim sup
N→∞

ε(N)−d

N
<∞, (.1.6)

for every finite T , the collection of empirical measures
{
µNt (dx, dv) : t ∈ [0, T ]

}M
m=1

converges in probability, asN → ∞, in D ([0, T ],M1,+)
⊗M , where D ([0, T ],M1,+) is

the space of càdlàg functions taking values in M1,+ equipped with the Skorohod topol-
ogy, towards an absolutely continuous limit {fm(t,x,v) : t ∈ [0, T ]}Mm=1. which is the
pathwise unique weak solution to a Smoluchowski-type SPDE system (.1.7). The latter SPDE
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degenerates to the PDE system we study in this paper (2.1.4) when the Itô term is switched
off. Through recent progresses in stochastic fluid mechanics, cf. [42, 35, 32, 33, 44], there
exist specific limiting procedures that allow, in principle, to obtain the PDE from the SPDE by
carefully choosing the vector fields {σk(x)}k∈K . While we do not provide a rigorous proof
here, we think that this heuristic argument is sufficient to justify our interest in studying
our PDE system.


dfm(t,x,v) =

(
−v · ∇x + γmdivv (v·) +

γ2mσ
2

2
∆v

)
fm(t,x,v)dt

−γm
∑

k∈K σk(x) · ∇vfm(t,x,v) dW
k
t + (Q+

m −Q−
m) (f , f)(t,x,v).

fm(·,x,v)|t=0 = f0m(x,v), m = 1, ...,M.

(.1.7)

.2 Explanation of the link (2.1.3)

Recall the stochastic equation 2.3.1. In real turbulent fluids, the fluid vector field U(t)
is not exactly white in time, but has a correlation length approximately τU. Alleviating
notations, let us only analyze the transport term involving U(t) and introduce a time delay
of duration τU:

γm divv ((U(t)) fm(t)) = γmU(t)∇vfm(t)

= γmU(t)∇vfm(t− τU) + γmU(t)∇v (fm(t)− fm(t− τU))

= γmU(t)∇vfm(t− τU)

− γmU(t)∇v

(ˆ t

t−τU
γmU(s)∇vfm(s)ds

)
+ other terms, (.2.1)

where the first equality is due to U(t) independent of v, and in the last line we applied the
equation 2.3.1 a second time (assuming the other terms are minor).

In the limit τU → 0, U(t) approaches white noise in time, the first term of (.2.1) yields
a local-martingale, the Itô term. From the second term of (.2.1) emerges a second-order
elliptic operator

−γ2m∇v

(ˆ t

t−τU
U(t)⊗U(s)∇vfm(s)ds

)
that in the limit τU → 0 is expected to converge to

−1

2
γ2mdivv (C(0)∇vfm(t)) = −1

2
γ2mσ

2∆vfm(t).

Since the turbulence kinetic energy kT is the half-trace of the velocity covariance tensor
[22], idealizing the tensor structure of U(t)⊗U(s) with |t− s| ≤ τU, we may have that

1

2
U(t)⊗U(s) ∼ kT

d
Id, |t− s| ≤ τU
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Figure 19: M = 3; Plotted estimated Rm1,m2(σ) with mj ∈ {1, 2, 3}. A linear depen-
dence in σ is performed with mean error between 10−2 and 10−3.

and consequently,
1

2

ˆ t

t−τU
U(t)⊗U(s)ds ∼ τU

kT
d
Id.

This yields σ2

2 = 2τUkT
d as claimed in (2.1.3).

In the above argument, it is crucial that we can take τU very small while having γ of
order 1. With St = 1/(γτU), the argument thus works only when St is very large, and the
regime where St is of order 1 requires a different analysis, consistent with the findings of
[1, 25, 64, 90].

.3 Mean Collision Rate M > 1 and Guassianity assumption

Using the same method proposed in Section 2.7, we obtain analogous result for M = 3.
We analyzed two initial condition: a localized one in the mass m = 1, and a theoretical
one following [48]. In both of this case we used the restarting limiting density ξT either av-
eraged { 1

M ξ
1
T ,

1
M ξ

2
T ,

1
M ξ

3
T } or localized {ξ1T , 0, 0} obtaining analogous results. In Figure

19, the case of localized density is shown with all combination of Collision Rate, showing
agreement with the theory.

Finally, in Figure 20, we show the comparison between expected steady state probabil-
ity and computed starting stationary solution ξT (v), in the case M = 1 and T = 4. The
difference inL2 norm of the two function is less then 10−1, as per the difference between
theoretical Rmi,mj and computed Rmi,mj (T ) estimated in less than 10−2, showing the
same linear behavior.
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Figure 20: Solid line ξ(T, σ) where darker colors means higher σ. Dashed lines are the
Gaussian densities N (0, σ2). The supremum norm and the L2 norm of the difference
differ from zero around 5% to 10% respectively.



Chapter 3

Future directions: two-point motion
and a unified theory

In Chapter 2 a Smoluchowski type equation is derived to study the collision rate of inertial
particles in high stokes number regime under the effect of a turbulent fluid.

While this regime is of interest for astrophysical context, it has less impact for atmo-
spheric physics, in which particles have, usually, low to moderate St numbers. In particu-
lar the regime we have recovered is the same of Abrhamson [1], which is a limiting behavior
of coagulating particle akin to gas-kinetic theory.

Motivated from this, we are trying to study heavy (respect to fluid density) inertial
particles in a turbulent environment with a two point statistic approach. This way, depen-
dence on radius and relative distance of particle is still present in the computation of the
PDF and, hopefully, all range of St could be investigated.

This problem will be formalized in the following chapter, leaving different comment,
heuristics and proofs, more so open questions to be answered.

Main achievement of the chapter is the complete formulation for the average relative
velocity of two particle advected by a turbulent fluid, i.e.

⟨v⟩ ∼
√

⟨v2⟩ ∼
√
kT
St

√
1− q

(
vpSt√
2kT

)
.

where St is the Stokes number, kT the turbulent kinetic energy and q is a function that
help modelling the fluctuating structure of the fluid. As we’ll se in the following section,
different regime can be recovered and differences on the average velocity are obtained.

We discuss the consequences of this formula depending on the choice of the mod-
elling of U(x, t) fluid velocity and its link with others given in the literature.

3.1 Introduction

In the same spirit of Chapter 2, we start with the assumption that particle satisfy the ap-
proximation of the Stokes law, and we consider the kinetic equation for two same-masses
particles:

d

dt
Xi = Vi

95
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d

dt
Vi = − 1

τp
(Vi − U (Xi)) , X,V ∈ R2, i = 1, 2.

where τp = m
6πrµ is the relaxing time of a particle, µ is the dynamic viscosity of the fluid

and r, m the radius and mass of the particle respectively.
In a similar fashion to passive scalars, and stochastic modelling via transport noise,

we are still considering the assumption on the noise to be turbulent and fluctuating, i.e.

U (x) = σ
∑
k

ek (x)W
′
k (t) .

As before, Section .2, we can still give meaning to the quantity σ as the product of the
turbulent kinetic energy, kT , and relaxation time of the fluid, τf . Here ek(x) are smooth
vector field with almost compact support.

With the same reasoning we obtain at the level of the stochastic system, neglecting for
now the coagulation, a SPDE for the joint density of the two point motion: ft(x1,x2,v1,v2),
i.e.

∂tf + divx1 (v1f) + divx2 (v2f)−
1

τp
divv1 (v1f)−

1

τp
divv2 (v2f) =

=
σ

τp

∑
k

ek (x1) · ∇v1f ◦ dWk (t) +
σ

τp

∑
k

ek (x2) · ∇v2f ◦ dWk (t) (3.1.1)

It is interesting to note that investigate well posedness (existence, uniqueness and regu-
larity) of (3.1.1) is still an open problem. Anyway, thanks to work like (J. Bedrossian 2022)
in which well posedness of Vlasov and Vlasov-Fokker-Planck system was studied, see
[13] and reference therein, we can safely expect that solution to such equation exist in the
usual space.

Writing the Ito-Stratonovich corrector in (3.1.1) we obtain a second order elliptic oper-
ator that depends on the covariance matrix of the noise. Call Q such matrix we have:

Q(xi, xl) = σ2
∑
k

ek (xi)⊗ ek (xl) .

and computing the Ito formula and the corrector, we get mixed derivatives in thev = (v1,v2)
variables, giving the following second order operator (we assume for simplicityQ(x1,x2) =
Q(x2,x1)):

Df =
σ2

2τ2p
divv1(Q(x1,x1)∇v1f) +

σ2

2τ2p
divv2(Q(x2,x2)∇v2f)

+
σ2

τ2p
divv1 (Q(x1,x2)∇v2f) .

Which reads, at the level of the SPDE, as:

∂tf + divx1 (v1f) + divx2 (v2f)−
1

τp
divv1 (v1f)−

1

τp
divv2 (v2f)−Df =

=
σ

τp

∑
k

ek (x1) · ∇v1fdWk (t) +
σ

τp

∑
k

ek (x2) · ∇v2fdWk (t) (3.1.2)
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Under suitable condition on a scaling parameter εN → 0 as N → ∞, we expect that
taking a Galeati limit, we can approximate this stochastic equation with the associated
PDE for the density of the two-point statistics.

∂tf + divx1 (v1f) + divx2 (v2f)−
1

τp
divv1 (v1f)−

1

τp
divv2 (v2f) = Df (3.1.3)

Remark 3.1.1. Note that under the same assumption of Chapter 2 on the covariance matrix

Q(x1,x1) = Q(x2,x2) = cI, Q(x1,x2) = Q (x1 − x2) , c ∈ R

We recover the same equation for the one point statistic of a single particle. This can be
done integrating in the desired variable and using divergence theorem and the symmetry
of the covariance matrix. There Q is basically independent on the position, the only con-
tribution is given by σ2 ∼ kT .
Here the position is essential and change the behavior of the relative velocity.

Therefore, to simplify, we can consider the differential operator with Q(x1 − x2) not
trivial, maintaining a footprint of the space modification due to the fluid in the relative
density of the two particles:

Df =
σ2

2τ2p
(∆v1f +∆v2f) +

σ2

τ2p
divv1 (Q(x1 − x2)∇v2f) . (3.1.4)

Remark 3.1.2. Note that well posedness (existence/uniqueness and regularity) of (3.1.3)
can be proven in the same fashion as seminal work of (V. Dean 1990), and following on that,
where well posedness of linear and non linear Vlasov-Fokker-Planck equation is studied,
[85], proving regularity of the associated semigroup.

3.2 Setting the computation for Collision Rate

To compute the mean velocity we need to investigate the density function of the two point
motion. Since we are interested to obtain an average value that is independent from the
initial condition, we focus on the steady state solution of the PDE 3.1.3. The stationary
equation associated to (3.1.3), where Df as in (3.1.4), is the following

divx1 (v1f) + divx2 (v2f)−
1

τp
divv1 (v1f)−

1

τp
divv2 (v2f) = Df (3.2.1)

Note that, opposite to the 1-particle case, there is no way to eliminate the x-dependence
and, moreover, this dependence is essential to obtain meaningful result for general St
numbers.
Remark 3.2.1. Note that this equation is not precisely suitable for the objective we seek.
If exist a solution f = f (·,v1,v2) to (3.2.1), it should satisfy

− 1

τp
divv1 (v1f)−

1

τp
divv2 (v2f) =

σ2

2τ2p
(∆v1f +∆v2f)+

σ2

τ2p
divv1 (Q(x1 − x2)∇v2f)

for every value of x1 − x2, which is impossible.
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However, following similar ideas from [10, 75, 90, 89] and others, we note that is the
distance of the two particles the meaningful quantity. We search solution of the form:

f (x1,x2,v1,v2) = f̃ (x1 − x2,v1,v2)

Call r := x1 − x2, the function f̃ = f̃ (r,v1,v2) satisfy the equivalent PDE:

− 1

τp
divv1

(
v1f̃
)
− 1

τp
divv2

(
v2f̃
)
= Df̃

Df̃ =
σ2

2τ2p

(
∆v1 f̃ +∆v2 f̃

)
+
σ2

τ2p
divv1

(
Q(r)∇v2 f̃

)
(3.2.2)

this equation is the adiabatic formulation, i.e. constant in space, of Equation 3.2.1 where
we impose:

divx1

(
v1f̃ (x1 − x2, v1, v2)

)
+ divx2

(
v2f̃ (x1 − x2, v1, v2)

)
= 0. (3.2.3)

This make the task of finding a solution for 3.2.2 feasible, and we show in Section 3.7 that
solution of such equation are close respect to the problem of finding the relative velocity
of particles to solutions of Equation 3.2.1. Therefore, finding a solution of the form f̃ =
f̃ (r,v1,v2) for equation (3.2.2), we have an approximate solution of the general one,
which are homogeneous in space, namely invariant by space-translation.
Remark 3.2.2. We can prove that existence and uniqueness for such an equation is pos-
sible using standard technique for elliptic equations (see reference on bounded domain
[74]). Thus becomes our main equation and, without misunderstanding, we call it its so-
lution f .

Note that, assuming a covariance matrix similar to a Kraichan ensemble, e.g. [10], we
maintain the dependence on the relative distance of the particles. In the next sections we
are going to compute such average and then show different model for the fluid turbulence,
represented by different covariance matrix.

3.2.1 Space as a parameter

Given any r, we can find solution pdf θr (v1,v2) which satisfies equation (3.2.2). We
have, for each fixed r, ˆ ˆ

θx (v1, v2) dv1dv2 = 1 (3.2.4)

Remark 3.2.3. Using last remark, we can obtain f from (3.2.2) and from θr:

f (r,v1,v2) := θr (v1,v2) (3.2.5)

up to constant depending on the space we are working, e.g. constant being 1 if we work
on a torus of Lebesgue measure 1, otherwise it is sufficient to change it computing the
integral. Defined like this, f is non negative, the integral in all variables is equal to the
integral of 1 on the space domain using (3.2.4) up to constant, and it satisfies equation
(3.2.2).
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The important consequence is that, following from classical theory of both stochastic
processes and elliptic equation, we have

θr (·) ∼ N (0, Cr)

with a known Cr which will depend on our choice of Q(r) covariance of our noisy fluid
modelling. In fact, this follow from equation 3.2.2 being the invariant distribution of an
Ornstein-Ulhembeck process.

3.2.2 Conditioning on same position

The structure function that we want to compute is the average relative velocity between
two particle considering all the inertial range of the particles in the fluid, i.e.

E [|V1 −V2|]

this is the average difference of velocities between particles at the ”same” position. In this
context ”same position” is not clearly defined. In particular we could interpret the same
position condition as to take particle that are at a collision length scale, i.e. we look at
a portion of space where there is a myriad of transported particles, pointwise from the
macroscopic viewpoint, enormous from the microscopic viewpoint. A portion of space in
which collision happens with high probability.

Remark 3.2.4. Following [75, 25] and reference therein, the structure function associ-
ated to the relative velocity is tied to the collision rate R of coagulating particle in a
domain D ⊂ Rd. In particular, recalling the splitting R = Radv + Rtur , we know that
E [|V1 −V2|] is fundamental for the computation of Rtur , but also rise the following
question: is the uniform density still valid in such regime of turbulent fluid? does the fold-
ing of the flow changes the average distribution of the particle with the computed relative
velocity? Should we consider some radial distribution g(r) that multiply the collision rate
to obtain a more reasonable kernel, or change the particle distribution accordingly to the
motion and the inertial regime?

From here on we start assuming the following:

∥r∥ ∼ ℓp (3.2.6)

namely we consider positions which differ by the typical length scale of colliding particles.
In the computation of E [|V1 −V2|] we use the equilibrium probability density of

pairs of particles, conditioned to have the ”same position”, which is our f in (3.2.5), where
under our assumption conditioning to the same position, under the approximation (3.2.6),
mean we use the new density

f̃ (v1,v2) :=
f (ℓp,v1,v2)´ ´

f (ℓp,v1,v2) dv1dv2
∼︸︷︷︸

on the unitary torus for 3.2.4

θℓp (v1,v2) .

In 1D notation this is already enough replacing r by ∥r∥ ∼ ℓp. In more dimensions it is
similar since we can suppose invariance by rotation, and that indeed the the collision of
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particles really depends on the magnitude of their distance. This will become clear when
we’ll write down the covariance matrix Q(r).

Thus, assuming to work on the unitary torus, we have:

E [|V1 −V2|] =
´ ´

|v1 − v2| f (ℓp,v1,v2) dv1dv2´ ´
f (ℓp,v1,v2) dv1dv2

=

ˆ ˆ
|v1 − v2| θℓp (v1,v2) dv1dv2

∼
√
C11
ℓp

+ C22
ℓp

− 2C12
ℓp
.

Hence, main objective of the following section is to give fair assumption onQ(r) to com-
pute Cr from which we’ll derive: C11

ℓp
, C22

ℓp
, C12

ℓp
and as such the relative velocity.

Remark 3.2.5 (Relaxation time of the fluid). In the previous chapter, under the one-point
motion, we collapsed the relaxation time τf of the fluid to zero. The reason was that such
parameter is the one involved in the white noise limit for our model. Now we are going
to compute the covariance matrix of the noise, making it dimensionless, and introducing
again this time in the limiting computation. in fact we have:

τf = ℓf/
√
2kT

where
√
2kT is the typical velocity of the turbulent fluid, ℓf is the typical length scale of

the fluid. As such, we assume

Q(r) := Q̃(∥r∥/ℓf )

ℓf = τf
√

2kT.

This way we have reintroduced the time scale of the fluid.
At last, we introduce again the foundamental quantities:

St =
τp
τf
, σ =

√
2τfkT.

In the following sections we are going to show two reasonable model to interpret (in
different Stokes number regime) the covariance of our considered noise.

To do this, we’ll start recalling:

ℓf = τf
√
2kT =

τp
√
2kT

St
.

Moreover, we want to solve the equation when the parameter r satisfies (3.2.6). Hence

ℓp = τpvp

where vp is a typical velocity of the particles in the steady state regime of the particle
density.
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3.3 Mean velocity with ”scalar” covariance function q (r/ℓf)

Here, we propose to compute the structure function (3.2.2) in a general setting without an
explicit formulation for the covariance matrix Q (x− y).

The only apriori hypothesis we employ in the selection of Q is the space homogene-
ity (already expressed by the formula Q (x− y)) and is direct relation with the identity
matrix.

For this reason, consider a scalar function q(r) dependent on the magnitude of the
relative distance. {

Q (x,y) = Q (x− y) = σq
(
x−y
ℓf

)
Id

q (0) = 1

(Note that we can always assume q (0) = 1 since we can always modify σ with a dimen-
sionless constant dependent only on the domain).

Thus the matrix Cr is linked to q
(
r
ℓf

)
. From the elliptic equation we obtain

− 1

τp
divv1

(
v1f
)
− 1

τp
divv2

(
v2f
)
=

σ2

2τ2p

(
∆v1f +∆v2f

)
+
σ2q

(
r
ℓf

)
τ2p

divv1∇v2f

which reads out

−divv1
(
v1f
)
− divv2

(
v2f
)
=

σ2

2τp

(
∆v1f +∆v2f + 2q

(
r

ℓf

)
divv1∇v2f

)
.

From the usual computation we obtain the covariance matrix

Cr =
σ2

τp

 Id q
(
r
ℓf

)
Id

q
(
r
ℓf

)
Id Id


Using the results of previous section and the computation on Cr , we can obtain for the
structure function the following closed form:

E [|V1 −V2|] ∼
σ

√
τp

√
1− q

(
ℓp
ℓf

)
.

Before delving into the fluid modelling, we can expand the constant in the covariance
matrix to ease the computation. In particular, we recall from [31]:

σ =
√
2τfkT

Hence

E [|V1 −V2|] ∼
√
2
τf
τp
kT

√
1− q

(
ℓp
ℓf

)
.

Recall now that the Stokes number for particle in fluid can be expressed as

St =
τp
τf
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this give us:

E [|V1 −V2|] ∼
√
kT
St

√
1− q

(
ℓp
ℓf

)
.

Trying to expand ℓp
ℓf

in relation to St we have

ℓp
ℓf

=
τpvp

τf
√
2kT

=
vpSt√
2kT

.

In conclusion:

E [|V1 −V2|] ∼
√
kT
St

√
1− q

(
vpSt√
2kT

)
.

This is the final expression for the structure function of the relative velocity under different
modelling of the fluid fluctuations and in the steady state regime of the particles’ density.

3.4 Covariance with Gaussian decay

We assume that the covariance structure of the noisy fluid Ut(r)− Ut(0) is

Q(r) := exp(−∥r∥2/ℓf 2)Id

ℓf = τf
√
2kT =

τp
√
2kT

St
.

Under this assumption, we may rewrite the differential operator (3.1.4) in the form

Df =
σ2

2τp2
(
∆v1f +∆v2f + 2 exp(−∥r∥2/ℓ2f ) divv1 ∇v2f

)
.

Multiply the stationary Fokker Plank equation (3.2.2) by τp we write it in the form

−divv1 (v1f)− divv2 (v2f) = τpDf

where

τpDf =
σ2

2τp

(
∆v1f +∆v2f + 2 exp(−∥r∥2/ℓf 2) divv1 ∇v2f

)
=

kT

St

(
∆v1f +∆v2f + 2 exp

(
−
(
∥r∥
ℓf

)2
)
divv1 ∇v2f

)
.

We want to solve this equation when the parameter ∥r∥ ∼ ℓf satisfies (3.2.6). Hence, we
couple ℓp = τpvp with the equation

−divv1 (v1f)−divv2 (v2f) =
kT

St

(
∆v1f +∆v2f + 2 exp

(
−
(
ℓp
ℓf

)2
)
divv1 ∇v2f

)
.
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Which gives the final equation:

−divv1 (v1f)−divv2 (v2f) =
kT

St

(
∆v1f +∆v2f + 2 exp

(
−
(

vp√
2kT

St

)2
)
divv1 ∇v2f

)

Recall that Cℓp is the covariance of the Gaussian solving this equation, i.e.

Cℓp =
kT

St

 Idd exp

(
−
(

vp√
2kT

St
)2)

Idd

exp

(
−
(

vp√
2kT

St
)2)

Idd Idd

 .

Therefore, under the model, our final formula is:

E [|V1 −V2|] ∼
√
C11
ℓp

+ C22
ℓp

− 2C12
ℓp

∼
√

kT

St

√√√√1− exp

(
−
(

vp√
2kT

St

)2
)
. (3.4.1)

Remark 3.4.1 (Recovered limiting behavior). The choice of the Gaussian covariance is
inspired by work like [1, 58, 64, 75]. As such, we show here that formula (3.4.1) agrees, at
least in the two extremely limit of St → 0 or ∞, i.e. tracer particles or complete inertial
particles moving in a bullet-like motion.

When St is large, exp
(
−
(

vp√
2kT

St
)2)

is small, we get

E [|V1 − V2|] ∼
√
kT
St
,

which agrees, as shown in Chapter 2, with the Abrahamson limit [1].
Conversely, when St is small we get

1− exp

(
−
(

vp√
2kT

St

)2
)

∼
(

vp√
2kT

St

)2

which means at the level of the structure function

E [|V1 − V2|] ∼
√
kT
St

(
vp√
2kT

St

)
∼ kT
vp

√
St ∼

√
kTSt

where we have used the fact that vp ∼
√
kT for small Stokes where particles are almost

in solidarity with the flow. This formula agrees with classical computation as [14, 72] for
both atmospheric particle and gas in proto-planetary disks.
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3.4.1 Covariance as Kolmogorov scaling

Suppose that our fluid has a covariance modelled to cover a Kolmogorov scaling in the
energy dissipation [10, 11], i.e. for small relative distance ∥r∥ the covariance has the form

Q(r) = Id

(
1−

(
∥r∥
ℓf

)4/3

ε2/3

)
e( − St).

where ε is the average rate of energy injection. This give us, for small ∥r∥,

E [|V1 − V2|] ∼
√
kT
St
g

(
vp√
2kT

St

)
∼
√
kT
St

(
∥x∥
ℓf

)2/3

ε1/3

Combining the estimate on ∥r∥ ∼ vpτp and ℓf ∼ τf
√
kT , that are still true, we get exactly:(

∥r∥
ℓf

)2/3

∼
(

vp√
2kT

St

)2/3

.

This implies that, for small St << 1 we get:

E [|V1 − V2|] ∼
√
kT
St

(
∥x∥
ℓf

)2/3

ε1/3

∼
√
kT
St

(
vp√
2kT

St

)2/3

ε1/3

∼ (St)1/6 (kT )
1/6 v2/3p ε1/3.

which in principle means that, for small distance the rate of velocity, while still going to
zero, is stronger than the expected Gaussian assumption.it is not clear if it is the expected
limit for small St in [90, 89, 75, 26, 25, 11, 10]. It is worth mentioning that, for inertial
regime where St >> 1, we can still recover the Abrahamson limit, even if the distance
∥r∥ is small.

3.4.2 Kraichnan Noise

As a last example of modelling of our fluid, let’s consider an approximation of U(t,xt)
in the sense of Kraichnan, i.e. the fluid velocity difference is a Gaussian vector field with
correlation

Qi,j(x− y) = 2Ki,j(x− y)

This is similar to what it is considered in [10, 11]. In order to model turbulent flows, the
tensorial structure of the spatial correlation K :=

(
Ki,j(x− y)

)
i,j

is chosen to ensure
incompressibility, isotropy and scale invariance. This helds when τp >> τf . Call (x −
y) := r, then:

Ki,j(r) = C0δi,j − C1∥r∥2h
[
(1 + 2h) δi,j − 2h

rirj
∥r∥2

]
, i, j = 1, 2.
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We have that C0/τp ∼ kT
St is our usual constant. More so we have, from Falcovich,

Cencini and Bec [26, 10, 11], that C1/τp ∼ 1
τp

Stℓ
2(1−h)
f

τp
, where the first 1

τp
comes from the

Stokes’ law. The covariance of the Gaussian process then is

Cℓp =
kT
St

(
Idd K

K Idd

)
.

Therefore

E [|V1 − V2|] ∼
√
C11
ℓp

+ C22
ℓp

− 2C12
ℓp

∼
√

2C1∥r∥2h

∼

√√√√ 1

τp

St ℓ
2(1−h)
f

τp

√
2∥r∥2h

∼
√
kT
St

√
2
∥r∥2h
ℓ2hf

.

This is more or less our final formula. Let us check it.
When ∥r∥ << ℓp, then ∥r∥ ∼ vpτp while ℓf ∼

√
kT τf . Hence√

kT
St

√
2
∥r∥2h
ℓ2hf

∼
√
kT
St

√√√√2
(vpτp)

2h(√
kT τf

)2h
∼

√
2
√
kTSt

(h− 1
2)

(vp)
h(√

kT
)h .

If vp ∼
√
kT then:

√
2
√
kTSt

(h− 1
2), h ∈ (0, 1].

Note that, for h = 2/3 we recover the Kolmogorov scaling (3.4.1)

3.5 On Collision rate

In the physics community there is now a general consensus [90, 89, 75, 10, 11, 26, 25],
thanks to works of Mehlig, Pumir, Falcovich, Cencini, Bec and Wilkinson, that the coagu-
lation rate, introduced in Chapter 1, has a natural splitting in two main components

R = Radv +Rtur.

This tow uncorrelated main components are: Ra, the coagulation due to advection, and
RT , due to the turbulent flow.

This last termRT is obtained independently from two differnt computation both from
Falkovich [26, 25] and Mehlig [90, 89], while it is being considerd in works of Bec [11, 10]
and Pumir [75]. This is called sling effect or caustic effect.

Both of this effect are obtained considering the usual collision kernel when turbulent
flow is involved,

Rkin ∼ ⟨v⟩ ,
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is mostly dependent on the relative velocity of the particles. They propose a correction
due to the fluid turbulence that create singularity on the gradient of the particles velocity
and the modified their density.

To be more precise, the contribution is due to the radial distribution of the particle
and, more so, the stress tensor given by

A :=

(
∂

∂xj
Ui(x)

)
, ∀i, j.

Discussing the advecting part Radv , there is the famous Suffmann-Turner formula, esti-
mate for low Stokes regime with a uniform density of almostr tracer particles [78], that
read as

Ra :=

√
8π

15
n0 (2r)

2 τf
−1,

where n0 is the density and r the radius of the particles.
During our computations, and under our hypothesis, we arrive at a close form for the

expression of the relative velocity ⟨|v|⟩ between particles. Assigned a covariance matrix
for the noisy modellization of the fluid’ velocity, Q(r) = q(r/ℓf )Id, with suitable condi-
tion on q. We obtain the following:

⟨|v|⟩ ∼
√

⟨v2⟩ ∼
√

kT

St

√
1− q(ℓp/ℓf ).

If we still maintain the idea that we have a statistically uniform spatial distribution of
particles, call such density n0, then we have the relation between the tubrulent collision
rate, RT, and the relative velocity, i.e.

Rtur ∼ n0 ⟨v⟩ .

Under this hypothesis, we fail to describe in fullness the turbulent part described by dif-
ferent author such as [90, 75, 26] with complex formulas. In particular, while the maxima
and the limit for high stokes regime is capture, see Figure (3.1), there is an anomaly for
small Stokes number that is not captured with just the relative velocity computed directly
by the density function. The same limit point is shown, but the abrupt increase in the rate
for low St is not captured.
The non uniform behavior, and the overestimation is not an unexpected occurrence. It
can be argued, considering the derivation of the relative velocity, that the assumption of
statistically uniform spatial distribution, in the limit of small Stokes number, is not what
we are really obtaining. In particular, all of our assumption in the computation of the
structure function needs to work in the steady state regime, after the tubrulent behavior
of the fluid is being observed. As such, also the density of particles must be taken at is
steady limit, after the one-point statistic as evolved the system under the turbulent regime.
More so, since in our equation velocity is an active variable, this must be carried on, as a
Maxwellian-like average for the particles and to be computed in a domain as big as two
colliding particles. The first reasonable guess, e.g. [59],is to consider the collision rate in
the following form:

R ∼ n0g(r) ⟨v(r)⟩
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where g(r) is somewhat analogous to a radial density function of the particles at such
distance and such radius/mass, which in principle is a different fraction of n0. More so,
we need to find a way to incorporate ṙ in this fraction of colliding particles: this would be
possible considering the one point statistic and the Maxwell distribution, analogous to the
Boltzmann’s one in the kinetic gas theory. In this way, the energy of the particles, modified
by the turbulent behavior of the fluid, can be taken into account when we consider the
spatial distribution of the colliding particle at the mean velocity ⟨|v1 − v2|⟩.

3.5.1 A comparison of St number

We recall that in Mehlig, et all. [90, 89] they derive the following analytic formula from
DNS simulation:

R = Radv +Rkine
−S/I︸ ︷︷ ︸

=Rtur

where they estimate S/I ∼ 1/St, with S being the action of the trajectories of parti-
cles and I the strain-rate correlation function. They explain this factor as the caustic
formation/sling effect noted by Falkovich [26, 25]. In particular they derive the following
computation regarding the term Rkin (see page 4 of [90]):{

St << 1, Rkin ∼
√
St

√
kT

St >> 1, Rkin ∼
√
kT/

√
St

Without the factor e−S/I , representing this rare events, this would be in line with our initial
assumption of a Gaussian modelled fluid velocity for our difference of velocity of colliding
particles. Unfortunately, with the caustic effect taken in considerations, the decay is faster
and we can see the difference in the following figure. From Figure (3.1), we note that for
high stokes number (roughly St ≳ 5) we complete capture the same behavior as the
literature with decay 1/

√
St. Regarding the limit for St→ 0, we see from figure 1 in [90]

that the advection rate Radv is dominant and the decay of Rtur have a little influence. All
of the modelling of Rtur goes to zero, but with different velocity, this different must be
searched in the caustic effect due to the fluid. In the next section we are going to propose
our correction factor that, even though is derived from a different point of view, can be
linked back to such rare events due to the fluid behavior.

3.6 Conclusion: new factor and energy state density

As proposed in the last section of this chapter and following reasoning from Chapter 1,
Section 1.4, seems reasonable to correct the collision kernel to obtain a collision rate that
is weighted with the fraction of particle that are indeed colliding with each other with a rate
dependent on the mean relative velocity. This reasoning is motivated by the work on fractal
dispersion of passive particles into turbulent filed [12, 41], indeed particles deviates from a
uniform initial distribution when the St number is small and they tend to cluster, changing
the overall density number of colliding particles. Again, for simplicity we consider particle
with the same mass mp and velocity vp as previously stated.
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Figure 3.1: Comparison, log-log plot, of RT in 3 setting: (red): kolmogorov scaling q(x) =
(1 − x4/3)e−x

2 , (blue): Guassian scaling q(x) = e−x
2 , (purple): Mehlig [90] formula

without constants. In (green) dotted the limit for St→ 0.

In analogy with Maxwell-Boltzmann-Arrhenius density, we expect to multiply the rela-
tive velocity ⟨|v1 − v2|⟩ with the number density of particle at a certain length distance
with their related ”mean velocity”, in the Maxwellian sense, derived from the single point
statistic density equation in Section 2.5. Call h this new factor, then we expect:

h := exp

(
−1

2
mp

〈
|v|2

〉
kT

)
∼ exp

(
−1

2
mp

v2
pτp

σ2

)

Note that the length scale ℓp is contained in ⟨|v|⟩, hence in vp.
This is analogous to Maxwell distribution in which we have

h ∼ exp

(
−E
T

)
whereE is the energy and T is the temperature and in our case it the turbulent intensity of
the fluid, given by σ2/τp. In particular, we van argue that this h is not an artificial factor,
but nothing more than the steady state solution of the modified Smoluchowski, which is a
type of Vlasov-Fokker-Plank equation. In particular h being the Maxwellian represent the
number density of particle in the infinitesimal volume around the averaged velocity.
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Under this assumption, then, the turbulent rate Rtur is, calling n0 the initial density of
particles

Rtur ∼ n0 exp

(
−1

2
mp

v2
pτp

σ2

)
⟨|v1 − v2|⟩

Under our Gaussian covariance hypothesis we get:

n0 exp

(
−mp

2

v2
pτp

σ2

)√
kT

St

√√√√1− exp

(
−
(

vp√
2kT

St

)2
)

In the exponential:

exp

(
−mp

2

v2
pτp

σ2

)
= exp

(
−mp

2

ℓ2pτp

τp2kTτf

)

= exp

(
−mp

2

ℓ2pτpτf
2

τp2ℓf
2τf

)

= exp

(
−mp

2

ℓ2p

ℓf
2

1

St

)
.

will leave us with

Rtur(mp) ∼ n0 exp

(
−mp

2

ℓ2p

ℓf
2

1

St

)√
kT

St

√√√√1− exp

(
−
(

vp√
2kT

St

)2
)
(3.6.1)

Analytically speaking, formula 3.6.1 agrees with Pumir and Flakovich [26, 25] ideas and
Mehlig [64] formulations. This factor, albeit essential, is formulated with a reasoning due
to kinetic theory, and well represent the activation aspect and the fast decay at St near
0. Anyhow, it is still fundamental to understand how we can capture this from the particle
system at play, as shown in Chapter 1, Section 1.4 and, in a rigorous way, from the limiting
equation 3.2.2. This would be primary work for future development of this theory.

In a similar vein, a natural progression of the theory involves conducting DNS sim-
ulations with adjusted parameters that align with our hypothesis. By comparing these
results with established classical outcomes, we can provide a comprehensive and robust
explanation of our unified theory concerning the turbulent collision rate and our analytic
formulation.

3.7 Adiabatic hypothesis and Gaussian approximation

In Equation (3.2.3), we put forward the conjecture that the model describing the combined
distribution of space and velocity, denoted as f(x, v), can be effectively approximated by
an adiabatic distribution in terms of space. This approximation treats the spatial variable
as a parameter within the distribution. In the following section, we delve into this simpli-
fication, demonstrating its validity in effectively representing the model through the sim-
plified equations. Furthermore, we tackle the constraint arising from the non-vanishing
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nature of ∇r · (f(v1 − v2)). We address this constraint by contrasting it with various
length-scale regimes relative to the ratio between the particles’ relative distance, denoted
as r, and the Kolmogorov length-scale, symbolized as η. This analysis introduces novel
avenues for potential model enhancements in future research works.

3.7.1 Lagrangian description with fluid velocity modelling

We start, as in Chapter 3, with the Lagrangian description of the relative motion of two
point into a fluid: {

x′i = vi

v′i = − 1
τp

(vi − uL (xi)− uS (xi))
, i = 1, 2

While they don’t interact directly, they are allowed to collide and coalesce. More so, they
are subject to the same fluid velocity flow making their motion correlated.

The fluid velocity component can be expressed as a sum of two component:uL and
uS . Both of them are turbulent flow, but uL act on large scale respect to the particles
dimension, while uS act on small scale.

We are interested in the relative motion, hence we name: x = x1 − x2, v = v1 − v2
for which we get a unique system of equations:

x′ = v

v′ = − 1

τp
v +

1

τp
(uL (x1)− uL (x2)) +

1

τp
(uS (x1)− uS (x2)) .

Due to the large scale effect, we neglect uL, which will be incorporated only in later dis-
cussion. The reason to maintain uS is due to the transport noise type of construction we
used during the thesis and the limiting property of such a system.

In particular, taking the diffusive limit of uS we can recover a kinetic system made up
of an ODE and an SDE:

x′ = v

dv = − 1

τp
vdt+

σS
τp

√
1− q (|x|)dW (3.7.1)

a close equation for position and velocity difference of the particles. Here q represent the
spatial correlation of the fluid and depends on the separation of the particles r := |x|,
σS = uη

√
τη obtained as in Chapter 2. Such a system has, naturally, two temporal scale.

The velocity component v varies quickly, due to the factor 1
τp

While the component x varies
more slowly. This system in the Eulerian framework has a corresponding Fokker Plank that
reads out as:

∂tf + divx (vf)−
1

τp
divv (vf) =

σ2S
2τ2p

divv ((1− q (|x|))∇vf) .

This equation is analogous to the one in (3.2.2). More so, we had no problem obtaining
such a system without the use of the Stratonovich interpretation since x here is smooth.
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Then the invariant distribution is, as in (3.2.2),

divx (vf)−
1

τp
divv (vf) =

σ2S
2τ2p

divv ((1− q (|x|))∇vf)

and as such f is still a function of both (x, v), with partial derivative in all the variables.
Thus, the solution is not a precisely a Gaussian due to the non linearity in the variables,
thanks to ∇x· and q (|x|).
Remark 3.7.1. Is it worth mentioning that this kind of steady state is very similar to the
Boltzmann equation’ steady state solution, with an elliptic kernel. It could be interesting
in future works to explore the possibility of finding explicit solutions of such system: from
works of Villani and Gamba [43] it one possible guess is to consider a Maxwellian solution,
a Gaussian with a multiplicative correction due to |x|2.

Adiabatic approximation

In Section 3.2, we used the approximation of fixing x constant, adiabaticly, while v varies,
in the Lagrangian framework this is equivalent to study the one-equation system:

dv = − 1

τp
vdt+

σS
τp

√
1− q (r)dW (3.7.2)

for different value of r = |x|. This system is exaclty the one associated to the FP equation
studied in the first half of this chapter, and have a stationary solution of the form

fr (v) ∼ N

(
0,
σ2S
2τp

(1− q (r))

)
.

Thus, we’ll show numerically, computing the steady state solution of both equations 3.7.1
and 3.7.2, that the adyabatic one well represents the model for all the scale of ratio r/η.

Numerical simulations

As a first analysis of the two model with Brownian diffusion, we consider numerically
Equations 3.7.1 and 3.7.2, for a fixed |x| =: r in the range of the separation distance
between two particles in the range of r/η ∼ [1, 10] and r/η ∼ [20, 60].

We compute the invariant distribution of both the non-linear conditional on |x| = r and
the one of the linear system with fixed r, in the adiabatic regime, approximated through
the Gaussian function fr (v).

For simplicity we fix dimension d = 1, and select initial condition as follows:

X0 = 0.1 in computational unit, V0 = 0, dt = 10−4

while for the constant of the system we select

σS = 0.1, τp = 0.001, η = 0.001m, q(r) = min{r1/6, 1}

Where q is selected with Kolmogorov Scaling criterion. We simulate with Euler-Maruyama
scheme for 106 iterations and then restart it for another 106 iterations to take the invariant
distribution.



112 CHAPTER 3. FUTURE DIRECTIONS: A UNIFIED THEORY

Figure 3.2: Results on marginal distribution respect to velocity variable in different regime
of r/η, showing good approximation with Gaussian hypothesis.

In Figure 3.2, we present the comprehensive outcomes of the one-dimensional simula-
tion. These results exhibit a favorable alignment with the Gaussianity assumption applied
in the preceding chapter. More so, it’s worth noting that the value of η = 0.001m resides
within the Kolmogorov length scale range pertinent to atmospheric fluid dynamics. This
provides a reasonable foundation for selecting two distinct values: r ≈ 0.11, correspond-
ing to r/η ≈ 10, and r ≈ 0.43, corresponding to r/η ≈ 45. Such choices enable us to
encompass both small and large r scenarios.

The upper row of images reveals the following:
The leftmost image portrays a frequency histogram showcasing the normalized steady-

state distribution of particle relative positions, centered around the particles’ initial dis-
tances. In the center image, a comparison is drawn between the non-linear case’s marginal
probability distribution

´
f(x,v)dx and its corresponding Gaussian approximation, de-

picted in blue. The rightmost image illustrates the conditional probability distribution
f(r,v) for r/η ≈ 10 in the non-linear case, contrasted with the Gaussian approxima-
tion shown in blue. The green line represents the Gaussian approximation of the marginal
probability distribution

´
f(x,v)dx.

The lower row of images displays the subsequent analyses:
The leftmost image showcases the probability distribution f(r,v) for r/η ≈ 45 in the

non-linear case, alongside its Gaussian approximation in blue. The green line signifies the
Gaussian approximation of the marginal probability distribution

´
f(x,v)dx.

In the middle image, the probability distribution fr(v) is presented for r/η ≈ 10 in the
adiabatic case. The blue line represents its Gaussian approximation, while the green line
denotes the Gaussian approximation of the marginal probability distribution

´
f(x,v)dx,

and the red line signifies the Gaussian approximation of the conditioned probability distri-
bution f(r,v).

The rightmost image concludes with the probability distribution fr(v) for r/η ≈ 45 in
the adiabatic case. Similar to the previous cases, its Gaussian approximation is illustrated
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in blue, with the green line symbolizing the Gaussian approximation of the marginal prob-
ability distribution

´
f(x,v)dx, and the red line representing the Gaussian approximation

of the conditioned probability distribution f(r,v).

Remark 3.7.2. In the case of r/η ∼ 10 error in the approximated Gaussian respect to
predicted fr (via the computation σS

2τp

√
1− q(r) for the variance) is 10−1, while for r/η ∼

45 error in the approximated Gaussian respect to predicted is 10−3. More so, in sup-norm
the difference between the approximated Gaussian and the real distribution is less than
10−2 for r/η ∼ 45 and 5× 10−2 for r/η ∼ 10, and a Kolmogorov-Smirnov test confirms
the goodness of the Gaussian hypothesis.

Conclusions

These basic numerical experiments yield results in agreement with the approximation
method, showing a small error in the estimation. While assuming Gaussianity with an
error magnitude of 10−2 may slightly underestimate the value, its effectiveness remains
reasonable.

More so, this leads us to contemplate the implications for diverse regimes of relative
distance r/η at different Stokes numbers: while under this Gaussianity assumption we
derive a complete formula respect to St for the collision rate, as in 3.6.1, does this model’s
validity extend solely to cases where r/η exceeds 1?

This crucial question drives our exploration towards a more inclusive model that can
encapsulate a broader spectrum of scenarios, showing gap in the noisy modelling of the
fluid velocity that we address in future works.

3.7.2 A more general approximation result

In this section we are going to consider a more general modeling of the velocity of the
fluid in which particles moves and collide. In suitable limit, this system reduces to the one
studied in previous part of the chapter, making it a reasonable generalization to study.

The modelling of u(x) is obtained through the use of an Ornstein–Uhlenbeck process
Z with a suitable space covariance and a time correlation that depends on the Kolmogorov
scale of the fluid.

This define the following second order random system for particles advected by a
turbulent fluid:

x′ = v

v′ = − 1

τp
v +

1

τp

√
1− q (|x|)uηZ (3.7.3)

dZ = − 1

τη
Zdt+

1
√
τη
dW.

In analogy to what we did in Section 3.7.1 we define x as the relative position between
two particles and v the difference in velocity. Here we use uη to indicate the fluid velocity
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at the Kolmogorov scale, with the relative length and relaxation time, η, τη respectively. Re-
garding q (r/), this is non other than the spatial correlation of the fluid at the Kolmogorov
scale. As in Chapter 2, q (r) ∈ [0, 1], decreasing, limr→0 q (r) = 1, limr→∞ q (r) = 0.

The difference respect to the previous model is in that involves the explicit introduction
of temporal correlation into the Kolmogorov scale, τη. More so, this model recovers the
well-known results for high St and, naturally, makes more precise results for small to
mediumSt, concerning the relative velocity and the corrective factor of previous sections.

Then, in the same fashion, we define the adiabatic approximated system, where the
position is fixed a t a given distance r

v′ = − 1

τp
v +

1

τp

√
1− q (r)uηZ

dZ = − 1

τη
Zdt+

1
√
τη
dW (3.7.4)

We’ll show that this system is close in its solutions to the full system 3.7.3, for every
range of r/η, recovering the complete description of the relative velocity for all range of
Stokes number. The reason of the following analysis lies in the highlight of a key quantity
that, as of now, was not considered in the model, i.e. the relative distance of the parti-
cles and how big or small it is respect to the Kolmogorov length-scale. In fact all of our
conclusion are true whenever r/η ≳ 1, while whene r is close to the Kolmogorov scale,
i.e.

r

η
∈ [1, 10]

Then the complete description of the relative velocity through the simplified stochastic
model fail. In the next paragraph we’ll derive again the relative velocity when r is big com-
pared to η and highlight the numerical results showing how the Gaussian approximation
is suitable to work with such systems. We conclude the section proposing a problem con-
cerning particles that are closer than the Kolmogorov scale and how to enhance the model
in future works.

Relative velocity for r/η ≳ 1

We consider system 3.7.3 and normalize it respect to the fluid velocity uη

(
v

uη

)′
= − 1

τp

(
v

uη

)
+

1

τp

√
1− q (|x|)Z

dZ = − 1

τη
Zdt+

1
√
τη
dW

Starting from this normalized equations, we pass to the adiabatic modelling and thus we
have

dV = − 1

τp
V dt+

1

τp

√
1− q (r)Zdt
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dZ = − 1

τη
Zdt+

1
√
τη
dW

Naming X = (V,Z) the velocity variable and Ornstein-Uhlembeck process, and fixing
R = (B,W ) two independent Brownian motion, we can rewrite the system as

dX =

(
− 1
τp

1
τp

√
1− q (r)

0 − 1
τη
Z

)
Xdt+

(
0 0
0 1√

τη

)(
dB
dW

)
Which read as

dX = AXdt+
√
Q

(
dB
dW

)
This system as a stationary solution given by the closed formula

X (0) =

ˆ 0

−∞
e(−t)A

√
QdRt

For which the variance can be computed easily:

E [X (0)⊗X (0)] =: Q∞ =

ˆ ∞

0
etAQetA

∗
dt.

For simplicity in the exposition, we fix dimension d = 1, but everything said from here
on is valid for d ≥ 1 with a little bit of effort in the notations. We are interested in the
variance of the component V :

Q11
∞ =

ˆ ∞

0

∑
ij

etA1i Qije
tA
1j dt =

1

τη

ˆ ∞

0

(
etA12
)2
dt.

While for the variable Z we have

Q22
∞ =

ˆ ∞

0

∑
ij

etA2i Qije
tA
2j dt =

1

τη

ˆ ∞

0

(
etA22
)2
dt

which must be unitary since is the variance of Z , a OU process with right scaling on the
drift and diffusion.

To obtain the quantities

etA12 =

(
etA
(

0
1

))
1

, etA22 =

(
etA
(

0
1

))
2

= Z.

we need to solve the following ODE system

V ′ = − 1

τp
V +

1

τp

√
1− q (r)Z

Z ′ = − 1

τη
Z

V (0) = 0, Z (0) = 1
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and take V and Z. We have:

V ′ = − 1

τp
V +

1

τp

√
1− q (r)e

− 1
τη
t

V (0) = 0

Using the formula 1
τp

− 1
τη

=
τη−τp
τpτη

, we can reduce the computation and obtain:
If τp ̸= τη :

etA12 =

ˆ t

0
e
− 1

τp
(t−s) 1

τp

√
1− q (r)e

− 1
τη
s
ds

=
1

τp

√
1− q (r)e

− 1
τp
t
ˆ t

0
e

(
1
τp

− 1
τη

)
s
ds

=
1

τp

√
1− q (r)e

− 1
τp
t e

(
1
τp

− 1
τη

)
t − 1

1
τp

− 1
τη

=
√

1− q (r)
τη

τη − τp

(
e
− 1

τη
t − e

− 1
τp
t
)

While, If τp = τη :

etA12 =
√
1− q (r)

1

τp
e
− 1

τp
t
t

Putting all together we have a formula for Q11
∞ given by:

Q11
∞ =

1

τη

ˆ ∞

0

(
etA12
)2
dt

= (1− q (r))

 1
τη

(
τη

τη−τp

)2 ´∞
0

(
e
− 1

τη
t − e

− 1
τp
t
)2
dt se τp ̸= τη

1
τητ2p

´∞
0 e

− 2
τp
t
t2dt se τp = τη

We focus now on the case τp ̸= τη , we’ll show that the final formula agrees also in the
case when τp = τη , being general. We have

ˆ ∞

0

(
e
− 1

τη
t − e

− 1
τp
t
)2
dt =

ˆ ∞

0

(
e
− 2

τη
t
+ e

− 2
τp
t − 2e

−
(

1
τη

+ 1
τp

)
t
)
dt

=
τη
2

+
τp
2

− 2
1

1
τη

+ 1
τp

=
τη
2

+
τp
2

− 2
τητp
τp + τη

This gives

Q11
∞ =

1

τη

ˆ ∞

0

(
etA12
)2
dt

= (1− q (r))
1

τη

(
τη

τη − τp

)2(τη
2

+
τp
2

− 2
τητp
τp + τη

)
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Remembering now the definition of Stokes number St := τp/τη , we get

Q11
∞ =

(
1
2 + St

2 − 2 St
1+St

)
(1− St)2

(1− q (r))

Reducing to the final formulation

Q11
∞ =

1

2 (1 + St)
(1− q (r)) .

This formula is perfect if r is large and St is arbitrary, being adherent in the limit to the
one obtained in the previous computation. More so, comparing it with the experimental
result in [21], figure 12, for cases where r

η ≳ 1, we found similar behavior, and the quantity
⟨w(r)⟩
uη

in that figure is ∼
√
Q11

∞.

Conjecture 3.7.3 (What about r/η ≲ 1?). According to [21], figure 12, for cases where
r
η ∈ [1, 10], the function

√
Q11

∞ ∼ ⟨w(r)⟩
uη

should start close to zero for small St, remaining
almost constant for a while, and then increase. This is in contrast to what was found above
using the adiabatic approximation and the simplified OU model. How to enhance the model
to have a complete formulation for particles closer than Kolmogorov length scale is a com-
plex and interesting modelling problem that should be investigated using results from [75,
25, 26].

Numerical results: justified adiabatic approximation

In this section we are going to propose a numerical analysis of the steady state solutions
for the non linear system (3.7.3) and the linearized one (3.7.4), showing that, in all regime
of St and relative distance r, the Gaussian approximation is a suitable and simplified ap-
proximation to the full solution of 3.7.3. In both cases we are going to considerx, v, Z ∈ R
for different selection of Stokes number St and distance ratio r/η, with values r/η ∼ 1
and r/η ∼ 10.

We check invariant distribution of (3.7.3), then invariant distribution of (3.7.3) con-
ditioned on |x| = r, the invariant distribution of (3.7.4) with fixed r and comparison with
theoretical fr (v) from previous sections.

The parameters of the system are selected from [64] and are:

η = 3× 10−4m, τη = 10−2s, uη =
η

τη
= 3× 10−2m

s
,
√

1− q(r) = min{r1/6, 1}

The inital conditions for x, v, Z and the numerical setting are selected as

x0 = 10× η, v0 = 0, Z0 = 0, dt = 10−4

while we selected St ∈ {0.01, 0.1, 1}, i.e τp ∈ {10−4, 10−3, 10−2}s.
The theoretical variance used is obtained from previous computations:

(1− q(r))
2(1 + St)

uη ∼
r1/3

2(1 + St)
uη.

We simulate the system with Euler-Maruyama scheme for 106 iterations and then
restart it for another 2× 106 iterations and take the value as the invariant distribution.
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Figure 3.3: Comparison of the steady state distribution for different r for linear and non
linear system. Comparison with approximated and theoretical Gaussian.

St = 0.01, r/η = 1, 10

In Figure 3.3, we present the comprehensive findings from the one-dimensional simulation
under fixed parameters. Despite the particle inertia being small, the model demonstrates
a reasonable fit with the Gaussianity simplification discussed in the preceding chapter.

From the Upper Section (left to right):
The first image depicts a frequency histogram of particle relative positions within the

steady-state distribution, normalized with respect to η. It reveals a concentration around
the initial relative distance and a power-law decay at larger distances.

The second image illustrates the marginal probability distribution
´
f(x,v), dx in the

nonlinear case, superimposed with the Gaussian approximation shown as a blue curve.
This visualization effectively demonstrates the interplay between ∇r · (fv) within the
system and its coupling with q(r).

The third image presents the conditional probability distribution f(r,v) for r/η ∼ 1
in the nonlinear case. The blue line represents the Gaussian approximation, and the green
line corresponds to the Gaussian approximation of the marginal probability distribution´
f(x,v), dx.

From the Lower Section (left to right):
The first image illustrates the probability distribution f(r,v) for r/η ∼ 10 in the non-

linear scenario. The blue line signifies the Gaussian approximation, and the green line rep-
resents the Gaussian approximation of the marginal probability distribution

´
f(x,v), dx.

The second image displays the probability distribution fr(v) for r/η ∼ 1 in the adia-
batic case. The blue line denotes the Gaussian approximation, the green line represents
the Gaussian approximation of the marginal probability distribution

´
f(x,v), dx, and the

red line corresponds to the Gaussian approximation of the conditioned probability distri-
bution f(r,v).

The third image portrays the probability distribution fr(v) for r/η ∼ 10 in the adia-
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batic case. As in previous cases, the blue line represents the Gaussian approximation, the
green line signifies the Gaussian approximation of the marginal probability distribution´
f(x,v), dx, and the red line denotes the Gaussian approximation of the conditioned

probability distribution f(r,v).
In this examined case, we observe a percentage relative error in the theoretical and

linearized Gaussian cases compared to the conditional nonlinear system. This error is
less than 15% for small r and less than 2% for large r, which provides motivation for the
simplification due to the Gaussian assumption.

Figure 3.4: Comparison of the steady state distribution for different r for linear and non
linear system. Comparison with approximated and theoretical Gaussian.

St = 0.1, r/η = 1, 10

In Figure 3.4, we present the comprehensive findings from the one-dimensional simula-
tion with higher St. at the increase of particles inertia, the model demonstrates an even
more reasonable fit with the Gaussianity simplification discussed in the preceding chap-
ter. Concerning the figure, in analogy with Figure 3.3, we have the same object with few
difference: the first image on the top left depicts again the frequency histogram of parti-
cle relative positions within the steady-state distribution, normalized with respect to η. It
reveals a concentration around the initial relative distance and a slower power-law decay
at larger distances, with a decay dependent on the St-parameter. The other image show
similar behavior as the previous picture, suggesting the goodness of the approximation
for the model.

In this examined case, we observe a percentage relative error in the theoretical and
linearized Gaussian cases compared to the conditional nonlinear system. This error is
less than 10% for small r and less than 1% for large r, which provides motivation for the
simplification due to the Gaussian assumption, More so, it shows that for higher St regime
the approximation is even tighter.
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Figure 3.5: Comparison of the steady state distribution for different r for linear and non
linear system. Comparison with approximated and theoretical Gaussian.

St = 1, r/η = 1, 10

In Figure 3.5, we present the comprehensive findings from the one-dimensional simula-
tion with unitary St, high-end regime for cloud droplets. At this higher particles inertia,
the model maintain an continue to show an even more reasonable fit with the Gaussianity
simplification discussed in the preceding chapter. Concerning the figure, in analogy with
Figure 3.3 and 3.4, we have the same object with few difference: the first image on the top
left depicts again the frequency histogram of particle relative positions and show an even
slower power-law decay at larger distances, with a decay dependent on the St-parameter.
The other image show similar behavior as the previous picture, with different standard de-
viation, but similar quantity results. More so the picture suggest that the overall marginal
distribution of the non linear system tends to match the high r-value when f(x,v) is con-
ditioned at |x| = r. This, all in all, suggest the goodness of the Gaussian approximation
for the model.

In this examined case, we observe a percentage relative error in the theoretical and
linearized Gaussian cases compared to the conditional nonlinear system. This error is
less than 11% for small r and less than 0.5% for large r, which provides motivation for the
simplification due to the Gaussian assumption. Confirming that in the higher St regime
the Gaussian approximation is even strongly supported.

Cumulative results: ⟨v⟩uη × St-plot

In Figure 3.6, we depict the standard deviation for the studied distributions that exhibit
distinct characteristics, each represented by a different color. The red curve showcases
the standard deviation (s.d.) of the conditional density, denoted as f(r, v), where r/η = 1
and 10. In a complementary manner, the blue curve illustrates the s.d. of the linear density.
Here, the function q(|x|) is computed at q(r) for r/η = 1 and 10.
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Figure 3.6: Plot of the mean velocity times fluid velocity at Kolmogorov scale, at various
St, computed through the standard deviation of steady state density both theoretical and
from the complete model for different value of r/η.

Theoretical value come into play with the green curve, which represents the computed
s.d., denoted as

√
Q∞

11uη, for mean values of r as they align with the small histogram
bars in the position plot. Meanwhile, the black curve corresponds to the theoretical s.d.√
Q∞

11uη for the upper values of r in the histogram bars, satisfying r/η = 1 and 10 exactly.

Remarkably, these results collectively demonstrate an exceptionally high degree of
approximation accuracy. Notably, the approximation accuracy is particularly pronounced
for values where r/η exceeds 10. This is further affirmed by a percentage-relative error
that remains below 1%. Additionally, the approximations remain suitable across a range of
scenarios, even as the error margin gradually increases for smaller r, when transitioning
from low to high St parameter, it gets from 10% to just under 10%. In conclusion, this
analysis underscores the robustness of the proposed approximations across a spectrum
of conditions and establishes their utility in practical computations.

Remark 3.7.4. As a closing remark of the section, we notice that, comparing it with results
of Zhou et all. [21], Figure 12, we have a discrepancy with the behavior of our model for
small value of r. When r/η is large, the behavior of relative velocity seems reasonable
and the approximation very consistent for all St, either low or high. Regarding the small
value of r/η the behavior seems a bit off respect to laboratory experiments: the Gaussian
approximation and the non-linear system itself are a bit less precise for small St in the
small r regime. This leave open the question on how to modify the non linear model 3.7.3
in such a way that for relative distance smaller than the Kolmogorov length-scale, the
correlation of the fluid and the velocity of the particles are properly considered. This will
be addressed in future studies.
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3.8 Galeati limit on two-points motion

In this final section we propose a study to show how to derive our limiting PDE and justify
our approximation in the coagulation rate computation. This section is to be intended as
a sketch and a justification, postponing to future work a rigorous study of the Galeati limit.

In this direction, let us consider the two point motion stochastic Vlasov-Fokker-Planck
equation in the space (xi, vi)i=1,2 ∈ (T2 × R2)2, with a ”degenerate” transport noise
acting on each of the velocity variable, i.e.

∂tf + divx1 (v1f) + divx2 (v2f)−
1

τp
divv1 (v1f)−

1

τp
divv2 (v2f) = ∇v1,v2f ◦ Ẇ

where ∇v1,v2 ◦ Ẇ is

∇v1,v2 ◦ Ẇ =
∑
k∈Λ

σk(x1) · ∇v1f ◦ dW k
t +

∑
k∈Λ

σk(x2) · ∇v2f ◦ dW k
t

We would like to find a renormalizing term εN , and a selection of, regular enough, fields
σNk : T2 → R2, k ∈ ΛN such that in the limit of N → ∞ we have the limiting equation:{

∂tf + divx1 (v1f) + divx2 (v2f)− 1
τp

divv1 (v1f)− 1
τp

divv2 (v2f) = Df
Df = σ2

2τ2p
divv1(Q(x1, x1)∇v1f) +

σ2

2τ2p
divv2(Q(x2, x2)∇v2f) +

σ2

τ2p
divv1 (Q(x1, x2)∇v2f)

We use the domain of the x-variable, T2, with the same construction to obtain the
Brownian motions as in [35, 38].

3.8.1 The Transient PDE

Regarding the Galeati limit, strictly speaking, it cannot work in the usual way as in [35, 38].
In such a framework, it is required that QN (x− y) → 0 when x ̸= y. Therefore,

strictly speaking, the SPDE (3.8) in your file would tend to the PDE (3.8) with D as a diag-
onal operator, meaning without the mixed term that we need in the theory.

So we are in one of those situations, e.g. [33], where we cannot take the true and
proper limit, but we have to settle for proximity. This is not the first case: it also happens
when, for example, QN (0) diverges. In this case too, the limiting PDE is not the right
object, but rather a kind of transient PDE. Let us explain this in more details.

We have the SPDE

df +

(
divx1 (v1f) + divx2 (v2f)−

1

τp
divv1 (v1f)−

1

τp
divv2 (v2f)

)
dt (3.8.1)

=
σ

τp

∑
k

ek (x1) · ∇v1f ◦ dWk (t) +
σ

τp

∑
k

ek (x2) · ∇v2f ◦ dWk (t) (3.8.2)

and the PDE

∂tf + divx1
(
v1f
)
+ divx2

(
v2f
)
− 1

τp
divv1

(
v1f
)
− 1

τp
divv2

(
v2f
)
= Df (3.8.3)
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where

Df =
σ2

2τ2p
divv1(Q(x1,x1)∇v1f)+

σ2

2τ2p
divv2(Q(x2,x2)∇v2f)+

σ2

τ2p
divv1

(
Q(x1,x2)∇v2f

)
.

We are not trying to prove that the first one tends to the second one when a certain pa-
rameter N in the coefficients tends to the limit; otherwise, the term

σ2

τ2p
divv1

(
Q(x1,x2)∇v2f

)
would be zero. We are only trying to estimate the difference between the two:

E
[〈
f − f, ϕ

〉2] ≤ C ∥Q∥L2→L2 ∥f0∥L2 .

We work in this direction, refining this estimate as much as possible, and as such support-
ing the fact that we transition from the SPDE to the PDE.

To ease the computation and show the proximity of solution, for simplicity, we con-
sider the same setting as in [33, 39], working on a bounded domain D ⊂ R2 × R2 for
both the space and velocity variables. In the same spirit the noise construction is made
borrowing ideas of small scale vortex patches in 2 dimension.

Vortex noise in 2D

Consider an usual a filtered probability space (Ω,F , (Ft)t≥0,P), with expectation E and
let (W k

t )k∈K be a family of independent one-dimensional Brownian motion. The noisy
velocity field added in (3.8.1) can be seen as a generalize process of the form

u(t, x1, x2) =
∑
k∈K

σk(x1)
dW j

t

dt
+
∑
k∈K

σk(x2)
dW j

t

dt
,

white noise in time, divergence free and with a space covariance Q as before.
Regarding the small-scale field generating the correlation in space, restricting for sim-

plicity first to D open, bounded and connected, we select

σk(x) = σε(x− xk), σε(x) = ε−1σ(
x

ε
)

for a suitable choose of σ and ε.
The reason why we call this a vortex patch come from the point vortex expansion of

Euler equation. As such, we call xk the centers of the vortex patch and σ is selected to
mimic the Biot-Savart kernel of a vorticy formulation for the fluid velocity, i.e.

• σ is smooth and divergence free;

• σ is compactly supported on the unit ball;

• σ has the Biot-Savart law singularity at the origin ∼ 1
|x| and is constructed as a

mollified Green function on R2.

Concerning the center xk we selected in the same fashion as in [39], dividing the domain
D in region such that each σk has disjoint support from each other. With this construction
we obtain the derided bound on ∥Q∥, see [33] page 8 section (b.ii) and (b.iii) for complete
details on such construction.
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Semigroup and estimate

Denote by L the following operator on (R2 × R2)2

Lf := Df − divx1
(
v1f
)
− divx2

(
v2f
)
+

1

τp
divv1

(
v1f
)
+

1

τp
divv2

(
v2f
)

(3.8.4)

where D is defined as in 3.8.1,3.8.3, with, for simplicity the Gaussian covariance Q as in
3.4. This make our PDE, for proper function on D, of the compact form

∂tf − Lf = 0 (3.8.5)
∂tf − Lf = ∇v1,v2f ◦ Ẇ (3.8.6)

It is well-known that L is an hypoelliptic operator in the sense of Hörmander [50] and
generalizing the classical works from [85], proposition II.1, theorem II.2, II.3 and [4,
27, 28, 51, 55, 62, 69, 71, 77, 79], we can construct a semigroup Pt associated to such
system. Pt ≥ 0 and we have a maximum principle for such operator. As such we define
for both the deterministic and stochastic equation the classical mild solution with the
usual definition for the stochastic convolution

f(t, x, v, y, w) =

¨
D

¨
D
Pt(x− x′, y − y′, v − v′, w − w′)f0(x

′, y′, v′, w′)dx′dy′dv′dw′

f(t, x, v, y, w) = Pt ∗ f0 +
ˆ t

0
Pt−s ∗ ∇v,w ◦ Ẇds

and we interpret the solution in the weak sense against a test function.
Here we postpone to future work the existence and uniqueness result for such system,

since with minor modification from [6, 68, 85] and reference therein, can be obtained with
regularity in C2

b ∩ L1 as soon as f0 ∈ L2 ∩ L∞.
Recall that the covariance matrix of our noise is given by

Q(x, y) =
∑
j∈J

σj(x)⊗ σj(y), x, y ∈ D.

Associated we can identify the bounded linear operator

Q : L2(D,R2) → L2(D,R2),Qg(x) =
ˆ
D
Q(x, y)g(y)dy

and with that the fundamental quantity

∥Q∥L2 = sup
g ̸=0

´
D
´
D g(x)

TQ(x, y)g(y)dxdy´
D g(x)

T g(x)dx

Theorem 3.8.1. Assume f0 ∈ LF0(Ω;L
2(D2)∩L∞(D2)). Then, for all ϕ ∈ L∞(D) we

have, for f and f solutions respectively of 3.8.1 and 3.8.3,

E
[〈
f − f, ϕ

〉2] ≤ C ∥Q∥L2→L2 ∥f0∥L2 .

where C depend on the turbulent kinetic energy σ/τp.
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Proof. First we reformulate the stochastic equation in the Stratonovich sense with its Ito
corrector

dtf = Lf +
∑
k∈K

σk(x1) · ∇vfdW
j
t +

∑
k∈K

σk(x2) · ∇wfdW
j
t ,

with the same L for both 3.8.1 and 3.8.3. Using the weak formulation of the mild form for
both the equation we can write

dt
(
f − f

)
= L

(
f − f

)
+
∑
k∈K

σk(x1) · ∇vfdW
j
t +

∑
k∈K

σk(x2) · ∇wfdW
j
t

and, considering a smooth test function ϕ with compact support in D, we have

⟨ϕ, fQ − f⟩ =
∑
k∈K

ˆ t

0

〈
P ′
t−sϕ, σk(x1) · ∇vf

〉
dW j

t +
∑
k∈K

ˆ t

0

〈
P ′
t−sϕ, σk(x2) · ∇wf

〉
dW j

t

Using the symmetry of exchanging v → w, we can consider only one of the two sum and
the other produce the same result. By Ito isometry formula for Ito integrals we have

E
[
⟨ϕ, fQ − f⟩2

]
≤ εN

∑
k∈ΛN

ˆ t

0
E[
〈
P ′
t−sϕ, σk(x) · ∇vf

〉2
]ds

For the sake of notation we are going to indicate only the important variable in the com-
putation for every function as ξ = (x, y, v, w) and η = (x′, y′, v′, w′).

∑
k∈K

〈
P ′
t−sϕ, σk · ∇vf

〉2
=

2∑
i,j=1

¨
D2

¨
D2

P ′
t−sϕ(ξ)P

′
t−sϕ(η)Qi,j(x, x

′)∂vif(ξ)∂v′jf(η)dξ dη.

Recall know the definition of ∥Q∥, and the maximum principle for P ′
t , i.e ∥P ′

tϕ∥∞ ≤
∥ϕ∥∞, we get∑

k∈K

〈
P ′
t−sϕ, σk · ∇vf

〉2 ≤ C∥Q∥L2→L2

¨
D2

∣∣P ′
t−sϕ(ξ)∇vf(ξ)

∣∣2 dξ
≤ C∥Q∥L2→L2∥ϕ∥2∞

¨
D2

|∇f(ξ)|2 dξ.

Using the energy estimate (thanks to the Stratonovich integration) and similar computa-
tion as in [6], theorem 2, we have

ˆ ∞

0

¨
D2

|∇f(ξ)|2 dξdt ≤ C

¨
D2

|f0(ξ)|2 dξ.

If we put all together we get

E
[〈
f − f, ϕ

〉2] ≤ C ∥Q∥L2→L2 ∥f0∥L2 .

which concludes the proof.
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Chapter 4

Homogeneous Smoluchowski
equation with velocity

4.1 Introduction

Coagulation processes are ubiquitous in nature, from the movement of cells to the atmo-
sphere, and in general complicated to understand experimentally and mathematically. In
this work, we are motivated by the question whether a turbulent velocity field in the at-
mosphere enhances the coagulation of small rain droplets, and therefore favors rain fall.
Physics literature on this topic has been vast, at least as early as Saffman-Turner [78] in
the fifties, see also [25, 75, 80], arguing in favor of such coagulation enhancement. Here
and in subsequent works, we give a novel approach to this problem that is fully mathe-
matical. In particular, we take a kinetic viewpoint and study rigorously a variant of Smolu-
chowski’s coagulation equation with velocity dependence that is akin to Boltzmann equa-
tion. It arises as the scaling limit of a system of second-order (microscopic) coagulating
particles, modelling the interactions of rain droplets in the clouds, which are subjected
to a common noise of transport type. Such a noise, constructed in recent mathematical
works [42, 35], possesses several characteristics of real turbulence, such as it enhances
diffusion of passive scalars. In the present work, we focus on the existence, uniqueness
and regularity of this new PDE, after briefly introducing its origin.

Smoluchowski’s classical equation [83] provides a first model for the time evolution
of the probability distribution {fm(t, x)}∞m=1 of diffusing particles of different sizes (or
masses) m ∈ N, say in Td := (R/Z)d, when they undergo pairwise coagulation with
certain coagulation rate α(m,n):

∂tfm(t, x) = ∆fm(t, x)+
m−1∑
n=1

α(n,m− n)fn(t, x)fm−n(t, x)

−2

∞∑
n=1

α(m,n)fm(t, x)fn(t, x), t > 0, x ∈ Td, m ∈ N.

The nonlinearity has two parts, a gain term and a loss term. Such a system of equa-
tions has been derived from scaling limits of Brownian particle systems by Hammond-
Rezakhanlou [48, 46]. To model the influence of a large-scale turbulent flow, it is natural
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to introduce a common noise. If we adopt a transport noise of the type in [35]

Ẇ(t, x) =
∑
k∈K

σk(x)Ẇ
k
t

where {σk(x)}k∈K is a countable collection of divergence-free smooth vector fields and
{W k

t }k∈K independent one-dimensional Brownian motions, then we get a stochastic ver-
sion of Smoluchowski’s equation (an SPDE)

dfm(t, x) =∆fm(t, x)dt+
m−1∑
n=1

α(n,m− n)fn(t, x)fm−n(t, x)dt

−2

∞∑
n=1

α(m,n)fm(t, x)fn(t, x)dt−
∑
k∈K

∇fm(t, x) · σk(x) dW k
t

+ div (Q(x, x)∇fm(t, x)) , m ∈ N

(4.1.1)

where Q(x, x) :=
∑

k∈K σk(x) ⊗ σk(x) coming from the transport-type noise. Under
specific choice of {σk}k∈K , we can have that Q(x, x) ≡ κId, for an enhanced diffusion
coefficient κ > 0, the so-called “eddy diffusion” [15]. This picture, in its special case of
finitely many mass levels m = 1, 2, ...,M and unit coagulation rate α(m,n) ≡ 1, has
been derived from particle systems in [30]. Another version of the SPDE with continuous
mass variablesm ∈ R has also been derived from particle systems with mean-field inter-
actions in [73].

However, conceptually and mathematically, the most difficult step in this program is
to verify that diffusion enhancement leads to coagulation enhancement, namely, the fast
increase of probability densities fm for m ≫ 1 (large masses) for large diffusion coef-
ficient case. In fact, the model (4.1.1) turns out to be too crude, and even numerically we
cannot verify a coagulation enhancement.

The problem lies in the fact that quick diffusion of masses may not lead to enhanced
collision unless the coagulation rate depends on the velocity variable. Otherwise, the
masses merely move around. We introduce a new system with both position and velocity
variables. In the atmospheric physics literature, e.g. [25, 75, 80, 45], it is also common to
consider cloud particles coagulate with a rate that is proportional to (when d = 3)

α(m1,m2) := |v1 − v2|(r1 + r2)
2

where vi, i = 1, 2 are the velocities of two colliding rain droplets and ri := m
1/3
i , i =

1, 2 their respective radius. Under certain simplifications, it leads to the following kinetic
version of Smoluchowski’s equation (cf. Appendix .1)∂tfm(t, x, v) = −v · ∇xfm + c(m)divv (vfm) + κc(m)2∆vfm +Qm(f, f)

fm|t=0 = f0m(x, v), m = 1, ...,M,

(4.1.2)
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where (t, x, v) ∈ [0, T ]× Td × Rd, and

Qm(f, f)(t, x, v)

:=
m−1∑
n=1

¨
{nw′+(m−n)w=mv}

s(n,m− n)fn(t, x, w
′)fm−n(t, x, w)|w − w′|dwdw′

− 2
M∑
n=1

ˆ
s(n,m)fm(t, x, v)fn(t, x, w)|v − w|dw,

(4.1.3)
where

c(m) := αm(1−d)/d, s(n,m) := (n1/d +m1/d)d−1. (4.1.4)

In Appendix .1, we sketch the proof of the scaling limit from a coagulating microscopic
particle system subjected to a common noise, to an SPDE that eventually gives rise to this
PDE. Although it is not fully rigorous, it should justify the interest of this equation. Here
again, turbulence contributes to large κ versus small κ when no turbulence. The eddy
diffusion occurs now in the velocity variable.

The aim of our research is two-fold. Theoretically, we are interested in proving the
well-posedness of the PDE and associated SPDE cf. (1.5.6), as well as the passage from the
one to the other. Then, both theoretically and numerically we aim to demonstrate that the
larger the κ, i.e. the more intense is the turbulence, the faster masses coagulate. See
[31] for a first numerical study in this direction. In the present article, we focus on the PDE

system (4.1.2) in the spatially-homogeneous case, i.e. by considering the initial conditions
fm0 constant in x for every m, we can reduce (4.1.2) to∂tfm(t, v) = c(m)divv (vfm(t, v)) + κc(m)2∆vfm(t, v) +Qm(f, f)(t, v)

fm|t=0 = f0m(v), m = 1, ...,M,

(4.1.5)

where (t, v) ∈ [0, T ] × Rd and Qm(f, f) is as in (4.1.3) but without the x-dependence,
and we prove existence, uniqueness and regularity of the solutions of (4.1.5), for every
fixed κ > 0.

Denote a weighted Lp space

Lpk(R
d) :=

{
f : Rd → R s.t. f ⟨v⟩k ∈ Lp(Rd)

}
, p ∈ [1,∞], k ∈ N, (4.1.6)

where
⟨v⟩ :=

√
1 + |v|2

and a weighted Sobolev space

Hn
k (R

d) :=
{
f ∈ L2

k s.t. ∇ℓf ∈ L2
k(R

d), ∀1 ≤ ℓ ≤ n
}
. (4.1.7)

The main result of this article is as follows.



130 CHAPTER 4. SMOLUCHOWSKI EQUATION WITH VELOCITY

Theorem 4.1.1. Fix any finite T and κ > 0. Suppose that initial conditions f0m(v) ∈
(L2 ∩ L1

2)(R
d) and nonnegative, for every m = 1, ...,M , then there exists at least one

nonnegative solution in the class L∞ ([0, T ];L1
2(R

d)
)⊗M .

If the initial conditions f0m(v) ∈ (H1
1 ∩ L1

2)(R
d) and nonnegative, then there exists a

unique nonnegative solution, and in this case fm(t) ∈ C∞
b (Rd) for any t > 0.

The most difficult part in our opinion is uniqueness, due mainly to the presence of
|w−w′| in the nonlinear term, and the fact that the velocity variable v ∈ Rd is unbounded,
hence in the presence of Laplacian, fm(t, v) is never compactly supported even if starting
with so. These together with the fact that we have a system rather than just one equation,
cause a severe difficulty in closing a Gronwall inequality for uniqueness. As far as we are
able, the weighted L1 space is the only one in which a Gronwall argument can work, even
if one is willing to assume that solutions are Schwartz functions. (The problem is related
to integrability rather than smoothness.) Indeed, with weighted L1 we can find certain
cancellations that remove those terms with higher weights brought by the kernel, and this
seems not achievable with other spaces such as weighted L2. Equally essential to this
cancellation is considering the sum over the norms of all the densities fm, m = 1, ..,M ,
rather than treating them individually. Indeed, this is already essential to derive various
apriori estimates.
On the other hand, existence is proved by constructing a family of approximating equa-
tions each corresponding to a truncation of the kernel |w−w′| in the nonlinearity. These
approximating problems are more amenable to study since the difficulty related to the ker-
nel is no longer severe, for each fixed truncation parameter.
There is an unexpected connection to the vast area of Boltzmann equations [86]. Our
(4.1.2) may be viewed as a Boltzmann-type equation with perfectly inelastic collision,
rather than the classical elastic collision. Indeed, it is derived from particles undergoing
pairwise coagulation, hence two particles merge into one based on the principle of con-
servation of momentum (and not energy). It is also local in nature in that the nonlinearity
acts on the velocity variable, per (t, x). The closest works in the Boltzmann literature seem
to be the ones on excited granular media, see [43] and references therein, and on multi-
species Boltzmann equations, see [17] and references therein. In a sense our equation
combines the features of both of them. From a technical point of view, the aforemen-
tioned difficulty with uniqueness are also present in [67, 43] and some references therein,
and we have learned from these sources. On the other hand, there are various differences
that set our model apart from these references. Since M < ∞, we do not have the con-
servation of mass and momentum, and we do not expect nontrivial stationary solutions –
indeed all fm(t) should decay to zero as t→ ∞ (i.e. eventually all masses are transferred
out of the system). In general, our nonliearityQm(f, f) does not enjoy any particular kind
of symmetry. Our derivation of the apriori estimates is also quite different, in particular
we need not invoke entropy estimates and Povzner-type inequalities, as are standard in
the Boltzmann literature.
Without loss of generality and simplifying notations, in the main part of the paper, we set
κ = 1, c(m) = 1, s(n,m) = 1.
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4.2 Deterministic Smoluchowski system with Velocity

4.2.1 Non-local Smoluchowski Equations

Recall our system of nonlinear integral-differential equations for {fm(t, x, v)}Mm=1 de-
fined as:∂tfm = −v · ∇xfm + divv (vfm) + ∆vfm +Qm(f, f)

fm|t=0 = f0m

, m = 1, ...,M

(4.2.1)

where (t, x, v) ∈ [0, T ]×Td×Rd. The nonlinear termQm(f, f), representing the masses
interactions is given by (4.1.3). Since we expect the system to represent density of parti-
cles with different masses we take f0m ≥ 0, ∀m = 1, ...,M .

We focus on the case when the initial condition is constant in the space variable x,
and so this property pass to the solution of (4.2.1). We get a new set of equations solved
by fm(t, v),m = 1, ...,M , where we omit the subscript v in the derivatives in the sequel
(since there is no ambiguity)∂tfm = div (vfm) + ∆fm +Qm(f, f)

fm|t=0 = f0m

, m = 1, ...,M (4.2.2)

where (t, v) ∈ [0, T ]× Rd and f0m ≥ 0, ∀m. By a change of variables

w′ = φ(v, w) :=
mv − (m− n)w

n
,

the nonlinear term can be written as:

Qm(f, f)(t, v) :=
m−1∑
n=1

¨
{nw′+(m−n)w=mv}

fn(t, w
′)fm−n(t, w)|w − w′|dwdw′

− 2
M∑
n=1

ˆ
fm(t, v)fn(t, w)|v − w|dw

=

m−1∑
n=1

ˆ
fn (t, φ(v, w)) fm−n(t, w)

(m
n

)2
|v − w|dw

− 2

M∑
n=1

ˆ
fm(t, v)fn(t, w)|v − w|dw.

We will consider the following notion of weak solutions to (4.2.2).

Definition 4.2.1 (L∞
t L

1
v-weak solution). Fix T > 0, and f0m ∈ L1

2 ∩ L2. A solution
for equation (4.2.2) is a set of functions fm ∈ L∞(0, T ;L1

2(R
d)) indexed by the masses

m = 1, ...,M such that ∀m, Qm(f, f) ∈ L∞(0, T ;L1(Rd)) and the following holds:

M∑
m=1

⟨fm(t), ϕ⟩ −
M∑
m=1

〈
f0m, ϕ

〉
=

ˆ t

0

M∑
m=1

⟨fm(s),∆ϕ⟩ ds
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−
ˆ t

0

M∑
m=1

⟨fm(s), v · ∇ϕ⟩ ds+
ˆ t

0

M∑
m=1

⟨Qm(f(s), f(s)), ϕ⟩ ds,

for a.e. t ∈ [0, T ], and ∀ϕ ∈ C∞
c (Rd).

4.2.2 A priori estimate and conserved quantities for system (4.2.2)

We prove for the system with finite number of masses a decay in time of the total mass
and the conservation of such quantity in the infinite system.

Our first result is valid even in the system with space variable, hence we state it more
generally.

Lemma 4.2.2. Suppose that f0m(x, v) ∈ L1(Td × Rd) and {fm(t)}Mm=1 is a nonnegative
solution of the equation (4.2.1), such that fm(t) and its gradient∇fm(t) have a fast decay
at infinity. Then if M <∞, then the quantity

T (t) :=

¨ M∑
m=1

mfm(t, x, v)dxdv (4.2.3)

is non-increasing in t; if M = ∞, then it is constant in t.

Remark 4.2.3. It is not clear how to relate the finite- and infinite-level systems. We only
work withM <∞. Since t 7→ T (t) is decreasing in this case, we interpret T (0)−T (t)
as the amount of mass falling out of the system. It can be viewed as an indicator of how
efficient the coagulation is (by transferring densities from small masses to large masses,
see [31]).

Proof. Consider first the nonlinear part. For every fixed t, x we have that
ˆ M∑

m=1

mQm(f, f)dv

=

M∑
m=1

m−1∑
n=1

m

ˆ
dv

¨
{nw+(m−n)w′=mv}

fn(t, x, w)fm−n(t, x, w
′)|w − w′|dwdw′

− 2

M∑
m=1

M∑
n=1

m

¨
fm(t, x, v)fn(t, x, w)|v − w|dwdv

=

M∑
m=1

m−1∑
n=1

m

¨
fn(t, x, w)fm−n(t, x, w

′)|w − w′|dwdw′

− 2
M∑
m=1

M∑
n=1

m

¨
fm(t, x, v)fn(t, x, w)|v − w|dwdv

Exchanging the order of summations in the first term, and setting k = m− n, the above
equals

M∑
n=1

M−n∑
k=1

(k + n)

¨
fn(t, x, w)fk(t, x, w

′)|w − w′|dwdw′
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− 2

M∑
m=1

M∑
n=1

m

¨
fm(t, x, v)fn(t, x, w)|v − w|dwdv

≤
M∑
n=1

M∑
k=1

(k + n)

¨
fn(t, x, w)fk(t, x, w

′)|w − w′|dwdw′

− 2
M∑
m=1

M∑
n=1

m

¨
fm(t, x, v)fn(t, x, w)|v − w|dwdv = 0

where equality is achieved if and only if M = ∞. For the linear part, we note that for
every m, t, x we have that

ˆ
Rd

divv (vfm +∇vfm) dv = 0

due to integration by parts and |vfm| + |∇vfm| → 0 as |v| → ∞ for every fixed t, x.
Also, for every m, t, v we have that

ˆ
Rd

v · ∇xfmdx = 0

due to integration by parts and |fm| → 0 as |x| → ∞ for every fixed t, v. Thus we can
conclude since T (t) (4.2.3) can be written as

∂tT =

ˆ
Rd

ˆ
Rd

M∑
m=1

m ∂tfm(t, x, v)dxdv = −
M∑
m=1

m

¨
v · ∇xfmdxdv

+

M∑
m=1

m

¨
divv (vfm +∇vfm) dvdx+

¨ M∑
m=1

mQm(f, f)dvdx ≤ 0

with equality if and only if M = ∞.

We specialize now to consider the spatially-homogeneous case, i.e. fm(t, x, v) =
fm(t, v) independent of x ∈ Td.

Recall the weightedLp spacesLpk(R
d) (4.1.6) and we will indicate byLpk,M the space

in which the sequence {fm(t)}Mm=1 lives, with norm given by

∥f∥p,M,k :=

M∑
m=1

∥fm∥p,k =
M∑
m=1

(ˆ
|fm(v)|p ⟨v⟩pk dv

)1/p

.

The reason we are going to introduce such spaces is motivated not only to understand the
regularity of the solution of the system in study, but also to deal with the terms |v−w| in
the coagulation kernel since, as we have already noted in the explicit formulation of the
nonlinearity Qm(f, f).

There are a few ways to control the norm of such a quantity, and we prove here the
main estimates that we apply in all the a priori estimates for the equation.
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Proposition 4.2.4. For every p ∈ [1,∞] and k ≥ 0, there exists a constant C depend-
ing only on p, k,M and the dimension d, such that we have the following bound on the
nonlinearity

∥Qm(g, f)∥p,k ≤ C (∥g∥p,M,k+1∥f∥1,M,k+1)

and more general

∥Q(g, f)∥p,M,k ≤MC (∥g∥p,M,k+1∥f∥1,M,k+1) .

Proof. We prove this with a simple computation, using the duality of the norm for Lp
spaces. For simplicity of notation during the proof we omit whenever is possible the ap-
pendixM on the norm. Fixm ∈ {1, ...,M} and considerQm(g, f) for (gn)n=1,...,M and
(fn)n=1,...,M :

∥Qm(g, f)∥p,k = sup
ϕ∈Lp′ , ∥ϕ∥p′=1

ˆ
Qm(g, f) ⟨v⟩k ϕ(v)dv,

where 1/p + 1/p′ = 1. We now work directly on each term of the summation in the
nonlinearity both in the positive and negative part. For the negative part we have:
¨

gm(v)fn(w)|v − w| ⟨v⟩k ϕ(v)dwdv ≤
¨

gm(v)fn(w) ⟨v⟩k+1 ⟨w⟩ϕ(v)dwdv

= ∥fn||1,1
ˆ
gm(v) ⟨v⟩k+1 ϕ(v)dv

≤︸︷︷︸
∥ϕ∥p′=1

∥gm∥p,k+1∥fn||1,1 ≤ ∥g∥p,k+1∥f∥1,k+1.

And now for the positive:
¨

cnmgn(h(v, w))fm−n(w)|v − w| ⟨v⟩k ϕ(v)dwdv

≲
¨

gn(h)fm−n(w) ⟨v⟩k+1 ⟨w⟩ϕ(v)dwdv

=︸︷︷︸
h(v,w)=z

¨
gn(z)fm−n(w)

〈
h̃(z, w)

〉k+1
⟨w⟩ϕ(h̃)dwdv

≤
¨

gn(z)fm−n(w)(⟨z⟩k+1 ⟨w⟩+ ⟨w⟩k+1)ϕ(h̃)dwdv

=

¨
gn(z)fm−n(w) ⟨z⟩k+1 ⟨w⟩ϕ(h̃)dwdv +

¨
gn(z)fm−n(w) ⟨w⟩k+1 ϕ(h̃)dwdv

=

ˆ
fm−n(w)

ˆ
gn(z) ⟨z⟩k+1 ϕ(h̃)dv ⟨w⟩ dv +

ˆ
fm−n(w) ⟨w⟩k+1

ˆ
gn(z)ϕ(h̃)dvdw

≤︸︷︷︸
Hölder inequality

ˆ
fm−n(w)∥ ⟨w⟩ ∥gn∥p,k+1dv +

ˆ
fm−n(w) ⟨w⟩k+1 ∥gn∥pdw

≤︸︷︷︸
Translation invariance

2∥gn∥p,k+1∥fm−n||1,k+1 ≤ 2∥g∥p,k+1∥f∥1,k+1.

Putting everything together we conclude the proof.
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We begin now proving the a priori estimates for the standard moments of regular
enough solution to the system of coagulation equations.

Lemma 4.2.5. For any ℓ ∈ N, suppose that f0m ∈ L1
ℓ and {fm(t)}Mm=1 is a nonnegative

solution of the equation (4.2.2), such that fm(t) and its gradient∇fm(t) have a fast decay
at infinity. Then, there exists some finite constant Cℓ depending only on ℓ, d, and the initial
data {fm(0)}Mm=1 such that for any t ≥ 0,

M∑
m=1

ˆ
|v|ℓfm(t, v)dv ≤ Cℓ. (4.2.4)

Proof. We first consider ℓ = 2k even, and prove by induction on k ∈ N. The case k = 0
follows from Lemma 4.2.2. Now assume k ≥ 1 and assume (4.2.4) is proved for the case
ℓ = 2(k − 1). Note that for each m = 1, ...,M , by (4.2.2)

∂t

ˆ
|v|2kfm(t, v)dv =

ˆ
|v|2k∂tfm(t, v)dv

=

ˆ
|v|2kdivv (vfm) dv +

ˆ
|v|2k∆vfmdv

+

ˆ
dv

m−1∑
n=1

¨
{nw+(m−n)w′=mv}

|v|2kfn(t, w)fm−n(t, w
′)|w − w′|dwdw′

− 2

ˆ
dv

M∑
n=1

ˆ
|v|2kfm(t, v)fn(t, w)|v − w|dw

=− 2k

ˆ
|v|2kfmdv + 2k(2k + d− 2)

ˆ
|v|2k−2fmdv

+
m−1∑
n=1

¨ ∣∣∣∣nw + (m− n)w′

m

∣∣∣∣2k fn(t, w)fm−n(t, w
′)|w − w′|dwdw′

− 2
M∑
n=1

¨
|v|2kfm(t, v)fn(t, w)|v − w|dwdv.

Above, we assumed that for every t > 0,

|v|2k+1|fm| → 0, |v|2k|∇vfm| → 0, as |v| → ∞

such that the boundary terms vanish in the integration by parts. Summing the above in
m = 1, ...,M and noticing by Jensen’s inequality∣∣∣∣nw + (m− n)w′

m

∣∣∣∣2k ≤ (n|w|+ (m− n)|w′|
m

)2k

≤ n

m
|w|2k + m− n

m
|w′|2k ≤ |w|2k + |w′|2k,

whenever 1 ≤ n ≤ m− 1, we obtain that

∂t

M∑
m=1

ˆ
|v|2kfm(t, v)dv
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≤ −2k

M∑
m=1

ˆ
|v|2kfm(t, v)dv + 2k(2k + d− 2)

M∑
m=1

ˆ
|v|2k−2fm(t, v)dv

+

M∑
m=1

m−1∑
n=1

¨ (
|w|2k + |w′|2k

)
fn(t, w)fm−n(t, w

′)|w − w′|dwdw′

− 2

M∑
m=1

M∑
n=1

¨
|v|2kfm(t, v)fn(t, w)|v − w|dwdv

≤ −2k

M∑
m=1

ˆ
|v|2kfm(t, v)dv + 2k(2k + d− 2)C2(k−1)

+

M∑
n=1

M∑
m=n+1

¨ (
|w|2k + |w′|2k

)
fn(t, w)fm−n(t, w

′)|w − w′|dwdw′

− 2
M∑
m=1

M∑
n=1

¨
|v|2kfm(t, v)fn(t, w)|v − w|dwdv,

where we used the induction hypothesis that for some finite constantC2(k−1) independent
of t,

M∑
m=1

ˆ
|v|2k−2fm(t, v)dv ≤ C2(k−1).

Further, setting ℓ = m− n we see that

M∑
n=1

M∑
m=n+1

¨ (
|w|2k + |w′|2k

)
fn(t, w)fm−n(t, w

′)|w − w′|dwdw′

− 2

M∑
m=1

M∑
n=1

¨
|v|2kfm(t, v)fn(t, w)|v − w|dwdv

≤
M∑
n=1

M−n∑
ℓ=1

¨ (
|w|2k + |w′|2k

)
fn(t, w)fℓ(t, w

′)|w − w′|dwdw′

− 2
M∑
m=1

M∑
n=1

¨
|v|2kfm(t, v)fn(t, w)|v − w|dwdv ≤ 0.

Thus we conclude that

∂t

M∑
m=1

ˆ
|v|2kfm(t, v)dv ≤− 2k

M∑
m=1

ˆ
|v|2kfm(t, v)dv + 2k(2k + d− 2)C2(k−1).

Assuming the initial data is such that

A0(k) :=

M∑
m=1

ˆ
|v|2kfm(0, v)dv
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is finite, it follows that for any t ≥ 0 we have that

M∑
m=1

ˆ
|v|2kfm(t, v)dv ≤ A0(k)e

−2kt + (2k + d− 2)Ck−1(1− e−2kt)

≤ A0(k) + (2k + d− 2)C2(k−1) =: C2k.

This completes the induction for n = 2k even. Finally, we turn to the case n = 2k − 1
for k ≥ 1. Note that

M∑
m=1

ˆ
|v|2k−1fm(v)dv ≤

M∑
m=1

ˆ
|v|≤1

|v|2k−1fm(v)dv +
M∑
m=1

ˆ
|v|>1

|v|2k−1fm(v)dv

≤
M∑
m=1

ˆ
fm(v)dv +

M∑
m=1

ˆ
|v|2kfm(v)dv ≤ C0 + C2k.

Remark 4.2.6. CallAk :=
∑M

m=1A
m
k :=

∑M
m=1

´
fm ⟨v⟩k dv and consider

´
Q(f, f) ⟨v⟩k dv.

Although we have used other properties, this quantity can be also expanded in the follow-
ing way:

ˆ
Q(f, f) ⟨v⟩k dv ≲ −2

M∑
m=1

M∑
n=M−n+1

¨
fm(v)fn(w)|v − w| ⟨v⟩k dwdv

Using Proposition 4.2.4 and the modified triangular inequality: −2|v−w| ⟨v⟩k ≤ −2 ⟨v⟩k+1+
2|w| ⟨v⟩k , we get

≲ −2
M∑
m=1

M∑
n=M−n+1

¨
fm(v)fn(w)|v − w| ⟨v⟩k dwdv ≤ 2A1Ak − 2Ak+1C

M
k

where CMk := inft
´
fM (w)dw ≥ 0. This give us an equation for Ak of the form:

d

dt
Ak ≤ −2CMk Ak+1 + CkAk(A0 +A1) + Ck,k−1Ak−1)

Using the already proved bound on Ak and the aforementioned equation, integrating in
time, is enough to show that moments of order k ≥ 2 are controlled for t0 > 0, however
small, even if f0 has not bounded moments of higher order.

We can prove also an a priori bound in L2
tH

1
v ∩ L∞

t L
2
v of solutions of (4.2.2), under

regularity assumption.

Lemma 4.2.7. Suppose that f0m ∈ L1
2 ∩L2 and {fm(t)}Mm=1 is a nonnegative solution of

the equation (4.2.2), such that fm(t) and its gradient ∇fm(t) have a fast decay at infinity.
There exists some constant C > 0 depending on the initial data {fm(0),∇fm(0)}Mm=1,
T <∞, M <∞ such that

sup
t∈[0,T ]

(
M∑
m=1

ˆ
f2m(t, v)dv +

ˆ t

0

ˆ
|∇fm(s, v)|2dv ds

)
≤ C.
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Proof. Note that for each m = 1, ...,M , by (4.2.1)

1

2
∂t

ˆ
f2m(t, v)dv =

ˆ
fm(t, v)∂tfm(t, v)dv

=

ˆ
fmdivv (vfm) dv +

ˆ
fm∆vfmdv

+

ˆ
dv

m−1∑
n=1

¨
{nw+(m−n)w′=mv}

fm(t, v)fn(t, w)fm−n(t, w
′)|w − w′|dwdw′

− 2

ˆ
dv

M∑
n=1

ˆ
fm(t, v)fm(t, v)fn(t, w)|v − w|dw

=
d

2

ˆ
f2mdv −

ˆ
|∇fm|2dv

+
m−1∑
n=1

¨
fm

(
t,
nw + (m− n)w′

m

)
fn(t, w)fm−n(t, w

′)|w − w′|dwdw′

− 2
M∑
n=1

¨
f2m(t, v)fn(t, w)|v − w|dwdv.

Here, we assumed that |v∇vfm| → 0, as |v| → ∞ for every t such that the boundary
terms vanish in the integration by parts.

Further, we see that each term on the positive nonlinearity can be written using the
Young’s inequality has (same for v or w variable):
¨

fm

(
t,
nv + (m− n)w

m

)
fn(t, v)fm−n(t, w)|v|dvdw =

≤
ˆ [

1

2

(ˆ
fm

(
t,
nv + (m− n)w

m

)
fn(t, v)|v|dv

)2

+
1

2
fm−n(t, w)

2

]
dw

=

ˆ
1

2

(ˆ
fm

(
t,
nv + (m− n)w

m

)
fn(t, v)|v|dv

)2

dw +
1

2
∥fm−n(t, w)∥2L2

Thus we need to take care of the squared factor and we can do this using Jensen and
normalizing respect the measure (

´
fn(t, v)dv)

−1fn(t, v)dv, so that we obtain:
ˆ

1

2

(ˆ
fm

(
t,
nv + (m− n)w

m

)
fn(t, v)|v|dv

)2

dw

≤ 1

2
C0

ˆ ˆ
f2m

(
t,
nv + (m− n)w

m

)
|v|2fn(t, v)dvdw

= (A)

We have then, using translation invariance of Lebesgue measure:

(A) =
1

2
C0

ˆ (ˆ
f2m

(
t,
nv + (m− n)w

m

)
dw

)
fn(t, v)|v|2dv

≲ ∥fm∥2L2

ˆ
|v|2fn(t, v)dv ≤ C1∥fm∥2L2
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where the constant C1 := C1(M) depend also on M , using the moment bound Lemma
4.2.5 with ℓ = 2, since we assumed that f0m ∈ L1

2.
We can repeat the same argument for the |w| part. Thus we conclude that, erasing

the negative term of the nonlinearity,

∂t

M∑
m=1

ˆ
f2m(t, v)dv +

M∑
m=1

ˆ
|∇fm(t, v)|2dv ≤ C(M, 0, 1, A)

M∑
m=1

ˆ
f2m(t, v)dv

where C(M, 0, 1, A) > 0, and assuming the initial data is such that

C1 :=
M∑
m=1

ˆ
|v|2fm(0, v)dv, C0 :=

M∑
m=1

ˆ
fm(0, v)dv, Cl :=

M∑
m=1

ˆ
f2m(0, v)dv <∞.

It follows that for any t ∈ [0, T ] we pass to integral form

M∑
m=1

ˆ
f2m(t, v)dv + κc(m)2

ˆ t

0

M∑
m=1

ˆ
|∇fm(s, v)|2dv ds

≤ Cl + C(M, 0, 1, A)

ˆ t

0

M∑
m=1

ˆ
f2m(s, v)dvds

≤ Cl + C(M, 0, 1, A)

ˆ t

0

(
M∑
m=1

ˆ
f2m(s, v)dv +

ˆ s

0

M∑
m=1

ˆ
|∇fm(r, v)|2dv dr

)
ds

From Gronwall’s lemma, it follows:

sup
t∈[0,T ]

(
M∑
m=1

ˆ
f2m(t, v)dv +

ˆ t

0

M∑
m=1

ˆ
|∇fm(s, v)|2dv ds

)
≤ Cl e

TCM,0,A,1 ≤ C(T ) <∞.

Remark 4.2.8. Consider the constant in the previous lemma on the right hand side of the
Gronwall inequality and consider CT := supt≤T Ct < ∞. Then from the lemma we can
recover the following:

∂t
(
e−CT t∥ft∥22,M

)
+

ˆ t

0
e−CT t∥fs∥2H1,Mds ≤ 0

using Gronwall’ lemma and using the property of sup and exponential, we have that exists
C := CT e

CTT <∞ depending only on the initial condition f0 and not his gradient, such
that:

sup
t≤T

∥ft∥22,M +

ˆ t

0
∥fs∥2H1,Mds ≤ C.

Using the already proven a priori estimate and the bound on the nonlinearity we can
also show an a priori bound on the solution in the weighted space L∞

t (L2
k)v ∩ L2

t (H
1
k)v ,

noting also that |v|k ≤ ⟨v⟩k ≤ 2k−1(1 + |v|k).
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Lemma 4.2.9. For every k ∈ N, suppose that f0m ∈ L1
4k+2 ∩ L2

k and {fm(t)}Mm=1 is
a nonnegative solution of the equation (4.2.2), such that fm(t) and its gradient ∇fm(t)
have a fast decay at infinity. Then there exists some constant C > 0 depending on the
initial data {fm(0),∇fm(0)}Mm=1, T <∞, M <∞ such that

sup
t∈[0,T ]

(
M∑
m=1

ˆ
f2m(t, v)|v|2kdv +

ˆ t

0

ˆ
|∇fm(s, v)|2|v|2kdv ds

)
≤ C.

Proof. We perform induction on k ∈ N. The case k = 0 is proved in Lemma 4.2.7.
Suppose that the thesis has been proved for the case k−1. Then, for eachm = 1, ...,M ,
by (4.2.1)

1

2
∂t

ˆ
|v|2kf2m(t, v)dv =

ˆ
|v|2kfm(t, v)∂tfm(t, v)dv

=

ˆ
|v|2kfmdivv (vfm) dv +

ˆ
|v|2kfm∆vfmdv

+

ˆ
dv

m−1∑
n=1

¨
{nw+(m−n)w′=mv}

|v|2kfm(t, v)fn(t, w)fm−n(t, w
′)|w − w′|dwdw′

− 2

ˆ
dv

M∑
n=1

ˆ
|v|2kfm(t, v)fm(t, v)fn(t, w)|v − w|dw

≤ (
d

2
− k)

ˆ
|v|2kf2mdv −

1

2

ˆ
|v|2k|∇fm|2dv + 2k2

ˆ
|v|2k−2f2mdv

+

m−1∑
n=1

¨ ∣∣∣∣nw + (m− n)w′

m

∣∣∣∣2k fm(t, nw + (m− n)w′

m

)
fn(t, w)fm−n(t, w

′)|w − w′|dwdw′

− 2

M∑
n=1

¨
|v|2kf2m(t, v)fn(t, w)|v − w|dwdv,

where we used Young’s inequality

−2k

ˆ
|v|2k−2v · ∇fmfmdv ≤ 2k

ˆ
|v|2k−1|∇fm|fmdv

≤ 1

2

ˆ
|v|2k|∇fm|2dv + 2k2

ˆ
|v|2k−2f2mdv

where we assumed that |v|2k|fm∇fm| → 0, |v|2k+1|fm|2 → 0, as |v| → ∞ for every t
such that the boundary terms vanish in the integration by parts.

Further, since∣∣∣∣nw + (m− n)w′

m

∣∣∣∣2k (|w|+ |w′|) ≤ |w|2k+1 + |w′|2k+1 + |w|2k|w′|+ |w′|2k|w|,

we see that each term on the positive nonlinearity can be written using the Young’s in-
equality has (same for v or w variable):
¨

fm

(
t,
nv + (m− n)w

m

)
fn(t, v)fm−n(t, w)|v|2k+1dvdw
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≤
ˆ [

1

2

(ˆ
fm

(
t,
nv + (m− n)w

m

)
fn(t, v)|v|2k+1dv

)2

+
1

2

(
fm−n(t, w)

)2]
dw

=

ˆ
1

2

(ˆ
fm

(
t,
nv + (m− n)w

m

)
fn(t, v)|v|2k+1dv

)2

dw +
1

2
∥fm−n(t, w)∥2L2

Thus we need to take care of the squared factor and we can do this using Jensen and
normalizing respect the measure (

´
fn(t, v)dv)

−1fn(t, v)dv, so that we obtain:

1

2

(ˆ
fm

(
t,
nv + (m− n)w

m

)
fn(t, v)|v|2k+1dv

)2

dw

≤ 1

2
C0

ˆ ˆ
f2m

(
t,
nv + (m− n)w

m

)
|v|4k+2fn(t, v)dvdw

= (A)

We have then, using translation invariance of Lebesgue measure:

(A) =
1

2
C0

ˆ (ˆ
f2m

(
t,
nv + (m− n)w

m

)
dw

)
fn(t, v)|v|4k+2dv

≤ C0∥fm∥2L2

ˆ
|v|4k+2fn(t, v)dv ≤ C1∥fm∥2L2

where the constant C1 := C1(M) depend also on M and comes from the momentum
bound of fm, Lemma 4.2.5 since we assumed that f0m ∈ L1

4k+2.
Similarly, we have another term¨
fm

(
t,
nv + (m− n)w

m

)
fn(t, v)fm−n(t, w)|v|2k|w|dw

≤
ˆ

1

2

(ˆ
fm

(
t,
nv + (m− n)w

m

)
fn(t, v)|v|2kdv

)2

dw +

ˆ
1

2
f2m−n(t, w)|w|2dw

≤ C0

ˆ
1

2

ˆ
f2m

(
t,
nv + (m− n)w

m

)
fn(t, v)|v|4kdvdw +

ˆ
1

2
f2m−n(t, w)|w|2dw

≤ C0||fm||2L2

ˆ
fn(t, v)|v|4kdv +

ˆ
1

2
f2m−n(t, w)|w|2dw

≤ C1||fm||2L2 +

ˆ
1

2
f2m−n(t, w)|w|2dw.

Thus we conclude that, erasing the negative term of the nonlinearity and summing over
n = 1, ...,m− 1, using the induction hypothesis,

∂t

M∑
m=1

ˆ
|v|2kf2m(t, v)dv +

1

2

M∑
m=1

ˆ
|v|2k|∇fm(t, v)|2dv

≤ C(M, 0, 1, A)
M∑
m=1

ˆ
f2m(t, v)|v|2kdv + CB,

where C(M, 0, 1, A), CB > 0, and assuming the initial data is such that

C1 :=
M∑
m=1

ˆ
|v|4k+2fm(0, v)dv, C0 :=

M∑
m=1

ˆ
fm(0, v)dv ≤ ∞
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Cl :=

M∑
m=1

ˆ
|v|2kf2m(0, v)dv <∞

It follows that for any t ∈ [0, T ] we pass to integral form

M∑
m=1

ˆ
|v|2kf2m(t, v)dv +

1

2

ˆ t

0

M∑
m=1

ˆ
|v|2k|∇fm(s, v)|2dv ds

≤ Cl,B + C(M, 0, 1, A)

ˆ t

0

M∑
m=1

ˆ
|v|2kf2m(s, v)dvds

≤ Cl,B + C(M, 0, 1, A)

ˆ t

0

(
M∑
m=1

ˆ
|v|2kf2m(s, v)dv +

ˆ s

0

M∑
m=1

ˆ
|v|2k|∇fm(r, v)|2dv dr

)
ds

From Gronwall’s lemma, it follows:

sup
t∈[0,T ]

(
M∑
m=1

ˆ
|v|2kf2m(t, v)dv +

ˆ t

0

M∑
m=1

ˆ
|v|2k|∇fm(s, v)|2dv ds

)
≤ Cl,B e

TCM,0,A,1 ≤ C(T ) <∞.

We want to extend the inequality to higher derivatives and higher moments, to this end
we consider the following proposition regarding the nonlinearity Q:

Proposition 4.2.10. Let f, g smooth and rapidly decaying function in v at infinity, then

∇Qm(f, g) = Qm(c
n
m∇f, g) +Qm(f, c

n
m∇g),

for each m = 1, ..,M .

Proof. First of all we split the nonlinearity into the positive and negative part and we
change variables to get

Q+
m(f, g) :=

m−1∑
n=1

ˆ (m
n

)2
fn(φ(v, w))gm−n(w)|v − w|dw

=
m−1∑
n=1

ˆ (m
n

)2
fn(φ̃(v, w))gm−n(θ(v, w))|w|dw

Q−
m(f, g) :=

M∑
n=1

fm(v)

ˆ
gn(w)|v − w|dw =

M∑
n=1

fm(v)

ˆ
gn(θ(v, w))|w|dw,

where we have set

φ(v, w) :=
mv − (m− n)w

n
, θ(v, w) := v + w, φ̃(v, w) := v − m− n

n
w.



4.2. DETERMINISTIC SMOLUCHOWSKI SYSTEM WITH VELOCITY 143

Whit this we can use the differentiation under integral sign and since the dependence on
v is only on f and g we have

∇v

(ˆ
fn(φ̃(v, w))gm−n(θ(v, w))|w|dw

)
=

ˆ
(∇vfn(φ̃(v, w))) gm−n(θ(v, w))|w|dw +

ˆ
fn(φ̃(v, w))∇vgm−n(θ(v, w))|w|dw.

∇v

(
fm(v)

ˆ
gn(w)|v − w|dw

)
= ∇v

(
fm(v)

ˆ
gn(θ(v, w))|w|dw

)
=

= ∇vfm(v)

ˆ
gn(θ(v, w))|w|dw + fm(v)

ˆ
∇vgn(θ(v, w))|w|dw.

Taking out the constant in the differentiation, depending only on m and n, and summing
all together we conclude the proof.

Remark 4.2.11. As a corollary, iterating Proposition 4.2.10, higher-order derivatives of Q
can be calculated using the following formula:

∂jQ(f, g) =
∑

0≤l≤j

(
j

l

)
Qm

(
cm,n∂

j−lf, cm,n∂
lg
)

where j is a multi-index |j| = n such that j = j1...jd (with indices possibly being zeroes)
and

∂j := ∂j1v1 ...∂
jd
vd
.

The factor
(
j
l

)
is a multinomial coefficients and the sum is intended in the sense of order-

ing of multi-indices.

With this in mind we are able to state the following a priori estimate on the spaceHn
k

for allk, n ∈ N, defined in (4.1.7) equipped with the norm ∥f∥Hn
k
:=
(∑

0≤|j|≤n ∥∂jf∥22,k
)1/2

.

Lemma 4.2.12. Suppose that {fm}Mm=1 is a nonnegative solution of the equation (4.3.1),
such that fm is regular enough. For all n ∈ N, k ∈ N, there exists some constant C > 0
depending on the initial data {fm(0)}Mm=1, T <∞, M <∞, n, k such that

sup
t∈[0,T ]

(
M∑
m=1

∥fm∥2Hn
k

)
≤ C.

Proof. We work by induction. We know form previous lemma that n = 0, 1 we have
already proven the a priori bound. Now we suppose that for every p < n it’s true that
f ∈ Hp

k for all k, and we prove that f ∈ Hn
k for all k. To this end, we consider a multi

index j, |j| = n and the quantity ∂jfm. Using the equation for fm we get

∂t
(
∂jfm

)
= ∆

(
∂jfm

)
+ div

(
v∂jfm

)
+ Cj

(
∂jfm

)
+
∑

0≤l≤j

(
j

l

)
Qm

(
∂j−lf, ∂lf

)
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whereCj is either 0 or 1 depending if the multi index has the i-th component of the deriva-
tive of

∑d
i=1 ∂

j (∂ifmvi). We now consider the quantity
M∑
m=1

ˆ
|∂jfm|2 ⟨v⟩2k dv

and derivate in time we have for each m:
1

2
∂t

ˆ
⟨v⟩2k |∂jfm|2(t, v)dv =

ˆ
⟨v⟩2k ∂jfm(t, v)∂t∂jfm(t, v)dv

=

ˆ
⟨v⟩2k ∂jfmdiv

(
v∂jfm

)
dv +

ˆ
⟨v⟩2k ∂jfm∆(∂jfm)dv+

+

ˆ
Cj ⟨v⟩2k |∂jfm|2dv +

∑
0≤l≤j

ˆ
Qm(∂

j−lf, ∂lf)∂jfm ⟨v⟩2k dv

≤ d

2

ˆ
⟨v⟩2k |∂jfm|2dv − k

ˆ
⟨v⟩2k−2 |∂jfm|2dv+

+ k

ˆ
⟨v⟩2k |∂jfm|2dv − k

ˆ
⟨v⟩k−2 |v||∂jfm|2dv+

−
ˆ

|∇(∂jfm)|2 ⟨v⟩2k dv +
∑

0≤l≤j

ˆ
Qm(∂

j−lf, ∂lf)∂jfm ⟨v⟩2k dv

≤ C ′
d,k

ˆ
⟨v⟩2k |∂jfm|2dv −

ˆ
|∇(∂jfm)|2 ⟨v⟩2k dv+

+
∑

0≤l≤j

ˆ
Qm(∂

j−lf, ∂lf)∂jfm ⟨v⟩2k dv

︸ ︷︷ ︸
A

.

We miss to understand now the nonlinearity. To this end we consider:

∥Qm(f, g)∥2 ≤ C

(
m−1∑
n=1

∥fm−n∥2,k+1∥gn∥1,k+1 + ∥fm∥1,k+1

M∑
n=1

∥gn∥2,k+1

)
.

In particular we have:

sup
∥ϕ∥2=1

¨
Cm,nfn(h(v, w))fm−n(w)|v − w|ϕ(v)dvdw

≤ sup
∥ϕ∥2=1

¨
C ′
m,nfn(z))fm−n(w)|z − w|ϕ(h′(z, w))dzdw

≲

 sup∥ϕ∥2=1

´ ´
fm−n(w)ϕ(h

′(z, w)) ⟨w⟩ dwfn(z)) ⟨z⟩ dz ≤ Cn,m∥fn∥2,1∥fm−n∥1,1

sup∥ϕ∥2=1

´ ´
fn(z))ϕ(h

′(z, w)) ⟨z⟩ dzfm−n(w) ⟨w⟩ dw ≤ Cn,m∥fm−n∥2,1∥fn∥1,1.

With this, in particular, we can select where to put the norm and the weight depending on
the index of the derivative and we get summation of quantity that depends on lower order
in Hp

k with p < n and a quantity depending on ∂j .∑
0≤l≤j

ˆ
Qm(∂

j−lf, ∂lf)∂jfm ⟨v⟩2k dv ≤
ˆ
Qm(∂

jf, f)∂jfm ⟨v⟩2k dv
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+

ˆ
Qm(f, ∂

jf)∂jfm ⟨v⟩2k dv +
∑

1≤l≤j−1

ˆ
Qm(∂

j−lf, ∂lf)∂jfm ⟨v⟩2k dv

≤ Cm,n(k,M)
M∑
m=1

∥∂jfm∥22,k+µ.

Now we note that:

∥∂jfm∥22,k+µ ≤ δ∥∇∂jfm∥22 + cδ∥∂j−1fm∥22,2(k+µ)
≤ δ∥∇∂jfm∥22,2k + cδ∥∂j−1fm∥22,2(k+µ)
≤ δ∥∇∂jfm∥22,2k + Cδ,M,n−1.

We put together all the estimate and we get:

1

2
∂t

M∑
m=1

ˆ
⟨v⟩2k |∂jfm|2(t, v)dv − C ′

M,d,k

M∑
m=1

ˆ
⟨v⟩2k |∂jfm|2dv ≤

−
M∑
m=1

ˆ
|∇(∂jfm)|2 ⟨v⟩2k dv + δC(k,M)

M∑
m=1

ˆ
|∇(∂jfm)|2 ⟨v⟩2k dv + CM (n− 1, k)

Taking δ small enough, up to constant Cδ(M,k, n− 1) we obtain

1

2
∂t

M∑
m=1

ˆ
⟨v⟩2k |∂jfm|2(t, v)dv − C ′

M,d,k

M∑
m=1

ˆ
⟨v⟩2k |∂jfm|2dv ≤ Cδ(M,k, n− 1).

Thanks to Gronwall’s lemma we conclude the proof.

With all this a priori estimates follow also estimates on the L2
k norm of the solution.

At the level of the a priori estimate, Lemmas 4.2.12 and 4.2.7 guarantee us that we have a
bound for every T > 0 on the derivatives inL2([0, T ]×Rd) implying that after a arbitrary
short time the derivatives ∂nfm(t) ∈ L2(Rd) for any n and thus they propagate in time.
On the level of a priori estimates the solution results to be immediately infinitely smooth
in v and decay faster than any negative power of |v| at infinity.
Using the a priori regularity in Hn

k and the aforementioned propagation, we note that for
every t > 0 and m = 1, ...,M , fm(t) is in fact a Schwartz function for ∀t and this decay
is enough to get that ∂tf ∈ L2([0, T ]× Rd).

4.3 Approximating Problems and preliminary

We define a sequence of approximating problems, indexed byR > 0, in the following way:∂tf
R
m = div

(
vfRm

)
+∆fRm +QRm(f

R, fR)

fRm|t=0 = f0m

, m = 1, ...,M (4.3.1)
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where (t, v) ∈ [0, T ]× Rd and f0m, ∀m = 1, ...,M are the same as (4.2.2). The approx-
imated nonlinear term is expressed as follows:

QRm(f, f)(t, v) :=
m−1∑
n=1

χR(v)

¨
{nw+(m−n)w′=mv}

fn(t, w)fm−n(t, w
′)|w − w′|χR(w)dwdw′

− 2
M∑
n=1

χR(v)

ˆ
fm(t, v)fn(t, w)|v − w|χR(w)dw

=
m−1∑
n=1

χR(v)

ˆ
fn

(
t, φ(v, w)

)
fm−n(t, w)|v − w|

(m
n

)2
χR(w)dw

− 2
M∑
n=1

χR(v)

ˆ
fm(t, v)fn(t, w)|v − w|χR(w)dw

where χR(z) := χB(0,R)(z) is the indicator function on the ball of radiusR > 0 centered
at the origin in Rd.

4.3.1 A priori estimate for the approximating equations

We start with the same a priori estimate for the moments and energy, under the same
regularity assumption of (4.2.2), that we’ll verify once existence and uniqueness is shown.
We suppose that f0m ≥ 0, ∀ m = 1, ..,M , the solution of (4.3.1) is nonnegative and
regular enough and has a fast decay at infinity, then we have for the nonlinear term:

χR(v)

ˆ
fn

(
t, φ(v, w)

)
fm−n(t, w)|v − w|χR(w)dw

≤
ˆ
fn

(
t, φ(v, w)

)
fm−n(t, w)|v − w|dw

And thus we can recover the same a priori estimates, as in Lemmas 4.2.5, 4.2.7, 4.2.9,
4.2.12, on the total mass, moments and energy in both H1 and Hn

k for the approximated
problems with the same constant independent of R.

Lemma 4.3.1. For any ℓ ∈ N ∪ {0}, there exists some finite constant Cℓ depending only
on n, d and the initial data {fm(0)}Mm=1 such that

M∑
m=1

ˆ
|v|ℓfRm(t, v)dv ≤ Cℓ, ∀R,

as soon as {fRm}m ∈ L2.

Lemma 4.3.2. As soon as {fRm}m is regular enough, there exists some constant C > 0
depending on the initial data {fm(0),∇fm(0)}Mm=1, T <∞, M <∞ such that

sup
t∈[0,T ]

(
M∑
m=1

ˆ
|fRm(t, v)|2dv +

ˆ t

0

ˆ
|∇fRm(s, v)|2dv ds

)
≤ C.

The constant C does not depend on R and is the same as the one in the full problem.
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Lemma 4.3.3. As soon as {fRm}m is regular enough, ∀k ≥ 0, there exists some constant
C > 0 depending on the initial data {fm(0),∇fm(0)}Mm=1, T <∞, M <∞ such that

sup
t∈[0,T ]

(
M∑
m=1

ˆ
|fRm(t, v)|2|v|2kdv +

ˆ t

0

ˆ
|∇fRm(s, v)|2|v|2kdv ds

)
≤ C.

The constant C does not depend on R and is the same as the one in the full problem.

Lemma 4.3.4. Suppose that {fRm}Mm=1 is a nonnegative solution of the equation (4.3.1),
such that fRm is regular enough. For all n ∈ N, k ∈ N, there exists some constant C > 0
depending on the initial data {fm(0)}Mm=1, T <∞, M <∞, n, k such that

sup
t∈[0,T ]

(
M∑
m=1

∥fRm∥2Hn
k

)
≤ C.

The constant C does not depend on R and is the same as the one in the full problem.

4.3.2 Preliminary on semigroups

We want to construct mild solution for our approximated problems. With this in mind, we
define the following operator on function defined on Rd:

Lf := ∆f + v · ∇f,

and rewrite our system of equations as:{
∂tf

R
m − LfRm = dfRm +QRm(f

R, fR)

fRm|t=0 = f0m
, m = 1, ...,M

with the usual definition of space, time and initial condition.
We know, [66], that endowed with its maximal domain

Dp,max(L) :=
{
u ∈ Lp(Rd) ∩W 2,p

loc (R
d) : Lu ∈ Lp(Rd)

}
the operator L is the generator of a strongly continuous semigroup (Pt)t≥0 in Lp(Rd). In
particular we can characterize the domain of the operator as follow:

Lemma 4.3.5 ([66, Theorem 1]). The domain Dp,max(L) of the generator of the semi-
group (Pt)t≥0 coincides with:

Dp(L) :=
{
u ∈W 2,p(Rd) : v · ∇u ∈ Lp(Rd)

}
.

Fur such a semigroup (Pt)t≥0, one can derive the following properties [66, Theorem
3.3].

Proposition 4.3.6. The operator (L, Dp,max(L)) generates a semigroup (Pt)t≥0 inLp(Rd)
which satisfies the estimate

∥Ptf∥p ≤ ∥f∥p
for every f ∈ Lp(Rd).
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Proposition 4.3.7. For every f ∈ Lp(Rd) and T > 0, the function P (·)f belongs to
C((0, T ],W 2,p(Rd)) ∩ C1((0, T ], Lploc(R

d)), and satisfies the estimates for t ∈ (0, T ],

∥D2Ptf∥p ≤
CT
t
∥f∥p, ∥∇Ptf∥p ≤

CT√
t
∥f∥p.

Proposition 4.3.8. Let T > 0 and g ∈ C([0, T ], Lp(Rd)) be given, and consider the mild
solution u of the Cauchy problem{

∂tu− Lu = g in [0, T ]× Rd

u(0) = f in Rd,

with f = 0. Then, u belongs to C([0, T ],W 2,p(Rd)) ∩W 1,p
loc ([0, T ]× Rd).

Thus, we can define the notion of mild solution for our system. For simplicity of nota-
tion we omit the dependence on m.

Definition 4.3.9 (L2
v-mild solution for approximated problems). We rewrite first our

approximated problems as an evolution equation in Lp space

ḟ + Lf = df +Q(f, f), t > 0 f(0) = f0.

Fix T > 0, a function f ∈ C([0, T ], L2) is said to be a L2-mild solution to (4.3.1) on
[0, T ] if f solves the integral equation

f(t) = Ptf
0 +

ˆ t

0
Pt−s (df(s) +Q(f(s), f(s))) ds, t ∈ [0, T ].

4.3.3 Aubin-Lions’ Theorem in full Space

Lemma 4.3.10 (Aubin-Lionsweighted). ConsiderH1(Rd), the usual Sobolev space, and
L2(Rd, |v|2dx), the weighted Lebesgue space containing functions f for which

´
|f |2|v|2dv <

∞. Then
H1(Rd) ∩ L2(Rd, |v|2dv) ⊂⊂ L2(Rd)

and the embedding is compact. As a consequence for every q, k ≥ 1 we have that

Lp
(
0, T ;H1(Rd) ∩ L2(Rd, |v|2dv)

)
∩W 1,q(0, T ;H−k(Rd)) ⊂⊂ Lp(0, T ;L2(Rd))

for p ∈ [1,∞] and the embedding is compact.

Proof. Call X := H1(Rd) ∩ L2(Rd, |v|2dv) and consider Y ⊂ X a bounded set.
We claim that ∀ε > 0, ∃N > 0 such that for all f ∈ Y :

ˆ
Bc

N

f2 < ε/2,

Where Bc
N is the complement in Rd of the ball of radius N and centered at the origin.

Otherwise, assume this is not the case, then for some ε > 0, for every N > 0 there is
some f ∈ Y such that ∥f∥L2(Bc

N ) ≥ ε.
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This implies that ∥f∥X ≥ ∥f2|v|2∥L1(Bc
N ) ≥ N2ε so that the set Y is not bounded, and

this contradicts the hypotheses. So we consider the ball BN and we can apply Rellich-
Kondrachov theorem to ensure the compact embedding to L2(BN ).
Now we recall that compactness of a set A ⊂ X means that ∀ε > 0 we find f1, ..., fk ∈
X , where k = k(ε), such that A ⊂ ∪ki=1B(fi, ε).
This means that ∀ε > 0 we find functions f1, ..., fk ∈ L2(BN ), k = k(ε), such that
∀f ∈ Y we have some fj such that

∥f − fj∥L2(BN ) < ε/2

We recall then that ∥f∥L2(Bc
N ) < ε/2, so we even have ∥f−fj∥L2(Rd) < ε, which implies

the compact embedding Y ⊂⊂ L2(Rd).
The second part of the theorem now follows from the usual Aubin-Lions Theorem cf. [82,
Corollary 5], thus concluding the proof.

4.4 Existence and Uniqueness for the approximating problems

Theorem 4.4.1 (Existence and Uniqueness). Consider d ≥ 1. Given any initial value
f0m ∈ L2, ∀m = 1, ...,M , problem (4.3.1) possesses a unique maximal L2-mild solution
f := f(·; f0) on [0, T (f0)). The maximal interval is such that [0, T (f0)) is an open
interval in R+. In addition,

f ∈ L∞([0, T (f0)), L2(Rd)⊗M ) ∩W 1,2
loc ((0, T (f

0)), H2(Rd)⊗M ).

In addition: if T (f0) <∞, then

sup
T (f0)/2<t<T (f0)

∥ft∥2 = ∞.

Proof. Let T0 > 0 be arbitrary and define XT := L∞([0, T ], L2
M ) for T ∈ (0, T0],

where we endowed the space with the usual sup norm in time andL2
M norm in velocity as

∥f∥L2
M

:=
∑M

m=1 ∥fm∥L2 .

Consider f0 ∈ L2
M then from Proposition 4.3.7 we know thatPtf0 ∈ XT . From the same

theorem it is implied that exist a constant κ := κ(T0) > 0 such that ∥Ptf=∥ ≤ eκ(T0)t;
we show that this is enough to define a map Γ from XT → XT , given by

Γ(f) := P·f
0 +

ˆ ·

0
P·−s(df −QR(f, f))ds, f ∈ XT .

First, thanks to the estimate on the semigroup and the property of the truncated nonlin-
earity, we have that, as soon as f ∈ XT ∥QRm(f, f)∥22 ≤ CR(

∑M
m=1 ∥fm∥2)2 <∞.

´ ·
0 P·−s(df −QR(f, f))ds ∈ XT .

In particular we obtain the first estimate from the following computation on each of the
terms of the nonlinearity

ˆ ∣∣∣∣ˆ |v − w|Rfn(h(v, w))fm−n(w)dw

∣∣∣∣2 dv
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≤ 2R

ˆ
BR

∥fn∥22∥fm−n∥22dv = 2R|BR|∥fn∥22∥fm−n∥22.

Now we notice that the function Γ also satisfies

∥Γ(f)− P·f
0∥XT

=

∥∥∥∥ˆ ·

0
P·−s(df −QR(f, f))ds

∥∥∥∥
XT

≤ κT

(
d+ CR(

M∑
m=1

∥fm∥2)

)
(
M∑
m=1

∥fm∥2),

for all f ∈ XT . And we can prove the continuity of the map

∥Γ(f)− Γ(g)∥XT
=

∥∥∥∥ˆ ·

0
P·−s(d(f − g) +

(
QR(g, g)−QR(f, f)

)
ds

∥∥∥∥
XT

≤ T (d+ CR∥f∥XT
+ CR∥g∥XT

) ∥f − g∥XT
,

for all f, g ∈ XT .
If we find a way to restrict the mapping Γ to some closed subset, and prove that it is
a contraction then, with a standard fix point argument, we conclude local existence and
uniqueness for each approximating problems.
Consider to this extent the norm of the initial condition ∥P·f

0∥XT
= γ, we choose the

ball in XT , call it BT , centered in P·f
0 with radius γ. So that every function f ∈ BT as

norm ∥f∥XT
≤ 2γ. Then selecting

T < min

{
1

d+ 4CRγ
,

1

κ(d+ CR2γ)

}
The two inequality implies that the map Γ send function inBT to itself and it is a contrac-
tion. Therefore there exist a unique f̃ ∈ BT such that Γ(f̃) = f̃ , that is,

f̃ ∈ L∞([0, T ], L2
M ) and f̃ = P·f

0 +

ˆ ·

0
P·−s

(
df̃ +QR(f̃ , f̃)

)
ds.

and f̃ is a mild-L2 solution to the approximated problems.

Clearly we can extend the solution f̃ to a unique maximal solution f̃ := f̃(f0) with
maximal interval [0, T (f0)) that must be open in R+.
Consider T 0 := T (f0) < ∞ and suppose there exist an increasing sequence ti → T 0

such that ∥fti∥p ≤ r < ∞, ∀i ∈ N. Fix now T > T 0 and fix γ(T ) the constant defined
in the existence part of the theorem for the ball in which we perform the contraction. We
have from the semigroup Pt in the interval [0, T ] that

∥Pt(fti)∥XT
≲ re−T .

We choose then T > 0 such that it holds ∥Pt(fti)∥XT
≤ γ(T 0), for i ∈ N.

We can now repeat the same existence scheme and we obtain that f exists at least on
[ti, ti+T ], ∀i ∈ N contradicting the maximal extension of the interval. Thus, for f0 ∈ L2

we must have
sup

T (f0)−ε<t<T (f0)
∥ft∥L2

M
= ∞.

This concludes the proof.
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Theorem 4.4.2. Given the solution f ∈ XT of the truncated equation from Theorem 4.4.1,
we have that f(t; f0) ∈ L2

+ for t ∈ [0, T (f0)) provided that f0 ∈ L2
+.

Proof. Consider f0 ∈ L2
+, and let T ∈ [0, T 0) be arbitrary. Then there is a constant

ω := ω(T ) > 0 such that, for t ∈ [0, T ],∣∣∣∣∣
M∑
n=1

ˆ
|v − w|χR(w)χR(v)fn(w)dw

∣∣∣∣∣ ≤
M∑
n=1

CR∥fn∥XT
:= ω(T ), a.e. v ∈ Rd.

Now, for g ∈ L2 and 0 ≤ t ≤ T set for m = 1, ..,M

Q
m
t (g) := dgm +QRm(g, g) + ω(T )Rgm,

so, for t ∈ [0, T ], a.e.v ∈ Rd and g ∈ Lp+, we have Q(g, g) ≥ 0.
We consider now the evolution equation

ġ + (ω(T ) + L) g = Q(g, g), t ∈ [0, T ], g(0) = f0. (4.4.1)

We note that f is a solution of such equation and that equation (4.4.1) can be solved
by the method of successive approximations exactly as in the existence theorem. So we
consider

Θ(g) := Pωf
0 +

ˆ ·

0
Pω·−s(Q(g, g)ds, for g ∈ XT

where Pω(t) := e−ωtPt, t ≥ 0.
In the same fashion as Theorem 4.4.1, Θ is a contraction in a suitable ball BT ⊂ XT ,
centered in P·f

0, into itself. Taking T small enough we can assume that also f ∈ BT .
Therefore, since there must be existence and uniqueness of a solution we can find a se-
quence gi, determined by

g0 = f0, gi+1 = Θ(gi), i ∈ N,

such that converges to f in XT . This implies that gi → f in L2
M for t ∈ (0, T ].

Since the semigroup Pt preserves positivity, by induction we get that gi ∈ L2
+ for t ∈

[0, T ] and i ∈ N. This means that also ft ∈ L2
+ for all t ≤ T since the space is closed.

Consider now a T ≤ T 0, the maximal time for which f is positive on [0, T ], then we claim
that T = T 0. Otherwise, we consider now the same equation (4.4.1) re-scaled in time

ġ + (ω + L) g = Q(g, g)(t+ T ), t ∈ [0, T 0 − T ], g(0) = fT ,

and this would lead to a contradiction on the maximality of T. Since T 0 was arbitrary in
the maximal interval of definition we deduce that f ∈ L2

+, ∀t ∈ [0, T 0).

We wish now to understand better the regularity of the truncated solution and the
estimate on such computation. To this end we want to use the a priori estimate, but in
doing so we first need to establish regularity deriving directly from the semigroup and the
nonlinearity.
Following from Proposition 4.3.8 we can derive some regularity on f and its derivatives
in L2 space. In particular, with f0 ∈ L2

M , we have

f ∈ L∞([0, T ], H2(Rd)) ∩W 1,2
loc ([0, T ]× Rd).
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This is still not enough and we want to control also the moments of the solution and to
this end it is not enough to have f0 ∈ L2

m, so we first consider an initial condition such
that f0 ∈ L1

p,M := L1
M (⟨v⟩p dv) for every p ≥ 0 and also in L2

+,M , we show that this is
enough to get that the solution

fR ∈ L∞([0, T ], L1
p,M ∩ L2

+,M (Rd)),

And this holds for every p ≥ 0.

We want to establish a Gronwall relationship, so we integrate the function fm (we drop the
R for readability) for all t > 0. We note first that following the step of Theorem 4.4.1 it is
easy to construct the same function adding the condition that

´
|f |dv must be bounded.

With this in mind, using the consistency[49] of the operator Pt, we can write:

∥fm(t)∥1 =︸︷︷︸
positivity

ˆ
fm(t)dv =

ˆ
Ptf

0
mdv +

ˆ ˆ t

0
Pt−s

(
dfs +QRm(f, f)s

)
dsdv

≤︸︷︷︸
property of Pt

ˆ
f0mdv + d

ˆ t

0
∥fm(s)∥1ds+ T sup

t

(ˆ
QRm(f, f)dv

)

analogous to the proof of Lemma 4.2.2 we have supt
∑M

m=1

´
QRm(f, f)dv ≤ 0 and thus

summing on m and taking the sup in t ≤ T we get the bound of the L1
M norm, indepen-

dent on R.

Establish the L1 bound, we use this results to prove that, depending on R this time, we
have bound on the p-th moment for every p. To this end consider:
ˆ
fm(t) ⟨v⟩p dv

≤
¨

K(t, w)f0m(e
tv − w) ⟨v⟩p dwdv +

ˆ t

0

¨
K(s, w)QRm(f, f)(e

sv − w) ⟨v⟩p dvdwds

≤︸︷︷︸
etv−w=z

ˆ
K(t, w) ⟨w⟩p dw

ˆ
Ctf

0
m(z) ⟨z⟩

p dz

+

ˆ t

0

ˆ
K(s, w) ⟨w⟩p dw

ˆ
CsQ

R
m(f, f)(z) ⟨z⟩

p dzds

Recall that

K(t, w) :=
1

(2π(e2t − 1))
d
2

e
− |w|2

2π(e2t−1) ,

and that the truncated nonlinearity has a term of the form χR(z)χR(w)|z − w| and as
such we get
ˆ
fm(t) ⟨v⟩p dv ≤
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≤︸︷︷︸´
K(t,w)⟨w⟩pdw<∞ ∀p

CT ∥f0∥1p,M + C(R)

ˆ t

0
Cs

m−1∑
n=1

¨
fn(φ(v, w))fm(w)dwdvds

≤ CT ∥f0∥1p,M + C(R)CT

m−1∑
n=1

sup
t

∥fn∥1∥fm∥1

≤ CT ∥f0∥1p,M + CT (R, sup
t

∥f∥1M ,M) sup
t

∥f∥1p,M .

Summing on m = 1, ...,M , taking the sup over t ≤ T , we obtain the bound depending
on the initial condition, the L1 norm of the solution and the truncation R.

We show now that a mild solution is indeed a weak solution for our equation and use
this to enhance the regularity of the time derivative of the solution.

Lemma 4.4.3 (Lp mild solutions are weak solutions). Consider f ∈ XT a mild solu-
tion for equation (4.3.1) corresponding to the initial value f0, then f is a weak solution in
the sense of Definition 4.2.1.

Proof. Fix T > 0 an a time t ∈ [0, T ], fix ϕ a test function. Consider now the weak
formulation for equation (4.3.1):

⟨ft, ϕ⟩ = ⟨f0, ϕ⟩+
ˆ t

0
⟨fs,L∗ϕ⟩ ds+

ˆ t

0
⟨Qs(f, f), ϕ⟩ ds,

where L∗ϕ = −v · ∇ϕ+∆ϕ. Notice that

⟨ft,L∗ϕ⟩ = ⟨L(ft) + dft, ϕ⟩ .

Under this definition and observation we consider now f mild solution as before

ft = Ptf0 +

ˆ t

0
Pt−sfsds+

ˆ t

0
Pt−sQs(f, f)ds

ans analyze the well defined quanity
ˆ t

0
⟨fs,L∗ϕ⟩ ds =

ˆ t

0

〈
Psf0 +

ˆ s

0
Ps−rfrdr +

ˆ s

0
Ps−rQr(f, f)dr,L∗ϕ

〉
ds

=

ˆ t

0
⟨Psf0,L∗ϕ⟩ ds︸ ︷︷ ︸

A

+

ˆ t

0

〈ˆ s

0
Ps−rfrdr,L∗ϕ

〉
ds︸ ︷︷ ︸

B

+

ˆ t

0

〈ˆ s

0
Ps−rQr(f, f)dr,L∗ϕ

〉
ds︸ ︷︷ ︸

C

.

Now we analyze, using the regularity result on f derived in the previous sections and using
[66], each of the component on the right hand side.
A:

ˆ t

0
⟨Psf0,L∗ϕ⟩ ds =

ˆ t

0
⟨LPsf0, ϕ⟩ ds+

ˆ t

0
⟨Psf0, ϕ⟩ ds

=

〈ˆ t

0

d

ds
Psf0ds, ϕ

〉
+

ˆ t

0
⟨Psf0, ϕ⟩ ds
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= ⟨Ptf0, ϕ⟩ − ⟨f0, ϕ⟩+
ˆ t

0
⟨Psf0, ϕ⟩ ds

B: ˆ t

0

〈ˆ s

0
Ps−rfrdr,L∗ϕ

〉
ds

=

ˆ t

0

〈ˆ s

0
LPs−rfrdr, ϕ

〉
ds+

ˆ t

0

〈ˆ s

0
Ps−rfrdr, ϕ

〉
ds.

=

ˆ t

0

〈ˆ t

r
LPs−rfrds, ϕ

〉
dr +

ˆ t

0

〈ˆ s

0
Ps−rfrdr, ϕ

〉
ds

=

ˆ t

0

〈ˆ t

r

d

ds
Ps−rfrds, ϕ

〉
dr +

ˆ t

0

〈ˆ s

0
Ps−rfrdr, ϕ

〉
ds

=

ˆ t

0
⟨Pt−rfr, ϕ⟩ dr −

ˆ t

0
⟨fr, ϕ⟩ dr +

ˆ t

0

〈ˆ s

0
Ps−rfrdr, ϕ

〉
ds

C: ˆ t

0

〈ˆ s

0
Ps−rQr(f, f)dr,L∗ϕ

〉
ds

=

ˆ t

0

〈ˆ s

0
LPs−rQr(f, f)dr, ϕ

〉
ds+

ˆ t

0

〈ˆ s

0
Ps−rQr(f, f)dr, ϕ

〉
ds

=

ˆ t

0

〈ˆ s

0
LPs−rQr(f, f)dr, ϕ

〉
ds+

ˆ t

0

〈ˆ s

0
Ps−rQr(f, f)dr, ϕ

〉
ds

=

ˆ t

0

〈ˆ t

r
LPs−rQr(f, f)ds, ϕ

〉
dr +

ˆ t

0

〈ˆ s

0
Ps−rQr(f, f)dr, ϕ

〉
ds

=

ˆ t

0
⟨Pt−rQr(f, f)−Qr(f, f), ϕ⟩ dr +

ˆ t

0

〈ˆ s

0
Ps−rQr(f, f)dr, ϕ

〉
ds.

To prove all the following equality we have used the fact that, if f ∈ D(L), then Ptf ∈
D(L) and in that case

d

dt
Ptf = LPtf = PtLf.

Thanks to the reguliraty on f we can apply this result, thus putting all together we get:
ˆ t

0
⟨fs,L∗ϕ⟩ ds = ⟨Ptf0, ϕ⟩ − ⟨f0, ϕ⟩+

ˆ t

0
⟨Psf0, ϕ⟩ ds

+

ˆ t

0
⟨Pt−rfr, ϕ⟩ dr −

ˆ t

0
⟨fr, ϕ⟩ dr +

ˆ t

0

〈ˆ s

0
Ps−rfrdr, ϕ

〉
ds

+

ˆ t

0
⟨Pt−rQr(f, f), ϕ⟩ dr −

ˆ t

0
⟨Qr(f, f), ϕ⟩ dr +

ˆ t

0

〈ˆ s

0
Ps−rQr(f, f)dr, ϕ

〉
ds.

For which we derive, using the equality of the mild solution:

⟨f0, ϕ⟩+
ˆ t

0
⟨fs,L∗ϕ⟩ ds+

ˆ t

0
⟨Qr(f, f), ϕ⟩ dr
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= ⟨Ptf0, ϕ⟩+
ˆ t

0
⟨Pt−rfr, ϕ⟩ dr +

ˆ t

0
⟨Pt−rQr(f, f), ϕ⟩ dr︸ ︷︷ ︸

:=⟨Ptfo+
´ t
0 Pt−rfrdr+

´ t
0 Pt−rQr(f,f)dr,ϕ⟩=⟨ft,ϕ⟩

+

ˆ t

0
⟨Psf0, ϕ⟩ ds+

ˆ t

0

〈ˆ s

0
Ps−rfrdr, ϕ

〉
ds+

ˆ t

0

〈ˆ s

0
Ps−rQr(f, f)dr, ϕ

〉
ds︸ ︷︷ ︸

:=
´ t
0 ⟨fs,ϕ⟩ds

−
ˆ t

0
⟨fs, ϕ⟩ ds.

Thus ⟨f0, ϕ⟩+
´ t
0 ⟨fs,L

∗ϕ⟩ ds+
´ t
0 ⟨Qr(f, f), ϕ⟩ dr = ⟨ft, ϕ⟩, concluding the proof.

To conclude we need to extend the regularity on the time derivative and prove that

∂tfm ∈ L2([0, T ]× Rd).

Analyzing the equation solved by fR, proving that ∂tfRm is in L2([0, T ]× Rd) boils down
to prove that the quantity

v · ∇fm ∈ L2([0, T ]× Rd) i.e.
ˆ T

0

ˆ
|v · ∇fm(s)|2ds <∞.

In order to to this we use the mild formulation of f , the explicit formulation of the nonlin-
earityQRm and the bound we have previously derived. We reduce again the problem, using
Cauchy-Schwartz and the inequality on the weight to prove that

ˆ t

0

ˆ
|∇fm|2 ⟨v⟩2 dvds <∞.

We consider:
ˆ t

0

ˆ
|∇fm|2 ⟨v⟩2 dvds ≤

ˆ t

0

ˆ
|∇Ptf0|2 ⟨v⟩2 dsdv︸ ︷︷ ︸

A

+

ˆ t

0

ˆ
|∇
ˆ s

0
Ps−rQ

R
m(f, f)dr|2 ⟨v⟩

2 dvds︸ ︷︷ ︸
B

we work separately on the two term:

A :=

ˆ t

0

ˆ
|∇
ˆ
K(t, w)f0(e

tv − w)dw|2 ⟨v⟩2 dvds

≤ eT cd

ˆ t

0

ˆ ˆ
K(t, w)|∇f0(etv − w)|2 ⟨v⟩2 dwdvds

≤ eT cd

ˆ t

0

ˆ
K(t, w)

ˆ
|∇f0(etv − w)|2 ⟨v⟩2 dvdwds

≲
ˆ t

0

ˆ
K(t, w)

ˆ
|∇f0(etv − w)|2(

〈
etv
〉2

+ ⟨w⟩2)dvdwds

≲ ∥∇f0∥2,2 + ∥∇f0∥2.
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while for the other terms, we use intensively the form of the nonlinearityQR. In particular
we use the bound obtained with χR(v) and χR(w) to control the weight and conclude.

B ≲
ˆ t

0

ˆ s

0

(ˆ
|∇Ps−rQRm(f, f)|2 ⟨v⟩

2 dv

)
︸ ︷︷ ︸

C

drds

and we compute directly on the term C.(ˆ
|∇Ps−rQRm(f, f)|2 ⟨v⟩

2 dv

)
≤ eT

ˆ
|Ps−r∇QRm(f, f)|2 ⟨v⟩

2 dv

= eT
ˆ

|Ps−r(
(
QRm(∇f, f) +QRm(f,∇f)

)
|2 ⟨v⟩2 dv

≲
ˆ
Ps−r|(

(
QRm(∇f, f) +QRm(f,∇f)

)
|2 ⟨v⟩2 dv

Since the two addenda of the sum are quite similar we focus only on one of them. In
particular we focus on each single term one for the ”positive” part, the negative part being
easier.
ˆ ˆ

K(s− r, w)

∣∣∣∣ˆ ∇fn(h(v, w, z)fm−n(z)|z|χR(etv − w)χR(z)dz

∣∣∣∣2 dw ⟨v⟩2 dv

≤
ˆ ˆ

K(s− r, w)

∣∣∣∣ˆ ∇fn(h(v, w, z)fm−n(z)|z|χR(etv − w)χR(z)dz

∣∣∣∣2 dw ⟨v⟩2 dv

≤ C2
R∥f∥1

ˆ ˆ
K(s− r, w)

ˆ
|∇fn(h(v, w, z)|2fm−n(z)dzdw ⟨v⟩2 dv

≲︸︷︷︸
change variables

C2
R∥f∥1

ˆ ˆ
K(s− r, w)

ˆ
|∇fn(γ)|2fm−n(z) ⟨γ⟩2 ⟨w⟩2 ⟨z⟩2 dγdzdw

≲ eT ∥∇fn(s)∥22,2∥∥fn∥21,2∥∞,T .

Putting this in (B) we get
ˆ t

0

ˆ s

0

(ˆ
|∇Ps−rQRm(f, f)|2 ⟨v⟩

2 dv

)
drds ≤ C(R,M, T, ∥f∥1, ∥f∥1,2)

ˆ t

0

ˆ s

0
∥∇f(s)∥22,2ds dt.

Summing on M we get:

∑
m

ˆ t

0

ˆ
|∇fm|2 ⟨v⟩2 dvds ≤ C(f0)+C(R,M, T, ∥f∥1, ∥f∥1,2)

ˆ t

0

ˆ s

0
∥∇f(s)∥22,2ds dt

Assuming that f0 is in H1
1 ∩ L1

2 we have proven:

fm ∈ H1([0, T ]× Rd),∀m = 1, ...,M.

This extended regularity for the truncated solution fR make it possible to prove rigorously
the a priori estimate for the solutions of the approximated problems, obtaining bound that
are independent of R.
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Corollary 4.4.4. In the same hypothesis of the last few theorems, the a priori estimate are
true for the solution of the approximating problems, with constants independent fromR, as
soon as f0 is regular enough.

Proof. Under the hypothesis, and thanks to the previous lemmas we satisfy the require-
ment of the a priori estimate and thus conclude the proof. In fact using the established
L1
k bounds and the fact that f ∈ H1([0, T ] × Rd) we can make rigorous the arguments

of the a priori estimates lemmas and then proceed to obtain the regularity

fR ∈ L∞([0, T ], Hp
k(R

d)), ∀n ∈ N,∀k ≥ 0,

with bound independent of R.

We conclude this section with the following:

Theorem 4.4.5 (global existence). Assume that the initial condition is positive and in
L2
M such that Lemma 4.3.2 and Theorem 4.4.1 holds, then the solution f̃ of the approxi-

mated problem is global in time, i.e. T (f0) = ∞.

Proof. Thanks to Theorem 4.4.1 we know that the maximal interval of the solution f̃ is
open in R+ and of the form [0, T 0).
Under the hypothesis of regularity of the initial condition, and thanks to Lemma 4.3.2, we
have that

∥f̃t∥L2
M

≤ C(T ), a.e. t ∈ [0, T 0) ∩ [0, T ].

Thus, since being T 0 finite means that supt∈[T 0−ε,T 0) ∥f̃t∥L2
M

= ∞, this cannot be hap-
pening and this implies that T 0 = ∞ and the solution is global.
This implies that, for each T > 0, independently of R, under the regularity of initial con-
dition, we have a weak solution of equation (4.3.1) on XT .

4.5 Existence and uniqueness for the full System

Right now we have proven that, fixing T finite, there exists a sequence of function (fR)R,
solutions of (4.3.1).
Under suitable initial condition (f0m)

M
m=1, we prove now the weak convergence of fR to a

map f in L2 ∩ L1 such that solves in the weak sense (4.2.2).
To prove existence for the full problem we begin by recalling the definition of weak solution
we are going to use:

Definition 4.5.1. Fix T > 0, and f0m ∈ L1
2 ∩ L2. A solution for equation (4.2.2) is a set

of functions fm ∈ L∞(0, T ;L1
2(R

d)) indexed by the masses m = 1, ...,M such that
∀m, Qm(f, f) ∈ L∞(0, T ;L1(Rd)) and the following holds:
M∑
m=1

⟨fm(t), ϕ⟩ −
M∑
m=1

〈
f0m, ϕ

〉
=

ˆ t

0

M∑
m=1

⟨fm(s),∆ϕ⟩ ds−
ˆ t

0

M∑
m=1

⟨fm(s), v · ∇ϕ⟩ ds

+

ˆ t

0

M∑
m=1

⟨Qm(f(s), f(s)), ϕ⟩ ds,

for a.e. t ∈ [0, T ], and ∀ϕ ∈ C∞
c (Rd).
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We note that if a weak solution is sufficiently smooth and satisfy suitable decay for
large |v|, then it is also a classical solution. With everything recalled we state the follow-
ing.

Theorem 4.5.2. For every T > 0,M > 0, f0 ≥ 0 such that f0 ∈ L1
2,M ∩ L2

M there ex-
ists at least one nonnegative weak solution f ∈ L∞([0, T ], L1

2(R
d)) with initial condition

f(0) = f0.
If instead f0 ∈ L1

2,M ∩ H1
1,M , then for every t0 > 0 we have f ∈ C1

b ([t0, T ], C
∞(Rd))

with rapid decay for large |v|.

We prove here the existence, postponing the uniqueness to the next section.

Proof. (Existence) We start with an initial condition f0 ∈ C∞
c (Rd). Using the results

obtained in the previous section we have establish the L1
k bounds and the fact that the

sequence fR ∈ H1([0, T ] × Rd). With this we can make rigorous the a priori estimates
and get fR ∈ L∞([0, T ], Hn

k (R
d)), ∀n ∈ N, k ≥ 0, with bounds independent from R.

fR ∈ L∞([0, T ], L2), and thanks to the a priori estimate we have that, independently of
R, fRt ∈ H1(Rd) ∩ L2(Rd, |v|2dv) and the sequence is equibounded. Analogously we
have that, thanks to the regularity of the semi group Pt, the solution fR lies in the space
H1(0, T ;H−1).
Using now the Weighted Aubin-Lions Lemma 4.3.10 we have that, up to subsequence:

1. fR ⇀ f in H1;

2. fR → f in L2;

3. up to subsequence fR → f pointwise a.e.,

and the a priori estimate pass to the limit function f .
This is enough to allow us to pass to the limit as R → ∞ in the weak formulation of the
system and show that the limit solutions satisfy the equation with the full kernel.
Finally we consider f0 ∈ L1

2 ∩ L2 and we take a sequence fn0 ∈ C∞
0 converging to f0

in L1
2 ∩ L2, obtaining the bound in L1

2 by Fatou’s lemma. Then, since the constants in
the moments and energy are independent on n we can pass to the weak L1−limit in the
equations obtaining a solution f as expected.
To study the regularity of the solution with data in H1

1 we consider that this is enough to
get the parabolic regularity f ∈ H1([0, T ] × Rd) for any T > 0 and using the fact that
we have the bound f ∈ L∞([0, T ], L1

k(R
d)) we can make rigorous the argument of the a

priori estimates and proceed to obtain the desired regularity.

4.5.1 Weak Uniqueness

Consider now two weak solutions f, g of equation (4.2.2) in the sense of Definition 4.2.1,
with initial conditions f0m = g0m ∈ H1

1 ∩ L1
2 and nonnegative for every m. We know they

are actually classical solutions. We want to show that, as soon as they start with the same
initial, regular condition, then the two solutions must be equal a.e. in v ∈ Rd for every
fixed time T ≥ 0.



4.5. EXISTENCE AND UNIQUENESS FOR THE FULL SYSTEM 159

Consider for this the set of equation solved by hm(t, v) := fm(t, v) − gm(t, v), ∀m =
1, ...,M and call Hm(t, v) := fm(t, v) + gm(t, v).∂thm(t, v) = ∆hm + div(vhm) + 1

2 (Qm(h,H) +Qm(H,h))

hm|t=0 = 0
(4.5.1)

where we denote

Qm(h,H) :=
m−1∑
n=1

ˆ (m
n

)2
hn(φ(v, w))Hm−n(w)|v − w|dw − 2

M∑
m=1

hm(v)

ˆ
Hn(w)|v

− w|dw,

Qm(H,h) :=

m−1∑
n=1

ˆ (m
n

)2
Hn(φ(v, w))hm−n(w)|v − w|dw

− 2

M∑
m=1

Hm(v)

ˆ
hn(w)|v − w|dw.

We consider now the function ψε(x) an approximation of the function sgn(x) such
that

ψε(x) :=


−1, x ≤ −ε
x/ε, −ε < x < ε

1, x ≥ ε

We consider the weight ⟨v⟩2 := 1+|v|2 and thus the functionΨε(hm, v) := ψε(hm) ⟨v⟩2,
multiplying it to the equations (4.2.2) solved by hm,∀m and integrating by part. Defining
also

χε(x) :=

{
1, if |x| < ε

0, otherwise,

we obtain:

∂t

ˆ
hmψε(hm) ⟨v⟩2 dv =

ˆ
(∂thm)ψε(hm) ⟨v⟩2 dv +

1

ε

ˆ
(∂thm)χε(hm)hm ⟨v⟩2 dv

(4.5.2)
=: A1 +B1.

Now we can work on the quantity A1, using the equation (4.2.2),

A1 : =

ˆ
∆hmψε(hm) ⟨v⟩2 + div(vhm)ψε(hm) ⟨v⟩2

+
1

2
(Qm(h,H) +Qm(H,h))ψε(hm) ⟨v⟩2 dv

= −1

ε

ˆ
{|h|<ε}

|∇hm|2 ⟨v⟩2 dv + d

ˆ
hmψε(hm) ⟨v⟩2 dv
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+

ˆ
(∇hm · v)ψε(hm)

(
|v|2 − 1

)
dv︸ ︷︷ ︸

A2

+
1

2

ˆ
(Qm(h,H) +Qm(H,h))ψε(hm) ⟨v⟩2 dv︸ ︷︷ ︸

A3

,

and we can then drop the first negative term. ForA2 we define first the following function:

ζε(x) :=


−x+ ε/2, x ≤ −ε
x2/(2ε), −ε < x < ε

x− ε/2, x ≥ ε

with ∇ζε = ψε a.e. and ζε → |x| as ε→ 0, and we can write

A2 =

ˆ (
∇ζε(hm) · v

(
|v|2 − 1

))
dv = −

ˆ
ζε(hm) div(v

(
|v|2 − 1

)
)dv

= −
ˆ
ζε(hm)

(
d
(
|v|2 − 1

)
+ 2|v|2

)
dv.

Now we get for A3:

A3 : =
1

2

m−1∑
n=1

¨
[hn(φ(v, w))Hm−n(w) + hm−n(w)Hn(φ(v, w))] |v − w|ψε(hm(v)) ⟨v⟩2 dwdv

−
M∑
n=1

¨
[hm(v)Hn(w) + hn(w)Hm(v)] |v − w|ψε(hm(v)) ⟨v⟩2 dwdv.

Next, we turn to the term B1 of (4.5.2). Since hm appears in the integrand, the set of v
such that hm(v) = 0 does not contribute to the integral, hence∣∣∣∣1ε

ˆ
(∂thm)χε(hm)hm ⟨v⟩2 dv

∣∣∣∣ =
∣∣∣∣∣1ε
ˆ
{v: 0<|hm(v)|<ε}

(∂thm)hm ⟨v⟩2 dv

∣∣∣∣∣
≤
ˆ
{v: 0<|hm(v)|<ε}

|∂thm| ⟨v⟩2 dv.

Since hm is continuous, |hm| is also continuous sending open sets to open sets, hence
{0 < |hm(v)| < ε} ↓ ∅ as ε → 0. We now claim that ∂thm(t) ⟨v⟩2 ∈ L1 for every
t ∈ [0, T ]. It will imply that the last integral goes to 0 as ε → 0. By linearity ∂thm =
∂tfm−∂tgm, hence it is enough to verify this claim separately for fm and gm. Let us take
fm and prove ∂tfm(t) ⟨v⟩2 ∈ L1 for a.e. t. Note that

ˆ
|∂tfm| ⟨v⟩2 dv =

ˆ
|∆fm + div(vfm) +Q(fm, fm)| ⟨v⟩2 dv

=

ˆ
|∆fm + dfm + v · ∇fm +Q(fm, fm)| ⟨v⟩2 dv.
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By Sobolev embedding (which extends to the weighted case), if fm ∈ Hn
k for n, k suitably

large (in particular, since fm is a Schwartz function), then the above integral is finite.
Now we sum (4.5.2) over m = 1, ..,M and we get

∂t

M∑
m=1

ˆ
hmψε(hm) ⟨v⟩2 dv =

=
M∑
m=1

ˆ
(∂thm)ψε(hm) ⟨v⟩2 dv +

M∑
m=1

1

ε

ˆ
(∂thm)χε(hm)hm ⟨v⟩2 dv

=: AM1 +BM
1 .

We already know that BM
1 is negligible. Further, we have that

AM1 =
M∑
m=1

ˆ
∆hmψε(hm) ⟨v⟩2 + div(vhm)ψε(hm) ⟨v⟩2 dv

+
1

2

ˆ
(Qm(h,H) +Qm(H,h))ψε(hm) ⟨v⟩2 dv

≤ d

ˆ M∑
m=1

(hmψε(hm)) ⟨v⟩2 dv +
M∑
m=1

ˆ
(∇hm · v)ψε(hm)

(
d
(
|v|2 − 1

)
+ 2|v|2

)
dv︸ ︷︷ ︸

AM
2

+
1

2

M∑
m=1

ˆ
(Qm(h,H) +Qm(H,h))ψε(hm) ⟨v⟩2 dv︸ ︷︷ ︸

AM
3

before estimating the nonlinear part we note that, using the estimate for eachm, as ε→ 0,
under our regularity assumption, we get

∂t

M∑
m=1

ˆ
hmψε(hm) ⟨v⟩2 dv → ∂t

M∑
m=1

ˆ
|hm| ⟨v⟩2 dv;

AM2 → −
M∑
m=1

ˆ
|hm|

(
d
(
|v|2 − 1

)
+ 2|v|2

)
dv ≤

M∑
m=1

Cd

ˆ
|hm| ⟨v⟩2 .

So we miss to estimate the nonlinear term AM3 and pass to the limit:

AM3 : =
1

2

M∑
m=1

m−1∑
n=1

¨ (m
n

)2
(hn(φ(v, w))Hm−n(w) + hm−n(w)Hn(φ(v, w)))

|v − w|ψε(hm(v)) ⟨v⟩2 dwdv

−
M∑
m=1

M∑
n=1

¨
(hm(v)Hn(w) + hn(w)Hm(v)) |v − w|ψε(hm(v)) ⟨v⟩2 dwdv

By the change of variable{
v′ = φ(v, w)

w = w
, |J(v, w)| = n

m
.
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and naming the variable v′ again by v, we have that

AM3 =
1

2

M∑
m=1

m−1∑
n=1

¨
(hn(v)Hm−n(w) + hm−n(w)Hn(v))

|v − w|ψε(hm(v))
〈
nv + (m− n)w

m

〉2

dwdv

−
M∑
m=1

M∑
n=1

¨
(hm(v)Hn(w) + hn(w)Hm(v)) |v − w|ψε(hm(v)) ⟨v⟩2 dwdv

≤︸︷︷︸
Jensen’s ineq. & |ψε(hm)|≤1

1

2

M∑
n=1

m−1∑
ℓ=1

¨
(|hn(v)|Hℓ(w) + |hℓ|(w)Hn(v))

|v − w|(⟨v⟩2 + ⟨w⟩2)dwdv

−
M∑
m=1

M∑
n=1

¨
|v − w|

[
hm(v)Hn(w)ψε(hm(v)) ⟨v⟩2 + hn(v)Hm(w)ψε(hm(w)) ⟨w⟩2

]
dwdv

≤︸︷︷︸
symmetry

M∑
n=1

M∑
ℓ=1

¨
|hn(v)|Hℓ(w)|v − w|(⟨v⟩2 + ⟨w⟩2)dwdv

−
M∑
m=1

M∑
n=1

¨
|v − w|

[
hm(v)Hn(w)ψε(hm(v)) ⟨v⟩2 + hn(v)Hm(w)ψε(hm(w)) ⟨w⟩2

]
dwdv

=

¨ M∑
ℓ=1

Hℓ(w)

M∑
n=1

|hn(v)|
(
⟨v⟩2 + ⟨w⟩2

)
|v − w|dwdv

−
¨ M∑

m=1

Hm(w)
M∑
n=1

{
hn(v)ψε(hn(v)) ⟨v⟩2 + hn(v)ψε(hm(w)) ⟨w⟩2

}
|v − w|dwdv.

For the first two integrals we have (renaming ℓ by m)

¨ M∑
m=1

Hm(w)
M∑
n=1

|hn(v)|(⟨v⟩2 + ⟨w⟩2)|v − w|dwdv (4.5.3)

while, using the fact that
|hψε(h)− |h|| ≤ |h|χε(h),

the third integral can be bounded above by

¨ M∑
m=1

Hm(w)

M∑
n=1

[−|hn(v)|+ |hn|(v)χε(hn(v))] ⟨v⟩2 |v − w|dwdv (4.5.4)

while for the fourth, by the elementary inequality |v − w| ≤ ⟨v⟩⟨w⟩, the moment bound
Lemma 4.2.5, |ψε(hm)| ≤ 1, is bounded above by

CM

¨ M∑
m=1

Hm(w) ⟨w⟩3
M∑
n=1

|hn|(v) ⟨v⟩ dwdv ≤ C

ˆ M∑
n=1

|hn|(v) ⟨v⟩2 dv.
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We get the upper bound on AM3 by adding everything together and noting a cancellation
in (4.5.3)-(4.5.4) that eliminates any higher moments in v,

AM3 ≤ CM

¨ M∑
m=1

Hm(w)
M∑
n=1

|hn(v)| ⟨v⟩ ⟨w⟩3 dvdw

+

ˆ M∑
m=1

Hm(w)
M∑
n=1

ˆ
{|hn(v)|<ε}

|hn(v)||v − w|dv ⟨w⟩2 dw + C

ˆ M∑
n=1

|hn|(v) ⟨v⟩2 dv.

Now taking the limit as ε→ 0 we have

lim sup
ε→0

AM3 ≤ C

¨ M∑
m=1

Hm(w)
M∑
n=1

|hn(v)| ⟨v⟩ ⟨w⟩3 dvdw +

ˆ M∑
n=1

|hn|(v) ⟨v⟩2 dv

Consider now all the quantities together after passing to the limit, using again the moment
bounds, we have

d

dt

M∑
m=1

ˆ
|hm(v)| ⟨v⟩2 dv ≤ C

ˆ M∑
m=1

|hm(v)| ⟨v⟩2 dv.

Now we can apply Gronwall’s lemma and get that ∥f − g∥L1
M (⟨v⟩2dv) = 0, concluding the

uniqueness.
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Appendix A

A Mean field limit for tracer particles

In this appendix we are going to show a scaling limit of interacting particle system to a
random PDE close, in suitable sense, to a random Smoluchowski coagulation equation for
the spatial-volumetric density of tracer particles in atmosphere

∂tρt(x, v) +
∑
j∈H

(σj(x, v) · ∇xρt(x, v)) ξ
j
t = ε∆xρt(x, v) +Qv(ρt(x, ·)) (A.0.1)

whereQv is the non linear operator representing coagulation of different volume particles
in the classic regime [83, 70, 2, 3], i.e.

Qv(ρt(x, ·)) :=
1

2

ˆ v

0
ρt(x,w)ρt(x, v − w)f(w, v − w)dw

−
ˆ

R+

ρt(x, v)ρt(x,w)f(v, w)dw

Although Coagulation equations with diffusion are already being studied (e.g. [2]) both in
discrete [47, 8] and continuous setting [47, 9], as limit of particle system [92, 46, 5]) or as
regularity of its solution [18]. Little is know about the counterpart (A.0.1) which capture
in detail the more complex motion of rain droplet in the atmosphere and is object of this
study. Here a diffusion term and a random field act on the cloud density taking account
of the macro-scale process, such as fluid motion, acting on the formation.

The airflow in which they interact, solution of Navier-Stokes equation, is thus replaced
with a random field with finite correlation time, depending on an environmental random
noise produced by Ornstein-Uhlenbeck processes. This choice stems from the idea of
Stochastic Model Reduction [63] and can be replaced in future work with different approx-
imations.

The reason for such a scaling limit is not only to have a rigorous computation to con-
tinue along the line of modelling fluid velocity with realistic noise as in [37, 48], but also to
obtain an equation for which, in future work, one can apply a rigorous limit of the fluctuat-
ing velocity field in the sense of Galeati [42], obtaining a limiting PDE to study displacement
of particles and their collisions property as done numerically in Chapter 1 for hard sphere
swarm particles.

With this in mind, in Section A.1, we rigorously define a particle system dynamics
that, in addition to being easier to simulate, approximate our key Smoluchowski equa-
tion (A.0.1).
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Warm clouds and rain consist of large number of water droplets with broad range of ra-
dius from micrometers to several millimeters. Several sorts of aerosol particles are also
floating in the atmosphere, which can be a seed of a cloud droplet.
Let N be the number of such individuals (rain droplets and dust particles) in the consid-
ered region, each particle is characterized by its position and volume:

(
Xi,N
t , V i,N

t

)
, i =

1, .., N .
To describe the dynamics we see how particle acts on observable F of the system, using
the infinitesimal generator L of the dynamical process.

LF (η) = LDF (η) + LCF (η).

The first term on the r.h.s. represents the diffusion and random field acting on the particles

LDF (η) :=
∑
i

ε∆xiF (η) +
∑
i

Ut(xi) · ∇xiF (η).

While the second term, representing the coalescence of the particle, is a mean field coun-
terpart of the classic coagulation interaction term:

LCF (η) :=
∑
i,j

TN (i, j)

[
1

2
Ii,jF (η

i,j) +
1

2
Ij,iF (η

j,i)− F (η)

]
Ii,j := I(vi>=vj), Ij,i := I(vj>vi);

T δN (i, j) :=
1

2
N−1δ−3IBxi (δf(vi,vj))

(xj)k(vi, vj)

Defining µt(x, v) := 1
N

∑N
i=1 δ(xit,vit) as the empirical measure of the system and cou-

pling it with the random noise ξht , h ∈ H we are able to obtain convergence (i.e. Thm.
(A.1.1) of the approximating particle dynamics to a solution of the non local Random
Smoluchowski equation, parameterized by δ ∈ R

∂tρ
δ
t (x, v) +

∑
j∈H

(
σj(x, v) · ∇xρ

δ
t (x, v)

)
ξjt = ε∆xρ

δ
t (x, v) +Qδv(ρ

δ
t (x, ·)) (A.0.2)

where Qδ is the non local coagulation kernel, interpreted in a weak sense, closely related
to equation (A.0.1) as shown in Section A.2.

There, a formal study of the mean field limit equation (A.0.2) is carried out heuris-
tically, under regularity hypothesis, showing that, as in [16, 60], we can show proximity
of our solution to the coagulation-position system (A.0.1). This result is summarized in
Proposition 3.1 as a local convergence in the volume variable

sup
t∈[0,T ]

∥ρt − ρδt∥L2
x(Rd)L1

v(0,R) → 0, as δ → 0, ∀ R > 0,P − a.s.

Justifying the use of the approximating particle system to compute meaningful quantities
of the system of interest and recover information on the effect of the random field on co-
agulation of droplet in the the region of space considered.
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A.1 Particle System Model

The microscopic model that we study in this appendix consists of a large number of tracer
particles, in the space Rd, d ≥ 3, which move according to independent Brownian motions
and a random field acting as the wind on the particles.

dXi
t = Ut(Xi

t , ω)dt+ εdBi
t

Ut(x) :=
∑
k∈K

σk(x)ξ
k
t

dξt = −λξtdt+ λdW i
t , ξ0 = 0.

This velocity field U := Uλ, λ > 1, with finite correlation time, is of the following form:

Uλ (t, x) =
∑
h∈H

σh (x) ξ
h,λ
t

whereH is a set of index with finite cardinality, {σh}h is a suitable family of time indepen-
dent vector field and {ξh,λt }h is a family of stationary i.i.d. Ornstein-Uhlenbeck processes
with covariance cov(ξh,λt , ξh,λs ) = λ

2 exp(λ|t− s|), solution of

dξht = −λξht dt+ σdW h
t , ξh0 = 0, k = 1, ...,K.

For a family of i.i.d. Brownian motions {W h
t }h∈H on a probability space

(
Ω, {Ft}t∈[0,T ],P

)
.

Up to changing the filtration, we also have an explicit formula for the solution of such ob-
ject

ξh,λt = λ

ˆ t

0
e−λ(t−s)dW h

s , t ∈ [0, T ]

During our work we select smooth vector fields {σh}h, ideally as smooth approximation
of the Biot-Savart Kernel, such that fixing point xh ∈ R2 is defined as

σh (x) ∼
1

2π

(x− xh)
⊥

|x− xh|2
, (a, b)⊥ := (b,−a)

This choice, admittedly phenomenological, come from the idea that one would like to take
Ut(x) ≡ U(x), the solution of the Navier-Stokes equations for the wind velocity, or a slight
modification, and the use of this ”vortex like structure” was the proposed approximation.

To each particle we attach a value v ∈ (0,∞) which represent the volume or mass of
the particle (we assume that mass and volume are around the same and can be recovered
from one and another). In the mean field model any pair of particles that approach to
within a certain range of interaction are liable to coagulate, at which time they disappear
from the system, to be replaced by a particle whose volume is equal to the sum of the
volumes of the colliding particles, and whose location is a specific point in the vicinity of
the location of the coagulation.

As a matter of convenience, we introduce the microscopic model, where the number of
particles is initially deterministic. We define a sequence of microscopic models,indexed
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by a positive integer N . A countable set I := N, ... of symbols is provided. A configura-
tion η is an Rd × (0,∞)− valued function on a finite subset Iη ⊂ I. For any i ∈ Iη , the
component η(i) may be written as (xi, vi). The particle labelled by i has volume vi and
location xi.
To describe this dynamics we need to see how the particle acts on observable of the sys-
tem.
Let F : (Rd × R0

+)
N → R denote a function such that F : (Rd × R+)

N → R is smooth,
and F (x, 0) = 0,∀x ∈ Rd. The action on F of the infinitesimal generator L is given by

LF (η) = LDF (η) + LCF (η).

The first term on the r.h.s. represents the diffusion and random field acting on the particles

LDF (η) :=
∑
i

ε∆xiF (η) +
∑
i

Ut(xi) · ∇xiF (η).

While for the second term, representing the coalescence of the particle we have:

LCF (η) :=
∑
i,j

TN (i, j)
[
Ii,jF (η

i,j) + Ij,iF (η
j,i)− F (η)

]
Ii,j := I(vi>=vj), Ij,i := I(vj>vi);

T δN (i, j) :=
1

2
N−1δ−3IBxi (δf(vi,vj))

(xj)k(vi, vj)

here we have indicated

ηi,jk =


η(k), if k ̸= i, j

(xi, vi + vj), if k = i

(xi, 0), if k = j.

We note here, as one can see from LC , that the coalescence generator is as such that two
particles interact if they are close in the space depending not only on the radius, but also
on some fixed scaling quantities δ.
This is done to obtain a scaling limit in the mean field regime for the system. As such,
we needed to scale the T interaction Kernel with a factor 1/N , that take into account the
interaction with the particle as N grows.
In particular, asN grows the particle are nearer, with mean distanceN−1/d, and so when
we consider theT function we should make a rescale in the position: two particles interact
if |Xi,N

t − Xj,N
t | ≤ N−1/d, and since in our case the interaction depends also on the

volume of each raindrop, we would like to have

|Xi,N
t −Xj,N

t | ≤ N−1/df(V i,N
t , V j,N

t ))

and thus making it a local problem. This is out of our capacity for now, so we select a
rescaling parameter δ such that T is substituted whit T δ of the form

δαIBx(δf(v,w)g(v, w)

where α depend on the system (in particular the dimension) and δ depends on N .
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We note that (xi(t), vi(t)) ∈ C([0, T ], Rd) × D([0, T ], R+), we consider now for each
N the empirical measure associated to the particles

µNt :=
1

N

N∑
i=1

δ(XN
i (t),V N

i (t)) ∈ D([0, T ],M1(R
d × R+)

As in the other setting we consider the pair (µNt , ξt) ∈ D([0, T ],M1(Rd × R+)) ×
C([0, T ],R). If we consider now ϕ ∈ C1,2

b , ϕ(x, 0) = 0, non necessarily continuous in
v = 0. we can compute the infinitesimal generator acting on

〈
µNt , ϕ

〉
and we have

〈
µNt , ϕ

〉
=
〈
µN0 , ϕ

〉
+

ˆ t

0
ε
〈
µNs ,∆ϕ

〉
ds+

ˆ t

0

〈
µNs ,Us · ∇ϕ

〉
ds+

+

ˆ t

0

〈
µNt ,

〈
µNt , T

δ(x, v, y, w)Jϕ(x, v, y, w)
〉〉

ds+ M̃t

where

T δ(x, v, y, w) :=
1

2
δ−3IBx(δf(v,w))(y)k(v, w);

Jϕ(x, v, y, w) :=
[
I(v>=w)ϕ(x, v + w) + Iv<wϕ(y, v + w)− ϕ(x, v)− ϕ(y, w)

]
M̃t is a martingale and we can compute is quadratic variation:

E
[
M̃2
t

]
= E

[ˆ t

0

(
L
〈
µNs , ϕ

〉2 − 2
〈
µNs , ϕ

〉
L
〈
µNs , ϕ

〉
ds
)]

which we can compute in two parts MD, MC such that:

⟨MD⟩ : = E

[ˆ t

0
N−1

〈
µNt , |∇ϕ|2

〉
ds

]

⟨MC⟩ : = E

ˆ t

0

1

N3

∑
i,j

T δt (i, j)J
ϕ
t (i, j)

2ds


= E

[ˆ t

0
N−1

〈
µNs ,

〈
µNs , T

δ(x, v, y, w)Jϕ(x, v, y, w)2
〉〉

ds

]
The last computation is a very tedious one, but not difficult.

Our result is the following

Theorem A.1.1. Assuming that (µ, ξ) realise a limiting law of the sequence (µN , ξ). Then
µ is a continuous process taking values in M1(Rd × R+) and satisfies the limit random
PDE:

⟨µt, ϕ⟩ − ⟨µ0, ϕ⟩ =
ˆ t

0

〈
µs,

ε2x
2
∆xϕ

〉
ds+

ˆ t

0

∑
j∈J

⟨µs, σj(x, v) · ∇xϕ⟩ ξjsds

+

ˆ t

0

〈
µs,
〈
µs, T

δJϕ
〉
y,w

〉
x,v

ds
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for every t ∈ [0, T ] and ϕ ∈ Ctest, with probability 1. Here:

T δ(x, v, y, w) :=
1

2
δ−3IBx(δf(v,w))(y)k(v, w);

Jϕ(x, v, y, w) :=
[
I(v>=w)ϕ(x, v + w) + Iv<wϕ(y, v + w)− ϕ(x, v)− ϕ(y, w)

]
.

Moreover, if µ0 has finite volume of the particle, also µt does and we have:

sup
t≤T

ˆ
Rd×R+

vµt(dx, dv) ≤
ˆ

Rd×R+

vµ0(dx, dv)

Later we’ll show under suitable hypothesis how to pass to the limit as δ → 0 and
retrieve that µδt → µt where µt is a solution in the sense of weak formulation for the
Random Smoluchowski equation, justifying our particle system approximation scheme:

Definition A.1.2. A continuous family of measure µt ∈ C([0, T ],M1(Rd × R), given ξt
as before, is a weak solution of the RSPDE if

⟨µt, ϕ⟩ − ⟨µ0, ϕ⟩ =
ˆ t

0

〈
µs,

ε2x
2
∆xϕ

〉
ds+

ˆ t

0

∑
j∈J

⟨µs, σj(x, v) · ∇xϕ⟩ ξjsds

+

ˆ t

0

〈
µs,
〈
µs, k(v, w)T (v, w)J

ϕ
x,v,w

〉
x,w

〉
x,v

ds

for every t ∈ [0, T ] and ϕ ∈ Ctest, with probability 1. Here:

K(v, w)T (v, w) :=
π

2

(
v1/3 + w1/3

)3
E(v, w), with E ∈ C0

b ;

Jϕ(x, v, w) := [ϕ(x, v + w)− ϕ(x, v)− ϕ(x,w)] .

A.1.1 Scaling Limit: Uniform Estimates and Compactness

Since ξ does not change in the sequence (µN , ξ), to prove tightness for law QN :=
L(µN , ξ) we need to prove it just for the marginal µNt , which is done in the following
computation.
Suppose that the initial condition (Xi,N

0 , V i,N
0 ) of the system are i.i.d from a probability

distribution with law µ0 and F0 −measurable, suppose also that:

a) supi,N E
[
|Xi,N

0 |+ |V i,N
0 |

]
<∞;

b) ∃µ0 ∈ Pr1(Rd × R+) such that
〈
µN0 , ϕ

〉
→P ⟨µ0, ϕ⟩, for every ϕ ∈ C∞(Rd × R+).

c)
´

Rd vµ0(dx, dv) <∞;

This is true under the particular assumption made in the introduction: (Xi,N
0 , V i,N

0 ) =
(Xi

0, V
i
0 ), where {Xi

0, V
i
0}i∈N is a sequence of i.i.d. F0−measurable r.v.’s with common

law µ0 ∈ Pr1(Rd × R+).
We also assume the following on system (3.1):
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c) Ut(x, v, ω) is of the form
∑

h∈H σh(x)Dh(v)ξ
h
t (ω), |H| < ∞, where σh is regu-

lar ∀h, ∥σh∥∞ ≤ Kσ <∞, and Dh is smooth and bounded with a constant KD ;
d) the interacting kernel for the volume of the particle is defined as

T δ := δ−3IBx(δf(v,w)(y)k(v, w).

Here k represents the efficiency collision and is such that k ∈ C0
b , ∥k∥∞ <∞, and f is

as usual.
We’ll derive a real interaction kernel at the limit of δ → 0 later in the next chapter.

The crucial step in the proof of tightness is to establish suitable uniform bounds for the
increments of the process µNt .

Proposition A.1.3. Let T ≥ 0 and ϕ ∈ C1, 2 be fixed. There exists a constant C > 0
depending only on T, ϕ, ξ,Kσ, δ such that for all N ∈ N, any bounded stopping time
τ ≤ T with respect to the filtration of µN , and ϑ > 0, it holds

E
[
|
〈
µNτ+ϑ − µNτ , ϕ

〉
|2
]
≤ Cϑ.

The proof of the latter shall be divided in two parts, corresponding to the generator
part and the stochastic (martingale) part of the dynamics of µN . Indeed, we can always
expand the above increments as〈

µNτ+ϑ − µNτ , ϕ
〉
=

ˆ τ+ϑ

τ
Ls
〈
µNs , ϕ

〉
ds+

(
M̃ϕ,N
τ+ϑ − M̃N,ϕ

τ

)
.

where M̃ is a martingale and we know the quadratic variation. Thus we can reduce our-
selves to bound separately the first and second summands in the right-hand side of the
expression above.

Lemma A.1.4. In the notation above, it holds

E

[∣∣ˆ τ+ϑ

τ
L
〈
µNt , ϕ

〉
dt
∣∣2] ≤ Cϑ

where the constant C > 0 only depends on ξ, ϕ, T,Kσ.

Proof. Consider the integrating function L
〈
µNs , ϕ

〉
we can explicitly bound

|L
〈
µNs , ϕ

〉
| ≤ |LD

〈
µNs , ϕ

〉
|+ |LC

〈
µNs , ϕ

〉
| ≤ |

〈
µNs ,

ε2

2
∆ϕ

〉
|+ |

〈
µNs , ξsσ · ∇xϕ

〉
|+

+ |
〈
µNs ,

〈
µNs , T

δJϕ
〉〉

|

≤ ε2

2
∥ϕ∥1,2 +Kσ sup

t∈[0,T ]
|ξt|∥ϕ∥1,2 + 2δ−3∥k∥∞∥ϕ∥∞.

Passing to the square, using Jensen inequality we get

E

[∣∣ˆ τ+ϑ

τ
L
〈
µNt , ϕ

〉
dt
∣∣2] ≤ C2

ξ,ϕ,σ,k,δ ϑ.
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Lemma A.1.5. In the notation above, it holds

E

[(
M̃N
τ+ϑ − M̃N

τ

)2]
≤ Cϑ

N
,

where the constant C > 0 only depends on ϕ, T, δ.

Proof. Using the fact that τ is a stopping time for µN and M̃ is a martingale, follows

E

[(
M̃N
τ+ϑ − M̃N

τ

)2]
≤ E

[∣∣ˆ τ+ϑ

τ
L
〈
µNt , ϕ

〉2 − 2
〈
µNt , ϕ

〉
L
〈
µNt , ϕ

〉
dt
∣∣]

≤ ϑE

[
sup
t

(
L
〈
µNt , ϕ

〉2 − 2
〈
µNt , ϕ

〉
L
〈
µNt , ϕ

〉)]
.

From the definition of the two martingale (the diffusive one and coagulation one) we have:

⟨MD⟩ := E
[
N−1

〈
µNt , |∇ϕ|2

〉]
≤ N−1∥ϕ∥1,2

⟨MC⟩ := E

 1

N3

∑
i,j

T δt (i, j)J
ϕ
t (i, j)

2

 ≤ N−12∥ϕ∥∞δ−3∥k∥∞.

Which concludes the proof.

The combination of Lemma 2.4 and Lemma 2.5 proves Proposition 2.3, from which
we immediately deduce the following tightness result

Proposition A.1.6. Under the hypothesis of the previous lemmas, {QN}N∈N the law of
{µN· }N∈N on D([0, T ],M1(Rd × R+)) is relatively compact.
As a consequence the law of (µN , ξ) ∈ D([0, T ],M1(Rd × R+))×C([0, T ],R) is tight
and there exist a sub sequence such that (µNk , ξ) →L Q a law in D([0, T ],M1(Rd ×
R+))× C([0, T ],R).

Proof. it suffices to show that the laws of couplings
〈
µNt , ϕ

〉
is tight on D([0, T ],R) for

any fixed ϕ in a dense subset of C0 including the constant ϕ ≡ 1. Such tightness is in
turn verified if:

• for any t ∈ [0, T ] the sequence of random variables
〈
µNt , ϕ

〉
is tight;

• for any δ > 0 it holds

lim
ε→0

lim sup
N∈N

sup
τ∈T N

T

sup
ϑ≤ε

QN (|
〈
µNτ+ϑ − µNτ , ϕ

〉
| > δ) = 0

where T N
T denotes the family of stopping times with respect to the filtration of µNt

bounded by T , that is τ ≤ T almost surely;

The former condition is an easy consequence since |µNt | ≤ 1, the collection (
〈
ϕ, µNt

〉
)N∈N

for fixed t is automatically tight because
〈
ϕ, µNt

〉
≤ ∥ϕ∥∞. The second condition, follows

immediately from the previous proposition and Markov inequality.
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A.1.2 Passing to the Limit

As a consequence of proposition (2.6) the law of (µN , ξ) ∈ C([0, T ], P r1(Rd×R+))×
C([0, T ],R) is tight and we can extract a subsequence, whcich we still denote QN , such
that converges weakly to a law Q in C([0, T ], P r1(Rd × R+))× C([0, T ],R).
Let us now consider (µt, ξ), a process such that its law is equal to Q and such that

(µNk
t , ξ) →L (µt, ξ).

TheoremA.1.7. If (µ, ξ) realise the law of a weak limit point of a subsequence of {QN}N∈N,
then µ solves the RPDE with probability 1 over test function.

Proof. We consider the functional

Ψϕ(ν·, f·) := sup
t∈[0,T ]

∣∣ ⟨νt, ϕ⟩ − ⟨ν0, ϕ⟩ −
ˆ t

0

〈
νs,

ε2x
2
∆xϕ

〉
ds

−
ˆ t

0
⟨νs, σ(x, v) · ∇xϕ⟩ fs ds−

ˆ t

0

〈
νs,
〈
νs, T

δJϕ
〉〉

ds
∣∣

defined for every ϕ ∈ C1,2
b (Rd × R).

It is continuous on D([0.T ], P r1(Rd × R))× C([0, T ],R).
Hence, if (µNk

t , ξ) →L (µt, ξ) is a subsequence which weakly converges to (µ, ξ), by
Portmanteau theorem we have

P(Ψϕ(µ·, ξ·) > δ) ≤ lim inf
k→∞

P
(
Ψϕ(µ

Nk
· , ξ·) > δ̃

)
.

Using the definition of the functional and the identity satisfied by (µNt , ξ) in lemma (3.3),
the r.h.s. is equal to

= P

(
sup
t∈[0,T ]

|
〈
µNk
0 , ϕ

〉
− ⟨µ0, ϕ⟩+Mϕ,Nk,x

t +Mϕ,Nk,v
t | > δ̃

)
.

Using the hypothesis on the initial condition, regularity of the velocity field and interaction
kernel, standard computation for the martingale part gives us

P(Ψϕ(µ·, ξ·) > δ̃) ≤ lim inf
k→∞

P
(
Ψϕ(µ

Nk
· , ξ·) > δ̃

)
= 0.

Since this hold true for every δ̃ > 0, we deduce that

P(Ψϕ(µ·, ξ·) > δ̃) = 1.

Hence ∀ϕ ∈ C1,2
b (Rd × R):

⟨µt, ϕ⟩ − ⟨µ0, ϕ⟩ =
ˆ t

0

〈
µs,

ε2x
2
∆xϕ

〉
ds

+

ˆ t

0
⟨µs, σ(x, v) · ∇xϕ⟩ ξsds+

ˆ t

0

〈
νs,
〈
νs, T

δJϕ
〉〉

ds

∀t ∈ [0, T ], with probability 1.
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We now can conclude the proof of Theorem (2.1)

Proof. What we need to prove to conclude the theorem is that we can swap the quantifiers
on ϕ ∈ D(Rd+1).
Since this space is separable we can work on a infinite countable dense subset and we
have

P(∀ϕΨϕ(µ, ξ) = 0) = P(∀ϕn Ψϕn(µ, ξ) = 0) = 1.

And so we have that:

⟨µt, ϕ⟩ − ⟨µ0, ϕ⟩ =
ˆ t

0

〈
µs,

ε2x
2
∆xϕ

〉
ds

+

ˆ t

0
⟨µs, σ(x, v) · ∇xϕ⟩ ξsds+

ˆ t

0

〈
µs,
〈
µs, T

δJϕ
〉〉

ds

for every t ∈ [0, T ] and ϕ ∈ Ctest, with probability 1.
The continuity ofµ follows from the fact that every element in the r.h.s. is continuous.

What we have now is that any process realizing the limiting law is a solution of the
random evolution equation in the sense above. What we need to conclude now is:

1. Prove uniqueness of solutions for this equation.

2. Conclude all limiting laws agree, and hence that we have convergence in law.

Theorem A.1.8. If (µ, ξ), (ν, ξ) are two processes such that µ, ν satisfy the weak formu-
lation as in Thm. 8.3, P − a.s., then:

∥µt − νt∥ = 0, ∀t ∈ [0, T ], P − a.s.

Proof. Existence in the weak sense has been proved above. Let us prove uniqueness. To
shorten the expressions we set εx = εv = 1 and |H| = 1.
Let µ and ν be two solutions. Using as test functions the heat kernel multiplied by a test
function we have that both satisfy

⟨µt − νt, ϕ⟩ =
ˆ t

0

〈
µs − νs, σ(x, v) · ∇x(e

(t−s)∆ϕ)
〉
ξsds

+

ˆ t

0

〈
µs,
〈
µs, T

δJ (e(t−s)∆ϕ)
〉〉

ds

−
ˆ t

0

〈
νs,
〈
νs, T

δJ (e(t−s)∆ϕ)
〉〉

ds

We pass to the module and we estimate for P − a.s.

| ⟨µt − νt, ϕ⟩ | ≤
ˆ t

0
|
〈
µs − νs, σ(x, v) · ∇x(e

(t−s)∆ϕ)
〉
|ds∥ξ∥L∞

t

+

ˆ t

0
|
〈
µs − νs,

〈
µs, T

δJ (e(t−s)∆ϕ)
〉〉

|ds

+

ˆ t

0
|
〈
νs,
〈
µs − νs, T

δJ (e(t−s)∆ϕ)
〉〉

|ds



A.1. PARTICLE SYSTEM MODEL 175

We the first term in the r.h.s. we have P − a.s.

ˆ t

0
|
〈
µs − νs, σ(x, v) · ∇x(e

(t−s)∆ϕ)
〉
|ds∥ξ∥L∞

t

≤
ˆ t

0
Kσ∥ϕ∥∞∥∇e(t−s)∆∥∥µs − νs∥ds∥ξ∥L∞

t

≤
ˆ t

0

C(ξ, ϕ, σ)√
t− s

∥µs − νs∥ds.

For the second term in the r.h.s we have
ˆ t

0
|
〈
µs − νs,

〈
µs, T

δJ (e(t−s)∆ϕ)
〉〉

|ds ≤
ˆ t

0

〈
µs − νs, 2δ

−3∥ϕ∥∞∥K∥∞
〉
ds

where we have used the fact that

|T δJe(t−s)∆ϕ| = |
ˆ

1

2
δ−3IBx(δf(v,w))k(v, w)4|e

(t−s)∆ϕ|dµNs |

≤ 2δ−3

ˆ
dµNs (dx, dv)∥ϕ∥∞∥k∥∞ ≤ 2δ−3∥ϕ∥∞∥K∥∞ <∞.

putting all together we have
ˆ t

0
∥
〈
µs − νs,

〈
µs, T

δJ (e(t−s)∆ϕ)
〉〉

|ds ≤
ˆ t

0
C(δ, k, ϕ)∥µs − νs∥ds.

For the last term we have
ˆ t

0
|
〈
νs,
〈
µs − νs, T

δJ (e(t−s)∆ϕ)
〉〉

|ds ≤ C(k, δ, ϕ)

ˆ t

0
∥µs − νs∥ds

If we combine all the inequality we get, over the sup on the test function with ∥ϕ∥ = 1

∥µt − νt∥ ≤ C(ξ, k, σ, T, δ)

ˆ t

0

√
t− s+ 1√
t− s

∥µs − νs∥ds

and with a modification of a standard lemma we are able to conclude that ∥µt − νt∥ =
0.

Corollary A.1.9. The family {QN}N∈N of laws of the processes (µN· , ξ·) weakly converge
to Q where µ ∈ C([0, T ],M1(Rd × R+)).

Proof. What we have now is that every subsequence of {QN}N∈N admit a limit measure
Q such that every (µ, ξ) realizing the law solves P − a.s. the weak formulation of (2.2).
From the previous theorem we now that any process νt that solves the same identity is
such that µt = νt, P − a.s..
So any process realizing any limiting law are P − a.s. equal and so they have the same
law.
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A.2 Conjecture on PDE-PDE Limit: Local Interaction

Before analyzing numerically our particle system and retrieve useful insight on turbulence
and coagulation formation; In this section we show formally, how we can relate the limit-
ing equation of our particle system to the Smoluchowski Coagulation random PDE (1.1),
objective of this paper.
We also conjecture the convergence of a sequence of solution ρδt of the random Smulo-
chovski PDE, as δ → 0, in the interaction kernel for the volume.
First of all, following the result of ([3],[9],[60]), we suppose that our system admits a mea-
sure valued solution with densityρt(x, v) ∈ C([0, T ], L2(Rd×R+))∩L1(Ω, C([0, T ], L2(Rd×
R+)).

Approximation of the Local Interaction Kernel

The rescaled interaction Kernel considered for the volume exchange between particles is
of the form

T δ(x, v, y, w) := δ−3IBx(δf(v,w)) k(v, w),

where we have defined:

Bx(δf(v, w)) := {y ∈ Rd : |x− y|d ≤ δf(v, w)}, ∀δ, v, w ∈ R;

f(v, w) :=
(
v1/3 + w1/3

)( 3

4π

)1/3

;

k(v, w) ∈ C0
b , collision coefficient.

Fix d = 3, we consider now the definition of the mean field equation in weak form, when
µt has a density ρt, for a fixed ω, ϕ:

⟨ρt, ϕ⟩ − ⟨ρ0, ϕ⟩ =
ˆ t

0

〈
ρs,

ε2x
2
∆xϕ

〉
ds+

ˆ t

0
⟨ρs, σ(x, v) · ∇xϕ⟩ ξsds (A.2.1)

+

ˆ t

0

〈
ρs,
〈
ρs, T

δJϕ
〉
y,w

〉
x,v

ds

where the bracket are to be intend as aL2 product. We see that the only complicated term
is the one involving T δ(〈

ρs, T
δJϕ
〉
y,w

)
(x, v) :=

=

ˆ
δ−3IBx(δf(v,w)) k(v, w)ˆ [I(v>=w)ϕ(x, v + w) + Iv<wϕ(y, v + w)− ϕ(x, v)− ϕ(y, w)

]︸ ︷︷ ︸
Jϕ
x,v,y,w

ρ (y, w) dw

 dy

=

ˆ
R+

(
δ−3

ˆ
Bx(δf(v,w))

Jϕx,v,y,wρt(y, w)dy

)
k(v, w)dw
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Heuristically, if ρ is regular enough inw, since ϕ is a test function and therefor regular, we
can use a Lebesgue differentiation theorem, and if we take the mean of the integral over
the ball as δ → 0, we have a.e. x ∈ Rd:(

(δf(v, w))−3
ˆ
Bx(δf(v,w))

Jϕx,v,y,wρt(y, w)dy

)
→ Jϕx,v,wρt(x,w), as δ → 0,

∀ w ∈ R, where

Jϕ(x, v, w) = [ϕ(x, v + w)− ϕ(x, v)− ϕ(x,w)] ,

and so the convergence of “T δ ∗ ρ” to the new kernel:(〈
ρs, T

δJϕ
〉
y,w

)
(x, v) :=

=

ˆ
R
(f(v, w))3

(
(δf(v, w))−3

ˆ
Bx(δf(v,w))

Jϕx,v,y,wρt(y, w)dy

)
k(v, w)dw

→
ˆ

R
f(v, w)3 k(v, w)Jϕ(x, v, w)ρt(x,w)dw, a.e.x ∈ Rd, ∀ v ∈ R+.

Resulting in the Random Smoluchowski Coagulation PDE with a turbulence field as in def-
inition 2.2:

⟨ρt, ϕ⟩ − ⟨ρ0, ϕ⟩ =
ˆ t

0

〈
ρs,

ε2x
2
∆xϕ

〉
ds+

ˆ t

0
⟨ρs, σ(x, v) · ∇xϕ⟩ ξsds (A.2.2)

+

ˆ t

0

〈
ρs,
〈
ρs, k(v, w)(f(v, w))

3Jϕ(x, v, w)
〉
x,w

〉
x,v

ds

Conjecture: Converge to Random Smoluchowski Equation

To conclude, in this section we give a brief idea of a possible convergence of sequence
of solution under some additional assumption on the regularity of the random PDE.
Consider again the candidate limiting equation in weak form:

⟨ρt, ϕ⟩ − ⟨ρ0, ϕ⟩ =
ˆ t

0

〈
ρs,

ε2x
2
∆xϕ

〉
ds+

ˆ t

0
⟨ρs, σ(x, v) · ∇xϕ⟩ ξsds (A.2.3)

+

ˆ t

0

〈
ρs,
〈
ρs, k(v, w)(f(v, w))

3Jϕ(x, v, w)
〉
x,w

〉
x,v

ds

And the approximate sequence of solutions ρδt that solves in weak sense:

⟨ρt, ϕ⟩ − ⟨ρ0, ϕ⟩ =
ˆ t

0

〈
ρs,

ε2x
2
∆xϕ

〉
ds+

ˆ t

0
⟨ρs, σ(x, v) · ∇xϕ⟩ ξsds (A.2.4)

+

ˆ t

0

〈
ρs,
〈
ρs, T

δJϕ
〉
y,w

〉
x,v

ds
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PropositionA.2.1 (Limit δ). Letρt(x, v) ∈ C([0, T ], L1∩L2(Rd×R+))∩L1(Ω, C([0, T ], L1∩
L2(Rd × R+)) be a weak solution of (1.1). Suppose that µ0 has density ρ0 that sat-
isfy hypothesis (a, b, c) as in section.A.1. Suppose also that the kernel is symmetric and
K(v, w)f(v, w)3 ≤ vα, with α ≤ 1.
Let {ρδt}δ solutions of the equation with kernel T δ , then we have

sup
t∈[0,T ]

∥ρt − ρδt∥L2(Ω×(0,R)) → 0, as δ → 0, ∀R > 0, ∀Ω ⊂⊂ R, P − a.s.

Proof. Let’s consider a test function ϕ and the difference between ρδt , ρt in the weak
formulation:〈

ρt − ρδt , ϕ
〉
=

ˆ t

0

〈
ρt − ρδs,Us(x, v) · ∇x (ϕ)

〉
ds+

ˆ t

0

〈
ρt − ρδs,∆x (ϕ)

〉
ds

+ F ϕ,δx,v (ρ
δ
t )− F δx,v(ρt).

where the non linear term are

F ϕx,v(ρt) =

ˆ t

0

〈
ρs,
〈
ρs, T (v, w)J

(e(t−s)Aϕ)
〉
x

〉
ds

F ϕ,δx,v (ρ
δ
t ) =

ˆ t

0

〈
ρδs,

〈
ρδs, T

δJ
(e(t−s)Aϕ)
y

〉〉
ds.

Consider now the modulus and then, term by term, P − a.s.

ˆ t

0
|
〈
ρt − ρδs,Us(x, v) · ∇x (ϕ)

〉
|ds ≤ ∥ξ∥L∞

ˆ t

0
Cϕε,TKσ∥ρt − ρδs∥22ds

ˆ t

0
|
〈
ρt − ρδs,∆x (ϕ)

〉
|ds ≤

ˆ t

0
CϕT ∥ρt − ρδs∥22ds

while for the other terms we need to add an subtract to get

F ϕ,δx,v (ρ
δ
t − ρt)− (F ϕ,δx,v − F ϕx,v)(ρt) :=

= |
ˆ t

0

〈
ρδs − ρs,

〈
ρδs, T

δ(v, w)J (ϕ)
〉〉

ds+

+

ˆ t

0

〈
ρs,
〈
ρδs − ρs, T

δ(v, w)J (ϕ)
〉〉

ds− (F ϕ,δx,v − F ϕx,v)(ρt)|

≤
(
sup
t

∥ρδs∥1 + sup
t

∥ρs∥1
)ˆ t

0
CϕΩ,R∥ρ

δ
s − ρs∥22ds+ |(F ϕ,δx,v − F ϕx,v)(ρt)|

For the last term we have

(F ϕ,δx,v − F ϕx,v)(ρt) =

=

ˆ t

0
|
〈
ρs,
〈
ρs, T

δ J (ϕ)
〉
−
〈
ρs, TJ

(ϕ)
〉
x

〉
|ds

≤
ˆ t

0
|
〈
ρs,

ˆ R

0
k(v, w)

(ˆ
Ω
ρtT

δJ̃ϕdy − ρsTJ
(ϕ)

)
dw

〉
ds
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≤ Cϕ
ˆ t

0
|
〈
ρs,

ˆ R

0
k(v, w)Ldδ(ρtTJ

ϕ)dw

〉
ds

Where

Ldδ(ρtTJ
ϕ) :=

(ˆ
Ω
ρtT

δJ̃ϕdy − ρsTJ
(ϕ)

)
→ 0, in L∞

v L
1
x, as δ → 0

thanks to Lebesgue differentiation theorem and bound on the volume component of the
density. Putting all together we have:

Cϕ
ˆ t

0
|
〈
ρs,

ˆ R

0
k(v, w)Ldδ(ρtTJ

ϕ)dw

〉
ds

≤
ˆ t

0
cϕM1(vρt) sup

w∈(0,R)
∥Ldδ(ρtT )∥

≤ cϕM1(vρ0) sup
w∈(0,R)

∥Ldδ(ρtT )∥ds :=
ˆ t

0
AδC

ϕ
R,ρ0,Ω

ds

where the last inequality follows from the bound on the microscopic kernel k. If we put
all the estimate together, taking the sup over all test functions with L2 norm equal 1, we
obtain with Gronwall the following

sup
t

∥ρδt − ρt∥22 ≤
(
sup
t
(Aδ)T

)
exp(CϕR,Ω,ρ0) → 0, as δ → 0.

With this we conclude the proof.
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